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ABSTRACT 

 

Sea-Level Rise, El Niño, and the Future of the California Coastline 

 

Nicole L. Russell 

 

Global mean sea level increased by ~20 cm during the 20th century and the 

rate is expected to accelerate during this century. Many major cities are already 

exposed to damaging coastal storms and sea-level rise (SLR) will magnify storm 

impacts. SLR adaptation can reduce harm, but this new concept is complicated 

because adaptation plans must be tailored to each community’s specifications, due to 

differences in geologic setting, development, etc. This study designed a process for 

local SLR adaptation planning, in part through the assessment of the city of Santa 

Barbara’s vulnerability to SLR, including evaluations of shoreline topography and 

development, historical storm damage, and exposure to SLR. The risk of wave 

damage to Santa Barbara’s shoreline development and infrastructure will be high by 

2050 but very high by 2100. The risk of flooding and inundation of low-lying areas 

will be moderate by 2050 but very high by 2100. The risk of increased cliff erosion 

rates will be moderate by 2050 but very high by 2100. The threat of beach inundation 

will be low by 2050 but high by 2100. 

Most of the flooding and erosion along the U.S. West Coast are caused by 

storm surges and wind-driven waves, particularly during strong El Niño events. There 
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is a need to predict El Niño occurrences for planning purposes, but forecasts from 

most of the best El Niño Southern Oscillation (ENSO) prediction models have 

plateaued at a moderate level, leaving room for improvement in ENSO observing 

systems, models, and data assimilation methods. While the effects of ENSO on wave 

heights along the U.S. West Coast are well known, no prior studies have examined 

whether wave heights are also predictive of the phenomenon. This study finds that 

significant wave heights (Hsig) along the U.S. West Coast are slightly suppressed 

during the summers preceding El Niño winters, but the trend is weak and the data are 

noisy, so contributions to ENSO forecasts are negligible. The summer Hsig trend is 

strongly associated with the summer North Pacific (NP) Index, which measures the 

area-weighted sea-level pressure over the Gulf of Alaska (30˚N to 65˚N, 160˚E to 

140˚W). 
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1.1 ABSTRACT 

Global sea level rose by about 20 cm during the 20th century and observations and 

projections suggest that it will rise more quickly during the 21st century than it has in 

the recent past. Many of the world’s major coastal cities are already exposed to 

damaging coastal storms, including hurricanes, with large waves and associated 

flooding. Sea-level rise is expected to worsen the effects of these events, including 

increasingly frequent flooding of low-lying areas, increased cliff and bluff erosion 

rates, increased damage to shoreline infrastructure and development, and narrowing 

of beaches. One approach to minimizing the harm to coastal communities from such 

hazards is to begin to adapt to future sea-level rise, using the most recent projections 

for the coming decades. In California, a 2011 survey of coastal professionals 

indicated that adaptation to sea-level rise is a high priority for their communities. 

However, sea-level rise adaptation planning is a relatively new concept, and the 

survey also revealed a need for technical assistance and translation of scientific 

information into forms that are readily understood by coastal professionals. 

Complicating matters is the fact than an adaptation plan must be tailored specifically 

to a community’s unique needs, as coastal communities differ in terms of geologic 

and topographic setting, infrastructure and development, demographics, politics, and 

resources. Given these needs, the state of California’s Resources Agency funded an 

effort to develop a guide, Adapting to Sea-Level Rise: A Guide for California’s 

Coastal Communities, for assisting local governments in sea-level rise adaptation 
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planning [see Supplemental File One]. Although the guide is focused on California, 

much of it is applicable to coastal communities elsewhere. 

 

1.2 INTRODUCTION 

1.2.1 Long-Term Sea-Level Rise 

Tide gage measurements indicate that global sea level rose by an average of 

about 1.7 ± 0.5 mm/yr over the 20th century. However, data from satellite altimetry, 

which has provided records of sea-level rise since 1993, show that the rate of global 

sea-level rise increased to about 3.1 ± 0.7 mm/yr during the last two decades or so, a 

near doubling of the 20th century global average, according to a recent study by the 

National Research Council (2012). The NRC report (2012) provides an up-to-date 

assessment of both future global sea-level rise and future sea-level rise along the 

coasts of California, Oregon, and Washington. The governors of those three states 

and a number of state and federal agencies requested the study in order to assist state 

agencies and coastal communities in planning for future sea-level rise. 

 The rate of sea-level rise is not uniform around the world, nor is it the same in 

every place along the west coast of the United States. Due to regional factors 

affecting local sea-level rise, including tectonic activity along the coast, ocean and 

atmospheric circulation patterns, and the gravitational and deformational effects of 

land ice changes, rates of sea-level rise in specific locations cannot always be 

assumed to be the same as global rates (NRC 2012). Indeed, the presence of a major 

plate tectonic boundary at Cape Mendocino causes the U.S. West Coast to behave in 
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different ways on either side of the feature. Between Cape Mendocino and the 

Mexican border, coastal California is largely subject to strike-slip (lateral) motion 

along the San Andreas Fault, with relatively little vertical motion. Tide gage data 

from this portion of the coastline show that rates of sea-level rise over the past 50-100 

years have been close to or slightly higher than global values. (Mean values from San 

Diego to Point Reyes range from about 0.8 to 2.2 mm/yr.) From Cape Mendocino to 

the Canadian border, the coastline lies above a subduction zone, where accumulating 

stress tends to raise the coastline. While there are some regional tectonic differences, 

tide gage data show that rates of sea-level rise are generally lower along this nearly 

1000-km stretch of coastline than the global average; in some cases, local sea level is 

not rising but dropping, instead. This means that coastal communities must tailor sea-

level rise adaptation plans to fit the unique needs of their own localities. 

 The NRC report (2012) thoroughly reviews all of the major contributors to 

global sea-level rise (oceanic thermal expansion and melting of glaciers and ice 

sheets; the latter two are the largest components) and combines them to produce a 

range of projected global sea levels for the years 2030, 2050, and 2100, with 

uncertainties for each range. In addition, the study accounts for the atmospheric, 

oceanic, and tectonic variables that affect rates of sea-level rise in individual coastal 

regions, providing projections for specific stretches of the west coast (also for the 

years 2030, 2050, and 2100). Thus, the NRC projects different values for future sea-

level rise on either side of Cape Mendocino. Relative to the year 2000, sea level is 

projected to rise along the California coast south of Cape Mendocino by 4 to 30 cm (2 
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to 12 in) by the year 2030, 12 to 61 cm (5 to 24 in) by 2050, and 42 to 167 (17 to 66 

in) by 2100. From Cape Mendocino to Puget Sound in the north, sea level is projected 

to change by -4 to +23 cm (-2 to +9 in) by 2030, -3 to +48 cm (-1 to +19 in) by 2050, 

and 10 to 143 cm (4 to 56 in) by 2100 (NRC 2012). However, these figures do not 

account for the fact that the northern California, Oregon, and Washington coasts will 

someday experience the next great subduction zone earthquake, which could cause 

some coastal areas to immediately subside and local sea level to suddenly rise by at 

least a meter. 

 The ocean’s gradual advance upon low-lying shorelines could allow for the 

eventual permanent inundation or erosion of beaches that are backed by seawalls, 

roads, parking lots, etc. This could have a significant impact on California’s 

economy: a 2011 state-commissioned study suggests that a 140-cm (55-in) rise in sea 

level by the year 2100 (which is close to the upper end of the NRC’s projections), 

could lead to a total loss (i.e. total accumulated loss between now and the year 2100) 

of at least $440 million in tourism spending and tax revenue at Venice Beach, alone 

(King et al. 2011). This estimate is likely conservative because it assumes that 

population and income will not grow after the year 2010 (King et al. 2011). 

 

1.2.2 Short-Term Phenomena 

 Although sea level will continue to rise gradually over the long-term, likely by 

an increasing rate, the most significant threat to California’s shoreline over the next 

few decades will arrive in the form of short-term events, as when sea level is elevated 
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by up to 20-30 cm for several months during ENSO’s warm phase and combined with 

storm waves that approach during high tides (NRC 2010). These events have already 

been and will continue to be especially damaging when combined with storm surges, 

high tides, and/or high river flows. The Gulf and East coasts also face similar threats 

from short-term events, such as hurricanes. Rising sea level is expected to increase 

the severity of these and other short-term events that coastal communities are already 

used to experiencing, such as occasional storm flooding (Figure 1.1) and cliff or bluff 

erosion (Figure 1.2). Additionally, floodwaters and waves can be expected to reach 

higher elevations and move further inland than they historically have. This will 

threaten private homes and businesses, public property, including critical low-lying 

infrastructure such as highways and bridges, power plants, and sewage treatment 

facilities along the coastline, many of which have already been threatened, damaged, 

or destroyed by storms in past years (Figure 1.3). 
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Figure 1.1 East Cliff Drive at Twin Lakes State Beach in Santa Cruz, California, 
flooded as the result of elevated sea levels coinciding with high tides and storm waves 

in February 1998 (photo: David Revell). 
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Figure 1.2 Undercut apartment buildings in the Isla Vista area of Santa Barbara 
County, California (photo: Kenneth and Gabrielle Adelman, California Coastal 

Records Project). 
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Figure 1.3 Apartments in Pacifica, California were threatened by wave attack during 
the winters of 2009-2010 and 2010-2011 and subsequently evacuated. 

 

1.2.3 Adapting to Sea-Level Rise 

 Although the precise rate of future sea-level rise is difficult to predict because 

of the uncertainties in the factors that affect future climate and thus sea level, a 2011 

survey of California’s coastal professional suggests that most are well aware that sea 

level is changing and will continue to change well into the future (Finzi Hart et al. 

2012). Those who participated in the assessment also indicated that adaptation to sea-

level rise is a high priority for coastal communities. However, adaptation planning is 

still in its earliest stages and the survey revealed a need for both technical assistance 
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and for the ongoing translation of scientific information into forms that are readily 

understood by coastal professionals. Given this insight and the fact that each 

community is unique in terms of tectonic activity (and thus rate of sea-level change), 

geography, topography, demographics, politics, etc., the state of California’s 

Resources Agency funded an effort to develop a guide for assisting local governments 

in their preparations for sea-level rise. 

 While there are many existing documents regarding climate change 

vulnerability and adaptation, it appears that none of these have been very specific 

about local sea-level rise. In contrast, the recently published guidance document, 

Adapting to Sea-Level Rise: A Guide for California’s Coastal Communities, aims to 

explain the best available scientific background information about sea-level rise and 

to walk users through the processes of performing local sea-level rise vulnerability 

assessments, risk analyses, and formulating and implementing sea-level rise 

adaptation plans that are tailored to their own communities’ specifications [see 

Supplemental File One]. This guide is now available online, courtesy of the 

California Ocean Science Trust, at 

http://calost.org/pdf/announcements/Adapting%20to%20Sea%20Level%20Rise_N%

20Russell_G%20Griggs_2012.pdf. It was also printed and distributed to the planning 

departments, city councils, or boards of supervisors of all of California’s coastal 

communities. 

 The methods presented in Adapting to Sea-Level Rise: A Guide for 

California’s Coastal Communities should largely be applicable to coastal 
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communities outside of California but they were developed through our assessment of 

the vulnerability of the city of Santa Barbara, California to sea-level rise and related 

coastal hazards (http://www.climatechange.ca.gov/adaptation/third_assessment/) and 

influenced by a prior broad study of the vulnerability of the city of Santa Cruz to 

climate change 

(http://www.cityofsantacruz.com/Modules/ShowDocument.aspx?documentid=21198). 

The following is a summary of the key steps in sea-level rise adaptation planning 

(Figure 1.4), which are described in detail in the guide: 

 

1. Conduct a sea-level rise and coastal hazards vulnerability assessment. This 

could be performed by a consultant or by a team of local government staff, 

coastal managers, consultants, scientific advisors, etc. Any of these could be 

appropriate, given a community’s size, resources, and prior work with local 

scientific advisors or consultants. An assessment should identify the areas that 

are most vulnerable to future flooding, inundation, erosion, and damage from 

sea-level rise and wave impacts. The consultant or team should complete the 

following tasks: 

A. Collect information about the community’s historical vulnerability to 

and past damage from coastal hazards, including reports, maps, 

surveys, photographs, newspaper archives, etc. This will help to 

delineate historically eroded, flooded, and damaged areas and 
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therefore, the areas that are most likely to be affected or damaged 

again in the future. 

B. Obtain historic sea level data using the nearest tide gage or gages. 

The National Oceanographic and Atmospheric Administration 

(NOAA) is a good resource for this information 

(http://tidesandcurrents.noaa.gov/sltrends/sltrends.shtml). This step is 

necessary because rates of sea-level rise vary from one stretch of 

coastline to another, especially along the 1760-km length of 

California’s coastline (Figure 1.5), due to differences in tectonic 

history (uplift or subsidence). Thus, risks and adaptation measures 

may differ from one region to another as a function of local rates of 

sea-level rise. 

C. Obtain the most recent sea-level rise projections for different future 

dates (e.g. 2030, 2050, and 2100). The estimates provided in the latest 

NRC report are poised to become the standards used by the state 

agencies in California that must consider sea-level rise adaptation 

measures. It makes sense for local communities to use these same 

values, although adaptation plans should be adjusted as new 

projections for future sea-level rise become available. 

D. Collect information about short-term increases in sea level, exposure 

to El Niño events, and changes in wave climate. Historically, the 

greatest damage to California’s coastal communities, development, 
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and infrastructure has occurred when large waves, high tides, and 

ENSO’s warm phases have occurred simultaneously, as during the 

winters of 1982-1983 and 1997-1998 (Storlazzi and Griggs 1998; 

Storlazzi et al. 2000). Short-term changes such as these, as well as 

hurricanes and storm surges on the Gulf and East Coasts, will pose the 

greatest threats to coastal communities over the next 30-40 years, or 

until sea level rises by about 30 cm (12 in), the same level that has 

been reached during some of the largest warm phase ENSO events 

(Figure 1.6). It is also important to understand that the effects of these 

individual processes are sometimes cumulative, and any combination 

will usually be more severe or damaging than a single event. The 

negative effects of flooding, inundation, and wave attack upon coastal 

cliffs and bluffs are expected to increase in intensity as the ocean rises 

to new heights, causing previously unaffected areas of coastline to 

suffer the combined effects of sea-level rise and coastal storms. 

E. Identify and map the areas that are likely to undergo flooding or 

inundation in the future, given the most recent sea-level rise 

projections. Most communities have not been mapped using high-

resolutions (elevations accurate to ! 1 ft or 0.3 m). In such cases, it is 

necessary to use high-resolution land surface elevation data, such as 

LiDAR data, in order to determine which areas are most likely to be 

affected by specific future sea levels. The results of the most recent 
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LiDAR survey can be obtained from NOAA’s Digital Coast website 

(http://csc.noaa.gov/digitalcoast/data/coastallidar), although utilization 

of the data will require experience in GIS. 

F. Collect all existing information about historic cliff, bluff, dune, and 

beach erosion rates. The USGS recently completed two extensive 

studies of coastal change along the entirety of California’s coastline, as 

part of its National Assessment of Shoreline Change. One of these is 

focused on coastal land loss along sandy shorelines (Hapke et al. 

2006) and the other on coastal cliff retreat (Hapke and Reid 2007). 

Future rates of erosion are expected to be at least as high as historic 

rates. Griggs et al. (2005) provides maps that depict cliff and bluff 

retreat rates for many locations along the California coast. In addition, 

many coastal communities have GIS layers or data sets of local 

shoreline armoring that can supplement national and state data. 

 

2. Complete a risk assessment. The consultant or team must evaluate the 

likelihood that impacts from each sea-level rise-related hazard or process will 

occur in the future. This assessment should be performed for different 

endpoints in time, (e.g. 2030, 2050, and 2100), considering the NRC’s highest 

projections for future sea-level rise. The results can be used to determine 

which areas and assets will require the most attention at different stages in the 

future. An assessment of risk involves the following steps: 
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A. Assess adaptive capacity. Vulnerability to sea-level rise depends 

on both the physical stressors to the shoreline and the ability of the 

affected community to respond and adapt to those changes (NOAA 

2010). In part, a community’s vulnerability reflects the types of 

public and private development, resources, and infrastructure that 

will be at risk from exposure to sea-level rise at different future 

time periods. The second consideration is a community’s adaptive 

capacity: the ability to prepare for, respond to, and recover from 

hazards related to sea-level rise. For example, some shoreline 

parks, parking lots, and roads might be tolerant of occasional 

flooding. Others could potentially be relocated without great 

expense. In such cases, there is a high capacity for adaptation. On 

the other hand, adaptive capacity might be low for large facilities 

and developments, such as low-lying sewage treatment plants, 

coastal power plants, large hotels, and other visitor facilities, as 

they must be planned for decades in advance and replacement or 

relocation costs are apt to be very high. 

B. Develop a risk assessment. A risk assessment should evaluate both 

the probabilities of the future occurrences of individual events and 

the magnitudes of the consequences of those events. Because it is a 

key step in prioritizing adaptive actions, the consultant or team 

should summarize the assessment of the community’s expected 



! "#!

exposure to sea-level rise and related hazards for different future 

times (Tables 1.1A and B). A summary should consider the 

following: 

i. Actual future threats or hazards of concern (e.g. 

flooding, cliff or bluff erosion, inundation, beach loss, 

etc.) 

ii. Economic importance and value of public facilities 

and infrastructure 

iii. Value and importance of private development sectors, 

both commercial and residential 

iv. Importance of municipal emergency services 

v. Magnitude of impacts of future hazardous events 

vi. Timing and frequency of hazardous events 

vii. Certainty of projected impacts to the degree that they 

can be expected (e.g. given that sea level reaches a 

particular elevation, certain structures will be flooded 

during storms of a given magnitude) 

 

3. Develop an adaptation plan. Once the vulnerability and risk assessments are 

complete, they should be used together as the basis for defining a specific plan 

of action. Communities will likely not have the resources to address all sea-

level rise impacts at once. Thus, it is best to start by focusing on the most 
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important and threatened planning areas, such as facilities and developments 

that are sited at the lowest elevations, infrastructure that is critical for meeting 

the needs of the community (e.g. sewage lines, pumping stations, or treatment 

plants), and structures or infrastructure that are closest to the edges of eroding 

bluffs or cliffs. The consultant or team should take the following steps: 

A. Identify all adaptation options for each projected hazard. These 

should account for the differences between undeveloped and 

developed land and the differences between public and private 

property. (Adaptation strategies for these varied types of planning 

zones are detailed in the guide.) Furthermore, the consultant or team 

should conduct a careful review of the existing local policies and 

regulations that might only need to be modified or strengthened. In 

particular, it is important to review the community’s general plan or 

Local Coastal Program (LCP). Visit 

http://www.coastal.ca.gov/lcps.html for more information about LCPs. 

B. Specify the criteria for assessing each option. These could include 

actual effectiveness, cost-effectiveness, ease of design and 

implementation, and public and political acceptability. 

C. Evaluate all options and develop recommendations. Using the criteria 

from the previous step, the consultant or team should evaluate each 

potential adaptation measure individually and recommend to decision-
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makers only the strategies that are most likely to be successfully 

implemented. 

D. Draft a plan and complete an internal review. 

 

4. Review and adopt the adaptation plan. 

A. Review by individual public agencies, the public, and the community’s 

planning commission. 

B. Prepare a revised draft adaptation plan. 

C. Final review, editing, and adoption by governing body (either city 

council or board of supervisors): Adaptation plan approval is unlikely 

to be immediate or automatic, although this will depend upon the 

community’s vulnerability, resources, and political climate. It is 

important to include elected officials from the initiation of adaptation 

plan development in order to keep them aware of and involved in the 

plan. 

 

5. Implement the adaptation plan. Following approval, it becomes the 

responsibility of the city or county planning department (or another local 

government department or agency, such as city management or public works) 

to implement the sea-level rise adaptation plan. The plan will likely include 

policies that could require changes to existing land use plans (e.g. general plan, 

ordinances, zoning, etc.). When a measure requires regulatory decisions, or 
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when it must be implemented through agencies that share jurisdictions and 

responsibilities, it cannot be assumed that there will be effective coordination 

and communication between all parties. However, these challenges and 

administrative, institutional, and political barriers can be overcome through 

discussions, leadership from the top, and a shared sense of purpose. 

(Additional information about this and information about obtaining and 

raising funds for the implementation of adaptation plans can be found in the 

guide.) 

 

6. Monitor, review, and update the adaptation plan. Once the adaptation plans 

are enacted, all measures should be monitored regularly in order to determine 

their effectiveness because stakeholders need to know whether policies are 

fulfilling their intended purposes. Local consultants or university research 

groups could perform this task. Adaptation plans should be reviewed and 

revised when deemed necessary, based upon the most recent occurrences of 

hazardous events, changes in the rate of sea-level rise, and changes in 

community growth and development. 
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Figure 1.4 Steps for developing and implementing a sea-level rise adaptation plan. 
 
 
 

 

 

Figure 1.5 Local rates of sea-level rise from NOAA tide gages vary along the coasts 
of California and Oregon (from Griggs 2010). 
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Figure 1.6 During the 1983 El Niño, the arrival of large storm waves during high 
tides caused millions of dollars in damage along the entirety of California’s coastline. 

Wave height records from Santa Cruz Harbor (shallow-water nearshore buoy) and 
North Monterey Bay (deep-water offshore buoy) are shown. Predicted high tide is the 

higher high water for each day. 
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Table 1.1: Example of (A) short to intermediate-term (2013-2050) and (B) 
intermediate to long-term (2050-2100) risk from sea-level rise and related processes. 
Risk = (Probability) • (Consequence). Colors from green to red indicate increasing 

risk levels. Risks in red boxes are of the highest priority for adaptation action 
because they will cause the greatest impacts and occur most frequently. 
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1.3 CONCLUSIONS 

 Sea-level rise will likely become an increasingly important concern to many 

U.S. coastal communities and state agencies in the coming decades, as it is expected 

to increase the frequency and magnitude of coastal flooding, as well as cliff, bluff, 

and beach erosion, with associated damage to shoreline infrastructure and 

development. Adapting to sea-level rise is one important local approach to 

minimizing the impacts of future sea-level rise on coastal communities. Because sea-

level rise adaptation planning is still in its early stages, it will be very useful for 

coastal communities to publicize the results of their adaptation planning and to share 

them not only with local government staff, elected officials, and the public, but also 

with other coastal communities, which face common issues related to sea-level rise 

and could benefit from the insight. Adapting to Sea-Level Rise: A Guide for 

California’s Coastal Communities is a resource that should aid coastal communities 

in and outside of California during the organization and management stages of their 

efforts to plan for sea-level rise. 
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2.1 ABSTRACT 

In 2010, the California Resources Agency funded a project to develop a guide for 

assisting local governments in sea-level rise adaptation planning: “Adapting to Sea-

Level Rise: A Guide for California’s Coastal Communities” (Russell and Griggs 

2012; see Supplemental File One). An assessment of the vulnerability of the city of 

Santa Barbara to future sea-level rise (by the years 2050 and 2100) and related coastal 

hazards served as a case study [see Supplemental File Two] for the development of 

the adaptation guide. Historically damaging events, shoreline topography and 

development, and exposure to sea-level rise and wave attack were evaluated for Santa 

Barbara, as were the likely impacts of potential future coastal hazards to specific 

areas of the city, risk levels, the city’s ability to respond, and potential adaptation 

measures. The case study finds that the risk of wave damage to shoreline 

development and infrastructure in Santa Barbara will be high by 2050 and very high 

by 2100. Choices are limited and adaptive capacity will be moderate, with retreat as 

the most viable long-term option. By 2050, flooding and inundation of low-lying 

coastal areas will present a moderate risk to the city, which will have a moderate 

capacity for adaptation. The risks are expected to be very high and adaptive capacity 

will be low by 2100. Cliff erosion has taken place for decades, threatening public and 

private property in the Mesa area. The risk of increased cliff erosion rates will be 

moderate by 2050 and very high by 2100. Because armoring is ineffective along the 

Mesa and retreat would necessitate the relocation of structures, adaptive capacity will 

be low. Inundation of beaches presents a low threat to the city by 2050 but a high 
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threat by 2100. The city faces a dilemma: protect oceanfront development and 

infrastructure or remove barriers and let beaches migrate inland. By 2100, structures 

will have to be moved if beaches are to be maintained. 

 

2.2 INTRODUCTION 

Global sea level is rising. As a result, many coastal communities will face 

tough choices for adapting to the future conditions and/or dealing with the 

consequences. Although the precise rate of future sea-level rise is impossible to 

predict because of the uncertainties in the factors that affect future climate and thus 

sea level, a 2011 survey of California’s coastal professionals suggests that most are 

aware that sea level is changing and will continue to change well into the future 

(Finzi Hart et al. 2012). Participants in the assessment also indicated that adaptation 

to sea-level rise is a high priority for coastal communities. Fortunately, the state of 

California is supporting their cause. The California Coastal Commission recently 

announced that it will award a total of $1 million in grants in early 2014 to local 

governments that successfully apply for assistance to update their Local Coastal 

Programs, with special consideration for updates that address the effects of climate 

change. (See http://www.coastal.ca.gov/lcp/lcpgrantprogram.html for additional 

information.) 

Tide gage records indicate that the average rate of global sea-level rise was 

1.7 ± 0.5 mm/yr during the 20th century. However, data from satellite altimetry, 

which has provided precise records of sea-level rise since 1993, show that the rate 
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increased to about 3.1 ± 0.7 mm/yr during the last two decades, a near doubling of the 

20th century global average (NRC 2012). Because rates of local sea-level rise are 

affected by regional factors, including uplift and subsidence, ocean and atmospheric 

circulation patterns, and the gravitational and deformational effects of land ice 

changes, local sea-level rise rates cannot be assumed to be the same everywhere 

(NRC 2012). Indeed, a major plate tectonic boundary at Cape Mendocino (northern 

California) produces different effects on either side of this feature. Between Cape 

Mendocino and the Mexican border, coastal California is largely subject to strike-slip 

(lateral) motion along the San Andreas Fault, with relatively little vertical motion. 

Tide gage data from this portion of the coastline show that rates of sea-level rise over 

the past 50 to 100 years have been close to or slightly higher than global rates, with 

mean values from San Diego (southern California) to Point Reyes (just northwest of 

San Francisco Bay) ranging from about 0.8 to 2.2 mm/yr (Figure 2.1). From Cape 

Mendocino to the Canadian border, the coastline lies above a subduction zone, where 

accumulating stress tends to raise the land. While there are some regional tectonic 

differences along this nearly 1000-km (600-mi) stretch of coastline, tide gage data 

show that local rates of sea-level rise are generally lower than the global average and 

in some cases, local sea level is dropping because the rate of uplift outpaces the rate 

of sea-level rise. These phenomena suggest that coastal communities must tailor sea-

level rise adaptation plans to fit the unique needs of their own localities. 

Relative to the year 2000, sea level is projected to rise along the California 

coast south of Cape Mendocino by 5 to 30 cm (2 to 12 in) by the year 2030, 13 to 61 



 !"#

cm (5 to 24 in) by 2050, and 43 to 168 cm (17 to 66 in) by 2100. From Cape 

Mendocino to Puget Sound (Washington) in the north, sea level is projected to change 

by -5 to +23 cm (-2 to +9 in) by 2030, -3 to +48 cm (-1 to +19 in) by 2050, and 10 to 

142 cm (4 to 56 in) by 2100 (NRC 2012). (These projections have ranges due to the 

consideration of multiple climate models.) However, these figures do not account for 

the next great Cascadia Subduction Zone earthquake, which would likely cause much 

of the region north of Cape Mendocino to immediately subside and local sea level to 

suddenly rise by at least one meter (3.3 feet) (NRC 2012). 

The ocean’s gradual advance upon low-lying shorelines will lead to the 

eventual permanent inundation or erosion of beaches that are backed by development 

or barriers, such as seawalls, roads, parking lots, and other structures. While 

permanent inundation is expected to occur gradually over the long-term, the most 

significant threats to California’s shoreline over the next few decades will continue to 

be short-term episodic events, such as storms. Storm waves and associated storm 

surges that arrive during high tides are especially damaging when sea level is elevated 

during strong El Niño winters (NRC 2012). However, a rising sea level is expected to 

increase the frequency and severity of these and other short-term events that coastal 

communities are used to experiencing, such as occasional storm flooding (Figure 2.2) 

and cliff or bluff erosion (Figure 2.3). Additionally, floodwaters and waves can be 

expected to reach higher elevations and move further inland than they have in the 

recent past. This will threaten private homes, businesses, and public property, 

including critical low-lying infrastructure, such as highways, bridges, power plants, 
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and sewage treatment facilities along the coastline, many of which have already been 

threatened, damaged, or destroyed by storms in past years. 

It is likely that sea-level rise will have a significant impact on California’s 

economy. A 2011 state-commissioned study (King et al.) uses sea-level rise 

projections to estimate the potential economic losses due to flooding and beach 

erosion for five California beach communities. A 1.4-m (55-in) rise in sea level by the 

year 2100 could lead to a total loss (i.e. total accumulated loss between now and the 

year 2100) of at least $440 million in tourism spending and tax revenue at Venice 

Beach alone (King et al. 2011). This estimate is likely conservative because it 

assumes that population and income will not grow after the year 2010. 

Adaptation planning is still in its early stages and there is a need for technical 

assistance and the ongoing translation of scientific information into forms that are 

readily understood by coastal planners and managers (Finzi Hart et al. 2012). Given 

this insight and the fact that each community is unique in terms of land motion (and 

thus rate of local sea-level change), topography, demographics, politics, etc., 

California’s Resources Agency funded an effort to develop a guide for assisting local 

governments in their preparations for future sea-level rise.  

While there are many existing documents about climate change vulnerability 

and adaptation, it appears that few have been focused specifically on local sea-level 

rise. “Adapting to Sea-Level Rise: A Guide for California’s Coastal Communities” 

[Supplemental File One] provides scientific background information about sea-level 

rise and walks users through the processes of performing local sea-level rise 
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vulnerability assessments, risk analyses, and formulating and implementing sea-level 

rise adaptation plans (Russell and Griggs 2012). This guide is now available online, 

courtesy of the California Ocean Science Trust, at 

http://calost.org/pdf/announcements/Adapting to Sea Level Rise_N Russell_G 

Griggs_2012.pdf. The methods presented in this guide were developed in part 

through our assessment of the vulnerability of the city of Santa Barbara, California to 

sea-level rise and related coastal hazards, which can serve as an example for other 

coastal communities (Griggs and Russell 2012). “City of Santa Barbara Sea-Level 

Rise Vulnerability Study” [Supplemental File Two] is available online at 

http://www.climatechange.ca.gov/adaptation/third_assessment/. 

 

 

Figure 2.1 Local rates of sea-level rise from NOAA tide gages vary along the coasts 
of California and Oregon (from Griggs 2010). 
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Figure 2.2 The Santa Barbara Airport parking lot flooded in 1969 (source: Santa 
Barbara Airport). 

 

 
 

Figure 2.3 Cliffs are actively eroding along the Clarke Estate and the adjacent 
cemetery (photo: Kenneth and Gabrielle Adelman, California Coastal Records 

Project). 
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2.2.1 Sea-Level Rise and the City of Santa Barbara 

The city of Santa Barbara is located along the central California coast, about 

145 km (90 mi) northwest of Los Angeles. Its approximately 8-km (5-mi) east-west 

trending coastline faces south and includes cliffs, bluffs, and beaches (Figures 2.4 and 

2.5). The low-lying Santa Barbara Airport is also part of the city, although it is 

located about 5 km (3 mi) west of the city proper. “City of Santa Barbara Sea-Level 

Rise Vulnerability Study” (Griggs and Russell 2012) evaluates the vulnerability and 

adaptive capacity of the city of Santa Barbara to sea-level rise by the years 2050 and 

2100. Sea-level rise is expected to increase the magnitude of coastal hazards and loss 

of resources from storm damage, flooding, sea cliff and bluff erosion, and shoreline 

erosion. A variety of physical, ecological, economic, and social consequences can be 

expected to result from these changes. The vulnerability study qualitatively assesses 

risks to the city, emphasizing the potential consequences for public property and 

infrastructure, as well as private property and development along the coastline. 
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Figure 2.4 Map depicts relative locations of Santa Barbara’s Mesa, which extends to 
the west side of the city, as well as Shoreline Drive, Leadbetter Beach, and the harbor 

(source: City of Santa Barbara). 

 

 
 

Figure 2.5 Map depicts relative locations of Stearns Wharf, West Beach, and East 
Beach, on the city of Santa Barbara’s east side (source: City of Santa Barbara). 
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2.3 MATERIALS AND METHODS 

This project was initiated while the city of Santa Barbara was completing a 

general plan revision and an environmental impact report (EIR) that included a 

climate change component. At the beginning, we met with relevant city departments 

to explain the project’s objectives, ask for information and suggestions, and find out 

what kinds of information were desirable to city staff. Follow-ups provided useful 

information and photographs of historical coastal storm damage, flooding, and cliff 

erosion. 

Historical aerial photographs from the California Coastal Records Project 

(http://www.californiacoastline.org) proved to be very useful for evaluating 

conditions and development along the city’s coastline. In addition, the city’s revised 

general plan and EIR highlighted areas that were historically and/or are currently 

vulnerable to coastal storms, flooding, and erosion, as well as the areas that will likely 

be vulnerable to coastal impacts associated with future sea-level rise. We used the 

state of California’s sea-level rise projections to assess hazards: 25-43 cm (10-17 in) 

by 2050 and 1-1.4 m (3.3-4.6 ft) by 2100 (projections relative to the year 2000). 

(These values were recommended in 2010, prior to the release of the 2012 NRC 

report.) City department staff reviewed draft versions of the vulnerability assessment 

and adaptation recommendations. 

