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Abstract

Background: Subcortical brain structures play a key role in pathological processes of age-

related neurodegenerative disorders. Mounting evidence also suggests that early-life factors may 

have an impact on the development of common late-life neurological diseases, including genetic 

factors that can influence both brain maturation and neurodegeneration.

Methods: Using large population-based brain imaging datasets across the lifespan (N≤40,628) 

we aimed to: (i) estimate the heritability of subcortical volumes in young (18–35), middle (35–

65), and older age (65+), and their genetic correlation across age groups; (ii) identify whether 

genetic loci associated with subcortical volumes in older persons also show associations in 

early adulthood, and explore underlying genes using transcriptome-wide association studies; (iii) 

explore their association with neurological phenotypes.

Results: Heritability of subcortical volumes consistently decreased with increasing age. Genetic 

risk scores for smaller caudate nucleus, putamen and hippocampus volume in older adults 

were associated with smaller volumes in young adults. Individually, ten loci associated with 

subcortical volumes in older adults also showed associations in young adults. Within these loci, 

transcriptome-wide association studies showed that expression of several genes in brain tissues 

(especially MYLK2 and TUFM) was associated with subcortical volumes in both age-groups. 

One risk variant for smaller caudate nucleus volume (TUFM locus) was associated with lower 

cognitive performance. Genetically-predicted Alzheimer’s disease was associated with smaller 

subcortical volumes in middle and older age.

Conclusions: Our findings provide novel insights into the genetic determinants of subcortical 

volumes across the lifespan. More studies are needed to decipher the underlying biology and 

clinical impact.

Keywords
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Introduction

Subcortical structures (hippocampus, caudate nucleus, putamen, pallidum, accumbens, 

amygdala and thalamus) are involved in many neural processes, from autonomic and 

sensorimotor functions to memory, decision making and processing of reward and threat 

signals (1–5). These structures also play a key role in pathological processes of age-related 

neurodegenerative disorders, including Parkinson disease (PD) and Alzheimer’s disease 

(AD). Volumes of subcortical structures can be measured quantitatively in large population-

based samples using brain Magnetic Resonance Imaging (MRI) and were shown to decrease 

with ageing and neurodegenerative diseases (6–15).

Mounting evidence suggests that factors already present at an early age may have an 

impact on the development of late-life neurological diseases, likely due to a complex 

combination of genetic and environmental factors that influence both brain maturation 

and neurodegeneration (16,17). Identifying early-life determinants of neurological diseases 

occurring in older age could therefore be crucial for developing more efficient prevention 

strategies. MRI-based measures of subcortical brain structures represent a powerful 

intermediate phenotype to decipher these early determinants, as they show alterations many 

years before the onset of clinical symptoms (18).

Recently, genome-wide association studies (GWAS) have enable substantial progress in 

deciphering genes underlying variations in volumes of brain structures, identifying 38 

independent genetic risk loci for subcortical volumes (15,19–21). To date, most of these 

studies have focused on middle-aged and older adults. A recent study found that AD genetic 

risk variants were associated with smaller hippocampal volume in young adults, suggesting 

that genetic determinants of late-life neurodegenerative diseases may already be associated 

with subtle variations in brain structure early in life (22). However, genetic determinants 

of MRI-based measures may also change over time, either because of different underlying 

physiological or pathological processes between young and older persons or because of 

time-varying exposures to environmental risk factors across the lifespan (16,23,24).

Exploring the shared genetic variation underpinning early and late structural brain 

variations, specifically of subcortical brain volumes, could provide important novel insight 

into the time-course of structural brain changes throughout the adult lifespan and into the 

mechanisms underlying brain aging and their connection with factors modulating brain 

maturation. This could contribute to exploring early biological processes driving late-onset 

neurodegenerative diseases and open new avenues for preventive approaches.

