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Abstract of the Dissertation

Two Approaches to Accelerated Monte Carlo

Simulation of Coulomb Collisions

by

Lee Forrest Ricketson

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2014

Professor Russel E. Caflisch, Chair

In plasma physics, the direct simulation of inter-particle Coulomb collisions is often neces-

sary to capture the relevant physics, but presents a computational bottleneck because of

the complexity of the process. In this thesis, we derive, test and discuss two methods for

accelerating the simulation of collisions in plasmas in certain scenarios.

The first is a hybrid fluid-Monte Carlo scheme that reduces the number of collisions

that must be simulated. Coupling between the fluid and particle components of the scheme

is accomplished by assigning to each particle a passive scalar approximating the relative

entropy between its distribution of velocities and the fluid distribution. When this quantity

is sufficiently small, the particle is moved into the fluid so its associated collisions need not

be simulated.

The second method is an adaptation of the multilevel Monte Carlo method. Instead of

a single time step, this method introduces a hierarchy of time steps - i.e. levels - and uses

the interplay between adjacent levels for variance reduction. We present new applications to

plasmas, a method for eliminating the cost of the coarsest level calculation, and an alternative

method for achieving the optimal overall computational complexity.

Throughout, we discuss applications beyond plasma physics, including rarefied gases and

chemical reaction networks.
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CHAPTER 1

Introduction

1.1 Context and Motivation

The field of statistical physics is born out of the realization that a full microscopic description

of any system of many particles is intractable, both analytically and numerically. The goal

thus becomes the characterization of the relevant macroscopic properties of the system -

density, flow velocity, temperature, viscosity, etc. - while retaining as little information about

the states of the individual particles as possible. This may be accomplished in many ways,

prominent among which is asymptotic expansion in terms of mean free path.

When the mean free path is much smaller than other length scales of interest, local

thermodynamic equilibrium may be assumed. This assumption gives rise to the Euler and

Navier-Stokes equations of classical fluid dynamics [CC70], and to analogous equations in

the case of plasmas [Bra65, Fre07, HW04]. In the opposite case, when the mean free path

is long, collisions between individual particles may be neglected, and the system evolves

through only the action of the comparatively smooth mean fields and body forces. This

regime primarily appears in plasmas [Vla68].

In the intermediate regime, inter-particle collisions play a direct and important role in

the system’s dynamics, and there can be no avoiding accounting for them in some way. Be-

cause exact specification of particle positions and velocities is impossible, collisions are an

essentially random process in the statistical physics framework. Moreover, collisional pro-

cesses are functions of both particle position and velocity, so the problem is high dimensional.

The combination of these two factors has led many to utilize Monte Carlo methods in the
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direct simulation of particle systems, for they are well suited to deal with both random-

ness and high dimensionality. Standard Monte Carlo methods exist for both neutral fluids

[Bir76] and plasmas [TA77, Nan97]. Such methods have been applied to the simulation of a

wide variety of systems in both neutral fluids [LWW07, NHH98, SF03, WL04] and plasmas

[BBD02, JNS06, KPV04, SMK00].

Though successful in these contexts, the Monte Carlo simulation of collisions is a com-

putationally intensive process. At present, quantitatively accurate, fully three-dimensional

simulations require massively parallel supercomputers [CW03, CRG96, FVF13, IKV11]. This

is due to the slow convergence of Monte Carlo methods, which itself is a direct result of the

central limit theorem. That is, for a number of simulated particles N , there is an error due

to random sampling which scales as N−1/2.

This slow convergence is fundamental to Monte Carlo methods. The tradeoff is that the

computational requirements of Monte Carlo schemes scale very favorably with the dimension

of the problem, making them attractive for collision simulation in spite of their drawbacks.

Any circumvention of the drawbacks inherent in Monte Carlo methods would make the

continuation and expansion of their application to collision simulation even more attractive,

and possibly make feasible simulations which are currently beyond our computational reach.

There is thus great interest in accelerated Monte Carlo collision methods in the context of

many particle systems. In that vein, we pose several questions, each of which is addressed

in this thesis:

• Because the simulation of fluid systems is relatively cheap, can we combine a fluid

description with a Monte Carlo collision algorithm to obtain a scheme with the speed

of a fluid simulation but with the ability to capture non-equilibrium behavior of a

Monte Carlo method?

• Can we give a mathematical characterization of the errors present in such a scheme?

• In Monte Carlo schemes applied to time dependent systems, there is typically a time

stepping error as well as the random sampling error. Can the interplay between these

2



two sources of error be leveraged to improve the performance of the scheme in the

plasma context?

The research presented here provides an affirmative answer to each of these questions in

the context of spatially homogeneous plasmas. In chapter 2, we present a hybrid fluid-

Monte Carlo scheme along the lines of [CWD08, DCC10]. In contrast to these and other

prior efforts, we are able to understand the various sources of error in our scheme and their

respective scalings. The key to this analysis is the use of relative entropy as a passive scalar

that measures each particle’s proximity to thermal equilibrium. In the process of presenting

these results, we will also discuss potential applications to rarefied gases.