For adaptation to future changes, a coastal community must have an 

understanding of both its vulnerability to the expected changes and the risk of its 

exposure to them, as adaptation to sea-level rise is a risk management strategy for an 
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uncertain future. For the purposes of this study, vulnerability is defined as the degree 

of exposure to a relatively high sea level or to the combined effects of an elevated sea 

level plus a major coastal storm and/or high tide. On the other hand, risk includes 

both the probability that a future event (i.e. coastal flooding, inundation, or increased 

cliff erosion) is likely to occur, as well as the magnitude (or level of severity) of the 

event. Thus, a vulnerability assessment should include an evaluation of the level of a 

community’s exposure to coastal hazards, as well as the potential magnitudes of the 

damages or losses from events that are known to elevate sea level significantly, such 

as large El Niño storms or storm surges. 

Finally, adaptive capacity must be evaluated. Adaptation is defined as the 

adjustment of natural or human systems in response to actual or expected events and 

their effects, such that losses are minimized. Thus, a coastal community’s adaptive 

capacity is defined by its ability to respond to sea-level rise and its associated impacts, 

including the avoidance, reduction, or moderation of potential damages, as well as its 

ability to cope with the expected or predicted consequences of such impacts. 

 

2.3.1 Conducting the Assessment 

Several types of coastal processes have the potential to affect communities 

like Santa Barbara. Each of the following needs to be evaluated and considered in 

planning efforts: 

A. Sea-level rise 

B. Coastal storm damage 
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C. Runoff and flooding 

D. Cliff or bluff retreat 

E. Shoreline or beach retreat 

It is also important to understand that the effects of these individual processes can be 

cumulative and any combination can be more severe or damaging than a single event. 

The city of Santa Barbara has been damaged during such events in the past and will 

experience them again in the future, most likely with an increased frequency under 

rising sea levels. The impacts of those events are also expected to increase in 

magnitude as a result of sea-level rise. 

The first step in conducting a sea-level rise and coastal hazards vulnerability 

assessment is to collect information about a community’s historical vulnerability to 

coastal hazards using reports, maps, surveys, photographs, newspaper archives, 

interviews, etc. that detail past damages. This will help to delineate historically 

eroded, flooded, or damaged areas and, therefore, the areas that are most likely to be 

affected again in the future. Because future rates of erosion are expected to be at least 

as high as historic rates, a community will need to obtain data for historic cliff, bluff, 

dune, and beach erosion rates. It is also important to look for information about 

previous short-term increases in sea level and exposure to El Niño events. Potential 

adaptation responses can then be recommended for reducing exposure to future 

hazards. In this study, specific areas of the city of Santa Barbara were analyzed in 

order to determine the likely impacts of sea-level rise, the risks that are posed by 

these hazards, and the city’s ability to respond to them.  
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The second step is to obtain historic sea-level rise rates using the nearest tide 

gage or gages, as these can serve as a community’s baseline data. The National 

Oceanographic and Atmospheric Administration (NOAA) is a good resource for this 

information (http://tidesandcurrents.noaa.gov/sltrends/sltrends.shtml). This step is 

necessary because rates of sea-level change vary by tectonic setting along the 1770-

km (1100-mi) length of California’s coastline.  

The third step is to obtain the most recent sea-level rise projections for 

different future dates (e.g. 2050 and 2100). The estimates provided in the latest NRC 

report are the standards that were recently adopted by the California state agencies 

that must consider sea-level rise adaptation measures. It makes sense for local 

communities to use the same values, although adaptation plans should be adjusted as 

new sea-level rise projections become available. As previously stated, the Santa 

Barbara study uses the state of California’s 2010 sea-level rise projections of 25-43 

cm (10-17 in) by the year 2050 and 1-1.4 m (40-55 in) by 2100 (relative to sea level 

of the year 2000), as the NRC’s 2012 values (13-61 cm or 5-24 inches by 2050 and 

43-168 cm or 17-66 inches by 2100), were not yet available prior to this study’s 

completion. 

The final step in assessing vulnerability is to identify and map the areas that 

are likely to undergo flooding in the future, given the most recent sea-level rise 

projections (for 2050 and 2100). It is best to use the latest high-resolution land 

surface elevation data, such as LiDAR data, which can be obtained from NOAA’s 

Digital Coast website 
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(http://csc.noaa.gov/dataviewer/index.html?action=advsearch&qType=in&qFld=proje

ctid&qVal=1005), although utilization of this data requires experience in GIS. 

For the latest analysis of Santa Barbara’s potential future flood elevations, 

2010 LiDAR data were obtained as digital elevation models from NOAA’s 2009-

2011 CA Coastal Conservancy Coastal LiDAR Project (2011). The horizontal 

positional accuracy of these data is 51 cm (20 in) or better and the vertical accuracy is 

18 cm (7 in) or better (NOAA 2011). Contour lines representing (a) the 1.35-m (4.43-

ft) mean high water level (from Hapke et al. 2006), (b) the 100-year flood (0.9-m or 

3-ft flood) level on top of mean high water plus 60 cm (2 ft) of sea-level rise (the 

highest projected sea-level rise by 2050, from NRC 2012), and (c) the 100-year flood 

level (0.9-m flood) on top of mean high water plus 1.7 m (5.5 ft) of sea-level rise (the 

highest projected sea-level rise by 2100, from NRC 2012) were added using ArcGIS 

software. Contour layers were exported as shapefiles and then converted to KML 

format for use in Google Earth. 

The next course of action is to complete a risk assessment for different 

endpoints in time (e.g. 2050 and 2100) by evaluating the likelihood that impacts from 

each sea-level rise-related hazard or process from the vulnerability assessment will 

occur in the future, as well as the magnitudes of the consequences of those events. An 

assessment of risk also includes an evaluation of adaptive capacity, or the ability of a 

community to respond to, adapt to, or recover from the changes associated with sea-

level rise at different future time periods (NOAA 2010). For this study, we considered 

the future threats of concern along the city’s coastline (e.g. flooding, cliff and bluff 
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erosion, inundation, and beach loss), the economic importance and value of public 

facilities and infrastructure, and the value and importance of residential development. 

Additionally, we assessed the magnitudes of the impacts of future hazardous events, 

the timing and frequency of such events, and the certainty of occurrences to the 

degrees that they can be projected (e.g. given that sea level reaches a particular 

elevation, certain structures will be flooded during storms of a given magnitude). The 

future risks from hazards that are associated with sea-level rise were evaluated for 

both a short to intermediate timeframe (2012-2050) and an intermediate to long-term 

timeframe (2050-2100). We used three different levels for the magnitude of impact: 

low, moderate, and high; and four different levels for the probability or likelihood of 

occurrence: low, moderate, high, and very high. Although the terms “low, moderate, 

high, and very high” are based upon the sea-level rise scenarios that were originally 

suggested for use by California’s state agencies, they are used qualitatively in the 

Santa Barbara report. 

Finally, we used the vulnerability and risk assessments to identify adaptation 

options for each projected hazard. Communities should consider overall effectiveness, 

general cost-effectiveness, and ease of design and implementation of various 

strategies. Adaptation to sea-level rise is a relatively new concept and most coastal 

communities have limited resources for dealing with the consequences of climate 

change. Ideally, a city or county would determine the economic/historic/cultural, etc. 

values of all of its coastal infrastructure, development, recreational areas, etc., for the 

purpose of ranking their relative levels of vulnerability and importance to the 
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community. Planning staff could then focus upon the critical areas, such as facilities 

and development that are sited at the lowest elevations, infrastructure that is critical 

for meeting the needs of the community (e.g. sewage transmission lines, pumping 

stations, or treatment plants), and structures or infrastructure that are closest to the 

edges of eroding cliffs or bluffs. In this way, a community could stagger its adaptive 

efforts in phases, rather than attempting to tackle all areas simultaneously.  

We utilized a ranking system for the various risks to the city of Santa 

Barbara’s coastline by the years 2050 and 2100 using California’s 2010 projections 

for sea-level rise and emphasized the effects of anticipated future sea-level rise on 

public property and infrastructure, as well as private property (Tables 2.1A and B). 

Suggested adaptation measures include a broad range of approaches: future planning 

for hazard avoidance, engineering (including retrofitting, rebuilding, construction, 

and protection), and retreat or relocation. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 !!"

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2.1: Short to intermediate-term (2012-2050) and (B) intermediate to long-term 
(2050-2100) risk from sea-level rise and related processes. Risk = (Probability) • 

(Consequence). Colors from green to red indicate increasing risk levels. Risks in red 
boxes are of the highest priority for adaptation action because they will cause the 

greatest impacts and occur most frequently. 
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2.4 RESULTS AND DISCUSSION 

2.4.1 Flooding 

Santa Barbara has a NOAA tide gage (established in 1973) but due to 

displacement during various construction projects, the record is discontinuous and of 

limited value (Figure 2.6). However, if the tide gage remains stationary in the future, 

the record should become reliable and over time, it will provide a long-term 

indication of the rate of local sea-level rise. The study recommends that all 

precautions be taken in order to protect the existing NOAA tide gage at the 

breakwater from future construction or disturbance, such that a long-term record of 

local sea level change can be established. 

As sea level rises, there will be an increased number of extreme high water 

events, which tend to occur when high tides coincide with winter storms and their 

associated high winds, storm surges, and wave run-up. Santa Barbara has suffered the 

effects of such events in the past. While sea level is temporarily elevated for several 

months during El Niño years, a particularly devastating storm during the 1983 El 

Niño was also accompanied by high tides, large waves, and storm surge, which 

eroded portions of the beachfront park facilities, damaged the yacht club and 

harbormaster’s office, and reached almost to Shoreline Drive (Figures 2.7-9; Figure 

2.4 shows location of Shoreline Drive). Waves also carried debris onto Cabrillo 

Boulevard at Palm Park along East Beach (Figure 2.10; Figure 2.5 shows location of 

Cabrillo Boulevard). 
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Where streams meet the coast, backwater conditions can occur as elevated sea 

levels (from high tides, storm surges, or, over the long-term, from rising sea levels) 

prevent floodwaters from draining rapidly, causing streams to back up or slow down, 

which can lead to upstream flooding. Currently, flooding occurs during high tides and 

major storm events but these problems will be exacerbated in the future with 

increasing sea levels.   

The city’s 2009 coastal flood hazard map was updated using NOAA’s (2011) 

LiDAR data, which has improved surface elevations. The new images show contour 

lines for the present mean high water level and for the potential future extent of 100-

year flooding, based on the NRC’s 2012 sea-level rise projections for the years 2050 

and 2100. The images were created using ArcGIS and Google Earth in order to 

produce maps with easily identifiable geographic features (Figures 2.11A and B). 

Both the 2009 city map and the new maps are limited in that the areas highlighted as 

being subject to flooding include all areas that are lower than the critical elevations, 

even though some of those areas are inland and not directly connected to the shoreline. 

An increase in the number of extreme high water events will likely accelerate 

rates of cliff retreat and increase damage to public and private oceanfront properties 

and development, including city infrastructure. These types of events pose the 

greatest threats to the Santa Barbara coastline for the near-term future (until about 

2050). Historically, damage to shoreline structures and infrastructure has been 

moderate but this is expected to increase to high in the near-term (by 2050) with 36 

cm (14 in) of sea-level rise (pre-NRC 2012 value) because damage is already 
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happening at present-day sea level (Table 2.1A). The magnitude of damage will 

increase to very high by the year 2100 if sea level rises by 1.2 or more meters (at least 

3.9 feet; pre-NRC 2012 value) above the year 2000 sea level (Table 2.1B). Park 

facilities, parking lots, development at the harbor, the municipal wharf, Shoreline 

Drive, Cabrillo Boulevard, and associated infrastructure and development that serve 

visitors along Cabrillo Boulevard will all eventually be at risk from wave attack.  

There are limited adaptive measures for the city’s low-lying shoreline areas: 

beach sand nourishment, armor to protect in place, or relocation of facilities (retreat). 

Although Leadbetter Beach (Figure 2.4) was widened by hundreds of feet following 

breakwater construction in the late 1920s, significant damage still occurred landward 

of the beach during the 1983 El Niño winter. West and East Beaches (Figure 2.5) are 

now nourished by the discharge of sand dredged from the harbor entrance. Without 

increasing the height and length of the breakwater, additional sand will probably not 

solve the challenges that are posed by a significant increase in sea level by 2050. 

Furthermore, it is unclear whether there is a source of sand that would be large 

enough for such a project. While a seawall can help to buffer or protect oceanfront 

development from wave attack over the short to intermediate-term (until 2050), this 

may require significant investment in the Leadbetter, harbor, West, and East Beach 

areas. Over the long-term (from 2050-2100), if 0.9-1.2 m (3-4 ft) of sea-level rise 

were to occur and the city beaches were greatly reduced in width or eliminated as 

buffers for the winter months, a seawall would need to be of substantial height. The 

lifetime of the structure, the protection that would be offered by it, and its potential 
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costs and benefits would need to be carefully weighed against a gradual retreat, which 

might be the only long-term option, as sea level continues to rise. 

In addition, rising sea levels and a high water table could begin to interfere 

with wastewater discharge and/or potentially increase flood hazards at treatment 

plants in low-lying areas (CCC 2009). The city’s El Estero Wastewater Treatment 

Plant is located within 400 m (0.25 mi) of the shoreline, at a ground elevation of 

about 3.6-4.2 m (12-14 ft) above historic mean sea level. While it does not appear 

likely that the plant could be subject to flooding with a modest sea-level increase, 

projections show that the facility would be increasingly vulnerable over time to a 

100-year flood event with 1.4 meters (4.6 feet) of sea-level rise. Thus, sea-level rise 

may necessitate the modification of plant facilities or operations in the coming 

decades. 

 
 

Figure 2.6 The sea-level record from Santa Barbara’s tide gauge is discontinuous due 
to several harbor construction projects, which required relocation of the gauge 

(source: NOAA). 
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Figure 2.7 Beach erosion extended beneath the Santa Barbara Yacht Club in March 
1983 (source: Santa Barbara News-Press). 
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Figure 2.8 Erosion removed part of the Leadbetter Beach parking lot during the 1983 
El Niño. 
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Figure 2.9 Large waves that arrived during high tide and an elevated sea level in 
March 1983 left Stearns Wharf sagging from a loss of pilings (source: Santa Barbara 

News-Press). 
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Figure 2.10 Palm Park, on Cabrillo Boulevard, was strewn with debris, including a 
picnic table that was carried in by waves that had overtopped East Beach in March 

1983 (source: Santa Barbara News-Press). 
#
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Figure 2.11 Projected future coastal flood inundation maps using NOAA’s 2010 
LiDAR data and Google Earth. Blue lines show the present mean high water level at 
4.4 feet (1.35 meters). Green lines show extent of 100-year flood (3-ft flood) on top 

of 2 feet of sea-level rise (NRC’s most recent high sea-level rise projection relative to 
sea level of the year 2000) at high water, for a total elevation of 9.4 feet for the year 
2050. Red lines show extent of 100-year flood (3-ft flood) on top of 5.5 feet of sea-

level rise at high water for a total elevation of 12.9 feet for the year 2100. Maps show 
(A) Santa Barbara Harbor and surrounding area and (B) Santa Barbara’s east side. 
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2.4.2 Airport Flooding and Inundation 

The Santa Barbara Municipal Airport, located about 13 km (8 mi) west of 

downtown Santa Barbara, is the largest commercial service airport on the California 

coast between San Jose and Los Angeles, providing a major economic benefit to the 

South Coast. The airport was originally built on artificial fill within and upon the 

margins of the Goleta Slough. As such, it is located only a few feet above sea level, 

much like the San Francisco and Oakland International Airports, as well as many 

other airports in coastal cities around the world. Because it lies in an area where five 

streams converge, the airport has historically been subject to flooding. In 1969, water 

completely surrounded the main terminal (Figures 2.2 and 2.12). In 1995 and 1998, 

all three runways were flooded, closing the airport for several days (Figure 2.13). 

Public buildings and structures are threatened by inundation during heavy rains and 

runway flooding poses a safety hazard, preventing planes from taking off and landing. 

Even without sea-level rise, flooding will occur during intense and prolonged 

rainfall, which will increase runoff from the streams that drain into the Goleta Slough 

and combine with high tides. With a rising sea level, the frequency and magnitude of 

flooding in the area can be expected to increase. NOAA (2011) LiDAR data were 

used to update the city’s 2009 flood map for the airport area. With 61 cm (24 in) of 

sea-level rise by 2050, a 100-year flood could reach the runways and get close to the 

terminals (Figure 2.14). By 2100, 1.7 m (5.6 ft) of sea-level rise would allow 100-

year floodwaters to extend across the entire airport (Figure 2.14). 
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Thus, the probability of airport flooding is high in the short to intermediate-

term (to 2050). If sea-level rise approaches or exceeds 1.2 m (3.9 ft) by 2100, the 

probability of flooding, with some permanent inundation of the site, will be very high. 

There are two areas of concern regarding short-term flooding and permanent 

inundation: 1] the airport terminal and parking areas and 2] the runways and 

associated areas for airplanes. While temporary flooding of the runways and airport 

parking areas will be short-term inconveniences, as they have in the past, permanent 

inundation presents an unacceptable risk. The adaptive capacity of the Santa Barbara 

Airport to future flooding and inundation in the short to intermediate-term is believed 

to be moderate. It seems possible, although very expensive, to raise the runways in 

order to accommodate the 100-year flood conditions for the projected high sea level 

of 2050. However, it appears that neither the terminal nor the runways can easily be 

adapted to the 100-year flood conditions of 2100 with high projected sea-level rise.  
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Figure 2.12 The airfield flooded in 1969 (source: Santa Barbara Airport). 

 

 
 

Figure 2.13 The Santa Barbara Airport flooded in 1995 (source: Santa Barbara 
Airport). 
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Figure 2.14 Projected future coastal flood inundation map for the Santa Barbara 
Airport using NOAA’s 2010 LiDAR data and Google Earth. Blue lines show the 

present mean high water level at 4.4 feet (1.35 meters). Green lines show extent of 
100-year flood (3-ft flood) on top of 2 feet of sea-level rise (NRC’s most recent high 

sea-level rise projection relative to sea level of the year 2000) at high water, for a 
total elevation of 9.4 feet for the year 2050. Red lines show extent of 100-year flood 
(3-ft flood) on top of 5.5 feet of sea-level rise at high water for a total elevation of 

12.9 feet for the year 2100. 

 

2.4.3 Cliff and Bluff Retreat 

There are 6.4 km (4 mi) of coastal cliffs within Santa Barbara’s city limits. 

Monterey Shale, capped by unconsolidated marine terrace deposits, comprises the 

majority of these cliffs, which are 15-30 m (49-98 ft) high. They are susceptible to 

erosion from both wave attack and terrestrial runoff and they are also prone to 

landslides and slumps. The bedrock is deformed and tilted throughout this area and in 

some places, bedding dips (tilts) towards the beach. This is highly conducive to bluff 

failure, in which sliding occurs along exposed bedding planes. The cliffs at both ends 
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of the city are experiencing active erosion and retreat. Historic aerial photographs 

were used to determine average long-term erosion rates, which range from about 15 

to 30 cm/yr (6 to 12 in/yr) (Griggs et. al 2005). Hapke and Reid (2007) completed a 

statewide assessment that compares cliff edge position on aerial photographs from the 

1930s with LiDAR data from 1998 (approximately a 70-year period) and obtained 

similar values: an average of 10 to 46 cm/yr (4 to 18 in/yr) for the Mesa area in the 

west (Figure 2.4) and about 15 cm/yr (6 in/yr) for the Clarke Estate/Cemetery cliffs in 

the east. The range in erosion rates is a product of local variations in bedrock strength, 

bedding plane orientation, and the effects of development and human interference, 

including the placement of protective riprap on the fronting beaches. However, the 

overall linear trend of the bluff edge along the Mesa indicates that long-term rates of 

cliff retreat are fairly uniform alongshore. 

Cliffs may appear to go unchanged for years until the right combination of 

groundwater saturation, tidal height, wave attack, and/or seismic shaking, causes 

episodic failure. The loss of two homes on the Mesa in 1978 illustrates how 

landsliding along the bluff edge can result in the nearly instantaneous loss of 

oceanfront property and structures. The winter of 1978 saw the first large El Niño 

event in years, and rainfall was heavy in Santa Barbara for several weeks prior to the 

slide. The Mesa failure was a typical rotational slump on a curved failure (rupture) 

surface, with a nearly vertical head scarp.   

Google Earth was used to measure distances from the cliff edge to homes 

along the Mesa. There are about 98 cliff-front dwellings along the Mesa and nearly 



 !"#

half of these are within 30 m (98 ft) of the cliff edge, while eight of them are within 

15 m (49 ft). These homes were constructed at different times and setback distances 

from the cliff edges vary. Some homes or their additions (such as decks, patios, and 

other accessory structures) are located immediately adjacent to or within 5-10 m (16-

33 ft) of the cliff edge (Figures 2.15 and 2.16). The proximity of a large number of 

homes and their additions to the cliff edge, combined with the cliff’s general 

instability and long-term retreat rates, results in a moderately high vulnerability to 

future cliff retreat and accelerated erosion due to a rising sea level.  

On January 25, 2008, Shoreline Park (on the Mesa) suffered a landslide that 

extended 20 m along the cliff and moved the cliff edge inland by as much as 12 m (39 

ft) (Figure 2.17). Since the park’s construction in the late 1960s, different sections of 

the cliff have retreated intermittently. As erosion has occurred, walkways, picnic 

tables, and fencing have been relocated inland. Progressive retreat of the cliff fronting 

Shoreline Park is expected to continue, possibly by an increased rate, in the future. 

The cliffs that front the Clarke Estate and the adjacent cemetery on the city’s 

east side are also subject to landsliding (Figure 2.3). Riprap was placed at the base of 

the bluff below the estate in the 1980s. This has reduced wave impact but it has not 

halted the failure of overlying materials, which appears to proceed primarily due to 

terrestrial processes. Below the cemetery, on the east end of the bluffs, an old 

concrete seawall gradually deteriorated, so riprap and some cliff-top retaining walls 

were constructed in its place, in an attempt to slow erosion. Many years ago, several 

groins were built in this area in order to trap littoral drift and widen the beach but 
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these have also deteriorated over time and are no longer effective. Some of the 

gravesites that were once closest to the cliff edge have been moved back over time. 

A continued rise in sea level will allow waves to attack the bases of cliffs and 

bluffs with an increased frequency, which will increase erosion. With average historic 

retreat rates between 15-30 cm/yr (6 to 12 in/yr), a loss of at least 3-6 m (10-20 ft) 

can be expected over the 20-year lifespan (by 2030) of Plan Santa Barbara. Total 

retreat could be higher than that in places where uncontrolled drainage, historic 

landslides, or adverse bedding planes exist (AMEC 2010). Over the short to 

intermediate-term (2012-2050), the probability of significantly increased cliff erosion 

rates is considered to be moderate (Table 2.1A). However, the probability is likely to 

increase substantially to high or very high over the intermediate to long-term (2050-

2100; Table 2.1B). If cliff erosion rates on the Mesa remain close to their historical 

values or double (to 30-60 cm/yr or 12-24 in/yr), the cliff edge could retreat by 12-24 

m (39-79 ft) by 2050. Such retreat would directly threaten 30 or more homes, as well 

as a number of secondary structures. With increased erosion rates, Santa Barbara can 

expect to see 24-50 m (79-164 ft) of erosion from the present cliff edge by 2100. This 

will affect oceanfront walkways, trails, a playground, picnic areas, and two restrooms 

at Shoreline Park that are located within 15 m (49 ft) of the present cliff edge.  

This magnitude of retreat would threaten or necessitate the relocation or 

removal of about 67 cliff-top homes on the city’s west side. If erosion rates increase 

in the future, the number of affected homes will also increase. With nearly all of the 

oceanfront Mesa-area homes likely to be affected by 2100, this is deemed to have a 
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high impact over the intermediate to long-term timeframe (Table 2.1B). A 

conservative prediction here and in other similar areas is that the rate of cliff erosion 

will increase in the future and the rate of increase will be related to the extent of sea-

level rise, as well as any changes in wave climate. The study recommends the 

establishment of a cliff edge monitoring program with a set of surveyed transects that 

can be regularly re-measured in order to document and track rates of retreat along all 

sea cliffs within city limits.  

There are two basic approaches for adapting to cliff or bluff erosion within the 

city of Santa Barbara or elsewhere: armor or retreat. Because of the height of the 

cliffs and the typical failure mechanisms (large slumps or landslides), armoring is not 

likely to be an effective long-term solution. The situation along the cliffs below the 

Clarke Estate and the cemetery is similar to that of the Mesa. Although scattered 

riprap has been placed there over the years, it has been ineffective in halting cliff 

erosion because failure is occurring high on the cliff, as a result of terrestrial 

processes. While beach-level armoring is unlikely to be an effective mechanism for 

halting cliff erosion in this location, the land at the Clarke Estate and the cemetery is 

not highly developed, so retreat is a relatively easy option. 

Retreat, or gradual relocation of the cliff-top homes or infrastructure, is the 

most effective long-term approach. The overall capacity of the city to adapt to the 

hazards of increased cliff retreat is low because there is no buffer zone or physical 

space to allow for retreat without relocation of structures. 
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Figure 2.15 Some structures along the Mesa are virtually at the cliff’s edge (photo: 
Kenneth and Gabrielle Adelman, California Coastal Records Project). 

 

 
Figure 2.16 A number of homes along the Mesa are within 15 meters (49 feet) of the 

cliff edge (photo: Kenneth and Gabrielle Adelman, California Coastal Records 
Project). 
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Figure 2.17 In January 2008, a landslide at Shoreline Park moved the cliff edge 
inland by as much as 12 meters (39 feet) and eliminated a portion of the sidewalk. 

 

2.4.4 Inundation of Beaches 

The likelihood of the inundation of city beaches (i.e. passive erosion or 

permanent coverage by seawater) will depend upon beach widths and elevations, as 

well as the future rate(s) of sea-level rise. Inundation, as opposed to short-term 

flooding, is defined as an essentially permanent condition. Leadbetter (Figure 2.4), 

West, and East beaches (Figure 2.5) have all eroded or flooded temporarily in the past, 

with waves reaching Cabrillo Boulevard under severe storm conditions (Figures 2.9 

and 18). Over short to intermediate timeframes (i.e. 2012 to 2050), there is a low 

probability of the permanent loss of city beaches under the 36-cm (14-in) sea-level 

rise scenario (Table 2.1A). There may be some beach narrowing by 2050 but this is 
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not likely to be very noticeable. An El Niño event will likely cause more beach 

flooding than will gradual sea-level rise but the former is a short-term phenomenon, 

lasting only a few days or weeks. Over the long-term (2050-2100), sea-level rise will 

gradually begin to cover low-lying areas that are fixed by back-beach barriers (such 

as seawalls, parking lots, buildings, etc.), which will eventually include all of the 

shoreline and beach areas closest to sea level. Seawater will reach progressively 

further inland as sea-level rise continues, permanently covering previously dry land. 

For instance, areas that would have flooded only temporarily during very high tides or 

El Niño conditions, such as freeway underpasses, will gradually begin to be 

submerged permanently. All city beaches could potentially narrow, gradually 

disappear, and be replaced by shallow water or wet sand at low tide by 2100. This 

would negatively affect tourism, beach use, and recreation. Any narrowing or loss of 

these beaches would progressively expose public facilities, such as the coastal bike 

trail, public parking lots, restrooms, and development at the Santa Barbara Harbor, 

Stearns Wharf, and along shoreline streets, to periodic flooding and/or increased 

damage from wave action. The study recommends the establishment and annual 

survey of a set of beach profiles along the city shoreline and a set of winter and 

summer profiles from Cabrillo Boulevard to the shoreline, with profile spacing of 

about 500 feet (150 m). This would track both seasonal and long-term changes. 

The ability to adapt to the potential inundation or loss of Santa Barbara’s 

beaches is low to moderate, depending on the particular beach in question. Allowing 

beaches to migrate inland and the shoreline to retreat as sea level gradually rises 
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presents challenges for the city because there is valuable development and 

infrastructure along the entire back edge of the beaches, from Leadbetter to East 

Beach. Ultimately, park facilities and parking lots could be abandoned and the 

structures could be removed in order to allow the beach to migrate inland across the 

former shoreline. By the time that the ocean reaches Shoreline Drive, a major 

thoroughfare, projections for sea-level rise in the decades between 2050 and 2100 

will likely have improved, such that the risks and options for adaptation can be 

assessed more accurately than they can be today. If Santa Barbara’s beaches are to be 

maintained, adaptation may ultimately require removal or relocation of the facilities 

between the shoreline and Cabrillo Boulevard. Adaptive capacity is deemed moderate 

because most of these facilities are potentially movable. 

 

 
 

Figure 2.18 A boat was beached against a seawall just west of Stearns Wharf during 
the storms of 1914. 
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2.5 CONCLUSIONS 

Sea-level rise is becoming an increasingly significant concern to many U.S. 

coastal communities and state and federal agencies, especially in light of the recent 

devastation caused by Hurricane Sandy. A rising sea level is expected to exacerbate 

the effects of all coastal storms, increasing the magnitude of coastal flooding, as well 

as the extent and rate of cliff, bluff, and beach erosion, with associated damage to 

shoreline infrastructure and development. Adaptation to sea-level rise is one 

important local approach to minimizing future risks and damages to coastal 

communities. 

Sea-level rise adaptation is still an emergent concept, so there are few case 

studies and scarce information for city planners and coastal managers who want to 

begin the processes of assessing local vulnerability, performing risk analyses, and 

formulating and implementing their own adaptation plans. Adapting to Sea-Level 

Rise: A Guide for California’s Coastal Communities (Russell and Griggs 2012) is a 

resource that should aid coastal communities both in and outside of California during 

the organization and management stages of their efforts to plan for sea-level rise. 

The city of Santa Barbara has taken a critical first step towards sea-level rise 

adaptation by addressing these issues in its 2011 General Plan update and 

Environmental Impact Report, as well as in its 2012 Climate Action Plan, which 

incorporates data collection and adaptation planning recommendations from the City 

of Santa Barbara Sea-Level Rise Vulnerability Study. Furthermore, the city has 

applied for the California Coastal Commission’s Local Coastal Program Assistance 
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Grant Program to update its Local Coastal Program to reflect the expected impacts of 

climate change, including sea-level rise. 

It will be very useful for Santa Barbara and other coastal communities to 

publicize the results of their adaptation planning and to share them not only with local 

government staff, elected officials, and the public but also with other coastal 

communities, which face common issues related to sea-level rise and could benefit 

from the experience and insight. 
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CHAPTER THREE 
 

Can El Niño-Southern Oscillation Forecasts be Improved Using U.S. West Coast 
Significant Wave Heights? 
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3.1 ABSTRACT 

Most of the flooding and erosion along the U.S. West Coast are caused by storm 

surges and wind-driven waves, particularly during strong El Niño events. There is a 

need to predict El Niño occurrences for coastal planning purposes, but forecasts from 

most of the best El Niño Southern Oscillation (ENSO) prediction models have 

plateaued at a moderate level. Ample room remains for improvement in ENSO 

observing systems, models, and data assimilation methods. In particular, current 

coupled forecasts suffer from both a lack of observational data for sufficient model 

initialization and an inability to make effective use of available data. Additionally, 

gaps in observing systems and the recent failure to properly maintain the Tropical 

Atmosphere Ocean array (TAO) have also been detrimental to current ENSO 

forecasting systems. Thus, it makes sense to explore existing oceanographic data that 

have not traditionally been used for ENSO prediction to determine their potential for 

enhancing predictions. While the effects of ENSO on wave heights along the U.S. 

West Coast are relatively well known, no prior studies have examined whether wave 

heights are also predictive of the phenomenon. This study finds that significant wave 

heights (Hsig) along the U.S. West Coast are slightly suppressed during the summers 

preceding El Niño winters, but the trend is weak and the data are noisy, so 

contributions to ENSO forecasts are negligible. The summer Hsig trend is strongly 

associated with the summer North Pacific (NP) Index, which measures the area-

weighted sea-level pressure over the region 30˚N to 65˚N, 160˚E to 140˚W, in the 

Gulf of Alaska. 
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3.2 INTRODUCTION 

3.2.1 Long-Term Sea-Level Rise vs. Short-Term Regional Sea Level Variation along 

the U.S. West Coast 

 A recent report by the National Research Council (2012) estimates that sea 

level could rise along the U.S. West Coast by 12 to 61 cm south of Cape Mendocino 

and -3 to 48 cm north of Cape Mendocino (Figure 3.1) by the year 2050 (using year 

2000 sea level as baseline). This will present challenges to coastal communities, 

including the inundation of low-lying land areas and the amplification of storm surges 

and high waves (Heberger et al. 2009 and 2011). However, these changes are 

expected to occur gradually, whereas short-term climate fluctuations, such as the El 

Niño Southern Oscillation (El Niño), can temporarily raise regional sea levels 

significantly—by 10 to 30 cm [through a combination of increased ocean 

temperatures (steric), shifts in the Ekman transport of surface waters, and the 

transmission of coastally-trapped Kelvin waves] for several months (Figure 3.2); 

these effects are likely to be exacerbated by long-term sea-level rise (Enfield and 

Allen 1980; Chelton and Davis, 1982; Huyer and Smith 1985; Flick 1998; Ryan and 

Noble 2002; Bromirski et al. 2003; Allan and Komar 2006; Komar et al. 2011). 
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Figure 3.1 The National Research Council’s most recent sea-level rise projections for 
California, Oregon, and Washington, as a function of latitude. Solid lines represent 

projections and shaded areas represent ranges, which overlap (brown and blue-green). 
Blue represents projections for 2030, green represents projections for 2050, and pink 

represents projections for 2100, all relative to the year 2000. “MTJ” stands for the 
Mendocino Triple Junction, where the San Andreas Fault meets the Cascadia 

Subduction Zone (from NRC 2012). 
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Figure 3.2 (a) Hourly sea-level pressure, (b) sea-level anomaly above tide predictions, 
(c) predicted and (d) observed sea level relative to a mean sea-level datum, and (e) 

significant wave height (the average height of the highest one-third of waves) from a 
buoy near San Francisco during the El Niño winter of 1983 (from NRC 2012). 
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3.2.2 El Niño Southern Oscillation (ENSO) and Detrimental Impacts of Major Events 

on the California Coastline and Worldwide 

 The El Niño Southern Oscillation (ENSO) is a pattern of climate variability 

that occurs across the tropical Pacific Ocean and atmosphere quasi-periodically, about 

every two to seven years. It is characterized by two extremes: El Niño and its 

opposite phase, La Niña. During a typical El Niño, a maximum warm sea surface 

temperature (SST) anomaly occurs in the eastern Pacific, accompanied by relatively 

high air surface pressures in the western Pacific. (“Southern Oscillation” refers to the 

reversal in air surface pressure between the eastern and western tropical Pacific.) In 

addition to raising regional sea levels along the U.S. West Coast, El Niños also affect 

predominant storm tracks in the North Pacific, thereby altering regional wave 

climates temporarily (Storlazzi and Griggs 2000; Graham and Diaz 2001; Allan and 

Komar 2002). Major El Niños, such as the 1982-83 and 1997-98 events, displace the 

predominant winter extratropical storm tracks from their usual positions over the 

Pacific Northwest coast of Oregon and Washington to the south (Seager et al. 2010). 