Using large population-based brain imaging datasets across the adult lifespan we aimed 

to: (i) estimate the heritability of subcortical volumes from young adulthood to older age, 

and assess the amount of shared genetic variation across age groups; (ii) identify whether 

genetic loci associated with subcortical volumes in older age also show association with 

subcortical volumes in early adulthood, and explore underlying genes using transcriptome-

wide association studies; (iii) explore the clinical significance of these results in relation 

with cognition, AD, and PD.
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Methods and Materials

Study Population

Analyses were conducted in three age groups: young (18–35), middle-aged (35–65), and 

older adults (65+). The 35-years cut-off (also corresponding to the upper-age limit of 

i-Share participants) was based on previous neuroimaging studies indicating that some brain 

structures, including subcortical structures, reach a peak volume around this age (6,25). The 

65-years cut-off (also the lower-age limit for the 3C-Dijon participants) corresponds to an 

age after which aging features on brain imaging tend to accelerate more steeply (6,25).

Heritability analyses

Heritability analyses were conducted on individual level data from three cohorts:

Population-based cohort studies of unrelated individuals

The Internet-based Students HeAlth Research Enterprise (i-Share) study is an ongoing 

prospective population-based cohort study of French-speaking students (26). 1,777 

participants aged 18–35 years had both brain MRI and genome-wide genotypes 

(Supplementary Methods).

The Three-City Dijon (3C-Dijon) Study is a population-based cohort study (27). 

1,440 participants aged 65 years and older had both brain MRI and genome-wide 

genotypes, excluding participants with dementia, stroke history, or brain tumors at baseline 

(Supplementary Methods).

Family-based cohort studies

The Framingham Heart Study (FHS) is a community-based cohort study comprising three 

generations of participants. 1,999 participants aged 36–64 years and 1,828 participants aged 

65 years and older had both brain MRI and genome-wide genotypes, excluding participants 

with stroke history or other neurologic disorders confounding the assessment of brain 

volumes at time of MRI (Supplementary Methods).

Analyses of shared genetic variation across the lifespan

To analyze genetic associations with subcortical volumes in young adults we used the 

aforementioned 1,777 i-Share participants with high quality brain MRI and genome-wide 

genotype data. To derive genome-wide significant associations with subcortical structures 

in middle-aged to older adults we used summary statistics of the largest published meta-

analyses of subcortical volumes GWAS (detailed in Supplementary Methods) for optimal 

power (15,20). In secondary analyses we also used smaller meta-analyses without a subset 

of cohorts comprising younger age groups leading to a sample size of 19,555 participants 

(detailed in Supplementary Methods). For hippocampal volume we used a previously 

published GWAS meta-analysis (21). Participants with prevalent dementia, stroke or other 

neurological pathologies potentially influencing brain measurements at the time of MRI 

were excluded in all but one meta-analyses (20).
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This study was approved by the ethics committees of participating studies, and written 

informed consent was obtained from all participants.

MRI Acquisition and Phenotyping

MRI acquisition parameters and phenotyping methods in individual cohorts are presented in 

the Supplementary Methods and have been described in detail (15,20,21,28).

We defined subcortical volumes by the total (left+right) grey matter volumes (cm3) of the 

accumbens, amygdala, caudate nucleus, hippocampus, pallidum, putamen, and thalamus. 

The accumbens volume was not available in the 3C-Dijon study.

Genotyping, quality control, and imputation

Genome-wide genotyping platforms, quality control and imputation procedures are 

described in the Supplementary Methods.

Statistical analyses

Analyses performed in this study are summarized in Figure 1.

Heritability analyses

Heritability analyses were adjusted for age, sex, total intracranial volume, and the first four 

principal components of population stratification.

Population-based cohort studies of unrelated individuals

To estimate heritability for each subcortical volume in i-Share and 3C-Dijon, we used GCTA 

(v1.26.0) to estimate the proportion of phenotype variance explained by genome-wide single 

nucleotide polymorphisms (SNPs) (Figure 1, Supplementary Methods) (29).

