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ABSTRACT OF THE THESIS

An Efficient Online Feature Extraction Algorithm for Neural Networks

by

Pouya Bozorgmehr

Master of Science in Computer Science

University of California San Diego, 2009

Professor Garrison W. Cottrell, Chair

Finding optimal feature sets for classification tasks is still a fundamental

and challenging problem in the area of machine learning. The human visual system

performs classification tasks effortlessly using its hierarchical features and efficient

coding in its visual pathway. It is shown that early in the visual system the informa-

tion is encoded using distributed coding schemes and later in the visual system the

sparse coding is utilized. We propose a biologically motivated method to extract

features that encode the information according to a specific activation profile. We

show how our model much like the visual system, can learn distributed coding in

lower layers and sparse coding in higher layers in an online manner. Online feature

extraction is used in biometrics, machine vision, and pattern recognition. Methods

that can dynamically extract features and perform online classification are espe-

cially important for real-world applications. We introduce online algorithms that

are fast and efficient in extracting features for encoding and discriminating the

input space. We also show a supervised version of this algorithm that performs

feature selection and extraction in alternating steps to achieve a fast convergence

and high accuracy.

xiii



Chapter 1

Introduction

Feature extraction has been a topic of great interest in the machine learning

community. Features are used in computer vision, pattern recognition and other

classification tasks, where the input data lives in a very high-dimensional space.

Conventional classifiers cannot work properly in high-dimensional spaces, so high-

dimensional data has to first be converted into a low-dimensional feature space.

This is called dimensionality reduction or feature extraction.

Many feature extraction methods have been proposed that reduce the di-

mensionality of the input data. Principal component analysis (PCA) is an example

of dimensionality reduction method, where it extracts features that capture most

of the variation in the data-set. In face images PCA results in features known as

eigenfaces [21]. Another commonly used method is Linear Discriminant Analysis

(LDA) that results in features known as fisherfaces [3].

Most feature extraction methods assume access to the whole or big chunks

of training data. However, in real-world applications, we do not have access to

the whole data set and the input is streaming in smaller chunks and is constantly

changing. This requires online feature extraction methods. Online feature ex-

traction has been used in biometrics, machine vision, and pattern recognition.

Methods that can dynamically extract features and perform online classification

are especially important for real-world applications.

Previous incremental learning methods include Incremental Principal Com-

ponent Analysis (IPCA) [12], Incremental Discriminant Analysis (ILDA) [17], and

1



2

Incremental Weighted Average Samples (IWAS) [20] have been used to update the

feature set in an online manner.

We introduce an incremental algorithm that is fast, efficient, and flexible

in extracting features for encoding and discriminating the input space. This work

addresses two related problems. The first problem is the feature extraction in an

unsupervised setting where there are no labels associated with the input data.

The second problem is supervised learning where there are labels associated with

the input data. This supervised version of our algorithm uses the class label to

influence the feature extraction step. We first introduce our learning algorithm

for unsupervised setting and show how it can be easily modified to generate more

discriminative features in a supervised setting.

Feature extraction (FE) can be defined as a way to find a transform W into

the feature space Y that would be useful for different tasks in machine learning.

Feature extraction or dimensionality reduction are used in classification problems

when the dimensionality of class space is very high. Our algorithm extracts features

that result in different ways of encoding the input data. It can efficiently extract

features that encode the data in a distributed way to tackle the high dimensional

data that is coming from the real world, very similar to how the first layers of

human visual system handle the high-diminsional inputs from our retina. Feature

extraction methods like PCA try to extract features that capture most of the

variance in the data. There is also a class of methods called Infomax methods

used for feature extraction where the model tries to maximize the information

that it encodes. An example of an Infomax method is Independent Component

Analysis (ICA) where it tries to maximize the encoded information by minimizing

the reconstruction error. Reconstruction error is the difference between the real

data and the generated data by the model. These methods are called generative

models. Features extracted in an attempt to model the data may not necessarily

be good for classification. Other methods try to optimize the model of data given

the class labels. These are called discriminative models. Our method however

attempts to affect the way the information is encoded while minimizing the loss

of information. For example, our method can learn features to encode data in a
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distributed or sparse code.

It is important to be able to encode information in various forms for different

tasks. For example, as mentioned before, in early stages of human visual system,

because of high-dimensionality and large variability in the input, the information

is encoded in a distributed way. Distributed coding means that input data can be

expressed as a combination of many features as oppose to sparse coding where only

a few features account for most of the input structure. It is important to encode as

much of the relevant information without too much loss in accuracy. This is done by

using distributed coding of information. However, in higher layers the accuracy in

recognition of more abstract representation becomes important so the information

becomes encoded using sparse coding. V1 is the first layer of visual system that

takes its input from the retina and the lateral geniculate nucleus (LGN). It is in

charge of extracting features like blobs and edges of different orientations. V2 gets

its input from V1 but is similar to the V1 layer; however, the information is coded

more compactly. In another words, the encoding is sparser in V2 that it is in V1.

In an experiment, we show how different levels of sparsity can be learned

in our hierarchical model. Our model consist of a layer of logistic basis functions

that represents our V1 feature layer with full connectivity to the input and V2

complex feature layer. Feature values are calculated using a logistic function of

linear combinations of weight vectors and data vectors giving values in the range

of [0, 1].

fi =
1

1 + e−(WiX)
(1.1)

This is also called the activation function in the neural network literature. Through-

out our experiments we use this activation function for our models.

In higher cortical areas we need to make decisions and perform classification

from the extracted features of our sensory input. To improve the classification our

brain filters irrelevant information, and only uses discriminative information. In

a supervised task, we would like to select features from lower layers that do well

to discriminate one class from other classes. This is called feature selection (FS).

FS methods are used to do pattern classification with a set of already defined

features, and they select the best set that discriminate between the patterns or



4

classes. FS has a lower bound because of the fixed set of basis functions or features.

FS methods cannot produce features not from the original set and this usually

result in sub-optimal solutions. On the other hand, FE has few constraints on the

transform from input space to feature space giving it more flexibility; however, FE

is a significantly more difficult optimization problem. [6]

Neural networks combine FS and FE in one model by extracting features

in their hidden layers and performing feature selection in their output layer by

using back-propagation algorithms. These models are complex and generally en-

counter the problem of different convergence rates as FS generally has a faster

convergence rate than FE. In order to achieve equivalent convergence rates to FS

methods, Carneiro, G. et al in [6] introduces an algorithm that performs joint FS

and FE. This method uses linear search in feature space spanned by two of its

initial features and chooses the one that reduces the Bayes Error the most. Our

classification method also attacks the convergence problem in a similar manner by

performing sequential feature selection and extraction. We use probabilistic mea-

sures for feature selectivity called softmax. This selectivity measure is propagated

to the feature layer and is used to extract features. Selectivity measure used in

our learning algorithm helps to overcome the convergence problem in our neural

network model.

