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Abstract

Micro-scale piezoelectric vibration energy harvesting:
from fixed-frequency to adaptable-frequency devices

by

Lindsay Margaret Miller

Doctor of Philosophy in Engineering - Mechanical Engineering

Designated Emphasis in Energy Science and Technology

University of California, Berkeley

Professor Paul K. Wright, Chair

Wireless sensor networks (WSNs) have the potential to transform engineering infrastruc-
ture, manufacturing, and building controls by allowing condition monitoring, asset tracking,
demand response, and other intelligent feedback systems. A wireless sensor node consists of
a power supply, sensor(s), power conditioning circuitry, radio transmitter and/or receiver,
and a micro controller. Such sensor nodes are used for collecting and communicating data
regarding the state of a machine, system, or process. The increasing demand for better ways
to power wireless devices and increase operation time on a single battery charge drives an
interest in energy harvesting research.

Today, wireless sensor nodes are typically powered by a standard single-charge battery,
which becomes depleted within a relatively short timeframe depending on the application.
This introduces tremendous labor costs associated with battery replacement, especially when
there are thousands of nodes in a network, the nodes are remotely located, or widely-
distributed. Piezoelectric vibration energy harvesting presents a potential solution to the
problems associated with too-short battery life and high maintenance requirements, espe-
cially in industrial environments where vibrations are ubiquitous.

Energy harvester designs typically use the harvester to trickle charge a rechargeable
energy storage device rather than directly powering the electronics with the harvested energy.
This allows a buffer between the energy harvester supply and the load where energy can be
stored in a “tank”. Therefore, the harvester does not need to produce the full required power
at every instant to successfully power the node. In general, there are tens of microwatts of
power available to be harvested from ambient vibrations using micro scale devices and tens
of milliwatts available from ambient vibrations using meso scale devices. Given that the
power requirements of wireless sensor nodes range from several microwatts to about one
hundred milliwatts and are falling steadily as improvements are made, it is feasible to use
energy harvesting to power WSNs.
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This research begins by presenting the results of a thorough survey of ambient vibrations
in the machine room of a large campus building, which found that ambient vibrations are
low frequency, low amplitude, time varying, and multi-frequency. The modeling and design
of fixed-frequency micro scale energy harvesters are then presented. The model is able to
take into account rotational inertia of the harvester’s proof mass and it accepts arbitrary
measured acceleration input, calculating the energy harvester’s voltage as an output.

The fabrication of the micro electromechanical system (MEMS) energy harvesters is
discussed and results of the devices harvesting energy from ambient vibrations are presented.
The harvesters had resonance frequencies ranging from 31 – 232 Hz, which was the lowest
reported in literature for a MEMS device, and produced 24 pW/g2 – 10 nW/g2 of harvested
power from ambient vibrations. A novel method for frequency modification of the released
harvester devices using a dispenser printed mass is then presented, demonstrating a frequency
shift of 20 Hz.

Optimization of the MEMS energy harvester connected to a resistive load is then pre-
sented, finding that the harvested power output can be increased to several microwatts with
the optimized design as long as the driving frequency matches the harvester’s resonance
frequency. A framework is then presented to allow a similar optimization to be conducted
with the harvester connected to a synchronously switched pre-bias circuit.

With the realization that the optimized energy harvester only produces usable amounts
of power if the resonance frequency and driving frequency match, which is an unrealistic
situation in the case of ambient vibrations which change over time and are not always known
a priori, an adaptable-frequency energy harvester was designed. The adaptable-frequency
harvester works by taking advantage of the coupling between a sliding mass and a beam. The
derivation of the nonlinear coupled dynamic mathematical model representing the physical
system is presented, as are the numerical and experimental results of the prototype device.
Passive self-tuning was observed in this system and the mathematical model was found to
successfully portray the physical behavior.
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Chapter 1

Introduction

1.1 Motivation for energy harvesting research

Energy harvesting began centuries ago with waterwheels and windmills and continues to
this day to inspire engineering creativity because the concept of “free energy” is so appeal-
ing. Energy harvesting technology has made incredible advances in the past few decades
as new sources of harvestable energy were identified, novel materials for energy conversion
were developed, and the advent of low-power computing opened up a whole new realm of
applications for using harvested energy. The increasing demand for better ways to power
wireless devices and increase operation time on a single battery charge continues to drive
research in energy harvesting today.

1.1.1 Wireless sensing enabled by energy harvesting technology

Electronic devices that are well-suited to utilize energy harvesting technology include sensor
nodes in wireless sensor networks (WSNs) [54]. A wireless sensor node consists of a power
supply, sensor(s), power conditioning circuitry, radio transmitter and/or receiver, and a micro
controller. Such sensor nodes are used for collecting and communicating data regarding the
state of a machine, system, or process. Variables that may be sensed include, but are not
limited to, temperature, occupancy, vibrations, air quality, humidity, sound, and pressure.

Wireless, rather than hard-wired, sensing systems are appealing because they avoid the
highly labor intensive and material intensive expenses associated with installing a hard-wired
system. The exception may be with sensor networks that are incorporated into a building
as it is constructed rather than added as a retrofit later on. Another advantage of wireless
networks is that they are much quicker and easier to install and there are fewer limitations
on where the sensing nodes must be located if they do not need to be hard-wired. In the
ideal case, WSN nodes can be installed in seconds anywhere the user desires using magnets
or velcro, and easily readjusted later if a different sensing point is needed.



CHAPTER 1. INTRODUCTION 3

The application areas of WSNs to engineering infrastructure, manufacturing processes,
and building control are extensive. Condition monitoring of equipment and machinery can
allow engineers to perform maintenance only as needed, eliminate unscheduled downtime,
improve productivity and process efficiency, increase available information about a process
for quality control, and improve energy efficiency. WSNs also have the potential to open up
many applications in asset tracking. From an infrastructure perspective, demand response,
energy efficiency, and smart or automated control can be enabled by providing data about
state variables of the HVAC systems or electricity grid, for example.

Today’s WSNs are typically powered by standard batteries, with a small fraction powered
by some form of energy harvesting [25]. The problem with the battery powered sensor nodes
is that the batteries become depleted within a relatively short timeframe, depending on the
application. This is a problem because the labor costs associated with battery replacement
quickly become prohibitive, especially when there are thousands of nodes in a network or
the nodes are widely-distributed. Additionally, nodes may be located in remote places that
are hard to reach or even inaccessible, making battery replacement even more cumbersome.
Finally, when long sensor node lifetimes are required, batteries may not have the necessary
shelf life without becoming very large or expensive.

Energy harvesting presents a potential solution to the problems associated with too-short
battery life and high maintenance requirements by providing an autonomous, replenishable
power supply. Energy harvester designs typically operate by using the harvester device to
trickle charge a rechargeable battery and/or capacitor rather than directly powering the
electronics with the harvested energy. This allows a buffer between the energy harvester
supply and the load where energy can be stored in a “tank”. Therefore, the harvester does
not need to produce the full required power at every instant to successfully power the node.
The reason that both a battery and capacitor may be used is that the battery provides a
longer, slower supply of energy, while the capacitor can provide quick bursts of power as may
be needed to transmit a signal [22,23].

1.1.2 Power demands of wireless sensor nodes

Part of what has supported the demand of autonomous WSNs is the reduction in power
requirements for radio transmitters and microprocessors. Power demand numbers for a com-
mercial and research phase wireless sensor node are given in table 1.1. The commercial node
is the Dust Networks SmartMesh IP DN6000/M600x [25] and is taken to be representative
of commercially available WSN nodes. The research level node is the PicoCube [55], which
contains less functionality than the Dust node but illustrates the trends of low power limits.

Table 1.1 points out that wireless sensor nodes require different amounts of power depend-
ing on whether they are in a sleep state, transmitting or receiving data, writing to memory,
or performing other functions. An energy harvester supplying power to such a node does
not need to constantly provide the instantaneous amount of power the node is using since
the harvester will charge a battery and capacitor, which serve as a storage tank. In this way,
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Table 1.1: Wireless sensor node power requirements [25,55]

Node state Power required (mW)

Dust Networks commercial node

Peak operation* 108
Radio transmit 34.9
Radio receive 16.2
Flash write 10.8
Flash erase 9.0
Active** 8.6
Doze*** 0.0043

Pico Cube research platform node
Radio transmit 6
Standby < 0.001
Average**** 0.006

* 14.7 MHz. Flash write, radio transmitter on.

** 7.37 MHz. Flash, ARM Cortex-M3, RAM on. Radio, peripherals off.

*** 32.768 kHz. RAM on, data and state retained. All else off.

**** For transmitting once every 6 seconds

the harvester may produce more energy than the node requires during sleep state and this
energy can be stored to use when the node is in a high power state.

Because of the inconsistent power demands of the node, the average power required
depends on the duty cycle. Duty cycle refers to how frequently the node turns on its high
power active states to send or receive a signal or write data to memory, and is determined
both by needs of the application and by how much energy the harvester can supply. Low
duty cycle values mean that a much lower average power than peak power is required to
operate the node. The harvester must be able to provide enough energy to meet the average
power demands of the node in order to be a feasible power source.

The power requirements of any sensors used in the node must be taken into account, as
well, and are typically on the order of several mW for standard sensors. However, in the past
few years a number of sensors with power requirements in the µW range have appeared on the
market, for example, Analog Devices ADXL345 [24] and STMicroelectronics LIS3DH [27]
accelerometers. At the research level there are also a number of passive or self-powered
sensors under development, for example, a passive AC current sensor [36].

1.1.3 Sources of harvestable energy

There are many possible sources of harvestable energy and the best source depends highly on
the requirements and environment of the application. In some cases it is possible to harvest
from more than one energy source to power a single node. This section does not, therefore,
attempt to name one energy harvesting source as better than the others, but simply outlines
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the options available. For a more detailed overview of the different energy harvesting sources,
see [66] and [53].

Sunlight may be one of the most widely recognized harvestable sources of energy. Solar
photovoltaic devices harvest the light energy while solar thermal devices utilize the Sun’s
heat. Fluid motion, in the form of wind or water movement, is another common source of
energy. Wind energy harvesting can be utility scale using turbines or small scale, such as from
HVAC ducts, using von Karman vortex shedding [67]. Ocean harvesting technologies can
be designed to take advantage of tidal changes, flowing currents, or the motion of waves [6].
Thermal and pressure gradients are less commonly considered sources of harvestable energy,
as are radio frequencies [28]. Ambient mechanical vibrations from machinery can also be
harnessed and are the focus of this thesis.

This research is motivated by the need to power wireless sensor networks. For applica-
tions of wireless sensor networks in buildings, including manufacturing or industrial process
monitoring, machine condition assessment, smart grid, smart buildings, demand response
and energy efficiency, vibrations are a ubiquitous source of energy, especially where solar
or thermal energy may not be consistently available. Therefore, the focus of this work is
on harvesting energy from ambient vibrations. Throughout this work, the term “ambient
vibrations” is taken to mean any vibrations existing in the environment from machinery, ap-
pliances, or movement of building occupants. Examples include pumps, motors, fans, ducts,
industrial equipment, transformers, and even doors slamming.

1.2 Vibration energy harvesting

1.2.1 Theoretically available power from ambient vibrations

The maximum power theoretically available from ambient vibrations can be expressed as [46]

Pmax =
1

4

mA2
inQ

ωin

(1.1)

where m is the mass, Ain is the magnitude of input acceleration, ωin is the input vibration
frequency, and Q is the quality factor, which is a nondimensional parameter that character-
ized the amount of damping in the system. This equation assumes sinusoidal vibration input,
operation at resonance, unconstrained displacement, and optimal electrical damping. In the
case of unconstrained displacement, optimal electrical damping occurs when mechanical and
electrical damping are equal.

In the case of a displacement-constrained vibration, optimal electrical damping occurs
when the electrical damping just barely constrains beam motion within the package, so
equation (1.1) becomes

Pmax =
1

2
mAinωinZlimit (1.2)
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Table 1.2: Example calculations for maximum theoretically available power from ambient
vibrations using typical values for micro and meso scale devices

Variable Value

Micro scale device

Ain Input acceleration 0.203 g m/s2

ωin Input frequency 22.5 Hz
m Mass 118e-6 kg

Zlimit Displacement limit 4e-3 m
Q Quality factor 100
Pmax Maximum power 66* µW

Meso scale device

Ain Input acceleration 0.203 g m/s2

ωin Input frequency 22.5 Hz
m Mass 12e-3 kg

Zlimit Displacement limit 1e-2 m
Q Quality factor 100
Pmax Maximum power 16.9* mW

* displacement constrained case

where Zlimit is the maximum displacement allowed by the constraint. Equation (1.2) is the
more realistic expression since in most cases the energy harvester will be packaged to protect
it from the environment and also may include end stops to protect it from mechanical failure.

These expressions highlight the factors that determine the power available to harvest from
ambient vibrations. The power scales directly with mass, input acceleration and frequency,
and displacement limit. Table 1.2 shows example calculations for maximum theoretically
available power using typical values for micro and meso (several centimeter) scale devices.
For micro devices, tens of µW are typically available, while tens of mW are available for meso
scale devices. It is important to note that these equations for maximum power available
do not take into account any details about efficiency of the energy conversion mechanism.
Rather, given information about the vibrations, the mass of the device, and the package size,
these equations give the amount of power that could be harvested if the energy conversion
mechanism could convert all of the mechanical energy to electrical energy. Based on the
power requirements of sensor nodes listed in table 1.1, it is evident that there is enough
energy available in ambient vibrations to power a wireless sensor node assuming that the
node is operated efficiently and that the energy harvester efficiently converts mechanical to
electrical energy.

1.2.2 Vibration-to-electrical energy conversion mechanisms

There are three commonly used methods for converting mechanical energy into electrical
energy: electrostatic, electromagnetic, and piezoelectric. Electrostatic harvesting works by
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using vibration-induced motion of the inertial proof mass to change the capacitance of the
device while holding voltage or charge constant. Electromagnetic harvesting uses vibration-
induced motion of the inertial proof mass to move a magnet relative to a conductive coil,
thereby generating a current in the coil. Piezoelectric harvesters use vibrations to induce
deflection of a spring structure connected to an inertial proof mass, where the spring structure
is made of a piezoelectric material. All three of these conversion techniques can be modeled
as spring-mass-damper systems.

In general, electrostatic devices are well-suited to micro electromechanical systems (MEMS)
because small capacitor gap sizes are desirable, while electromagnetic devices are better
suited for meso scale systems because it is difficult to achieve a large number of coils or long
translation distances through the coils in a MEMS fabricated device. Piezoelectric devices
can work at either the MEMS or meso scale, but the energy conversion capability of the
piezoelectric thin films used at the MEMS scale tend to be inferior by approximately an
order of magnitude to that of bulk ceramic piezoelectric materials that are used at the meso
scale.

There is not, in general, a consensus in the literature about which technique is superior, as
the ideal harvesting technique tends to be application-specific. A more detailed comparison
of the three conversion techniques is outside the scope of this work but can be found in
literature [28, 54, 66]. Piezoelectric harvesting is attractive, for both micro and meso scale
devices, because of its simple configuration and its high energy conversion potential [54], and
is thus the focus of this research.

1.2.3 MEMS versus macro scale devices

There is growing interest in miniaturization and integration of electronics, radios, sensors,
and power sources for sensor networks and personal electronics. Because of this, MEMS scale
energy harvesting has received attention over the past decade, yet MEMS harvesters still
struggle to produce enough power to be usable. This raises the question of whether MEMS
scale energy harvesting technologies are viable or if efforts should be focused on meso scale
devices.

The main disadvantage of MEMS devices is that they are mass-limited, limiting the
maximum theoretical power available to harvest according to equation (1.2). Another disad-
vantage of MEMS harvesters is that in some cases the piezoelectric material properties are
inferior to those available with a bulk device, as described in section 1.2.2. Additionally, it
can be difficult to achieve high coupling with MEMS electromagnetic devices because of fab-
rication constraints limiting the number of magnetic coils that can be achieved. However, it
is feasible that in the near future the MEMS scale energy conversion materials will improve to
the point where they are an advantage over bulk materials, rather than a disadvantage [48].

Despite these challenges, MEMS devices are very appealing due to their compact size,
their potential for integration with electronic components, and their potential for cost re-
ductions using standard semiconductor fabrication processes. The bottom line at this point
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in time is that MEMS energy harvesting devices have incredible potential. There are some
applications which can use meso scale harvesting devices with no drawbacks because there
is not a spacial constraint, yet other applications are dependent on achieving small form
factors and integrated components. Given that the power requirements of electronics are
continuously decreasing and MEMS energy harvesters are improving in higher power output
and lower cost, it is justifiable to continue research towards the goal of a well-integrated
MEMS scale energy harvester while, at the same time, recognizing that not every applica-
tion requires a MEMS solution. This research focuses mostly on MEMS piezoelectric energy
harvesting devices.

1.2.4 Piezoelectric manufacturing considerations

There are several standard ways to fabricate MEMS piezoelectric thin films for use in energy
harvesters: pulsed laser deposition (PLD), sputtering, and sol-gel deposition. Other more
upstream materials science focused deposition methods exist but were not considered for
this research. Sol-gel deposition was chosen for this research because it is the most scalable
of the thin film deposition processes, does not require tremendous up-front equipment costs
to carry out, and is relatively quick. It requires only access to a spin-coater, hotplates, and
a rapid thermal annealer, as well as sol-gel piezoelectric chemicals, and can achieve film
deposition on silicon wafers of arbitrary size. The disadvantage of sol-gel deposition is that
it is difficult to achieve the high piezoelectric conversion coefficients that are desired. PLD,
in contrast, requires a sophisticated laser setup, can only be conducted using 1 cm2 sample
sizes, and takes a very long time to complete each sample, but results in incredibly high
quality piezoelectric films. Sputtering falls somewhere in between, having potential to work
with wafer-scale deposition and producing good piezoelectric films, yet requiring access to
expensive and specialized equipment and piezoelectric sputtering targets.

The piezoelectric material chosen for this research was lead zirconate titanate, or PZT,
because it is a well known and well-characterized material with a high piezoelectric coeffi-
cient. However, because of the lead content, it has the potential to pose an environmental
hazard and it is not compatible with complimentary metal oxide semiconductor (CMOS)
processing, undermining the goal to eventually integrate the MEMS energy harvester with
electronic components. Aluminum Nitride (AlN) is a potentially better alternative piezo-
electric material because it does not contain toxic materials, is CMOS compatible, and has
a piezoelectric coupling coefficient comparable to PZT. Its piezoelectric coefficient is lower,
but so is its dielectric constant, resulting in an overall coupling coefficient of similar value.
Additionally, AlN can be easily deposited using sputtering, so it upholds the goal of achieving
a scalable manufacturing process.
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1.2.5 Commercially available vibration energy harvesters

Several companies have developed macro-scale vibration energy harvesting technologies that
are available commercially, including Perpetuum, Enocean, KCF Technologies, Microstrain,
and Mide Volture. National Instruments has recently partnered with Perpetuum to sell an
energy harvester-powered sensor node. These devices generate power output on the order
of several hundred µW to mW from vibration amplitudes as low as 0.25 g. These macro-
scale harvesters are well-suited for some applications, but their large size and weight (more
than 1 kg for one Perpetuum harvester) is a disadvantage and severely limits the possible
applications. To this author’s knowledge, there are no MEMS vibration energy harvesters
on the market.

1.3 Importance of ambient vibration focus

Energy harvesting is only truly “harvesting” if it converts ambient vibrations, not labora-
tory supplied vibrations, into electrical energy. For vibration energy harvesters to utilize
ambient vibrations, they must be able to respond to the low frequency, low acceleration,
time-varying, often broadband vibrations that exist in the environment [11,54]. In contrast
to those requirements, most researchers report MEMS energy harvesters with high resonance
frequencies tested at resonance on a vibrometer with a single sinusoidal frequency at high
acceleration [14,16,30,39,52,57]. While such studies are very important for energy harvester
characterization and modeling insight, they do not accurately represent ambient vibration
conditions or prove that the device can actually harvest energy in realistic conditions. Only
two studies have used realistically low magnitude acceleration in vibrometer tests of MEMS
energy harvesters at relatively low frequency of 204 Hz and 0.5 g [38] and 528 Hz and 0.39
g [47].

A number of authors have tested or modeled energy harvester response to random accel-
eration input, as opposed to sinusoidal input, in order to mimic ambient vibration sources.
Two studies tested MEMS harvesters with sinusoidal as well as random vibration input on
a vibrometer. They explored nonlinear behavior of the devices due to nonlinear spring stiff-
ness [65] and a mechanical stopper [4] in order improve the harvester effectiveness subjected
to random input vibration. One author presented a model for random vibrations, deriv-
ing closed-form expressions for power output, displacement, and optimal load [19]. Two
research groups have presented meso scale harvesters tested with random vibration input on
a vibrometer in order to explore which power conditioning schemes [35] and energy storage
configurations [58] work well with random vibrations. To the author’s knowledge, our study
of MEMS energy harvesters tested with ambient vibration acceleration input is the first of
its kind in the literature [43].

This dissertation is organized as follows. Chapter 2 presents a survey of ambient vibration
sources in a large campus building. The characteristics of these ambient vibration sources
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are what motivate the approach taken in this research. Chapters 3 through 7 pertain to a
fixed-frequency energy harvester, while chapters 8 and 9 present a new model and design
which leads to an adaptable-frequency harvester. Specifically, Chapter 3 lays out the math-
ematical model for the fixed-frequency energy harvester, and chapter 4 presents the design,
fabrication, and testing of the fixed-frequency energy harvester. Next, chapter 5 describes
a technique to customize the resonance frequency of a fixed-frequency harvester. In chapter
6, an optimization is conducted on the energy harvester with a resistive load. Chapter 7
lays out a framework in which an optimization could be performed with the harvester con-
nected to a synchronous switched circuit to boost output and condition the power. Chapter
8 presents the model for an adaptable-frequency harvester, and chapter 9 reports the sim-
ulation results and experimental results from the meso scale adaptable-frequency prototype
device. Finally, concluding remarks are given in chapter 10.

The contributions of this work to the field of energy harvesting can be summarized as:

1. Survey of ambient vibrations in a machine room setting (Chapter 2)

2. Development of a model for a fixed-frequency harvester that accounts for rotational
inertia of the proof mass and accepts arbitrary measured acceleration input (Chapter
3)

3. Fabrication of MEMS energy harvesters with frequencies of 31–232 Hz (Chapter 4)

4. Harvesting energy from ambient vibration sources (Chapter 4)

5. Demonstration of pneumatically printed proof mass post-microfabrication (Chapter 5)

6. Optimization of harvester with a resistive load and ambient vibration input compared
to sinusoidal vibration input (Chapter 6)

7. Development of a framework to allow harvester optimization when connected to a
synchronously switched pre-biasing circuit (Chapter 7)

8. Development of a model for an adaptable-frequency, or “self-tuning”, harvester con-
sisting of a fixed-fixed beam with sliding mass (Chapter 8)

9. Demonstration of self-tuning resonator proof of concept (Chapter 9)
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Chapter 2

Survey of Ambient Vibrations in
Buildings

In order to understand how to appropriately design an energy harvester, it is critical to
understand the energy source to be harvested. To this end, an extensive survey of ambient
vibration sources was conducted in the machine room of a large building, Etcheverry Hall, on
the UC Berkeley campus. The vibration data presented in this chapter inform and motivate
the approach taken in the rest of this dissertation. This chapter is adapted from [43].

Data were collected at a sampling rate of 2048 Hz using a Microstrain G-link wireless
3-axis accelerometer magnetically mounted on the vibration source. All three axes were
surveyed, but in most cases the z-axis (orthogonal to the vibrating surface) acceleration was
an order of magnitude higher than x- and y-axes, so only the z acceleration is reported and
used in this study.

Table 2.1 reports the three frequency peaks with the highest acceleration for each vibra-
tion source. The results in this table indicate that the dominant frequency peaks from the
majority of the sources surveyed lie between 20-60 Hz, with another set of frequencies lying
between 120-140 Hz. Three sources also contain peaks around 350 Hz. The accelerations of
the ambient vibrations were all below 0.7 g/

√
Hz, with most accelerations on the order of

10−2 to 10−1 g/
√
Hz. These findings are consistent with previous vibration surveys [11,54].

Figure 2.1 shows the general configuration of the energy harvester and accelerometer
during data collection. The compressor base vibration source is shown in 2.1a and the fan
belt cage vibration source is shown in Figure 2.1b to show both horizontal and vertical
mounting. The fan and drive belt are part of an HVAC system and the cage encloses the
belt.

The full frequency spectrum for “fan belt cage 1” and “compressor base” from Table
2.1 are shown in Figure 2.2. The graphs show the power spectral density (PSD) on a semi
log scale versus frequency, where plots 2.2a and 2.2c show the full spectrum and 2.2b and
2.2d show close up on area of interest from zero to 250 Hz. These two examples illustrate
the extremes of the vibration sources measured, ranging from smooth spectra with a few
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Table 2.1: Acceleration & frequency of the dominant peaks in the vibration spectra of
equipment in a campus building machine room. Note that the peaks, f1, f2, and f3, are not
harmonics but rather are the first, second, and third highest vibration frequencies.

Units of a: g/
√
Hz, Units of f : Hz

Highest peak 2nd highest 3rd highest
Source a1 f1 a2 f2 a3 f3

V Fan belt cage 1 • 0.332 22.5 0.241 45.0 0.118 20.5
V Fan belt cage 2 0.120 37.5 0.096 27.5 0.094 23.0
V Fan belt cage 3 • 0.236 40.5 0.216 40.6 0.163 40.4
V Fan belt cage 4 • 0.376 30.0 0.070 25.5 0.210 38.5
SFan belt cage 1 0.159 27.6 0.150 25.9 0.144 26.0
SFan belt cage 2 0.178 36.4 0.173 34.2 0.164 36.3
SFan belt cage 3 0.223 26.0 0.206 25.9 0.199 20.4
HHVAC duct 1 • 0.020 15.5 0.020 29.5 0.014 79.0
HHVAC duct 2 • 0.174 28.7 0.157 29.2 0.156 28.6
HHVAC duct 3 0.042 30.1 0.042 30.2 0.037 30.4
V HVAC duct 4 0.055 20.4 0.054 19.5 0.050 19.4
V HVAC duct 5 0.042 40.0 0.041 31.0 0.037 39.9
V HVAC duct 6 0.054 60.6 0.050 60.7 0.047 60.5
SHVAC duct 7 0.058 21.7 0.057 21.6 0.056 21.5
SCompressor 0.113 29.4 0.110 29.4 0.099 29.3

HCompressor base • 0.074 29.5 0.064 59.0 0.035 354.0
V Controller 0.408 29.4 0.384 29.4 0.311 29.2
HPipe • 0.064 354.0 0.041 29.5 0.037 324.5

SWater pump 0.669 135.6 0.669 135.7 0.539 135.4
HBelt drive motor • 0.090 22.5 0.056 136.5 0.055 138.0

HFloor by fan 0.020 19.1 0.017 20.0 0.017 19.0
V Fan housing 0.049 121.4 0.048 121.5 0.044 122.0
HTransformer 0.035 120.5 0.025 29.5 0.010 361.0

V vertical, H horizontal, or S slanted surface
• Source upon which harvesters were tested

distinct peaks to rugged-looking spectra with both broad bumps and sharp peaks. Please
see appendix A for more plots of vibration spectra.