This both increases wave energy off the coast of California and causes waves to 

approach the California coastline from a more southerly direction than usual, which 

can reverse net littoral sediment transport and enhance the erosion of sea cliffs at the 

southern ends of headland-bounded littoral cells (Kaminsky et al. 1998; Sallenger et 

al. 2002; Allan and Komar 2006). It can also enhance the erosion of beaches that are 

normally protected from dominant waves from the northwest (Griggs and Brown 

1998). 
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 The impacts of the most recent extreme El Niños on the California coast are 

well documented. For instance, during the winter of 1983, the California coast 

suffered over $213 million in damage (2013 dollars), including the complete 

destruction of 33 oceanfront homes and damage to more than 3,000 homes and 

businesses, due to the combination of elevated water levels (Figure 3.2) and a series 

of large storms that arrived during high astronomical tides (Griggs et al. 2005). At 

one point during the 1982-83 event, sea levels were the highest ever recorded in San 

Diego, Los Angeles, and San Francisco (29.0, 32.3, and 53.8 cm above predicted high 

tides, respectively), and low-lying areas were flooded due to a combination of heavy 

rainfall and high sea levels, which also increased the level of wave action on beaches 

and bluffs (Storlazzi and Griggs, 2000). Given that most of the flooding and erosion 

along the U.S. West Coast are caused by storm surges and wind-driven waves, 

particularly during strong El Niño events, the ability to predict the occurrence of El 

Niño is highly valuable for coastal planning purposes (Allan and Komar 2006). 

 ENSO also affects other regions of the world considerably, triggering 

disastrous floods in places like Peru and Ecuador and causing sizable droughts in 

Indonesia, Africa, Australia, and India. Additionally, the phenomenon has been tied 

to severe winter weather in Europe, abnormal monsoon dynamics in eastern Asia, 

incidences of epidemic diseases in various locations, and the intensity of tropical 

cyclones, including hurricanes in the Caribbean (Wen 2002; Kovats et al. 2003; 

Brönnimann et al. 2004; Donnelly and Woodruff 2007; Corral et al. 2010). Strong El 

Niño events have even been implicated in the fates of entire societies. Mike Davis’ 
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2001 book, “Late Victorian Holocausts: El Niño Famines and the Making of the 

Third World,” examines the relevant late 19th-century droughts in India, China, and 

Brazil that resulted in the deaths of 30 to 50 million people. 

 

3.2.3 El Niño Southern Oscillation (ENSO) Prediction Models: A Brief History 

 After the disastrous 1982-83 El Niño event took scientists by surprise, the 

National Oceanographic and Atmospheric Administration (NOAA) collaborated with 

the international community to test and deploy a moored array to monitor the 

temperature of the upper layer of the tropical Pacific Ocean (to a depth of 500 meters) 

and the atmospheric conditions above it, providing real-time measurements. By 1994, 

the Tropical Atmosphere Ocean array (TAO) included nearly 70 moorings (Figure 

3.3), which, along with satellite data and computer models, have contributed to major 

progress in the observation and theory of ENSO, playing a crucial role in the 

prediction of subsequent events (Latif et al. 1998; McPhaden et al. 1998; Neelin et al. 

1998). 

 Many ENSO models depend on the low-dimensional nature (i.e. just a few 

distinctive modes) of the coupled instability of the tropical Pacific’s ocean-

atmosphere system, taking into account its two basic elements: (1) the positive 

feedback between the zonal winds resulting from the seesawing (Southern 

Oscillation) of atmospheric mass between the eastern and western Pacific (which sets 

up sea-level pressure gradients) and the equatorial sea surface temperature (SST) 

gradient (which is powered by wind-driven upwelling and thermocline fluctuation), 
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and (2) the dynamics of the equatorial Pacific, with non-dispersive and out-of-phase 

Kelvin and Rossby waves allowing for oscillation between warm (El Niño) and cold 

(La Niña) phases (Bjerknes 1969; Zebiak and Cane 1987; Battisti and Hirst 1989; 

Cane et al. 1990; Jin 1997; Chen and Cane 2008). One such representation, the 

Zebiak-Cane (or LDEO) model, a dynamical ocean-atmosphere coupled system of 

intermediate complexity, is the first to have successfully forecasted El Niño (the 

1986-87 event) in real time (Cane and Zebiak 1985; Cane et al. 1986; Zebiak and 

Cane 1987). The mid-1980s saw a few other attempts to forecast El Niño, including 

statistical models (Graham et al. 1987; Xu and Storch 1990) and a standalone ocean 

model (Inoue and O’Brien 1984), although the standalone system only predicts the 

onset of El Niño because it ignores feedbacks between the ocean and the atmosphere 

(Chen and Cane 2008). A case study (Barnett et al. 1988) reviewing the performances 

of three different classes of numerical models shows that the 1986-87 El Niño was 

effectively predicted at lead times of three to nine months. 

 Since those early successes of the mid-1980s, numerous ENSO prediction 

models with varying levels of complexity were developed. They mainly fall into three 

categories (Chen and Cane 2008): 

• Fully physical ocean-atmosphere coupled models: Generally considered to be 

at the top of the hierarchy, these models treat the atmosphere and the ocean as 

different types of fluids, and their behaviors are described by complex systems 

of differential equations. Models range from intermediate coupled versions of 

the “shallow water” type, with simplified physics (Cane et al. 1986; Kleeman 
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1991), to coupled general circulation models (Ji et al. 1994; Kirtman et al. 

1997). 

• Purely statistical models: These models derive statistical relationships from 

past El Niño occurrences. Most of the frameworks use linear regression, in 

which matrix operations maximize the association between or covariance of 

the chosen predictor (atmospheric—sea-level pressure or surface wind, 

oceanic—sea surface temperature or a measure of upper ocean heat content, or 

a combination of oceanic and atmospheric quantities) and predictand fields 

(Graham et al. 1987; Xu and Storch 1990; Barnston and Ropelewski 1992), 

but there are also nonlinear models based on artificial neural networks that can 

adapt and recognize patterns (Tang et al. 1997) and self-evolving Markov 

models (Xue et al. 2000). While these systems are computationally efficient, 

especially with respect to fully physical ocean-atmosphere coupled models, 

the timespan of oceanic and atmospheric observations is short, and purely 

statistical models do not describe the physics of the phenomena, so their 

predictions are limited in accuracy. 

• Physical ocean-statistical atmosphere hybrid models: Hybrid models take 

advantage of both the accuracy of physical ocean models and the 

computational efficiency of statistical frameworks (which are used to 

represent the atmosphere). Specifically, such a system links the SST field of a 

given physical ocean model to the surface wind field driving the model with a 

statistical relationship (Neelin 1990; Barnett et al. 1993). These models 
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assume that the coupled system’s memory is contained solely within the 

ocean’s thermocline state (with the ocean also containing the limiting 

nonlinearity of the structure), with the atmosphere responding instantaneously 

to SST changes, as the fast component of a stiff system. For most purposes, 

the latter assumption works for timescales that are longer than one season, and 

it is largely applicable to ENSO if the importance of high frequency, internal 

atmospheric variability is discounted (Neelin et al. 1994). This is due to the 

fact that the atmospheric response to SST is rapidly redistributed vertically 

(especially in convective regions) and is nonlocal horizontally on timescales 

longer than dynamical adjustment times (a few days to a month), whereas the 

ocean responds on a wide range of timescales, from days (as with some 

features of the mixed layer) to millennia (as with deep-ocean thermal 

adjustment). 

A review by Latif et al. (1998) concludes that models from each of the above 

categories are useful for predicting typical ENSO indices at 6-12 month lead times. 

For lead times of six months or fewer, the skills of statistical models are comparable 

to those of fully physical coupled models, but the latter appear to have the edge for 

long lead times (Barnston et al. 1994). 

 Kirtman et al. (2002) also examined one statistical and six dynamical 

prediction systems (all state-of-the-art for the time) using relatively consistent 

evaluation metrics and long periods of retrospective forecasts of sea surface 

temperature anomalies in the NINO3 area (150˚-90˚W, 5˚S-5˚N) of the tropical 
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Pacific. The study again showed that both statistical and dynamical models are skilled 

in forecasting the peak phase of ENSO up to two seasons in advance, but it also 

discovered that, due to errors in both the initial conditions and the models themselves, 

a forecast developed as a consensus of at least three separate prediction systems is far 

more reliable than any one individual model. Although both the statistical and 

dynamical models are useful for forecasting the peak phases of the extreme warm and 

cold ENSO phases, their predictive skills are time-dependent. That is to say that none 

of the frameworks sufficiently capture the detailed life cycle of the different ENSO 

phases and none are especially skilled in predicting the timing of the initialization of 

El Niño events (Kirtman et al. 2002). For instance, researchers who examined 

forecasts from a large number of models concluded that none were able to predict the 

entirety of the large 1997-98 El Niño (Barnston et al. 1999; Landsea and Knaff 2000). 

 

 

Figure 3.3 Locations of buoys in the Tropical Atmosphere Ocean array; yellow boxes 
represent buoys maintained by the Japan Agency for Marine-Earth Science and 

Technology (JAMSTEC), and blue boxes represent US instruments (from NOAA). 
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3.2.4 El Niño Southern Oscillation (ENSO) Prediction: The Current State and 

Challenges 

 Today, the periods of retrospective forecasting are mostly too short (about 1-3 

decades, covering a relatively small number of ENSO events, so there are few 

degrees of freedom) to adequately distinguish between the skills of various ENSO 

prediction models and confidently estimate how well we are able to forecast ENSO 

overall (Kirtman et al. 2002). The lack of observational data for sufficient model 

initialization is mostly to blame, as even small errors in the initial conditions can 

compound and change forecast results significantly, but the inability of current 

models to make effective use of available data is also problematic (Chen and Cane 

2008). 

 A recent (2004) unprecedented, retrospective (covering 148 years) forecast 

experiment by Chen et al. was able to predict most of the warm and cold ENSO 

events at a six-month lead time, using only reconstructed SST data for model 

initialization. The model was especially good at forecasting large El Niño and La 

Niña events, but it had trouble predicting small events and no-shows. These outcomes 

are representative of the current status of ENSO forecasting, despite vast differences 

in the complexity of present-day models (for operational predictions by many 

research groups worldwide, see the quarterly Experimental Long lead Forecast 

Bulletin at http://www.iges.org/ellfb/ and the International Research Institute for 

Climate and Society’s forecast website at http://iri.columbia.edu/our-

expertise/climate/forecasts/enso/), which exhibit comparative predictive skills and 
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seem to have plateaued at a moderate level, making real-time forecasts that do not 

appear to be more skillful than those made years ago (Barnston et al. 1999; Chen and 

Cane 2008). 

 According to a review of the present status of ENSO prediction and 

predictability studies by Chen and Cane (2008), the current skill of ENSO forecasting 

is limited by four factors: inherent limits to predictability, gaps in observing systems, 

model flaws, and suboptimal use of observational data. While the inherent limits to 

predictability have been debated, increasing evidence suggests that those limits have 

yet to be reached, leaving room for improvement in our observing systems, models, 

and data assimilation methods (Chen and Cane 2008). Already, researchers have 

made great strides in all of those areas since the early days of ENSO forecasting: data 

from observation networks, including the TAO array and satellite altimetry and 

scatterometry, have been invaluable for ENSO monitoring and have significantly 

improved ENSO prediction skill at multi-season lead times (Ji and Leetma 1997; 

McPhaden 1999; Clarke and Van Gorder 2003; McPhaden 2003); regional and global 

models of differing levels of complexity have continuously improved in their physics 

and computational capabilities; and various data assimilation and forecasting 

strategies have been developed and employed in operational ENSO prediction (Chen 

and Cane 2008). 

 Unfortunately, recent (2012) budget cuts at NOAA have kept the TAO array 

from being properly maintained, causing nearly half of the buoys to fail in the last 

two years and partially blinding us to early El Niño development in the tropical 
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Pacific (Figure 3.4). Scientists are now collecting data from only 40% of the array 

(Tollefson 2014). Nearly all of the initial ENSO forecasts for this year (2014) suggest 

that a moderate to severe El Niño or neutral conditions will appear in the coming 

months, so researchers are trying to see whether warm water will continue to flow 

eastward across the tropical Pacific toward South America (Figure 3.5). Although 

NOAA has promised to restore most of the TAO array by the end of 2014, the timing 

will be well after critical El Niño forecasts are (or ought to have been) released 

(Tollefson 2014). For now, researchers will have to supplement the TAO data with 

satellite observations of water temperature and sea level, which can serve as stand-ins 

for the depth of the wave of warm water moving across the tropical Pacific. 

 Despite the recent setbacks in ENSO forecasting, it appears as though 

researchers are still making headway. For instance, Ludescher et al. (2014) developed 

an alternative forecasting approach (Ludescher et al. 2013) based on complex 

network analysis (Tsonis et al 2006; Yamasaki et al. 2008; Donges et al. 2009; 

Gozolchiani et al. 2011) for predicting the occurrences of El Niño events by about 

one year in advance, thus overcoming the “spring barrier” (Webster 1995; Goddard et 

al. 2001) that has prevented other models from detecting El Niño events by more than 

six months in advance (during the boreal spring, anomalies that develop randomly in 

the western Pacific reduce the signal-to-noise ratio for the dynamics relevant to 

ENSO, making it difficult to predict across the barrier). Ludescher et al.’s 2014 

univariate model links current daily surface atmospheric temperatures at grid points 

of a Pacific network (Figure 3.6) to future sea surface temperatures at grid points both 
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inside and outside of the “El Niño basin” (comprised of the NINO1, NINO2, NINO3, 

and NINO3.4 regions plus one grid point south of the NINO3.4 region, as in 

Yamasaki et al. 2008 and Gozolchiani et al. 2011), based on Ludescher et al.’s 2013 

findings, which indicate that El Niño is a cooperative phenomenon, wherein 

teleconnections between the El Niño basin and the rest of the Pacific tend to build up 

during the year prior to an El Niño event (the study examines the time evolution of 

the teleconnections between pairs of grid points, as opposed to the time dependence 

of climate records at single grid points). By the ends of the years 2011 and 2012, the 

model correctly predicted the absences of El Niño events in 2012 and 2013, 

respectively. Such results are not trivial, given that as late as August of 2012, the 

Climate Prediction Center/International Research Institute (CPC/IRI) for Climate and 

Society Consensus Probabilistic ENSO forecast, which focuses on the SSTs in the 

NINO3.4 area (Figure 3.6), predicted a 4-in-5 likelihood for an El Niño event in 2012, 

which turned out to be incorrect just a few months after the prediction was made (to 

view archived forecasts, visit http://iri.columbia.edu/our-

expertise/climate/forecasts/enso/ and 

http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/enso_advisory/). By 

September of 2013, Ludescher et al.’s 2014 model already forecasted the return of El 

Niño in late 2014 with a 3-in-4 likelihood, while the CPC/IRI Consensus Probabilistic 

ENSO forecast predicted only a 1-in-5 likelihood at the same time, which increased to 

a 1-in-3 likelihood by November of 2013. Because Ludescher et al.’s method is based 

entirely on high-quality instrumental readings that are easily accessible, the results of 
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their studies (2013; 2014) can be reproduced in a straightforward manner, standing in 

contrast to the outputs of algorithms that make use of model data. If the method turns 

out to be sound, it would be a major improvement to ENSO forecasting and the 

understanding of ENSO dynamics. 

 

 

Figure 3.4 Locations of buoys in the Tropical Atmosphere Ocean array that are non-
functional due to budget cuts at NOAA; open blue boxes represent non-functional 

U.S. buoys (modified from Tollefson 2014; originally from NOAA). 
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Figure 3.5 Warm surface waters have been moving eastward across the tropical 
Pacific early since 2014, which resemble the conditions in early 1997 that preceded 
one of the largest El Niños; if these conditions persist, another moderate to severe El 

Niño could develop (modified from Tollefson 2014; originally from NOAA). 
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Figure 3.6 Locations of grid points (nodes) in the climate network used by Ludescher 
et al. (2013; 2014) to predict El Niño events by about one year in advance, based on 

dynamic fluctuations of the teleconnections (links in the network) between grid points 
in the El Niño basin and the rest of the Pacific. The network includes 14 nodes in the 
El Niño basin (denoted by solid red dots) and 193 nodes outside of the basin (denoted 

by blue circles). Each node inside of the basin is linked to each node outside of the 
basin. The strengths of the links are determined by cross-correlations between the 
observed sea-surface-level air temperatures in the grid points. The magenta box 

indicates the area where the NINO3.4 index is measured. The NINO3.4 index tracks 
and quantifies the ENSO phenomenon and is defined as the average of the sea surface 
temperature anomalies at the grid points located within the box. An El Niño episode 
is said to occur when the index is above 0.5˚C for at least five consecutive months 

(from Ludescher et al. 2013). 
 

3.2.5 El Niño Southern Oscillation (ENSO) Prediction: U.S. West Coast Significant 

Wave Heights (Hsig) 

 While it is well established that wave heights along the U.S. West Coast are 

affected by ENSO (as described in section 3.2.2), no one has yet attempted to 

determine whether wave heights are also predictive of the phenomenon. Although the 
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predictions of most purely statistical models have been limited in accuracy because of 

their inability to describe the physics of the ocean-atmosphere system, the short 

timespan of oceanic and atmospheric observations, and the lack of freedom to tweak 

parameters (as opposed to the freedom of coupled models), the recent promise of 

Ludescher et al.’s 2014 statistical model suggests that it may be possible to obtain 

reliable ENSO predictions from purely statistical frameworks.  

 This paper seeks to determine whether significant wave heights (Hsig) along 

the U.S. West Coast can provide a predictive lead on El Niño, using data from 

NOAA’s National Data Buoy Center (NDBC, at http://www.ndbc.noaa.gov/) and 

Scripps Institution of Oceanography’s Coastal Data Information Program (CDIP, at 

http://cdip.ucsd.edu/). The potential for Hsig to predict El Niño by itself is examined, 

but because current coupled forecasts suffer from both a lack of observational data for 

sufficient model initialization and an inability to make effective use of available data 

(Chen and Cane 2008) and because generally, consensus forecasts are far more 

skillful than individual models (Kirtman et al. 2002), this study also examines Hsig in 

combination with an established ENSO index to see whether the addition of Hsig data 

can improve its predictions. Gaps in observing systems and the recent failure to 

maintain the TAO array have been detrimental to current ENSO forecasting systems, 

as well (Chen and Cane 2008; Tollefson 2014), so it makes sense to explore existing 

oceanographic data that have not traditionally been used for ENSO prediction in this 

novel way. 
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3.3 METHODS 

Two sources of buoy data collected from off the U.S. West Coast are 

employed in this study (Table 3.1): NOAA’s National Data Buoy Center (NDBC, at 

http://www.ndbc.noaa.gov/) and Scripps Institution of Oceanography’s Coastal Data 

Information Program (CDIP, at http://cdip.ucsd.edu/). The NDBC’s offshore deep-

water buoys record hourly oceanographic and atmospheric data, including significant 

wave height (Hsig). The CDIP buoys also record hourly oceanographic and 

atmospheric data now, including Hsig, but the number of records increased from 4 to 8 

times per day during the 1980’s and again in 1996 to 24 times per day. 

Due to buoy failures and maintenance operations, both the NDBC and CDIP 

datasets have dropouts that range from weeks to years (Appendix A and 

Supplemental File 3), although the latter case is most common amongst the CDIP 

buoys. For this reason, each dataset was normalized using the cumulative distribution 

function for one of the analyses (as noted in section 3.3.3). Also, only datasets 

containing relevant information from at least 15 of the seasons of interest were 

included in the analyses (seasons are from consecutive years wherever possible but in 

all cases, the 15-season threshold is high enough to sample El Niño conditions). In 

other words, NOAA buoy 46027 was included in both the summer (defined in this 

study as June through August) and autumn (September through November) Hsig 

analyses because its record contains Hsig data from at least 15 summers and at least 15 

autumns. Data from 2013 and 2014 were not included in any of the analyses because 

the NDBC did not release its 2013-2014 data by the time this study was conducted 
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and the 2013 CDIP data were incomplete prior to the analyses (the 2013 calendar year 

had not yet drawn to a close by this study’s completion). 

Where possible, open-ocean buoys were selected preferentially (Figure 3.7A) 

to avoid picking up the effects of interference with the waves. However, the open-

ocean requirement significantly reduces the number of available buoys off the coast 

of Southern California, due to the relatively small number of stations located offshore 

of the Southern California Bight. Thus, some of the buoys that might be affected by 

the islands and banks in the bight were included in the analyses (Figure 3.7B). 

For the purpose of El Niño prediction, El Niño summers and autumns are 

those preceding El Niño winters. Thus, for the 1997-1998 El Niño, only data from the 

summer and autumn of 1997 were considered to be subject to El Niño conditions, 

whereas data from the summer and autumn of 1998 were not. El Niño years and 

relative El Niño strengths were identified using the Multivariate ENSO Index (MEI, 

at http://www.esrl.noaa.gov/psd/enso/mei/; Figure 3.8), which combines the six main 

observed variables over the tropical Pacific: sea-level pressure, zonal and meridional 

components of the surface wind, sea surface temperature (SST), near-surface air 

temperature, and total cloudiness fraction of the sky (Wolter and Timlin 1993, 1998, 

and 2011). Since the MEI incorporates more information than other indices (such as 

SST indices or the Southern Oscillation Index, which is based on observed sea-level 

pressure differences between Tahiti and Darwin, Australia), it is a better reflection of 

the nature of the coupled ocean-atmosphere system than single-component indices. 
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The multiple components of the MEI also decrease its vulnerability to intermittent 

data dropouts in its monthly update cycles. 

 

Table 3.1: Buoy locations and historical significant wave height record lengths (not 
including breaks, which are presented in detail for summers and autumns through 

2012 in Appendix A). Red numbers indicate that a station was disestablished. 
 

 
 

 

 

 

 

 

 

Region Source Buoy Station Latitude N. Longitude W. Water Depth (m) Wave Height Record (yrs)
Cape Elizabeth 46041 47°20'58" 124°42'30" 114.3 1987-2013
Columbia River Bar 46029 46°9'32" 124°30'52" 144.8 1984-2013

CDIP Grays Harbor 36 46˚85'81" 124˚24'39" 38.5 1981-2014
NDBC West Washington 46005 46°5'59" 131°0'5" 2,981 1976-2012

Stonewall Bank 46050 44°38'20" 124°32'2" 128 1991-2013
West Oregon 46002 42°35'21" 130°28'28" 3,444 1975-2013
St Georges 46027 41°51'1" 124°22'52" 48 1985-2013
Southeast Papa 46006 40°45'16" 137°27'51" 4,151 1977-2013
Eel River 46022 40°43'25" 124°34'41" 674 1982-2013
Pt Arena 46014 39°14'6" 123°58'26" 256 1981-2013
West California 46059 38°2'49" 129°58'8" 4,627 1994-2012
Bodega Bay 46013 38°14'31" 123°18'2" 116 1981-2013
San Francisco 46026 37°45'18" 122°50'21" 53 1982-2013
Half Moon Bay 46012 37°21'45" 122°52'52" 208 1980-2013
Monterey 46042 36°47'7" 122°28'9" 2,098 1987-2013
Cape San Martin 46028 35°44'29" 121°53'3" 1,158 1983-2013

CDIP Diablo Canyon 76 35°12'23" 120°51'56" 23 1983-2014
Santa Maria 46011 35°0'0" 120°59'30" 412 1980-2013
Point Arguello 46023 34°42'50" 120°58'0" 384 1982-2010

CDIP Harvest 71 34°27'48" 120°46'9" 549 1995-2014
West Santa Barbara 46054 34°16'28" 120°27'42" 460 1994-2013
East Santa Barbara 46053 34°14'52" 119°50'28" 450 1994-2013
Santa Monica Basin 46025 33°44'58" 119°3'10" 905 1982-2013
San Pedro 92 33°37'07" 118°19'00" 457 1981-2014
Oceanside Offshore 45 33°10'76" 117°28'28" 220 1997-2014
Mission Bay Offshore 93 32°44'86" 117°22'17" 192 1981-2014

NDBC Tanner Bank 46047 32°24'11" 119°32'8" 1,399 1991-2013

Northern California NDBC

Washington
NDBC

Oregon NDBC

Southern California

NDBC

NDBC

CDIP

Central California NDBC
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Figure 3.7 Maps showing (a) locations of all buoys used in this study and (b) close-
up of buoy locations in the Southern California Bight. Light blue anchors represent 

NDBC stations and dark blue anchors represent CDIP stations. 
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Figure 3.8 Time series of the Multivariate ENSO Index (MEI) since 1950 (from 
http://www.esrl.noaa.gov/psd/enso/mei/). Negative values (blue) represent cold 

ENSO phases (La Niña conditions) and positive values (red) represent warm ENSO 
phases (El Niño conditions). 

 

3.3.1 Significant Wave Height (Hsig): All El Niño vs. Non-El Niño 

In order to quickly reveal any obvious differences between the significant 

wave height (Hsig) data from El Niño years (1976, 1979, 1982, 1986, 1991, 1994, 

1997, 2002, 2004, 2006, 2009) and non-El Niño years, observed Hsig values were 

averaged over all El Niño summers, all non-El Niño summers, each month for El 

Niño summers (one average for June, one for July, and one for August), and each 

month for non-El Niño summers for each of the 21 NOAA buoys and 6 CDIP buoys. 

Here, both ENSO-neutral/normal years and La Niña years were categorized as “non-

El Niño” years. This allowed for some simplification, in that only two discrete 

categories (either “yes, El Niño” or “no, not El Niño”) were used. The same process 

was repeated for all El Niño autumns, all non-El Niño autumns, each month for El 

Niño autumns (one average for September, one for October, and one for November), 

and each month for all non-El Niño autumns for each buoy. Summer and autumn Hsig 
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values were also averaged for each region (Washington, Oregon, Northern California, 

Central California, and Southern California). 

 

3.3.2 Significant Wave Height (Hsig): Moderate to Strong El Niño vs. Non-El Niño to 

Weak El Niño 

In order to compare some of the effects of using a strict definition of El Niño 

to those of an inclusive (as in section 3.3.1) version, observed significant wave height 

(Hsig) data from moderate to strong El Niño (MEI ranking of at least 0.750; Figure 

3.8) years (1982, 1986, 1991, 1994, 1997, 2002, 2009) and non-El Niño to weak El 

Niño years were averaged for the same seasonal and monthly scenarios as described 

in section 3.3.1 for each of the same 27 buoys. 

 

3.3.3 Summer Significant Wave Height (Hsig): Individual Summers vs. Average 

 In this analysis, a series of Kolmogorov-Smirnov tests (K-S test; Massey 

1951) were performed to compare each individual summer’s observed Hsig cumulative 

distribution function (CDF) to its respective buoy’s overall observed summer Hsig 

CDF (including data from the entire summer record length, through 2012) for each of 

the 27 buoys. The resulting D-statistics were then evaluated against the distribution of 

D-values produced by a 10,000-trial Monte Carlo computer simulation (Metropolis 

and Ulam 1949), in which 6,422 values (representative of the number of Hsig data 

points in a typical summer) were randomly subsampled [using Python’s 

“random.sample(population, k)” function for random sampling without replacement] 
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from one buoy’s overall observed summer Hsig record (through 2012) and compared 

(as a CDF) using the K-S test to the same buoy’s overall observed summer Hsig record 

(CDF; record through 2012) for each trial. 

 

3.3.4 Summer Significant Wave Height (Hsig) vs. the Winter Multivariate El Niño 

Southern Oscillation (ENSO) Index (MEI) 

In this analysis, the average winter MEI (average of December-January, 

January-February, and February-March indices) was plotted as a function of the 

percentage difference between the average summer (June-August) Hsig for each year 

and the overall average summer Hsig for every buoy over the 1976-2012 period (linear 

regression; each pair of values included a given year’s average winter MEI and the 

previous year’s summer Hsig percentage difference) to determine the extent to which 

the observed summer Hsig data are associated with winter values from a commonly 

used ENSO index. To state it another way, average winter MEI was plotted as a 

function of [100*((average Hsig for a given year) – (average summer Hsig)) / (average 

summer Hsig)]. MEI values were obtained from 

http://www.esrl.noaa.gov/psd/enso/mei/table.html. An exact, two-tailed binomial test 

(an exact test of the statistical significance of deviations from the theoretically 

expected distribution of observations in two categories—in this case, negative slope 

vs. positive slope) was used to measure the significance of the deviance of the slope 

types of the 27 plots from what is expected when drawing randomly from the same 

populations (with normal distributions). The following code was used in R to obtain 
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the p-value of the hypothesis test: binom.test(x, n, (p =0.5)). “x” represents the 

number of successes (one slope type), “n” represents the number of trials (27, as there 

are 27 buoys and thus, 27 plots), and “p = 0.5” is the hypothesized probability of 

success. 

 Then, in order to assess the likelihood of observing the outcome of the above 

analysis by chance, the slopes were compared to the distribution of those produced by 

a 10,000-trial Monte Carlo computer simulation, in which the average winter MEI 

(from the 1976-2012 period) was plotted as a function of values representing the 

previous summers’ Hsig percentage differences (linear regression), drawn randomly 

(using a random number generator) from a Gaussian distribution centered on zero, 

with a standard deviation that is representative of the distributions of observed 

summer Hsig percentage differences (the data from the buoy records through 2012). 

 

3.3.5 Yearly Significant Wave Height (Hsig) vs. the Winter Multivariate El Niño 

Southern Oscillation (ENSO) Index (MEI) 

In order to determine the extent to which the observed yearly Hsig data are 

associated with winter MEI values, the same process as in section 3.3.4 was used to 

plot average winter MEI as a function of the yearly Hsig percentage difference 

(yearly Hsig percentage difference = [100*((average Hsig for each year) – (overall 

average Hsig)) / (overall average Hsig)]) for every buoy over the 1976-2012 period (i.e. 

each pair of values included a given year’s average winter MEI and the previous 

year’s Hsig percentage difference). Then, in order to evaluate the likelihood of 
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observing a chance outcome that resembles the results of the above analysis, the 

slopes were compared to the distribution of those produced by the 10,000-trial Monte 

Carlo computer simulation described in section 3.3.4. 

 

3.3.6 Summertime ENSO Forecasting: The Multivariate El Niño Southern Oscillation 

(ENSO) Index (MEI) 

 In this analysis, the average winter MEI (average of December-January, 

January-February, and February-March indices) was plotted as a function of the 

average MEI of the previous summer (average of May-June, June-July, and July-

August indices) for every year since 1975 (linear regression) to determine the extent 

to which the average summer MEI relates to the (following year’s) average winter 

MEI. 

 Then, Python packages “numpy,” “pandas,” “pylab,” and “statsmodels” were 

used to calculate and plot the probability of winter El Niño occurrence (with winter El 

Niño defined as MEI ! 1.0 for the average of the November-December, December-

January, and January-February bimonthly seasons) as a function of the average 

summer MEI for 1975-2012, using the method for binary logistic regression that is 

described here: http://blog.yhathq.com/posts/logistic-regression-and-python.html. 

First, two arrays were generated for input to the “statsmodels Logit.fit()” function, 

where the independent variable was the average summer MEI and the dependent 

dummy variable represented the presence of winter El Niño conditions (dummy 

variable = 1 for El Niño or 0 for no El Niño). Next, the highest and lowest summer 
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MEI values and eight evenly spaced points between them were selected. The 

probability of winter El Niño occurrence was then calculated for each point using the 

regression coefficients and the “statsmodels predict()” function. Finally, the resulting 

values were plotted to show the probability of winter El Niño occurrence as a 

function of the range of average summer MEI values. 

 

3.3.7 Summertime ENSO Forecasting: Combining the Multivariate El Niño Southern 

Oscillation (ENSO) Index (MEI) with Significant Wave Height (Hsig) 

 In order to determine whether a combination of the average summer MEI and 

average summer Hsig better relates to the (following year’s) average winter MEI than 

does the average summer MEI alone, a multiple linear regression analysis was 

performed for each buoy (for the duration of each buoy’s record through 2012) and 

the outcome was compared to the results from section 3.3.6. The ordinary least-

squares (OLS) regression was performed with x1 = average summer MEI (average of 

May-June, June-July, and July-August indices), x2 = summer average Hsig, and y = 

average winter MEI (average of December-January, January-February, and February-

March indices), using the method described here: 

http://www.datarobot.com/blog/ordinary-least-squares-in-python/. 
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3.3.8 Summer Significant Wave Height (Hsig) vs. The Summer North Pacific (NP) 

Index 

In this analysis, the same process as in section 3.3.4 was used to plot the 

observed monthly summer Hsig percentage difference between the average summer 

monthly (June, July, or August) Hsig for each year and the overall monthly average 

summer Hsig (for June, July, or August) as a function of the corresponding monthly 

summer Northern Pacific (NP) Index (Trenberth and Hurrell 1994) in order to 

determine the extent to which the observed summer Hsig data relate to summer values 

from the NP Index. Standard format NP values were obtained from this website: 

http://140.172.38.100/psd/gcos_wgsp/Timeseries/NP/. 