Our supervised algorithm has two steps. In the first step, FS, we calculate

the selectivity of each feature for the target class. This is done using softmax

probabilities.

Pi =
exi∑|C|
j exj

(1.2)

This function represents the selectivity of each unit towards class i and can be

used to do feature selection. There are other methods of measuring selectivity

such as divisive normalization [24] to achieve the same result, which shows to be

biologically plausible. Once the selectivty is measured we can change the features

so the overall energy that goes to the incorrect classes is minimized and the energy

to the correct class is higher than the rest.

This work describes an efficient online learning concept that is used for su-

pervised and unsupervised algorithms. Our algorithm relies on three simple steps:
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calculating activations, sorting, and minimizing cross-entropy error of template

and activations. We extract different types of features using different templates.

Among many interesting features that we extract are edges and blobs in our un-

supervised learning experiments and generic faces of individuals in the supervised

learning experiments. In FE using unsupervised method, we used a single layer

network using a variety of template functions for learning features. These include:

linear (fig 5.4), Gaussian(fig 5.9), and exponential(fig 4.1) functions. In these ex-

periments, we show the ability of our model to learn features similar to features

found in V1. In supervised learning experiments we achieve near perfect classi-

fication, 98.0 percent accuracy on Yale dataset [7] and 97.2 percent on MNIST

dataset [15].



Chapter 2

Background Material

This chapter describes the background material and related works needed

to make this thesis self-contained.

2.1 Feature Extraction

Most algorithms are controlled by parameters. The learning algorithm tries

to find parameters that best fit the training examples. The assumption is that if

the training data is a good representation of the data then the performance of the

classifier on test examples will be close to the training examples.

There are many learning algorithms and they differ in performance. Some

algorithms do well in small training sets but are not practical for large training

sets. For example, most Bayesian algorithms are classifiers with high accuracy [16],

but are mostly avoided for large data sets due to their computational complexity.

Support Vector Machines [22] and Adaboost [10] are among the most practical

classification algorithms that are used today.

The performance of learning algorithms strongly depends on the way the

data is represented. The most common way to represent data is to use feature

values. Feature values are extracted from the input data using basis or feature

functions. If the basis functions map the data so that a learning algorithm can

classify them better, then these features are called discriminative features. Most

algorithms extract their own features, but some use predefined features that are

6
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known to work well on some type of data. For example, in image classification

one may use Gabor features or filters that extract edges of different orientations

and sizes that are known to be successful in image classification tasks. Neurons

that are selective to Gabor like features have been discovered in the human visual

pathway, more specifically in V1 layer. In the field of machine learning there has

been intensive work on methods that can learn these types of features from natural

images. In this section we introduce some of the most commonly used methods to

extract features.

Let W be a transformation matrix that transforms the data vector, x, into

feature space F through feature function f(x). The rows of matrix W are the

basis vectors spanning a subset Xs ⊂ X . Linear feature function of x, y = Wx

is an example of such a function. However, in our work, we consider f(x) to be

a logistic function of x, y = 1/(1 + exp(−Wx), which is just a linear function

squashed by a nonlinear sigmoidal function to range the feature value between 0

and 1.

Other commonly used methods to perform feature extraction are: Discrete

cosine transform (DCT), Principal component analysis (PCA) and Independent

component analysis (ICA).

DCT expresses a sequence of finitely many data points in terms of a sum

of cosine functions oscillating at different frequencies. PCA transforms a number

of possibly correlated variables into a smaller number of uncorrelated variables

called principal components. ICA is a computational method for separating a

multivariate signal into additive subcomponents supposing the mutual statistical

independence of the non-Gaussian source signals. Special form of ICA called linear

ICA describes observation x as a linear combination of sources s and the mixing

matrix A with additive noise ε:

x = As + ε (2.1)

There are also nonlinear ICAs, where the mixing of the sources do not need to be

linear and can be achieved with a nonlinear mixing function.
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2.2 Feature Selection

Feature selection (FS) consists of selecting the best subset from a set of

already available basis functions that is optimal for classification. Since FS cannot

produce its own features, the results may be sub-optimal because there could be

another set of basis functions that would be optimal for the classification task.

Next, we describe some of the well-known measures for feature selection.

2.2.1 Infomax Feature Selection

Given a classification problem that maps a feature vector x = (x1, . . . , xN)> ∈
X ⊂ RN that is generated from the process X into the class label i ∈ L that is

sampled from random variable Y . Let S be a set of feature transforms under

consideration, the infomax space is

X ∗ = arg max
X∈S

I(Y ; X), (2.2)

where

I(X;Y ) =
∑
i

∫
X
pX,Y (x, i) log

pX,Y (x, i)

pX(x)pY (i)
(2.3)

is the mutual information between X and Y . Feature set X usually is a selection of

bandpass filters such as a Wavelet, Gabor, or windowed Fourier transform. One of

the classes in infomax is the Marginal infomax [2]. Marginal infomax approximates

the measure of discriminant information from individual features:

M(X;Y ) =
∑
k=1

DI(Xk;Y ). (2.4)

Infomax is closely related to minimization of bayes classification error. [23] Another

criterion used in feature selection is minimum Bayes error that we discuss next.

2.2.2 Minimum Bayes Error Features

Let us define the optimal feature space for a classification problem CX to

be:

X ∗ = arg min
X∈S

J(CX ), (2.5)
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where J()̇ is a cost, and S is the set of feature transforms under consideration.

One measure of the goodness for a classification problem is the Bayes error [8]

that measures the lowest possible probability of classification error:

L∗X = 1− Ex
[
max
i
PY |X(i|X)

]
, (2.6)

This cost function is non differentiable because of the max function involved. We

can use softmax to approximate the max function.

s{P (hk|ci, X), σ} =
eσP (hk|ci,X)∑|C|
j eσP (hk|cj ,X)

(2.7)

Figure 2.1 shows both the max and softmax function for different σ values. From

this figure you can see σ = 10 is a very close approximation to the max function. In

our learning algorithm we use a similar measure, softmax probability, to determine

selectivity towards a class and is described in detail in the Supervised Learning

section. In the next section we talk about artificial neural networks that perform

both FE and FS within the same model.