Family-based cohort studies

To estimate heritability for subcortical volumes in FHS, we used the variance component 

model implemented in SOLAR accounting for familial relationships to determine the ratio 

of the genetic variance to the phenotypic variance (30). Mixed models were fit including 

fixed effects for covariates and additive effects for additive polygenetic and residual error 

terms.

Genetic correlation analyses

We used LD Score Regression (LDSR) to estimate the genetic correlation between 

subcortical volumes in young and older adults (Figure 1) (31,32). For the older population, 

we first used the latest, largest published GWAS meta-analysis of subcortical brain volumes 

(15,20). To confirm that the effects were not driven by the youngest individuals in the 

GWAS meta-analyses, we conducted secondary analyses using subcortical brain volumes 

GWAS meta-analyses without cohorts or consortia comprising younger participants (as 

described for analyses of shared genetic variation across the lifespan). For young adults, we 

performed GWAS of subcortical volumes in i-Share, adjusting for age, sex, total intracranial 

volume, and the first four principal components of population stratification. We used a linear 
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mixed model implemented in GCTA-MLMA-LOCO (33). We used a method implemented 

in R (matSPDlite) to correct for multiple testing (34). Among the seven subcortical volumes 

studied, the number of independent tests was estimated at 4.0 based on the correlation 

matrix between all phenotypes, leading to a Bonferroni corrected significance threshold of 

p<1.25×10−2.

Single variant analyses and Genetic Risk Score approaches

First, we selected published genome-wide significant associations in middle-aged to older 

adults (15,20) and looked up associations with the corresponding phenotype in young 

adults (i-Share), for the lead SNP and nearby variants (±250 kb) in moderate to high 

linkage disequilibrium (LD) (LD-r2>0.5). To define significance thresholds we corrected 

for the four independent phenotypes in i-Share and the number of independent loci tested 

for each subcortical volume: accumbens: p<3.13×10−3; amygdala: p<1.25×10−2; caudate: 

p<1.25×10−3; hippocampus: p<2.08×10−3; pallidum: p<2.08×10−3; putamen: p<1.39×10−3; 

thalamus: p<6.25×10−3.

Second, we generated genetic risk scores (GRS) for lower subcortical volumes in young 

adults (i-Share) by summing the number of published genome-wide significant independent 

risk alleles identified from subcortical volume GWAS in middle-aged to older adults, 

weighting each risk allele by the regression coefficient for the corresponding SNP in 

the published GWAS (Supplementary Methods). Associations were tested using linear 

regression models in R v3.6.1 and adjusted for age, sex, total intracranial volume, and the 

first four principal components of population stratification. To account for multiple testing, 

we corrected for four independent phenotypes (p<1.25×10−2). As a sensitivity analysis, 

GRS analyses were repeated using summary statistics of the subcortical volumes GWAS 

conducted after removing cohorts with young participants as described above (Figure 1).

Transcriptome-wide association study

To explore genes underlying genetic associations with subcortical volumes across the 

lifespan we performed transcriptome-wide association studies (TWAS) using TWAS-

Fusion (Figure 1, Supplementary Methods) (35). We used summary statistics from the 

aforementioned published GWAS meta-analyses of subcortical volumes (15,20) and 17 

publicly available gene expression quantitative trait loci (eQTL) reference panels from 

blood, brain and peripheral nerve tissues (Supplementary Methods). We used TWAS-

Fusion to estimate the TWAS association statistics between predicted expression and 

each subcortical volume (35). Transcriptome-wide significant genes were determined in 

each tissue expression panel after correcting for the average number of features (3793.5 

genes) and 4 independent phenotypes (p<3.30×10−6). Transcriptome-wide significant 

genes were then tested in conditional analysis (TWAS-Fusion) (35). Next, to ensure that 

observed associations did not reflect random correlation between gene expression and 

non-causal variants associated with subcortical volumes, we performed a colocalization 

analysis (COLOC) on the conditionally significant genes (p<0.05) to estimate the posterior 

probability of a shared causal variant between the gene expression and trait association 

(PP4) (36). Genes presenting a PP4≥0.75, for which eQTLs did not reach genome-wide 

significance in association with subcortical volumes, and were not in LD (r2<0.01) with a 
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lead SNP of genome-wide significant risk loci for subcortical volumes, were considered as 

novel.