Plots were generated for each buoy over the 1975 to 2010 time period because 

the NP Index has not been updated since 2011. Despite the lack of recent updates, the 

NP Index is still considered to be a good indicator of the intensity of the Aleutian 

Low pressure cell in the Gulf of Alaska, which is important to North Pacific and 

North American Climate. Specifically, it results from a simple but robust measure of 

the circulation in the North Pacific: the area-weighted mean sea-level pressure over 

the region 30˚N to 65˚N, 160˚E to 140˚W (Trenberth and Hurrell 1994). 
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3.4 RESULTS AND DISCUSSION 

3.4.1 Significant Wave Height (Hsig): Preliminary Exploration of the Observed Data 

 As described in sections 3.3.1 and 3.3.2, observed Hsig values were averaged 

(including seasonal, monthly, and regional means) and compared across the following 

scenarios for every buoy: 

i. all El Niño summers vs. non-El Niño summers, 

ii. all El Niño autumns vs. non-El Niño autumns, 

iii. moderate to strong El Niño summers vs. non-El Niño to weak El Niño 

summers, and 

iv. moderate to strong El Niño autumns vs. non-El Niño to weak El Niño 

autumns. 

Results for the “ii,” “iii,” and “iv” scenarios are presented in appendices B, C, and D, 

respectively. Table 3.2 contains the seasonal and monthly average Hsig values for El 

Niño and non-El Niño summers (scenario “i”). It appears from the Hsig percentage 

differences that El Niño summer average Hsig values are lower than non-El Niño 

summer average Hsig values at most stations (Table 3.2). In general, the standard 

deviations for this “i” scenario are high relative to the averages, though, so no strong 

claims can be made regarding the apparent trend in the Hsig percentage differences. 

Switching to a strict definition of El Niño (scenario “iii”) results in practically the 

same outcome (Appendix C and Supplemental File 5) for the summer as does using 

an inclusive definition (as in scenario “i”). 



! "#$!

The autumn averages yield some potentially interesting results that might 

warrant further study. For instance, scenario “ii’s” seasonal Hsig percentage 

differences suggest that El Niño autumn Hsig values are higher than non-El Niño 

autumn Hsig values, on average (Appendix B and Supplemental File 4). However, the 

standard deviations are relatively high (and generally higher than the summer 

standard deviations), indicating some variability over the season. Indeed, scenario ii’s 

monthly Hsig percentage differences reveal that October is the “odd man out,” in that 

it suggests the opposite of autumn’s (overall) seasonal trend, but standard deviations 

from the individual autumn months are also relatively high, so no strong claims 

regarding any apparent trends can be made at this point. For the most part, switching 

to a strict definition of El Niño (scenario “iv”) has no major effect on the autumn 

results (Appendix D and Supplemental File 6), but it looks as though Hsig percentage 

differences for the southern region are more positive with a strict definition than they 

are with an inclusive definition (as in scenario “ii”) for the month of October. 

However, again, the high standard deviations prevent the formation of any final 

conclusions without further research. While additional analyses of the autumn Hsig 

data might unearth some trends that could contribute to the understanding of the 

behavior of El Niño, the remainder of this paper focuses on the summer “i” scenario, 

as the identification of a strong relationship between El Niño summer Hsig and winter 

El Niño conditions would provide a two-season predictive lead on El Niño, as 

opposed to an autumn one-season lead, which is of low utility. 
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It should also be noted that some of the southernmost buoys (numbers 46025, 

92, 45, and 93) seem to have consistently low standard deviations (relative to the 

other stations’) on their Hsig averages, across the board. The Southern California 

Bight is located just offshore of these buoys (Figure 3.7B). The bight’s interference 

with the waves (due to island blocking, refraction, diffraction, and shoaling of 

incident deep water waves) lowers the level of wave energy and thus the level of 

variation in wave heights when the waves reach the bight before they reach the buoys, 

as is the case with storms that are generated off the Aleutian Islands (O’Reilly and 

Guza 1993 and 1998). 

Another study of wave climate variation (using wave spectral density data; 

Bromirski et al. 2005) shows that variations in wave energy at different buoys off the 

U.S. West Coast for the same storm event result from differences in the buoys’ 

proximities to the strong wind sector of the storm, fetch parameters, and wavefront 

spreading, while bottom interactions that cause refraction and shoaling in relatively 

shallow coastal waters can be prominent, as well. Bromirski et al. (2005) specifically 

mention that station 46025 in the Southern California Bight is shielded (by Point 

Conception and the Channel Islands) from waves propagating from storm centers to 

the northwest. They find that long-term monthly means of band-limited wave energy 

are substantially lower (about 65% lower) at station 46025 than at station 46023, 

which is located nearby. Even so, the dominant portion of the long-period (wave 

period T > 12 s, which results primarily from swell) and intermediate-period (6 s ! T 

! 12 s, which probably results from a mixture of local and regional wind forcing) 
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wave energy observed at station 46025 is generated primarily in the open ocean and 

reflects mostly open ocean wave variability (Bromirski et a. 2005), as opposed to 

effects from local seas (which would be indicated by dominant short-period waves; T 

< 6 s). 

 

Table 3.2: Average summer significant wave heights (Hsig) over (a) the entire season 
and over the months of (b) June, (c) July, and (d) August for all El Niño years and 
non-El Niño years. Blue cells indicate that average Hsig during El Niño summer 

months were lower than during non-El Niño summer months. 
 

 

A.

All El Niño StDev Non-El Niño StDev El Niño – Non-El Niño % Difference
46041 1.41 0.61 1.40 0.55 0.00 0.3
46029 1.51 0.60 1.48 0.54 0.03 2.2

36 1.35 0.53 1.32 0.48 0.03 2.0
46005 1.67 0.69 1.71 0.65 -0.03 -1.9

regional 1.49 0.62 1.47 0.57 0.02 1.2
46050 1.60 0.61 1.61 0.57 -0.01 -0.5
46002 1.71 0.61 1.79 0.63 -0.08 -4.7

regional 1.67 0.61 1.71 0.61 -0.04 -2.4
46027 1.74 0.76 1.71 0.69 0.03 1.8
46006 1.59 0.60 1.64 0.64 -0.05 -3.2
46022 1.81 0.82 1.80 0.78 0.01 0.5
46014 1.85 0.74 1.95 0.72 -0.10 -5.2

regional 1.75 0.74 1.79 0.72 -0.03 -1.9
46059 1.97 0.66 1.91 0.65 0.06 3.3
46013 1.75 0.69 1.88 0.71 -0.14 -7.6
46026 1.45 0.57 1.51 0.57 -0.06 -3.9
46012 1.62 0.62 1.69 0.62 -0.07 -4.4
46042 1.72 0.59 1.78 0.59 -0.06 -3.6
46028 1.95 0.63 1.96 0.63 -0.01 -0.7

regional 1.72 0.65 1.78 0.65 -0.06 -3.6
76 1.20 0.36 1.24 0.36 -0.03 -2.7

46011 1.63 0.54 1.68 0.57 -0.06 -3.3
46023 1.76 0.56 1.82 0.57 -0.06 -3.3

71 1.75 0.55 1.84 0.55 -0.09 -5.0
46054 1.61 0.52 1.68 0.52 -0.06 -3.9
46053 1.01 0.35 1.03 0.35 -0.01 -1.2
46025 0.96 0.26 1.00 0.26 -0.04 -4.2

92 0.82 0.19 0.85 0.21 -0.02 -3.0
45 0.88 0.20 0.89 0.19 -0.01 -1.7
93 0.96 0.22 0.99 0.23 -0.03 -3.5

46047 1.72 0.50 1.85 0.57 -0.14 -7.7
regional 1.29 0.56 1.33 0.58 -0.04 -3.2

Summer Average Hsig (m)

Southern California

Central California

Northern California

Oregon

Washington

Region Station
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B.

All El Niño StDev Non-El Niño StDev El Niño – Non-El Niño % Difference
46041 1.53 0.75 1.56 0.65 -0.03 -2.1
46029 1.72 0.72 1.62 0.64 0.09 5.6

36 1.43 0.61 1.44 0.56 0.00 -0.1
46005 1.82 0.86 1.90 0.77 -0.08 -4.4

regional 1.62 0.76 1.61 0.68 0.01 0.5
46050 1.71 0.72 1.74 0.66 -0.03 -1.8
46002 1.76 0.67 1.90 0.71 -0.14 -7.5

regional 1.74 0.69 1.83 0.69 -0.09 -5.0
46027 1.75 0.81 1.83 0.72 -0.08 -4.7
46006 1.75 0.71 1.87 0.79 -0.11 -6.3
46022 1.89 0.89 2.01 0.81 -0.12 -6.1
46014 1.99 0.89 2.14 0.79 -0.15 -7.1

regional 1.85 0.84 1.98 0.79 -0.12 -6.4
46059 2.08 0.66 2.05 0.70 0.03 1.4
46013 1.93 0.87 2.14 0.78 -0.21 -10
46026 1.72 0.72 1.73 0.64 -0.01 -0.7
46012 1.81 0.78 1.98 0.74 -0.18 -9.4
46042 1.98 0.75 2.02 0.69 -0.03 -1.7
46028 2.21 0.77 2.19 0.73 0.01 0.7

regional 1.94 0.79 2.02 0.73 -0.07 -3.6
76 1.39 0.44 1.41 0.42 -0.02 -1.2

46011 1.85 0.70 1.92 0.67 -0.08 -4.1
46023 1.97 0.71 2.05 0.68 -0.08 -4.0

71 2.01 0.69 2.05 0.65 -0.04 -1.9
46054 1.90 0.65 1.87 0.62 0.03 1.8
46053 1.18 0.41 1.13 0.41 0.05 4.3
46025 1.05 0.30 1.08 0.31 -0.02 -2.1

92 0.87 0.23 0.89 0.25 -0.03 -3.1
45 0.93 0.19 0.94 0.20 0.00 -0.4
93 1.02 0.23 1.08 0.28 -0.06 -5.6

46047 1.93 0.64 2.04 0.68 -0.11 -5.7
regional 1.43 0.67 1.47 0.68 -0.04 -2.8

Region Station June Average Hsig (m)

Washington

Southern California

Central California

Northern California

Oregon
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C.

All El Niño StDev Non-El Niño StDev El Niño – Non-El Niño % Difference
46041 1.36 0.48 1.35 0.47 0.00 0.2
46029 1.44 0.48 1.47 0.46 -0.03 -2.1

36 1.28 0.43 1.30 0.41 -0.02 -1.3
46005 1.59 0.53 1.56 0.51 0.04 2.2

regional 1.41 0.49 1.41 0.47 0.00 0.3
46050 1.59 0.51 1.61 0.51 -0.01 -0.9
46002 1.69 0.56 1.73 0.55 -0.04 -2.1

regional 1.66 0.54 1.68 0.54 -0.02 -1.1
46027 1.81 0.77 1.70 0.70 0.12 6.6
46006 1.51 0.49 1.52 0.50 0.00 -0.1
46022 1.88 0.83 1.76 0.80 0.12 6.6
46014 1.93 0.68 1.94 0.70 0.00 -0.1

regional 1.79 0.73 1.74 0.71 0.05 2.9
46059 1.89 0.68 1.89 0.65 0.01 0.4
46013 1.72 0.55 1.80 0.67 -0.08 -4.7
46026 1.41 0.44 1.44 0.50 -0.03 -1.9
46012 1.59 0.45 1.63 0.56 -0.04 -2.4
46042 1.63 0.42 1.73 0.53 -0.10 -6.0
46028 1.84 0.50 1.90 0.58 -0.06 -3.2

regional 1.66 0.52 1.72 0.60 -0.06 -3.6
76 1.12 0.25 1.18 0.30 -0.05 -4.6

46011 1.55 0.42 1.62 0.50 -0.06 -4.0
46023 1.67 0.44 1.77 0.50 -0.10 -5.9

71 1.67 0.42 1.79 0.48 -0.12 -6.7
46054 1.51 0.41 1.60 0.46 -0.09 -6.1
46053 0.93 0.29 0.99 0.33 -0.06 -5.9
46025 0.93 0.20 0.99 0.24 -0.06 -6.5

92 0.82 0.16 0.84 0.18 -0.02 -2.1
45 0.84 0.18 0.87 0.17 -0.03 -3.6
93 0.93 0.19 0.98 0.20 -0.05 -5.4

46047 1.61 0.39 1.80 0.49 -0.18 -11
regional 1.23 0.48 1.29 0.53 -0.06 -4.7

Region Station July Average Hsig (m)

Washington

Southern California

Central California

Northern California

Oregon
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3.4.2 Summer Significant Wave Height (Hsig): Individual Summers vs. Average 

 In this analysis, the K-S test was used (as described in section 3.3.3) to 

determine whether the normalized distributions of summer Hsig observed data from 

individual years differ significantly from the overall (normalized) distributions of 

summer Hsig observed data for each buoy (Table 3.3, Appendix E, and Supplemental 

File 7). However, with very large datasets, the likelihood that the K-S test will declare 

D.

All El Niño StDev Non-El Niño StDev El Niño – Non-El Niño % Difference
46041 1.36 0.59 1.31 0.48 0.04 3.3
46029 1.42 0.55 1.37 0.49 0.05 3.4

36 1.34 0.52 1.24 0.43 0.10 7.5
46005 1.62 0.63 1.70 0.62 -0.08 -4.7

regional 1.44 0.59 1.40 0.54 0.04 2.6
46050 1.50 0.55 1.49 0.50 0.01 0.7
46002 1.68 0.60 1.74 0.61 -0.07 -4.0

regional 1.61 0.59 1.63 0.57 -0.01 -0.9
46027 1.65 0.67 1.61 0.63 0.05 2.8
46006 1.51 0.54 1.56 0.55 -0.05 -3.4
46022 1.67 0.70 1.66 0.69 0.00 0.2
46014 1.62 0.57 1.78 0.62 -0.16 -9.5

regional 1.61 0.63 1.66 0.63 -0.05 -3.0
46059 1.94 0.62 1.77 0.56 0.16 8.8
46013 1.59 0.55 1.70 0.58 -0.11 -6.8
46026 1.26 0.41 1.34 0.45 -0.08 -6.5
46012 1.43 0.48 1.51 0.45 -0.08 -5.2
46042 1.56 0.45 1.63 0.47 -0.07 -4.6
46028 1.77 0.47 1.81 0.52 -0.04 -2.5

regional 1.55 0.53 1.62 0.53 -0.07 -4.4
76 1.09 0.29 1.12 0.29 -0.03 -2.8

46011 1.50 0.41 1.51 0.43 -0.02 -1.1
46023 1.68 0.46 1.65 0.43 0.02 1.4

71 1.58 0.39 1.69 0.43 -0.11 -6.8
46054 1.48 0.41 1.57 0.39 -0.09 -5.8
46053 0.93 0.28 0.96 0.27 -0.03 -3.1
46025 0.90 0.22 0.96 0.22 -0.05 -5.8

92 0.79 0.17 0.82 0.18 -0.03 -3.6
45 0.85 0.22 0.87 0.18 -0.01 -1.3
93 0.92 0.22 0.93 0.19 0.00 -0.3

46047 1.61 0.37 1.73 0.49 -0.12 -7.0
regional 1.21 0.47 1.23 0.48 -0.03 -2.1

Region Station August Average Hsig (m)

Washington

Oregon

Northern California

Central California

Southern California
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that any observed differences are statistically significant is high, so an additional 

analysis is needed to evaluate the likelihood of occurrence of the D-statistics resulting 

from the tests of observed data. Thus, the D-statistics resulting from the first set of K-

S tests (Table 3.3), which represent the maximum differences between the observed 

(normalized) individual summer and the overall (normalized) summer Hsig 

distributions, were compared to the large distribution of D-statistics (Figure 3.9) 

resulting from the 10,000-trial Monte Carlo computer simulation described in section 

3.3.3 [in which the K-S test was used to compare randomly subsampled distributions 

of Hsig values representing single typical summers (“typical,” in that there are no 

distinct representations of any “types” of summer, such as El Niño, La Niña, or 

neutral) to station 46005’s overall observed summer Hsig record through 2012 (33 

summers)] to determine how likely it is to observe the outcome of the first set of K-S 

tests (Table 3.3 and Appendix E) by chance. 

 Table 3.3 and Appendix E show that virtually all of the D-statistics from the 

K-S tests of the distributions of summer Hsig observed data from individual years vs. 

the overall distributions of summer Hsig observed data are significant, according to the 

confidence intervals generated by the Monte Carlo simulation (Figure 3.9). This 

suggests that year-to-year summer Hsig variations are large enough that Hsig 

distributions from most years deviate significantly from the average summer Hsig. 

Thus, Hsig data from individual summers are not likely to be useful for ENSO 

prediction and if there is indeed a trend in the summer El Niño Hsig data, it is probably 

most apparent when the El Niño summer data are viewed collectively. 
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Table 3.3: K-S test results for normalized distributions of individual summer Hsig 
observed data vs. normalized distributions of overall summer Hsig observed data for 
each Washington buoy (Appendix E contains results from all stations). Data from El 

Niño summers are indicated in bold typeface. A sign on a D-statistic indicates 
whether the greatest difference between an individual summer’s Hsig distribution and 
that of the overall summer for its station is positive or negative. Red color indicates 
that the results of the K-S test are not significant. Confidence levels of the observed 
D-statistics relative to the outcome of the Monte Carlo simulation (Figure 3.9) are 

also presented in the last column on the right. 
 

 
 

Region Station Year D-statistic p < 0.05? Monte Carlo Confidence
1987 -0.070 yes 99%
1988 0.035 yes 99%
1989 -0.167 yes 99%
1990 0.039 yes 99%
1991 -0.067 yes 99%
1992 -0.069 yes 99%
1993 -0.083 yes 99%
1994 -0.051 yes 99%
1995 -0.057 yes 99%
1996 -0.069 yes 99%
1997 0.087 yes 99%
1998 -0.143 yes 99%
1999 -0.097 yes 99%
2000 0.038 yes 99%
2001 0.022 yes 99%
2002 0.060 yes 99%
2003 0.049 yes 99%
2004 0.069 yes 99%
2005 0.076 yes 99%
2006 -0.154 yes 99%
2007 0.323 yes 99%
2008 0.065 yes 99%
2009 0.032 yes 99%
2010 0.111 yes 99%
2011 0.062 yes 99%
2012 0.071 yes 99%

46041Washington
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Region Station Year D-statistic p < 0.05? Monte Carlo Confidence
1984 -0.127 yes 99%
1985 0.216 yes 99%
1986 0.132 yes 99%
1987 0.347 yes 99%
1991 0.219 yes 99%
1992 -0.082 yes 99%
1993 -0.148 yes 99%
1994 0.031 yes 99%
1995 -0.094 yes 99%
1996 -0.362 yes 99%
1997 -0.035 yes 99%
1998 -0.061 yes 99%
1999 0.091 yes 99%
2000 -0.099 yes 99%
2001 0.068 yes 99%
2002 -0.038 yes 99%
2003 0.030 yes 99%
2004 -0.051 yes 99%
2005 -0.097 yes 99%
2006 0.071 yes 99%
2007 -0.027 yes 99%
2008 -0.083 yes 99%
2009 0.081 yes 99%
2010 0.104 yes 99%
2011 0.040 yes 99%
2012 0.155 yes 99%

46029Washington
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Region Station Year D-statistic p < 0.05? Monte Carlo Confidence
1982 -0.371 yes 99%
1987 0.133 yes 99%
1988 -0.193 yes 99%
1989 0.104 yes 99%
1990 -0.047 no n/a
1991 -0.105 yes 99%
1992 -0.114 yes 99%
1993 -0.142 yes 99%
1994 -0.153 yes 99%
1995 0.052 yes 99%
1996 0.065 yes 99%
1997 -0.070 yes 99%
1998 -0.034 yes 99%
1999 -0.056 yes 99%
2000 -0.039 yes 99%
2001 -0.037 yes 99%
2002 0.039 yes 99%
2003 0.017 no n/a
2004 0.091 yes 99%
2005 0.098 yes 99%
2006 0.081 yes 99%
2007 -0.070 yes 99%
2008 0.068 yes 99%
2009 -0.042 yes 99%
2010 0.082 yes 99%
2011 -0.069 yes 99%
2012 -0.091 yes 99%

Washington 36
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Region Station Year D-statistic p < 0.05? Monte Carlo Confidence
1976 -0.135 yes 99%
1977 0.278 yes 99%
1978 -0.145 yes 99%
1979 -0.152 yes 99%
1980 -0.063 yes 99%
1981 0.032 yes 99%
1982 -0.105 yes 99%
1983 -0.051 yes 99%
1984 0.068 yes 99%
1985 -0.255 yes 99%
1986 -0.074 yes 99%
1987 0.130 yes 99%
1988 0.025 yes 99%
1989 -0.098 yes 99%
1990 0.087 yes 99%
1991 -0.046 yes 99%
1992 -0.051 yes 99%
1993 0.081 yes 99%
1994 0.059 yes 99%
1995 0.069 yes 99%
1996 -0.083 yes 99%
1997 -0.025 yes 99%
1998 0.085 yes 99%
1999 0.092 yes 99%
2000 -0.034 yes 99%
2001 0.084 yes 99%
2002 0.030 yes 99%
2003 0.057 yes 99%
2004 0.067 yes 99%
2006 -0.109 yes 99%
2007 0.038 yes 99%
2008 0.054 yes 99%
2010 -0.148 yes 99%
2011 -0.064 yes 99%
2012 0.139 yes 99%

Washington 46005
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Figure 3.9 Distribution of D-statistics resulting from a 10,000-trial Monte Carlo 
simulation of K-S tests of distributions of individual summers’ Hsig values vs. all 

summer Hsig values from station 46005’s record through 2012 (33 summers included). 
Confidence intervals (CI) are shown. 

 

3.4.3 Summer Significant Wave Height (Hsig) vs. the Winter Multivariate El Niño 

Southern Oscillation (ENSO) Index (MEI) 

 In order to examine the predictive potential of the summer Hsig observed data, 

the average winter MEI was plotted as a function of the percentage difference 

between the average summer Hsig for each year and the overall average summer Hsig 

for each buoy over its timespan of available summer Hsig data, as described in section 

Frequency of D-statistics Resulting from 10,000-Trial Monte Carlo Simulation of K-S 
Tests of Distributions of Random Individual Summers’ Hsig Values vs. 33 Years of 

Summer Hsig Values 
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D-statistic 

95% CI: 0.0055 to 0.017 
 
97.5% CI: 0.0049 to 0.019 
 
99% CI: 0.0047 to 0.021 
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3.3.4. 7/27 stations have summer Hsig percentage differences that are significantly 

associated with the average winter MEI, including 1/2 Oregon stations (station 46050 

has a weak significance at the p < 0.05 level), 1/4 Northern California stations 

(46014), 2/6 Central California stations (46013 and 46026), and 3/11 Southern 

California stations (46011, 71, and 93), with the average winter MEI increasing as 

summer Hsig percentage difference decreases in all of the aforementioned cases (Table 

3.4). While the data are not very tightly clustered (Appendix F), 19/27 of the plots 

have negative slopes. This is unusual given the expected outcome; if the data were 

drawn randomly from the same populations, one would expect half of the slopes to be 

negative and half positive (in a normal distribution). An exact, two-tailed binomial 

test puts the likelihood of the actual outcome (19/27 plots with negative slopes) at p = 

0.052, which falls just short of significance, but as with all tests of significance, just 

because the null hypothesis (that the observed outcome does not deviate significantly 

from the expected 50-50 outcome) cannot be rejected at this stage does not 

necessarily mean that it is true. Excluding the two plots with zero slopes makes p = 

0.014 (p < 0.05) for 19/25 plots with negative slopes, but there is no rationale for 

eliminating any of the results. 

 The above analysis is limited and even at p = 0.052, an outcome of 19/27 plots 

with negative slopes still appears to be unusual compared to that which is expected. 

Since there is not yet sufficient evidence to reject the null hypothesis, it is worthwhile 

to compare the above results to the large simulated distribution of slopes (Figure 

3.10) that could result by chance (as described in section 3.3.4; values representing 
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summer Hsig percentage differences were drawn randomly from a Gaussian 

distribution centered on zero, with a standard deviation of seven), in order to 

determine the likelihood that the observed Hsig data vs. MEI plots would have slopes 

that differ from zero. According to the confidence intervals (CI) generated through 

the Monte Carlo simulation (Figure 3.10), seven of the negative slopes (and one 

positive slope) from the observed summer Hsig percentage difference vs. average 

winter MEI plots (Table 3.4) are significant at the 97.5% level and five of those 

negative slopes (as well as the positive slope) are also significant at the 99% level. 

This suggests that the weak trend in the observed summer Hsig data (average Hsig 

during El Niño summers is slightly lower than during neutral and La Niña summers) 

may be robust. 
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Table 3.4: Linear regression coefficients for the plots (Appendix F contains the 
graphs) of the average winter Multivariate ENSO Index (MEI) vs. the previous 
summer’s significant wave height (Hsig) percentage difference for each buoy. 

Negative slopes are highlighted in blue. 
 

 
 

 

 

 

 
 
 
 
 
 
 

a b R2 p < 0.05?
46041 0.033 0.134 0.069 no
46029 0.000 -0.052 0.000 no

36 -0.037 0.183 0.044 no
46005 -0.019 0.160 0.020 no
46050 -0.075 -0.023 0.203 yes
46002 -0.005 0.373 0.002 no
46027 0.021 0.030 0.025 no
46006 -0.003 0.174 0.001 no
46022 0.015 0.191 0.007 no
46014 -0.066 0.148 0.181 yes
46059 0.071 -0.229 0.052 no
46013 -0.059 0.032 0.246 yes
46026 -0.038 0.170 0.138 yes
46012 -0.032 0.158 0.118 no
46042 0.000 0.047 0.000 no
46028 0.017 0.088 0.013 no

76 -0.027 0.067 0.032 no
46011 -0.079 0.158 0.154 yes
46023 -0.034 0.200 0.036 no

71 -0.095 -0.307 0.306 yes
46054 -0.038 -0.088 0.061 no
46053 -0.044 -0.250 0.084 no
46025 0.017 0.156 0.012 no

92 -0.088 -0.294 0.192 no
45 -0.040 -0.109 0.036 no
93 -0.075 0.330 0.246 yes

46047 -0.045 -0.135 0.182 no

Central California

Southern California

Summer Hsig Percentage Difference vs. Average Winter MEI Correlation Results
Region Station

Washington

Oregon

Northern California
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Figure 3.10 Distribution of slopes resulting from a 10,000-trial Monte Carlo 
simulation of summer Hsig percentage difference vs. average (following) winter 

Multivariate ENSO Index (MEI). Confidence intervals (CI) are shown. 
 

3.4.4 Yearly Significant Wave Height (Hsig) vs. the Winter Multivariate El Niño 

Southern Oscillation (ENSO) Index (MEI) 

 In order to determine whether opening up the analysis to include the entire 

spectrum of wave heights might increase or decrease the relationship between Hsig 

and the average winter MEI compared to using just the summer Hsig data, the above 

evaluation (section 3.4.3) was repeated using yearly Hsig percentage difference in 

place of summer Hsig percentage difference, as mentioned in section 3.3.5. At first 

glance, the outcome for the yearly Hsig data (Table 3.5) does not appear to be very 

 
Frequency of Slopes Resulting from 10,000-Trial Monte Carlo Simulation of Summer 

Hsig Percentage Difference vs. Average Winter Multivariate ENSO Index (MEI) 
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different from the outcome for the summer Hsig data (Table 3.4). Both analyses result 

in slopes that are close to zero, with many more negative slopes than positive slopes 

(20/27 for the yearly data and 19/27 for the summer data). A few of the yearly Hsig vs. 

average winter MEI plots with negative slopes even have significant relationships 

(Table 3.5), although they are less numerous than are the significant summer Hsig vs. 

average winter MEI plots (7/27 with significant results). 

 It is impossible to say whether the yearly Hsig data are any better or worse for 

ENSO prediction (using the MEI) than are the summer Hsig data when using only the 

information contained in Tables 3.4 and 3.5. Thus, the above results were compared 

to the large simulated distribution of slopes (Figure 3.10) that could result by chance 

(as mentioned in section 3.3.5) in order to determine the likelihood that the observed 

yearly Hsig data vs. MEI plots would have slopes that differ from zero. As it turns out, 

the standard deviation that is representative of the distributions of observed yearly 

Hsig percentage differences (seven) is the same as the standard deviation that is 

representative of the distributions of observed summer Hsig percentage differences, so 

the slopes from the observed yearly Hsig percentage difference data vs. the average 

winter MEI plots were evaluated by comparison with the Monte Carlo simulation 

outcome from section 3.4.3 (Figure 3.10). According to the confidence intervals (CI) 

generated through the Monte Carlo simulation (Figure 3.10), six of the negative 

slopes from the observed yearly Hsig percentage difference vs. average winter MEI 

plots (Table 3.5) are significant at the 95% level and four of those slopes are also 

significant at the 99% level. This suggests that the yearly Hsig data are a bit more 
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random than the summer Hsig data and thus have lower predictive potential than the 

summer Hsig data. 

 

Table 3.5: Linear regression coefficients for the plots of the average winter 
Multivariate ENSO Index (MEI) vs. the previous year’s significant wave height (Hsig) 

percentage difference for each buoy. Negative slopes are highlighted in blue. 
 

 
 

 

a b R2 p < 0.05?
46041 0.033 0.134 0.069 no
46029 0.016 0.110 0.046 no

36 0.004 0.156 0.003 no
46005 -0.011 0.184 0.013 no
46050 0.029 0.067 0.120 no
46002 -0.030 0.242 0.101 no
46027 0.004 0.115 0.001 no
46006 -0.025 0.201 0.062 no
46022 -0.044 0.170 0.100 no
46014 -0.050 0.160 0.086 no
46059 0.005 -0.088 0.002 no
46013 -0.037 0.160 0.053 no
46026 -0.039 0.170 0.132 yes
46012 -0.036 0.156 0.083 no
46042 -0.016 0.075 0.016 no
46028 -0.033 0.076 0.043 no

76 -0.008 0.076 0.006 no
46011 -0.047 0.153 0.110 no
46023 -0.089 0.200 0.202 yes

71 -0.030 -0.328 0.090 no
46054 -0.052 -0.088 0.063 no
46053 -0.109 -0.250 0.226 no
46025 -0.025 0.170 0.030 no

92 -0.191 -0.096 0.441 yes
45 -0.091 -0.109 0.213 no
93 -0.024 0.204 0.097 no

46047 0.028 -0.010 0.030 no

Central California

Southern California

Region Station
Yearly Hsig Percentage Difference vs. Average Winter MEI Correlation Results

Washington

Oregon

Northern California
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3.4.5 Summertime El Niño Southern Oscillation (ENSO) Forecasting: The 

Multivariate ENSO Index (MEI) 

 In order to establish how well ENSO can be forecasted using the MEI alone 

(over the period of available observed significant wave height data, 1975-2012), the 

average winter MEI was plotted as a function of the average summer MEI (Figure 

3.11), as described in section 3.3.6. Since the MEI is widely regarded as one of the 

best indices for overall monitoring of the ENSO phenomenon (and use in worldwide 

correlation with surface temperature and rainfall, for example; Wolter and Timlin 

2011), it is unsurprising that the average summer MEI is by itself an excellent 

predictor of the average winter MEI [R2 = 0.59 is good, given the current status of 

ENSO forecasting (Barnston et al. 1999; Chen and Cane 2008)], with the average 

winter MEI increasing as a function of an increasing average summer MEI (Figure 

3.11). This stands in stark contrast to the weak relationship between summer 

significant wave height (Hsig) percentage difference and the average winter MEI 

(Table 3.4; Appendix F). Of course, this is not an entirely equal comparison of 

independent variables, as Hsig is a static parameter, whereas all seasonal MEI values 

[calculated separately for each of 12 sliding bimonthly seasons (December-January, 

January-February,…, November-December)] are standardized with respect to each 

season and to the 1950-1993 reference period (Wolter and Timlin 1993, 1998, and 

2011). (Because of the MEI’s autocorrelation, its seasonal values can change with 

each monthly update, but the changes are usually smaller than ± 0.1.) 
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 In order to demonstrate how the average summer MEI affects the probability 

of El Niño occurrence (average winter MEI ! 1) during the following winter, the 

probability of winter El Niño occurrence as a function of the average summer MEI 

for 1975-2012 was calculated and plotted (Figure 3.12) using the method for binary 

logistic regression, as described in section 3.3.6. A logistic regression model is a non-

linear transformation of a linear regression. It results in an S-shaped distribution 

function and while it is similar to a standard normal distribution, it makes for easily 

calculated probabilities (it constrains estimated probabilities to between zero and one, 

while mapping the probabilities to log odds ranging from zero to positive infinity).  

Table 3.6 contains the results of the logistic regression analysis, including the 

overall model fit quality, the fit of the coefficient (for average summer MEI), the odds 

ratio, and the confidence interval. Rather than indicating the rate of change in the 

dependent variable (likelihood of El Niño occurrence during the winter) as the 

average (previous) summer MEI changes, as in a linear regression analysis, the 

estimated coefficient here is the log odds ratio. This is not very intuitive, so the odds 

ratio, which results from taking the exponential of the coefficient, is computed for a 

different interpretation. Table 3.6c gives an odds ratio of 1.79 (an odds ratio of 1.79 is 

equivalent to a probability of 0.64), which indicates that the odds of winter El Niño 

occurrence increase by 179% for every 1-unit increase in the average (previous) 

summer MEI. The confidence interval shows how uncertainty in the average summer 

MEI can affect the probability of El Niño occurrence during the following winter. 