2.3 Artificial Neural Networks

Artificial neural networks (ANNs) are used in many real-world applications

and are the subject to a wide range of research. They are computational models

that try to resemble biological neural networks by simulating the known struc-

tural and functional aspects of our neural system. It is important to mention that

these models are overly simplified versions of the actual interaction that happens

in a real neural system. These models consist of interconnections between groups

of artificial neurons using mathematical computations know as connectionist ap-

proach. Most artificial networks dynamically change their parameters based on

the observed information seen by the networks and propagated through their in-

ternal connections during learning. Neural networks are used in statistical data

modeling because of their ability to model complex relationships between inputs

and outputs.
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A neural network is a network of simple elements called nodes or neurons

that perform computation on their input, connections from other nodes and com-

pute an output value. This is inspired by the observation of neurons in the central

nervous system that connect through axons, dendrites and synapses and create

membrane potential that can affect other connected neurons. Neural networks can

be adaptive and change the strength also known as weights of the connections in

the network to produce a desired signal.

Artificial neural networks and biological neural networks both act like func-

tions that are performed collectively and in parallel by the units. Artificial neural

network models are employed in statistics, cognitive psychology, artificial intelli-

gence, theoretical neuroscience as well as computational neuroscience. Research

in artificial neural networks has been directed to more practical approaches based

on statistics and signal processing, rather than biological motivation. In these ap-

proaches, neural networks are used as components in larger systems that combine

both adaptive and non-adaptive elements.

Artificial neural networks models are essentially mathematical models defin-

ing a function f : X → Y . Function f(x) is defined as a combination of other

functions gi(x), which they themselves can further be made up of other functions.

This is represented as a network of functions with collective inputs to other func-

tions. These functions can be combined in variety of ways; however, most of the

time, they are combined in a nonlinear weighted sum, f(x) = K (
∑

iwigi(x)),

where K is usually a nonlinear function also known as activation function. Popu-

lar choices for activation functions include logistic, hyperbolic tangent and softmax

function.

The relationship between the functions within nodes are usually seen in

functional or probabilistic ways. In a functional view, the inputs are looked at as

changing the dimensionality of their input and are utilized when we are trying to

solve an optimization problem. In a probabilistic view, F = f(G) is a random

variable that is dependent on its input random variable G and so on. This view is

used when the network is treated as a graphical model. Probabilistic and functional

views are equivalent. Networks that are only dependent on the input are called
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feedforward, because their graph is a directed acyclic graph. Networks with cycles

are commonly called recurrent neural networks. In recurrent networks, not only is

f dependent on its input from lower layers but it is also dependent on itself.

2.3.1 Learning in Artificial Neural Networks

Learning in neural networks consist of a task and a set of functions F , where

given a set of ”observations” to find f ∗ ∈ F which solves the task in an optimal

way. This is translated into an optimization problem where a cost function is

defined C : F → R such that, for the optimal solution f ∗, C(f ∗) ≤ C(f) ∀f ∈ F .

The cost function C, also known as loss function is used in learning algo-

rithms and a way to measure the progress in learning. Most learning algorithms

search through the solution space to find a function that has the smallest possible

cost.

The cost function of the observations can learn a model of the data. A

classic example of a cost function on observation data is the mean squared error

between the model output and the observation of the output, C = E [(f(x)− y)2],

for data pairs (x, y) drawn from the data distribution. In practice we have finite

samples from the data distribution. In this case the cost function becomes Ĉ =

1
N

∑N
i=1(f(xi) − yi)2 where N is the number of samples. When N is too large or

we only have access to samples in smaller batches or one at a time, the cost is

partially minimized at each step, this is called online learning.

Design of a cost functions can be arbitrary; however, it ultimately depends

on the learning task. Sometimes it is important to be able to find a cost function

that is minimized to the global value and so the cost function is desired to be

convex, or one may desire to have a cost function that its derivative is easily

computed to use gradient decent algorithms to find the solution. The choice of

the model can make a certain cost functions more appealing. For example, in

probabilistic models its usually the case that the posterior probability of the model

is used as an inverse cost. However learning task is the main driving force behind

the choice of cost function.

In supervised learning task, we are given a pairs (x, y), x ∈ X, y ∈ Y where
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x is usually the input data like image, text or sound and y is the label associated

with that input data. This type of learning aims at finding a function f : X → Y

that can classify the sample correctly. Inference in this model is simply done by

applying this mapping f from the input x to output y. In this group cost functions

are related to the difference between the mapping by the model and the actual

mapping from the data. Mean-squared error, perviously mentioned, is an example

of such method that tries to minimize the average squared error between the output

of our model, f(x), and the target value y over all the training examples. This cost

function is used in Multilayer perceptron to calculate the backtropagation error.

Supervised learning tasks include pattern recognition, and regression.

In unsupervised learning, we are only given some data x with no label. The

cost function in this case is a function of data x and the networks output f to

be minimized. The cost function depends on what we are trying to model. For

example, the task can be to output the reconstruction of data where f(x) output a

vector of the size x through some non-linearity. This forces the network to model

x and minimize the difference between the input and the networks output creating

a generative model. General unsupervised tasks include clustering, dimensionality

reduction, estimation of distributions, and data compression.

Neural networks are also used as part of systems for reinforcement learn-

ing. In reinforcement learning data are usually not given, but generated by agent.

Agents generate these data from their interactions with the environment. At each

time step agent can perform an action and generate an observation from the en-

vironment and a cost is also generated for the that action. The goal is to discover

a policy for selecting actions that minimizes some measure of a long-term cost (i.e

the expected cumulative cost). Tasks that fall within the paradigm of reinforce-

ment learning are control problems, games and other sequential decision making

tasks.

2.3.2 Hopfield Network

The Hopfield network is a recurrent neural network in which all connections

are symmetric. Invented by John Hopfield in 1982 [14], this network guarantees
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that its dynamics will converge. If the connections are trained using Hebbian

learning then the Hopfield network can perform as robust content-addressable (or

associative) memory, resistant to connection alteration.

A stochastic neural network differs from a typical neural network because

it introduces random variations into the network. In a probabilistic view of neural

networks, such random variations can be viewed as a form of statistical sampling,

such as Monte Carlo sampling.

The Boltzmann machine can be thought of as a noisy Hopfield network.

Invented by Geoff Hinton and Terry Sejnowski in 1985 [1], the Boltzmann machine

is important because it is one of the first neural networks to demonstrate learning

of latent variables (hidden units). Boltzmann machine learning is at first slow to

simulate, but the contrastive divergence algorithm of Geoff Hinton allows models

such as Boltzmann machines and products of experts to train much faster. In the

next chapter we describe our model which is utilizing connections like Boltzmann

machines and Hopfield networks.