In contrast to markedly different vibration spectrum, several groups of vibration sources
demonstrated similarities. The spectra for the four vertical fan belt cage surfaces surveyed
were almost identical. The spectra for the three slanted fan belt cage surfaces showed
similarities in the general shape but the specific peaks were not the same. The three vertical
ducts had similarities and the three horizontal ducts had similarities in general shape as well,
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Inside Faraday 

cage 

Harvester on PCB 

Output leads 

(a) (b) 

(c) (d) (e) 

Faraday cage Accelerometer 

Figure 2.1: Photographs showing the testing configuration: a) compressor base. b) fan
belt cage. c) and d) accelerometer (small black square) and Faraday cage containing energy
harvester (rectangular box) mounted for testing. e) Faraday cage with lid removed to expose
contents.

but specific peaks were not the same. Beyond those similarities every vibration source had
a unique spectra. For power spectral density plots of all 23 vibration sources shown in the
table, see Appendix A.

The characteristics of these ambient vibration sources over time are of interest since
energy harvesters are intended for long-term use. Each vibration source in this study was
measured several times over minutes/hours and weeks/months. The data suggest that the
peak frequencies in the spectra do not vary over time, but the relative magnitudes of the
frequencies can change significantly. This can be a result of duty cycles of equipment and
differences in system settings. See Appendix A for graphs illustrating this variation over
time. Additionally, the vibration characteristics can be sensitive to spatial location.
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Figure 2.2: Acceleration PSD vs frequency on a semi-log scale for: a) and b) compressor
base, c) and d) fan belt cage. b) and d) show close up of the area of interest where acceleration
magnitude is highest. Dominant frequency peaks for the compressor are 30, 60, and 354 Hz
and for the fan belt are 20, 22, and 45 Hz.
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Chapter 3

Fixed-Frequency Piezoelectric Energy
Harvester: Model

3.1 Modeling piezoelectric harvester response to arbi-

trary vibration input

This chapter, which is adapted from [43], develops a model for the response of the piezo-
electric energy harvester to an arbitrary input excitation. For example, the input excitation
may be a sine wave, as in a laboratory test, or may be a complicated machine vibration such
as those presented in the previous chapter, as in real-world operation. The model developed
here differs from previous research by including a trapezoidal beam shape and accounting
for the rotational inertia of the proof mass, rather than treating it as a point mass as has
been done in other work [17]. This model is simpler than many dynamical models of energy
harvesters in that the proof mass to beam mass ratio is high enough that the beam can
be treated quasi-statically as opposed to using the more complicated orthogonal function
expansion as is done in [15]. Finally, a discretization method is used to solve the model
equations with sampled acceleration inputs.

3.1.1 General energy harvester configuration

The configuration of the energy harvester is shown in Figure 3.1. The geometry of the
cantilevers used in this study is described by wo, width of the beam where it connects to the
mass, yo, additional width at the base, Lb, beam length, and Lm, mass length. The width
at an arbitrary location along the beam, W (x), and the surface area, As, are given by (3.1)
and (3.2).

W (x) = wo + 2yo

(
1− x

Lb

)
(3.1)

As = (w0 + y0)Lb + L2
m (3.2)
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Figure 3.1: Schematic of the energy harvester (not to scale). a) top view, b) side view, c)
cross section and layer thicknesses. The subscripts P, O, and S refer to piezoelectric, oxide,
and silicon layers, respectively.

In this design Lm and Wm, the width of the mass, are equal. The beam tapering is charac-
terized by δ, as defined by (3.3).

δ =
2y0

(2y0 + w0)
(3.3)

If the beam is rectangular rather than trapezoidal, then δ will be zero.
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3.1.2 Piezoelectric cantilever beam equations.

The goal in the next two sections is to derive expressions for the forces and moments on a
beam calculated at the center of the proof mass in terms of geometry, material properties,
loading conditions, and input acceleration. The method used closely follows that of [20].
The mechanical contribution from the thickness of the electrodes is neglected such that only
the piezoelectric, oxide, and silicon layers are considered.

Using the Euler-Bernoulli assumptions that plane sections remain plane and neglecting
shear stresses, the strain in the x-direction is given by

S1 =
dξ

dx
− z d

2η

dx2
(3.4)

where S1 is strain, ξ is displacement in the x-direction, η is displacement in the z-direction
relative to the x-direction, and z is distance from the neutral axis. dξ

dx
is strain due to axial

force and z d
2η
dx2 is strain due to curvature.

The full coupled constitutive piezoelectric equations can be found in [29]. For beam
bending, these can be reduced to a simpler form. Since the beams are slender, we use the
plane stress equations for a narrow beam as opposed to the plane strain equations applicable
for beams with width nearly equal to length, see e.g. [62]. The reduced equations are

S1 = sE11T1 + d31E3 (3.5)

D3 = d31T1 + εT33E3 (3.6)

where sE11 is compliance at constant electric field, T1 is stress, d31 is piezoelectric coefficient,
E3 is electric field, D3 is electric displacement field, and εT33 is permittivity at constant stress.
The subscript 1 denotes the length direction of the beam, x, while 3 denotes the thickness
direction, z. Solving (3.5) for T1 and substituting into (3.6) gives

D3 = EPd31S1 + εT33

(
1− k2

31

)
E3 (3.7)

where k2
31 =

d2
31EP

εT33

(3.8)

EP is modulus of elasticity of the piezoelectric layer, which is (sE11)−1, and k2
31 is piezoelectric

coupling coefficient. Electric displacement is independent of z from Gauss’s Law and is
therefore given entirely by the boundary condition

D3 (x, z) = −σ (x) (3.9)

where σ is surface charge density. Substituting (3.4) into (3.7), and into (3.9), and integrating
across the thickness of the piezoelectric layer from bottom to top yields

σ = −EPd31

(
dξ

dx
− dPm

d2η

dx2

)
+
εT33 (1− k2

31)V

tP
(3.10)
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where dPm = dP +
tP
2

(3.11)

and V is voltage, tP is thickness of the piezoelectric layer, dPm is the distance from the
neutral axis to the middle of the piezoelectric layer, and dP is defined as the z position
from the neutral axis to the bottom of the piezoelectric layer, as illustrated in figure 3.1c.
Substituting (3.4), (3.9) and (3.10) into (3.7) and solving for electric field gives (3.12).

E3 =
EPd31

εT33 (1− k2
31)

(z − dPm)
d2η

dx2
− V

tP
(3.12)

An expression for stress in the piezoelectric layer can be found by solving (3.5) for T1 and
inserting (3.4) and (3.12) into it.

T1 = EP

[
dξ

dx
− d2η

dx2

(
dPm +

(z − dPm)

(1− k2
31)

)
+
d31V

tP

]
(3.13)

Axial force and bending moment can be found at position x for cross section area A(x) using
(3.14) and integrating over the thickness of the beam [29].

P =

∫ ∫
A

T1dydz, M = −
∫ ∫

A

zT1dydz (3.14)

The expression for dP is still unknown, so dPm is unknown and P and M cannot be calculated.
An equation for dP can be derived by using the definition of the neutral plane: terms in the
P expression proportional to d2η

dx2 should equal zero, as should terms in the M expression

proportional to dξ
dx

. Both sets of terms that should equal zero have a common factor, -
w (EPtPdPm + EOtOdOm + EStSdSm), where ES, EO, tS, and tO are the modulus of elasticity
and thickness of the silicon and oxide layers. We can write dPm (equation (3.11)), dOm, and
dSm in terms of dP and the known layer thicknesses (see figure 3.1c):

dOm = dP −
tO
2
, dSm = dP − tO −

tS
2
. (3.15)

Substituting (3.15) into the common factor and setting it equal to zero allows us to solve for
dP:

dP =
EStStO − 1

2
(EPt

2
P − EOt

2
O − ESt

2
S)

EPtP + EOtO + EStS
. (3.16)

Now it is possible to solve the force and moment equations, which can be conveniently
parameterized as follows:

P = KA
dξ

dx
+ JV, M = KB

d2η

dx2
−GV (3.17)
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where KA is axial rigidity, KB is flexural rigidity, J is force per voltage, and G is moment
per voltage. They are defined as follows, where superscript O represents the expression for
a beam with δ = 0.

KA =

(
1− δ x

Lb

)
KO

A , KB =

(
1− δ x

Lb

)
KO

B (3.18)

J =

(
1− δ x

Lb

)
JO, G =

(
1− δ x

Lb

)
GO (3.19)

KO
A = w (EPtP + EOtO + EStS) (3.20)

JO = wEPd31 (3.21)

KO
B = w

[
EP

(
tPd

2
Pm +

t3P
12 (1− k2

31)

)
+ EO

(
tOd

2
Om +

t3O
12

)
+ES

(
tSd

2
Sm +

t3S
12

)] (3.22)

GO = wEPd31dPm = dPmJ
O (3.23)

Thus far we have been considering forces and moments at any point along the beam,
but we are specifically interested in the forces and moments at the tip of the beam where it
connects with the mass, denoted by the subscript a, as shown in expression (3.24), where F
is vertical force.

F = Fa, M = Ma + (L− x)Fa, P = Pa (3.24)

At this point, vertical displacement, ηa = η (Lb), and rotation, θa = η′ (Lb), at the tip of the
beam can be found by substituting M in (3.24) into (3.17) and solving for η with boundary
conditions η(0) = 0 and η′(0) = 0, where x = 0 corresponds to the base of the beam.
Similarly, axial displacement of the tip, ξa = ξ (Lb), can be found by substituting P in (3.24)
into (3.17) and solving for ξ, subject to boundary condition ξ(0) = 0. Finally, axial force

and moment equations for the tip of the beam can be solved for dξ
dx

and d2η
dx2 and inserted

into (3.10) so that the equation is in terms of the mechanical loads. Integrating the surface
charge density over area then gives the charge on the top electrode, q. These equations can
be represented as 

ηa

θa

q
ξa

 =


ct cc βt 0
cc cr βr 0
βt βr C βa

0 0 βa ca




Fa

Ma

V
Pa

 (3.25)
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where the coefficients are

ct =

[
9

2δ
− 3

δ2
− 3 (1− δ)2

δ3
ln (1− δ)

]
cOt (3.26)

cc =

[
2

δ
− 2 (1− δ)

δ2
ln (1− δ)

]
cOc (3.27)

cOt =
L3

b

3KO
B

, cOc =
L2

b

2KO
B

(3.28)

cr =

[
1

δ
ln (1− δ)

]
cOr , cOr =

Lb

KO
B

(3.29)

ca =

[
1

δ
ln (1− δ)

]
cOa , cOa =

Lb

KO
A

(3.30)

βt = cOc G
O, βr = cOr G

O, βa = −cOa JO (3.31)

C =

[
1− 1

2
δ

]
CO (3.32)

CO =
εT33 (1− k2

31)As

tP
+ cOr

(
GO
)2

+ cOa
(
JO
)2

(3.33)

In order to express the equations in terms of stiffnesses rather than compliances, we can
re-write (3.25) as

fa = KSCua − ΓV (3.34)

q = ΓTua + CCLV (3.35)

where

fa =

 Fa

Ma

Pa

 , ua =

 ηa

θa

ξa

 (3.36)

KSC =

 kt kc 0
kc kr 0
0 0 ka

 =

 ct cc 0
cc cr 0
0 0 ca

−1

(3.37)

Γ =

 γt

γr

γa

 =

 ktβt + kcβr

kcβt + krβr

kaβa

 (3.38)

CCL = C − ktβ
2
t − 2kcβtβr − krβ

2
r − kaβ

2
a . (3.39)

Here, KSC is short circuit stiffness, Γ is the piezoelectric transduction factor, and CCL is the
clamped capacitance.
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3.1.3 Equations of motion.

The effect of the proof mass can now be incorporated into the equations describing beam
motion. The forces and moments acting on the center of the proof mass include those
from the tip of the beam, from fictitious force due to gravity at the center of the mass, and
damping. In this analysis it is assumed that the dynamic behavior of the beam can be ignored
since the beam resonance frequency is much higher than that of the beam with the mass
attached. The validity of this assumption was checked by calculating the eigenfrequencies
for each case.

The mass matrix is

M =

 m 0 0
0 Ic 0
0 0 m

 (3.40)

where Ic is moment of inertia and m the mass of the proof mass. Equation (3.41) is used
to transform the axial, vertical, and rotational displacement variables from the tip of the
beam (subscript a) to the center of the proof mass (subscript c) such that ua = Lauc. The
geometric relationship between the tip of the beam and the center of mass (COM) can be
seen in figure 3.1b, where Lm, tm, and COM are defined.

La =

 1 −Lm

2
0

0 1 0
0 −tm

2
+ dPb 1

 (3.41)

Similarly, Γ and KSC must be transformed from the tip of the beam to the center of proof
mass and this is given by Γ = LaΓc and KSC = LaKSC,c. Since Γ and KSC are 3x1 and 3x3
matrices respectively, Γc and KSC,c are

Γc = LTa Γ, KSC,c = LTaKSCLa. (3.42)

The fictitious force, fc, is given by

fc =

 −ma0
0

 (3.43)

where a is the acceleration of the ambient vibration source, which is a function of time
and may be measured experimentally. Damping must now be determined. First, we must
calculate the 3x3 full matrix of the eigenvectors of KSC,c and M , denoted by W , and the
three corresponding eigenfrequencies ωj, where j = 1, 2, 3. From [61], for example, the
eigenvectors can be given a normalization

W TMW = n. (3.44)



CHAPTER 3. FIXED-FREQUENCY PIEZOELECTRIC HARVESTER MODEL 22

Now damping for each mode can be calculated from

bj =
1

Qj

ωjn(j, j), j = 1, 2, 3 (3.45)

where Qj is the quality factor and is measured experimentally. The full damping matrix is
given by

D = W T−1

 b1 0 0
0 b2 0
0 0 b3

W−1. (3.46)

Rewriting (3.34) and (3.35) for the center of the proof mass rather than the tip of the beam,
the equations of motion are

Müc = −KSC,cuc −Du̇c + ΓcV + fc (3.47)

q = ΓTc uc + CCLV. (3.48)

Finally, in this study the electrical load used is simply a resistor, with Ohm’s Law as

V = −Rq̇. (3.49)

3.1.4 Discretization equations for incorporating measured ambi-
ent vibration into the model.

The equations that have been presented thus far are continuous, yet we are interested in
using discrete experimental acceleration data as an input to the model. Therefore, in order to
produce a model that can accept the discrete input data we need to discretize the differential
equations that describe the energy harvester response. The first step is to write the equations
of motion as a system of three first-order differential equations.

u̇c = p (3.50)

ṗ = −
(
M−1KSC,c +

M−1ΓcΓ
T
c

CCL

)
uc (3.51)

−M−1Du̇c +
M−1Γc

CCL

q +M−1fc

q̇ =
ΓTc

CCLR
uc −

1

CCLR
q (3.52)

The system of equations can be represented by the general formula

Ẋ = −AX +B (3.53)
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where X is the column matrix of state variables uc, p, and q. A is a 7x7 matrix of constants
from equations (52) including mass, stiffness, and damping, and B is a 7x1 matrix containing
the acceleration input. Note that A is independent of time but B is time dependent. In
discretized form, (3.53) can be written as shown in (3.54) and (3.55) so that the beam
response can be computed numerically from the input acceleration.

X(tn) = e−A(tn−t0)X(t0)

+

tn∫
t0

e−A(tn−τ)B(τ)dτ
(3.54)

X(tn+1) = e−A(tn+1−tn)X(tn)

+

tn+1∫
tn

e−A(tn+1−τ)B(τ)dτ
(3.55)

This method is exact to machine precision for a piecewise linear driving force. Further details
on discretization and linear algebra can be found in [8] and [61], respectively, and appendix
B of this document contains detailed steps on the discretization process used here.

3.2 Summary

In this chapter, a model for fixed-frequency piezoelectric energy harvesters that accounts for
rotation of the proof mass and accepts arbitrary measured acceleration data as an input was
developed. In chapter 4, the predictions of this model will be compared with experimental
energy harvester response to validate the model. In chapter 6 this model will be used to
perform an optimization on the energy harvester.
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Chapter 4

Fixed-Frequency MEMS Piezoelectric
Harvester: Design, Fabrication, &
Results

4.1 Device design

The focus of this chapter is the fabrication of energy harvesters that function on ambient
vibration sources, as opposed to focusing on the production of a specified power output. The
successful micro-fabrication of energy harvesters with resonance frequencies of 31 – 232 Hz is
presented. This frequency range coincides with the dominant frequencies of most vibration
sources surveyed as reported in chapter 2. The energy harvesters are characterized on a
vibrometer at low accelerations of 0.03 – 0.7 g and are then deployed in a machine room to
harvest energy from industrial ambient vibration sources. The experimental energy harvester
output is then compared with the model from chapter 3. This chapter is adapted from [43].

Based on the data collected in the survey of ambient vibrations, most of the vibration
energy that is available to harvest is at frequencies of 20 – 200 Hz with accelerations under
0.7 g/

√
Hz. Therefore, the energy harvesters were designed with large beam lengths and

masses with the goal of achieving resonance frequencies under 200 Hz for compatibility with
low frequency ambient input vibrations. Dimensions of the fabricated cantilevers are given
in Table 4.1. Various dimensions of Si mass were used, along with various beam lengths
and different degrees of beam tapering, solely to achieve a range of resonance frequencies
for testing devices on ambient vibrations sources with different frequencies. Beams were
fabricated in rectangular and trapezoidal geometries, which are of interest due to their in-
creased resistance to shocks compared with rectangular beams [17]. A direct comparison
of the performance of rectangular versus trapezoidal beams was outside the scope of this
study. However, it was observed that trapezoidal beams survived the shocks and impulses of
handling and testing better than rectangular beams. This is due to the fact that the highest
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Table 4.1: Energy harvester dimensions.

Harvester ID Lb Lm wo yo As

(µm) (µm) (µm) (µm) (mm2)
1 3500 2500 480 400 9.33
2 3000 3000 450 0 10.35
3 3500 2500 480 400 9.33
4 4500 1500 530 395 6.41
5 3000 3000 450 395 11.54
6 4500 1500 530 0 4.64
7 4500 1500 530 0 4.64
8 4500 1500 530 395 6.41

stress in a cantilever beam is at the base, so increasing the width of the beam at the base
allows the force to be distributed over a larger area, thereby reducing the stress.

4.2 Device fabrication

MEMS energy harvesters were fabricated in order to test the model. Silicon (001) p-type test
wafers were thermally oxidized with a layer 1.4 µm thick, followed by sputter deposition of
10/150 nm of Ti/Pt as a bottom electrode. Sol-gel lead zirconate titanate (PZT) films were
spin-coated onto the wafer, as described in [42], to achieve a film 850 nm thick. Cantilever
beams were fabricated from these PZT films. The first lithography mask defined the 10/150
nm Cr/Pd electron beam evaporated top electrodes. Second-level lithography used an HF
etch to expose the bottom electrodes. The third mask defined the outline of the cantilever
using argon ion beam milling, and the fourth lithography step used deep reactive ion etching
(DRIE) to construct the mass, dice the wafer, and partially release the energy harvesting
cantilever beam from the backside. Final release of the beam was achieved with a XeF2 dry
etch. Figure 4.1 shows the microfabrication process.

The material properties used as input to the model for all cantilevers are reported in
Table 4.2. Elastic moduli, permittivity, and density are obtained from the literature [12,26].
The energy harvesters were mounted on custom printed circuit boards (PCB) for testing.
Wirebonds were used to make electrical connections from the harvester electrodes to the
PCB, and a Bourns 3314 variable resistor was used for the load, as shown in Figure 4.2. All
of the components on the circuit board were surface-mounted so the PCB could be attached
flush with the vibrating surface.
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Silicon – wafer  
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PZT – piezoelectric  
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Figure 4.1: Microfabrication process steps. From top to bottom: patterning of top electrode,
HF etch to reveal bottom electrode, Ar ion mill etch to define cantilever outline, DRIE oxide
etch to expose Si, DRIE Si etch to partially release beam and leave a Si mass, and finally a
XeF2 etch to finish the cantilever release.

4.3 Experimental methods

4.3.1 Harvester characterization on vibrometer

The energy harvesters were characterized on a Labworks ET-126 vibrometer driven by a
Labworks SC-121 sine servo controller and Labworks pa-138 power amplifier. Harvester
output was recorded at a sampling rate of 1000 Hz using a NI USB-6221 data acquisition
device. Analysis was done in MATLAB. Capacitance of each beam was measured directly
using an Amprobe 37XR-A meter.
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Table 4.2: Model parameters common to all energy harvesting cantilever beams.

Term Units Value
tP µm 0.85
tO µm 1.4

tWafer µm 525
EP GPa 110
EO GPa 60
ES GPa 170
εP nF/m 11
ρS kg/m3 2330

Figure 4.2: Three different energy harvesters: a) cantilever beam 3, b and c) beam 2 top &
side views, d) beam 8 mounted on PCB and connected to load resistor.

Frequency sweeps were conducted manually with a step size of 0.1 Hz and a 15 second
pause for settling between tests. Quality factor, Q, was determined from the power output
vs frequency curve. Load resistance sweeps were done at the harvesters’ resonance frequency
to obtain Ropt. An acceleration sweep was conducted at fn and Ropt. Tests were done at
various accelerations, from 0.03 to 0.7 g, to mimic the range of most ambient vibration
accelerations.
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4.3.2 Harvester testing on ambient sources

The energy harvester/PCB assembly was mounted inside a Faraday cage to minimize elec-
trical noise, and was magnetically mounted to the vibrating surfaces. Electrode leads were
connected by BNC cable to the data acquisition system described in 4.3.1. An accelerom-
eter was mounted near the harvester while data were collected, as described in chapter 2.
Harvesters were tested on 8 out of the 23 vibration sources surveyed, as indicated in Table
2.1, but not all harvesters were tested on all 8 sources. In total, 38 different tests of energy
harvesting from an ambient vibration source were conducted.

4.3.3 Model calibration

All model parameters except tS and d31 were known by design, estimated from the litera-
ture, or determined with direct experimentation. tS could not be measured directly without
destroying the harvester and was not known by design due to variability across the wafer
in the DRIE etch. An oxide etch stop layer will be used in future work to address this
issue. d31 was measured before the PZT films were etched but it can degrade during MEMS-
processing. Also, the effective d31 of a large area device is different than that measured over
a 50 µm-diameter electrode.

The values of tS and d31 for each harvester were determined by conducting frequency
sweeps on the vibrometer at known input frequency and acceleration and comparing the
results to a simulated frequency sweep run on the model with the same input conditions.
The Q value was determined from the shape of the response, i.e. center frequency divided by
the full bandwidth at half maximum. Q is not dependent on the measured amplitude, only
the relative bandwidth. Q is also independent of d31 if the coupling is weak enough, which
is valid for the devices in this study (k2

31Q on the order of 0.01 – 0.2). With weak coupling
and Q fixed, tS is entirely given by the center frequency. The only remaining variable to
adjust is then d31 to get the correct amplitude.

Resistance and acceleration sweeps on the vibrometer were then conducted and exper-
imental results were compared with the model to ensure that the fitted tS and d31 values
were appropriate. After verification with controlled vibrometer testing, the model was used
to look at harvester response to ambient vibration input.

4.4 Results

4.4.1 Harvester characterization on vibrometer

Energy harvesters with low resonance frequencies were successfully fabricated using MEMS
processes. Figure 4.3a shows measured average power output normalized by input acceler-
ation versus frequency for all 8 of the harvesters, with output of 1.2 – 43.8 nWavg/g2 and
fn of 31 – 232 Hz. Figure 4.3b shows the results of a frequency sweep on harvester beam 8,
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Table 4.3: Harvester properties determined from vibrometer tests.

Harvester ID fn Q Ropt d31, fitted tS, fitted C a Pavg Pavg/a
2

(Hz) (kΩ) (pm/V) (µm) (nF) (g) (nW) (nW/g2)
1 31 80 42 18.0 7.85 121 0.3 0.25 2.78
2 40.3 350 32 7.0 14.00 129 0.048 0.003 1.15
3 85.8 182 18 1.9 17.10 105 0.166 0.29 10.35
4 153.7 350 10 5.0 20.95 105 0.048 0.03 11.76
5 169.5 210 8 6.5 30.19 142 0.18 1.42 43.83
6 177.9 290 22 2.5 27.08 49 0.164 0.30 11.00
7 192.8 320 15 1.9 28.64 64 0.149 0.06 2.84
8 232.0 415 9 3.2 25.65 80 0.29 1.72 20.5

where output voltage is 4.6 mVrms and power is 1.72 nWavg. Figure 4.3c shows a resistance
sweep on beam 3, where Ropt is 8.5 kΩ. After this sweep was conducted beam 3 was etched
for several more cycles, which decreased tS, decreased fn, and increased Ropt to the values
reported in Table 4.3. Figure 4.3d shows an acceleration sweep on beam 6. Figures 4.3b-d
show that the experiment and model are in close agreement for tests on the vibrometer.

Table 4.3 summarizes the properties for all 8 harvesters. The power output from beams
tested on the vibrometer at fn was 1.2 – 43.8 nWavg/g2. The varying performance of the
harvesters, even with the same geometry, is due in part to different Q values and in part to
the fact that the d31 value is different for each beam. The different d31 values for beams from
the same wafer are due to variations in the quality of the piezoelectric film across the wafer.
Another factor in varying performance is that harvester #1 is from a different wafer than
the others, and it struck the sample holder when excited at resonance due to a mounting
misalignment, significantly reducing its power output. Additionally, beams with the same
areal geometry still have differing tS values, which impacts performance.

The devices in this study have very weak coupling, as described in section 4.3.3. Given
such a low coupling, the piezoelectric coefficient and the quality factor have very little impact
on the resonance frequency of the device compared to geometric parameters. The resonance
frequency of the devices in this study is much more dependent on tS, Lb, Lm, δ, and wo.

Figure 4.4 shows a comparison of the fn and test acceleration of the 8 energy harvesters
in this study compared to others in the literature and to the acceleration and frequency of
most ambient vibrations. The goal of this work to micro-fabricate energy harvesters that
operate in the same regime as ambient vibrations was achieved.

4.4.2 Harvester testing on ambient sources

The energy harvesters listed in Table 4.3 were tested on several of the ambient sources
surveyed in chapter 2. Experimental power output was compared with the model’s predicted
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Figure 4.3: Characterization on vibrometer. a) Frequency sweeps, all 8 harvesters, shown
on same figure. Normalized power output vs frequency is plotted. b) Frequency sweep,
beam 8: a = 0.29 g, R = 12 kΩ. c) Resistance sweep, beam 3, a = 1.55 g, f = 172 Hz. d)
Acceleration sweep, beam 6, at fn and Ropt.

output when measured ambient acceleration data were used as the model input. Figure 4.5
shows example test results for harvester 8 on the two vibration sources shown in Figure 2.2
(compressor base and fan belt cage in HVAC system). Figures 4.5a and 4.5c show the power
spectral density (PSD) as a function of frequency. Figures 4.5b and 4.5d show a close-up of
the peak so that modeled and measured signals can be easily compared. Figure 4.6 shows
the test results for harvesters 6 and 7 on the compressor base, where plots 4.6a and 4.6c
show the full PSD and 4.6b and 4.6d show a close up.

The measured harvester output curve in Figures 4.5 and 4.6 is horizontally flat compared
with the modeled output at frequencies away from resonance because the noise floor of the
measurement equipment is being reached. Therefore, deviation observed between measured
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Approximate ambient vibration regime 

Figure 4.4: Energy harvester fn plotted versus vibrometer test acceleration for devices pre-
sented in this study and other studies. The rectangular shaded area represents the ambient
vibration regime. The goal of fabricating energy harvesters that can and will operate in the
ambient vibration regime of industrial machinery was achieved.

and modeled beam output signals when the model curve dropped below the experimental
noise floor was not a concern since any signal below that power level was undetectable. As
seen in these figures, the modeled and measured frequencies and power output agree for
these cases.