The confidence interval is wide, which suggests that the coefficient for average 



! "#$!

summer MEI is not exact. The results of the z-test (Table 3.6b) also seem to indicate 

that the null hypothesis (that there is no relationship between average summer MEI 

and winter El Niño occurrence) cannot be rejected. 

However, while the plot of the average winter MEI as a function of the 

average summer MEI (Figure 3.11) does show that the summer and winter indices are 

not perfectly related, the currently moderate skill levels of ENSO forecasting models 

(and the MEI’s reputation as one of the best indices for overall monitoring of the 

ENSO phenomenon) should also be considered when evaluating this model. In other 

words, while this model is not perfect, it is probably good enough for making rough 

predictions. Figure 3.12 provides a visual representation of the chances that El Niño 

(average winter MEI ! 1) will occur during the winter following a given summer 

average MEI. The points are spaced at intervals of 0.41 along the x-axis (because the 

average summer MEI ranges from -1.45 to 2.68 and including the highest and lowest 

average summer MEI values, 10 evenly spaced average summer MEI values were 

chosen for the plot). 
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Figure 3.11 The average winter Multivariate ENSO Index (MEI) as a function of the 

average (previous) summer MEI from 1975 to 2012. 
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a = 0.969, 
b = -0.165, 
R2 = 0.590, 
p << 0.01 
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Figure 3.12 The probability of winter El Niño occurrence as a function of the 
previous summer’s average MEI. Table 3.6 contains information about the logistic 

regression fit quality and odds ratio. 
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Table 3.6: Results of logistic regression analysis of the probability of winter El Niño 
occurrence as a function of the previous summer’s average MEI. Reports are shown 
for (a) overall model fit quality, (b) coefficient and fit, and (c) odds ratio (OR) and 

confidence interval. 
 

 

 

3.4.6 Summertime ENSO Forecasting: Combining the Multivariate El Niño Southern 

Oscillation (ENSO) Index (MEI) with Significant Wave Height (Hsig) 

 From the above analysis, it is clear that the average summer MEI is by itself a 

good predictor of the average winter MEI. In contrast, while there appears to be a 

robust (albeit very small) trend in the (normalized) El Niño summer Hsig observed 

data (section 3.4.2), there is only a weak relationship between summer Hsig 

percentage difference and the average winter MEI (section 3.4.3), so it does not make 

sense to try to predict winter ENSO conditions (based on the average winter MEI, at 

least) using the summer Hsig data alone. However, it is possible to use a combination 

of the average summer MEI and average summer Hsig to see whether the inclusion of 

Hsig data can improve the average summer MEI vs. average winter MEI model 

A.

Dep. Variable: El Niño Df Residuals: 36
Model: Logit Df Model: 0
Method: MLE Pseudo R-squ.: -0.2696
converged: True Log-Likelihood: -24.524

LL-Null: -19.317
LLR p-value: 1.000

B.
name of term coef std err z P>|z|

average_summer_mei 0.5824 0.411 1.418 0.156 -0.223 1.388

C.

name of term 2.5% 97.5% OR
average_summer_mei 0.8003 4.005 1.790

[95.0% Conf. Int.]

Logit Regression Results

Odds Ratio and Confidence Interval
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(section 3.4.5). To that end, multiple linear regression analyses were performed for 

each buoy, using x1 = average summer MEI, x2 = summer average Hsig, and y = 

average winter MEI, as described in section 3.3.7. 

Table 3.7 shows the results of the ordinary least-squares (OLS) multiple 

regression analysis for station 46014. Results for the other stations, which are similar 

to station 46014’s, are contained in Appendix G (and Supplemental File 8). In Table 

3.7a, “coef” is the estimated value of the coefficient. Each coefficient provides an 

indication of the impact of a change in its associated variable (x1 or x2) after 

accounting for the other variable (x2 or x1, respectively). A coefficient of zero (or 

nearly zero) indicates that the associated explanatory variable is not helpful for the 

model. As expected, the signs on the coefficients are consistent with the relationships 

between the respective variables and the average winter MEI (Table 3.4; Appendix F; 

Figure 3.11). The report (Table 3.7a) shows that the coefficient for the average 

summer MEI (x1) is significant with greater than 95% confidence (in relation to x2) 

and in all likelihood, describes a real relationship with the average winter MEI. The 

same cannot be said of the coefficient for summer average Hsig (x2), which has only a 

93.4% chance of describing a real relationship (in relation to x1) with the average 

winter MEI (and thus does not contribute significantly to the model). In Table 3.7b, 

“Adj. R-squared” is an adjustment of R2 that accounts for the fact that R2 generally 

increases as the number of independent variables increases, even when irrelevant 

variables are included, because increasing the number of parameters improves the fit 

of the regression line. According to Table 3.7b, an adjusted R2 of 0.61 indicates that 
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61% of the variance in the observed values of the dependent variable (average winter 

MEI) is explained by the model, while 39% of the differences remain unexplained (in 

the error term). While this model is a huge improvement over using just the summer 

average Hsig to predict the average winter MEI (Table 3.4), the improvement over 

using just the average summer MEI to predict the average winter MEI (Figure 3.11) is 

tiny, at just 2%. 

A biased model might perform well in some areas or given a particular range 

of values for the dependent variable (average winter MEI, y) but otherwise perform 

poorly in general. However, the R2 value cannot reveal such biases. Thus, additional 

tests are conducted to assess the distribution of the residuals (over/under predictions). 

For instance, OLS assumes that the relationships in the model are linear. In a properly 

specified OLS model, the residuals are normally distributed about a mean of zero, 

whereas a biased model might be skewed positively or negatively (and/or it could be 

affected by outliers). In Table 3.7c, “Jarque-Bera(JB)” and “Prob(JB)” indicate 

whether skewness and kurtosis are statistically significant. A histogram of the 

summer Hsig data for station 46014 shows that the data are positively skewed (Figure 

3.13). If this were a significant issue, performing a log transformation on the Hsig data 

(to increase its linearity) could potentially reduce the bias, but the Jarque-Bera test 

indicates that skewness does not affect the whole model significantly, which does not 

come as a surprise, given how little the Hsig data contribute to the fit. Ultimately, there 

is no compelling reason to recommend combining the average summer MEI with 

summer average Hsig data to predict the average winter MEI. 
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Table 3.7: Results of the ordinary least-squares (OLS) multiple (linear) regression 
analysis for station 46014, with x1 = average summer MEI, x2 = summer average Hsig, 
and y = average winter MEI. Reports are shown for (a) each coefficient, (b) model fit 

and goodness of fit, and (c) statistical tests for assessment of the distribution of the 
residuals. (Appendix G contains results from the other stations.) 

 

 
 

A.

name of term coef std err t P > |t|
x1 0.9248 0.159 5.819 0.000 0.599 1.251
x2 -0.0356 0.019 -1.913 0.066 -0.074 0.003
const -0.1916 0.142 -1.347 0.189 -0.483 0.100

B.
Dep. Variable: y R-squared: 0.637
Model: OLS Adj. R-squared: 0.610
Method: Least Squares F-statistic: 23.67
No. Observations: 30 Prob (F-statistic): 1.16E-06
Df Residuals: 27 Log-Likelihood: -30.725

AIC: 67.45
BIC: 71.65

C.
Omnibus: 1.389 Durbin-Watson: 2.130
Prob(Omnibus): 0.499 Jarque-Bera(JB): 0.561
Skew: -0.299 Prob(JB): 0.755
Kurtosis: 3.300 Cond. No. 10.1

Station 46014
[95.0% Conf. Int.]

Df Model: 2
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Figure 3.13 Histogram of all summer Hsig data from station 46014 for the1981-2012 

period. Combed effect is due to the relatively small binwidth. 
 
 
3.4.7 Summer Significant Wave Height (Hsig): Explaining the Trend 

Part of a recent study (Seymour 2011) examined monthly mean Hsig values 

from U.S. West Coast buoys (NDBC and CDIP) in relation to monthly means of three 

climate indices [Pacific Decadal Oscillation (PDO, which measures sea surface 

temperature), Multivariate ENSO Index (MEI, which indicates ENSO condition), and 

Northern Pacific (NP Index or “NPI,” which measures the mean sea-level pressure 

over the region 30˚N to 65˚N, 160˚E to 140˚W) Index] over two time periods (1984 to 

1995 and 1996 to 2007) for two consolidated regions (“North,” including records 

from Washington in the north to Point Conception in the south; and “Southern 
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California,” including records from south of Point Conception) to determine the 

degree to which wave energy along the coast can be predicted by the three indices. 

(The data were split into two time periods for the main purpose of determining 

whether mean wave energy changed from the first period to the second.) Seymour 

(2011) found that monthly mean Hsig records are strongly associated with the NP 

Index over both regions and time periods, whereas neither the MEI nor the PDO are 

very significantly associated with the data (Table 3.8). 

 In order to determine the extent to which summer Hsig observed data relate to 

the NP Index, monthly summer Hsig percentage difference was plotted as a function of 

the monthly summer NP Index for each buoy through 2010 (Appendix H), as 

described in section 3.3.8. Table 3.9, which contains the linear regression coefficients 

for the plots, shows that there is a strong relationship between monthly summer Hsig 

percentage difference and the monthly summer NP Index, with R2 values ranging 

from 0.296 to 0.585. Monthly summer Hsig percentage difference decreases as the NP 

Index rises, indicating that monthly Hsig percentage difference is lower than average 

during the summer when the intensity of the Aleutian Low pressure cell in the Gulf of 

Alaska rises. Most of the plots (Appendix H) appear to have high concentrations or 

clusters of points on the extreme end of the summer NP Index (around 1015 to 1020 

mbar), which suggests that a sizable portion of the monthly Hsig percentage 

differences is low during the summer. 

 While the R2 values from the monthly summer Hsig percentage difference vs. 

monthly summer NP Index plots (Table 3.9) are high, the regression fits do not fully 
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describe the summer Hsig trend. Monthly means of the NP Index, MEI, and PDO all 

exhibit significant year-to-year and seasonal variability (Figure 3.14), so part of the 

relationship between the monthly NP Index and the monthly mean Hsig could be 

coincidental, since both time series have well-defined annual cycles (Seymour 2011). 

The monthly MEI and monthly PDO vary on timescales that are far longer than that 

of the NP Index. Seymour 2011 investigated the possibility of associations among 

combinations of the three indices because the influence of the MEI and the PDO 

could be important for producing extreme wave heights, as a result of coincidence 

with each other or with the atmospheric pressure in the Gulf of Alaska (as would be 

indicated by the NP Index). Table 3.10 shows the significant relationships among the 

indices. The NP Index is weakly and negatively associated with the PDO during the 

1996-2007 period, which suggests that atmospheric pressure near the Aleutian Islands 

trends toward low values when sea surface temperatures are warm in the Pacific (and 

conditions for El Niño are favorable), but the NP Index is not significantly associated 

with the MEI (Seymour 2011). 

 Some of the spread in the monthly summer Hsig percentage difference vs. 

monthly summer NP Index plots (Table 3.9 and Appendix H) is likely due to local 

random noise, but changes in wave energy at particular stations can also result from a 

persistent shift in the proximity or orientation of storm activity or from changes in 

storm intensity (Bromirski et al. 2005). The wave climate in the U.S. northeast Pacific 

is characterized by three dominant modes: the northern hemisphere swell, the 

southern hemisphere swell, and local wind-driven seas (Moffatt and Nichol Engineers 
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1989). Northern hemisphere swell is usually generated by cyclones off the Aleutian 

Islands in the north Pacific, but it can also be produced by subtropical storms north of 

Hawaii, tropical hurricanes, and strong winds in the eastern Pacific (Flick 1994). 

During the summer, southern hemisphere swell is generated by storms and cyclones 

off New Zealand, Indonesia, Central and South America, generally producing smaller 

waves (with very long periods of T ! 20 s because of the intensity and persistence of 

storms in the Antarctic vicinity) than does northern hemisphere swell (Benumof et al. 

2000). Local wind-driven swell develops rapidly when low-pressure systems track 

near the coastline during the winter and when strong sea breezes are generated during 

the spring and summer (Benumof et al. 2000). Unfortunately, wave direction records 

are limited, so there is some ambiguity as to cause(s) of changes in the observed Hsig 

data. That is to say, without looking at wave spectral density data, which would allow 

for some differentiation between distant and local wave generation, it is difficult to 

tell whether changes in Hsig result primarily from changes in storm intensity, storm 

location (shifting storm tracks), or from a combination of the two (Bromirski et al. 

2005). 
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Table 3.8: Linear regression fits for regional monthly mean significant wave heights 
(Hsig) vs. monthly means of the Northern Pacific Index (NPI), the Pacific Decadal 
Oscillation (PDO), and the Multivariate ENSO Index (MEI) for U.S. West Coast 

buoys over two time periods (from Seymour 2011). 
 

 
 
 

 
Table 3.9: Linear regression coefficients for the plots (plots are contained in 
Appendix H) of the monthly summer significant wave height (Hsig) percentage 
difference vs. the monthly summer Northern Pacific (NP) Index for each buoy. 

 

 

a b R2 p < 0.05?
46041 -4.54 4600 0.358 yes
46029 -4.50 4557 0.376 yes

36 -4.72 4779 0.410 yes
46005 -5.23 5296 0.521 yes
46050 -4.72 4779 0.448 yes
46002 -4.52 4574 0.455 yes
46027 -3.56 3601 0.428 yes
46006 -6.00 6079 0.585 yes
46022 -3.83 3877 0.437 yes
46014 -3.17 3214 0.427 yes
46059 -4.27 4325 0.436 yes
46013 -3.08 3123 0.409 yes
46026 -3.46 3502 0.434 yes
46012 -3.11 3149 0.381 yes
46042 -3.19 3227 0.406 yes
46028 -2.37 2399 0.296 yes

76 -3.90 3953 0.544 yes
46011 -3.27 3310 0.391 yes
46023 -2.73 2763 0.362 yes

71 -2.74 2777 0.415 yes
46054 -3.19 3228 0.468 yes
46053 -3.49 3535 0.514 yes
46025 -2.91 2947 0.383 yes

92 -3.06 3100 0.477 yes
45 -1.06 1073 0.117 yes
93 -2.58 2612 0.298 yes

46047 -2.54 2567 0.384 yes

Central California

Southern California

Region Station
Monthly Summer Northern Pacific Index vs. Monthly Summer Hsig Percentage Difference

Washington

Oregon

Northern California
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Figure 3.14 Time series of the monthly means of the Pacific Decadal Oscillation 
(PDO), Multivariate ENSO Index (MEI), and Northern Pacific Index (NPI) show 

significant variation over different time scales (from Seymour 2011). 
 

 
 
Table 3.10: Significant relationships among climate indices, including the Northern 

Pacific Index (NPI), the Pacific Decadal Oscillation (PDO), and the Multivariate 
ENSO Index (MEI) over two time periods (from Seymour 2011). 
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3.5 CONCLUSIONS 

 The El Niño Southern Oscillation (ENSO) is a pattern of climate variability 

that occurs across the tropical Pacific Ocean and atmosphere semi-periodically, about 

every two to seven years. One of ENSO’s two main phases, El Niño, has been known 

to cause costly floods and coastal erosion across the U.S. West Coast during strong 

events, due to a combination of elevated water levels, storm surges, and wind-driven 

waves, so predicting ENSO events is critical for coastal planning purposes (Allan and 

Komar 2006). While scientists have made great strides in ENSO forecasting since the 

mid-1980’s, the best frameworks have mostly stalled at a moderate level, leaving 

room for improvement in ENSO observing systems, models, and data assimilation 

methods (Chen and Cane 2008). 

In the hierarchy of ENSO prediction models, purely statistical systems are 

usually at a disadvantage (compared to fully coupled models and hybrid models) 

because of their inability to describe the physics of the ocean-atmosphere system, the 

short timespan of oceanic and atmospheric observations, and the lack of freedom to 

adjust parameters as information evolves. However, Ludescher et al.’s (2014) model, 

which uses an alternative forecasting approach (Ludescher et al. 2013) based on 

complex network analysis (Tsonis et al 2006; Yamasaki et al. 2008; Donges et al. 

2009; Gozolchiani et al. 2011), appears to be able to predict the occurrences of El 

Niño events by about one year in advance, thus overcoming the “spring barrier” 

(Webster 1995; Goddard et al. 2001) that has prevented other models from detecting 
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El Niño events by more than six months in advance and suggesting that there may be 

hope for purely statistical ENSO frameworks. 

Currently, one of the biggest obstacles to ENSO prediction is NOAA’s recent 

failure (due to 2012 budget cuts) to maintain the Tropical Atmosphere Ocean array 

(TAO), which normally provides real-time measurements of the temperature of the 

upper layer of the tropical Pacific Ocean (to a depth of 500 meters) and the 

atmospheric conditions above it, playing a crucial role in ENSO prediction (Latif et al. 

1998; McPhaden et al. 1998; Neelin et al. 1998). Scientists are now partially blind to 

early El Niño development in the tropical Pacific, since nearly half of the buoys in the 

array have failed during the last two years (Tollefson 2014). NOAA is dedicated to 

restoring most of the array by the end of 2014. 

Gaps or dropouts in ENSO observing systems and a lack of observational data 

for sufficient coupled model initialization (Chen and Cane 2008) call for the use of 

proxy data and the exploration of existing oceanographic data that have not 

traditionally been employed in ENSO prediction. For instance, no previous studies 

have attempted to determine whether significant wave height (Hsig) data from buoys 

off the U.S. West Coast are predictive of ENSO, although it is clear that wave heights 

in that region are affected by the phenomenon (Storlazzi and Griggs 2000; Graham 

and Diaz 2001; Allan and Komar 2002). 

 In this study, significant wave height (Hsig) data from 27 deep-water buoys 

located off the U.S. West Coast (operated by NOAA’s National Data Buoy Center 

and Scripps Institution of Oceanography’s Coastal Data Information Program) were 
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examined to determine whether they could provide a predictive lead on El Niño. This 

study finds the following: 

• While it appears that on the whole, El Niño summer average Hsig values are 

slightly lower than non-El Niño summer average Hsig values at most stations, 

the standard deviations are high, indicating a fair amount of variability over 

the season (Table 3.2).  

• Plotting the average winter Multivariate ENSO Index (MEI) as a function of 

the percentage difference between the average (previous) summer Hsig for 

each year and the overall average summer Hsig for each buoy over its timespan 

of available summer Hsig data (through 2012) yields 7/27 stations with summer 

Hsig percentage differences that relate significantly to the average winter MEI 

(Table 3.4). In each of those cases, the average winter MEI increases as 

summer Hsig percentage difference decreases. The data are not tightly 

clustered, but 19/27 of the plots have negative slopes (Appendix F). An exact, 

two-tailed binomial test puts the likelihood of the actual outcome (19/27 plots 

with negative slopes) at p = 0.052, which falls just short of significance but 

still seems unusual, given the expected outcome (50:50 positive and negative 

slopes for a normal distribution). 

• According to confidence intervals (CI) generated through a Monte Carlo 

simulation of linear regression analyses of summer Hsig percentage difference 

vs. the average (following) winter MEI (Figure 3.10), seven of the negative 

slopes (and one positive slope) from the observed summer Hsig percentage 
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difference vs. average winter MEI plots (Table 3.4) are significant at the 

97.5% level. This suggests that the weak trend in the observed summer Hsig 

data (average Hsig during El Niño summers is slightly lower than during 

neutral and La Niña summers) may be robust and not due to natural variation. 

• An analysis of yearly Hsig percentage difference vs. the average (following) 

winter MEI (section 3.4.4) shows that the yearly data are a bit more random 

than the summer Hsig data and thus have lower predictive potential than the 

summer data. However, in either case, the relationship between Hsig 

percentage difference and the winter MEI is weak and there is too much noise 

to consider using Hsig as an ENSO predictor on its own. 

• A plot of winter MEI as a function of the average (previous) summer MEI 

over the 1975 to 2012 time period shows that the average summer MEI is by 

itself an excellent predictor of the average winter MEI [R2 = 0.59 is good, 

given the current status of ENSO forecasting (Barnston et al. 1999; Chen and 

Cane 2008)], with the average winter MEI increasing as a function of an 

increasing average summer MEI (Figure 3.11). This comes as no surprise, as 

the MEI is regarded as one of the best indices for overall ENSO monitoring 

(Wolter and Timlin 2011). 

• Since consensus forecasts are usually far more skillful than individual models 

(Kirtman et al. 2002), multiple linear regression analyses were performed for 

each buoy, using x1 = average summer MEI, x2 = summer average Hsig, and y 

= average winter MEI (section 3.3.7) to see whether the addition of Hsig data 
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could improve the ability of the average summer MEI to forecast ENSO 

conditions. Although the combination model is much better than using only 

the summer average Hsig to predict the average winter MEI, it is unreasonable 

to recommend combining the average summer MEI with summer average Hsig 

data to predict the average winter MEI because the improvement over using 

just the average summer MEI to predict the average winter MEI (Figure 3.11) 

is negligible, at just 2%. 

• Plots of monthly summer Hsig percentage difference as a function of the 

monthly summer Northern Pacific (NP) Index (which measures the mean sea-

level pressure over the region 30˚N to 65˚N, 160˚E to 140˚W, indicating the 

intensity of the Aleutian Low pressure cell in the Gulf of Alaska), for each 

buoy through 2010 (Appendix H) suggest that the summer Hsig observed data 

may be largely explained by the NP Index (Table 3.9), with monthly summer 

Hsig percentage difference decreasing as the NP Index rises. 

• Some of the spread in the monthly summer Hsig percentage difference vs. 

monthly summer NP Index plots (Table 3.9 and Appendix H) is likely due to 

local random noise, but without adequate wave direction information, it is 

difficult to say whether differences in wave energy result from persistent 

shifts in the proximity or orientation of storm activity, changes in storm 

intensity, or some combination of the two (Bromirski et al. 2005). Some of the 

summer Hsig differences could be explained by southern hemisphere swell 

generated by storms and cyclones off New Zealand, Indonesia, Central and 
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South America, which generally produce smaller waves than does the 

predominating northern hemisphere swell (Benumof et al. 2000). Another 

source is local wind-driven swell, which develops rapidly when strong sea 

breezes are generated during summer (Benumof et al. 2000). Perhaps these 

effects are heightened (to a small degree) during the summers leading up to El 

Niño winters. 

 While there is no good reason to use summer Hsig observed data from off the 

U.S. West Coast in ENSO prediction, it is interesting to note that there appears to be a 

weak relationship between summer Hsig and the winter MEI, as this contributes to the 

growing body of knowledge about ENSO. Further study could benefit from the use of 

wave hindcasts, such as the ERA-40 wave reanalysis, which extends back in time to 

1957 (http://www.ecmwf.int/products/data/archive/descriptions/e4/), or NCEP 

(http://www.ncep.noaa.gov/), which extends back to 1948. This would both lengthen 

the observed Hsig dataset (from the buoys) substantially beyond its currently limited 

(~30-year) timespan and smooth over any dropouts in the raw data. 
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Number of Significant Wave Height Records by Month and Year 

Number of significant wave height (Hsig) records by month and year for each station. 

El Niño records are highlighted in yellow. Additionally, moderate to strong El Niño 

records are noted in bold, while missing data are displayed in red text. 
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Region Station Year 
# of Hsig Records by Month 

June July August September October November 
W

as
hi

ng
to

n 

46041 1987 506 741 740 674 742 709 
1988 719 739 735 716 740 718 
1989 0 299 733 714 734 711 
1990 709 737 741 698 738 714 
1991 716 733 710 707 732 672 
1992 701 724 716 657 693 648 
1993 653 705 691 662 691 668 
1994 709 700 735 72 0 215 
1995 716 726 647 0 0 242 
1996 717 827 787 715 732 689 
1997 294 0 0 0 0 0 
1998 373 718 759 680 731 692 
1999 169 698 658 642 584 575 
2000 661 704 592 455 699 712 
2001 708 741 721 709 724 689 
2002 101 739 738 717 739 719 
2003 719 707 742 712 738 719 
2004 716 736 740 719 741 715 
2005 716 743 742 708 742 712 
2006 220 742 742 717 737 357 
2007 0 0 0 0 476 710 
2008 720 743 742 720 744 719 
2009 714 741 715 700 700 675 
2010 713 744 744 720 709 623 
2011 720 744 744 718 487 714 
2012 718 742 733 702 713 580 

46029 1984 715 735 726 713 740 710 
1985 0 0 0 0 0 0 
1986 0 0 0 0 0 0 
1987 0 0 0 0 0 0 
1988 0 0 0 0 0 0 
1989 0 0 0 0 0 0 



! "##!

1990 0 0 0 0 0 0 
1991 0 0 0 0 512 712 
1992 627 740 732 709 732 699 
1993 331 730 732 713 741 716 
1994 712 707 739 710 731 709 
1995 715 730 737 709 725 699 
1996 713 834 787 371 0 0 
1997 711 727 734 713 711 694 
1998 688 727 782 690 738 705 
1999 700 716 702 692 660 595 
2000 590 0 722 716 722 0 
2001 715 742 735 710 743 717 
2002 693 742 742 719 740 720 
2003 712 743 742 711 737 695 
2004 716 740 741 713 736 711 
2005 715 741 740 715 723 694 
2006 713 738 726 664 727 705 
2007 712 740 738 717 732 670 
2008 719 741 743 718 741 712 
2009 244 743 744 720 742 690 
2010 720 744 741 718 726 683 
2011 697 687 675 685 725 675 
2012 0 0 700 715 684 669 

36 1981 0 0 0 0 0 38 
1982 14 7 0 0 34 48 
1983 0 0 0 0 22 0 
1984 0 0 0 0 0 0 
1985 0 0 0 0 0 0 
1986 0 0 0 0 0 0 
1987 143 151 146 159 191 132 
1988 2 116 116 114 108 193 
1989 219 142 0 138 78 0 
1990 237 247 244 235 246 226 
1991 234 240 243 230 244 230 
1992 208 245 244 238 193 138 
1993 211 43 29 432 504 478 
1994 440 494 298 176 495 410 
1995 395 469 438 471 486 456 
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1996 1418 1324 1476 1436 1467 481 
1997 156 484 458 476 249 0 
1998 1433 1461 1432 1362 1471 1430 
1999 1368 1397 1429 1439 918 1422 
2000 1428 1456 1487 1423 885 649 
2001 1440 1488 1480 1440 1486 1437 
2002 1440 1484 1488 1440 1488 1440 
2003 1432 1488 1487 1423 1473 1431 
2004 1440 1477 1488 1440 1488 1422 
2005 1434 1487 1481 1437 1476 1430 
2006 1418 1488 1486 1439 1487 339 
2007 1440 1488 1488 1440 1488 1440 
2008 1440 1488 1488 1440 1488 1440 
2009 1426 1488 1488 1440 1488 1440 
2010 586 1488 1488 1440 1488 1440 
2011 1440 1488 1488 1440 1488 1438 
2012 1440 1488 1488 1440 1488 1440 

46005 1976 0 0 0 151 245 239 
1977 0 0 0 0 158 230 
1978 215 241 240 235 246 240 
1979 239 246 256 238 246 240 
1980 211 616 742 712 744 720 
1981 719 742 744 707 720 719 
1982 720 742 737 715 716 621 
1983 711 744 743 718 743 718 
1984 716 738 737 716 739 712 
1985 239 710 707 292 343 0 
1986 717 742 738 654 0 0 
1987 0 258 738 681 742 718 
1988 719 743 737 252 246 39 
1989 704 738 731 715 741 716 
1990 238 246 123 0 0 0 
1991 717 741 732 714 737 715 
1992 717 736 732 706 728 698 
1993 0 68 525 458 741 711 
1994 716 699 730 704 734 714 
1995 715 737 741 693 736 707 
1996 708 832 785 716 537 191 
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1997 711 724 735 713 737 699 
1998 686 725 780 696 740 712 
1999 720 735 723 306 425 642 
2000 711 729 739 712 733 710 
2001 713 721 736 718 726 718 
2002 711 736 705 694 736 719 
2003 720 742 740 709 741 715 
2004 715 742 737 705 743 719 
2005 0 0 0 0 0 0 
2006 719 743 739 696 738 718 
2007 716 737 742 717 740 693 
2008 122 743 743 716 738 713 
2009 0 0 0 0 0 0 
2010 120 738 731 662 648 371 
2011 606 743 6 718 743 719 
2012 720 8 0 0 0 0 

O
re

go
n 

46050 1991 0 0 0 0 0 303 
1992 681 725 728 674 684 648 
1993 573 662 614 581 668 596 
1994 698 662 732 430 0 0 
1995 712 741 736 715 738 711 
1996 706 834 549 0 0 0 
1997 0 0 6 536 716 683 
1998 692 737 787 684 741 710 
1999 612 700 715 597 509 680 
2000 718 736 742 718 737 710 
2001 717 743 736 711 730 711 
2002 718 740 741 718 728 714 
2003 719 740 740 712 739 717 
2004 717 738 744 720 743 700 
2005 719 744 744 720 742 719 
2006 717 742 583 505 740 720 
2007 716 739 743 716 742 688 
2008 712 733 737 711 736 706 
2009 710 721 720 712 728 685 
2010 703 714 718 705 721 671 
2011 145 559 741 717 739 703 
2012 696 739 737 715 702 682 
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46002 1975 0 0 0 650 716 0 
1976 249 0 195 39 204 240 
1977 47 0 19 238 245 241 
1978 0 0 211 239 246 234 
1979 715 742 741 719 739 720 
1980 719 743 743 713 741 719 
1981 715 741 744 703 720 719 
1982 718 741 739 714 210 366 
1983 707 341 443 713 703 620 
1984 0 0 0 0 0 0 
1985 718 737 717 716 738 717 
1986 720 743 743 720 741 451 
1987 715 742 742 680 740 715 
1988 0 0 0 0 743 717 
1989 703 733 732 715 738 715 
1990 167 739 742 708 739 718 
1991 716 742 732 719 743 302 
1992 718 739 736 712 730 697 
1993 707 722 709 472 734 711 
1994 706 706 733 711 732 711 
1995 716 739 741 716 744 714 
1996 712 839 790 717 734 688 
1997 0 0 617 715 732 703 
1998 686 728 786 702 0 0 
1999 0 0 0 0 0 0 
2000 715 740 739 718 733 712 
2001 716 740 739 713 728 693 
2002 481 542 738 689 712 649 
2003 0 0 0 0 0 0 
2004 75 739 742 720 742 711 
2005 718 710 0 0 0 0 
2006 167 740 615 716 739 717 
2007 717 742 349 101 734 719 
2008 162 743 744 715 741 719 
2009 720 656 0 0 0 0 
2010 0 0 0 0 0 0 
2011 715 742 742 716 736 717 
2012 719 740 742 719 727 698 



! "#$!