2.3.3 Boltzmann Machine

The Boltzmann Machine(BM) is a probabilistic model that is designed to

resemble neural representations. This model defines probability distribution over

X ∈ {0, 1}N as:

P (X) =
e(

1
2
X>WX+b>X)

Z(W, b)
, (2.8)

where W and b are the parameters of the Boltzmann Machine. W is the weights

of the undirected connections between the elements of X with no connection to

itself, Wii = 0, Wij = Wji, b is the bias vector and Z(W, b) is the partition

function to make P (X) a probability distribution. X usually partitioned into

two sets visible V and hidden H. To perform Gibbs sampling from P (X) we

can repeatedly set X(i) to 1 with probability (1 + exp(−(WX)(i) − b(i)))−1. To

perform Gibbs sampling from P (H|V ) we fix the values of V and sample H using

the same probability function. Another useful property of a Boltzmann Machine
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is the simple form the derivatives of its average log likelihood:

∂ 〈logP (V )〉 eP (V )

∂Wij

=
〈
X(i)X(j)

〉
P (H|V ) eP (V )

−
〈
X(i)X(j)

〉
P (V,H)

(2.9)

where P̃ (V ) is the distribution over the training data. This learning rule has two

parts, the positive component which is the correlation of data and the hidden units

and a negative component which is the state of the model when it is let to run

freely. This negative component is where the model likes to settle in. This gradient

will be zero when the model settles in the data distribution. A simplified version

of a Boltzmann machine’s called a restricted Boltzmann machine (RBM) removes

the lateral connections from both hidden and visible units. RBSs are the building

blocks of our model and they are described in the next chapter.
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Figure 2.2: Boltzmann Machine



Chapter 3

The Model

Restricted Boltzmann Machines are the building blocks of our models that

we use in our experiments.

3.1 Restricted Boltzmann Machine

Calculating the variables of a fully connected model such as Boltzmann

machine is computationally expensive. However using a simplified version of this

model we can easily calculate the values of hidden nodes of the model given the

observations. This simplified model is called the Restricted Boltzmann Machine

(RBM). In this model there are no lateral connections within each subsets V and

H, i.e, Wij = 0 ∀ {i, j} ∈ V and {i, j} ∈ H. With enough hidden units RBMs

are universal approximators of the distribution of binary input [9]. In our model,

we only perform deterministic evaluation of each node, instead of using the prob-

abilities and stochastically sampling the nodes. We use probability measures in

RBMS as feature values, or strength in belief that a certain feature is stimulated.

Our version of RBM still uses the undirected connections and can be considered a

generative model.

17
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Figure 3.1: Restricted Boltzmann Machine

3.2 Stacked RBMs

The representational power of the hidden variables of an RBM is limited

because they are simply linear functions that are squashed in a nonlinear sigmoid

function. A more powerful representation is the stacked RBM (SRBM) where

layers of RBMs are stacked on top of each other, and the hidden variables of one

layer serves as visible units of the next. This setup creates an SRBM model which

is a type of deep belief network (DBN). In this section we describe SRBMs, the

model that is used in this thesis.

Given the data distribution P̃ (V ) the RBM defines the joint distribution of

visible V and hidden H1 variables, P (V,H1) of the first layer. The hidden variables

in the last RBM become the visible variables in the next RBM. This RBM define

the joint distribution, Q(H1, H2). Q̃(H1) is the posterior distribution of the first

RBM:

Q̃(H1) =
∑
V

P (H1|V )P̃ (V ). (3.1)

Then our model becomes

Model(V,H1, H2) = Q(H1, H2)P (V |H1) (3.2)

given that the Q(H1) models the posterior distribution better than P (H1). This

layering can continued indefinitely.
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Figure 3.2: Stacked Restricted Boltzmann Machines

To do classification using stacked RBMs one can use the activation of top

hidden layer to separate each class. The model used in the supervised classification

experiments is shown in figure 3.3. Labels are represented in the output layer where

each node belongs to a class. Inference in the network is done using a deterministic

up-pass by using the probabilities of activations from the input layer to the output

layer. The output unit with the highest total input is the winner.
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Figure 3.3: Stacked Restricted Boltzmann Machines for Classification



Chapter 4

Learning

In this chapter we describe our learning algorithm and the biological and

computational motivations behind it. We first describe our biological motivation

behind our learning algorithm and show how we approximate and simplify the

complex interactions in the neural circuits to make our algorithm run efficiently in

real time.

4.1 Motivation

In this section we look at the studies done in human visual pathway and

the way the information is encoded through out our visual system, also known as

Population Coding [11]. If each neuron had to represent a unique configuration

of its receptive field (RF), then representing all stimulus features of almost any

environment in real life such as natural scenes requires an unimaginable number

of neurons. This number grows exponentially as the number of input dimensions

increases. This is also called the ”curse of dimensionality” [4]. From studies of

single neurons representing multiple stimulus features in V1 by Grunewald, A. and

Skoumbourdis, E.K. [13] it is hypothesized that the lower layers in visual pathway

use distributed coding to represent the visual input. They show that lower visual

layers such as V1 use combinations of neurons of only a few direction to represent

all the possible directions.

In distributed coding most neurons are active at different levels. It is the-

21
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orized that distributed coding has the advantage of resisting the curse of dimen-

sionality under certain assumption [19]. The disadvantage of a distributed code is

its high energy consumption.

It is known that in higher cortical areas the representation is sparse [26].

This sparsity in neural activities also helps to reduce the over all energy consump-

tion of the brain as well as improving classification and decision making task. The

transition from distributed code in the lower layers to sparse code in higher layers is

still under studies. We propose a method that results in distributed coding in lower

layers and results in sparse coding in higher layers. Looking into V1 complex cells

we can see a topological arrangement of neurons that are excited towards edges

with similar angles. We hypothesize that this is due to the lateral connections in

each layer. We hypothesize that these lateral connections control the amount of

the distribution of activities in each layer. For example, neurons can propagate the

signal laterally and spread the activations to more neurons, increasing the number

of active neurons therefore a more distributed code can be formed. This behavior

could explain why similar features are spatially close to each other. Neurons also

could inhibit the other neurons increasing the sparsity of the layers and also in-

crease their selectivity towards a specific stimuli, this is also known as inhibitory

competition in neural circuits.

However, using lateral connection in computational models specially in the

hidden layers introduces a large amount of computational complexity. We propose

an approximation to what lateral connection achieve in determining the coding

scheme by assuming a profile of activations for each layer imposed by lateral con-

nections and try and learn the profiles for a given training set. This learning

procedure does not simulate any of the lateral interactions between neurons. In

real neural networks the lateral connections are known to excite or suppress the

neighboring neurons, changing the dependencies of each unit. The spread of activa-

tions can be approximated by matching activation profile templates. For example,

a decaying exponential function.

f(x) = e−λx (4.1)
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where λ ∈ (0,∞) controls the rate of decay. To achieve higher distribution we can

use a small value close to 0 and for sparse distribution we can use larger values.