The power output of the energy harvesters on ambient vibration sources was calculated by
integrating the PSD of the measured power output over fn ± 10 Hz. This is more meaningful
than the average power output, as was calculated for the vibrometer tests, because the beam
output from ambient sources was not a simple sinusoid. Taking the integral of the signal
in the frequency domain allows the noise portion of the beam signal to be ignored, only
focusing on the power actually available near the harvester’s resonance frequency. The
same integration technique was used to find the mean square acceleration, in g2, for each
experiment. Power output from the 8 harvesters tested on ambient vibration sources ranged
from 0.63 fW - 202 pW per beam, or 24 pW/g2 - 10 nW/g2. The reasons for this range in
performance were explained in section 4.4.1.

The model accurately predicts the location of frequency peaks in every case tested. How-
ever, the model’s ability to predict magnitude of peak power output varies. Figure 4.7 shows
a histogram of the ratio between modeled and measured peak power (W/Hz) from the PSD
plots in order to quantify the model’s ability to predict power output magnitude. There
are 38 tests of a harvester on a vibration source represented in the histogram (not all 8
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(a) (b) 

Harvester # 8 output when mounted on compressor base 

(c) (d) 

Harvester # 8 output when mounted on fan belt cage in HVAC system 
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Figure 4.5: Comparison of measured and modeled output from beam 8 on two different
ambient vibration sources. Plots show PSD vs frequency, where A is acceleration, H(ω) is
transfer function, and P is power output from harvester. a) and c) show full spectrum from
0 - 300 Hz, while b) and d) show a close-up of the peak harvester output.
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Harvester # 6 output when mounted on compressor base 

(c) (d) 

Harvester # 7 output when mounted on compressor base 
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Figure 4.6: Comparison of measured and modeled output from beams 6 and 7 on compressor
base. Plots show PSD vs frequency, where A is acceleration, H(ω) is transfer function, and
P is power output from harvester. a) and c) show full spectrum from 0 - 300 Hz, while b)
and d) show a close-up of the peak harvester output.
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Figure 4.7: Histogram of ratio of modeled to measured peak power output showing how
well model and measurement compare. 38 tests are represented. Positive values indicate
modeled value is higher, negative indicates measured is higher.

harvesters were tested on all 8 sources). Positive ratios indicate the modeled value is higher,
while negative means the measured value is higher.

In an ideal model, the only bar on the histogram would be at ± 1. The model predicted
peak power output within 10x of the experimental value in 82% of tests, and within 5x the
experimental value in 68% of the tests. The model is a useful design tool to visualize what
the energy harvester frequency response will look like, and estimate the power output within
an order of magnitude for an arbitrary ambient vibration source.

4.5 Discussion

One source of inaccuracy in the model is the discrepancy between the measured acceleration
and the acceleration experienced by the energy harvester. This issue is two-fold: temporal
and spacial. The collection of acceleration input data and harvester output data was not
time-synchronized and, although it was collected within the same several-minute interval,
the magnitude of frequency peaks can change quickly. The data collection was also not
in perfectly spacial-synchronization, since the accelerometer was located several centimeters
away from the energy harvester. In future work, both the spacial and temporal aspects will
be explored to improve accuracy. Model verification will be achieved by feeding measured
ambient acceleration data into a vibrometer and repeating tests to compare with the model.
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Another possible cause of discrepancy between the model and experiment is the omission
of torsion from the model, while torsion could have occurred due beam geometry. Also,
only the z-direction acceleration data was taken into account in this study, yet x- and y-
acceleration could have contributed. Future work will incorporate x, y, and z acceleration
into the model.

As mentioned in Section 3.1.3, the quality factor was experimentally determined in this
study before being entered into the model. When the model is used to investigate the
behavior of a new energy harvester design before fabricating it, a value for quality factor will
need to be estimated for use in the model, which introduces an uncertainty in the model.
In the case that it is critical to achieve a specific quality factor rather than an approximate
one, vacuum packaging will be employed to control the damping characteristics and achieve
a target quality factor.

The goal in this study was to design micro-fabricated energy harvesters with low reso-
nance frequency, not to optimize power output. Nevertheless, it is worthwhile to consider
the power output goal for the energy harvester and ways to achieve it. The customized
power conditioning circuitry and ultra low power radio for which the energy harvester needs
to supply power require a minimum of 1 µW for low duty cycle functioning. To reach this
goal, work is ongoing by researchers in our group to improve the quality of the piezoelectric
film. It is realistic to expect an increase in d31 to 50–60 pm/V [70], significantly improving
power conversion.

Additionally, power output can be increased to more than 1 µW through geometric
optimization of harvester dimensions, as will be shown in chapter 6. Also, a larger mass can
increase the harvester sensitivity to low magnitude ambient vibrations. Such a mass could
be realized without sacrificing packing density by dispenser-printing onto a fully released
MEMS cantilever in conjunction with a standard Si proof mass [42].

4.6 Summary

MEMS energy harvesters with resonance frequencies of 31 – 232 Hz were fabricated, char-
acterized, and deployed for testing on ambient vibration sources in the machine room of a
large building. The modeled and measured harvester power output on ambient vibration
sources were compared. The model accurately predicts frequency peaks in the harvester
output spectrum in all tests and predicts power output within an order of magnitude in 82%
of the 38 tests conducted. The best energy harvesters produced 1.72 nWavg at 232 Hz and
0.29 g on a vibrometer, and 202 pW at 31 Hz and 0.15 g on an ambient vibration source.
The harvesters repeatably produced power output on ambient vibration sources. The focus
of this work was to achieve low resonance frequency, and future work will focus on increasing
power output.
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Chapter 5

Printed Mass

5.1 Motivation for using printed mass

One of the major barriers to the widespread adoption of vibration energy harvesters in prac-
tical applications is the mismatch between the resonance frequency of the harvester and its
input vibration source. This results in a significant reduction in power output compared to
the ideal case of matched frequencies, as illustrated by the energy harvester performance
in the previous chapter. The options for resolving this issue can include designing a wide-
band harvester that is less sensitive to input frequency or designing a self-tuning harvester
that can match resonance frequency with the input vibration frequency using a fraction of
the generated power. Alternatively, the harvester frequency can be customized to suit the
application before it is put into use or tuned after it is installed.

Numerous interesting approaches to this challenge have been proposed. Since the square
of resonance frequency is directly proportional to stiffness and indirectly proportional to
mass, designs focus on ways to alter mass and stiffness of the harvester. For a thorough
overview of frequency modification strategies, see [40] and [32]. For example, several authors
have presented energy harvester designs that utilize nonlinear stiffness in the frequency
response to achieve wideband devices [40, 65]. Other researchers have proposed using a me-
chanical stopper [59], an array of harvesters with slightly different resonance frequencies [56],
a moveable mass [32], and a magnetically applied axial force to modify the beam stiffness [1].
Other techniques for frequency adjustment include applying axial preload through piezoelec-
tric actuators [13] and mechanical screws [37] to change the beam stiffness.

Each of these frequency modification techniques has advantages and disadvantages, mak-
ing them suitable for different applications. In applications of MEMS energy harvesting
from low amplitude ambient vibrations, nonlinear frequency response is impractical because
it requires high acceleration input. Likewise, magnetic forces, and mechanical screws can-
not be easily fabricated on the micro-scale. Stoppers and arrays of beams are feasible at
the MEMS scale and with low acceleration input, but are undesirable because of decreased
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device robustness and inefficient use of wafer area, respectively.
In this chapter, which is adapted from [42], a new method is presented for frequency

modification of MEMS cantilevers achieved by direct-write printing to dispense drops of a
proof mass ink onto the tips of the beams. Dispenser-printed proof mass deposition makes
it possible to customize the energy harvester resonance frequency to match that of the input
vibration, as well as that of other harvesting cantilevers such that they can then be connected
in series to take advantage of signal addition. The printing technique demonstrated in this
study is efficient, fast, easily scalable and non-destructive. This process can be carried out
in ambient conditions after completion of all microfabrication steps, including release. This
printing technology has been successfully demonstrated in various other areas of research [68].

5.2 Experimental Methods

5.2.1 Preparation of printable proof mass

The printable proof mass was prepared by mixing 85 wt% zinc particles (1-10µm) with an
epoxy matrix to achieve a composite slurry. The choice of zinc particles was based on the
density and dielectric requirements of the system. The mass ratio can be adjusted to achieve
the desired ink density and viscosity. The epoxy used in this study cures over several hours
at room temperature, or can be heated in an oven to cure more quickly. The slurry has a
refrigerated shelf life of several months.

5.2.2 Frequency sweep of energy harvesters

The MEMS energy harvesters were fabricated, mounted, and testing as described in chapter
4 section 4.2. The energy harvesters were characterized by frequency sweep before and after
deposition of printed mass. Each die contained two geometrically identical energy-harvesting
beams that were tested alone and as beam pairs in series. The optimal load resistance was
experimentally determined. All tests were conducted at this optimal value. Accelerations
from 0.03 to 0.17 gs were used in order to mimic approximate range of ambient vibration
acceleration amplitudes.

5.2.3 Deposition of printable proof mass

The proof mass ink was deposited on the tips of the energy harvesting cantilevers using a
pneumatic direct-write dispenser printer. Energy harvesters with mass deposited are shown
in figure 5.1 and the printer system itself is shown in figure 5.2. The position of the dispenser
tip was controlled using camera alignment. Deposition was controlled through various print-
ing process parameters including the syringe tip diameter, printing pressure and drop height.
Multiple layers of ink can be printed on top of each other, allowing great flexibility, and the
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Figure 5.1: Printing proof mass onto the existing square mass of 3 different beams: A) a
beam with 3x3 mm2 mass area, B) a beam with 1.5x1.5 mm2 mass area, C) & D) before &
after printing one drop on a beam with 1.5x1.5 mm2 mass area
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Figure 5.2: Photograph of the pneumatic dispenser printer used to deposit proof mass on
the tips of released MEMS cantilever energy harvesters.

process does not damages released MEMS cantilevers. All printing was done in ambient
conditions for this study.

5.3 Results

Frequency sweeps revealed that the resonance frequencies of the MEMS energy harvesters
ranged from 31 Hz to 232 Hz, which is within the desired range of ambient vibrations
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Figure 5.3: Two beams with initially dissimilar resonance frequencies were modified using
dispenser-printed proof mass to match within 0.1 Hz.

frequencies as surveyed in chapter 2 and a previous study [51]. The optimal load resistances
for 6 beams tested were 1545 kOhm for individual beams and 4485 kOhm for beam pairs in
series.

Figure 5.3 shows the frequency response of the left and right energy harvesters on one
chip before and after (top and bottom graphs, respectively) deposition of printed proof mass.
The harvesters initially had resonance frequencies of 192.8 and 177.9 Hz. After depositing
printed proof mass, harvester resonances were 172.9 and 173 Hz, respectively. These results
verify that resonance frequency modification of more than 20 Hz with a resolution of 0.1
Hz can be achieved using this printing technique. The frequency shift and resolution results
were repeatable with all 6 beams that were tested. Solvent evaporation from the slurry
caused a frequency shift of about 0.1 Hz in the first few hours after printing, after which the
frequency was stable.

The difference between the magnitudes of the left and right beam output signal is at-
tributed to the presence of localized defects in the piezoelectric sol- gel film, causing slightly
different piezoelectric coefficients in each beam. This can be corrected with more careful
control of contaminants during sol-gel film deposition.

Figure 5.4 shows a close up of the bottom graph of 5.3 so the relative output signal
magnitudes of the left beam, right beam, and beams in series can be seen. In theory, two
voltage sources in series add. Similarly, energy harvesters with the same resonance frequency
connected in series should have an additive output signal. It can be seen from the graph
that the measured signal of the beams connected in series is indeed the sum of the right and
left beam signals. This is significant because it means that multiple beams can be used to
meet a power output requirement, relaxing the output requirement per beam. The frequency
sweep was conducted with an input acceleration of 0.17 g.
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Figure 5.4: Graph illustrating that two beams’ voltage outputs add when connected in series
if they have the same resonance frequency.

5.4 Discussion

5.4.1 Limiting factors

Minimum resolution: The resolution of 0.1 Hz for frequency modification achieved in this
work was limited by the vibrometer controller, which was only able to adjust the vibration
frequency by 0.1 Hz increments. The printing process can achieve finer resolution by using
slurries with a lower percentage of zinc particles such that each printed droplet has less mass.
Of course, a higher-resolution frequency controller would be needed for testing.

Figure 5.5 shows the modeled relationship between the resonance frequency of the two
energy harvesters represented in the plots above and the amount of printed mass. This
model allows the mass of the printed droplets to be back-calculated based on the measured
resonance frequency of the harvester. The mass corresponding to a frequency change of 0.1
Hz is 5 µg.
Maximum frequency modification: Also, the printing process allows for multiple depo-
sitions and 3-dimensional structures, so it is not a limiting factor in the frequency reduction
attainable. Instead, the limiting factor is the flexural strength of the microfabricated beam,
which experiences high stresses when the proof mass becomes very large. Therefore, the 20.6
Hz reduction demonstrated in this study is not the limit of frequency adjustment capability.

Referring again to Figure 5.5, it can be seen that the droplets printed onto the left beam
amounted to a mass of 0.67 mg and on the right beam the droplets amounted to a mass of
0.16 mg. The maximum mass of printed droplets deposited in this study was 6.79 mg (data
not shown in plots).
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Figure 5.5: The calculated harvester resonance frequency as a function of printed mass is
plotted in green and blue for the left and right beams, respectively. The y-intercept of the
curves represents the frequency of each harvester before depositing printed mass, and the
black dot indicates the experimentally measured frequency after deposition of printed mass.
From this, it can be determined that 0.67 mg of mass was printed on the left beam and 0.16
mg was printed on the right beam.

5.4.2 Advantages and disadvantages

An advantage of printing proof masses in addition to those previously mentioned is the
ability to increase the packing density by extending mass volume in the thickness direction
rather than taking up more area on a silicon wafer. The thickness of the proof mass on an
energy harvester is limited by the thickness of the silicon wafer. As a result, an increase in
mass can typically only be achieved by increasing area, thereby decreasing packing density.
The post-processing method of printing mass onto the tip of the beam takes advantage of
the available 3-dimensional space and reduces the required mass area.

The disadvantage of the printing technique in this study is that it requires prior knowledge
of the desired resonance frequency and thus the vibration source frequency. Despite this
limitation, the ability to make fine-resolution adjustments to the resonance of cantilevers
and improve power density with printed masses justifies further exploration.

5.4.3 Printing functional energy storage materials as mass

A potential extension of the printing technique presented here is to deposit energy storage
components as the proof mass, such that the harvester charges a printed battery or capacitor,
which then provides the appropriate levels of power to the radio and sensor load. This
could be achieved by using functional materials as the ink. The use of dispenser printing
for constructing micro batteries and micro capacitors has been demonstrated in previous
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Figure 5.6: Top and side views of electrochemical capacitor printed on energy harvesting
device chips. Adapted from [44]. c©2009 IEEE.

works [21, 68], as well as the successful physical integration of a printed capacitor with an
energy harvester [44] as shown in figure 5.6. It should be noted that there is no electrical
integration between the capacitor and energy harvester in figure 5.6, rather it illustrates how
the two systems will be integrated in the future.

5.5 Summary

In this chapter the viability of using direct-write dispenser printing to modify MEMS can-
tilever resonance frequencies by depositing proof mass ink was demonstrated. Frequency
modification of more than 20 Hz with a 0.1 Hz resolution was repeatably achieved. Two
beams with initially dissimilar resonance frequencies were modified until their frequencies
matched and then connected in series, demonstrating that the voltage and power output sig-
nals from the two beams were additive. This verifies that multiple low-output harvesters can
be connected in series to generate usable voltage or power, thus relaxing per-beam output
requirements.
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Chapter 6

Optimization of Fixed-Frequency
MEMS Harvester with Resistive Load

6.1 Framing the optimization problem

The device presented in chapter 4 was designed to explore the potential of using MEMS
fabrication processes to build cantilevers with resonance frequencies under 200 Hz. This
goal was successfully met, and the next task is to optimize the design to maximize power
output attainable from such a harvester. There are several questions to be answered in the
course of this optimization. First of all, can a MEMS scale harvester produce usable levels
of power from ambient vibration levels? If so, what are the optimal dimensions of the device
and can a harvester optimized for one frequency produce power at a different frequency?
Also, how is the optimization result for single frequency sine wave vibration input different
from the result for ambient vibration input? Finally, what do the results tell us about how
to design a harvester that can be used on a wide range of ambient vibration sources?

The major constraint imposed on this optimization was that the area of harvester is no
more than 1 cm2. The assumptions used in the optimization were as follows:
1) Only rectangular beams were considered in this optimization.
2) Piezoelectric material was assume to be lead zirconate titanate (PZT) with piezoelectric
coefficient of 20 pm/V.
3) Piezoelectric layer was limited to 2 µm or less due to fabrication constraints (it is generally
desirable to have a thicker film).
4) Oxide layer thickness was limited to 1 µm or less due to fabrication constraints (this is
a structural layer used to improve robustness of the beam and to shift the neutral axis so
that the piezoelectric charges do not cancel out). Oxide also serves as an insulating layer
but thickness is not critical for this function.
5) The electrodes and piezoelectric material cover the beam area but not the mass area (this
impacts the capacitance, which impacts power output).
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Table 6.1: Parameters in optimization (unless otherwise noted).

Parameter Value Units Comments
Beam length 1 to 9 mm optimization variable
Silicon thickness 0 to 50 µm optimization variable
Beam width 1 cm set as as wide as possible
Piezoelectric thickness 2 µm varied manually from 0.5 - 2 µm
Oxide thickness 1 µm fabrication limits
Mass width 1 cm set as wide as possible
Mass length 1 - Lb cm tradeoff: beam and mass area
Electrode thickness 100 nm both top & bottom electrodes
Printed mass 4.5 mg deposited by dispenser printing
Mass height 525 µm limited by thickness of Si wafer
Electrode elastic modulus 180 GPa estimate from literature
Piezoelectric elastic modulus 110 GPa estimate from literature
Oxide elastic modulus 60 GPa estimate from literature
Silicon elastic modulus 170 GPa estimate from literature
Quality factor, mode 1 211 measured from previous device
Mass density 2330 kg/m3 assuming Si mass
Piezoelectric coefficient 20 pm/V
Dielectric coefficient 11 nF/m measured on previous device
Dominant frequency, fanbelt 22.5 Hz
Dominant acceleration, fanbelt 0.203 g’s
Dominant frequency, compressor 29.5 Hz
Dominant acceleration, compressor 0.043 g’s

6) Power calculations were done assuming a matched resistive load.
7) Power conditioning requirements are not considered in the optimization.

Following from the constraints and assumptions and the fact that it is logical to use the
whole available area, the beam length plus mass length should be 1 cm and the beam width
should be maximized at 1 cm. The only two variables remaining that make sense to optimize
are beam length and silicon layer thickness. Thus the optimization problem is framed in a
manageable way. The parameter values used in the optimization model are shown in Table
6.1.

Lastly, the optimization code was verified by checking the results against the experimental
results presented in chapter 4. Although the model has compared favorably with experiment
there are still sources of uncertainty, including:
1) impact of residual stress is unaccounted for
2) uncertainty in yield stress and elastic modulus values
3) beam theory is used for a beam that has L:W of 1:10 instead of 10:1
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4) large deflections are possible, while the model is based on assumptions of small deflections
5) quality factor used in this optimization was constant at 211, based on test with different
MEMS piezo harvesters. This value will vary as device geometry varies. The quality factor
impacts the magnitude of power output, but does not impact the trend or location of solutions
in the “arc” of matching frequencies.

6.2 Optimization results

The optimization was conducted for the two ambient vibration sources that were highlighted
in the results of the previous chapters: the fan belt cage and the compressor base. In order
to examine the difference between single frequency sine wave and ambient vibration input,
the frequency and magnitude of the dominant frequency peak of the ambient source was
used as the sine wave case. Additionally, the optimization was carried out for the case in
which the input frequency is assumed to match the device resonance frequency. This is not
a realistic case but is interesting to see how results differ when the resonance frequency is
constrained to match input frequency.

A comparison of the optimized harvester geometry and the original harvester geometry
is shown in figure 6.1. The photographs beneath the schematics are from [14] and [43]
and are examples of each type of geometry. The general large mass and short wide beam
geometric characteristics of the optimal design has been published in the literature, as is
evident from [14], but those devices had high resonance frequency of about 500 Hz. The
geometry optimized with dimensions such that the resonance frequency is low enough to be
compatible with industrial machine vibrations is presented here. It is clear that the large
mass is critical to achieving power output and should take up most of the available area. Of
course, if the piezoelectric beam had a higher coupling coefficient than the one analyzed in
this study, the tradeoff between mass and beam area would change and it is likely that the
mass size would decrease to make way for the piezoelectric material. The specific dimensional
results of the optimization are given in Table 6.2.

Table 6.2: Optimized beam dimension and power output values

Parameter Fan Belt Cage Compressor Base Match Frequency*
Beam length (mm) 0.4 0.2 2.9
Silicon thickness (µm) 3.3 3.0 1.2
Power output** (µW) 33/4.5 1.1/0.25 3.9

*this case uses same amplitude vibration as compressor base case

** single frequency/ambient

The plots of the optimization of beam length and silicon layer thickness versus power
output will now be shown so it is clear how the optimized dimensions were found. It should
be noted that the spiky, sharp-peaked appearance of the plots of beam length and/or silicon
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Figure 6.1: This shows the general geometry of the optimized device compared to the
old device. The green arrow indicated direction of beam vibration. The yellow areas on
the schematics indicated the piezoelectric beam area, while grey indicates silicon support
structure or mass. The photographs beneath the schematics are from [14] and [43] and are
examples of each type of geometry.

layer thickness versus power output is an artifact of the resolution of the vectors containing
beam length or silicon layer thickness values. If the vector resolution is increased by an order
of magnitude or two the sharp peaks blend together to form a continuous curve. However,
such high resolution demands long computation times. Thus, a tradeoff between computation
time and resolution was chosen such that the trends and optimal values can be clearly seen
despite the fact that some sharp spiky artifacts remain.

The optimization plots show how sensitive the power output is to a mismatch between the
input frequency and the device resonance frequency. If an optimized device were moved to a
different vibration source or the operating conditions were to change, altering the frequency,
the power output would drop tremendously. Additionally, the resonance frequency of the
device is very sensitive to the thickness and length dimensions (as well as mass and other
parameters). From a manufacturing perspective, this implies that there is a very narrow
tolerance range such that slightly incorrect dimensions cause power output to suffer greatly.
These issues raise concerns about the feasibility of using a single-frequency harvester even if
the harvester is able to generate plenty of power at one specific frequency.
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Figure 6.2: Power spectral density of the vibrations from the fan belt cage (a) and oil
compressor (b). The dominant frequency is 22.5 Hz at 0.203 g’s for the fan belt cage and
29.5 and 59 Hz at 0.043 g’s for the compressor. 22.5 and 29.5 Hz are the frequencies used
for the single-frequency sinusoidal comparison case.
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Figure 6.3: Power output as a function of beam length and silicon layer thickness. The
optimal point cannot be seen in this plot of the full beam lengths.
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Figure 6.4: Close up of power output as a function of beam length and silicon layer thickness,
highlighting region where the optimal value occurs.
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Figure 6.5: This plot illustrated the bands of geometric dimension combinations that result
in a specific frequency. This plot explains the reason for the arc shape across the beam
length-silicon layer thickness plane.

6.3 Summary

It is now possible to answer the questions that were posed at the beginning of the optimization
study. It was found that a MEMS scale harvester can produce several µW of power from
ambient vibrations, which is enough to be usable. The optimal dimensions of the device
were found and are approximately 0.3 mm beam length and 3 µm silicon layer thickness.
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Figure 6.6: The values of beam length and silicon layer thickness plotted versus power output
reveal the optimal dimensions for fan belt cage of 0.4 mm beam length and 3.3 µm silicon
layer thickness, and for compressor base of 0.2 mm and 3.0 µm. This contains the same
information as the 3D plot of figure 6.4 but it is easier to see the optimal values in 2D
format.
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Figure 6.7: Power output as a function of beam length and silicon layer thickness. The
optimal point cannot be clearly seen in this plot of the full beam lengths.
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Figure 6.8: This plot shows the top view of figures 6.7, revealing the arcs of solutions which
correspond to the dominant frequencies in the power spectral density plot of figure 6.2.
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Figure 6.9: Close up of power output as a function of beam length and silicon layer thickness,
highlighting region where the optimal value occurs.
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Figure 6.10: The values of beam length and silicon layer thickness plotted versus power
output reveal the optimal dimensions for fan belt cage of 0.4 mm beam length and 3.3 µm
silicon layer thickness, and for compressor base of 0.2 mm and 3.0 µm. This contains the
same information as the 3D plot of figure 6.9 but it is easier to see the optimal values in 2D
format.

A harvester optimized for a specific frequency cannot produce usable power at a different
frequency, and it was determined that the power output from a device optimized with a
single frequency sine wave input is about an order of magnitude higher than if the device is
optimized for ambient vibration input.

The overarching conclusion from this optimization is that fixed-resonance devices are
insufficient for energy harvesting in most real-world conditions. No matter how perfectly
a device is optimized and manufactured, it will only work well at it’s resonance frequency.
In harvesting environments, however, vibration source frequencies change over time and are
not usually known a priori, before the energy harvester is designed. These findings point to
the need to develop a broadband or tunable energy harvester design in order to achieve a
device that can function effectively on different vibration sources over a long span of time.
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Figure 6.11: Power output as a function of beam length and silicon layer thickness for the
case where input frequency is matched to whatever the harvester resonance frequency is.
(Input vibration source: single frequency sine wave with frequency matching the harvester’s
resonance frequency, input acceleration is 0.043 g’s.)
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Figure 6.12: The values of beam length and silicon layer thickness plotted versus power
output reveal the optimal dimensions of 2.9 mm beam length and 1.2 µm silicon layer
thickness. This contains the same information as the 3D plot of figure 6.11 but it is easier
to see the optimal values in 2D format. (Input vibration source: single frequency sine wave
with frequency matching the harvester’s resonance frequency)
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Chapter 7

Analytical Framework to Enable
Optimization of Fixed-Frequency
Harvester with a Synchronous
Piezoelectric Pre-bias Circuit

7.1 Optimizing full mechanical and electrical system

In the optimization presented in chapter 6 the only relationship between the piezoelectric
harvester and electrical system was the resistive load that was impedance matched to the
capacitance of the piezoelectric beam. The mechanical system in this case is essentially
unaffected by the electrical system. However, in order to actually use the power out of
a harvester it is necessary to convert the alternating current signal into a direct current
signal of a voltage level compatible with the battery. Additionally, there are special circuit
configurations that can increase the amount of energy extracted from the harvester by using a
synchronous pre-bias step where a portion of charge generated is moved from the battery back
to the piezoelectric beam. This introduces significant coupling between the mechanical and
electrical parts of the system, in contrast to the largely uncoupled case of a resistive electrical
load. Optimization then requires having a set of equations to describe the interaction of the
mechanical and electrical systems. This chapter presents a system of equations that enables
optimization of the full mechanical plus electrical system.