N
or

th
er

n 
C

al
ifo

rn
ia

 

46027 1983 0 0 0 0 0 0 
1984 0 0 0 0 0 0 
1985 154 740 161 0 348 715 
1986 717 739 219 0 0 616 
1987 709 739 484 516 733 694 
1988 695 663 609 535 0 0 
1989 671 722 726 702 713 700 
1990 695 726 729 702 734 712 
1991 718 734 736 715 294 0 
1992 642 699 672 660 674 680 
1993 0 0 0 694 730 699 
1994 707 704 738 699 727 684 
1995 170 0 0 713 740 709 
1996 707 829 784 712 735 689 
1997 0 0 0 0 0 0 
1998 1 730 257 705 9 0 
1999 605 688 637 625 657 656 
2000 636 649 662 636 676 715 
2001 712 723 740 716 732 720 
2002 707 740 719 719 721 720 
2003 719 742 743 711 741 719 
2004 720 739 737 720 743 719 
2005 0 0 0 0 219 653 
2006 686 694 702 657 649 714 
2007 695 743 743 720 737 554 
2008 701 708 717 701 730 702 
2009 705 721 672 691 737 700 
2010 676 703 696 688 712 676 
2011 676 704 741 715 738 703 
2012 705 734 737 713 740 717 

46006 1977 234 244 247 239 247 240 
1978 232 248 247 239 248 122 
1979 227 240 626 708 668 703 
1980 0 0 0 0 0 0 
1981 719 744 744 704 719 704 
1982 719 740 730 715 744 719 
1983 712 742 742 717 739 717 
1984 0 0 0 0 0 0 
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1985 487 0 244 717 738 718 
1986 57 737 734 707 727 688 
1987 710 741 735 677 736 711 
1988 0 0 600 709 727 681 
1989 701 707 732 695 726 703 
1990 704 731 722 680 725 702 
1991 0 0 0 0 0 0 
1992 330 742 740 708 733 696 
1993 706 732 732 711 736 712 
1994 709 697 737 704 729 708 
1995 710 731 734 699 733 634 
1996 704 825 729 710 717 681 
1997 534 14 0 0 0 0 
1998 462 430 480 588 695 692 
1999 614 615 567 549 672 654 
2000 0 0 300 713 704 657 
2001 708 741 740 700 737 701 
2002 701 722 733 713 704 670 
2003 0 83 743 712 738 720 
2004 718 740 738 720 744 716 
2005 720 743 743 720 743 720 
2006 719 743 743 719 743 462 
2007 0 0 374 664 579 636 
2008 0 0 239 711 733 688 
2009 716 735 725 704 724 699 
2010 0 0 157 658 643 644 
2011 719 744 742 719 739 717 
2012 720 744 744 720 738 719 

46022 1982 697 737 739 713 737 718 
1983 714 744 744 715 736 708 
1984 716 739 413 0 0 0 
1985 720 736 736 709 733 715 
1986 716 744 739 716 739 149 
1987 715 741 737 399 76 715 
1988 716 741 735 591 0 0 
1989 687 734 732 715 737 718 
1990 237 81 0 363 739 716 
1991 716 737 732 717 737 714 
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1992 709 737 738 712 722 690 
1993 704 727 727 709 736 712 
1994 708 706 733 713 721 696 
1995 242 610 729 693 725 675 
1996 0 0 0 0 0 0 
1997 708 723 731 708 737 700 
1998 0 690 536 708 712 700 
1999 717 740 277 244 605 673 
2000 585 718 735 716 726 709 
2001 713 738 729 698 743 715 
2002 716 715 711 714 729 712 
2003 719 743 743 713 741 137 
2004 716 743 710 0 743 718 
2005 720 742 742 719 744 718 
2006 719 742 736 681 737 719 
2007 710 736 733 716 739 698 
2008 1 731 733 713 715 337 
2009 720 743 744 720 742 719 
2010 0 16 168 713 695 671 
2011 705 737 599 0 0 0 
2012 0 0 0 0 0 1 

46014 1981 714 388 453 303 717 719 
1982 718 742 735 716 741 720 
1983 658 742 742 719 737 712 
1984 715 735 722 700 741 712 
1985 713 729 166 599 740 718 
1986 605 741 743 717 739 695 
1987 715 738 667 680 740 719 
1988 718 742 735 641 0 0 
1989 314 734 736 713 740 719 
1990 716 738 713 687 738 717 
1991 720 742 739 719 7 0 
1992 174 739 739 658 617 574 
1993 703 728 730 712 734 706 
1994 702 707 740 707 727 706 
1995 216 5 740 716 740 713 
1996 711 837 789 717 737 694 
1997 714 734 739 713 736 697 
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1998 696 735 783 700 736 712 
1999 718 742 728 707 597 686 
2000 709 736 741 718 727 713 
2001 718 743 742 715 743 718 
2002 718 740 741 719 737 719 
2003 720 741 743 712 741 720 
2004 719 740 742 715 743 719 
2005 720 743 743 720 742 719 
2006 0 0 0 567 741 715 
2007 715 152 378 718 743 703 
2008 719 743 744 719 744 720 
2009 720 744 744 720 743 720 
2010 718 744 743 719 743 662 
2011 0 511 743 719 740 718 
2012 718 743 744 717 743 718 

C
en

tra
l C

al
ifo

rn
ia

 

46059 1994 0 0 0 0 307 702 
1995 711 738 743 711 742 714 
1996 710 830 791 713 734 685 
1997 711 727 738 716 737 702 
1998 692 733 784 706 734 708 
1999 718 729 727 709 694 687 
2000 710 733 741 718 734 713 
2001 714 737 736 712 735 715 
2002 718 739 733 719 737 719 
2003 719 743 744 712 738 720 
2004 717 741 616 716 744 716 
2005 0 0 0 0 269 719 
2006 716 742 736 678 737 711 
2007 698 720 723 698 731 689 
2008 695 711 726 707 727 710 
2009 0 0 0 0 0 0 
2010 632 611 138 719 728 685 
2011 709 732 5 718 739 716 
2012 696 0 0 0 0 0 

46013 1981 700 741 133 460 703 553 
1982 717 741 740 718 743 720 
1983 708 741 740 715 732 713 
1984 714 728 403 715 731 702 
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1985 647 713 728 698 720 696 
1986 0 0 0 605 740 691 
1987 715 738 740 678 741 360 
1988 719 741 735 704 732 715 
1989 692 695 10 54 739 283 
1990 714 737 187 385 740 718 
1991 718 741 735 719 742 717 
1992 187 723 729 699 711 672 
1993 686 720 729 704 735 711 
1994 701 664 720 706 732 715 
1995 712 740 726 715 739 712 
1996 716 818 777 753 473 517 
1997 0 0 0 0 0 0 
1998 677 720 773 695 677 714 
1999 702 716 719 638 559 676 
2000 703 727 737 718 733 714 
2001 705 739 734 713 738 714 
2002 716 739 719 718 737 720 
2003 622 604 685 313 0 606 
2004 717 737 712 719 744 719 
2005 719 744 739 717 742 718 
2006 717 741 742 695 730 510 
2007 669 717 720 710 734 713 
2008 707 738 729 715 737 710 
2009 714 732 734 712 742 211 
2010 717 743 743 717 734 517 
2011 704 239 741 718 744 715 
2012 710 736 734 708 729 705 

46026 1982 0 200 547 484 737 711 
1983 711 740 723 713 740 704 
1984 707 736 731 717 740 664 
1985 718 731 736 709 736 703 
1986 718 742 742 713 738 701 
1987 715 301 0 0 0 0 
1988 388 743 734 328 363 715 
1989 698 711 726 301 738 711 
1990 714 119 0 304 375 718 
1991 715 739 740 720 742 716 
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1992 699 488 0 0 685 698 
1993 707 729 729 713 731 715 
1994 712 712 740 707 732 706 
1995 710 739 742 712 732 714 
1996 708 836 788 715 733 692 
1997 716 736 734 717 734 704 
1998 0 0 311 702 741 649 
1999 702 737 732 709 710 674 
2000 711 735 739 716 730 716 
2001 712 744 735 700 743 717 
2002 716 735 743 719 475 198 
2003 719 742 743 712 739 717 
2004 717 740 733 719 743 706 
2005 719 743 741 719 742 719 
2006 718 742 742 702 741 718 
2007 714 738 736 714 732 706 
2008 709 732 739 713 734 712 
2009 707 730 736 712 738 719 
2010 720 744 743 720 722 695 
2011 717 685 0 433 743 713 
2012 718 742 744 718 727 712 

46012 1980 0 0 0 0 0 152 
1981 716 744 743 698 722 718 
1982 718 732 737 712 737 719 
1983 708 742 741 717 737 717 
1984 713 725 625 699 728 700 
1985 717 740 739 715 740 715 
1986 710 167 739 718 737 699 
1987 334 736 739 681 738 714 
1988 713 738 731 716 741 717 
1989 703 733 737 713 740 718 
1990 228 739 742 709 740 717 
1991 0 41 738 718 741 717 
1992 716 741 735 705 730 696 
1993 0 0 0 0 0 0 
1994 663 367 318 709 723 702 
1995 0 77 728 713 741 713 
1996 719 831 789 714 736 695 
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1997 718 214 0 0 0 0 
1998 262 725 782 693 729 690 
1999 0 0 67 713 718 676 
2000 0 0 719 665 713 713 
2001 712 740 664 718 740 716 
2002 631 736 393 493 730 715 
2003 503 741 744 713 740 720 
2004 716 742 715 720 741 716 
2005 720 744 743 719 743 718 
2006 718 741 741 695 737 719 
2007 694 733 735 712 727 384 
2008 716 741 558 313 700 680 
2009 703 735 743 718 741 716 
2010 720 744 743 719 730 688 
2011 718 743 743 720 742 707 
2012 651 627 399 7 137 3 

46042 1987 0 0 0 196 0 0 
1988 684 715 707 689 708 678 
1989 680 723 722 700 734 715 
1990 706 737 739 712 741 715 
1991 715 735 733 711 735 708 
1992 714 733 733 672 688 623 
1993 666 670 675 661 719 671 
1994 697 658 720 705 730 715 
1995 716 739 734 711 738 709 
1996 720 834 782 705 736 696 
1997 716 730 737 719 611 0 
1998 261 724 770 687 733 713 
1999 0 0 612 710 715 682 
2000 708 731 740 715 731 714 
2001 717 743 684 714 740 715 
2002 716 737 741 705 738 718 
2003 720 743 743 714 740 719 
2004 719 737 704 717 709 695 
2005 690 739 731 708 742 706 
2006 683 735 734 659 709 700 
2007 632 716 725 707 634 665 
2008 482 479 386 535 449 490 
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2009 710 724 736 713 729 711 
2010 719 744 743 719 743 719 
2011 720 744 743 718 744 719 
2012 713 739 743 718 1477 718 

46028 1984 387 738 735 716 744 715 
1985 719 730 743 718 738 717 
1986 716 743 741 716 740 695 
1987 713 738 739 676 694 697 
1988 706 701 698 692 304 0 
1989 712 645 0 36 740 718 
1990 715 738 743 713 741 719 
1991 714 740 735 719 743 640 
1992 438 740 737 710 734 693 
1993 104 736 727 715 739 716 
1994 714 711 730 707 645 712 
1995 712 735 739 714 738 709 
1996 714 836 784 711 736 694 
1997 719 475 0 0 0 0 
1998 0 0 437 700 736 711 
1999 715 737 372 0 0 0 
2000 701 718 736 711 728 712 
2001 702 739 734 697 742 718 
2002 711 732 716 698 732 535 
2003 714 735 740 712 729 715 
2004 698 731 716 688 708 714 
2005 705 742 743 708 742 716 
2006 716 743 738 693 741 719 
2007 708 737 736 716 738 707 
2008 635 622 621 627 639 653 
2009 643 647 600 582 597 593 
2010 580 720 677 656 704 680 
2011 666 704 668 676 741 716 
2012 711 738 742 719 743 719 

So
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 76 1983 62 117 110 98 196 185 
1984 189 233 236 175 229 205 
1985 209 216 241 232 238 235 
1986 205 170 188 58 54 194 
1987 161 172 133 146 0 209 
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1988 211 208 0 0 0 0 
1989 226 194 194 200 182 196 
1990 0 0 0 0 0 0 
1991 54 13 0 0 0 0 
1992 210 246 245 233 207 230 
1993 229 225 226 235 248 240 
1994 240 249 242 238 268 239 
1995 114 218 233 0 0 0 
1996 430 477 502 461 651 478 
1997 468 453 488 463 460 471 
1998 470 483 486 464 486 663 
1999 1411 1446 1286 1433 1478 1405 
2000 1430 1451 1488 1407 1459 1404 
2001 1440 1488 1378 1440 1484 1439 
2002 1436 1483 1488 1440 1488 1440 
2003 1440 1488 1488 1428 1487 1434 
2004 1420 1488 1488 1430 1481 1439 
2005 1440 1488 1447 1440 1480 1440 
2006 1350 528 1488 1421 1488 1440 
2007 1440 976 1479 1440 1488 1438 
2008 1430 1309 1476 1014 1425 1368 
2009 1432 1476 1470 1440 1470 1433 
2010 1440 1487 1148 1440 1488 1440 
2011 1436 1417 1478 1409 1417 1423 
2012 1438 1488 1488 1440 1488 1440 

46011 1980 0 0 0 0 578 714 
1981 706 740 731 695 719 717 
1982 718 728 687 717 742 720 
1983 708 740 743 713 735 116 
1984 213 0 0 396 743 718 
1985 321 296 717 694 739 719 
1986 714 740 739 544 335 0 
1987 716 742 738 677 677 239 
1988 719 734 737 715 736 718 
1989 703 731 733 718 373 0 
1990 713 737 742 714 160 604 
1991 715 742 739 720 225 0 
1992 715 742 730 683 131 0 
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1994 0 0 530 709 732 714 
1995 703 735 724 710 736 663 
1996 712 835 789 715 736 693 
1997 712 734 735 711 735 707 
1998 696 737 789 708 740 720 
1999 720 733 733 717 144 337 
2000 708 736 743 701 732 717 
2001 716 741 736 717 742 717 
2002 690 740 744 720 738 719 
2003 719 742 743 714 742 718 
2004 719 741 744 720 741 716 
2005 720 743 736 696 726 449 
2006 718 742 743 717 738 719 
2007 718 744 742 720 735 719 
2008 717 741 742 715 729 714 
2009 714 741 728 714 722 528 
2010 717 742 740 720 741 717 
2011 709 726 735 711 734 708 
2012 705 738 743 717 739 717 

46023 1982 720 739 738 717 743 718 
1983 709 740 742 640 648 33 
1984 710 738 727 711 741 715 
1985 681 717 725 709 738 30 
1986 715 739 739 717 739 694 
1987 713 744 743 679 34 0 
1988 711 737 732 711 741 715 
1989 676 696 732 712 741 713 
1990 712 736 743 714 742 716 
1991 716 741 740 719 742 715 
1992 715 741 738 711 736 692 
1993 712 728 732 710 741 400 
1994 364 732 740 715 737 1 
1995 692 717 719 705 736 709 
1996 325 102 0 0 0 0 
1997 487 529 726 707 730 699 
1998 679 728 785 692 741 713 
1999 718 737 736 714 722 657 
2000 705 739 741 717 729 717 
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2001 718 741 737 717 743 718 
2002 702 728 727 712 735 29 
2003 719 744 744 714 741 720 
2004 720 741 736 720 743 718 
2005 720 743 707 720 744 713 
2006 709 731 713 678 282 4 
2007 695 710 706 671 696 686 
2008 712 729 719 690 705 704 
2009 715 739 738 716 735 710 
2010 694 697 653 153 0 0 

71 1998 1433 1474 1444 1275 1159 1434 
1999 1424 1463 1483 1435 1455 1434 
2000 1430 1485 1481 1436 1487 1432 
2001 1438 1458 1432 1430 1486 1376 
2002 1433 1482 1456 1410 1464 1380 
2003 1438 1484 1475 1427 1412 1401 
2004 1438 1488 1488 1438 1483 1437 
2005 1440 1475 1488 1440 1488 1440 
2006 1440 1488 1488 1440 1488 1440 
2007 1440 1488 1488 1440 1488 454 
2008 1440 1488 1488 1440 1488 1440 
2009 1440 1488 1488 1440 1487 1440 
2010 1440 1488 1488 1440 1482 1096 
2011 1440 1488 1488 1440 1488 1440 
2012 1440 1462 1418 1356 1449 1425 

46054 1994 683 642 655 642 697 692 
1995 704 715 699 678 721 703 
1996 717 823 764 713 734 684 
1997 697 722 725 682 202 158 
1998 695 736 776 677 728 672 
1999 704 727 701 674 704 676 
2000 704 712 734 701 715 694 
2001 706 731 664 697 664 704 
2002 113 715 708 667 697 659 
2003 691 710 722 679 712 674 
2004 713 735 725 701 735 651 
2005 445 439 560 380 498 500 
2006 387 411 428 413 360 297 
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2007 394 390 321 293 219 273 
2008 496 532 465 585 456 552 
2009 719 744 743 720 740 718 
2010 717 744 741 709 736 711 
2011 648 650 680 675 735 637 
2012 212 165 99 162 246 263 

46053 1994 696 674 732 701 719 706 
1995 707 683 736 710 728 714 
1996 701 818 782 708 731 691 
1997 0 0 0 0 0 0 
1998 693 732 735 155 100 715 
1999 720 733 703 689 667 589 
2000 705 726 742 717 726 717 
2001 714 735 741 712 727 709 
2002 711 738 725 718 713 705 
2003 719 743 743 712 741 720 
2004 719 740 743 720 743 716 
2005 719 742 743 720 742 719 
2006 715 744 740 695 740 718 
2007 709 738 738 711 731 712 
2008 717 740 742 718 742 71 
2009 720 743 707 594 682 634 
2010 647 740 743 714 744 717 
2011 719 744 574 0 0 0 
2012 705 732 738 711 725 700 

46025 1982 460 0 291 718 742 718 
1983 701 733 735 699 716 700 
1984 717 735 740 715 741 715 
1985 717 735 738 716 738 718 
1986 715 743 742 717 735 699 
1987 717 741 564 0 741 715 
1988 719 742 735 716 740 717 
1989 0 0 0 0 431 719 
1990 712 735 734 463 662 716 
1991 718 740 737 716 739 713 
1992 716 740 733 711 731 676 
1993 701 714 704 691 36 0 
1994 477 447 421 410 324 281 
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1995 384 499 742 716 738 711 
1996 674 820 783 712 729 684 
1997 711 143 0 0 0 256 
1998 678 728 772 689 719 693 
1999 720 741 735 716 719 680 
2000 707 736 743 719 734 714 
2001 718 744 680 714 743 716 
2002 578 641 652 638 689 664 
2003 595 699 705 690 737 718 
2004 535 628 737 718 743 712 
2005 718 743 741 719 741 718 
2006 718 742 742 698 740 719 
2007 710 740 740 718 742 695 
2008 720 743 743 720 744 720 
2009 720 743 744 719 744 717 
2010 713 741 738 718 741 703 
2011 715 738 737 717 739 714 
2012 0 0 0 0 0 171 

92 1981 111 89 122 119 119 118 
1982 0 0 0 0 0 0 
1983 0 0 0 0 0 0 
1984 0 0 0 0 0 0 
1985 0 0 0 0 0 0 
1986 0 0 0 0 0 0 
1987 0 0 0 0 0 0 
1988 0 0 0 0 0 0 
1989 0 0 0 0 0 0 
1990 0 0 0 0 0 0 
1991 0 0 0 0 0 0 
1992 0 0 0 0 0 0 
1993 0 0 0 0 0 0 
1994 0 0 0 0 0 0 
1995 0 0 0 0 0 0 
1996 0 0 0 0 0 0 
1997 0 0 0 0 0 0 
1998 1388 1395 1319 1268 1461 1425 
1999 1408 1427 1486 1426 1380 1346 
2000 1437 1486 1488 862 1485 1430 
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2001 1437 1488 1488 1440 1488 1440 
2002 1264 1483 1488 1440 1488 1439 
2003 1440 1433 1488 1440 1488 1437 
2004 1440 1488 1487 1440 1488 1440 
2005 1440 1487 1469 1440 1488 1440 
2006 1440 1488 1392 1372 1453 1408 
2007 1440 1488 1488 1440 1487 1440 
2008 1440 1488 1482 1440 1488 1440 
2009 1436 1488 1486 1440 1488 1438 
2010 1440 1488 1488 1440 1488 1440 
2011 1440 1488 1488 1440 1488 1438 
2012 1440 1488 1488 1440 1488 1440 

45 1997 1424 1433 1487 1399 1463 1327 
1998 1436 1409 1452 751 1360 1399 
1999 1434 1438 1387 1421 1486 1437 
2000 1438 1470 1481 1440 1486 1434 
2001 1440 1488 1488 1440 1488 1432 
2002 1439 1484 1488 1440 1487 1440 
2003 1440 1487 1473 1026 1444 1428 
2004 1408 1488 1488 1439 1488 1440 
2005 1440 1486 1488 1440 1488 1440 
2006 1410 866 1477 1412 1484 1404 
2007 1434 1471 1487 1440 1488 1440 
2008 1440 1488 1488 1433 1486 1440 
2009 1440 1488 1488 1440 1488 1441 
2010 1440 1488 1487 1437 1488 1439 
2011 1439 1357 1446 1250 1488 1438 
2012 1429 1448 1487 1440 1488 1423 

93 1981 109 79 42 115 118 120 
1982 194 170 211 225 216 190 
1983 0 0 0 0 0 0 
1984 0 0 0 0 0 0 
1985 237 245 212 234 239 240 
1986 225 198 216 234 244 231 
1987 227 226 227 199 223 189 
1988 235 234 241 220 222 218 
1989 230 234 241 227 135 233 
1990 237 247 246 237 247 230 
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1991 121 244 248 222 247 239 
1992 211 263 246 239 196 229 
1993 225 211 0 0 0 0 
1994 192 240 251 239 267 240 
1995 194 146 0 0 0 0 
1996 0 0 0 0 534 703 
1997 684 703 716 640 923 1393 
1998 277 0 315 0 0 0 
1999 0 0 0 0 0 0 
2000 0 0 0 0 0 0 
2001 0 0 0 0 0 0 
2002 0 0 0 0 0 0 
2003 0 0 0 0 0 0 
2004 0 0 0 0 0 0 
2005 0 0 0 0 1303 1440 
2006 1437 1476 323 162 1488 1438 
2007 938 1488 1489 1440 1488 1440 
2008 1440 1488 1488 1440 1488 1426 
2009 1440 1488 1488 1440 1488 1440 
2010 1440 1488 1488 1437 1488 1440 
2011 1440 1472 1488 1440 1488 1118 
2012 1318 1488 1488 1440 1488 1440 

46047 1992 0 0 747 626 469 669 
1993 557 606 32 0 0 0 
1994 0 0 0 0 0 0 
1995 0 0 0 0 0 0 
1996 0 0 0 0 0 0 
1997 0 0 0 0 0 0 
1998 0 0 0 0 0 0 
1999 693 698 689 612 666 612 
2000 654 652 698 676 703 678 
2001 671 696 706 718 743 716 
2002 715 741 692 348 123 680 
2003 720 739 742 712 743 720 
2004 720 739 710 720 744 718 
2005 719 744 743 720 741 719 
2006 719 742 743 693 743 720 
2007 712 743 742 719 735 716 



! "#$!

2008 708 737 742 719 739 718 
2009 684 723 699 696 711 700 
2010 677 727 724 692 77 0 
2011 240 237 124 421 731 692 
2012 709 739 741 231 0 54 
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APPENDIX B 

 

 

 

 

 

 

Average Autumn Significant Wave Heights for All El Niño and Non-El Niño 

Years 

Average autumn significant wave heights (Hsig) over (a) the entire season and over 

the months of (b) September, (c) October, and (d) November for all El Niño years and 

non-El Niño years. Orange cells indicate that average Hsig during El Niño autumn 

months were higher than during non-El Niño autumn months. 
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A.

All El Niño StDev Non-El Niño StDev El Niño – Non-El Niño % Difference
46041 2.34 1.22 2.33 1.16 0.01 0.4
46029 2.55 1.26 2.44 1.24 0.11 4.3

36 2.15 1.07 2.20 1.09 -0.05 -2.3
46005 2.84 1.43 2.94 1.41 -0.09 -3.2

regional 2.47 1.28 2.46 1.26 0.01 0.4
46050 2.60 1.30 2.51 1.22 0.09 3.4
46002 2.75 1.32 2.75 1.26 0.00 0.0

regional 2.69 1.31 2.65 1.25 0.04 1.6
46027 2.31 1.00 2.19 0.93 0.12 5.3
46006 2.82 1.40 2.78 1.36 0.03 1.2
46022 2.42 1.10 2.35 1.04 0.07 2.9
46014 2.28 0.98 2.27 0.97 0.01 0.3

regional 2.46 1.16 2.42 1.13 0.05 1.9
46059 2.80 1.22 2.71 1.10 0.10 3.5
46013 2.03 0.87 2.09 0.87 -0.07 -3.2
46026 1.69 0.73 1.69 0.70 0.00 -0.3
46012 2.01 0.90 1.97 0.82 0.04 2.2
46042 2.17 0.93 2.05 0.80 0.12 5.7
46028 2.19 0.89 2.15 0.80 0.04 2.0

regional 2.09 0.96 2.07 0.88 0.02 1.1
76 1.48 0.58 1.47 0.54 0.02 1.3

46011 1.91 0.81 1.90 0.76 0.01 0.6
46023 2.06 0.88 2.03 0.77 0.03 1.6

71 2.09 0.86 2.10 0.76 0.00 0.0
46054 1.95 0.81 1.91 0.72 0.04 2.0
46053 1.16 0.46 1.14 0.43 0.02 1.4
46025 1.02 0.38 1.03 0.37 -0.01 -1.4

92 0.91 0.33 0.89 0.30 0.03 3.1
45 0.88 0.28 0.89 0.25 -0.01 -1.4
93 1.08 0.41 1.04 0.31 0.04 3.4

46047 2.12 0.83 2.06 0.74 0.05 2.5
regional 1.47 0.80 1.46 0.75 0.01 0.9

Washington

Oregon

Northern California

Central California

Region Station Autumn Average Hsig (m)

Southern California
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B.

All El Niño StDev Non-El Niño StDev El Niño – Non-El Niño % Difference
46041 1.79 0.73 1.67 0.73 0.13 7.3
46029 1.92 0.79 1.74 0.70 0.18 9.9

36 1.71 0.69 1.60 0.65 0.12 7.1
46005 2.14 0.99 2.13 0.89 0.01 0.5

regional 1.90 0.83 1.77 0.77 0.12 6.8
46050 2.02 0.81 1.86 0.71 0.16 8.3
46002 2.17 0.90 2.14 0.82 0.03 1.3

regional 2.12 0.88 2.02 0.79 0.09 4.5
46027 1.89 0.71 1.82 0.73 0.07 3.8
46006 2.03 0.81 2.00 0.86 0.02 1.1
46022 1.96 0.86 1.91 0.83 0.05 2.4
46014 1.94 0.76 1.90 0.73 0.04 2.2

regional 1.96 0.79 1.91 0.79 0.04 2.3
46059 2.24 0.84 2.25 0.81 -0.01 -0.7
46013 1.75 0.64 1.78 0.64 -0.03 -1.4
46026 1.45 0.53 1.42 0.47 0.03 2.0
46012 1.69 0.64 1.62 0.57 0.07 4.2
46042 1.83 0.57 1.73 0.57 0.10 5.5
46028 1.86 0.55 1.86 0.57 0.00 -0.3

regional 1.75 0.65 1.74 0.64 0.01 0.6
76 1.29 0.36 1.22 0.34 0.07 5.8

46011 1.65 0.54 1.62 0.51 0.03 1.7
46023 1.79 0.60 1.72 0.51 0.07 3.8

71 1.84 0.52 1.76 0.49 0.07 4.0
46054 1.69 0.50 1.63 0.47 0.07 4.0
46053 1.02 0.31 0.99 0.30 0.03 3.1
46025 0.97 0.28 0.95 0.24 0.02 2.0

92 0.88 0.22 0.80 0.17 0.08 9.7
45 0.92 0.21 0.90 0.19 0.02 2.3
93 0.97 0.24 1.02 0.21 -0.05 -5.0

46047 1.90 0.49 1.82 0.47 0.08 4.5
regional 1.34 0.57 1.29 0.53 0.05 3.7

Southern California

Central California

Northern California

Oregon

Washington

Region Station
September Average Hsig (m)
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C.

All El Niño StDev Non-El Niño StDev El Niño – Non-El Niño % Difference
46041 2.06 0.92 2.35 1.11 -0.29 -13
46029 2.32 1.05 2.53 1.15 -0.21 -8.5

36 2.00 0.88 2.31 1.07 -0.31 -14
46005 2.76 1.30 2.94 1.38 -0.18 -6.2

regional 2.29 1.1 2.52 1.2 -0.23 -9.7
46050 2.40 1.12 2.56 1.13 -0.16 -6.4
46002 2.76 1.29 2.70 1.15 0.06 2.2

regional 2.63 1.2 2.64 1.1 -0.02 -0.6
46027 2.20 0.76 2.23 0.93 -0.04 -1.6
46006 2.78 1.24 2.79 1.23 -0.01 -0.2
46022 2.35 0.91 2.37 0.98 -0.02 -0.6
46014 2.24 0.86 2.26 0.93 -0.02 -0.8

regional 2.41 1.0 2.43 1.1 -0.02 -0.9
46059 2.77 1.07 2.73 1.08 0.05 1.7
46013 1.98 0.77 2.02 0.80 -0.05 -2.5
46026 1.63 0.69 1.67 0.66 -0.04 -2.2
46012 1.94 0.80 1.95 0.79 -0.02 -0.8
46042 2.14 0.90 2.06 0.77 0.08 3.8
46028 2.12 0.78 2.18 0.82 -0.06 -2.8

regional 2.03 0.9 2.05 0.9 -0.02 -1.0
76 1.43 0.55 1.49 0.53 -0.06 -4.0

46011 1.88 0.79 1.92 0.73 -0.04 -2.0
46023 2.02 0.83 2.08 0.78 -0.06 -3.1

71 1.95 0.79 2.18 0.81 -0.23 -11
46054 1.91 0.84 1.95 0.74 -0.04 -2.3
46053 1.10 0.47 1.15 0.41 -0.05 -4.5
46025 0.99 0.33 1.01 0.34 -0.01 -1.3

92 0.88 0.32 0.89 0.29 -0.01 -1.5
45 0.88 0.32 0.89 0.22 -0.01 -1.5
93 1.03 0.38 1.04 0.32 -0.02 -1.6

46047 1.96 0.79 2.12 0.79 -0.16 -7.7
regional 1.42 0.8 1.48 0.8 -0.06 -4.1

Region Station October Average Hsig (m)

Southern California

Central California

Northern California

Oregon

Washington
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D.

All El Niño StDev Non-El Niño StDev El Niño – Non-El Niño % Difference
46041 3.23 1.43 2.92 1.21 0.31 10
46029 3.30 1.40 3.13 1.38 0.17 5.3

36 2.87 1.31 2.74 1.18 0.14 4.9
46005 3.71 1.51 3.76 1.41 -0.05 -1.4

regional 3.28 1.45 3.11 1.35 0.18 5.5
46050 3.35 1.47 3.12 1.37 0.22 7.0
46002 3.41 1.45 3.41 1.40 0.00 0.1

regional 3.39 1.46 3.29 1.39 0.10 3.0
46027 2.85 1.19 2.52 0.98 0.33 12
46006 3.70 1.52 3.56 1.45 0.14 3.7
46022 2.94 1.26 2.79 1.11 0.15 5.4
46014 2.69 1.14 2.67 1.07 0.03 1.0

regional 3.05 1.35 2.92 1.25 0.13 4.5
46059 3.29 1.39 3.11 1.19 0.18 5.6
46013 2.39 1.06 2.47 0.98 -0.08 -3.4
46026 2.01 0.83 1.96 0.79 0.05 2.5
46012 2.41 1.05 2.33 0.91 0.07 3.1
46042 2.61 1.10 2.38 0.89 0.23 9.3
46028 2.61 1.09 2.40 0.89 0.21 8.6

regional 2.49 1.13 2.39 0.98 0.10 4.2
76 1.73 0.68 1.68 0.61 0.05 2.8

46011 2.30 0.98 2.21 0.90 0.09 3.9
46023 2.52 1.10 2.34 0.89 0.18 7.6

71 2.51 1.03 2.36 0.82 0.15 6.0
46054 2.31 0.94 2.15 0.80 0.16 7.0
46053 1.36 0.50 1.30 0.50 0.06 4.7
46025 1.09 0.49 1.14 0.47 -0.05 -4.2

92 0.99 0.40 0.97 0.38 0.02 2.0
45 0.83 0.29 0.88 0.31 -0.05 -5.3
93 1.19 0.48 1.06 0.38 0.13 12

46047 2.43 0.99 2.28 0.84 0.15 6.5
regional 1.66 0.98 1.60 0.87 0.06 3.5

Region Station November Average Hsig (m)

Northern California

Central California

Southern California

Washington

Oregon
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APPENDIX C 

 

 

 

 

 

 

Average Summer Significant Wave Heights for Moderate to Strong El Niño and 

Non-El Niño to Weak El Niño Years 

Average summer significant wave heights (Hsig) over the (a) entire season and over 

the months of (b) June, (c) July, and (d) August for moderate to strong El Niño years 

and non-El Niño to weak El Niño years. Blue cells indicate that average Hsig during 

moderate to strong El Niño summer months were lower than during non-El Niño to 

weak El Niño summer months. 
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A.

Mod-Str El Niño StDev Non-Wk El Niño StDev Mod-Str – Non-Wk El Niño % Difference
46041 1.39 0.62 1.41 0.55 -0.02 -1.4
46029 1.49 0.61 1.49 0.55 0.00 0.1

36 1.32 0.53 1.33 0.49 -0.01 -0.5
46005 1.69 0.71 1.70 0.65 -0.01 -0.9

regional 1.48 0.64 1.47 0.57 0.01 0.9
46050 1.56 0.61 1.61 0.57 -0.06 -3.7
46002 1.74 0.63 1.77 0.62 -0.03 -1.8

regional 1.68 0.63 1.70 0.60 -0.02 -1.5
46027 1.72 0.76 1.72 0.70 0.00 0.2
46006 1.60 0.62 1.63 0.63 -0.03 -1.8
46022 1.79 0.81 1.81 0.78 -0.02 -1.0
46014 1.86 0.74 1.94 0.72 -0.08 -4.3

regional 1.76 0.75 1.78 0.72 -0.02 -1.3
46059 1.95 0.64 1.92 0.65 0.03 1.5
46013 1.74 0.68 1.87 0.71 -0.13 -7.3
46026 1.45 0.57 1.51 0.57 -0.06 -4.0
46012 1.56 0.62 1.70 0.61 -0.13 -8.3
46042 1.73 0.61 1.77 0.59 -0.04 -2.3
46028 1.94 0.64 1.96 0.63 -0.02 -1.0

regional 1.70 0.65 1.78 0.65 -0.08 -4.8
76 1.19 0.36 1.23 0.37 -0.04 -3.5

46011 1.61 0.54 1.68 0.56 -0.07 -4.3
46023 1.76 0.56 1.82 0.57 -0.05 -2.9

71 1.70 0.53 1.83 0.55 -0.14 -7.7
46054 1.62 0.53 1.67 0.52 -0.04 -2.6
46053 1.02 0.34 1.02 0.35 -0.01 -0.9
46025 0.95 0.26 1.00 0.26 -0.05 -5.4

92 0.80 0.18 0.85 0.21 -0.05 -6.3
45 0.88 0.21 0.89 0.19 -0.01 -1.0
93 0.92 0.22 1.00 0.23 -0.08 -8.3

46047 1.72 0.50 1.83 0.57 -0.11 -6.4
regional 1.29 0.56 1.33 0.58 -0.04 -3.1

Region Station Summer Average Hsig (m)                       

Central California

Northern California

Oregon

Washington

Southern California
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B.