Figure 4.1 shows plots of this function for different values of λ. From template
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Figure 4.1: Decaying exponential function used to adjust the level of sparsity in
the hidden layers

functions, we create template sets. We also refer to these sets as templates. These

templates are sets of values evaluated from the template functions for each index.

For our algorithm, they have the property of being in decreasing order and have

values between 0 and 1.

In the following sections we describe the learning algorithm first used to
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extract features in an unsupervised setting using a distributed coding activation

profile template for the first layer and sparse coding for the second layer. We use

our algorithm to extract features using different types of template with different

shapes and levels of sparsity.

4.2 Learning Algorithm

The learning algorithm can be divided into 3 distinct steps:

1. Calculating activation of hidden nodes for a given the input and reconstruction

of input from those activations (for unsupervised version)

2. Sorting of templates based on activations(unsupervised) or selectivity mea-

sures(supervised)

3. Modify the model parameters so that Cross-Entropy error between sorted ac-

tivations and template and between data input and its reconstruction are

minimized

Each step is explained in the following sections.

4.2.1 Feature Function

Feature values are calculated via a sigmoidal feature function:

f(x) =
1

1 + ew>x
(4.2)

where x ∈ [0, 1]d is the input vector and w are the parameters of the model. w

is the weight vector connecting the input vector to the hidden feature node. A

sigmoidal or logistic function is just a linear function that squashes the feature

value so the output ranges between 0 and 1.

To calculate the reconstructions from activation we use the same sigmoidal

activation function only this time we use the hidden activations and the same set

of connections in reverse:

x̂ =
1

1 + ewf(x)
(4.3)
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where x̂ is the reconstruction vector.

Once the activations and reconstructions are calculated, we need to sort

the template’s values based on the hidden activations ordering for unsupervised

learning and softmax probabilities for supervised learning.

4.2.2 Sorting

Sorting is done in order to match the template descending nature to the

activations. Activations are sorted in descending order so the highly active features

are corresponded to the high values of the template and features with small values

are corresponding to the low template values. The ultimate goal of this learning

algorithm is to create activation profiles that match the ones in the template and

ultimately provide similar distribution as the template. To learn these activation

profiles we reduce the cross entropy of the sorted activations and the desired tem-

plate. Next we explain minimization step using cross entropy loss function and its

gradient decent learning rule.

4.2.3 Cross-entropy minimization

Cross entropy between two probability distributions measures the average

number of bits of information, required to identify an event from a set of possibil-

ities, given probability distribution q, rather than the ”true” distribution p.

The cross entropy for two distributions p and q over the same probability

space is thus defined as follows:

H(p, q) = Ep[− log q] = H(p) +DKL(p‖q) (4.4)

, where H(p) is the information entropy of p, and DKL(p||q) is the relative entropy

or Kullback-Leibler divergence of q from p. [18]

In the case of discrete random variable:

H(p, q) = −
∑
x

p(x) log q(x) (4.5)

and for continuous random variable distributions is:

−
∫
X

p(x) log q(x) dx. (4.6)
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Cross-entropy error measure has been used instead of mean squared error

in many optimization problems. It is usually the cases when probabilities are

involved. Cross-entropy can be used as a cost function when the outputs of a

network represent independent hypotheses, for example each node represents a

concept that is independent of others and the activation values can be thought of as

probabilities or confidence of the network in that concept is true. The cross-entropy

error then indicates the difference in what the network believes and what the

teacher say it should believe in. We use this error measure to learn the activation

templates by minimizing the cross entropy error using gradient decent and the

derivative or this error function:

∂C

∂wjk
= η · (hk − tk) · xj (4.7)

where wjk is the weight that connects input node xj to output node hk and teacher

signal tk and η is the learning rate. Computing this derivative is relatively easy

and is desirable in online learning methods. In the next section, we show how cross

entropy is used to extract features from data in unsupervised setting.

4.3 Unsupervised Learning Algorithm

In unsupervised setting, we only have access to the data and not the labels.

Consider a set of training data {xl}Nl=1 drawn from a continuous-valued random

variable X such that xl ∈ [0, 1]n×1. In this setting, we are interested in finding a

feature transformation f : X ⊂ Rn×1 → Y ⊂ Rm×1. Here we consider f(x) as a

logistic function:

f(xl) =
1

1 + e−(Wxl)
(4.8)

where W ∈ Rn×m is the weight matrix, connecting the data layer to the feature

layer and its m rows are made up of feature vectors.We now explain the learning

algorithm in which one can learn these encodings.

Most unsupervised learning method try to learn features that can reduce

reconstruction error or reduce the dimensionality of data while preserving certain

structures of the data. In our algorithm, we minimize a combination of two cost

functions:
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C = Crec + Ctemp (4.9)

Where Crec is the cross-entropy error between the observed data and its recon-

struction using the bidirectional connections.

Crec = −
∑
i

xi log x̂i (4.10)

The second part of cost function acts as a regularization factor, to force the activa-

tion to follow the template. Ctemp is the cross-entropy error between the activation

and the template:

Ctemp = −
∑
i

hi log ti. (4.11)

where hi is the activation value of feature i, calculated using the feature function

given the input and ti is the template value assigned to feature i. Using gradient-

decent algorithm and the derivative of these cost functions we can update the

model parmaters. Weight update rule is just the combination of the gradient of

each cost function:

∂C

∂wjk
=
∂Crec
∂wjk

+
∂Ctemp
∂wjk

(4.12)

where
∂Crec
∂wjk

= (xj − x̂j) · hk (4.13)

and
∂Ctemp
∂wjk

= (hk − tk) · xj (4.14)

where xj is jth input node, hk is kth hidden node, tk is template value paired in

sorting step for kth hidden node, x̂j is the reconstruction of node xj and wjk is

bidirectional weight connecting xj to hk. This results in the total update gradient

for weights:

∂C

∂wjk
= σ · ((xj − x̂j) · hk + (hk − tk) · xj) (4.15)

where σ is the learning rate. The update rule forces the activations to follow the

template while retaining the ability of the network of encoding and reconstructing
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the input data. The following algorithm is a special case where each layer uses

same type of template with different value for the parameter that changes the

sparsity of each template. Here we would like to learn these feature vectors that

result in distributed code in the lower layers and sparse code in higher layers.

foreach training data, xn do
Let template be a monotonically decreasing function,

template(i) ∈ [0 1] ∀i = {0, 1, ...N − 1} where N is the number of

hidden units;

Let hidden activations be h(xn) = (1 + exp(−W.xn)−1 ;

Rearrange template so index i of template(i) be the index of sort

feature values: based on h(xn) where h1 ≥ h2 ≥ · · · ≥ hN ;

Let x̂ = logit(h ·W>) be the reconstruction of x;

Update the weights with gradient decent:;

∆wjk = σ · ((xj − x̂j) · hk + (hk − template(k)) · xj) where σ is the

learning rate;

end

This is an online learning algorithm that learns activation profiles in an

unsupervised setting by minimizing the cross-entropy between the activations and

template as well as minimizing the reconstructions error. The templates used

here are monotonically decreasing functions. An example of such function is a

decaying exponential. To demonstrate a biologically motivated visual system we

use decaying exponential functions with decaying rate proportional to the number

of hidden units and the layer, λ = 2 l
N

, where l is the layer in which the template

is used and N is the number of hidden units in that layer.