In order to test colocalized associations in a younger population, we used the individual-

level prediction of the gene expression option implemented in the Fusion software 

to generate expression-weights in i-Share (Supplementary Methods). The significance 

threshold accounted for the number of genes colocalized in ≥1 tissue for each phenotype 

(accumbens: p<0.05; amygdala: p<0.05; caudate: p<2.17×10−3; hippocampus: p<1.67×10−2; 

pallidum: p<2.94×10−3; putamen: p<3.85×10−3; thalamus: p<0.05).

Lifetime brain gene expression profile

We examined the spatio-temporal expression pattern of genes in loci reaching genome-wide 

significance in the subcortical volumes GWAS, TWAS-COLOC significance and at least 

nominal significance in the i-Share TWAS. We used a public database (https://hbatlas.org/) 

comprising genome-wide exon-level transcriptome data from 1,340 tissue samples from 

16 brain regions of 57 postmortem human brains, from embryonic development to late 

adulthood (37).

Clinical correlates

First, we explored the relation of loci associated with subcortical volumes in young and 

older populations or at least nominally significant in TWAS in i-Share (Table 1) with 

AD, PD, and general cognitive function using summary statistics of the latest, largest 

published GWAS (38–40). Accounting for 10 independent loci (r2<0.5) and three traits, the 

significance threshold was p<1.67×10−3.

Second, we tested whether genetically predicted AD or PD have an impact on subcortical 

volumes in the general population in young, middle-aged and older adults using the 

generalised summary data-based Mendelian randomization (GSMR) tool implemented in 

GCTA (Supplementary Methods) (29,41). The significance threshold accounted for four 

independent subcortical volumes and two diseases (p<6.25×10−3).

Data availability

Data supporting these results can be made available upon reasonable request from the 

corresponding author.

Results

Heritability and genetic correlation of subcortical volumes across the lifespan

SNP-heritability estimates for all subcortical volumes in young, middle-aged, and older 

adults are presented in Figure 2 and Table S1. We observed a decreasing trend of the average 

SNP-heritability estimates of subcortical volumes in cohorts of increasing age (Figure 2 – 

Panel A), and a similar decreasing trend for most individual subcortical volumes (Figure 2 – 

Panel B), both in unrelated and family-based population-based studies.
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Most subcortical volumes were genetically correlated with each other among middle-aged to 

older adults, while in young adults genetic correlations reached significance after correction 

for multiple testing between hippocampus and amygdala, pallidum and caudate nucleus, 

and putamen and pallidum. Genetic correlations between young and middle-aged to older 

adults for the same individual subcortical volumes were significant for the caudate nucleus 

and the pallidum (Figure 3). These results were similar when using the published GWAS 

meta-analyses of subcortical volumes in middle-aged to older adults (Figure 3 – Panel A), 

and the secondary GWAS meta-analyses in older adults (Figure 3 – Panel B).

Genetic associations with subcortical volumes across the lifespan

Out of the 38 genome-wide significant loci for subcortical volumes in middle-aged to older 

adults, 10 were significantly associated with the same volume, in the same direction, in 

young adults (Table 1, Table S2): four in the caudate nucleus, two in the hippocampus and 

the putamen respectively, and one in the amygdala and the pallidum. The most significant 

association in young adults was for rs8017172 (p=1.43×10−7), near KTN1, with putamen 

volume.

GRSs for smaller subcortical volumes derived from GWAS in middle-aged to older adults 

were significantly associated with smaller volumes of the same structure in young adults 

for putamen, caudate nucleus, hippocampus, amygdala, and pallidum (Table 2). The most 

significant association was observed for the putamen (p=5.04×10−11). When deriving the 

GRS from the secondary meta-analyses of GWAS in older adults exclusively, associations 

remained significant for the putamen, caudate nucleus, and hippocampus.