7.2 Insufficiency of resistive and simple rectifying loads

When piezoelectric material is used as the transduction mechanism in an energy harvester
it can be advantageous to employ switching interface circuits that increase the electrical
damping over what is achievable using a simple passive rectifier interface. Such switching
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circuits synchronously modify the charge on the piezoelectric material at the end points of
cantilever travel with two common implementations being synchronous switched harvesting
on inductor (SSHI) [18], and piezoelectric pre-biasing (PPB) [10]. In this chapter it is
shown that, when a piezoelectric transducer is coupled to a circuit which implements the
piezoelectric pre-biasing technique, the harvester behaves as a Coulomb-damped resonant
generator (CDRG) who’s Coulomb damping force can be set by modifying the pre-biasing
voltage. This behavior allows such energy harvester systems to be analyzed using a well
known analytical framework and highlights the fact that, subject to practical constraints on
materials and semiconductor devices, the required electrical damping to achieve maximum
power density can be achieved with this technique. The derivation of the pre-bias voltage
and Coulomb damping force as a function of the harvester parameters and piezoelectric
properties for a harvester connected to a PPB circuit is presented.

7.3 Synchronously switched piezoelectric pre-bias cir-

cuit interface

One of the challenges to obtaining successful piezoelectric energy harvesting devices is achiev-
ing an electrical damping high enough to obtain the desired levels of power output. This
is especially true for MEMS-scale devices as the thin-film piezoelectric materials tend to
exhibit lower electromechanical coupling coefficients than bulk piezoelectric materials [7].
Furthermore, MEMS devices tend to have a larger fraction of non-piezoelectric structural
material in the cantilever which may further reduce the device electromechanical coupling
factor.

Several interface circuit schemes to improve the achievable electrical damping for piezo-
electric harvesters have been explored, such as synchronous electric charge extraction (SECE)
[34], synchronous switched harvesting on inductor (SSHI) [18], and piezoelectric pre-biasing
(PPB) [10]. These circuits, and subsequent iterations of them, have shown that improve-
ments of the order of 10x in power output [18] from the piezoelectric harvesters are possible
and this could be further increased if high-Q current paths can be achieved in the interface
circuit. The combined electromechanical analysis of piezoelectric harvesters connected to
these switching circuits can be highly complex and this in turn makes the combined design
a difficult task. Here a simple and intuitive approach to analyzing such systems is provided.

In this chapter we describe how piezoelectric harvesters with a PPB interface can be
analyzed in a framework already known to the energy harvesting community, that of the
Coulomb-damped resonant generator (CDRG) [46], [41]. We then use this CDRG analysis
to present the derivation of the Coulomb damping force in terms of the pre-bias voltage and
other system parameters for a piezoelectric harvester connected to a PPB interface circuit. In
this paper we consider interface circuits that modify the charge on the piezoelectric capacitor
at the endpoints of travel of the cantilever (e.g. SSHI, SECE and PPB circuits). We do
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not consider switched mode resistive emulation circuits, such as that presented by D’hulst et
al. [9] as they do not provide the possibility of increasing the electrical damping force over
that of a simple passive resistive load. We also assume the generator operates at resonance.

Vcc

S1 S2

S4

LRs

S3

Generator

Figure 7.1: Schematic of a simple PPB circuit configuration.

An example of a PPB interface circuit is shown in Figure 7.1 and the operation of that
circuit is explained in detail in [10]. In the special case when the pre-bias voltage is zero,
the PPB becomes a SECE configuration. Figure 7.2 shows how the voltage, charge and
force on the cantilever vary as the tip mass of the cantilever oscillates when the harvester is
mechanically excited and connected to a PPB circuit. These diagrams show that switching
occurs when the tip mass reaches its maximum and minimum positions, and that charge is
exchanged with the external circuit only at these instants.

With these waveforms in mind, we now examine the mechanical behavior of a piezoelectric
harvester coupled to a PPB circuit. The piezoelectric constitutive equations are, for our
purposes, most conveniently written as

F = Koz +
Γ

C0

q (7.1)

V =
Γ

C0

z +
1

C0

q (7.2)

where F and V are force and voltage, Ko is open circuit stiffness of the beam, z is displace-
ment of the proof mass attached to the end of the beam, Γ is the piezoelectric transduction
factor, q is charge on one of the piezoelectric transducer metal electrodes, and C0 is the
clamped capacitance.

The first term in equation (7.1) is the spring force (being proportional to mass tip po-
sition) and varies sinusoidally if the cantilever oscillates sinusoidally, while the second term
is the force due to the charge present on the electrodes of the piezoelectric transducer due
to action of the interface circuit. The value and variation over time of this second term
depends on the behavior of the electrical circuit connected to the harvester, as well as the
harvester’s piezoelectric capacitance. The split between the two contributions to the force
in (7.1) allows us to view Γq/C0 as an electrical force and it is clear that if the charge is held
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Figure 7.2: Waveforms illustrating the voltage, charge, and force on the piezoelectric har-
vester when connected with the PPB circuit and the corresponding harvester displacement.

constant for some time interval, then so is this electrical force. Hence, a circuit that remains
disconnected from the piezoelectric electrodes on a half-cycle, such that the electrical force
opposes the proof mass motion, implements a CDRG.

The sum of the two forces on the piezoelectric cantilever, F , is illustrated in the force
diagram of Figure 7.2, where the sinusoidal shape comes from the spring force and the offset
that occurs at the peaks comes from the constant force due to charge. As can be seen
in Figure 7.2, the PPB technique implements a perfect CDRG as the total force on the
piezoelectric cantilever is the sum of a force which is proportional to cantilever position and
a constant opposing force (between switching events) equivalent to a Coulomb damper.

Considering the alternative, but equivalent, formulation of the constitutive equation of
the form F = Ksz+ΓV where Ks = Ko−Γ2/C0 is the short circuit stiffness of the beam, we
see that a similar argument can be made for circuits that give a piecewise constant voltage.
This is the case for a perfect SSHI implementation, i.e. one with perfect charge inversion, as
the piezoelectric voltage is clamped by the conduction of the diode rectifier during the entire
half-cycle. However, for a realistic SSHI implementation with imperfect charge inversion, the
voltage across the piezoelectric transducer is only clamped by the action of the diode rectifier
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Figure 7.3: Waveform illustrating the piezoelectric voltage with harvester connected to SSHI
circuit. This is not a CDRG.

as the cantilever approaches the extremes of its travel, as figure 7.3 illustrates. Therefore, a
realistic SSHI implementation is not a perfect CDRG.

We now derive the system equations for a piezoelectric harvester connected to a PPB
interface circuit in order to relate the piezoelectric parameters and pre-bias voltage to the
Coulomb damping force and system spring constant. An analysis has previously been pre-
sented in which the optimal Coulomb damping force has been calculated for a CDRG [46]
and, consequently, relating the Coulomb damping force to the piezoelectric properties will
allow an optimal pre-bias voltage to be determined to maximize power generation. From [46],
the optimal Coulomb damping force on a displacement-constrained CDRG harvester is

FoptCZ
=
mY0ω

2ωc
|U |

√
1

(1− ωc2)2 −
1

ωc4

(
Zl
Y0

)2

(7.3)

where U =
sin
(
π
ωc

)
1 + cos

(
π
ωc

) (7.4)

and m is the proof mass, Y0 is the input vibration amplitude, ω is the input excitation
frequency, ωc is the ratio of input excitation frequency to device resonance frequency, and Zl
is the maximum possible displacement due to packaging constraints. When ωc = 1, equation
(7.3) simplifies to

FoptCZ
=
π

4
mω2Y0 =

π

4
mAinput. (7.5)

Assuming that the cantilever is at its maximum positive displacement, Zl, FoptCZ
is equal

to the Coulomb damping component of the force on the cantilever (second term in equation
(7.1)). Solving this equality for q gives the relation,

q = −π
4
mAinput

C0

Γ
. (7.6)
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The sign is negative because the Coulomb damping opposes the relative motion of the can-
tilever, acting against the spring restoring force. Substituting this expression for q into (7.2)
and collecting terms gives the pre-bias voltage, VPB, as

VPB =

(
− π

4
mAinput +

Γ2Zl
C0

)
1

Γ
, (7.7)

which is the pre-bias voltage needed to obtain the optimal Coulomb damping force. When
the cantilever is at the negative extreme of its travel, the polarity of the pre-bias voltage is
reversed.

It should be noted that, under certain operating conditions, the CDRG can exhibit start-
stop motion which is undesirable due to difficulties in control [46]. However this phenomenon
does not occur with optimal damping at resonance and so is not considered here.
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Figure 7.4: Voltage, charge, force, and displacement on piezoelectric cantilever with PPB
circuit calculated using CDRG framework.

Figure 7.4 shows results using this CDRG framework with realistic energy harvester
parameters for an aluminum nitride MEMS scale harvester. The voltage, charge, and force
on the piezoelectric cantilever corresponding with the position of the cantilever proof mass
as it oscillates are shown. This illustrates the relative magnitudes of each variable for a
realistic system.
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7.4 Summary

This chapter has discussed how a piezoelectric energy harvester can be made a perfect
CDRG by connecting the mechanical system to a synchronously switched piezoelectric pre-
biasing interface circuit. The differences in approximate and perfect CDRG behavior for
piezoelectric harvesters with SSHI and piezoelectric pre-biasing circuits, respectively, were
explained. Finally, equations were derived within the CDRG framework to find an expression
for the pre-bias voltage which maximizes the power generation as a function of the input
excitation and piezoelectric energy harvester parameters. These equations give the designer
an easy way to calculate optimal pre-bias voltages for a piezoelectric transducer. Although it
is not done here, it is possible to use this analytical framework to conduct an optimization of
the full mechanical and electrical piezoelectric energy harvester system with a synchronous
pre-biasing interface circuit for power conditioning.
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Chapter 8

Adaptable-Frequency Nonlinear
Resonator: Model

8.1 Switching from lumped model to continuous, non-

linear, coupled model

Until this point, the model presented in chapter 3 has been used to predict and explain
the response of the fixed-frequency cantilever energy harvester. However, as discovered in
chapter 6, the energy harvester design that resonates only at one specific fixed frequency
is not sufficient for successfully harvesting energy from ambient vibration sources. There is
clearly a need to develop an energy harvester that works well at an arbitrary frequency by
using a broadband or tunable device design.

The broadband type harvester designs found in literature are classified here as active or
passive devices. Active methods to achieve frequency matching between the device and the
environment entail schemes to control stiffness or mass of the system using an externally sup-
plied force or electronic signal to change the resonance of the energy scavenger. Conversely,
passive methods are defined here to mean that no external energy is required to adjust the
frequency (i.e. no manual adjustments, no electric input, no control circuits). Broadband
type harvesters can be classified in many different ways, but this active versus passive classi-
fication scheme was chosen because an ideal device design would not require pre-installation
customization of a harvester, nor would it require manual adjustment or maintenance over
time. Additionally, active schemes typically rely on a power input to control a logic circuit
and/or to actuate or initiate a change in the physical characteristics of the scavenger. The
scavenger must then be generating enough power that it can afford to sacrifice a portion of
the output to the active tuning, which typically requires higher acceleration input vibrations
than what are available in the ambient environment and is therefore not an ideal solution.

For a thorough review of broadband type energy harvester designs available in the liter-
ature, see [63], [40], and [69]. Several examples of such harvester designs, along with their
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advantages and disadvantages, were given in section 5.1. Several additional device designs
include magnetic field induced nonlinearities due to interaction between a stationary magnet
and a magnet attached to the harvester beam [60] and frequency up conversion, a technique
in which a piezoelectric beam is plucked by a lower-frequency structure and allowed to res-
onate freely [33, 50]. These magnetically nonlinear and up conversion systems are novel,
yet still pose implementation concerns. Achieving broadband response using nonlinear hys-
teresis requires that the harvester follow the high energy branch of its hysteretic response,
which is difficult to ensure. The harvester may, instead, follow the low energy branch of
its hysteretic response, which is very similar to that of a standard fixed-frequency harvester
rather than broadband. The frequency up conversion configurations can be effective in some
applications, but the system still relies on operating at the single resonance frequency of the
lower-frequency structure or using impulse as opposed to vibration as the input excitation.

A type of system in the literature which has the potential to avoid many of the afore-
mentioned problems with existing broadband energy harvesters, such as requiring energy
input for active tuning, requiring very large input excitation, or requiring impact between
components, is that of a beam with a sliding proof mass. In this type of system, the proof
mass is constrained to the beam but is free to move along the length of the beam, thereby
adding a degree of freedom to the standard beam-mass system. This extra degree of freedom
introduces complex nonlinearities to the beam-mass system. One set of papers on this topic
presents the sliding proof mass as a technique for passive self-damping of system [2,31,45,64],
while another set of papers presents it as a technique for passive self-tuning [5,32]. Interest-
ingly, these two sets of papers never reference each other.

The passive self-damping system literature includes a sliding mass on a cantilever with a
restoring spring force attached to the mass to prevent it from sliding off the cantilever [45],
a fixed-fixed rubber band with a sliding washer [2], a string with sliding mass subjected to
axial (rather than transverse) excitation [64], and a sliding mass on a cantilever with no
restoring spring force [31]. The passive self-tuning systems proposed in the literature include
a bead on a tensioned fixed-fixed wire which did demonstrate self-tuning [5] and a hollow
cylindrical cantilever with a sliding bead inside, which did not show self-tuning behavior [32].

Based on the theoretical and experimental work presented in these papers, it appears
that the one of the major factors impacting whether self-damping or self-tuning occurs is
how much clearance exists between the beam and the inside diameter of the sliding mass. In
all of the papers that found self-damping to occur [2,31,45,64], and the paper that intended
to show tuning but showed damping instead [32], the mass had the ability to “bounce” or
spin in place on the string or beam, thereby dissipating energy. Boudaoud et al reported
coupling between bead rotation about its center and string vibration when the bead was
threaded directly through its center, so they performed experiments with a bead threaded
through an off-center hold to avoid this coupling [5]. The intriguing self-tuning behavior
observed by Boudaoud et al motivated the development of the beam-mass resonator design
which is presented in this chapter.

The lumped model that was used prior to this chapter ignored the dynamics of the
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beam vibration, which was reasonable since the resonance frequency of the beam with proof
mass was one to two orders of magnitude lower than that of the beam alone (hence the
system could be treated quasi-statically). However, in the case of the redesigned system,
the dynamics of the beam absolutely must be taken into account because a central feature
is that the beam shape influences the mass position along the beam, and vice versa. This
means that a continuous, rather than lumped, model must be used. Additionally, rather
than having a proof mass whose position is fixed along the beam, the new system design has
a proof mass that is allowed to slide along the length of the beam. This adds a good deal of
complexity to the behavior of the dynamic system and the model that explains it.

A mathematical model to represent the new energy harvester design will be presented
in this chapter. The model presented here builds on research presented in the literature
previously by incorporating five particular physical system attributes that have not been
combined into the same model by any previous study:

1. This model analyzes a beam rather than a string.

2. This model analyzes a beam with fixed-fixed boundary conditions rather than cantilever
boundary conditions.

3. This model accounts for rotary inertia of the mass about the beam rather than treating
it as a point mass.

4. This model accounts for the mass’s impact on beam shape as well as the beam’s impact
on mass position rather than assuming that the mass is small enough that it has no
impact on beam shape.

5. This model is applicable for multiple eigenmodes of beam excitation rather than only
the first mode. This study includes the first two modes, but more could be included if
desired.

8.2 Physical system definition

The system, shown in figure 8.1, is defined as follows: input vibrations are described by
Wo(t). A point along the beam is denoted by the coordinate X, beam vertical position
is described by W (X, t), mass horizontal position is Y (t), and mass vertical position is
W (Y (t), t). Derivatives with respect to time are denoted with a dot and derivatives with
respect to X are denoted with a prime. Derivatives with respect to Y (t) are written out
explicitly. The coordinate system is defined as the x-axis along the length of beam and
the z-axis in the direction of vertical displacement. The beam properties are defined by its
bending stiffness, EI, linear density, ρA, and length, L. Slope and angular rotation of the
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X Y(t) 

W(X,t) 
W(Y(t),t) m 

EI, ρA, L 

Wo(t) 

x 

z 

Figure 8.1: Schematic of the spring-mass system. The fixed-fixed beam is secured to a
reference frame which is subjected to input vibrations. The mass is free to slide along the
beam and has a moment of inertia.

beam due to the mass are given, respectively, by

θ =
∂W

∂X

∣∣∣∣
X=Y (t)

= W ′(Y (t), t) (8.1)

θ̇ =
d

dt

(
∂W

∂X

∣∣∣∣
X=Y (t)

)
= (W ′′Ẏ + Ẇ ′)|X=Y (t) (8.2)

Similarly, the velocity of the mass due to constrained motion with the beam is found by
taking the time derivative of the mass position, resulting in

d

dt

(
Wo(t) +W (Y (t), t)

)
= Ẇo + Ẇ +W ′Ẏ . (8.3)

8.3 Equations of motion

The kinetic energy of the beam and the sliding mass is

T =

∫ L

0

1

2
ρA(Ẇo + Ẇ )2dX

+
1

2
m
[
Ẏ 2 + (Ẇo + Ẇ +W ′Ẏ )2

]
X=Y (t)

+
1

2
Im
[
(W ′′Ẏ + Ẇ ′)2

]
X=Y (t)

(8.4)

where ρ is density of the beam, A is cross sectional area of the beam, L is length of the beam,
m is the proof mass, and Im is moment of inertia of the mass about the y-axis. The first
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term represents kinetic energy of the beam due to vertical motion, second term is kinetic
energy of the mass due to horizontal motion along the beam and kinetic energy of the mass
due to vertical motion with the beam, and the last term is kinetic energy of the mass due to
rotation about the beam. Potential energy of the system is simply due to elastic deformation
of the beam and is given by

V =

∫ L

0

1

2
EI(W ′′)2dX (8.5)

where E is the young’s modulus of the beam and I is moment of inertia of the beam about
the y-axis. The Lagrangian density L of the system, kinetic minus potential energy density,
is

L =
1

2
ρA(Ẇo + Ẇ )2 − 1

2
EI(W ′′)2

+

{
1

2
mẎ 2 +

1

2
m(Ẇo + Ẇ +W ′Ẏ )2 +

1

2
Im(W ′′Ẏ + Ẇ ′)2

}
δ(X − Y ). (8.6)

Taking the variation of the action integral and using Hamilton’s Principle results in the
Euler-Lagrange equations for the beam and mass, respectively, as

− d

dt

∂L
∂Ẇ
− d

dX

∂L
∂W ′ +

d2

dtdX

∂L
∂Ẇ ′

+
d2

dX2

∂L
∂W ′′ = 0 (8.7)

∂L
∂Y
− d

dt

∂L
∂Ẏ

= 0. (8.8)

Computing the necessary derivatives and partial derivatives of (8.6) according to equations
(8.7) and (8.8) results in the beam and mass equations of motion, respectively, as

0 = ρA(Ẅo + Ẅ ) +m(Ẅo + Ẅ + 2Ẇ ′Ẏ +W ′′Ẏ 2 +W ′Ÿ )δ(X − Y ) + EIW ′′′′

− d

dX

[
Im(Ẅ ′ + 2Ẇ ′′Ẏ +W ′′′Ẏ 2 +W ′′Ÿ )δ(X − Y )

]
(8.9)

0 = mŸ +m(Ẅo + Ẅ + 2Ẇ ′Ẏ +W ′′Ẏ 2 +W ′Ÿ )W ′

+Im(Ẅ ′ + 2Ẇ ′′Ẏ +W ′′′Ẏ 2 +W ′′Ÿ )W ′′. (8.10)

The equations of motion are nondimensionalized by introducing the following nondimen-
sional time, frequency, and displacements for the system, closely following the notation used
by Miranda et al [45]:

τ = ω̃1t, Ω =
ω

ω̃1

, wo =
Wo

L
, w =

W

L
, x =

X

L
, y =

Y

L
, (8.11)

where τ is nondimensional time, ω̃1 is the fundamental frequency of the beam with no mass
present, Ω is nondimensional frequency, and for displacements the lowercase letters represent
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nondimensional versions of the uppercase letters. The derivatives are nondimensionalized
according to the same parameters. Substituting the nondimensional terms into equations
(8.9) and (8.10), dividing the mass equation by mLω̃2

1 and the beam equation by ρALω̃2
1,

and then adding terms for damping and friction results in the nondimensional equations of
motion,

0 = ÿ + cmẏ + (ẅo + ẅ + 2ẇ′ẏ + w′′ẏ2 + w′ÿ)w′

+χ(ẅ′ + 2ẇ′′ẏ + w′′′ẏ2 + w′′ÿ)w′′

+µ

[
(ẅo + ẅ + 2ẇ′ẏ + w′′ẏ2 + w′ÿ + ḡ)sgn (ẏ + w′(ẇo + ẇ + w′ẏ))

]
(8.12)

0 = (ẅo + ẅ) + cb(ẇo + ẇ) + α(ẅo + ẅ + 2ẇ′ẏ + w′′ẏ2 + w′ÿ)δ(x− y)

+νw′′′′ − γ d
dx

[
(ẅ′ + 2ẇ′′ẏ + w′′′ẏ2 + w′′ÿ)δ(x− y)

]
(8.13)

with dimensionless parameters defined as

α =
m

ρAL
, ν =

EI

ρAL4ω̃2
1

, γ =
Im
ρAL2

, χ =
Im
mL2

(8.14)

cm =
Cm
mω̃1

, cb =
Cb

ρALω̃1

, ḡ =
g

Lω̃2
1

, (8.15)

where α is a nondimensional mass, ν is nondimensional stiffness, γ and χ are nondimensional
rotational moment of inertia of the proof mass relative to the beam inertia and the mass
inertia respectively, cm and cb are linear viscous damping of the mass motion and beam
motion respectively, ḡ is nondimensional gravity, and µ is dry friction of mass sliding.

8.4 Eigenfunctions and boundary conditions

To obtain the expression for the beam shape as a function of time, we start with the homoge-
nous case of equation (8.13), where wo = 0. Neglecting damping but including rotational
inertia of the mass, as well as assuming that mass is considered fixed because it moves on a
much slower timescale than the beam, we have

0 = ẅ + αẅδ(x− y) + νw′′′′ − γẅ′(y, τ)δ′(x− y) (8.16)

which can also be written, with a different representation of the last term, as

0 = ẅ + αẅδ(x− y) + νw′′′′ − γ d
dx

[
δ(x− y)ẅ′(x, τ)

]
. (8.17)

Using separation of variables,
w(x, τ) = u(x)T (τ). (8.18)
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If we substitute this into equation (8.17), rearrange, divide through by ν, and substitute
T̈ (τ)/T (τ) = −Ω2, we arrive at

u′′′′(x)− 1 + αδ(x− y)

ν
u(x)Ω2 +

γ

ν

d

dx

[
δ(x− y)u′(x)

]
Ω2 = 0. (8.19)

Rearranging equation (8.19) to give

u′′′′(x) =
Ω2

ν

{
[1 + αδ(x− y)]u(x)− γ d

dx

[
δ(x− y)u′(x)

]}
(8.20)

where two linear operators are defined:

K̂ =
d4

dx4
, M̂ = 1 + αδ(x− y)− γ d

dx
δ(x− y)

d

dx
. (8.21)

Note that the operations in the last term of M should be done in order from right to left.
Substituting into equation (8.20) gives

K̂un(x) = β4
nM̂un(x), where β4

n =
Ω2
n

ν
. (8.22)

The solution to equation (8.22) is of the form

uL,n(x) = AL,n cos βnx+BL,n sin βnx+ CL,n cosh βnx+DL,n sinh βnx, x < y

uR,n(x) = AR,n cos βn(1− x) +BR,n sin βn(1− x)

+CR,n cosh βn(1− x) +DR,n sinh βn(1− x), x > y. (8.23)

The eight unknown coefficients in these equations must be found using eight boundary condi-
tions. The first four boundary conditions are given by the fact that the beam has fixed-fixed
end conditions, so the deflection and slope at both ends of the beam, x = 0 and x = 1, must
be zero. This is written as

u(0) = u(1) = 0, u′(0) = u′(1) = 0. (8.24)

Additionally, there are four boundary conditions that come from continuity requirements.
Those are found by the following procedure, recalling that θ is the Heaviside function, where
θ(x−y) = 0 if x < y but θ(x−y) = 1 if x > y. Also, the derivative of the Heaviside function
is the Dirac delta.

un(x) = θ(x− y)uR,n(x) + θ(y − x)uL,n(x) (8.25)

u′n(x) = δ(x− y)
[
uR,n(y)− uL,n(y)

]
+ θ(x− y)u′R,n(x) + θ(y − x)u′L,n(x) (8.26)
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Equation (8.19) has no δ′′′ terms, so the δ term must drop out of equation (8.26). To ensure
this, the expression in brackets must equal zero, giving the fifth boundary condition. Taking
the second and third derivatives of un(x) leads to

u′′n(x) = δ(x− y)
[
u′R,n(y)− u′L,n(y)

]
+ θ(x− y)u′′R,n(x) + θ(y − x)u′′L,n(x) (8.27)

u′′′n (x) = δ(x− y)
[
u′′R,n(y)− u′′L,n(y)

]
+ θ(x− y)u′′′R,n(x) + θ(y − x)u′′′L,n(x) (8.28)

where the terms inside the brackets in equation (8.27) also must equal zero since there are
no δ′′ terms in equation (8.19), thus giving a sixth boundary condition. However, the term
inside the brackets in equation (8.28) must not equal zero since there is a δ′ in the equation
(8.19). Therefore, the fourth derivative of un(x) is

u′′′′n (x) = δ(x− y)
[
u′′′R,n(y)− u′′′L,n(y)

]
(8.29)

+ δ′(x− y)
[
u′′R,n(y)− u′′L,n(y)

]
+ θ(x− y)u′′′′R,n(x) + θ(y − x)u′′′′L,n(x). (8.30)

The final two boundary conditions are found by equating the coefficients of the various
derivatives of δ. Recalling the original beam equation, (8.19), and multiplying (8.30) by ν
gives

νu′′′′(x) = νδ(x− y)
[
u′′′R,n(y)− u′′′L,n(y)

]
+ νδ′(x− y)

[
u′′R,n(y)− u′′L,n(y)

]
+ νθ(x− y)u′′′′R,n(x) + νθ(y − x)u′′′′L,n(x) (8.31)

νu′′′′(x) = Ω2(1 + αδ(x− y))un(x)− Ω2γδ′(x− y)u′n(y) (8.32)

from which boundary conditions 7 and 8 are found to be, respectively,

ν
[
u′′R,n(y)− u′′L,n(y)

]
= −Ω2γu′n(y) (8.33)

ν
[
u′′′R,n(y)− u′′′L,n(y)

]
= Ω2αun(x) (8.34)

To summarize, the eight boundary conditions are

1) u(0) = 0

2) u(1) = 0

3) u′(0) = 0

4) u′(1) = 0

5) uR,n(y)− uL,n(y) = 0

6) u′R,n(y)− u′L,n(y) = 0

7) u′′R,n(y)− u′′L,n(y) = −Ω2
nγ

ν
u′n(y)

8) u′′′R,n(y)− u′′′L,n(y) =
Ω2
nα

ν
un(y). (8.35)
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Applying boundary conditions 1-4 to equation (8.19) shows that AL,n = −CL,n, BL,n =
−DL,n, AR,n = −CR,n and BR,n = −DR,n, leaving

uL,n(x) = AL,n(cos βnx− cosh βnx) +DL,n(sin βnx− sinh βnx) (8.36)

uR,n(x) = AR,n(cos βn(1− x)− cosh βn(1− x))

+ DR,n(sin βn(1− x)− sinh βn(1− x)) (8.37)

The first, second, and third derivatives of un(x) can now be computed and substituted
into boundary conditions 5-8. This yields four expressions with five unknowns for each
mode (βn, AL,n, DL,n, AR,n, and DR,n). This system is solved numerically in MATLAB by
assuming one mass position at a time, assuming a vector of input “guesses” for the value
of βn, and then solving the system of four equations and four unknowns for each value of
βn guess. The condition number of the matrix of coefficients (AL,n, DL,n, AR,n, and DR,n

for each boundary condition) is then plotted as a function of βn. The values of βn that
result in the condition number spiking to a very large value (meaning that the coefficient
matrix is singular) indicate nontrivial solutions. These βn solutions are then inserted into
the four equations and four unknowns to find the values for AL,n, DL,n, AR,n, and DR,n for
the desired number of modes. Two modes were calculated in this study, and singular value
decomposition method was used to solve the system.