Mod-Str El Niño StDev Non-Wk El Niño StDev Mod-Str – Non-Wk El Niño % Difference
46041 1.50 0.77 1.56 0.66 -0.06 -3.6
46029 1.73 0.76 1.63 0.64 0.09 5.5

36 1.40 0.62 1.44 0.57 -0.04 -2.9
46005 1.84 0.87 1.88 0.78 -0.05 -2.6

regional 1.63 0.79 1.61 0.68 0.01 0.9
46050 1.64 0.76 1.74 0.66 -0.10 -5.9
46002 1.79 0.71 1.88 0.70 -0.09 -4.9

regional 1.74 0.73 1.82 0.68 -0.08 -4.4
46027 1.71 0.81 1.83 0.73 -0.13 -7.1
46006 1.76 0.73 1.85 0.78 -0.09 -5.3
46022 1.85 0.88 2.00 0.82 -0.15 -7.8
46014 1.99 0.89 2.14 0.79 -0.15 -7.2

regional 1.84 0.85 1.97 0.79 -0.12 -6.5
46059 2.05 0.60 2.06 0.70 -0.01 -0.7
46013 1.89 0.85 2.13 0.79 -0.24 -12
46026 1.71 0.72 1.73 0.65 -0.02 -1.1
46012 1.74 0.77 1.99 0.75 -0.24 -13
46042 2.02 0.78 2.00 0.69 0.02 0.9
46028 2.18 0.78 2.20 0.74 -0.02 -0.9

regional 1.92 0.79 2.01 0.74 -0.10 -5.0
76 1.36 0.45 1.42 0.42 -0.06 -4.1

46011 1.80 0.71 1.93 0.67 -0.13 -6.8
46023 1.93 0.71 2.05 0.69 -0.12 -6.0

71 1.90 0.68 2.06 0.66 -0.16 -8.2
46054 1.89 0.67 1.88 0.62 0.01 0.8
46053 1.16 0.40 1.14 0.41 0.02 1.4
46025 1.03 0.31 1.08 0.31 -0.04 -4.2

92 0.80 0.20 0.90 0.25 -0.10 -12
45 0.90 0.18 0.95 0.20 -0.05 -5.2
93 0.98 0.23 1.08 0.27 -0.11 -10

46047 1.86 0.67 2.03 0.67 -0.17 -8.7
regional 1.40 0.67 1.48 0.68 -0.08 -5.3

Region Station
June Average Hsig (m)                       

Northern California

Central California

Southern California

Washington

Oregon
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C.

Mod-Str El Niño StDev Non-Wk El Niño StDev Mod-Str – Non-Wk El Niño % Difference
46041 1.34 0.43 1.36 0.48 -0.02 -1.6
46029 1.43 0.45 1.47 0.47 -0.04 -2.7

36 1.27 0.38 1.30 0.42 -0.03 -2.3
46005 1.59 0.54 1.56 0.51 0.03 2.1

regional 1.41 0.48 1.41 0.48 0.00 0.0
46050 1.62 0.49 1.60 0.51 0.02 1.0
46002 1.69 0.54 1.73 0.55 -0.04 -2.1

regional 1.67 0.53 1.67 0.54 -0.01 -0.6
46027 1.83 0.77 1.70 0.71 0.13 7.2
46006 1.50 0.49 1.52 0.50 -0.01 -0.9
46022 1.90 0.82 1.76 0.80 0.14 7.7
46014 1.96 0.68 1.93 0.70 0.03 1.6

regional 1.82 0.73 1.74 0.71 0.08 4.5
46059 1.89 0.66 1.89 0.66 0.00 -0.1
46013 1.76 0.57 1.79 0.66 -0.03 -1.9
46026 1.42 0.46 1.43 0.49 -0.01 -0.7
46012 1.57 0.47 1.63 0.54 -0.07 -4.1
46042 1.63 0.44 1.72 0.52 -0.09 -5.4
46028 1.86 0.52 1.89 0.57 -0.03 -1.5

regional 1.66 0.53 1.72 0.59 -0.05 -3.0
76 1.15 0.26 1.17 0.30 -0.02 -1.7

46011 1.56 0.41 1.61 0.49 -0.05 -3.4
46023 1.69 0.45 1.75 0.50 -0.07 -3.8

71 1.66 0.40 1.77 0.48 -0.11 -6.4
46054 1.53 0.42 1.58 0.45 -0.06 -3.7
46053 0.94 0.26 0.98 0.33 -0.04 -4.2
46025 0.90 0.20 0.99 0.24 -0.08 -9.0

92 0.81 0.14 0.83 0.18 -0.02 -3.0
45 0.84 0.20 0.86 0.16 -0.02 -2.9
93 0.89 0.19 0.99 0.19 -0.09 -9.9

46047 1.65 0.36 1.76 0.49 -0.12 -6.8
regional 1.24 0.48 1.28 0.52 -0.04 -3.2

Region Station July Average Hsig (m)                       

Northern California

Oregon

Washington

Southern California

Central California
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D.

Mod-Str El Niño StDev Non-Wk El Niño StDev Mod-Str – Non-Wk El Niño % Difference
46041 1.33 0.63 1.32 0.49 0.01 0.6
46029 1.37 0.57 1.39 0.49 -0.02 -1.5

36 1.31 0.55 1.26 0.44 0.05 4.2
46005 1.63 0.64 1.69 0.62 -0.05 -3.2

regional 1.43 0.62 1.41 0.54 0.02 1.4
46050 1.41 0.53 1.51 0.51 -0.09 -6.5
46002 1.74 0.63 1.72 0.60 0.02 1.1

regional 1.63 0.61 1.62 0.57 0.00 0.2
46027 1.61 0.68 1.62 0.63 -0.01 -0.7
46006 1.55 0.59 1.55 0.54 0.00 0.2
46022 1.62 0.70 1.68 0.69 -0.06 -3.7
46014 1.63 0.57 1.77 0.62 -0.14 -8.3

regional 1.61 0.64 1.66 0.63 -0.05 -3.2
46059 1.92 0.64 1.80 0.57 0.11 6.0
46013 1.58 0.55 1.69 0.58 -0.11 -7.0
46026 1.24 0.41 1.34 0.45 -0.09 -7.3
46012 1.36 0.47 1.52 0.45 -0.17 -12
46042 1.56 0.43 1.62 0.47 -0.06 -4.0
46028 1.75 0.46 1.82 0.52 -0.07 -3.9

regional 1.51 0.52 1.62 0.53 -0.11 -7.2
76 1.07 0.28 1.12 0.29 -0.05 -4.4

46011 1.49 0.42 1.51 0.42 -0.02 -1.6
46023 1.70 0.47 1.65 0.43 0.05 2.8

71 1.54 0.39 1.68 0.42 -0.13 -8.3
46054 1.51 0.42 1.55 0.39 -0.03 -2.1
46053 0.95 0.28 0.96 0.28 -0.01 -0.5
46025 0.90 0.23 0.95 0.22 -0.05 -5.8

92 0.79 0.18 0.82 0.17 -0.03 -3.6
45 0.90 0.24 0.85 0.18 0.05 5.2
93 0.90 0.22 0.93 0.19 -0.03 -3.3

46047 1.64 0.38 1.70 0.47 -0.06 -3.6
regional 1.22 0.48 1.23 0.48 0.00 -0.2

Region Station August Average Hsig (m)                       

Northern California

Central California

Southern California

Washington

Oregon
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APPENDIX D 

 

 

 

 

 

Average Autumn Significant Wave Heights for Moderate to Strong El Niño and 

Non-El Niño to Weak El Niño Years 

Average autumn significant wave heights (Hsig) over (a) the entire season and over 

the months of (b) September, (c) October, and (d) November for moderate to strong 

El Niño years and non-El Niño to weak El Niño years. Orange cells indicate that 

average Hsig during moderate to strong El Niño autumn months were higher than 

during non-El Niño to weak El Niño autumn months. 
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A.

Mod-Str El Niño StDev Non-Wk El Niño StDev Mod-Str – Non-Wk El Niño % Difference
46041 2.34 1.28 2.33 1.16 0.02 0.7
46029 2.53 1.28 2.45 1.24 0.08 3.2

36 2.21 1.18 2.18 1.07 0.03 1.5
46005 2.85 1.48 2.92 1.40 -0.07 -2.4

regional 2.50 1.34 2.45 1.25 0.05 2.0
46050 2.61 1.36 2.52 1.21 0.09 3.5
46002 2.76 1.36 2.75 1.26 0.01 0.4

regional 2.70 1.36 2.65 1.24 0.05 1.8
46027 2.33 1.05 2.20 0.93 0.12 5.5
46006 2.84 1.42 2.78 1.36 0.05 1.9
46022 2.43 1.13 2.35 1.04 0.07 3.0
46014 2.30 1.01 2.27 0.96 0.03 1.4

regional 2.46 1.18 2.42 1.13 0.04 1.8
46059 2.94 1.35 2.70 1.09 0.24 8.5
46013 2.03 0.89 2.09 0.86 -0.05 -2.6
46026 1.68 0.76 1.69 0.69 -0.01 -0.6
46012 1.96 0.91 1.99 0.83 -0.02 -1.1
46042 2.23 0.98 2.05 0.80 0.18 8.5
46028 2.21 0.93 2.15 0.80 0.06 2.7

regional 2.08 0.99 2.07 0.88 0.01 0.3
76 1.55 0.65 1.46 0.53 0.10 6.4

46011 1.95 0.86 1.89 0.75 0.05 2.7
46023 2.10 0.91 2.02 0.77 0.08 3.8

71 2.16 0.96 2.09 0.76 0.07 3.4
46054 2.02 0.87 1.90 0.71 0.12 6.1
46053 1.18 0.50 1.14 0.43 0.04 3.3
46025 1.02 0.41 1.03 0.36 -0.02 -1.9

92 0.94 0.38 0.89 0.30 0.05 5.5
45 0.88 0.31 0.89 0.25 -0.01 -0.6
93 1.09 0.43 1.04 0.31 0.05 4.6

46047 2.31 0.97 2.05 0.73 0.26 12
regional 1.51 0.85 1.45 0.74 0.06 4.3

Region Station
Autumn Average Hsig (m)                       

Northern California

Central California

Washington

Oregon

Southern California
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B.

Mod-Str El Niño StDev Non-Wk El Niño StDev Mod-Str – Non-Wk El Niño % Difference
46041 1.75 0.70 1.69 0.74 0.06 3.6
46029 1.91 0.79 1.77 0.72 0.14 7.7

36 1.70 0.69 1.62 0.66 0.09 5.2
46005 2.12 1.01 2.14 0.90 -0.03 -1.2

regional 1.89 0.85 1.79 0.78 0.10 5.4
46050 2.03 0.85 1.88 0.71 0.15 7.7
46002 2.19 0.96 2.14 0.82 0.05 2.3

regional 2.13 0.93 2.03 0.79 0.10 4.9
46027 1.88 0.71 1.83 0.73 0.05 2.7
46006 2.03 0.85 2.01 0.84 0.03 1.4
46022 1.96 0.87 1.91 0.83 0.04 2.2
46014 1.91 0.77 1.91 0.73 0.01 0.3

regional 1.95 0.81 1.92 0.79 0.03 1.4
46059 2.30 0.93 2.24 0.80 0.06 2.8
46013 1.72 0.62 1.79 0.64 -0.06 -3.5
46026 1.41 0.52 1.43 0.48 -0.02 -1.7
46012 1.59 0.56 1.65 0.60 -0.06 -3.8
46042 1.82 0.56 1.75 0.58 0.08 4.4
46028 1.79 0.52 1.88 0.57 -0.08 -4.6

regional 1.69 0.63 1.76 0.65 -0.07 -3.8
76 1.26 0.35 1.23 0.35 0.03 2.7

46011 1.64 0.54 1.63 0.51 0.01 0.8
46023 1.79 0.61 1.73 0.51 0.06 3.4

71 1.80 0.48 1.78 0.50 0.02 1.3
46054 1.70 0.52 1.63 0.47 0.07 4.2
46053 0.99 0.30 1.00 0.31 -0.01 -0.6
46025 0.95 0.29 0.96 0.24 -0.02 -1.7

92 0.86 0.21 0.82 0.19 0.04 5.3
45 0.90 0.22 0.90 0.20 0.00 -0.2
93 0.97 0.25 1.02 0.21 -0.05 -4.9

46047 1.97 0.48 1.82 0.47 0.15 7.8
regional 1.33 0.58 1.30 0.54 0.03 2.3

Region Station
September Average Hsig (m)                       

Northern California

Central California

Washington

Oregon

Southern California
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C.

Mod-Str El Niño StDev Non-Wk El Niño StDev Mod-Str – Non-Wk El Niño % Difference
46041 1.92 0.82 2.34 1.10 -0.42 -20
46029 2.28 1.05 2.51 1.14 -0.23 -9.8

36 1.94 0.88 2.28 1.05 -0.34 -16
46005 2.76 1.30 2.92 1.37 -0.16 -5.7

regional 2.25 1.10 2.50 1.20 -0.25 -11
46050 2.38 1.20 2.54 1.11 -0.17 -6.9
46002 2.71 1.17 2.72 1.20 0.00 -0.2

regional 2.59 1.19 2.65 1.17 -0.06 -2.2
46027 2.15 0.70 2.24 0.92 -0.09 -3.9
46006 2.69 1.11 2.80 1.26 -0.11 -4.0
46022 2.36 0.91 2.36 0.97 0.00 0.0
46014 2.26 0.84 2.25 0.93 0.01 0.6

regional 2.38 0.93 2.43 1.07 -0.06 -2.3
46059 2.76 1.00 2.73 1.09 0.02 0.9
46013 1.98 0.75 2.02 0.81 -0.04 -1.8
46026 1.63 0.71 1.67 0.66 -0.03 -2.0
46012 1.89 0.77 1.96 0.80 -0.08 -4.1
46042 2.20 0.93 2.05 0.78 0.16 7.4
46028 2.15 0.78 2.17 0.82 -0.02 -0.7

regional 2.01 0.86 2.05 0.86 -0.04 -2.2
76 1.51 0.60 1.47 0.52 0.04 2.6

46011 1.94 0.83 1.90 0.73 0.04 1.8
46023 2.06 0.84 2.06 0.78 0.00 -0.2

71 2.01 0.89 2.13 0.80 -0.12 -5.8
46054 1.98 0.92 1.93 0.73 0.06 3.0
46053 1.15 0.54 1.14 0.40 0.01 1.2
46025 1.00 0.36 1.00 0.33 0.00 0.0

92 0.90 0.38 0.88 0.29 0.02 2.0
45 0.89 0.35 0.89 0.23 0.01 0.6
93 1.07 0.42 1.03 0.31 0.04 3.8

46047 2.20 0.98 2.06 0.77 0.13 6.2
regional 1.48 0.82 1.46 0.75 0.03 1.8

Region Station
October Average Hsig (m)                       

Southern California

Central California

Northern California

Washington

Oregon
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D.

Mod-Str El Niño StDev Non-Wk El Niño StDev Mod-Str – Non-Wk El Niño % Difference
46041 3.32 1.49 2.93 1.22 0.39 13
46029 3.29 1.42 3.16 1.38 0.13 4.1

36 3.05 1.40 2.71 1.17 0.34 12
46005 3.84 1.58 3.72 1.40 0.12 3.2

regional 3.38 1.50 3.11 1.34 0.27 8.4
46050 3.41 1.53 3.13 1.37 0.28 8.6
46002 3.58 1.60 3.37 1.37 0.20 5.8

regional 3.51 1.57 3.27 1.37 0.23 6.9
46027 2.95 1.29 2.54 0.97 0.42 15
46006 3.80 1.61 3.56 1.44 0.25 6.7
46022 3.03 1.32 2.77 1.10 0.26 8.8
46014 2.79 1.20 2.65 1.06 0.14 5.2

regional 3.13 1.41 2.91 1.24 0.22 7.2
46059 3.51 1.59 3.09 1.16 0.43 13
46013 2.43 1.12 2.46 0.98 -0.03 -1.2
46026 2.04 0.87 1.95 0.78 0.09 4.3
46012 2.40 1.09 2.34 0.91 0.06 2.6
46042 2.78 1.18 2.37 0.88 0.42 16
46028 2.72 1.15 2.40 0.89 0.32 13

regional 2.54 1.21 2.39 0.97 0.16 6.3
76 1.87 0.76 1.66 0.60 0.21 12

46011 2.40 1.04 2.19 0.89 0.20 8.8
46023 2.58 1.14 2.33 0.89 0.25 10

71 2.67 1.15 2.36 0.82 0.31 12
46054 2.44 0.99 2.14 0.79 0.30 13
46053 1.40 0.54 1.30 0.49 0.10 7.5
46025 1.09 0.53 1.13 0.46 -0.04 -3.5

92 1.05 0.46 0.96 0.37 0.09 9.1
45 0.85 0.33 0.87 0.30 -0.02 -2.4
93 1.21 0.52 1.07 0.37 0.14 12

46047 2.63 1.12 2.27 0.83 0.36 15
regional 1.74 1.06 1.59 0.86 0.15 9.0

Washington

Oregon

Southern California

Region Station
November Average Hsig (m)                       

Northern California

Central California
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APPENDIX E 

 

 

 

 

 

K-S Test Results for Normalized Distributions of Individual Summer Significant 

Wave Height (Hsig) Observed Data vs. Normalized Distributions of Overall 

Summer Hsig Observed Data for Each Station 

Data from El Niño summers are indicated in bold typeface. A sign on a D-statistic 

indicates whether the greatest difference between an individual summer’s Hsig 

distribution and that of the overall summer for its station is positive or negative. Red 

color indicates that the results of the K-S test are not significant. Confidence levels of 

the observed D-statistics relative to the outcome of the Monte Carlo simulation 

(Figure 3.9) are also presented in the last column on the right. 
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Region Station Year D-statistic p < 0.05? Monte Carlo Confidence
1987 -0.070 yes 99%
1988 0.035 yes 99%
1989 -0.167 yes 99%
1990 0.039 yes 99%
1991 -0.067 yes 99%
1992 -0.069 yes 99%
1993 -0.083 yes 99%
1994 -0.051 yes 99%
1995 -0.057 yes 99%
1996 -0.069 yes 99%
1997 0.087 yes 99%
1998 -0.143 yes 99%
1999 -0.097 yes 99%
2000 0.038 yes 99%
2001 0.022 yes 99%
2002 0.060 yes 99%
2003 0.049 yes 99%
2004 0.069 yes 99%
2005 0.076 yes 99%
2006 -0.154 yes 99%
2007 0.323 yes 99%
2008 0.065 yes 99%
2009 0.032 yes 99%
2010 0.111 yes 99%
2011 0.062 yes 99%
2012 0.071 yes 99%

46041Washington



! "#$!

 

Region Station Year D-statistic p < 0.05? Monte Carlo Confidence
1984 -0.127 yes 99%
1985 0.216 yes 99%
1986 0.132 yes 99%
1987 0.347 yes 99%
1991 0.219 yes 99%
1992 -0.082 yes 99%
1993 -0.148 yes 99%
1994 0.031 yes 99%
1995 -0.094 yes 99%
1996 -0.362 yes 99%
1997 -0.035 yes 99%
1998 -0.061 yes 99%
1999 0.091 yes 99%
2000 -0.099 yes 99%
2001 0.068 yes 99%
2002 -0.038 yes 99%
2003 0.030 yes 99%
2004 -0.051 yes 99%
2005 -0.097 yes 99%
2006 0.071 yes 99%
2007 -0.027 yes 99%
2008 -0.083 yes 99%
2009 0.081 yes 99%
2010 0.104 yes 99%
2011 0.040 yes 99%
2012 0.155 yes 99%

46029Washington
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Region Station Year D-statistic p < 0.05? Monte Carlo Confidence
1982 -0.371 yes 99%
1987 0.133 yes 99%
1988 -0.193 yes 99%
1989 0.104 yes 99%
1990 -0.047 no n/a
1991 -0.105 yes 99%
1992 -0.114 yes 99%
1993 -0.142 yes 99%
1994 -0.153 yes 99%
1995 0.052 yes 99%
1996 0.065 yes 99%
1997 -0.070 yes 99%
1998 -0.034 yes 99%
1999 -0.056 yes 99%
2000 -0.039 yes 99%
2001 -0.037 yes 99%
2002 0.039 yes 99%
2003 0.017 no n/a
2004 0.091 yes 99%
2005 0.098 yes 99%
2006 0.081 yes 99%
2007 -0.070 yes 99%
2008 0.068 yes 99%
2009 -0.042 yes 99%
2010 0.082 yes 99%
2011 -0.069 yes 99%
2012 -0.091 yes 99%

Washington 36
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Region Station Year D-statistic p < 0.05? Monte Carlo Confidence
1976 -0.135 yes 99%
1977 0.278 yes 99%
1978 -0.145 yes 99%
1979 -0.152 yes 99%
1980 -0.063 yes 99%
1981 0.032 yes 99%
1982 -0.105 yes 99%
1983 -0.051 yes 99%
1984 0.068 yes 99%
1985 -0.255 yes 99%
1986 -0.074 yes 99%
1987 0.130 yes 99%
1988 0.025 yes 99%
1989 -0.098 yes 99%
1990 0.087 yes 99%
1991 -0.046 yes 99%
1992 -0.051 yes 99%
1993 0.081 yes 99%
1994 0.059 yes 99%
1995 0.069 yes 99%
1996 -0.083 yes 99%
1997 -0.025 yes 99%
1998 0.085 yes 99%
1999 0.092 yes 99%
2000 -0.034 yes 99%
2001 0.084 yes 99%
2002 0.030 yes 99%
2003 0.057 yes 99%
2004 0.067 yes 99%
2006 -0.109 yes 99%
2007 0.038 yes 99%
2008 0.054 yes 99%
2010 -0.148 yes 99%
2011 -0.064 yes 99%
2012 0.139 yes 99%

Washington 46005
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Region Station Year D-statistic p < 0.05? Monte Carlo Confidence
1991 0.407 yes 99%
1992 -0.071 yes 99%
1993 -0.097 yes 99%
1994 -0.113 yes 99%
1995 -0.055 yes 99%
1996 -0.060 yes 99%
1997 0.221 yes 99%
1998 0.032 yes 99%
1999 0.106 yes 99%
2000 0.024 yes 99%
2001 0.040 yes 99%
2002 -0.073 yes 99%
2003 0.038 yes 99%
2004 -0.032 yes 99%
2005 -0.100 yes 99%
2006 0.077 yes 99%
2007 -0.049 yes 99%
2008 -0.089 yes 99%
2009 -0.057 yes 99%
2010 0.092 yes 99%
2011 0.056 yes 99%
2012 0.049 yes 99%

Oregon 46050
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Region Station Year D-statistic p < 0.05? Monte Carlo Confidence
1975 0.223 yes 99%
1976 -0.209 yes 99%
1977 0.030 yes 99%
1978 -0.108 yes 99%
1979 -0.146 yes 99%
1980 -0.061 yes 99%
1981 0.036 yes 99%
1982 -0.126 yes 99%
1983 0.082 yes 99%
1984 0.278 yes 99%
1985 -0.078 yes 99%
1986 0.029 yes 99%
1987 -0.059 yes 99%
1988 0.196 yes 99%
1989 -0.086 yes 99%
1990 -0.052 yes 99%
1991 -0.092 yes 99%
1992 -0.055 yes 99%
1993 0.063 yes 99%
1994 0.061 yes 99%
1995 0.076 yes 99%
1996 -0.046 yes 99%
1997 0.146 yes 99%
1998 0.063 yes 99%
2000 -0.122 yes 99%
2001 0.086 yes 99%
2002 0.024 yes 99%
2003 0.188 yes 99%
2004 -0.059 yes 99%
2005 0.088 yes 99%
2006 0.060 yes 99%
2007 0.045 yes 99%
2008 0.038 yes 99%
2009 -0.106 yes 99%
2011 -0.150 yes 99%
2012 -0.066 yes 99%

Oregon 46002
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Region Station Year D-statistic p < 0.05? Monte Carlo Confidence
1985 -0.136 yes 99%
1986 0.078 yes 99%
1987 0.102 yes 99%
1988 -0.060 yes 99%
1989 -0.195 yes 99%
1990 -0.046 yes 99%
1991 -0.069 yes 99%
1992 -0.055 yes 99%
1993 0.041 yes 99%
1994 -0.020 yes 97.5%
1995 0.059 yes 99%
1996 -0.042 yes 99%
1997 0.169 yes 99%
1998 -0.220 yes 99%
1999 0.127 yes 99%
2000 0.026 yes 99%
2001 0.092 yes 99%
2002 0.031 yes 99%
2003 -0.024 yes 99%
2004 -0.038 yes 99%
2005 0.289 yes 99%
2006 0.052 yes 99%
2007 -0.121 yes 99%
2008 -0.074 yes 99%
2009 -0.050 yes 99%
2010 0.094 yes 99%
2011 -0.027 yes 99%
2012 -0.039 yes 99%

Northern California 46027
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Region Station Year D-statistic p < 0.05? Monte Carlo Confidence
1977 -0.226 yes 99%
1978 -0.139 yes 99%
1979 -0.111 yes 99%
1981 -0.153 yes 99%
1982 -0.074 yes 99%
1983 0.062 yes 99%
1984 0.223 yes 99%
1985 -0.076 yes 99%
1986 0.116 yes 99%
1987 0.042 yes 99%
1988 0.069 yes 99%
1989 -0.138 yes 99%
1990 -0.077 yes 99%
1991 0.357 yes 99%
1992 -0.163 yes 99%
1993 0.037 yes 99%
1994 0.075 yes 99%
1995 0.061 yes 99%
1996 0.042 yes 99%
1997 0.210 yes 99%
1998 0.146 yes 99%
1999 0.066 yes 99%
2000 0.074 yes 99%
2001 0.045 yes 99%
2002 -0.055 yes 99%
2003 0.161 yes 99%
2004 0.037 yes 99%
2005 0.071 yes 99%
2006 0.046 yes 99%
2007 -0.090 yes 99%
2008 -0.078 yes 99%
2009 -0.067 yes 99%
2010 0.149 yes 99%
2011 -0.055 yes 99%
2012 -0.038 yes 99%

Northern California 46006
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Region Station Year D-statistic p < 0.05? Monte Carlo Confidence
1982 -0.097 yes 99%
1983 0.054 yes 99%
1984 -0.047 yes 99%
1985 -0.055 yes 99%
1986 0.044 yes 99%
1987 -0.021 yes 97.5%
1988 -0.049 yes 99%
1989 -0.120 yes 99%
1990 0.167 yes 99%
1991 -0.035 yes 99%
1992 -0.060 yes 99%
1993 -0.110 yes 99%
1994 -0.043 yes 99%
1995 0.044 yes 99%
1996 0.128 yes 99%
1997 -0.038 yes 99%
1998 0.150 yes 99%
1999 0.118 yes 99%
2000 -0.126 yes 99%
2001 0.047 yes 99%
2002 0.030 yes 99%
2003 -0.055 yes 99%
2004 -0.032 yes 99%
2005 -0.048 yes 99%
2006 0.070 yes 99%
2007 -0.050 yes 99%
208 -0.039 yes 99%
2009 -0.066 yes 99%
2010 0.145 yes 99%
2011 -0.066 yes 99%
2012 0.309 yes 99%

Northern California 46022
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Region Station Year D-statistic p < 0.05? Monte Carlo Confidence
1981 -0.048 yes 99%
1982 -0.126 yes 99%
1983 -0.082 yes 99%
1984 -0.035 yes 99%
1985 -0.073 yes 99%
1986 0.042 yes 99%
1987 0.058 yes 99%
1988 -0.093 yes 99%
1989 -0.140 yes 99%
1990 -0.057 yes 99%
1991 -0.042 yes 99%
1992 -0.095 yes 99%
1993 -0.109 yes 99%
1994 0.063 yes 99%
1995 0.059 yes 99%
1996 0.047 yes 99%
1997 0.035 yes 99%
1998 0.098 yes 99%
1999 0.090 yes 99%
2000 0.025 yes 99%
2001 0.139 yes 99%
2002 -0.028 yes 99%
2003 -0.032 yes 99%
2004 -0.038 yes 99%
2005 0.048 yes 99%
2006 0.142 yes 99%
2007 -0.031 yes 99%
2008 -0.049 yes 99%
2009 -0.064 yes 99%
2010 0.081 yes 99%
2011 -0.042 yes 99%
2012 -0.021 yes 97.5%

Northern California 46014
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Region Station Year D-statistic p < 0.05? Monte Carlo Confidence
1994 0.289 yes 99%
1995 -0.059 yes 99%
1996 -0.057 yes 99%
1997 -0.051 yes 99%
1998 0.078 yes 99%
1999 0.065 yes 99%
2000 -0.044 yes 99%
2001 -0.044 yes 99%
2002 -0.066 yes 99%
2003 -0.026 yes 99%
2004 -0.032 yes 99%
2005 0.149 yes 99%
2006 0.051 yes 99%
2007 -0.055 yes 99%
2008 -0.040 yes 99%
2009 -0.298 yes 99%
2010 0.067 yes 99%
2011 -0.041 yes 99%
2012 0.109 yes 99%

Central California 46059
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Region Station Year D-statistic p < 0.05? Monte Carlo Confidence
1981 -0.076 yes 99%
1982 -0.164 yes 99%
1983 0.039 yes 99%
1984 0.121 yes 99%
1985 -0.066 yes 99%
1986 -0.043 yes 99%
1987 -0.043 yes 99%
1988 -0.088 yes 99%
1989 -0.117 yes 99%
1990 -0.049 yes 99%
1991 -0.041 yes 99%
1992 -0.037 yes 99%
1993 0.056 yes 99%
1994 0.069 yes 99%
1995 0.030 yes 99%
1996 0.048 yes 99%
1997 0.237 yes 99%
1998 0.083 yes 99%
1999 0.131 yes 99%
2000 0.052 yes 99%
2001 0.121 yes 99%
2002 -0.058 yes 99%
2003 -0.029 yes 99%
2004 -0.077 yes 99%
2005 -0.046 yes 99%
2006 0.037 yes 99%
2007 -0.039 yes 99%
2008 0.036 yes 99%
2009 -0.100 yes 99%
2010 0.088 yes 99%
2011 -0.086 yes 99%
2012 -0.035 yes 99%

Central California 46013
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Region Station Year D-statistic p < 0.05? Monte Carlo Confidence
1982 -0.286 yes 99%
1983 -0.090 yes 99%
1984 -0.056 yes 99%
1985 -0.196 yes 99%
1986 -0.101 yes 99%
1987 0.091 yes 99%
1988 -0.088 yes 99%
1989 -0.219 yes 99%
1990 -0.109 yes 99%
1991 -0.135 yes 99%
1992 -0.069 yes 99%
1993 -0.100 yes 99%
1994 -0.049 yes 99%
1995 -0.061 yes 99%
1996 -0.044 yes 99%
1997 0.107 yes 99%
1998 0.237 yes 99%
1999 0.046 yes 99%
2000 0.092 yes 99%
2001 0.168 yes 99%
2002 0.052 yes 99%
2003 0.090 yes 99%
2004 -0.036 yes 99%
2005 0.055 yes 99%
2006 0.063 yes 99%
2007 0.075 yes 99%
2008 0.102 yes 99%
2009 0.066 yes 99%
2010 0.077 yes 99%
2011 0.094 yes 99%
2012 0.061 yes 99%

Central California 46026
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Region Station Year D-statistic p < 0.05? Monte Carlo Confidence
1980 -0.139 yes 99%
1981 -0.044 yes 99%
1982 -0.172 yes 99%
1983 0.057 yes 99%
1984 -0.057 yes 99%
1985 -0.147 yes 99%
1986 -0.089 yes 99%
1987 -0.173 yes 99%
1988 -0.081 yes 99%
1989 -0.183 yes 99%
1990 -0.119 yes 99%
1991 -0.040 yes 99%
1992 -0.049 yes 99%
1993 0.217 yes 99%
1994 -0.049 yes 99%
1995 -0.097 yes 99%
1996 -0.026 yes 99%
1997 0.092 yes 99%
1998 -0.062 yes 99%
1999 0.133 yes 99%
2000 0.041 yes 99%
2001 0.048 yes 99%
2002 -0.135 yes 99%
2003 -0.027 yes 99%
2004 0.078 yes 99%
2005 0.089 yes 99%
2006 0.116 yes 99%
2007 0.052 yes 99%
2008 0.086 yes 99%
2009 0.077 yes 99%
2010 0.123 yes 99%
2011 0.105 yes 99%
2012 0.153 yes 99%

Central California 46012
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Region Station Year D-statistic p < 0.05? Monte Carlo Confidence
1987 0.263 yes 99%
1988 -0.036 yes 99%
1989 -0.151 yes 99%
1990 -0.063 yes 99%
1991 -0.028 yes 99%
1992 -0.041 yes 99%
1993 -0.041 yes 99%
1994 -0.046 yes 99%
1995 0.040 yes 99%
1996 -0.036 yes 99%
1997 -0.051 yes 99%
1998 0.065 yes 99%
1999 0.122 yes 99%
2000 0.025 yes 99%
2001 0.095 yes 99%
2002 -0.059 yes 99%
2003 -0.032 yes 99%
2004 -0.044 yes 99%
2005 -0.037 yes 99%
2006 0.039 yes 99%
2007 -0.030 yes 99%
2008 0.045 yes 99%
2009 -0.053 yes 99%
2010 0.069 yes 99%
2011 0.053 yes 99%
2012 0.036 yes 99%

Central California 46042
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Region Station Year D-statistic p < 0.05? Monte Carlo Confidence
1983 0.126 yes 99%
1984 0.069 yes 99%
1985 -0.128 yes 99%
1986 0.043 yes 99%
1987 0.038 yes 99%
1988 -0.145 yes 99%
1989 -0.092 yes 99%
1990 0.030 yes 99%
1991 -0.048 yes 99%
1992 -0.128 yes 99%
1993 -0.099 yes 99%
1994 -0.051 yes 99%
1995 -0.060 yes 99%
1996 -0.032 yes 99%
1997 0.110 yes 99%
1998 0.100 yes 99%
1999 0.173 yes 99%
2000 -0.032 yes 99%
2001 0.113 yes 99%
2002 0.028 yes 99%
2003 -0.036 yes 99%
2004 0.045 yes 99%
2005 -0.035 yes 99%
2006 0.041 yes 99%
2007 0.047 yes 99%
2008 0.041 yes 99%
2009 -0.084 yes 99%
2010 0.030 yes 99%
2011 -0.031 yes 99%
2012 -0.019 yes 95%