We then sought to explore putative causal genes underlying genome-wide significant 

associations with subcortical volumes using TWAS, initially based on published GWAS 

meta-analyses in middle-aged and older adults (Figure 1). Among all genes showing 

transcriptome-wide significant associations, 54 presented a high colocalization posterior 

probability of sharing a causal variant between the gene expression and trait association 

(COLOC PP4≥0.75) with at least one subcortical volume, mostly in brain tissues (Figure 

S1, Table S3): 23 with caudate nucleus, 17 with pallidum, 13 with putamen, three with 

hippocampus, and one respectively with nucleus accumbens, amygdala, and thalamus. 

Among these 54 genes, 30 were in loci that did not reach genome-wide significance in 

the subcortical volumes GWAS and can be considered as novel (Table S3). Although we 

lacked power to detect transcriptome-wide associations in i-Share, we detected significant 

signals after multiple testing correction for 4 of the 54 colocalized genes described above, 

all at the genome-wide significant subcortical volume GWAS locus chr20q11.21 (Figure 

4, Figure S1, Table S3): lower expression of MYLK2 in putamen was associated with 

smaller caudate nucleus and putamen volume, higher expression of FRG1B, MLLT10P1 
and RP4-610C12.4 in basal ganglia and cerebellum with smaller pallidum volume. With 

an exploratory purpose, we also considered 13 additional genes showing nominally 

significant associations in the young adult TWAS (Figure 4), including: 7 genes/transcripts 

for caudate nucleus (at chr16p11.2-12.1: CCDC101, NPIPB7, NPIPB9, TUFM, EIF3C, 

RP11-1348G14.4, RP11-22P6.2), 2 for pallidum (at chr20p11.21: ENTPD6, PYGB), 

and 4 for putamen (at chr5q14.3: CTC–498M16.4, TMEM161B, TMEM161B–AS1; and 
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chr20q11.21: MLLT10P1). Of note, the chr16p11.2-12.1 locus also showed significant 

association with the caudate nucleus in young adults (Table 1 and Table S2). Most TWAS-

COLOC genes from genome-wide significant risk loci for subcortical volumes that also 

showed nominally significant TWAS association in young adults were described to have 

constant expression levels in subcortical regions throughout the life course, including in the 

prenatal period (Figure S2).

Clinical correlates

When exploring the association of the 14 genetic variants (in 10 independent loci) associated 

with subcortical volumes in both young and older adults (Table 1) with AD, PD, and 

general cognitive function we observed a genome-wide significant association of the lead 

SNP for smaller caudate nucleus volume at chr16p11.2-12.1 with lower general cognitive 

function (Table 3). No association reached significance with AD and PD after multiple 

testing correction.

Using GSMR, genetically predicted AD was significantly associated with smaller volumes 

of most subcortical structures except pallidum in dementia-free middle-aged and older adults 

from the general population, and with larger putamen volume in young adults (Figure 

5, Table S4). Genetically predicted PD was significantly associated with larger thalamus 

volume in young adults (Figure 5, Table S4).

Discussion

In large population-based cohort studies across the adult lifespan, we identified a consistent 

trend towards decreasing heritability of subcortical volumes with increasing age. We 

observed significant genetic correlation of caudate nucleus and pallidum volumes between 

young and older adults. GRSs for smaller caudate nucleus, putamen or hippocampus 

volumes in older adults were significantly associated with smaller volumes of the 

same structures in young adults. Individually, ten of 38 independent loci associated 

with subcortical volumes in older adults also showed significant associations with the 

corresponding volumes in young adults. Using TWAS with colocalization analyses, we 

found evidence for expression levels of 16 genes to be significantly associated with caudate 

nucleus, putamen, or pallidum volume both in older and young adults, pointing to biological 

pathways underlying structural brain changes across the adult lifespan. One genome-wide 

significant caudate nucleus locus in older and young adults (at TUFM) was associated 

with lower general cognitive function at genome-wide significance. We also observed 

an association of genetically determined AD with smaller volumes of most subcortical 

structures in middle-aged and older dementia-free adults.