With all coefficients now known, the beam shape can be calculated for the mass fixed
in a given position. Before using the beam shape expressions in computation they need to
be normalized. Details regarding the normalization procedure can be found in Appendix C.
Going forward, wn refers to the full beam shape solution including segments of the beam
both left and right, uL,n and uR,n, of the position of the proof mass. Finally, the fundamental
frequency of the beam with no mass present, ω̃1, is needed in order to nondimensionalize
the system of equations according to the parameters defined in equations (8.11), (8.14), and
(8.15). To find this frequency, the characteristic equation of a fixed-fixed beam with no mass,

cosλn coshλn = 1, (8.38)

is solved numerically for the eigenvalues, λn, from which frequency can be calculated using
ω̃2

1 = EIλ4
1/ρAL

4.

8.5 Fixed-mass eigenmode expansion

We now solve the equations of motion that were derived in the previous sections using
eigenmode expansion. If wn(x, y, τ) is the solution of (8.17) corresponding to the natural
frequency ωn, we write

w(x, τ) =
∞∑
n=0

ηn(τ)wn(x, y, τ) (8.39)
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and insert into equations (8.12) and (8.13), multiply from the left by wm(x, y) and integrate
over x. In these wn terms, y = y(τ), but will be written at simply y for ease. Similarly,
all integrals are evaluated from 0 to 1 (the nondimensional length of the beam). Also, note
that w, wn, wm, and ωn are all distinct variables. Performing these operations for the beam
equation and expanding for n = 0, 1 and m = 0, 1 yields a set of equations which can be
expressed in matrix form as[

A0 B0

A1 B1

] [
η̈0

η̈1

]
+

[
C0 D0

C1 D1

] [
η̇0

η̇1

]
+

[
E0 F0

E1 F1

] [
η0

η1

]
=

[
Q0

Q1

]
(8.40)

where, for m = 0,

Q0 = −ẅo
∫ 1

0

w0(x, y)dx− αẅow0(y, y)− cbẇo
∫ 1

0

w0(x, y)dx (8.41)

A0 = 1

B0 = 0

C0 = cb + 2ẏ

(
αw0(y, y)w′0(y, y)− γw0(y, y)w′′′0 (y, y) + γw′0(y, y)w′′′0 (y, y)

+αw0(y, y)
∂w0(y, y)

∂y
− γw0(y, y)

∂w′′0(y, y)

∂y
+ γw′0(y, y)

∂w′′0(y, y)

∂y

+

∫ 1

0

w0(x, y)
∂w0(x, y)

∂y
dx

)
D0 = 2ẏ

(
αw0(y, y)w′1(y, y)− γw0(y, y)w′′′1 (y, y) + γw′0(y, y)w′′′1 (y, y)

+αw0(y, y)
∂w1(y, y)

∂y
− γw0(y, y)

∂w′′1(y, y)

∂y
+ γw′0(y, y)

∂w′′1(y, y)

∂y

+

∫ 1

0

w0(x, y)
∂w1(x, y)

∂y
dx

)
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E0 = νβ4
0 + ÿαw0(y, y)

∂w0(y, y)

∂y
+ ẏ22αw0(y, y)

∂w′0(y, y)

∂y
− ÿγw0(y, y)

∂w′′0(y, y)

∂y

+ÿγw′0(y, y)
∂w′′0(y, y)

∂y
− ẏ22γw0(y, y)

∂w′′′0 (y, y)

∂y
+ ẏ22γw′0(y, y)

∂w′′′0 (y, y)

∂y

+ÿ

∫ 1

0

w0(x, y)
∂w0(x, y)

∂y
dx+ cbẏ

∫ 1

0

w0(x, y)
∂w0(x, y)

∂y
dx

+ẏ2

(
αw0(y, y)

∂2w0(y, y)

∂y2
− γw0(y, y)

∂2w′′0(y, y)

∂y2
+ γw′0(y, y)

∂2w′′0(y, y)

∂y2

+

∫ 1

0

w0(x, y)
∂2w0(x, y)

∂y2
dx

)
+ẏ2

(
αw0(y, y)w′′0(y, y)− γw0(y, y)w′′′′0 (y, y) + γw′0(y, y)w′′′′0 (y, y)

)
+ÿ

(
αw0(y, y)w′0(y, y)− γw0(y, y)w′′′0 (y, y) + γw′0(y, y)w′′′0 (y, y)

)
F0 = ÿαw0(y, y)

∂w1(y, y)

∂y
+ ẏ22αw0(y, y)

∂w′1(y, y)

∂y
− ÿγw0(y, y)

∂w′′1(y, y)

∂y

+ÿγw′0(y, y)
∂w′′1(y, y)

∂y
− ẏ22γw0(y, y)

∂w′′′1 (y, y)

∂y
+ ẏ22γw′0(y, y)

∂w′′′1 (y, y)

∂y

+ÿ

∫ 1

0

w0(x, y)
∂w1(x, y)

∂y
dx+ cbẏ

∫ 1

0

w0(x, y)
∂w1(x, y)

∂y
dx

+ẏ2

(
αw0(y, y)

∂2w1(y, y)

∂y2
− γw0(y, y)

∂2w′′1(y, y)

∂y2
+ γw′0(y, y)

∂2w′′1(y, y)

∂y2

+

∫ 1

0

w0(x, y)
∂2w1(x, y)

∂y2
dx

)
+ẏ2

(
αw0(y, y)w′′1(y, y)− γw0(y, y)w′′′′1 (y, y) + γw′0(y, y)w′′′′1 (y, y)

)
+ÿ

(
αw0(y, y)w′1(y, y)− γw0(y, y)w′′′1 (y, y) + γw′0(y, y)w′′′1 (y, y)

)
The terms for m = 1 follow the same form as for m = 0 and are not stated explicitly
here. The mass equation expressed in matrix form after performing eigenmode expansion
operations and expanding for n = 0, 1 (the mass equation is independent of m) is

Gÿ +Hẏ + (HH)ẏ2 = K − J, (8.42)
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where

G = 1 +

[
η0
∂w0(y, y)

∂y
+ η1

∂w1(y, y)

∂y

][
η0w

′
0(y, y) + η1w

′
1(y, y)

]
(8.43)

+χ

[
η0
∂w′0(y, y)

∂y
+ η1

∂w′1(y, y)

∂y

][
η0w

′′
0(y, y) + η1w

′′
1(y, y)

]
+µ

[
η0
∂w0(y, y)

∂y
+ η1

∂w1(y, y)

∂y

]
sgn
(
∗
)

+

[
η1w

′
0(y, y) + η1w

′
1(y, y)

]2

+ χ

[
η0w

′′
0(y, y) + η1w

′′
1(y, y)

]2

+µ

[
η0w

′
0(y, y) + η1w

′
1(y, y)

]
sgn
(
∗
)

H = cm + 2

[
η̇0
∂w0(y, y)

∂y
+ η̇1

∂w1(y, y)

∂y

][
η0w

′
0(y, y) + η1w

′
1(y, y)

]
+2χ

[
η̇0
∂w′0(y, y)

∂y
+ η̇1

∂w′1(y, y)

∂y

][
η0w

′′
0(y, y) + η1w

′′
1(y, y)

]
+2µ

[
η̇0
∂w0(y, y)

∂y
+ η̇1

∂w1(y, y)

∂y

]
sgn
(
∗
)

+2

[
η̇0w

′
0(y, y) + η̇1w

′
1(y, y)

][
η0w

′
0(y, y) + η1w

′
1(y, y)

]
+2χ

[
η̇0w

′′
0(y, y) + η̇1w

′′
1(y, y)

][
η0w

′′
0(y, y) + η1w

′′
1(y, y)

]
+2µ

[
η̇0w

′
0(y, y) + η̇1w

′
1(y, y)

]
sgn
(
∗
)
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HH =

[
η0
∂2w0(y, y)

∂y2
+ η1

∂2w1(y, y)

∂y2

][
η0w

′
0(y, y) + η1w

′
1(y, y)

]
+χ

[
η0
∂2w′0(y, y)

∂y2
+ η1

∂2w′1(y, y)

∂y2

][
η0w

′′
0(y, y) + η1w

′′
1(y, y)

]
+µ

[
η0
∂2w0(y, y)

∂y2
+ η1

∂2w1(y, y)

∂y2

]
sgn
(
∗
)

+2

[
η0
∂w′0(y, y)

∂y
+ η1

∂w′1(y, y)

∂y

][
η0w

′
0(y, y) + η1w

′
1(y, y)

]
+

[
η0w

′′
0(y, y) + η1w

′′
1(y, y)

][
η0w

′
1(y, y) + η1w

′
1(y, y)

]
+2χ

[
η0
∂w′′0(y, y)

∂y
+ η1

∂w′′1(y, y)

∂y

][
η0w

′′
0(y, y) + η1w

′′
1(y, y)

]
+χ

[
η0w

′′′
0 (y, y) + η1w

′′′
1 (y, y)

][
η0w

′′
0(y, y) + η1w

′′
1(y, y)

]
+2µ

[
η0
∂w′0(y, y)

∂y
+ η1

∂w′1(y, y)

∂y

]
sgn
(
∗
)

+ µ

[
η0w

′′
0(y, y) + η1w

′′
1(y, y)

]
sgn
(
∗
)

J =

[
η̈0w0(y, y) + η̈1w1(y, y)

][
η0w

′
0(y, y) + η1w

′
1(y, y)

]
+χ

[
η̈0w

′
0(y, y) + η̈1w

′
1(y, y)

][
η0w

′′
0(y, y) + η1w

′′
1(y, y)

]
+µ

[
η̈0w0(y, y) + η̈1w1(y, y)

]
sgn
(
∗
)

K = ẅo

[
η0w

′
0(y, y) + η1w

′
1(y, y)

]
+ µ(ẅo + ḡ)sgn

(
∗
)

(8.44)

where

∗ = ẏ +

(
ẇo +

[
η̇0w0(y, y) + η̇1w1(y, y)

]
+ ẏ

[
η0
∂w0(y, y)

∂y
+ η1

∂w1(y, y)

∂y

]
+ẏ

[
η0w

′
0(y, y) + η1w

′
1(y, y)

])[
η0w

′
0(y, y) + η1w

′
1(y, y)

]
(8.45)

These expressions can be solved numerically. Many of the terms used in the above equations
depend on mass position, y, including AL,n, DL,n, AR,n, DR,n, βn, ωn, and the normalization
coefficient. Using a computer program, the value of each of those terms for each discrete
mass position along the length of the beam was calculated and a curve fit was done for each
term’s dependence on y. Then, partial derivatives of the beam deflection, wn, with respect to
y were computed using the curve fits before evaluating those partial derivatives at x = y to
get the value needed for the above equations. Similarly, integrals were evaluated numerically
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only after the partial derivatives of beam deflection with respect to y were determined.
Integration is along the full length of the beam, so the integrals were split into two terms for
the left side (evaluated from 0 to y) and the right side (evaluated from y to 1) of the beam.

8.6 Summary

In this chapter a derivation was carried out to find the coupled nonlinear equations of motion
for a spring mass system consisting of a fixed-fixed beam with a sliding proof mass. At this
point it is possible to solve these equations using a computer program. The next chapter
will contain the numerical and experimental results. For a more detailed account of how this
derivation was done and how the equations were solved, see Appendix C.
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Chapter 9

Adaptable-Frequency Nonlinear
Resonator: Design, Fabrication, &
Results

A prototype device was built in order to gain intuition about the fixed-fixed beam with
sliding proof mass system, whose complex nonlinear nature makes its behavior difficult to
predict, and to achieve a proof-of-concept of an adaptable-frequency, or “self-tuning”, system.
This chapter describes the design, fabrication, and experimental results of the adaptable-
frequency prototype device, and compares these results to the numerical results from the
model presented in chapter 8.

9.1 Prototype device design

The prototype adaptable-frequency device was designed to be meso scale rather than micro
scale for ease of fabrication, experimentation, configuration of the sliding proof mass, and
observation of system behavior. Other design requirements were that the device have a res-
onance frequency below 100 Hz, to fit within the frequency range of ambient vibrations, and
that it be fabricated in a way that ensures validity of using fixed-fixed boundary conditions
for the beam. Additionally, the sliding proof mass needed to be designed in a way that the
mass, moment of inertia of the mass, and clearance with the beam could be adjusted, or
that the mass could be removed entirely if necessary.

Aluminum was chosen as the beam structural material because it is low cost and easy to
machine. Beam dimensions were chosen as 30 cm long, 4.8 mm wide, and 1.1 mm thick in
order to achieve a beam first-mode resonance frequency of 87 Hz. No piezoelectric materials
were incorporated into this prototype because the goal of this prototype was to understand
the complex nonlinear interactions between the beam and mass. In future prototypes, a
piezoelectric layer should be added to the beam in the region near the fixed walls. Adding
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 SolidWorks Student License
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Figure 9.1: Computer aided design graphic of the prototype adaptable-frequency beam-mass
assembly and support structure. The assembly is mounted to the vibrometer with the base
platform.

piezoelectric material only near the base is not expected to dramatically impact the beam
shapes or behavior compared to the case with no piezoelectric material.

Tungsten was chosen as the mass material because of its high density. The mass di-
mensions were chosen as 2.51 cm long, 4.8 mm wide, and 3.22 mm thick, which were small
enough to be compatible with beam geometry yet massive enough to have an impact on
beam shape. In order to adjust the mass, multiple pieces of tungsten mass could be stacked
together. In order to adjust the moment of inertia of the mass, the rectangular tungsten
pieces could be mounted in different orientations relative to beam length.

A sliding mass holder was required to couple the mass to the beam. The mass holder
needed to be removable, have adjustable clearance with the beam, introduce as little torsional
rotation to the beam as possible, and have as little sliding friction as possible. A two piece
clamp design was chosen and was affixed around the beam using small screws, as shown
in figure 9.1. Clearance was adjusted by adding layers of thin tape between the top and
bottom mass holder pieces. Tungsten mass pieces were mounted to the bottom of the mass
holder using double sided tape. The torsion introduced by the mass holder was minimized
by keeping the dimensions in the beam’s width direction as small as possible, using plastic
rather than metal to reduce mass of mass holder, and using small screws rather than large to
reduce the mass that was outside the width of the beam. The sliding friction was minimized
by designing the contact surface of the mass holder to be a narrow line of contact rather
than a large rectangular contact surface. In future designs, ball bearings could potentially
be incorporated.
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Figure 9.2: Prototype adaptable-frequency beam with sliding mass assembled and mounted
to the vibrometer.

9.2 Prototype device fabrication

The beam was machined from a solid piece of aluminum to assure fixed-fixed boundary con-
ditions, and conventional machining processes were used. The outside structure supporting
the beam was nearly an order of magnitude thicker than the beam and more than twice as
wide so that the support structure’s resonance frequency would be much higher than the
beam, thereby avoiding unwanted interaction between the dynamics of the support structure
and the beam. The beam surface was sanded and polished to remove machining grooves and
burrs to achieve low friction between the beam and sliding mass. Tri-glide lubricant was
also applied to the beam surface. The tungsten mass rectangular pieces were cut using wire
electrical discharge machining and the plastic mass holder was fabricated using a 3D rapid
prototype printer. The completed beam-mass assembly was mounted to a vibrometer as
shown in figure 9.2.

9.3 Methods

9.3.1 Experimental

The adaptable-frequency prototype was tested on a Labworks ET-126 vibrometer with a
Labworks pa-138 power amplifier. The vibrometer acceleration was controlled through Lab-
view using a Kistler 8315A single axis accelerometer to close the feedback loop, and frequency
was set at a constant value in Labview. If a different frequency was desired it was changed
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manually. Strain at the base of the beam was measured with an Omega KFG-02-120-C1-
11L3M3R strain gage. A NI USB-6221 data acquisition device was used to interface input
and output signals with Labview, and sampling rates of either 1000 or 10000 Hz were used.
The impact of driving acceleration, driving frequency, mass, and mass starting position on
the behavior of the system were investigated. The effect of changing the moment of inertia
of the mass was not investigated in this study but is expected to impact the stability of the
mass equilibrium positions.

There were two types of tests conducted to investigate the self-tuning ability of the sys-
tem. For both types of self-tuning tests, the mass was placed at a chosen initial position
and the system was excited at a chosen frequency and acceleration as set in Labview. The
system was then left untouched while the mass moved to its equilibrium position. Under
certain conditions the mass moved considerable distances along the beam while under other
conditions the mass did not move. The mass position over time was recorded using a video
camera and visual observation, while the beam’s relative amplitude of deflection was quan-
tified from the strain gage voltage output. For the first type of test, the system was shut off
once the mass’s equilibrium position was reached and the next test parameters were set up
before restarting the excitation. Conversely, for the second type of test, the system was left
running once the mass had found its equilibrium position and the frequency of excitation
was changed in 1 Hz increments over a given range. The purpose of the first type of test was
to determine whether the mass would slide to a position that tuned the beam-mass system’s
resonance frequency to match the driving frequency, and the purpose of the second type of
test was to study the ability of the system to stay tuned if frequency was adjusted.

9.3.2 Numerical

The equations from section 8.5 were solved in MATLAB using the ode15s function. The
input parameter values used are shown in table 9.1. First, a vector for βn was defined
from 0.5 to 15 with 10,000 linearly spaced values, a vector for mass position, y, was defined
from 0 to 1 with 62 linearly spaced values, and a vector for x-position along the beam
was defined with 50 points. These vectors were used along with the boundary conditions
of the beam to iteratively calculate the resonance frequency, beam shape coefficients, and
normalization coefficients for every mass position along the beam, as described in detail in
section 8.4. Derivatives of the beam shapes with respect to both x and y were also needed,
and were calculated analytically when possible. If there was not a known expression for the
parameter’s variation with y which needed to be differentiated with respect to y, MATLAB’s
polyfit and polyval functions were used to curve fit to the parameter calculated at all values
of y from the previously defined y vector. Then the polyder function was used to take a
polynomial derivative of the fitted curve. The time step typically used for numerical solution
was 0.055. The driving frequency, acceleration magnitude, and mass starting position were
variables in the numerical code just as they were in the experiment.
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Table 9.1: Parameters used in numerical solution of adaptable-frequency resonator

Variable description Variable Value Unit
Beam length L 30e-2 m
Beam width W 4.8e-3 m
Beam thickness H 1.1e-3 m
Beam elastic modulus E 130e9 Pa
Beam density ρ 2630 kg/m3

Number of tungsten masses n 1
Mass of tungsten piece mtungsten 12e-3 kg
Mass length* Lmass 2.51e-2 m
Mass thickness* Hmass n x 3.22e-3 m
Mass clamp thickness Hclamp 8.13e-3 m
Mass of mass clamp mclamp 5e-3 kg
Total mass m nmtungsten +mclamp kg
Beam viscous damping cb 0.01
Mass viscous damping cm 0.01
Sliding friction coefficient µ 0
First mode eigenvalue** λ1 4.730040744074408

* If the mass is reoriented relative to the beam to adjust moment of inertia, Lmass and Hmass must be

adjusted accordingly. ** Found by solving the characteristic equation (8.38) numerically with no mass

present. The reason for the number of decimal places is that the precision of this value impacts precision of

the code and is a way to improve the simulated results without adding much computation time.

9.4 Results

Passive self-tuning was experimentally and numerically demonstrated in the system at a
variety of driving frequencies, confirming that an adaptable-frequency resonant system was
achieved. The numerical model successfully reproduced the phenomena that were observed
experimentally, although there were discrepancies between experiment and model in the
exact details of mass motion. The mass moves along the vibrating beam when the sum of
the forces from the beam motion and the moment of inertia of the mass have a net component
along the length direction of the beam. It was observed that the driving acceleration needed
to exceed a critical level, typically about 1.2 - 1.5 g’s for this prototype, before the mass
would slide to self-tune. At the same time, accelerations above around 3 g’s were observed to
impede mass motion. Further investigation is needed to determine the full set of acceleration
and frequency driving conditions that results in self-tuning behavior. Because the system
is very sensitive to driving conditions and the experimental variable space is large, it would
be most efficient to use the numerical model to develop a regime map and then verify the
model with experimental results.
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Figure 9.3: Experimental and numerical self-tuning observed with driving frequency of 45
Hz, acceleration of 2 g, and normalized mass starting position of 0.33.
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Figure 9.4: Experimental and numerical self-tuning observed with driving frequency of 55
Hz, acceleration of 1.6 g, and normalized mass starting position of 0.77.
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The first type of self-tuning tests, where the goal was to determine whether the mass
would slide to a position that tuned the beam-mass system’s resonance frequency to match
the driving frequency, were carried out at 45, 55, 60, and 70 Hz. The experimental and
numerically simulated results are shown side by side in figures 9.3, 9.4, 9.5, and 9.6. Both
the experiment and model show that the driving vibration of the beam induces the mass
to slide, resulting in self-tuning of the system such that resonance is achieved, the beam
displacement is amplified, and the mass ends up at the center of the beam. These figures
show that, once the mass reaches the resonant position and induces amplified beam motion,
the amplified motion of the beam is maintained. The reason that the strain amplitude is
higher in one polarity than the other is that the strain gage was mounted on the top surface
of the beam rather than both top and bottom.

For the second type of self-tuning tests, where the goal was to investigate the ability of the
system to stay tuned as the frequency was adjusted, it was found that the system was fairly
robust to maintaining its tuned state once resonance was achieved. The driving frequency
could be adjusted significantly before resonance was lost. In one test, the driving frequency
was adjusted from 58 Hz to 64 Hz and back without losing resonance with acceleration of 4.5
g, normalized mass starting position of 0.6, and one piece of tungsten mass. In another test,
the driving frequency was adjusted from 58 Hz to 67 Hz and back down to 50 Hz without
losing resonance with acceleration of 2.4 g, normalized mass starting position of 0.6, and no
tungsten mass pieces (only the mass clamp, which has a mass of 5 g). In general, the mass
moved in order to maintain resonance of the system, but there were cases where the mass
did not move until several Hz frequency change had been made.

Figure 9.7 shows results from a test where the initial driving frequency was 60 Hz and
frequency was swept up to 66 Hz, acceleration was 2 g, normalized mass starting position
was 0.8, and one piece of tungsten mass was attached. The points in time where frequency
was changed are indicated on the plot. The reason that the frequencies were changed rather
quickly instead of giving it longer to establish equilibrium is that the system was resonating
very intensely and, without end stops in this design to constrain mechanical motion, there
was concern that the self-tuning resonator would be damaged. This figure shows that the
amplification of beam motion was maintained as frequency was changed, and the mass
rearranged itself along the beam in order to maintain this resonance condition.

The top plot of figure 9.8 shows the motions of the sliding mass from figures 9.3, 9.4, 9.5,
and 9.6 plotted together. This plot shows that the “turn around” position for the mass, at
which point resonance of the beam-mass system begins, moves closer toward the edge of the
beam as the frequency increases. The location of the turn around position where the beam-
mass system suddenly begins to resonate for a given driving frequency can be explained by
the bottom plot of figure 9.8. The bottom plot shows the first and second mode resonance
frequencies of the beam-mass system calculated for the case in which the mass is fixed at a
given position along the beam (mass position not coupled with beam motion). These results
show good agreement between experiment and model, and suggest that the mass motion
occurs in two phases. In the first phase, the mass moves slowly along the beam, which
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Figure 9.5: Experimental and numerical self-tuning observed with driving frequency of 60
Hz, acceleration of 1.8 g, and normalized mass starting position of 0.1833.
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Figure 9.6: Experimental and numerical self-tuning observed with driving frequency of 70
Hz, acceleration of 2 g, and normalized mass starting position of 0.1833.
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Figure 9.7: Experimentally observed self-tuning as driving frequency was swept from 60 to
66 Hz, with acceleration of 2 g, and normalized mass starting position of 0.8.

is vibrating with small amplitudes, to the position along the beam which would make the
beam-mass system resonance frequency match the driving frequency if the mass were fixed
rather than free to slide. When the mass reaches that position, the system is at resonance
and the displacement amplitude grows. In the second phase, the mass slides rapidly back
toward the center of the beam, driven by the suddenly very large amplitude displacement of
the beam.

9.5 Discussion

9.5.1 Experimental imperfections

Two factors that impact the experiment and should be accounted for in the next prototype
design are nonlinearities introduced due to large deflections of the aluminum beam and
interaction of the self-tuning beam-mass system with the mass of the vibrometer. The first
effect, nonlinearities due to large beam deflection, is believed to have had only a minor impact
on the experiment initially, but during one test the system was driven at higher acceleration
than previously and this resulted in observable plastic deformation of the aluminum beam.
The data and results reported in this chapter were taken prior to plastic deformation of
the beam so there is not a concern of invalid results, but future designs should incorporate
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Figure 9.8: Top figure shows experimentally observed mass motion along the vibrating beam
at 2 g. Bottom figure shows the uncoupled modeled system frequencies corresponding to each
mass position along the beam for first and second modes of beam vibration. Black points
correspond with the experimentally observed position at which the mass-beam system began
to resonate and mass turned around to move back toward center.
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mechanical end stops to prevent excessive displacement or a structural beam material with
a higher yield stress than aluminum to avoid plastic deformation issues.

The second effect, interaction of the self-tuning resonator with the mass of the vibrometer,
can occur if the mass of the device is on the same order of magnitude as the mass of
the shaker and the system is at resonance. Because these conditions could have been met
during the testing done for this study, the possibility of the prototype interacting with the
vibrometer should be considered. However, the results presented in this chapter clearly show
the onset of passive self-tuning, which occurs before and just as resonance begins, even if
some interaction with the vibrometer impacts the behavior later on after the system is fully
resonating. Therefore, the conclusion that passive self-tuning was achieved is still valid.
Future devices should be much smaller than this initial prototype with smaller mass and so
interaction with the shaker mass is not expected to be a problem. However, if future devices
do have similarly large masses, coupling with the shaker can be avoided by adding extra
mass to the base of the resonator system to effectively increase the mass of the vibrometer.

9.5.2 Successes and shortcomings of the model

The model correctly reproduced the main phenomena that were observed experimentally,
correctly predicting the equilibrium position of the mass and whether or not self-tuning
occurred for a given set of driving parameters and initial conditions. It also successfully
captured the mass’s slow-moving nature relative to the timescale of beam vibration, and
the rapid sliding of the mass toward center as the system became self-tuned and began
to resonate. However, it did not accurately reproduce the exact trajectory of the mass
along the beam. Specifically, the mass was experimentally observed to move towards the
edge of the beam until self-tuning occurred, after which the mass moved towards the center
of the beam, while the model showed the mass moving directly towards the center of the
beam. It should be noted that the mass slid all the way to the center of the beam in some
experimental cases, but in other cases it did not make it all the way back to center. This
is due to experimental imperfections, such as friction between the beam and mass, rather
than modeling inconsistency. Overall, the model is a very useful tool for understanding
this complicated nonlinear coupled system and determining operating regimes, as numerical
simulations can be run much more quickly than experimental tests.