Our algorithm is not restricted to any particular template function, and

depending on the template used the features and the activations can change. In

figure 5.5 to 5.17 we show features extracted from natural image patches using

different templates with variety of shapes and different amount of sparsity. In figure

5.18 to 5.21 we show reconstructed image patches and the top 16 features associated

with the reconstruction. Extracted features, templates and reconstruction results
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are discussed in the Experiments chapter.

In the next section we show how this unsupervised algorithm can be mod-

ified to work in a supervised setting for classification tasks using feed back signal

from class layer and the same update rule to improve the classification results while

keep the same activation profile.

4.4 Supervised Learning Algorithm

Our supervised algorithm has two main steps: (1) feature selection and (2)

feature extraction. Feature selection is the step where we compute the selectivity

of each hidden units using a top-down pass from the output layer and calculating

softmax probabilities, where the softmax for class ci and hidden unit hk is:

s{P (hk|ci)} =
eE(hk|ci)∑|C|
j eE(hk|cj)

(4.16)

where E(hk|ci) = ci ·Wik is total energy to the hidden node k given the class ci

and Wik is the set of weights connecting the output unit i to node k. Softmax

probability is calculated by dividing the exponential of the energy by the sum of

the exponential of energies from all classes. This energy is calculated using the

bidirectional connections from output layer to the hidden layer. This feedback

measures the selectivity of each hidden units towards the target class ci.

The second step is to do a bottom-up pass from the input layer to calculate

the probabilities of each features and change the weights so that the feature values

match the selectivity ordering calculated in the first step and the activation profile

of that layer. This is done through sorting the activation profile template according

to the selectivity measure calculated in step one and using the sorted template as

the target distribution for cross entropy minimization.

The next step in our algorithm is to learn the weights for the selection or

output layer. This is done by doing another bottom-up pass and adjust the weights

so that the softmax probabilities move toward the new activations by increasing

the weights between the class units and the hidden units according to the feature

value of each hidden units. This is a similar update rule as feature layer except
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that the activation profile for the output layer is the same as the output label.

In our implementation we used a sequential feature selection and extraction in an

online setting which lead to the following algorithm.
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foreach training data, xn do

foreach layer l do
Generate desired template value given the number of available

features, N: Let template be a monotonically decreasing

function, template(i, l) ∈ [0 1] ∀i = {0, 1, ...N − 1} where N is

the number of hidden units;

Let hidden activations be h(xn) = logit(W.xn) if l + 1 is

classification layer then

Let sk(c
n) = eenergy(hk|ci)P|C|

j eenergy(hk|cj) be the softmax selectivity

measure for feature k;

Rearrange template so index i of template(i) be the index

of sort feature values: based on s(cn) where

s1 ≥ s2 ≥ · · · ≥ sN ;

∆wjk = σ · ((hk − template(k)) · xj) where σ is the learning

rate;

end

else

if l is classification layer then
Let template be the output label cn

end

else
Rearrange template so index i of template(i) be the

index of sort feature values: based on h(xn) where

h1 ≥ h2 ≥ · · · ≥ hN ;

end

Let x̂ = logit(h ·W>) be the reconstruction of x;

Update the weights with gradient decent:;

∆wjk = σ · ((xj − x̂j) · hk + (hk − template(k)) · xj) where σ

is the learning rate;

Let xn = logit(W.xn);

end

end

end
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Experiments

In this chapter, we show the result of applying our algorithm on a few

popular datasets and compare our performance with other learning algorithms.

5.1 Datasets

The MNIST [15] database contains 28× 28 pixel grayscale images of hand-

written digits. There are 60,000 training images and 10,000 test images. For our

experiments the label of each digit is converted into binary representation of one-

hot code where a single unit is set to 1 and all the others are set to 0. The task

here is to identify the digits associated with the images.

The Yale face set [7] consist of images of 15 individuals, with 11 grayscale

images 320 × 243 with different lighting (e.g. center, right or left) and artifacts

such as glasses. We have resized these images to 60×80 to reduce the computation

time for our experiments. The task here is to identify the individual in each image.

32



33

5.2 Learning Details

First set of experiments is done in unsupervised setting using natural image

patches to measure the ability of the algorithm to learn the activation templates at

each level. To demonstrate this we use plots of average activations in a sorted order

plotted over the template used in learning that layer. The network has two layer

that we refer to as V1 and V2 for first layer and second layer respectively. Figure

5.1 shows average sorted activations of each layer of a network before training.

Dots in this figure and subsequent figures show the average sorted activations and

line shows the templates used in learning that layer. After 100 epochs of training

the networks starts to learn the templates, this is shown in figure 5.2, and after

500 epochs the network’s activations are very close to the desired templates shown

in figure 5.3.

Figure 5.1: Activation profile for V1 and V2 layers before training
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Figure 5.2: Activation profile for V1 and V2 layers at epoch 100

Figure 5.3: Activation profile for V1 and V2 layers at epoch 500
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Second set of experiments done using unsupervised learning algorithm is to

learn different templates using different functions as our template function. We

use Gaussian, exponential, and linear templates, with a tuning parameter that

changed the ”sparsity” of the templates. We experimented with 4 different levels

of sparsity. Both the template and the extracted features are shown in the next

section.

First template function we experiment with is a linear function:

Tlinear(x, λ) =

{
1− λx T (x, λ) ≥ 0

0 otherwise
(5.1)

where λ > 0 is the rate of decay and x is the index of the hidden node starting

from 0. Higher λ value create sparser templates while lower values create wider

and more distributed templates. Plots of features extracted from natural image

Figure 5.4: Linear template function plots for different λ values

patches using linear template function with different λ values are shown in figures

5.5 to 5.8.

The second function used in our experiments is the Gaussian distribution
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Figure 5.5: Features extracted from natural image patches using linear template
with λ ≈ 0.01.

Figure 5.6: Features extracted from natural image patches using linear template
with λ ≈ 0.04.
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Figure 5.7: Features extracted from natural image patches using linear template
with λ ≈ 0.087.