The observed heritability trends of subcortical volumes across the adult lifespan, both in 

an unrelated and family-based population-based setting, support and expand on a previous 

meta-analysis of brain volume heritability estimates in twin and family studies. The latter 

showed increasing heritability from childhood to early adulthood and decreasing heritability 

from young adulthood to old age (42). Potential explanations include an increase of the 

environmental contribution to variation in subcortical volumes with increasing age, thus 
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leading to a relative decrease of the genetic contribution, differential timing of gene 

expression during life, or age of onset of some disorders (43).

Genetic variants associated with smaller subcortical volumes in older persons were 

associated with smaller volumes of the same structure already in early adulthood, both 

individually and aggregated in a GRS. These results suggest that biological pathways 

influencing subcortical volumes in older age already have an impact on the latter in young 

adulthood. Although our analyses only focused on adult age, one could speculate that at 

least some of the susceptibility variants for smaller subcortical structures already showing 

significant associations at age 20 may be involved in developmental processes. This is 

supported by a recent study showing that polygenic risk scores for subcortical volumes in 

middle-aged to older adults were already associated with these volumes during infancy and 

early childhood (44). Several genes in loci associated with subcortical volumes in older 

persons were reported to be involved in neurodevelopmental processes in experimental work 

and are implicated in Mendelian disorders (15). FAT3 at the chr11q14.3 locus that also 

showed association with caudate nucleus volume in i-Share, was for instance shown to be 

involved in neuronal morphogenesis and cell migration (15).

Ten individual loci associated with smaller subcortical volumes in older adults were 

already associated with smaller volumes of the same structures in young adults. We also 

showed association of subcortical volumes with up- or down-regulation of three genes in 

loci associated with caudate nucleus, putamen and pallidum volumes both in older and 

young adults: MYLK2, FRG1B and MLLT10P1. Among these, upregulation of MYLK2 
expression in brain tissues was significantly associated with larger caudate nucleus and 

putamen volume, in both older and young adults (Figure 4, Figure S3). In brain single-cell 

RNA sequencing analyses in mice, mylk2 appears to be expressed in arterial and arteriolar 

smooth muscle cells and in pericytes (45,46). MYLK2 encodes a myosin light chain kinase, 

a calcium/calmodulin dependent enzyme, harboring rare mutations causing hypertrophic 

cardiomyopathy (47).

Expression levels of four genes (CCDC101, NPIPB7, NPIPB9 and TUFM) in a 

caudate nucleus GWAS locus that also shows significant association in young adults 

(chr16p11.2-12.1, Table 1) were associated with caudate nucleus volume at transcriptome-

wide significance in older adults and nominal significance in young adults. Among 

these, increased TUFM expression was associated with smaller caudate nucleus volume, 

with evidence for colocalization in several tissues (Figure 4, Figure S3). TUFM is 

involved in combined oxidative phosphorylation deficiency 4 (COXPD4), a disease causing 

developmental regression, microcephaly and basal ganglia atrophy (48,49). Interestingly, 

the lead variant associated with smaller caudate nucleus at chr16p11.2-12.1 was associated 

with lower general cognitive function at genome-wide significance. Additional studies are 

required to confirm these findings and explore the role of TUFM.

The most significant association with subcortical volumes in young adults was observed 

for an intergenic variant at chr14q22.3, with KTN1 as the closest gene, reaching near to 

genome-wide significance in association with putamen volume despite a limited sample size. 

Genetic variants in this region had previously been shown to be associated with putamen 
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shape in healthy adolescents (19), our results thus strengthen the evidence for an important 

role of this locus in modulating putamen structure across the lifespan.