The causes of the discrepancies between the model and experiment may stem from both
numerical and physical sources. Numerical inaccuracies are introduced with the discrete
nature of the input vectors for βn, y, and x, and the approximated curve fits and derivatives
using polyfit, polyval, and polyder functions. Restrictions on the size of the time step due
to memory limits of the machine placed a limit on solver resolution. Physical inaccuracies
in the model are due to the fact that the model does not account for any torsion in the
beam, “walking” behavior of the mass along the beam, or spring nonlinearities of the beam
at large deflection. Additionally, although the model has parameters to account for friction
and damping, it is difficult to determine accurate coefficients for these terms and this could
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be a source of error. Lastly, even though moment of inertia of the mass was accounted for,
the model treats the mass contact area with the beam as point contact when in reality it is
a rectangular contact area.

9.5.3 Fabrication challenges in micro/meso “no-mans land”

This self-tuning resonator system poses an interesting manufacturing challenge because the
dimensions required for a small-scale, low frequency system are on the boundary of what
makes sense for MEMS fabrication processes. To scale down to a length of several centimeters
and width of several millimeters for the fixed-fixed beam would require beam thickness on the
order of tens of microns in order to maintain the necessary low resonance frequencies. The
thickness requirement is more suitable for MEMS fabrication, but the large area required is
more suitable for meso scale fabrication. Additionally, the use of bulk piezoelectric materials
is generally preferable in order to obtain the large coupling coefficients that are difficult to
obtain from thin film piezoelectric materials, but the low frequency requirement makes using
the thicker bulk piezoelectric sheets challenging. Finally, the requirement that the mass be
able to slide along the beam introduces additional complexity for MEMS processing due to
fabrication release step difficulties and potential problems with stiction. There is a need for
new hybrid manufacturing processes to fabricate this type of system.

9.6 Summary

In this chapter, the design, fabrication, and test results of an adaptable-frequency resonant
system were presented. Both the numerical and experimental results show that self-tuning
was successfully and repeatably achieved. Further testing and characterization is needed
to develop a behavioral regime map of the system’s self-tuning behavior at different driving
parameters to ensure that a design works over the full frequency range desired. The strengths
and shortcomings of the numerical model were discussed. This system is worthy of continued
research, including use of the model to develop an smaller optimized device and testing of
the system on ambient, rather than sinusoidal, vibration sources.
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Chapter 10

Conclusion

10.1 Specific conclusions

1. A detailed survey of ambient vibrations in a machine room setting was conducted,
finding that the dominant frequency peaks from the majority of the sources surveyed
lie between 20-60 Hz, with another set of frequencies between 120-140 Hz. Three
sources also contain peaks around 350 Hz. The accelerations of the ambient vibrations
were all below 0.7 g/

√
Hz, with most accelerations on the order of 10−2 to 10−1 g/

√
Hz.

2. The data suggest that the peak frequencies in the spectra do not usually vary over
time, but the relative magnitudes of the frequencies can change significantly. This can
be a result of duty cycles of equipment and differences in system settings. In addition
to temporal sensitivity, spacial sensitivity was observed when data were gathered from
different parts of the same machine or structure.

3. A lumped parameter model for the response of a fixed-frequency piezoelectric energy
harvester to an arbitrary input excitation was developed. The model improves upon
what was previously presented in literature by accounting for rotational inertia of the
proof mass and accounting for rectangular or trapezoidal beam shapes. The discretiza-
tion method was used to solve the model equations with sampled acceleration inputs
such that any arbitrary measured acceleration data can be used as input to the model.

4. Fixed-frequency MEMS piezoelectric energy harvesters with frequencies of 31–232 Hz
were successfully fabricated using sol-gel PZT as the piezoelectric thin film. This is
the lowest resonance frequency for MEMS energy harvesters reported in literature,
and falls within the frequency range of ambient vibrations. The low frequency was
achieved by using beam lengths of 4–6 mm and mass areas of 1.5 - 3 mm2, which are
unusually large areal dimensions for MEMS devices, while utilizing the standard thin
film capabilities of MEMS to keep the beam only microns thick.
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5. Fixed-frequency MEMS piezoelectric energy harvesters were characterized on a vibrom-
eter, producing power output of 1.2 – 43.8 nWavg/g2, and the best harvester produced
1.72 nWavg at 232 Hz and 0.29 g. The impedance of the energy harvesters tested
ranged from 8–42 kΩ and their piezoelectric coefficients ranged from 1.9–18.0 pm/V.
The range of values is due to variations in the quality of the piezoelectric film across
the wafer and variations from wafer to wafer because of processing factors.

6. Energy was harvested from ambient vibration sources in a campus building machine
room using the fabricated MEMS piezoelectric devices. Power output levels were low
but repeatable, ranging from 0.63 fW - 202 pW per beam, or 24 pW/g2 - 10 nW/g2.
This was a successful proof-of-concept, especially given that the energy harvesters
were not fully optimized or customized specifically for the vibration sources they were
harvesting from. Even though their resonance frequencies fell within the proper range,
they were not matched exactly and therefore were not producing maximum possible
output.

7. The fixed-frequency energy harvester model accurately predicted the location of fre-
quency peaks in every case tested. However, the model’s ability to predict magnitude
of peak power output varied. The model predicted peak power output within 10x of
the experimental value in 82% of tests, and within 5x the experimental value in 68%
of the tests. The model is a useful design tool to visualize what the energy harvester
frequency response will look like and estimate the power output within an order of
magnitude for an arbitrary ambient vibration source.

8. A new method was developed for frequency modification of MEMS cantilevers using
direct-write printing to dispense drops of a proof mass ink onto the tips of the beams.
This technique is efficient, fast, easily scalable, and non-destructive. Printing was car-
ried out in ambient conditions after completion of all microfabrication steps, including
release. Resonance frequency modification of more than 20 Hz with a resolution of 0.1
Hz was repeatably achieved, and greater frequency shift and resolution are possible
with modifications to the experimental setup.

9. A geometrically optimized MEMS scale harvester with a matched resistive load pro-
duces several µW of power from ambient vibrations, according to the model, which is
enough to be usable. The optimal dimensions are approximately 0.3 mm beam length
and 3 µm silicon layer thickness, depending on driving frequency. A harvester opti-
mized for a specific frequency cannot produce usable power at a different frequency.
The power output from a device optimized for a single frequency sine wave input is
about an order of magnitude higher than a device optimized for ambient vibration
input.

10. Fixed-frequency devices are insufficient for energy harvesting in most real-world con-
ditions. No matter how perfectly a device is optimized and manufactured, it will only
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work well at its resonance frequency. In harvesting environments, however, vibration
source frequencies change over time and are not usually known a priori, before the
energy harvester is designed. Therefore, a broadband or tunable energy harvester de-
sign is needed in order to achieve a device that can function effectively on different
vibration sources over a long span of time.

11. It is of interest to optimize the energy harvester with an electrical load more useful
than a resistor in order to take into account power conditioning, but the system equa-
tions can be quite complicated due to coupling between the electrical and mechanical
systems. An analytical framework in which the piezoelectric harvester is represented
as a Coulomb-damped resonant generator was developed to enable the full system op-
timization of the energy harvester connected with a synchronous pre-biasing interface
circuit for power conditioning.

12. A derivation was carried out to find the continuous coupled nonlinear equations of
motion for a spring mass system consisting of a fixed-fixed beam with a sliding proof
mass. The model for an adaptable-frequency resonator improves upon research in the
literature in that it analyzes a beam, rather than a string, with fixed-fixed instead of
cantilever boundary conditions. It accounts for rotary inertia of the mass about the
beam, rather than treating it as a point mass, and for the mass’s impact on beam
shape. The model is applicable for multiple Eigenmodes of beam excitation rather
than only the first mode.

13. A meso scale prototype adaptable-frequency resonator was built to test the self-tuning
concept and validate the model. Self-tuning was repeatably observed in the experi-
mental prototype over a range of frequencies. Rich nonlinear behavior was observed
as frequency, acceleration, and mass starting position were varied.

14. The adaptable-frequency resonator model correctly reproduced the important phenom-
ena that were observed experimentally, correctly predicting the equilibrium position of
the mass and whether or not self-tuning occurred for a given set of driving parameters
and initial conditions. It also successfully captured the mass’s slow-moving nature
relative to the timescale of beam vibration, and the rapid sliding of the mass toward
center as the system became self-tuned and began to resonate.

15. The model did not accurately reproduce the exact trajectory of the mass along the
beam. Discrepancies are attributed to numerical inaccuracies as well as torsional mo-
tion, “walking” behavior of mass, and nonlinear elastic response from the beam that
are not accounted for in the model, and difficulty achieving realistic depiction of viscous
damping and sliding friction in the model.
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10.2 General conclusions

1. MEMS piezoelectric energy harvesting can be a viable power supply for power wireless
sensor nodes as long as harvester is either optimized for specific source or designed to
be broadband or self tuning. Additionally, the wireless sensor node must be designed
to be compatible with the power levels achievable with the harvester.

2. Realistic operating environments must be taken into account when designing and test-
ing energy harvesters. An energy harvester that performs well when driven by a single
sinusoidal acceleration at the same frequency as the harvester’s resonance may produce
no energy when mounted on an arbitrary ambient vibration source.

3. Some applications are only possible using MEMS energy harvesters but others are far
less sensitive to size constraints. If size constraints are not an issue, small meso scale
devices should be considered as a power source along with MEMS devices.

10.3 Recommendations for future work

1. Lead zirconate titanate (PZT) should be replaced by aluminum nitride (AlN), or an-
other suitable material, for MEMS scale piezoelectric harvesters. This recommendation
is based on the fact that, in general, it is easier to achieve a high quality AlN than
PZT thin film, AlN is CMOS compatible and nontoxic while PZT is not, and the
piezoelectric coupling coefficient of AlN is comparable to that of PZT.

2. Future efforts in vibration energy harvesting research should emphasize investigation
and development of self-tuning methods including, but not limited to, that of a sliding
proof mass on a fixed-fixed beam.

3. Future work in vibration energy harvesting should focus on integrating electrical power
conditioning and mechanical device design research rather than pursuing these sepa-
rately.
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Appendix A

Detailed Survey of Ambient
Vibrations

A.1 Spectra of 23 vibration sources

This Appendix presents power spectral density plots for all 23 of the vibration sources listed
in Table 2.1 of Chapter 2, and data was collected as described there. The plots in this
Appendix show only the spectra from 0 to 200 Hz since that is where nearly all of the
dominating frequency peaks appear. This can be understood by looking at Figure 2.2 of
Chapter 2.

The graphs are grouped according to type of vibration source. Vibrations from HVAC
fans are shown figures A.1 and A.2, HVAC ducts are in figures A.3 and A.4, and motors are
in figures A.5 and A.6. The x-axes are all identical on the following plots, but y-axes are
different to better visualize the details of the peaks. Unfortunately, the magnitude of the
ambient vibrations varies too much to use an identical y-axis for all plots.

The general conclusions from the observations in this survey are that ambient vibrations
are low amplitude (on the order of 0.1 to 0.01 g’s), and are low frequency (typically under 200
Hz) and multi frequency. Additionally, nearly every vibration source had a unique spectra.
The survey showed a surprising lack of consistent peaks at the 60 and 120 Hz frequencies
that are commonly assumed to be present due to the power mains. For energy harvesting,
this means that a “one size fits all” solution may be hard to attain without a passively
self-tuning device.

A.2 Spectra of 1 vibration source over time

This section presents the results of a survey of the compressor base vibrations over time.
These results are typical of vibration sources in general that were observed over time. Data
were collected over a period of several months, with some data points minutes, hours, and



APPENDIX A. DETAILED SURVEY OF AMBIENT VIBRATIONS 99

0 20 40 60 80 100 120 140 160 180 200

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Measured acceleration: Fan belt cage 1, vertical 

Frequency, Hz

P
S

D
, 
g

2
/H

z

0 20 40 60 80 100 120 140 160 180 200

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

Measured acceleration: Fan belt cage 2, vertical 

Frequency, Hz

P
S

D
, 
g

2
/H

z

0 20 40 60 80 100 120 140 160 180 200

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

Measured acceleration: Fan belt cage 3, vertical

Frequency, Hz

P
S

D
, 
g

2
/H

z

0 20 40 60 80 100 120 140 160 180 200

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Measured acceleration: Fan belt cage 4, vertical 

Frequency, Hz

P
S

D
, 
g

2
/H

z

Figure A.1: Vertical fan belt cage vibrations

days apart. The data collection method was the same as described in Chapter 2.
Figure A.7 shows all of 18 spectra from various point in time on the same graph. Figure

A.8 shows two plots with semi-log scale. The purpose of the top plot is to illustrate the full
0 to 1000 Hz frequency spectrum for the compressor base so that it is clear why the rest of
the plots show the spectra only from 0 to 200 Hz. The frequencies above 200 Hz are much
lower magnitude and so are not the focus for harvesting. The lower plot shows the frequency
spectrum when the compressor is in the idle mode of its cycle.

The conclusions based on observations of this survey over time are:
1. The dominant frequency peak locations are fairly consistent, within 1 Hz, over time.
2. There are smaller frequency peaks that appear and disappear over time.
3. The relative magnitude of frequency peaks changes over time.
4. Sometimes one of the dominant frequency peaks decreases to the point where a different
frequency dominates.
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Figure A.2: Slanted and horizontal fan belt cage vibrations

Relating these conclusions back to energy harvesting, it becomes clear that an energy
harvesting device tuned to a resonance frequency corresponding to one of the dominant
frequency peaks will be able to harvest some energy some of the time. However, it may
be essentially useless for unpredictable lengths of time if the vibration source cycles into a
mode that causes a shift of frequencies. This is part of the motivation for seeking a passively
self-tuning energy harvester design.
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Figure A.3: HVAC duct vibrations 1-4
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Figure A.4: HVAC duct vibrations 5-8
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Figure A.5: Motor-induced vibrations 1-4
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Figure A.6: Motor-induced vibrations 5-7
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Figure A.7: All 18 measurements of compressor base at different points in time plotted on
same graph.
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Figure A.8: These plots show the spectrum from 0 to 1000 Hz for the compressor base when
the it is operating (top) and idling (bottom). Note the semi-log scale. These plots illustrate
the variability of vibrations over time and that there are very few frequency peaks above 200
Hz, which is why the rest of the plots are on a scale of 0 to 200.
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Figure A.9: Vibration spectra for the compressor base over time. Data for these figures was
taken in March on two days one week apart. The exact date and time are given in the title.
These plots are all on the same scale.
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Figure A.10: Vibration spectra for the compressor base over time. Data for these figures
was taken in May on two days several days apart. The exact date and time are given in the
title. These plots are all on the same scale.
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Figure A.11: Vibration spectra for the compressor base over time. Data for these figures
was taken in May on two days several days apart. The exact date and time are given in the
title. These plots are all on the same scale.
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Appendix B

Modeling Details: Discretization
Process

In chapters 2, 3, and 4, the goal was to measure real-world ambient vibrations, use
that data to predict the behavior of an energy harvester, and finally compare the model’s
predicted behavior with the experimentally determined behavior of the harvester. In order
to incorporate the ambient vibration data into the model, it was necessary to discretize the
continuous differential equations of motion that describe beam behavior. The mathematical
derivation for discretization of differential equations have been developed previously by other
researchers. Although it is not the original work of this author, the derivation is presented
in this appendix for the convenience of anyone in the energy harvesting field who may be
interested in applying these methods to their models. The following closely follows the
derivation given in [8].

Suppose there exists a linear time-invariant equation in the form of (B.1).

Ẋ(t) = −AX(t) +B(t) (B.1)

It is necessary to discretize this equation so that it can be used to model the behavior of a
such a system subjected to a known initial state X(t0) and a known input excitation B(t),
where the input excitation is in the form of discrete data points. It is possible to use the
property given in equation (B.2) to premultiply (B.1).

d

dt
eAt = eAtA (B.2)

Integrating and solving for X(tn) then yields equation (B.3). Equation (B.3) uses initial
conditions to find the value of X at the first time step after t = 0. Equation (B.4) then uses
that value of X to continue iterating until X has been computed for all data points.

X(tn) = e−A(tn−t0)X(t0) +

tn∫
t0

e−A(tn−τ)B(τ)dτ (B.3)
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X(tn+1) = e−A(tn+1−tn)X(tn) +

tn+1∫
tn

e−A(tn+1−τ)B(τ)dτ (B.4)

It is reasonable to assume a constant time step, which will be called ∆t, since the data is
collected with a constant sampling frequency. Additionally, we can simplify the equations
by defining U and Bn as in equations (B.5).

∆t = tn+1 − tn, U = e−A∆t, Bn = B(τ) (B.5)

U is known since the elements of the matrix A are known and the time step ∆t is known.
Next, we approximate Bn linearly between data points, which is necessary because Bn is
continuously integrated but the data is discrete. This can be expressed mathematically as
in equation (B.7).

t ∈ [tn, tn+1] (B.6)

B(t) =
tn+1 − t

∆t
Bn +

t− tn
∆t

Bn+1 (B.7)

Substituting into equation (B.4) and expanding terms gives the following equation.

Xn+1 = UXn +
Bn

∆t

tn+1∫
tn

(tn+1 − τ) e
−A(tn+1−τ)

dτ

︸ ︷︷ ︸
M

+
Bn+1

∆t

tn+1∫
tn

(τ − tn) e
−A(tn+1−τ)

dτ

︸ ︷︷ ︸
N

(B.8)

Now it is necessary to evaluate the two integral terms in equation (B.8) so that values for
X can be determined at the discrete steps dictated by the input data. The two integrals in
question are defined as M and N and the integrals are simplified by redefining the time step
as τ ′ = ∆t− τ .

M =
1

∆t

∆t∫
0

τ ′e
−Aτ ′

dτ ′, N =
1

∆t

∆t∫
0

τe
−A(∆t−τ)

dτ (B.9)

By substituting into equation (B.8), we can write Xn+1 as

Xn+1 = UXn +MBn +NBn+1 (B.10)

However, M and N must still be evaluated. This can be achieved by first diagonalizing A
and then solving for A so it is in terms of its eigenvector matrix, S, and eigenvalue matrix,
Λ [61].

Λ = S−1AS, A = SΛS−1 (B.11)

Similarly, if we diagonalize M , N , and A, we can write equations (B.9) as

S−1MS =
1

∆t

∆t∫
0

τ ′e
−Λτ ′

dτ ′, S−1NS =
1

∆t

∆t∫
0

τe
−Λ(∆t−τ)

dτ (B.12)
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µk =
1

∆t

∆t∫
0

τ ′e
−λkτ

′

dτ ′, ηk =
1

∆t

∆t∫
0

τe
−λk(∆t−τ)

dτ (B.13)

Since A is a matrix with known values and λk are the eigenvalues of A, it is possible to
integrate equation (B.13), resulting in

µk =
1

∆t

[
−e

−λkτ
′

λ2
k

− τ ′e
−λkτ

′

λk

]∆t

0

, ηk =
1

∆t

[
τe

λk(τ−∆t)

λk
− e

λk(τ−∆t)

λ2
k

]∆t

0

(B.14)

µk =
1

∆tλ2
k

(
1− e−λk∆t

)
− 1

λk
e
−λk∆k

, ηk =
1

∆tλ2
k

(
e
−λk∆t − 1

)
+

1

λk
(B.15)

Finally, the three eigenvalues of A can be used to solve for the three µ components of the
diagonalized M matrix.

M = S

 µ1 0 0
0 µ2 0
0 0 µ3

S−1, N = S

 η1 0 0
0 η2 0
0 0 η3

S−1 (B.16)

Now, with expressions for M and N in terms of the eigenvector matrix, S, and µk and
νk, which can all be calculated from the A matrix, it is possible to numerically solve equa-
tion (B.10). Employing MATLAB or another similar program, it is possible to numerically
calculate X using, for example, the discrete experimentally determined acceleration data as
the input excitation.
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Appendix C

Modeling Details:
Adaptable-Frequency Nonlinear
Resonator

The derivation for the mathematical model of a sliding mass on a fixed-fixed beam was
derived without much detail, for easier readability, in chapter 8. Here, a much more detailed
derivation is shown. The same equations that appeared in chapter 8 are repeated here for
convenience, but will be numbered differently. This derivation starts by presenting a brief
summary of some background information that the reader may find useful for following the
procedure.

C.1 Basics and background

Hamilton’s principle:

S =

∫ t2

t1

dtL (C.1)

where S is known as the action integral, and Hamilton’s principle states that the physical
solutions occur when

δS = δ

∫ t2

t1

Ldt ≡ δ

∫ t2

t1

(T − V )dt = 0 (C.2)

is satisfied. The times, t1 and t2, are any arbitrary times as long as t2 is greater than t1. L
is the Lagrangian, defined as kinetic energy minus potential energy, T − V .
Euler-Lagrange equation:

∂L
∂qi
− d

dt

(
∂L
∂q̇i

)
= 0 (C.3)
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where qi is the function to be found. Properties of δ - variational operator:

δφ = φ̄(x)− φ(x) = εη(x), ε→ 0 (C.4)

where φ̄(x) is infinitesimally different from φ(x).

1. The independent variable x does not participate in variation.

δx = 0 (C.5)

2. Commutitive with respect to differentiation: the derivative of a variation and the vari-
ation of a derivative are the same thing:

d

dx
δφ =

d

dx
εη(x) = ε

dη(x)

dx
(C.6)

δ
dφ

dx
=

dφ̄

dx
− dφ

dx
=

d

dx

(
φ̄− φ

)
=

d

dx
εη(x) = ε

dη(x)

dx
(C.7)

3. Commutative with respect to integration: the integral of a variation and the variation
of an integral are the same thing:

δ

∫ x2

x1

φ(x)dx =

∫ x2

x1

φ̄(x)dx−
∫ x2

x1

φ(x)dx =

∫ x2

x1

[φ̄(x)− φ(x)]dx =

∫ x2

x1

δφ(x)dx∫ x2

x1

δφ(x)dx = δ

∫ x2

x1

φ(x)dx (C.8)

Useful general properties to recall:

1. Integration by parts:∫ b

a

f(x)g′(x)dx = f(x)g(x)|ba −
∫ b

a

f ′(x)g(x)dx (C.9)

2. Chain rule:
d(g(x)) = g′(x)dx (C.10)

3. When W = W (y(t), t) instead of W = W (x, t):

d

dt
Ẇ = Ẅ + Ẇ ′Ẏ (C.11)

d

dt
W ′ = Ẇ ′ +W ′′Ẏ (C.12)

d

dt
W ′Ẏ = (Ẇ ′ +W ′′Ẏ )Ẏ +W ′Ÿ = Ẇ ′Ẏ +W ′′Ẏ 2 +W ′Ÿ (C.13)
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Remember that position can be a function of time, but time is not a function of
position, so

d

dY
Ẇ = Ẇ ′ (C.14)

Properties related to Dirac delta:
Dirac delta is not the same as the derivative of the Dirac delta:

f(x)δ(x− y) = f(y)δ(x− y) (C.15)

f(x)δ′(x− y) 6= f(y)δ′(x− y) (C.16)

T (y)δ′(x− y) =
d

dx
[T (y)δ(x− y)] (C.17)

=
d

dx
[T (x)δ(x− y)] (C.18)

= T ′(x)δ(x− y) + T (x)δ′(x− y) (C.19)

= T ′(y)δ(x− y) + T (x)δ′(x− y) (C.20)

d

dt
δ(x− y(t)) = −ẏ(t)δ′(x− y(t)) (C.21)

The nondimensional form of δ(X−Y ), assuming that x = X/L and y = Y/L, is L−1δ(x−y).
Useful matrix properties:
The singular value decomposition of a real matrix A is

A = UΣV T (C.22)

where U and V are orthogonal matrices, meaning that UTU = I and V TV = I, and Σ is a
diagonal matrix with diagonal terms σ1, σ2, σn. We can rearrange to write

AV = UΣ (C.23)

and if V = [v1 v2...vn] and U = [u1 u2...un], we have

[Av1 Av2...Avn] = [σ1u1 σ2u2...σnun] (C.24)

Therefore, if σk = 0 for some k, then Avk = 0. In MATLAB we can find the condition
number of the matrix A (solved at various values of βL) to see where it goes to infinity.
At those values of βL, which are the eigenfrequencies, we substitute into A. Then singular
value decomposition can be used to get the coefficients of vk.

C.2 Physical system definition

The system, shown in figure C.1, is defined as follows: input vibrations are described by
Wo(t). A point along the beam is denoted by the coordinate X, beam vertical position
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is described by W (X, t), mass horizontal position is Y (t), and mass vertical position is
W (Y (t), t). Derivatives with respect to time are denoted with a dot and derivatives with
respect to X are denoted with a prime. Derivatives with respect to Y (t) are written out
explicitly. The coordinate system is defined as x-axis along length of beam and z-axis in the
direction of vertical displacement. The beam properties are defined by its bending stiffness,

X Y(t) 

W(X,t) 
W(Y(t),t) m 

EI, ρA, L 

Wo(t) 

x 

z 

Figure C.1: Schematic of the spring-mass system. The fixed-fixed beam is secured to a
reference frame which is subjected to input vibrations. Mass is free to slide along the beam.

EI, linear density, ρA, and length, L. Slope and angular rotation of the beam due to the
mass are given, respectively, by

θ =
∂W

∂X

∣∣∣∣
X=Y (t)

= W ′(Y (t), t) (C.25)

θ̇ =
d

dt

(
∂W

∂X

∣∣∣∣
X=Y (t)

)
= (W ′′Ẏ + Ẇ ′)|X=Y (t) (C.26)

Similarly, the velocity of the mass due to constrained motion with the beam is found by
taking the time derivative of the mass position, resulting in

d

dt

(
Wo(t) +W (Y (t), t)

)
= Ẇo + Ẇ +W ′Ẏ . (C.27)
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C.3 Equations of motion

The kinetic energy of the beam and the sliding mass is

T =

∫ L

0

1

2
ρA(Ẇo + Ẇ )2dX

+
1

2
m
[
Ẏ 2 + (Ẇo + Ẇ +W ′Ẏ )2

]
X=Y (t)

+
1

2
Im
[
(W ′′Ẏ + Ẇ ′)2

]
X=Y (t)

(C.28)

where ρ is density of the beam, A is cross sectional area of the beam, L is length of the beam,
m is the proof mass, and Im is moment of inertia of the mass about the y-axis. The first
term represents kinetic energy of the beam due to vertical motion, second term is kinetic
energy of the mass due to horizontal motion along beam and kinetic energy of the mass due
to vertical motion with beam, and the last term is kinetic energy of the mass due to rotation
about the beam. Potential energy of the system is simply due to elastic deformation of the
beam and is given by

V =

∫ L

0

1

2
EI(W ′′)2dX (C.29)

where E is the young’s modulus of the beam and I is moment of inertia of the beam about
the y-axis. The Lagrangian density L of the system, kinetic minus potential energy density,
is

L =
1

2
ρA(Ẇo + Ẇ )2 − 1

2
EI(W ′′)2

+

{
1

2
mẎ 2 +

1

2
m(Ẇo + Ẇ +W ′Ẏ )2 +

1

2
Im(W ′′Ẏ + Ẇ ′)2

}
δ(X − Y ). (C.30)

The Euler-Lagrange equation for the beam can be derived from the variation of the action
integral:

S =

∫ t2

t1

dtL =

∫ t2

t1

dt

∫ l

0

dXL(Ẇ ,W ′, Ẇ ′,W ′′) (C.31)

δS =

∫ t2

t1

dt

∫ l

0

dX

(
∂L
∂Ẇ

δẆ +
∂L
∂W ′ δW

′ +
∂L
∂Ẇ ′

δẆ ′ +
∂L
∂W ′′ δW

′′
)

= 0

=

∫ t2

t1

dt

∫ l

0

dX

(
− d

dt

∂L
∂Ẇ

δW − d

dX

∂L
∂W ′ δW −

d

dt

∂L
∂Ẇ ′

δW ′ − d

dX

∂L
∂W ′′ δW

′
)

=

∫ t2

t1

dt

∫ l

0

dX

(
− d

dt

∂L
∂Ẇ
− d

dX

∂L
∂W ′ +

d2

dtdX

∂L
∂Ẇ ′

+
d2

dX2

∂L
∂W ′′

)
δW (C.32)

To satisfy the equation, the term in parentheses in equation (C.32) is set equal to zero,
resulting in

− d

dt

∂L
∂Ẇ
− d

dX

∂L
∂W ′ +

d2

dtdX

∂L
∂Ẇ ′

+
d2

dX2

∂L
∂W ′′ = 0 (C.33)
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which is the Euler-Lagrange equation for the beam, from which the beam equation of motion
can be derived. The Euler-Lagrange equation for the mass is derived similarly, resulting in

∂L
∂Y
− d

dt

∂L
∂Ẏ

= 0. (C.34)

Starting with equation (C.30), we can take the following derivatives in order to write down
the Euler-Lagrange equation for the mass.