Figure 5.8: Features extracted from natural image patches using linear template
with λ ≈ 0.19.
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function without the normalization factor and zero mean:

Tgauss(x, λ) = e−x
2/(2λ2) (5.2)

where λ > 0 is the variance of the gaussian distribution and controls the sparsity

of this function. Plots of features extracted from natural image patches using

Figure 5.9: Gaussian template function plots for different λ values

gaussian template function with different λ values are shown in figures 5.10 to

5.13.
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Figure 5.10: Features extracted from natural image patches using Gaussian tem-
plate with λ = 100.

Figure 5.11: Features extracted from natural image patches using Gaussian tem-
plate with λ = 25.
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Figure 5.12: Features extracted from natural image patches using Gaussian tem-
plate with λ = 12.5.

Figure 5.13: Features extracted from natural image patches using Gaussian tem-
plate with λ6.25.
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The third class of template functions we experiment with is the decaying

exponential also used as an example in the prior chapters:

Texp(x, λ) = e−λx (5.3)

where λ > 0 is the rate of decay of exponential function. Plots of features extracted

from natural image patches using decaying exponential template function with

different λ values are shown in figures 5.14 to 5.17.

Figure 5.14: Features extracted from natural image patches using decaying expo-
nential template with λ = 0.01.

In figure 5.5 to 5.8 we see the ability of our model to extract sparse or

distributed features using linear templates. This is also shown in other types of

templates, Gaussian 5.10 to 5.13, and decaying exponential 5.14 to 5.17. Because of

the sparse nature of decaying exponential function most of the features extracted

using these templates are sparse. There are subtle differences even among the

sparse features extracted using different types of template functions. For example,

some templates extract edge features while others extract blobs and curve.
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Figure 5.15: Features extracted from natural image patches using decaying expo-
nential template with λ = 0.04.

Figure 5.16: Features extracted from natural image patches using decaying expo-
nential template with λ = 0.08.
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Figure 5.17: Features extracted from natural image patches using decaying expo-
nential template with λ ≈ 0.16.
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Using the trained networks shown in 5.5 to 5.17, we show their ability to

do reconstruction of image patches. A random image patch is extracted from an

image that has not been seen by the network. To show how each network perform

we show the image patch, reconstruction, activations cause by that image patch

and the top 16 features. Figures 5.18 to 5.21 are for networks trained by linear

templates with different values of λ. As the templates become sparser you can see

the effect on the activation subplots.

Figure 5.18: Reconstruction in network trained by linear template (figure 5.5)
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Figure 5.19: Reconstruction in network trained by linear template (figure 5.6)

Figure 5.20: Reconstruction in network trained by linear template (figure 5.7)
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Figure 5.21: Reconstruction in network trained by linear template (figure 5.8)
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Figures 5.22 to 5.25 show the reconstruction for networks trained by Gaus-

sian templates with different λ values. Figures 5.26 to 5.29 show the recon-

Figure 5.22: Reconstruction in network trained by Gaussian template (figure 5.10)

struction for networks trained by decaying exponential templates with different λ

values. In figure 5.18 to 5.21 we show how each trained model is able to recon-

struct the original test data very well. Some templates are better than others in

reconstruction. We have performed reconstruction on 10k randomly chosen image

patches and have measured mean-squared error (MSE) per image patch. Table

5.1 shows the numbers for each of the models trained using different templates.

Lowest reconstruction errors are bold-faced for each template type. We trained

PCA features over 5,000 image patches. Using the top 100 PCA features the MSE

reconstruction error was 0.00018. This is one order of magnitude better than our

results; however, our algorithm focuses the form of features and their semantics.

One of the first observations is that the sparser templates have better reconstruc-

tion error even though in all the reconstruction plots, 5.18 to 5.29, reconstruction

of more distributed networks looks more similar to the original image patch.
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Figure 5.23: Reconstruction in network trained by Gaussian template (figure 5.11)

Figure 5.24: Reconstruction in network trained by Gaussian template (figure 5.12)
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Figure 5.25: Reconstruction in network trained by Gaussian template (figure 5.13)

Figure 5.26: Reconstruction in network trained by exponential template (figure
5.14)
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Figure 5.27: Reconstruction in network trained by exponential template (figure
5.15)

Table 5.1: Pixel level MSE for natural image patches reconstruction over 10k image
patches, ordered by template sparseness, from least sparsity (1) to most sparsity
(4)

Linear Gaussian Exponential

1 0.008912 0.063471 0.019060
2 0.003454 0.006640 0.007156
3 0.002798 0.004819 0.005766
4 0.003503 0.002455 0.002897
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Figure 5.28: Reconstruction in network trained by exponential template (figure
5.16)
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Figure 5.29: Reconstruction in network trained by exponential template (figure
5.17)
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We now go over the learning details of our experiments using our supervised

version of the algorithm. All classification models use a two-layer network with

input, output and a hidden layer. The dimensionality of the input is the actual

pixels normalized to range between 0 and 1, and the dimensionality of the output

layer is the number of classes in the problem. Each class is represented by a node

in output layer. In vector form, each class is represented by setting one bit to 1

and the rest to 0.

We then select the number of hidden units, learning rate, and epochs us-

ing 5-fold cross-validation. Cross-validation is a technique for measuring how the

results of a statistical analysis will generalize to an independent data set. It is

commonly used in finding parameters of predictive model and can measure how it

will perform in practice. One round of cross-validation involves partitioning the

data set into two subsets, training set and validation set. The model is trained

on training subset and tested on the validation set. To reduce variability, multiple

rounds of cross-validation are performed using different partitions, and the valida-

tion results are averaged over the rounds. K-fold cross-validation is commonly use

in evaluating the performance of predictive models.

In K-fold cross-validation, data set is partitioned into K equal size subsets.

At each round of cross-validation a different partition is set aside for validation of

the model that is trained on the rest of the subsets. This is repeated K times (K

”folds”), for a different partition as the validation set. All the results are averages

and used to evaluate the model. The model is evaluated once for each validation

set, making the average of the rounds a good measure for performance.

The best parameters found in cross validation are used. In cross validations,

one parameter changes while other parameters are kept at a reasonable constant

that resulted in improvement at each epoch. We first determine the number of

hidden units followed by learning rate and finally the number of epochs. We also

used cross-validations to choose the template for classification task. From cross-

validation results, decaying exponential template with λ = 2/N , where N is the

number of hidden units shows the best performance among all other templates.