Noteworthy, genetic correlations between young and older adults were significant for striatal 

and pallidal volumes only and most significant associations of genetic risk scores and 

individual variants across age-groups, as well as transcriptome-wide associations were 

observed for these structures, and to a lesser extent the hippocampus. This could be at 

least partly explained by the recent observation that striatal and pallidal volumes peak in 

childhood and decline steadily thereafter, while volumes of the thalamus, amygdala, and 

hippocampus peak later and start declining from the sixth decade onwards (6). Moreover, 

interindividual variability of thalamus, amygdala, and hippocampus were found to increase 

with age, suggesting that these structures may be more susceptible to environmental factors 

or late-acting genes (6).

Using Mendelian randomization (GSMR), we identified significant associations of 

genetically determined AD, but not PD, with all subcortical volumes except pallidum in 

older dementia-free adults, consistent with prior observations from studies using polygenic 

risk scores of AD on hippocampus and amygdala (50–54). These associations were not 

observed in young adults, in contrast with other studies, which identified an association 

between polygenic risk scores of AD and hippocampal volume in adolescent and young 

adults (22,55). These had used polygenic risk scores composed of SNPs selected at less 

stringent p-value thresholds (22,55). In young adults we found that genetically determined 

AD was associated with larger putamen volume and genetically determined PD with larger 

thalamus volume. If confirmed these results could reflect complex mechanisms whereby 

biological pathways contributing to larger maximal volumes in certain brain regions early 

in life could also enhance late-life neurodegenerative processes, akin to the observation that 

rates of age-related maturation are significantly correlated with rates of decline of white 

matter tracts (56).

To our knowledge, this is one of the first studies exploring associations of genetic variants 

with subcortical volumes across the adult lifespan. Our analyses were based on high quality 

MRI measurements and genome-wide genotype data in several cohorts, including a unique 

cohort of young students and leverage large scale meta-analyses conducted within the 

CHARGE consortium. We acknowledge limitations. While we describe trends in heritability 

estimates, we could not formally compare whether these differed significantly between age 

groups, therefore decreasing heritability estimates with increasing age need to be interpreted 

with caution. The sample size of our young adult cohort was limited, particularly compared 

with the large-scale meta-analysis of GWAS in older adults, and included a majority of 

women. Our study was restricted to the adult lifespan and should be complemented by 

cohorts of children and adolescents to capture the full spectrum of genetic determinants 

across the entire life course. Whereas a longitudinal design would be most appropriate to 

explore changes in heritability estimates and genetic determinants across the lifespan in the 

same individuals, repeated MRIs and genetic analyses in large population-based samples are 

limited and have been available for the past twenty years only. While we show compelling 

association of genetic risk variants for AD with smaller subcortical volumes in middle 

and older dementia-free community persons, we did not observe such an association in 
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young adults. Moreover, while one of the loci associated with lower caudate nucleus volume 

showed genome-wide significant association with lower general cognitive function, most of 

the loci associated with subcortical volumes across the adult lifespan were not associated 

with neurodegenerative diseases after multiple testing correction. This may suggest that 

these loci are not necessarily reflecting early neurodegenerative processes, but may point to 

developmental or non-pathological processes related to healthy aging. The fact that genetic 

loci associated with subcortical volumes in middle-aged to older adults (aggregated in 

polygenic risk scores) were recently found to be associated with these volumes already 

during infancy and early childhood could be a potential argument for a stronger role of 

developmental processes (44). We may have been underpowered to measure the modifying 

effects (deleterious or protective) of loci modulating subcortical volumes on the occurrence 

of neurodegenerative diseases. Finally, we cannot exclude selective survival bias for some 

variants when exploring their relation with late-life neurodegenerative diseases (if variants 

associated with subcortical volumes also influence survival).