∂L
∂Y

= m(Ẇo + Ẇ +W ′Ẏ )(Ẇ ′ +W ′′Ẏ )

+ Im(Ẇ ′ +W ′′Ẏ )(Ẇ ′′ +W ′′′Ẏ ) (C.35)

∂L
∂Ẏ

= mẎ +m(Ẇo + Ẇ +W ′Ẏ )W ′ + Im(Ẇ ′ +W ′′Ẏ )W ′′ (C.36)

d

dt

∂L
∂Ẏ

= m

[
Ÿ + (Ẇo + Ẇ +W ′Ẏ )(Ẇ ′ +W ′′Ẏ )

+ (Ẅo + Ẅ + 2Ẇ ′Ẏ +W ′′Ẏ 2 +W ′Ÿ )W ′
]

+Im

[
(Ẇ ′ +W ′′Ẏ )(Ẇ ′′ +W ′′′Ẏ )

+ (Ẅ ′ + 2Ẇ ′′Ẏ +W ′′′Ẏ 2 +W ′′Ÿ )W ′′
]

(C.37)

∂L
∂Y
− d

dt

∂L
∂Ẏ

= mŸ +m(Ẅo + Ẅ + 2Ẇ ′Ẏ +W ′′Ẏ 2 +W ′Ÿ )W ′

+Im(Ẅ ′ + 2Ẇ ′′Ẏ +W ′′′Ẏ 2 +W ′′Ÿ )W ′′ = 0 (C.38)

Again, starting with equation (C.30), we can take the following derivatives in order to
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write down the Euler-Lagrange equation for the beam.

∂L
∂Ẇ

= ρA(Ẇo + Ẇ ) +m(Ẇo + Ẇ +W ′Ẏ )δ(X − Y ) (C.39)

∂L
∂W ′ = m(Ẇo + Ẇ +W ′Ẏ )Ẏ δ(X − Y ) (C.40)

∂L
∂Ẇ ′

= Im(Ẇ ′ +W ′′Ẏ )δ(X − Y ) (C.41)

∂L
∂W ′′ = Im(Ẇ ′ +W ′′Ẏ )Ẏ δ(X − Y ) (C.42)

d

dt

∂L
∂Ẇ

= ρA(Ẅo + Ẅ ) +m(Ẅo + Ẅ + Ẇ ′Ẏ +W ′Ÿ )δ(X − Y )

−m(Ẇo + Ẇ +W ′Ẏ )Ẏ δ′(X − Y ) (C.43)

d

dX

∂L
∂W ′ = m(Ẇo + Ẇ +W ′Ẏ )Ẏ δ′(X − Y ) +m(Ẇ ′ +W ′′Ẏ )Ẏ δ(X − Y ) (C.44)

d2

dXdt

∂L
∂Ẇ ′

=
d

dX

[
− Im(Ẇ ′ +W ′′Ẏ )Ẏ δ′(X − Y )

+Im(Ẅ ′ + Ẇ ′′Ẏ +W ′′Ÿ )δ(X − Y )

]
(C.45)

d2

dX2

∂L
∂W ′′ =

d

dX

[
Im(Ẇ ′ +W ′′Ẏ )Ẏ δ′(X − Y ) + Im(Ẇ ′′ +W ′′′Ẏ )Ẏ δ(X − Y )

−EIW ′′′
]

(C.46)

Substituting into equations (C.33) and (C.34) results in the beam and mass equations of
motion, respectively, as

0 = ρA(Ẅo + Ẅ ) +m(Ẅo + Ẅ + 2Ẇ ′Ẏ +W ′′Ẏ 2 +W ′Ÿ )δ(X − Y ) + EIW ′′′′

− d

dX

[
Im(Ẅ ′ + 2Ẇ ′′Ẏ +W ′′′Ẏ 2 +W ′′Ÿ )δ(X − Y )

]
(C.47)

0 = mŸ +m(Ẅo + Ẅ + 2Ẇ ′Ẏ +W ′′Ẏ 2 +W ′Ÿ )W ′

+Im(Ẅ ′ + 2Ẇ ′′Ẏ +W ′′′Ẏ 2 +W ′′Ÿ )W ′′. (C.48)

This result can be interpreted as a beam driven by a uniform load, a point force F and a
point torque T , where F and T are defined as

F = −m(Ẅo + Ẅ + 2Ẇ ′Ẏ +W ′′Ẏ 2 +W ′Ÿ ) (C.49)

T = −Im(Ẅ ′ + 2Ẇ ′′Ẏ +W ′′′Ẏ 2 +W ′′Ÿ ) (C.50)

so equations (C.48) and (C.47) can be rewritten as

ρA(Ẅo + Ẅ ) + EIW ′′′′ = Fδ(X − Y )− Tδ′(X − Y ) (C.51)

mŸ = FW ′(Y, t) + TW ′′(Y, t) (C.52)
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The equations of motion are nondimensionalized by introducing the following nondimensional
time, frequency, and displacements for the system, closely following the notation used by
Miranda et al [45]:

τ = ω̃1t, Ω =
ω

ω̃1

, wo =
Wo

L
, w =

W

L
, x =

X

L
, y =

Y

L
, (C.53)

where τ is nondimensional time, ω̃1 is the fundamental frequency of the beam with no mass
present, Ω is nondimensional frequency, and for displacements the lowercase letters represent
nondimensional versions of the uppercase letters. Derivatives that exist in the equations of
motion are nondimensionalized as follows (these are written out for the variable, W , but the
same form applies to nondimensionalizing the time and space derivatives of Y and Wo).

dW

dt
=

d(wL)

dτ

dτ

dt
= Lω̃1

dw

dτ
(C.54)

d2W

dt2
=

d2(wL)

dτ 2

d2τ

dt2
= Lω̃2

1

d2w

dτ 2
(C.55)

dW

dX
=

d(wL)

dx

dx

dX
= L

1

L

dw

dx
=
dw

dx
(C.56)

d2W

dX2
=

d2(wL)

dx2

d2x

dX2
= L

1

L2

d2w

dx2
=

1

L

d2w

dx2
(C.57)

d2W

dtdX
=

d2(wL)

dτdx

dτ

dt

dx

dX
= ω̃1

d2w

dτdx
(C.58)

d3W

dXdt2
=

d3(wL)

dxdτ 2

d2τ

dt2
dx

dX
= ω̃2

1

d3w

dxdτ 2
(C.59)

d3W

dX2dt
=

d3(wL)

dx2dτ

dτ

dt

d2x

dX2
=
ω̃1

L

d3w

dx2dτ
(C.60)

d3W

dX3
=

d3(wL)

dx3

d3x

dX3
=

1

L2

d3w

dx3
(C.61)

d4W

dX4
=

d4(wL)

dx4

d4x

dX4
=

1

L3

d4w

dx4
(C.62)

Substituting the nondimensional terms into equations (C.47) and (C.48), dividing the mass
equation by mLω̃2

1 and the beam equation by ρALω̃2
1, and then adding terms for damping

and friction results in the nondimensional equations of motion,

0 = ÿ + cmẏ + (ẅo + ẅ + 2ẇ′ẏ + w′′ẏ2 + w′ÿ)w′

+χ(ẅ′ + 2ẇ′′ẏ + w′′′ẏ2 + w′′ÿ)w′′

+µ

[
(ẅo + ẅ + 2ẇ′ẏ + w′′ẏ2 + w′ÿ + ḡ)sgn (ẏ + w′(ẇo + ẇ + w′ẏ))

]
(C.63)

0 = (ẅo + ẅ) + cb(ẇo + ẇ) + α(ẅo + ẅ + 2ẇ′ẏ + w′′ẏ2 + w′ÿ)δ(x− y)

+νw′′′′ − γ d
dx

[
(ẅ′ + 2ẇ′′ẏ + w′′′ẏ2 + w′′ÿ)δ(x− y)

]
(C.64)
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with dimensionless parameters defined as

α =
m

ρAL
, ν =

EI

ρAL4ω̃2
1

, γ =
Im
ρAL2

, χ =
Im
mL2

(C.65)

cm =
Cm
mω̃1

, cb =
Cb

ρALω̃1

, ḡ =
g

Lω̃2
1

(C.66)

where α is a nondimensional mass, ν is nondimensional stiffness, γ and χ are nondimensional
rotational moment of inertia of the proof mass relative to the beam inertia and the mass
inertia respectively, cm and cb are linear viscous damping of the mass motion and beam
motion respectively, ḡ is nondimensional gravity, and µ is dry friction of mass sliding.

C.4 Eigenfunctions and boundary conditions

To obtain the expression for the beam shape as a function of time, we start with the homoge-
nous case of equation (C.64), where wo = 0. Neglecting damping but including rotational
inertia of the mass, as well as assuming that mass is considered fixed because it moves on a
much slower timescale than the beam, we have

0 = ẅ + αẅδ(x− y) + νw′′′′ − γẅ′(y, τ)δ′(x− y) (C.67)

which can also be written, with a different representation of the last term, as

0 = ẅ + αẅδ(x− y) + νw′′′′ − γ d
dx

[
δ(x− y)ẅ′(x, τ)

]
. (C.68)

Using separation of variables, we introduce

w(x, τ) = u(x)T (τ). (C.69)

If we substitute this into equation (C.68), rearrange, divide through by ν, and substitute
T̈ (τ)/T (τ) = −Ω2, we arrive at

u′′′′(x)− 1 + αδ(x− y)

ν
u(x)Ω2 +

γ

ν

d

dx

[
δ(x− y)u′(x)

]
Ω2 = 0. (C.70)

We can rearrange equation (C.70) to give

u′′′′(x) =
Ω2

ν

{
[1 + αδ(x− y)]u(x)− γ d

dx

[
δ(x− y)u′(x)

]}
(C.71)

where we can now define two linear operators

K̂ =
d4

dx4
, M̂ = 1 + αδ(x− y)− γ d

dx
δ(x− y)

d

dx
. (C.72)
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Note that the operations in the last term of M should be done in order from right to left.
Substituting into equation (C.71) gives

K̂un(x) = β4
nM̂un(x), where β4

n =
Ω2
n

ν
. (C.73)

The solution to equation (C.73) is of the form

uL,n(x) = AL,n cos βnx+BL,n sin βnx+ CL,n cosh βnx+DL,n sinh βnx, x < y

uR,n(x) = AR,n cos βn(1− x) +BR,n sin βn(1− x)

+CR,n cosh βn(1− x) +DR,n sinh βn(1− x), x > y. (C.74)

The eight unknown coefficients in these equations must be found using eight boundary condi-
tions. The first four boundary conditions are given by the fact that the beam has fixed-fixed
end conditions, so the deflection and slope at both ends of the beam, x = 0 and x = 1, must
be zero. This is written as

u(0) = u(1) = 0, u′(0) = u′(1) = 0. (C.75)

Additionally, there are four boundary conditions that come from continuity requirements.
Those are found by the following procedure, recalling that θ is the Heaviside function, where
θ(x−y) = 0 if x < y but θ(x−y) = 1 if x > y. Also, the derivative of the Heaviside function
is the Dirac delta.

un(x) = θ(x− y)uR,n(x) + θ(y − x)uL,n(x) (C.76)

u′n(x) = δ(x− y)
[
uR,n(y)− uL,n(y)

]
+ θ(x− y)u′R,n(x) + θ(y − x)u′L,n(x) (C.77)

Equation (C.70) has no δ′′′ terms, so the δ term must drop out of equation (C.77). To ensure
this, the expression in brackets must equal zero, giving the fifth boundary condition. Taking
the second and third derivatives of un(x) leads to

u′′n(x) = δ(x− y)
[
u′R,n(y)− u′L,n(y)

]
+ θ(x− y)u′′R,n(x) + θ(y − x)u′′L,n(x) (C.78)

u′′′n (x) = δ(x− y)
[
u′′R,n(y)− u′′L,n(y)

]
+ θ(x− y)u′′′R,n(x) + θ(y − x)u′′′L,n(x) (C.79)

where the terms inside the brackets in equation (C.78) also must equal zero since there are
no δ′′ terms in equation (C.70), thus giving a sixth boundary condition. However, the term
inside the brackets in equation (C.79) must not equal zero since there is a δ′ in the equation
(C.70). Therefore, the fourth derivative of un(x) is

u′′′′n (x) = δ(x− y)
[
u′′′R,n(y)− u′′′L,n(y)

]
(C.80)

+ δ′(x− y)
[
u′′R,n(y)− u′′L,n(y)

]
+ θ(x− y)u′′′′R,n(x) + θ(y − x)u′′′′L,n(x). (C.81)
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The final two boundary conditions are found by equating the coefficients of the various
derivatives of δ. Recalling the original beam equation, (C.70), and multiplying (C.81) by ν
gives

νu′′′′(x) = νδ(x− y)
[
u′′′R,n(y)− u′′′L,n(y)

]
+ νδ′(x− y)

[
u′′R,n(y)− u′′L,n(y)

]
+ νθ(x− y)u′′′′R,n(x) + νθ(y − x)u′′′′L,n(x) (C.82)

νu′′′′(x) = Ω2(1 + αδ(x− y))un(x)− Ω2γδ′(x− y)u′n(y) (C.83)

from which boundary conditions 7 and 8 are found to be, respectively,

ν
[
u′′R,n(y)− u′′L,n(y)

]
= −Ω2γu′n(y) (C.84)

ν
[
u′′′R,n(y)− u′′′L,n(y)

]
= Ω2αun(x) (C.85)

To summarize, the eight boundary conditions are

1) u(0) = 0

2) u(1) = 0

3) u′(0) = 0

4) u′(1) = 0

5) uR,n(y)− uL,n(y) = 0

6) u′R,n(y)− u′L,n(y) = 0

7) u′′R,n(y)− u′′L,n(y) = −Ω2
nγ

ν
u′n(y)

8) u′′′R,n(y)− u′′′L,n(y) =
Ω2
nα

ν
un(y). (C.86)

Applying boundary conditions 1-4 to equation (C.70) shows that AL,n = −CL,n, BL,n =
−DL,n, AR,n = −CR,n and BR,n = −DR,n, leaving

uL,n(x) = AL,n(cos βnx− cosh βnx) +DL,n(sin βnx− sinh βnx) (C.87)

uR,n(x) = AR,n(cos βn(1− x)− cosh βn(1− x))

+ DR,n(sin βn(1− x)− sinh βn(1− x)) (C.88)

The first, second, and third derivatives of un(x) can then be computed and substituted into
boundary conditions 5-8, yielding four expressions with four unknowns for each mode (AL,n,
DL,n, AR,n, and DR,n), so the beam shape can be determined when the mass is fixed in
a given position. These last four boundary conditions produce, respectively, the following
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equations:

0 = AR,n(cos βn(1− y)− cosh βn(1− y)) +DR,n(sin βn(1− y)− sinh βn(1− y))

−AL,n(cos βny − cosh βny)−DL,n(sin βny − sinh βny) (C.89)

0 = AR,n(− sin βn(1− y)− sinh βn(1− y)) +DR,n(cos βn(1− y)− cosh βn(1− y))

+AL,n(− sin βny − sinh βny) +DL,n(cos βny − cosh βny) (C.90)

0 = AR,n(− cos βn(1− y)− cosh βn(1− y)) +DR,n(− sin βn(1− y)− sinh βn(1− y))

+AL,n

[
− β3

nγ(sin βny + sinh βny) + (cos βny + cosh βny)

]
+DL,n

[
− β3

nγ(− cos βny + cosh βny) + (sin βny + sinh βny)

]
(C.91)

0 = AR,n(sin βn(1− y)− sinh βn(1− y)) +DR,n(− cos βn(1− y)− cosh βn(1− y))

−AL,n
[
− βnα(cos βny − cosh βny)− (sin βny − sinh βny)

]
−DL,n

[
− βnα(sin βny − sinh βny)− (− cos βny − cosh βny)

]
(C.92)

The first, second, and third derivatives of un(x) can now be computed and substituted into
boundary conditions 5-8. This yields four expressions with five unknowns for each mode (βn,
AL,n, DL,n, AR,n, and DR,n). This system is solved numerically in MATLAB by assuming
one mass position at a time, assuming a vector of input “guesses” for the value of βn, and
then solving the system of four equations and four unknowns for each value of βn guess. The
condition number of the matrix of coefficients (AL,n, DL,n, AR,n, and DR,n for each boundary
condition) is then plotted as a function of βn. The values of βn that result in the condition
number spiking to a very large value (meaning that the coefficient matrix is singular) indicate
nontrivial solutions. These βn solutions are then inserted into the four equations and four
unknowns to find the values for AL,n, DL,n, AR,n, and DR,n for the desired number of modes.
Two modes were calculated in this study, and singular value decomposition method was used
to solve the system.

With all coefficients now known, the beam shape can be calculated for the mass fixed
in a given position. Before using the beam shape expressions in computation they need to
be normalized, as will be described in the next section. Going forward, wn refers to the full
beam shape solution including segments of the beam both left and right, uL,n and uR,n, of
the position of the proof mass. Finally, the fundamental frequency of the beam with no mass
present, ω̃1, is needed in order to nondimensionalize the system of equations according to
the parameters defined in equations (C.53), (C.65), and (C.66). To find this frequency, the
characteristic equation of the fixed-fixed beam with no mass,

cosλn coshλn = 1, (C.93)
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is solved numerically for the eigenvalues, λn, from which frequency can be calculated using
ω̃2

1 = EIλ4
1/ρAL

4.

C.5 Normalization

We need to normalize wn(x, y(τ)). The procedure given here to find the expression for the
normalization coefficients follows [49], but this material is in nearly any vibrations book.
Recall that wn(x, y(τ)) = Cn[uLn(x) uRn(x)] and

uL,n(x) = AL,n(cos βnx− cosh βnx) +DL,n(sin βnx− sinh βnx) (C.94)

uR,n(x) = AR,n(cos βn(1− x)− cosh βn(1− x)) +DR,n(sin βn(1− x)− sinh βn(1− x)).

The generalized eigenvalue problem for two modes, i and j, is

K̂un = λnM̂un (C.95)

K̂um = λmM̂um, (C.96)

as was shown in equation (C.73). Multiplying (C.95) from the left by um and (C.96) from
the left by un, then subtracting the two equations and integrating over the length of the
beam gives ∫ 1

0

(umK̂un − unK̂um)dx =

∫ 1

0

(λnumM̂un − λmunM̂um)dx. (C.97)

Assuming the eigenvalue problem is self adjoint, which will not be proven here but can be
found in, for example, [49], the following equalities can be stated.∫ 1

0

umK̂undx =

∫ 1

0

unK̂umdx (C.98)∫ 1

0

umM̂undx =

∫ 1

0

unM̂umdx (C.99)

Substituting equations (C.98) and (C.99) into (C.97) results in

(λn − λm)

∫ 1

0

umM̂undx = 0. (C.100)

From equation (C.100) it is clear that if m and n are not equal,∫ 1

0

umM̂undx = 0 and

∫ 1

0

umK̂undx = 0. (C.101)
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Equations (C.101) are the generalized orthogonality conditions. Following from equation
(C.100), if m and n are equal the equation is satisfied by the fact that λn − λm = 0. Then
the un’s can be normalized with respect to M̂un by setting∫ 1

0

(Cnun)M̂(Cnun)dx = C2
n

∫ 1

0

unM̂undx = 1, n = 1, 2, ... (C.102)

where Cn is the normalization coefficient. This can be summarized as

C2
n

∫ 1

0

umM̂undx = δmn (C.103)

where δmn = 1 if m = n, but δmn = 0 if m 6= n. Therefore, after writing out the actions of
the M̂ operator on un when m = n, normalizing with respect to 1, and solving for Cn, the
normalization coefficient for the problem at hand is

Cn =

[∫ y

0

u2
Ln(x, y)dx+

∫ 1

y

u2
Rn(x, y)dx

]
+ α(uL,n(y))2 + γ(u′L,n(y))2

−
1

2
. (C.104)

Going through the algebra to obtain the expression for the integrand in the denominator of
equation (C.104) gives

u2
Ln(x) = A2

Ln cos2 βnx+ A2
Ln cosh2 βnx+D2

Ln sin2 βnx+D2
Ln sinh2 βnx (C.105)

− 2A2
Ln cos βnx cosh βnx− 2D2

Ln sin βnx sinh βnx

− 2ALnDLn cos βnx sinh βnx− 2ALnDLn cosh βnx sin βnx

+ 2ALnDLn cosh βnx sinh βnx+ 2ALnDLn cos βnx sin βnx

u2
Rn(x) = A2

Rn cos2 βn(1− x) + A2
Rn cosh2 βn(1− x) (C.106)

+ D2
Rn sin2 βn(1− x) +D2

Rn sinh2 βn(1− x)

− 2A2
Rn cos βn(1− x) cosh βn(1− x)− 2D2

Rn sin βn(1− x) sinh βn(1− x)

− 2ARnDRn cos βn(1− x) sinh βn(1− x)− 2ARnDRn cosh βn(1− x) sin βn(1− x)

+ 2ARnDRn cosh βn(1− x) sinh βn(1− x) + 2ARnDRn cos βn(1− x) sin βn(1− x).

u2
Ln and u2

Rn are then integrated from 0 to y and y to 1, respectively, and the integral term
in equation (C.104) is[ ∫ y

0

u2
Ln(x, y)dx+

∫ 1

y

u2
Rn(x, y)dx

]
= (C.107)

A2
LnT11n +D2

LnT22n + ALnDLnT12n + A2
RnT33n +D2

RnT44n + ARnDRnT34n
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where the Tn terms are defined as

T11n =
1

βn

(
βny +

1

4
sin 2βny +

1

4
sinh 2βny − cos βny sinh βny − sin βny cosh βny

)
T12n = T21n =

1

βn

(
sinh2 βny + sin2 βny − 2 sin βny sinh βny

)
T22n =

1

βn

(
1

4
sinh 2βny −

1

4
sin 2βny − sin βny cosh βny + cos βny sinh βny

)
T33n =

1

βn

(
βn(1− y) +

1

4
sin 2βn(1− y) +

1

4
sinh 2βn(1− y)

− cos βn(1− y) sinh βn(1− y)− sin βn(1− y) cosh βn(1− y)

)
T34n = T43n =

1

βn

(
sinh2 βn(y − 1) + sin2 βn(y − 1)− 2 sin βn(1− y) sinh βn(1− y)

)
T44n =

1

βn

(
1

4
sinh 2βn(1− y)− 1

4
sin 2βn(1− y)− sin βn(1− y) cosh βn(1− y)

+ cos βn(1− y) sinh βn(1− y)

)
. (C.108)

The Cn values for a given value of mass position y can now be calculated, since un and u′n
are already known, and the beam shape, wn(x, y(τ)), can be normalized. When w′n(x, y(τ)),
w′′n(x, y(τ)), or w′′′n (x, y(τ)) need to be computed, the normalization coefficient found here
is used to compute the derivatives. Note that Cn is regarded as a constant if taking the
derivative of w with respect to x, but is not a constant if taking derivative with respect to
y.

C.6 Fixed-mass eigenmode expansion

We now solve the equations of motion that were derived in the previous sections using
eigenmode expansion. If wn(x, y, τ) is the solution of (C.68) corresponding to the natural
frequency ωn, we write

w(x, τ) =
∞∑
n=0

ηn(τ)wn(x, y, τ) (C.109)

and insert into equations (C.63) and (C.64), multiply from the left by wm(x, y) and integrate
over x. In these wn terms, y = y(τ), but will be written at simply y for ease. Similarly, all
integrals are evaluated from 0 to 1 (the nondimensional length of the beam). Also, note that
w, wn, wm, and ωn are all distinct variables. This leads to the beam equation expressed as
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0 =

∫
wm(x, y)ẅodx+

∫
wm(x, y)αẅoδ(x− y)dx+

∫
wm(x, y)cbẇodx (C.110)

+

∫
wm(x, y)

[ ∞∑
n=0

η̈n(τ)wn(x, y) + 2
∞∑
n=0

η̇n(τ)ẏ
∂wn(x, y)

∂y

+
∞∑
n=0

ηn(τ)ÿ
∂wn(x, y)

∂y
+
∞∑
n=0

ηn(τ)ẏ2∂
2wn(x, y)

∂y2

]
dx

+

∫
wm(x, y)cb

[ ∞∑
n=0

η̇n(τ)wn(x, y) +
∞∑
n=0

ηn(τ)ẏ
∂wn(x, y)

∂y

]
dx

+

∫
wm(x, y)α

[ ∞∑
n=0

η̈n(τ)wn(x, y) + 2
∞∑
n=0

η̇n(τ)ẏ
∂wn(x, y)

∂y

+
∞∑
n=0

ηn(τ)ÿ
∂wn(x, y)

∂y
+
∞∑
n=0

ηn(τ)ẏ2∂
2wn(x, y)

∂y2

]
δ(x− y)dx ...