46028Central California
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Region Station Year D-statistic p < 0.05? Monte Carlo Confidence
1983 0.108 yes 99%
1984 -0.086 yes 99%
1985 -0.251 yes 99%
1986 -0.243 yes 99%
1987 0.058 no n/a
1988 -0.071 yes 99%
1989 -0.076 yes 99%
1991 -0.116 no n/a
1992 -0.159 yes 99%
1993 0.167 yes 99%
1994 -0.067 yes 99%
1995 -0.217 yes 99%
1996 0.096 yes 99%
1997 0.056 yes 99%
1998 -0.078 yes 99%
1999 0.083 yes 99%
2000 -0.076 yes 99%
2001 -0.086 yes 99%
2002 0.044 yes 99%
2003 -0.053 yes 99%
2004 -0.070 yes 99%
2005 0.059 yes 99%
2006 0.054 yes 99%
2007 0.071 yes 99%
2008 0.120 yes 99%
2009 -0.152 yes 99%
2010 0.061 yes 99%
2011 0.115 yes 99%
2012 0.085 yes 99%

Southern California 76
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Region Station Year D-statistic p < 0.05? Monte Carlo Confidence
1980 -0.101 yes 99%
1981 -0.049 yes 99%
1982 -0.114 yes 99%
1983 0.063 yes 99%
1984 0.185 yes 99%
1985 -0.071 yes 99%
1986 -0.060 yes 99%
1987 -0.191 yes 99%
1988 -0.079 yes 99%
1989 -0.112 yes 99%
1990 -0.114 yes 99%
1991 -0.056 yes 99%
1992 -0.138 yes 99%
1994 0.068 yes 99%
1995 0.037 yes 99%
1996 -0.073 yes 99%
1997 0.097 yes 99%
1998 0.146 yes 99%
1999 0.111 yes 99%
2000 -0.033 yes 99%
2001 0.100 yes 99%
2002 0.023 yes 99%
2003 -0.031 yes 99%
2004 -0.031 yes 99%
2005 0.040 yes 99%
2006 -0.082 yes 99%
2007 0.049 yes 99%
2008 0.036 yes 99%
2009 -0.085 yes 99%
2010 0.028 yes 99%
2011 -0.052 yes 99%
2012 0.075 yes 99%

Southern California 46011
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Region Station Year D-statistic p < 0.05? Monte Carlo Confidence
1982 -0.062 yes 99%
1983 0.064 yes 99%
1984 0.102 yes 99%
1985 -0.070 yes 99%
1986 0.032 yes 99%
1987 0.046 yes 99%
1988 -0.051 yes 99%
1989 -0.122 yes 99%
1990 -0.111 yes 99%
1991 0.027 yes 99%
1992 -0.048 yes 99%
1993 0.040 yes 99%
1994 -0.066 yes 99%
1995 0.040 yes 99%
1996 0.129 yes 99%
1997 -0.045 yes 99%
1998 0.097 yes 99%
1999 0.051 yes 99%
2000 0.050 yes 99%
2001 0.062 yes 99%
2002 -0.123 yes 99%
2003 -0.050 yes 99%
2004 -0.045 yes 99%
2005 -0.021 yes 97.5%
2006 0.055 yes 99%
2007 0.056 yes 99%
2008 0.049 yes 99%
2009 -0.068 yes 99%
2010 0.097 yes 99%

46023Southern California
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Region Station Year D-statistic p < 0.05? Monte Carlo Confidence
1998 -0.061 yes 99%
1999 -0.066 yes 99%
2000 -0.066 yes 99%
2001 -0.068 yes 99%
2002 0.034 yes 99%
2003 -0.090 yes 99%
2004 -0.126 yes 99%
2005 -0.067 yes 99%
2006 0.067 yes 99%
2007 0.116 yes 99%
2008 0.129 yes 99%
2009 -0.197 yes 99%
2010 -0.046 yes 99%
2011 0.102 yes 99%
2012 0.152 yes 99%

71Southern California

Region Station Year D-statistic p < 0.05? Monte Carlo Confidence
1994 -0.068 yes 99%
1995 0.046 yes 99%
1996 -0.038 yes 99%
1997 0.077 yes 99%
1998 0.095 yes 99%
1999 0.086 yes 99%
2000 0.050 yes 99%
2001 0.058 yes 99%
2002 -0.136 yes 99%
2003 -0.057 yes 99%
2004 -0.056 yes 99%
2005 -0.080 yes 99%
2006 -0.027 yes 99%
2007 -0.050 yes 99%
2008 -0.047 yes 99%
2009 -0.080 yes 99%
2010 0.032 yes 99%
2011 -0.057 yes 99%
2012 -0.026 yes 99%

46054Southern California
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Region Station Year D-statistic p < 0.05? Monte Carlo Confidence
1994 -0.074 yes 99%
1995 0.056 yes 99%
1996 -0.026 yes 99%
1998 0.026 yes 99%
1999 0.096 yes 99%
2000 0.046 yes 99%
2001 0.042 yes 99%
2002 0.030 yes 99%
2003 -0.034 yes 99%
2004 -0.051 yes 99%
2005 0.015 yes <95%
2006 0.047 yes 99%
2007 -0.036 yes 99%
2008 -0.041 yes 99%
2009 -0.049 yes 99%
2010 0.024 yes 99%
2011 0.050 yes 99%
2012 -0.049 yes 99%

46053Southern California
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Region Station Year D-statistic p < 0.05? Monte Carlo Confidence
1982 -0.135 yes 99%
1983 0.162 yes 99%
1984 0.146 yes 99%
1985 0.076 yes 99%
1986 -0.181 yes 99%
1987 -0.052 yes 99%
1988 -0.131 yes 99%
1989 -0.091 yes 99%
1990 -0.056 yes 99%
1991 -0.152 yes 99%
1992 -0.050 yes 99%
1993 0.182 yes 99%
1994 -0.121 yes 99%
1995 -0.162 yes 99%
1996 -0.049 yes 99%
1997 0.197 yes 99%
1998 0.207 yes 99%
1999 0.114 yes 99%
2000 0.094 yes 99%
2001 0.070 yes 99%
2002 -0.077 yes 99%
2003 0.095 yes 99%
2004 -0.036 yes 99%
2005 -0.055 yes 99%
2006 0.070 yes 99%
2007 -0.105 yes 99%
2008 -0.085 yes 99%
2009 -0.126 yes 99%
2010 0.040 yes 99%
2011 -0.091 yes 99%
2012 0.096 yes 99%

46025Southern California
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Region Station Year D-statistic p < 0.05? Monte Carlo Confidence
1981 -0.231 yes 99%
1998 0.124 yes 99%
1999 0.093 yes 99%
2000 0.039 yes 99%
2001 -0.036 yes 99%
2002 -0.078 yes 99%
2003 0.035 yes 99%
2004 -0.046 yes 99%
2005 -0.154 yes 99%
2006 0.050 yes 99%
2007 0.040 yes 99%
2008 0.037 yes 99%
2009 -0.178 yes 99%
2010 -0.127 yes 99%
2011 0.092 yes 99%
2012 0.054 yes 99%

92Southern California

Region Station Year D-statistic p < 0.05? Monte Carlo Confidence
1997 0.085 yes 99%
1998 0.227 yes 99%
1999 0.095 yes 99%
2000 0.053 yes 99%
2001 -0.096 yes 99%
2002 -0.133 yes 99%
2003 -0.059 yes 99%
2004 -0.203 yes 99%
2005 -0.125 yes 99%
2006 0.119 yes 99%
2007 -0.150 yes 99%
2008 0.113 yes 99%
2009 -0.025 yes 99%
2010 0.068 yes 99%
2011 0.102 yes 99%
2012 -0.085 yes 99%

Southern California 45
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Region Station Year D-statistic p < 0.05? Monte Carlo Confidence
1981 0.086 no n/a
1982 -0.225 yes 99%
1985 -0.254 yes 99%
1986 -0.316 yes 99%
1987 -0.110 yes 99%
1988 -0.268 yes 99%
1989 -0.142 yes 99%
1990 -0.049 no n/a
1991 -0.357 yes 99%
1992 -0.199 yes 99%
1993 0.075 yes 99%
1994 0.043 no n/a
1995 -0.244 yes 99%
1997 -0.102 yes 99%
1998 0.250 yes 99%
2006 0.198 yes 99%
2007 -0.113 yes 99%
2008 0.088 yes 99%
2009 -0.106 yes 99%
2010 0.091 yes 99%
2011 0.189 yes 99%
2012 0.035 yes 99%

Southern California 93

Region Station Year D-statistic p < 0.05? Monte Carlo Confidence
1991 0.217 yes 99%
1992 -0.047 yes 99%
1993 0.130 yes 99%
1999 -0.052 yes 99%
2000 0.127 yes 99%
2001 0.088 yes 99%
2002 -0.044 yes 99%
2003 0.022 yes 99%
2004 -0.055 yes 99%
2005 -0.069 yes 99%
2006 -0.055 yes 99%
2007 -0.039 yes 99%
2008 -0.017 yes <95%
2009 -0.078 yes 99%
2010 0.044 yes 99%
2011 -0.108 yes 99%
2012 0.040 yes 99%

46047Southern California
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APPENDIX F 

 

 

 

 

 

Summer Significant Wave Height (Hsig) vs. Winter Multivariate ENSO Index 

(MEI) 

Plots of average winter MEI as a function of the percentage difference between 

average summer Hsig for each year and the overall average summer Hsig for every 

station over the time period of available summer Hsig data. Plots are shown in north 

to south latitudinal order, from off of the coast of Washington State to off of the coast 

of Southern California. Linear regression coefficients are listed in Table 3.4. 
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APPENDIX G 

 

 

 

 

 

 

Combining the Summer Multivariate El Niño Southern Oscillation (ENSO) 

Index (MEI) with Summer Significant Wave Height (Hsig) to Forecast the Winter 

MEI 

Results of the ordinary least-squares (OLS) multiple (linear) regression analysis for 

each buoy. x1 = average summer MEI, x2 = summer average Hsig, and y = average 

winter MEI. Results are shown in north to south latitudinal order. 
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Washington 

 

name of term coef std err t P > |t|
x1 1.0583 0.160 6.600 0.000 0.725 1.392
x2 -0.0137 0.017 -0.826 0.418 -0.048 0.021
const -0.255 0.137 -1.859 0.077 -0.540 0.030

Dep. Variable: y R-squared: 0.697
Model: OLS Adj. R-squared: 0.668
Method: Least Squares F-statistic: 24.16
No. Observations: 24 Prob (F-statistic): 3.59E-06
Df Residuals: 21 Log-Likelihood: -20.446

AIC: 46.89
BIC: 50.43

Omnibus: 0.589 Durbin-Watson: 1.813
Prob(Omnibus): 0.745 Jarque-Bera(JB): 0.421
Skew: -0.304 Prob(JB): 0.810
Kurtosis: 2.775 Cond. No. 12.0

name of term coef std err t P > |t|
x1 1.1976 0.135 8.881 0.000 0.914 1.481
x2 0.0041 0.018 0.224 0.825 -0.034 0.042
const -0.4307 0.113 -3.815 0.001 -0.668 -0.193

Dep. Variable: y R-squared: 0.814
Model: OLS Adj. R-squared: 0.794
Method: Least Squares F-statistic: 39.43
No. Observations: 21 Prob (F-statistic): 2.64E-07
Df Residuals: 18 Log-Likelihood: -12.721

AIC: 31.44
BIC: 34.58

Omnibus: 2.488 Durbin-Watson: 2.190
Prob(Omnibus): 0.288 Jarque-Bera(JB): 1.532
Skew: -0.662 Prob(JB): 0.465
Kurtosis: 3.019 Cond. No. 8.12

Station 46029
[95.0% Conf. Int.]

Df Model: 2

[95.0% Conf. Int.]

Df Model:

Station 46041

2
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name of term coef std err t P > |t|
x1 1.1156 0.149 7.509 0.000 0.808 1.423
x2 -0.0319 0.019 -1.644 0.114 -0.072 0.008
const -0.2426 0.140 -1.738 0.096 -0.531 0.046

Dep. Variable: y R-squared: 0.723
Model: OLS Adj. R-squared: 0.699
Method: Least Squares F-statistic: 30.01
No. Observations: 26 Prob (F-statistic): 3.89E-07
Df Residuals: 23 Log-Likelihood: -24.126

AIC: 54.25
BIC: 58.03

Omnibus: 0.252 Durbin-Watson: 1.878
Prob(Omnibus): 0.882 Jarque-Bera(JB): 0.122
Skew: 0.150 Prob(JB): 0.941
Kurtosis: 2.850 Cond. No. 8.84

name of term coef std err t P > |t|
x1 0.9575 0.154 6.207 0.000 0.642 1.273
x2 -0.0162 0.016 -0.995 0.328 -0.049 0.017
const -0.1706 0.139 -1.232 0.228 -0.454 0.113

Dep. Variable: y R-squared: 0.579
Model: OLS Adj. R-squared: 0.550
Method: Least Squares F-statistic: 19.94
No. Observations: 32 Prob (F-statistic): 3.57E-06
Df Residuals: 29 Log-Likelihood: -33.474

AIC: 72.95
BIC: 77.34

Omnibus: 0.202 Durbin-Watson: 2.060
Prob(Omnibus): 0.904 Jarque-Bera(JB): 0.034
Skew: -0.072 Prob(JB): 0.983
Kurtosis: 2.933 Cond. No. 10.7

Df Model: 2

Station 036
[95.0% Conf. Int.]

Station 46005
[95.0% Conf. Int.]

Df Model: 2
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Oregon 

 

 

 

 

name of term coef std err t P > |t|
x1 1.1755 0.159 7.406 0.000 0.841 1.510
x2 -0.0056 0.020 -0.279 0.784 -0.048 0.037
const -0.4225 0.123 -3.445 0.003 -0.681 -0.164

Dep. Variable: y R-squared: 0.811
Model: OLS Adj. R-squared: 0.789
Method: Least Squares F-statistic: 36.59
No. Observations: 20 Prob (F-statistic): 6.92E-07
Df Residuals: 17 Log-Likelihood: -12.585

AIC: 31.17
BIC: 34.16

Omnibus: 1.413 Durbin-Watson: 2.088
Prob(Omnibus): 0.493 Jarque-Bera(JB): 1.028
Skew: -0.535 Prob(JB): 0.598
Kurtosis: 2.699 Cond. No. 9.87

name of term coef std err t P > |t|
x1 1.0261 0.188 5.459 0.000 0.641 1.411
x2 -0.0298 0.016 -1.921 0.065 -0.062 0.002
const -0.1740 0.163 -1.067 0.295 -0.508 0.160

Dep. Variable: y R-squared: 0.516
Model: OLS Adj. R-squared: 0.482
Method: Least Squares F-statistic: 14.95
No. Observations: 31 Prob (F-statistic): 3.82E-05
Df Residuals: 28 Log-Likelihood: -32.060

AIC: 70.12
BIC: 74.42

Omnibus: 0.158 Durbin-Watson: 2.373
Prob(Omnibus): 0.924 Jarque-Bera(JB): 0.207
Skew: -0.146 Prob(JB): 0.902
Kurtosis: 2.726 Cond. No. 15.1

Df Model: 2

Station 46002
[95.0% Conf. Int.]

Df Model: 2

Station 46050
[95.0% Conf. Int.]
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Northern California 

 

 

 

 

name of term coef std err t P > |t|
x1 1.0901 0.192 5.676 0.000 0.691 1.490
x2 -0.0012 0.018 -0.064 0.950 -0.039 0.037
const -0.1731 0.135 -1.281 0.214 -0.454 0.108

Dep. Variable: y R-squared: 0.615
Model: OLS Adj. R-squared: 0.578
Method: Least Squares F-statistic: 16.78
No. Observations: 24 Prob (F-statistic): 4.43E-05
Df Residuals: 21 Log-Likelihood: -21.673

AIC: 49.35
BIC: 52.88

Omnibus: 0.489 Durbin-Watson: 1.877
Prob(Omnibus): 0.783 Jarque-Bera(JB): 0.138
Skew: -0.186 Prob(JB): 0.933
Kurtosis: 2.982 Cond. No. 11.1

name of term coef std err t P > |t|
x1 1.0427 0.151 6.897 0.000 0.734 1.352
x2 -0.0253 0.011 -2.229 0.034 -0.049 -0.002
const -0.2013 0.131 -1.536 0.135 -0.469 0.067

Dep. Variable: y R-squared: 0.622
Model: OLS Adj. R-squared: 0.596
Method: Least Squares F-statistic: 23.83
No. Observations: 32 Prob (F-statistic): 7.56E-07
Df Residuals: 29 Log-Likelihood: -31.219

AIC: 68.44
BIC: 72.83

Omnibus: 3.154 Durbin-Watson: 2.707
Prob(Omnibus): 0.207 Jarque-Bera(JB): 1.804
Skew: -0.477 Prob(JB): 0.406
Kurtosis: 3.666 Cond. No. 15.5

Df Model: 2

Station 46027
[95.0% Conf. Int.]

Df Model: 2

Station 46006
[95.0% Conf. Int.]
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name of term coef std err t P > |t|
x1 1.0122 0.166 6.082 0.000 0.670 1.354
x2 0.0142 0.023 0.615 0.544 -0.033 0.062
const -0.2255 0.158 -1.429 0.165 -0.550 0.099

Dep. Variable: y R-squared: 0.590
Model: OLS Adj. R-squared: 0.559
Method: Least Squares F-statistic: 18.72
No. Observations: 29 Prob (F-statistic): 9.21E-06
Df Residuals: 26 Log-Likelihood: -31.811

AIC: 69.62
BIC: 73.72

Omnibus: 0.68 Durbin-Watson: 2.229
Prob(Omnibus): 0.712 Jarque-Bera(JB): 0.120
Skew: 0.127 Prob(JB): 0.942
Kurtosis: 3.185 Cond. No. 8.40

name of term coef std err t P > |t|
x1 0.9248 0.159 5.819 0.000 0.599 1.251
x2 -0.0356 0.019 -1.913 0.066 -0.074 0.003
const -0.1916 0.142 -1.347 0.189 -0.483 0.100

Dep. Variable: y R-squared: 0.637
Model: OLS Adj. R-squared: 0.610
Method: Least Squares F-statistic: 23.67
No. Observations: 30 Prob (F-statistic): 1.16E-06
Df Residuals: 27 Log-Likelihood: -30.725

AIC: 67.45
BIC: 71.65

Omnibus: 1.389 Durbin-Watson: 2.130
Prob(Omnibus): 0.499 Jarque-Bera(JB): 0.561
Skew: -0.299 Prob(JB): 0.755
Kurtosis: 3.300 Cond. No. 10.1

Station 46022
[95.0% Conf. Int.]

Df Model: 2

Station 46014
[95.0% Conf. Int.]

Df Model: 2
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Central California 

 

 

 

 

name of term coef std err t P > |t|
x1 1.1811 0.138 8.589 0.000 0.881 1.481
x2 0.0380 0.033 1.157 0.270 -0.033 0.109
const -0.4211 0.115 -3.675 0.003 -0.671 -0.171

Dep. Variable: y R-squared: 0.867
Model: OLS Adj. R-squared: 0.845
Method: Least Squares F-statistic: 39.23
No. Observations: 15 Prob (F-statistic): 5.45E-06
Df Residuals: 12 Log-Likelihood: -7.1352

AIC: 20.27
BIC: 22.39

Omnibus: 6.259 Durbin-Watson: 1.641
Prob(Omnibus): 0.044 Jarque-Bera(JB): 3.266
Skew: -1.047 Prob(JB): 0.195
Kurtosis: 3.917 Cond. No. 4.37

name of term coef std err t P > |t|
x1 0.8726 0.159 5.471 0.000 0.545 1.200
x2 -0.0439 0.014 -3.126 0.004 -0.073 -0.015
const -0.2236 0.126 -1.777 0.087 -0.482 0.035

Dep. Variable: y R-squared: 0.649
Model: OLS Adj. R-squared: 0.622
Method: Least Squares F-statistic: 24.07
No. Observations: 29 Prob (F-statistic): 1.21E-06
Df Residuals: 26 Log-Likelihood: -26.136

AIC: 58.27
BIC: 62.37

Omnibus: 0.195 Durbin-Watson: 2.222
Prob(Omnibus): 0.907 Jarque-Bera(JB): 0.386
Skew: 0.129 Prob(JB): 0.825
Kurtosis: 2.497 Cond. No. 12.5

Df Model: 2

Station 46013
[95.0% Conf. Int.]

Df Model: 2

Station 46059
[95.0% Conf. Int.]
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name of term coef std err t P > |t|
x1 0.9609 0.151 6.356 0.000 0.651 1.271
x2 -0.0268 0.012 -2.272 0.031 -0.051 -0.003
const -0.2059 0.140 -1.474 0.152 -0.492 0.081

Dep. Variable: y R-squared: 0.655
Model: OLS Adj. R-squared: 0.629
Method: Least Squares F-statistic: 25.58
No. Observations: 30 Prob (F-statistic): 5.85E-07
Df Residuals: 27 Log-Likelihood: -29.992

AIC: 65.98
BIC: 70.19

Omnibus: 3.349 Durbin-Watson: 2.247
Prob(Omnibus): 0.187 Jarque-Bera(JB): 2.240
Skew: -0.659 Prob(JB): 0.326
Kurtosis: 3.238 Cond. No. 14.9

name of term coef std err t P > |t|
x1 1.0036 0.147 6.818 0.000 0.702 1.306
x2 -0.0249 0.010 -2.446 0.021 -0.046 -0.004
const -0.1931 0.133 -1.451 0.158 -0.466 0.080

Dep. Variable: y R-squared: 0.676
Model: OLS Adj. R-squared: 0.652
Method: Least Squares F-statistic: 28.16
No. Observations: 30 Prob (F-statistic): 2.47E-07
Df Residuals: 27 Log-Likelihood: -29.062

AIC: 64.12
BIC: 68.33

Omnibus: 2.596 Durbin-Watson: 2.675
Prob(Omnibus): 0.273 Jarque-Bera(JB): 1.558
Skew: -0.542 Prob(JB): 0.459
Kurtosis: 3.267 Cond. No. 16.4

Df Model: 2

Station 46026
[95.0% Conf. Int.]

Df Model: 2

Station 46012
[95.0% Conf. Int.]
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name of term coef std err t P > |t|
x1 1.1570 0.148 7.823 0.000 0.849 1.465
x2 -0.0201 0.017 -1.175 0.253 -0.056 0.015
const -0.2684 0.124 -2.164 0.042 -0.526 -0.010

Dep. Variable: y R-squared: 0.745
Model: OLS Adj. R-squared: 0.720
Method: Least Squares F-statistic: 30.60
No. Observations: 24 Prob (F-statistic): 5.98E-07
Df Residuals: 21 Log-Likelihood: -19.154

AIC: 44.31
BIC: 47.84

Omnibus: 1.598 Durbin-Watson: 1.457
Prob(Omnibus): 0.450 Jarque-Bera(JB): 0.509
Skew: 0.261 Prob(JB): 0.775
Kurtosis: 3.485 Cond. No. 9.43

name of term coef std err t P > |t|
x1 1.0907 0.148 7.348 0.000 0.785 1.396
x2 -0.0208 0.018 -1.185 0.247 -0.057 0.015
const -0.2462 0.124 -1.984 0.058 -0.502 0.009

Dep. Variable: y R-squared: 0.668
Model: OLS Adj. R-squared: 0.663
Method: Least Squares F-statistic: 27.51
No. Observations: 28 Prob (F-statistic): 4.83E-07
Df Residuals: 25 Log-Likelihood: -24.341

AIC: 54.68
BIC: 58.68

Omnibus: 1.343 Durbin-Watson: 2.143
Prob(Omnibus): 0.511 Jarque-Bera(JB): 0.532
Skew: 0.310 Prob(JB): 0.767
Kurtosis: 3.267 Cond. No. 9.64

Station 46042
[95.0% Conf. Int.]

Df Model: 2

Station 46028
[95.0% Conf. Int.]

Df Model: 2
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Southern California 

 

name of term coef std err t P > |t|
x1 0.9607 0.144 6.672 0.000 0.664 1.257
x2 -0.0393 0.018 -2.196 0.038 -0.076 -0.002
const -0.2783 0.132 -2.101 0.046 -0.551 -0.005

Dep. Variable: y R-squared: 0.652
Model: OLS Adj. R-squared: 0.624
Method: Least Squares F-statistic: 23.41
No. Observations: 28 Prob (F-statistic): 1.87E-06
Df Residuals: 25 Log-Likelihood: -25.877

AIC: 57.75
BIC: 61.75

Omnibus: 0.089 Durbin-Watson: 1.910
Prob(Omnibus): 0.957 Jarque-Bera(JB): 0.157
Skew: -0.110 Prob(JB): 0.924
Kurtosis: 2.707 Cond. No. 9.18

name of term coef std err t P > |t|
x1 0.9922 0.143 6.961 0.000 0.700 1.285
x2 -0.0616 0.021 -2.879 0.008 -0.105 -0.018
const -0.1891 0.129 -1.470 0.153 -0.453 0.075

Dep. Variable: y R-squared: 0.697
Model: OLS Adj. R-squared: 0.675
Method: Least Squares F-statistic: 31.08
No. Observations: 30 Prob (F-statistic): 9.92E-08
Df Residuals: 27 Log-Likelihood: -28.048

AIC: 62.10
BIC: 66.30

Omnibus: 0.291 Durbin-Watson: 2.379
Prob(Omnibus): 0.865 Jarque-Bera(JB): 0.045
Skew: -0.094 Prob(JB): 0.978
Kurtosis: 2.976 Cond. No. 7.56

Df Model: 2

Station 46011
[95.0% Conf. Int.]

Df Model: 2

Station 076
[95.0% Conf. Int.]
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name of term coef std err t P > |t|
x1 1.0171 0.158 6.445 0.000 0.693 1.342
x2 -0.0387 0.021 -1.837 0.078 -0.082 0.005
const -0.2202 0.149 -1.473 0.153 -0.527 0.087

Dep. Variable: y R-squared: 0.629
Model: OLS Adj. R-squared: 0.600
Method: Least Squares F-statistic: 22.04
No. Observations: 29 Prob (F-statistic): 2.53E-06
Df Residuals: 26 Log-Likelihood: -30.200

AIC: 66.40
BIC: 70.50

Omnibus: 0.492 Durbin-Watson: 2.228
Prob(Omnibus): 0.782 Jarque-Bera(JB): 0.198
Skew: 0.201 Prob(JB): 0.906
Kurtosis: 2.965 Cond. No. 8.77

name of term coef std err t P > |t|
x1 1.2122 0.249 4.862 0.001 0.663 1.761
x2 -0.0432 0.027 -1.628 0.132 -0.102 0.015
const -0.4115 0.128 -3.217 0.008 -0.693 -0.130

Dep. Variable: y R-squared: 0.780
Model: OLS Adj. R-squared: 0.740
Method: Least Squares F-statistic: 19.46
No. Observations: 14 Prob (F-statistic): 2.44E-04
Df Residuals: 11 Log-Likelihood: -7.6608

AIC: 21.32
BIC: 23.24

Omnibus: 9.789 Durbin-Watson: 1.534
Prob(Omnibus): 0.007 Jarque-Bera(JB): 5.761
Skew: -1.404 Prob(JB): 0.056
Kurtosis: 4.409 Cond. No. 10.3

Df Model: 2

Station 46023
[95.0% Conf. Int.]

Df Model: 2

Station 071
[95.0% Conf. Int.]
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name of term coef std err t P > |t|
x1 1.2312 0.142 8.690 0.000 0.929 1.533
x2 -0.0174 0.016 -1.106 0.286 -0.051 0.016
const -0.4001 0.115 -3.465 0.003 -0.646 -0.154

Dep. Variable: y R-squared: 0.844
Model: OLS Adj. R-squared: 0.824
Method: Least Squares F-statistic: 40.71
No. Observations: 18 Prob (F-statistic): 8.69E-07
Df Residuals: 15 Log-Likelihood: -10.135

AIC: 26.27
BIC: 28.94

Omnibus: 5.786 Durbin-Watson: 1.972
Prob(Omnibus): 0.055 Jarque-Bera(JB): 3.294
Skew: -0.964 Prob(JB): 0.193
Kurtosis: 3.821 Cond. No. 9.69

name of term coef std err t P > |t|
x1 1.3740 0.225 6.097 0.000 0.891 1.857
x2 -0.0134 0.021 -0.643 0.530 -0.058 0.031
const -0.4023 0.119 -3.383 0.004 -0.657 -0.147

Dep. Variable: y R-squared: 0.749
Model: OLS Adj. R-squared: 0.714
Method: Least Squares F-statistic: 20.94
No. Observations: 17 Prob (F-statistic): 6.19E-05
Df Residuals: 14 Log-Likelihood: -9.9737

AIC: 25.95
BIC: 28.45

Omnibus: 10.512 Durbin-Watson: 2.214
Prob(Omnibus): 0.005 Jarque-Bera(JB): 7.227
Skew: -1.392 Prob(JB): 0.0270
Kurtosis: 4.567 Cond. No. 11.2

Station 46054
[95.0% Conf. Int.]

Df Model: 2

Station 46053
[95.0% Conf. Int.]

Df Model: 2
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name of term coef std err t P > |t|
x1 1.0898 0.163 6.671 0.000 0.754 1.426
x2 -0.0145 0.020 -0.729 0.472 -0.055 0.026
const -0.2998 0.151 -1.987 0.058 -0.610 0.010

Dep. Variable: y R-squared: 0.635
Model: OLS Adj. R-squared: 0.607
Method: Least Squares F-statistic: 22.66
No. Observations: 29 Prob (F-statistic): 2.01E-06
Df Residuals: 26 Log-Likelihood: -30.203

AIC: 66.41
BIC: 70.51

Omnibus: 1.681 Durbin-Watson: 2.359
Prob(Omnibus): 0.432 Jarque-Bera(JB): 0.596
Skew: -0.127 Prob(JB): 0.742
Kurtosis: 3.655 Cond. No. 9.84

name of term coef std err t P > |t|
x1 1.2666 0.244 5.200 0.000 0.736 1.797
x2 -0.0399 0.030 -1.316 0.213 -0.106 0.026
const -0.3921 0.125 -3.126 0.009 -0.665 -0.119

Dep. Variable: y R-squared: 0.752
Model: OLS Adj. R-squared: 0.710
Method: Least Squares F-statistic: 18.15
No. Observations: 15 Prob (F-statistic): 2.35E-04
Df Residuals: 12 Log-Likelihood: -8.614

AIC: 23.23
BIC: 25.35

Omnibus: 5.072 Durbin-Watson: 2.229
Prob(Omnibus): 0.079 Jarque-Bera(JB): 2.965
Skew: -1.082 Prob(JB): 0.227
Kurtosis: 3.250 Cond. No. 8.49

Df Model: 2

Station 092
[95.0% Conf. Int.]

Df Model: 2

Station 46025
[95.0% Conf. Int.]
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name of term coef std err t P > |t|
x1 1.2323 0.146 8.459 0.000 0.915 1.550
x2 -0.0337 0.023 -1.473 0.167 -0.084 0.016
const -0.4280 0.128 -3.348 0.006 -0.707 -0.149

Dep. Variable: y R-squared: 0.861
Model: OLS Adj. R-squared: 0.838
Method: Least Squares F-statistic: 37.31
No. Observations: 15 Prob (F-statistic): 7.07E-06
Df Residuals: 12 Log-Likelihood: -8.382

AIC: 22.76
BIC: 24.89

Omnibus: 2.243 Durbin-Watson: 2.157
Prob(Omnibus): 0.326 Jarque-Bera(JB): 1.671
Skew: -0.767 Prob(JB): 0.434
Kurtosis: 2.433 Cond. No. 6.89

name of term coef std err t P > |t|
x1 1.0009 0.146 6.836 0.000 0.693 1.309
x2 -0.0553 0.016 -3.352 0.004 -0.090 -0.021
const -0.1077 0.148 -0.729 0.475 -0.418 0.202

Dep. Variable: y R-squared: 0.790
Model: OLS Adj. R-squared: 0.767
Method: Least Squares F-statistic: 33.94
No. Observations: 21 Prob (F-statistic): 7.81E-07
Df Residuals: 18 Log-Likelihood: -17.781

AIC: 41.56
BIC: 44.70

Omnibus: 0.031 Durbin-Watson: 2.315
Prob(Omnibus): 0.984 Jarque-Bera(JB): 0.161
Skew: -0.076 Prob(JB): 0.923
Kurtosis: 2.598 Cond. No. 10.8

Df Model: 2

Station 045
[95.0% Conf. Int.]

Df Model: 2

Station 093
[95.0% Conf. Int.]
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name of term coef std err t P > |t|
x1 1.1508 0.179 6.427 0.000 0.761 1.541
x2 -0.0191 0.014 -1.393 0.189 -0.049 0.011
const -0.3747 0.115 -3.245 0.007 -0.626 -0.123

Dep. Variable: y R-squared: 0.816
Model: OLS Adj. R-squared: 0.785
Method: Least Squares F-statistic: 26.60
No. Observations: 15 Prob (F-statistic): 3.88E-05
Df Residuals: 12 Log-Likelihood: -6.7155

AIC: 19.43
BIC: 21.56

Omnibus: 0.960 Durbin-Watson: 1.863
Prob(Omnibus): 0.619 Jarque-Bera(JB): 0.859
Skew: -0.470 Prob(JB): 0.651
Kurtosis: 2.299 Cond. No. 14.2

Station 46047
[95.0% Conf. Int.]

Df Model: 2
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APPENDIX H 

 

 

 

 

 

 

Summer Significant Wave Height (Hsig) vs. Summer Northern Pacific (NP) Index 

Plots of monthly summer Hsig percentage difference as a function of monthly summer 

NP Index over the period of available summer Hsig data through 2010 for each buoy. 

Plots are shown in north to south latitudinal order. Linear regression coefficients are 

listed in Table 3.8. 
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