In conclusion, our findings provide novel insight into the genetic determinants of subcortical 

volumes across the adult lifespan, with some evidence suggesting that specific genes such 

as MYLK2 and TUFM may have a causal role in determining subcortical volumes already 

in young adulthood. Further research is warranted to decipher the underlying biological 

mechanisms and inform prevention strategies for common late-life neurodegenerative 

diseases, for which pathological processes are known to start long before their clinical 

diagnosis.
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AD Alzheimer’s disease

eQTL expression Quantitative Trait Loci

GWAS Genome-Wide Association Study

LD Linkage Disequilibrium

LDSR LD Score Regression

GRS Genetic Risk Score

MRI Magnetic Resonance Imaging

PD Parkinson’s disease
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Figure 1: Study workflow and samples summary.
Samples of young adults (18–35) are presented in blue, middle-aged (35–65) to older adults 

(65+) in green, older adults in red and in purple for disease traits. FHS: Framingham Heart 

Study. GRM: Genetic relationship matrix. GRS: Genetic risk score. TWAS: Transcriptome-

wide association study. 15: Satizabal et al, Nat Genet 2019. 20: Hibar et al, Nat Commun 

2017. 21: Bis et al, Nat Genet 2012. 38: Schwartzentruber et al, Nat Genet 2021. 39: Nalls 

et al, Lancet Neurol 2019. 40: Davies et al, Nat Commun 2018. *: GWAS of subcortical 

volumes except hippocampal volume after removing ENIGMA and CHARGE cohorts with 

some young participants (unpublished data).
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Figure 2: Heritability of subcortical volumes in young adults, middle-aged adults and in older 
adults.
Panel A: the box plots represent the distribution of the heritability of subcortical volumes. 

The main rectangle represents the interquartile range and the horizontal line is the median. 

Panel B: plot of the estimated SNP heritability for each subcortical volumes, in each age 

group. For unrelated population, “Young adults” stands for the i-Share cohort (18–35y, 

N=1,528); “Older adults” stands for the 3C-Dijon cohort (65+, N=1,396). For family-based 

population, all the groups came from the Framingham Heart Study (three generations). 

“Middle” or “Middle-aged adults” stands for 36–64y (N=1,999) and “Old” or “Older adults” 

for 65+ (N=1,828)
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Figure 3: Heatmap of the genetic correlation between subcortical volumes in young adults 
(“Young”), in older population (Panel A: “Old” and Panel B: “old only”) and between the two 
populations for equivalent structures.
*: nominally significant; **: significant after multiple-testing correction (p<1.25×10−2); 

Larger colored squares correspond to more significant p-values. In each square, the numbers 

correspond to the coefficient of the genetic correction (rg). “Young” stands for the i-Share 

cohort; “Middle to old” for subcortical volumes from the latest largest GWAS (Satizabal et 

al, Nat Genet 2019 and Hibar et al, Nat Commun 2017); “Old” for the GWAS of subcortical 

volumes except hippocampal volume after removing ENIGMA and CHARGE cohorts with 

some young participants and for the CHARGE GWAS of hippocampal volume (Bis et al, 

Nat Genet 2012)
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Figure 4: Heatmaps of the transcriptome-wide association studies of the caudate nucleus, 
putamen and pallidum reaching transcriptome wide significance and colocalized in older 
persons(15,20) and at least nominal significance in young adults (i-Share cohort).
*: TWAS Significant (p<3.30×10−6); **: Conditionally significant (p<0.05); ***: COLOC 

PP4 > 0.75; +: Nominally significant in i-Share; ++: Significant in i-Share (after 

multiple-testing correction: accumbens: p<0.05; amygdala: p<0.05; caudate: p<2.17×10−3; 

hippocampus: p<1.67×10−2; pallidum: p<2.94×10−3; putamen: p<3.85×10−3; thalamus: 

p<0.05)
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Figure 5: Association between genetically predicted Alzheimer’s and Parkinson’s diseases 
and subcortical volumes in young, middle-aged to older and older adults using Mendelian 
randomization.
“Young adults” stands for the i-Share cohort; “Middle-aged to older adults” for subcortical 

volumes from the latest largest GWAS (Satizabal et al, Nat Genet 2019 and Hibar et al, Nat 

Commun 2017); “Older adults” for the GWAS of subcortical volumes except hippocampal 

volume after removing ENIGMA and CHARGE cohorts with some young participants and 

for the CHARGE GWAS of hippocampal volume (Bis et al, Nat Genet 2012)
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