APPENDIX C. MODELING DETAILS: ADAPTABLE-FREQUENCY DEVICE 129

... +

∫
wm(x, y)2α

[ ∞∑
n=0

η̇n(τ)ẏw′n(x, y) +
∞∑
n=0

ηn(τ)ẏ2∂w
′
n(x, y)

∂y

]
δ(x− y)dx

+

∫
wm(x, y)ν

∞∑
n=0

ηn(τ)w′′′′n (x, y)dx

−
∫
wm(x, y)γ

[ ∞∑
n=0

η̈n(τ)w′′n(x, y) + 2
∞∑
n=0

η̇n(τ)ẏ
∂w′′n(x, y)

∂y

+
∞∑
n=0

ηn(τ)ÿ
∂w′′n(x, y)

∂y
+
∞∑
n=0

ηn(τ)ẏ2∂
2w′′n(x, y)

∂y2

]
δ(x− y)dx

−
∫
wm(x, y)γ

[ ∞∑
n=0

η̈n(τ)w′n(x, y) + 2
∞∑
n=0

η̇n(τ)ẏ
∂w′n(x, y)

∂y

+
∞∑
n=0

ηn(τ)ÿ
∂w′n(x, y)

∂y
+
∞∑
n=0

ηn(τ)ẏ2∂
2w′n(x, y)

∂y2

]
δ′(x− y)dx

−
∫
wm(x, y)2γ

[ ∞∑
n=0

η̇n(τ)ẏw′′′n (x, y) +
∞∑
n=0

ηn(τ)ẏ2∂w
′′′
n (x, y)

∂y

]
δ(x− y)dx

−
∫
wm(x, y)2γ

[ ∞∑
n=0

η̇n(τ)ẏw′′n(x, y) +
∞∑
n=0

ηn(τ)ẏ2∂w
′′
n(x, y)

∂y

]
δ′(x− y)dx

+

∫
wm(x, y)αẏ2

∞∑
n=0

ηn(τ)w′′n(x, y)δ(x− y)dx

+

∫
wm(x, y)αÿ

∞∑
n=0

ηn(τ)w′n(x, y)δ(x− y)dx

−
∫
wm(x, y)γẏ2

∞∑
n=0

ηn(τ)w′′′′n (x, y)δ(x− y)dx

−
∫
wm(x, y)γẏ2

∞∑
n=0

ηn(τ)w′′′n (x, y)δ′(x− y)dx

−
∫
wm(x, y)γÿ

∞∑
n=0

ηn(τ)w′′′n (x, y)δ(x− y)dx

−
∫
wm(x, y)γÿ

∞∑
n=0

ηn(τ)w′′n(x, y)δ′(x− y)dx.
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The beam equation simplifies to

0 = ẅo

∫
wm(x, y)dx+ αẅowm(y, y) + cbẇo

∫
wm(x, y)dx (C.111)

+
∞∑
n=0

δmnη̈n(τ) + 2ẏ

∫
wm(x, y)

∞∑
n=0

η̇n(τ)
∂wn(x, y)

∂y
dx

+ÿ

∫
wm(x, y)

∞∑
n=0

ηn(τ)
∂wn(x, y)

∂y
dx+ ẏ2

∫
wm(x, y)

∞∑
n=0

ηn(τ)
∂2wn(x, y)

∂y2
dx

+
∞∑
n=0

cbδmnη̇n(τ) +

∫
wm(x, y)cb

∞∑
n=0

ηn(τ)ẏ
∂wn(x, y)

∂y
dx

+α

[ ∞∑
n=0

η̈n(τ)wm(y, y)wn(y, y) + 2ẏ
∞∑
n=0

η̇n(τ)wm(y, y)
∂wn(x, y)

∂y

∣∣∣∣
y

+ÿ
∞∑
n=0

ηn(τ)wm(y, y)
∂wn(x, y)

∂y

∣∣∣∣
y

+ ẏ2

∞∑
n=0

ηn(τ)wm(y, y)
∂2wn(x, y)

∂y2

∣∣∣∣
y

]
+2α

[ ∞∑
n=0

η̇n(τ)ẏwm(y, y)w′n(y, y) +
∞∑
n=0

ηn(τ)ẏ2wm(y, y)
∂w′n(x, y)

∂y

∣∣∣∣
y

]
+ν

∞∑
n=0

β4
nδmnηn(τ)− γ

[ ∞∑
n=0

η̈n(τ)wm(y, y)w′′n(y, y) + 2ẏ
∞∑
n=0

η̇n(τ)wm(y, y)
∂w′′n(x, y)

∂y

∣∣∣∣
y

+ÿ
∞∑
n=0

ηn(τ)wm(y, y)
∂w′′n(x, y)

∂y

∣∣∣∣
y

+ ẏ2

∞∑
n=0

ηn(τ)wm(y, y)
∂2w′′n(x, y)

∂y2

∣∣∣∣
y

]
+γ

[ ∞∑
n=0

η̈n(τ)w′m(y, y)w′′n(y, y) + 2ẏ
∞∑
n=0

η̇n(τ)w′m(y, y)
∂w′′n(x, y)

∂y

∣∣∣∣
y

+ÿ
∞∑
n=0

ηn(τ)w′m(y, y)
∂w′′n(x, y)

∂y

∣∣∣∣
y

+ ẏ2

∞∑
n=0

ηn(τ)w′m(y, y)
∂2w′′n(x, y)

∂y2

∣∣∣∣
y

]
−2γ

[ ∞∑
n=0

η̇n(τ)ẏwm(y, y)w′′′n (y, y) +
∞∑
n=0

ηn(τ)ẏ2wm(y, y)
∂w′′′n (x, y)

∂y

∣∣∣∣
y

]
+2γ

[ ∞∑
n=0

η̇n(τ)ẏw′m(y, y)w′′′n (y, y) +
∞∑
n=0

ηn(τ)ẏ2w′m(y, y)
∂w′′′n (x, y)

∂y

∣∣∣∣
y

]
+wm(y, y)αẏ2

∞∑
n=0

ηn(τ)w′′n(y, y) + wm(y, y)αÿ
∞∑
n=0

ηn(τ)w′n(y, y)

−wm(y, y)γẏ2

∞∑
n=0

ηn(τ)w′′′′n (y, y) + w′m(y, y)γẏ2

∞∑
n=0

ηn(τ)w′′′′n (y, y)

−wm(y, y)γÿ
∞∑
n=0

ηn(τ)w′′′n (y, y) + w′m(y, y)γÿ
∞∑
n=0

ηn(τ)w′′′n (y, y).
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Similarly, the unsimplified mass expression is as follows.

0 = ẅo

∞∑
n=0

ηn(τ)w′n(y, y) + µ(ẅo + ḡ)sgn
(
∗
)

+ ẏcm + ÿ (C.112)

+

[ ∞∑
n=0

η̈n(τ)wn(y, y) + 2
∞∑
n=0

η̇n(τ)ẏ
∂wn(y, y)

∂y

+
∞∑
n=0

ηn(τ)ÿ
∂wn(y, y)

∂y
+
∞∑
n=0

ηn(τ)ẏ2∂
2wn(y, y)

∂y2

] ∞∑
n=0

ηn(τ)w′n(y, y)

+χ

[ ∞∑
n=0

η̈n(τ)w′n(y, y) + 2
∞∑
n=0

η̇n(τ)ẏ
∂w′n(y, y)

∂y

+
∞∑
n=0

ηn(τ)ÿ
∂w′n(y, y)

∂y
+
∞∑
n=0

ηn(τ)ẏ2∂
2w′n(y, y)

∂y2

] ∞∑
n=0

ηn(τ)w′′n(y, y)

+µ

[ ∞∑
n=0

η̈n(τ)wn(y, y) + 2
∞∑
n=0

η̇n(τ)ẏ
∂wn(y, y)

∂y

+
∞∑
n=0

ηn(τ)ÿ
∂wn(y, y)

∂y
+
∞∑
n=0

ηn(τ)ẏ2∂
2wn(y, y)

∂y2

]
sgn
(
∗
)]

+2ẏ

[ ∞∑
n=0

η̇n(τ)w′n(x, y) +
∞∑
n=0

ηn(τ)ẏ
∂w′n(x, y)

∂y

] ∞∑
n=0

ηn(τ)w′n(x, y)

+ẏ2

∞∑
n=0

ηn(τ)w′′n(x, y)
∞∑
n=0

ηn(τ)w′n(x, y) + ÿ
∞∑
n=0

ηn(τ)w′n(x, y)
∞∑
n=0

ηn(τ)w′n(x, y)

+2χẏ

[ ∞∑
n=0

η̇n(τ)w′′n(x, y) +
∞∑
n=0

ηn(τ)ẏ
∂w′′n(x, y)

∂y

] ∞∑
n=0

ηn(τ)w′′n(x, y)

+χẏ2

∞∑
n=0

ηn(τ)w′′′n (x, y)
∞∑
n=0

ηn(τ)w′′n(x, y) + χÿ
∞∑
n=0

ηn(τ)w′′n(x, y)
∞∑
n=0

ηn(τ)w′′n(x, y)

+2µẏ

[ ∞∑
n=0

η̇n(τ)w′n(x, y) +
∞∑
n=0

ηn(τ)ẏ
∂w′n(x, y)

∂y

]
sgn
(
∗
)

+µẏ2

∞∑
n=0

ηn(τ)w′′n(x, y)sgn
(
∗
)

+ µÿ
∞∑
n=0

ηn(τ)w′n(x, y)sgn
(
∗
)
.

where,

∗ = ẏ+

[
ẇo+

∞∑
n=0

η̇n(τ)wn(y, y)+
∞∑
n=0

ηn(τ)ẏ
∂wn(y, y)

∂y
+
∞∑
n=0

ηn(τ)ẏw′n(y, y)

] ∞∑
n=0

ηn(τ)w′n(y, y)

(C.113)
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Performing these operations for the beam equation and expanding for n = 0, 1 and m = 0, 1
yields a set of equations which can be expressed in matrix form as[

A0 B0

A1 B1

] [
η̈0

η̈1

]
+

[
C0 D0

C1 D1

] [
η̇0

η̇1

]
+

[
E0 F0

E1 F1

] [
η0

η1

]
=

[
Q0

Q1

]
(C.114)

where, for m = 0,

Q0 = −ẅo
∫ 1

0

w0(x, y)dx− αẅow0(y, y)− cbẇo
∫ 1

0

w0(x, y)dx (C.115)

A0 = 1

B0 = 0

C0 = cb + 2ẏ

(
αw0(y, y)w′0(y, y)− γw0(y, y)w′′′0 (y, y) + γw′0(y, y)w′′′0 (y, y)

+αw0(y, y)
∂w0(y, y)

∂y
− γw0(y, y)

∂w′′0(y, y)

∂y
+ γw′0(y, y)

∂w′′0(y, y)

∂y

+

∫ 1

0

w0(x, y)
∂w0(x, y)

∂y
dx

)
D0 = 2ẏ

(
αw0(y, y)w′1(y, y)− γw0(y, y)w′′′1 (y, y) + γw′0(y, y)w′′′1 (y, y)

+αw0(y, y)
∂w1(y, y)

∂y
− γw0(y, y)

∂w′′1(y, y)

∂y
+ γw′0(y, y)

∂w′′1(y, y)

∂y

+

∫ 1

0

w0(x, y)
∂w1(x, y)

∂y
dx

)
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E0 = νβ4
0 + ÿαw0(y, y)

∂w0(y, y)

∂y
+ ẏ22αw0(y, y)

∂w′0(y, y)

∂y
− ÿγw0(y, y)

∂w′′0(y, y)

∂y

+ÿγw′0(y, y)
∂w′′0(y, y)

∂y
− ẏ22γw0(y, y)

∂w′′′0 (y, y)

∂y
+ ẏ22γw′0(y, y)

∂w′′′0 (y, y)

∂y

+ÿ

∫ 1

0

w0(x, y)
∂w0(x, y)

∂y
dx+ cbẏ

∫ 1

0

w0(x, y)
∂w0(x, y)

∂y
dx

+ẏ2

(
αw0(y, y)

∂2w0(y, y)

∂y2
− γw0(y, y)

∂2w′′0(y, y)

∂y2
+ γw′0(y, y)

∂2w′′0(y, y)

∂y2

+

∫ 1

0

w0(x, y)
∂2w0(x, y)

∂y2
dx

)
+ẏ2

(
αw0(y, y)w′′0(y, y)− γw0(y, y)w′′′′0 (y, y) + γw′0(y, y)w′′′′0 (y, y)

)
+ÿ

(
αw0(y, y)w′0(y, y)− γw0(y, y)w′′′0 (y, y) + γw′0(y, y)w′′′0 (y, y)

)
F0 = ÿαw0(y, y)

∂w1(y, y)

∂y
+ ẏ22αw0(y, y)

∂w′1(y, y)

∂y
− ÿγw0(y, y)

∂w′′1(y, y)

∂y

+ÿγw′0(y, y)
∂w′′1(y, y)

∂y
− ẏ22γw0(y, y)

∂w′′′1 (y, y)

∂y
+ ẏ22γw′0(y, y)

∂w′′′1 (y, y)

∂y

+ÿ

∫ 1

0

w0(x, y)
∂w1(x, y)

∂y
dx+ cbẏ

∫ 1

0

w0(x, y)
∂w1(x, y)

∂y
dx

+ẏ2

(
αw0(y, y)

∂2w1(y, y)

∂y2
− γw0(y, y)

∂2w′′1(y, y)

∂y2
+ γw′0(y, y)

∂2w′′1(y, y)

∂y2

+

∫ 1

0

w0(x, y)
∂2w1(x, y)

∂y2
dx

)
+ẏ2

(
αw0(y, y)w′′1(y, y)− γw0(y, y)w′′′′1 (y, y) + γw′0(y, y)w′′′′1 (y, y)

)
+ÿ

(
αw0(y, y)w′1(y, y)− γw0(y, y)w′′′1 (y, y) + γw′0(y, y)w′′′1 (y, y)

)
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The terms for m = 1 follow the same form as for m = 0 and are and the terms for m = 1 in
the beam equation are

Q1 = −ẅo
∫ 1

0

w1(x, y)dx− αẅow1(y, y)− cbẇo
∫ 1

0

w1(x, y)dx (C.116)

A1 = 0

B1 = 1

C1 = 2ẏ

(
αw1(y, y)w′0(y, y)− γw1(y, y)w′′′0 (y, y) + γw′1(y, y)w′′′0 (y, y)

+αw1(y, y)
∂w0(y, y)

∂y
− γw1(y, y)

∂w′′0(y, y)

∂y
+ γw′1(y, y)

∂w′′0(y, y)

∂y

+

∫ 1

0

w1(x, y)
∂w0(x, y)

∂y
dx

)
D1 = cb + 2ẏ

(
αw1(y, y)w′1(y, y)− γw1(y, y)w′′′1 (y, y) + γw′1(y, y)w′′′1 (y, y)

+αw1(y, y)
∂w1(y, y)

∂y
− γw1(y, y)

∂w′′1(y, y)

∂y
+ γw′1(y, y)

∂w′′1(y, y)

∂y

+

∫ 1

0

w1(x, y)
∂w1(x, y)

∂y
dx

)
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E1 = ÿαw1(y, y)
∂w0(y, y)

∂y
+ ẏ22αw1(y, y)

∂w′0(y, y)

∂y
− ÿγw1(y, y)

∂w′′0(y, y)

∂y

+ÿγw′1(y, y)
∂w′′0(y, y)

∂y
− ẏ22γw1(y, y)

∂w′′′0 (y, y)

∂y
+ ẏ22γw′1(y, y)

∂w′′′0 (y, y)

∂y

+ÿ

∫ 1

0

w1(x, y)
∂w0(x, y)

∂y
dx+ cbẏ

∫ 1

0

w1(x, y)
∂w0(x, y)

∂y
dx

+ẏ2

(
αw1(y, y)

∂2w0(y, y)

∂y2
− γw1(y, y)

∂2w′′0(y, y)

∂y2
+ γw′1(y, y)

∂2w′′0(y, y)

∂y2

+

∫ 1

0

w1(x, y)
∂2w0(x, y)

∂y2
dx

)
+ẏ2

(
αw1(y, y)w′′0(y, y)− γw1(y, y)w′′′′0 (y, y) + γw′1(y, y)w′′′′0 (y, y)

)
+ÿ

(
αw1(y, y)w′0(y, y)− γw1(y, y)w′′′0 (y, y) + γw′1(y, y)w′′′0 (y, y)

)
F1 = νβ4

1 + ÿαw1(y, y)
∂w1(y, y)

∂y
+ ẏ22αw1(y, y)

∂w′1(y, y)

∂y
− ÿγw1(y, y)

∂w′′1(y, y)

∂y

+ÿγw′1(y, y)
∂w′′1(y, y)

∂y
− ẏ22γw1(y, y)

∂w′′′1 (y, y)

∂y
+ ẏ22γw′1(y, y)

∂w′′′1 (y, y)

∂y

+ÿ

∫ 1

0

w1(x, y)
∂w1(x, y)

∂y
dx+ cbẏ

∫ 1

0

w1(x, y)
∂w1(x, y)

∂y
dx

+ẏ2

(
αw1(y, y)

∂2w1(y, y)

∂y2
− γw1(y, y)

∂2w′′1(y, y)

∂y2
+ γw′1(y, y)

∂2w′′1(y, y)

∂y2

+

∫ 1

0

w1(x, y)
∂2w1(x, y)

∂y2
dx

)
+ẏ2

(
αw1(y, y)w′′1(y, y)− γw1(y, y)w′′′′1 (y, y) + γw′1(y, y)w′′′′1 (y, y)

)
+ÿ

(
αw1(y, y)w′1(y, y)− γw1(y, y)w′′′1 (y, y) + γw′1(y, y)w′′′1 (y, y)

)
The mass equation expressed in matrix form after performing eigenmode expansion opera-
tions and expanding for n = 0, 1 (the mass equation is independent of m) is

Gÿ +Hẏ + (HH)ẏ2 = K − J, (C.117)
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where

G = 1 +

[
η0
∂w0(y, y)

∂y
+ η1

∂w1(y, y)

∂y

][
η0w

′
0(y, y) + η1w

′
1(y, y)

]
+χ

[
η0
∂w′0(y, y)

∂y
+ η1

∂w′1(y, y)

∂y

][
η0w

′′
0(y, y) + η1w

′′
1(y, y)

]
+µ

[
η0
∂w0(y, y)

∂y
+ η1

∂w1(y, y)

∂y

]
sgn
(
∗
)

+

[
η1w

′
0(y, y) + η1w

′
1(y, y)

]2

+ χ

[
η0w

′′
0(y, y) + η1w

′′
1(y, y)

]2

+µ

[
η0w

′
0(y, y) + η1w

′
1(y, y)

]
sgn
(
∗
)

H = cm + 2

[
η̇0
∂w0(y, y)

∂y
+ η̇1

∂w1(y, y)

∂y

][
η0w

′
0(y, y) + η1w

′
1(y, y)

]
+2χ

[
η̇0
∂w′0(y, y)

∂y
+ η̇1

∂w′1(y, y)

∂y

][
η0w

′′
0(y, y) + η1w

′′
1(y, y)

]
+2µ

[
η̇0
∂w0(y, y)

∂y
+ η̇1

∂w1(y, y)

∂y

]
sgn
(
∗
)

+2

[
η̇0w

′
0(y, y) + η̇1w

′
1(y, y)

][
η0w

′
0(y, y) + η1w

′
1(y, y)

]
+2χ

[
η̇0w

′′
0(y, y) + η̇1w

′′
1(y, y)

][
η0w

′′
0(y, y) + η1w

′′
1(y, y)

]
+2µ

[
η̇0w

′
0(y, y) + η̇1w

′
1(y, y)

]
sgn
(
∗
)
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HH =

[
η0
∂2w0(y, y)

∂y2
+ η1

∂2w1(y, y)

∂y2

][
η0w

′
0(y, y) + η1w

′
1(y, y)

]
+χ

[
η0
∂2w′0(y, y)

∂y2
+ η1

∂2w′1(y, y)

∂y2

][
η0w

′′
0(y, y) + η1w

′′
1(y, y)

]
+µ

[
η0
∂2w0(y, y)

∂y2
+ η1

∂2w1(y, y)

∂y2

]
sgn
(
∗
)

+2

[
η0
∂w′0(y, y)

∂y
+ η1

∂w′1(y, y)

∂y

][
η0w

′
0(y, y) + η1w

′
1(y, y)

]
+

[
η0w

′′
0(y, y) + η1w

′′
1(y, y)

][
η0w

′
1(y, y) + η1w

′
1(y, y)

]
+2χ

[
η0
∂w′′0(y, y)

∂y
+ η1

∂w′′1(y, y)

∂y

][
η0w

′′
0(y, y) + η1w

′′
1(y, y)

]
+χ

[
η0w

′′′
0 (y, y) + η1w

′′′
1 (y, y)

][
η0w

′′
0(y, y) + η1w

′′
1(y, y)

]
+2µ

[
η0
∂w′0(y, y)

∂y
+ η1

∂w′1(y, y)

∂y

]
sgn
(
∗
)

+ µ

[
η0w

′′
0(y, y) + η1w

′′
1(y, y)

]
sgn
(
∗
)

J =

[
η̈0w0(y, y) + η̈1w1(y, y)

][
η0w

′
0(y, y) + η1w

′
1(y, y)

]
+χ

[
η̈0w

′
0(y, y) + η̈1w

′
1(y, y)

][
η0w

′′
0(y, y) + η1w

′′
1(y, y)

]
+µ

[
η̈0w0(y, y) + η̈1w1(y, y)

]
sgn
(
∗
)

K = ẅo

[
η0w

′
0(y, y) + η1w

′
1(y, y)

]
+ µ(ẅo + ḡ)sgn

(
∗
)

(C.118)

where

∗ = ẏ +

(
ẇo +

[
η̇0w0(y, y) + η̇1w1(y, y)

]
+ ẏ

[
η0
∂w0(y, y)

∂y
+ η1

∂w1(y, y)

∂y

]
+ẏ

[
η0w

′
0(y, y) + η1w

′
1(y, y)

])[
η0w

′
0(y, y) + η1w

′
1(y, y)

]
(C.119)

These expressions can be solved numerically. Many of the terms used in the above equations
depend on mass position, y, including AL,n, DL,n, AR,n, DR,n, βn, ωn, and the normalization
coefficient. Using a computer program, the value of each of those terms for each discrete
mass position along the length of the beam was calculated and a curve fit was done for each
term’s dependence on y. Then, partial derivatives of the beam deflection, wn, with respect to
y were computed using the curve fits before evaluating those partial derivatives at x = y to
get the value needed for the above equations. Similarly, integrals were evaluated numerically
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only after the partial derivatives of beam deflection with respect to y were determined.
Integration is along the full length of the beam, so the integrals were split into two terms for
the left side (evaluated from 0 to y) and the right side (evaluated from y to 1) of the beam.

C.7 Programming equations in MATLAB

To enter this system into a computer code, start with the matrix form

Ẋ = aX + b. (C.120)

X is a vector containing the state variables, which for us is

X =


η1

η2

y
η̇1

η̇2

ẏ

 , Ẋ =


η̇1

η̇2

ẏ
η̈1

η̈2

ÿ

 (C.121)

The matrix a is composed of the terms A, B, C, D, E, F , G, H, HH, and J , which are
given above. The matrix b is composed of terms K and Q given above. The equations from
the previous section are rearranged to give[

A0 B0

A1 B1

] [
η̈0

η̈1

]
= −

[
C0 D0

C1 D1

] [
η̇0

η̇1

]
−
[
E0 F0

E1 F1

] [
η0

η1

]
+

[
Q0

Q1

]
(C.122)

Gÿ = −Hẏ − (HH)ẏ2 +K − J. (C.123)

Further rearranging is necessary because terms E and F contain not only η, y, and ẏ terms,
but also ÿ terms. Similarly, J contains η̈ terms. Breaking up E, F , and J into two parts -
one that is a function of only state variables on the right hand side of equation (C.120) and
another that is a function of variables on the left hand side of (C.120). To reconcile this
issue, equation (C.120) can be expressed as

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 A1 B1 (E1bη1 + F1bη2)
0 0 0 A2 B2 (E2bη1 + F2bη2)
0 0 0 Ja Jb G




η̇1

η̇2

ẏ
η̈1

η̈2

ÿ

 =


η̇1

η̇2

ẏ
−E1aη1 − F1aη2 − C1η̇1 −D1η̇2 +Q1

−E2aη1 − F2aη2 − C2η̇1 −D2η̇2 +Q2

−Hẏ −HHẏ2 +K


(C.124)

Because of the nonlinearity of the equations we are working with, it is not possible to
represent the right hand side of the equation strictly in matrix form.
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Appendix D

Microfabrication Processing Details

D.1 PZT film deposition

The steps for deposition of the lead zirconate titanate (PZT) sol-gel film are shown in figure
D.1. First, a single layer of lead titanate (PT) is spin coated onto the wafer at 500 rotations
per minute (RPM) for 10 seconds, then 3000 RPM for 15 seconds. The wafer is then baked
at 400◦ C for 1 minute and annealed at 600◦ C for 1 minute in an oxygen environment.

Fast Crystallization Anneal 700ºC 

Pb 
O2 

O2 

Polycrystalline film 

Spin coat PZT 

Solvent Bake 70ºC 

Solvent 

C H 

Pyrolysis 400ºC 

H C 

Amorphous film 

Repeat 1 time first, then 2 times 

Repeat for  
desired  
thickness 

Spin coat PT 

Bake 400ºC 

Anneal 600°C 

Cooling Bake 200ºC 

Filter PZT 

Adapted from Bokor Group, UCB 

Figure D.1: Diagram of processing steps required to deposit a sol-gel PZT film.

Next, the first layer of PZT is filtered to remove any particles and deposited using a pipet
onto the spinning wafer at 500 RPM for 10 seconds and then 3000 RPM for 30 seconds. The
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wafer is then baked at 70◦ C for 1 minute to drive off the solvent and pyrolyzed at 400◦ C
for 5 minutes to drive off organics. To ensure slow cooling, the wafer is moved to a hotplate
at 200◦ C for approximately 30 seconds. At this point the PZT film is amorphous. A 700◦ C
rapid annealing step is then performed in an oxygen environment. These steps are repeated
as many times as necessary to achieve the desired film thickness. Each spin-bake-anneal
step results in a PZT thickness of about 100 nm. Figure D.2 presents a scanning electron
micrograph showing the PZT film obtained in this research.

800 nm thick PZT film 

Figure D.2: Scanning electron micrograph of a sol-gel deposited PZT film.

It is important to ramp up to 700◦ C very quickly (essentially as quickly as the rapid
thermal annealing tool can manage). The temperature is held for 1 minute before cooling as
quickly as possible. One reason that the rapid heating and cooling are necessary is to avoid
formation of the pyrochlore phase of PZT, which is not piezoelectric, as the film heats to
700◦ C. Its presence in a PZT film will degrade the piezoelectric coefficient significantly.

In the course of depositing these sol-gel films, it was found that catastrophic piezoelectric
film delamination is a serious problem unless very specific film layers are used beneath the
PZT. The dielectric layer that is deposited on top of the silicon wafer must be thermally
grown oxide and the electrode beneath the PT/PZT layer must be a sputtered platinum
film. The use of low temperature oxide, low stress nitride, or stoichiometric nitride resulted
in complete piezoelectric film delamination, as did evaporated platinum bottom electrodes
or bottom electrodes of a different metal. The information reported here corresponds with
the Mitsubishi 1% PT (125/100) F2 and Mitsubishi PZT 15% [Pb125(Zr52Ti48)O3] E1 solu-
tions, and it is possible that different sol-gel solutions have different processing requirements.
Because of the challenges involved in obtaining a high quality sol-gel PZT film, aluminum
nitride is recommended as a MEMS piezoelectric material instead.
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D.2 Residual stress causing curling of cantilevers

Residual stress is often a problem in free-standing MEMS fabricated devices. Common
sources of this residual stress are lattice mismatch of the thin films and thermally induced
stress. For example, the thermal oxide used in the cantilevers presented in this work is
grown at temperatures near 1000◦ C, so it experiences thermal contraction as it cools down.
Evaporated and sputtered films also commonly contain residual stress.

Sometimes it is possible to make changes to the fabrication process in order to eliminate
the residual stress, but other times this is not an option. One option in the latter case is to
use argon ion bombardment [3], which works both by generating a thin layer of compressively
stressed material on the outer surface and etching away layers of strained material. If the
cause of the residual stress lies in the lower, covered layers rather than the top exposed layer,
however, argon ion bombardment will not work.

In this research, the residual stress problem was solved by balancing rather than eliminat-
ing the highly stressed layer. To achieve this, the location of the neutral axis of the cantilever
was calculated and the stress levels of each film layer were measured or estimated. It was
determined that the thermal oxide layer had a residual stress about an order of magnitude
higher than the other layers, and the location of the neutral axis was such that the entire
oxide film was below the neutral axis, causing the cantilevers to curl up upon release. To
eliminate the curling problem, a layer of silicon was left on the underside of the cantilever
(rather than etching away all of the silicon). This moved the neutral axis location to be
within the thickness of the oxide layer so that the bending moment due to residual stress
cancelled out. The success of this method can be seen in the three righthand photographs of
figure D.3. The top photograph had no compensating silicon layer, the middle photograph
had a very thin layer, and the bottom photograph had several microns of silicon layer.
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Figure D.3: On the left: three scanning electron micrographs showing the results of high
levels of residual stress in a cantilever. On the right: three photographs showing how the
effects residual stress can be successfully eliminated by incorporating stress-balancing layers.
The top left and right images are of the same device.