The task in MNIST classification is to classify each input image to one
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of the digit classes 0 to 9. We reshape each image from 28 × 28 to a vector of

size 784. The values of each image pixel is an 8-bit integer with value between

0 (black) to 255 (white). We divide these numbers by 255 to linearly scale them

to single floating point value 0 to 1. Cross-validations in MNIST dataset is done

using 50,000 training and 10,000 for cross validating from the 60,000 training. We

then train the network using the best number of epochs and learning rate from

cross-validation, using all the 60k training examples. Cross-validations shows that

3000 hidden units is the best number of hidden units for the algorithm to run

efficiently. Although higher hidden units improvs the classification, but tradeoff

between speed and accuracy is too large to justify increasing the number of hidden

units. We use learning rate 0.005 over 100 epochs, where each epoch is training

over the whole training set once. The classification results are discussed in the

next section.

Task performed on Yale face dataset is to do identity classification. There

are 15 classes, 1 for each individual and 11 pictures from each class. Each image

is reshaped from 60 × 80 to a vector of size 4800. The values of each image pixel

is an 8-bit integer with value between 0 (black) to 255 (white). We divide these

numbers by 255 to linearly scale them to single floating point value 0 to 1. In Yale

face database, 88 images, 8 image per individual is chosen for training set and 33

images, 3 image per individual is chosen for test set. Cross validation is done using

5 for training and 3 for validation to determine the parameters. We then train the

network using the best number of epochs and learning rate from cross-validation,

using all the 88 training examples. Since this is a small data set we used 5-fold

cross validation by randomly splitting the original set into training and testing

sets, from the original set. Result is the average of all 5 runs. Cross-validations

shows 36 hidden units to be the best number of hidden units to be able to achieve

highest accuracy. We use learning rate of 0.0005 over 50 epochs, where each epoch

is training over the whole training set once. The classification results are discussed

in the next section.
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5.3 Classification Results

In supervised learning experiments, we perform classification tasks with

high accuracy. In Yale dataset [7], we achieve 98.9 percent accuracy. Table 5.2

shows classification results for the Yale face dataset, where it is trained on 4 and

8 image per class for 50 epochs and tested on the remaining images. Figure 5.30

shows the 36 features extracted using the supervised algorithm from the Yale

dataset. These features resemble the individuals in the dataset with their most

prominent and discriminating feature having high values. Hair style, forehead, and

eyes are among some of these features.

Figure 5.30: 36 features extracted from Yale database [7] using the supervised
algorithm.

In MNIST dataset [15] we achieve 97.2% test accuracy. This results is com-

petitive with other non-convolutional neural networks models. Most classification

results on MNIST dataset are hosted on http://yann.lecun.com/exdb/mnist/.

Our model is trained on 60,000 examples for 100 epochs and tested on 10,000 ex-

amples. Figure 5.31 shows 100 out of 3k features extracted using the supervised
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algorithm from the MNIST dataset. These features are mostly the non-overlapping

regions of digits that are common among a digit. These features are very useful in

classification of one digit from all other classes. From experiments, we observe fast

Figure 5.31: 100 features extracted from MNIST dataset [15] using the supervised
algorithm.

drop in classification error during the first few epochs. Training and test error drop

after small number of iteration over the training set. On average two pass over

the training set results in around 30% error and drops to close to 0 after the 5th

iteration. However, this is highly dependent on choosing the right learning rate,

but a good learning rate can easily be determined in the cross-validation process.

Another interesting observation of this learning algorithm is the decrease

in the validation error pass the iteration that makes the training error zero. The

reason for the continuing improvement may can be explained by that learning

algorithm is never trained on minimizing classification error but it is extracting

features that separate the input space very well for the discrimination task. Even

after the training set classification accuracy reaches 100%, the algorithm keeps

on separating the space with larger margins. Our experiments also show that
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Table 5.2: Test Error of Different Models on the Yale Set

Method Error(4 training) Error (8 training)

Our Model 2.2% 1.3%
MGFR+(2D)2PCA [25] 1.8% 1.1%
2D Laplacianfaces [5] 4.7% 2.2%

the supervised model is able to extract and select features that are powerful in

classification task.



Chapter 6

Conclusion and Discussion

Our experimental results show that our algorithm can learn activation pro-

files and features that would otherwise require very complex neural networks with

lateral connections in each hidden layers. Although our analysis is limited in the

unsupervised case, from the extracted features, we can conclude by observation

that our features have interesting semantics. For example, features extracted from

natural images resemble edges and small blobs, much like the ones seen in the

human visual pathway, more specifically V1. Our unsupervised model has also

shown to be a good generative model.

In the supervised setting, even though the learning is very similar to the

unsupervised learning, a different way of extracting features emerges. Our super-

vised features are designed to maximize the discrimination without minimizing

any cost function directly related to classification error. In the MNIST dataset,

we extracted features mostly containing non-overlapping regions of digits that are

common among a digit class. These features are very useful in classification of one

digit from all other classes. In the Yale dataset, we extracted features resembling

the individuals in the dataset with their most prominent and discriminating fea-

ture being emphasized. Hair style, forehead, and eyes are among some of these

features.

We show that one can capture some of the complex properties of a sophis-

ticated system with a simple approximation such as what we have done by using

templates to model the effect of lateral connection and create an efficient algorithm

58
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that can run in real time on todays personal computers.

Most feature extraction methods cannot be done online and those that are

done online do not result in features found in human visual system. In addition, our

algorithm has high amount of flexibility because of the many choices of templates.

Our algorithm is fast and efficient and converges quickly. Another advan-

tage in using our algorithm is its online nature. Online algorithms can be used

when the input data is streaming or when we have limited memory to store and

have to work with smaller batches of training data. Our vision system is developed

over time with the streaming inputs from our retina. However our algorithm has

some disadvantages.

A disadvantage of our learning algorithm is its susceptibility to small trans-

formations in the input space. This is a big problem for most algorithms. For

example, in image data transformations, like translation, rotation, and scale are

very common. A solution to this problem is to use convolutional networks that

can handle some amounts of translation and rotation. Convolutional networks use

the idea that each neuron in early visual system has a limited receptive field and

cover small patch of the image in the field of view.

6.1 Future Work

For future work, we would like to use our algorithm in a semi-supervised

setting. We suggest that by switching between the two algorithms, supervised and

unsupervised, introduced in this work we would discover interesting effects in both

features and classification results.

Another interesting experiment is learning models that have more than two

layears. Models that use sparser templates for higher layers can be used to capture

more abstract concepts and create a hierarchical model similar to the human visual

system. Even though it is difficult to visualize features in higher layers, applying

multi-layer of feature extraction and comparing the classification result can show

how useful sparse features that are extracted from distributed features in lower

layer can be.
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As discussed in the conclusion, our learning algorithm is not invariant to

transformations in the data. For example, in images an object could have num-

ber of transformations such as translation, rotation or scale. These translations

are very commmon. To resolve this problem we propose a convolutional network

learned using our method, where each layer is composed of many small networks

that cover a small portion of the input. Convolutional network have in past been

used to tackle the invariance problem.
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