In chapter 3, we discuss the application of the Multilevel Monte Carlo (MLMC) method

to plasmas, the key to which is the interplay between time-stepping and sampling errors, as

in the final question above. Aside from adapting this existing method to a new application,

we present improvements to the method in general. These improvements have the effect of

further accelerating computations in a wide array of applications.

In this introductory chapter, we establish the background necessary to understand the

results in subsequent chapters. We begin in section 1.2 by introducing kinetic theory, initially

developed by Maxwell and Boltzmann. This is the mathematical theory of non-equilibrium,

many-particle systems, and is useful in the context of both neutral fluids and plasmas. A

foundational result - both of the theory in general and for the work in chapter 2 of this thesis

- is Boltzmann’s H-theorem. This theorem is proved and its importance discussed. We also

cover the relationship between kinetic theory and fluid dynamics. In particular, we derive

the Euler equations of fluid mechanics from kinetic theory in the asymptotic limit of high

collisionality.

We then proceed, in 1.3, to the particularities of the treatment of plasmas in the kinetic

theory framework. We will see that a special treatment of collisions is necessary, due to the

long range nature of the Coulomb force. This treatment will lead us to the Landau-Fokker-

Planck equation, the standard kinetic model of collisional plasma behavior.

3



In 1.4, we discuss standard numerical methods for the Landau-Fokker-Planck equation.

After a brief survey, we focus on the so called Particle in Cell (PIC) methods. These have as

a component some Monte Carlo method for Coulomb collisions. The collision methods fall

into two categories - binary collisions and Langevin-based methods. Improvements to each

of these methods are the subjects of chapters 2 and 3, respectively.

We conclude the chapter in 1.5 with a summary and a discussion of the background

material’s relationship to the results in subsquent chapters.

1.2 Introductory Kinetic Theory

For our purposes, the object of study in kinetic theory is a system of N identical particles,

the states of which are specified by their positions xj and velocities vj for j = 1, 2, ...N . For

N comparable to Avogadro’s number - as is the case when discussing gases and plasmas - the

full specification of the state of the system is clearly intractable. Kinetic theory’s approach

to this problem is to introduce the phase-space density f(x,v, t). Let us denote by NU∩V

the number of particles with x ∈ U and v ∈ V . Then f is defined by the following relation:

NU∩V (t) =

∫
V

∫
U

f(x,v, t) dx dv (1.1)

for every U and V .

Under reasonable assumptions, f may be shown to satisfy a partial differential equation

(PDE) of the form

ft + v · ∇xf + a · ∇vf = C(f, f), (1.2)

where ∇x and ∇v denote the gradients in position and velocity space respectively, a is the

macroscopic force on the system, and C(f, f) is a bilinear operator describing inter-particle

collisions. C is often called the collision operator.

Two forms of the collision operator are relevant to the work presented in this thesis. The

first is named for Boltzmann and is discussed presently. The second is the Fokker-Planck

form, which is relevant to plasmas. This is discussed in section 1.3.

4



The expression for the Boltzmann collision operator is rather cumbersome, so we begin by

introducing some notation and briefly discussing inter-particle collisions in general. Suppose

two particles approach each other with velocities v and v∗, and define their relative velocity

w = v − v∗. After they collide, the particles have respective velocities

v′ = v + n(n ·w), v′∗ = v∗ − n(n ·w), (1.3)

where n is an arbitrary unit vector. The post-collision velocities are just defined so as to

conserve momentum (v + v∗ = v′ + v′∗) and energy (v2 + v2
∗ = v′2 + v′2∗ ). Here and in the

rest of this thesis, for any vector quantity u, we let u = |u|. Additionally, for any subscript

or superscript on v, we denote f evaluated at that velocity by using the same superscript

or subscript. For example, f ′∗ = f(x,v′∗, t). With this notation in hand, we may define the

Boltzmann collision operator as

CB(f, f) =

∫
R3

∫
S2

B
(
w,

n ·w
w

)
(f ′f ′∗ − ff∗) dn dv∗, (1.4)

where B(w, cos θ) is the rate at which particles are scattered through angle θ and S2 is the

set of all unit vectors in R3.

At an intuitive level, (1.4) is relatively simple to understand. The number of pairs of

particles at position x with respective velocities v and v∗ is ff∗, so the total rate at which

these particle pairs are scattered through angle θ is B(w, cos θ)ff∗. The integral of this

quantity over all possible collision partners (i.e. velocities v∗) and scattering angles (i.e. n)

gives the total rate at which particles are scattered out of the velocity state v. Since particles

are leaving the velocity v, this represents a negative contribution to the collision operator.

Similarly, the quantity B(w, cos θ)f ′f ′∗ is the rate at which particles are scattered into v.

There are a number of assumptions which this intuitive argument glosses over. A full

derivation begins with Liouville’s theorem for the N -particle phase space density (which

has 6N space/velocity arguments, for the position and velocity of each individual particle)

and proceeds by integrating out successive arguments. This leads to what is known as the

BBGKY hierarchy [BG46a, BG46b, Kir46, Yvo35] - a sequence of equations for the n-particle

5



phase space distributions (n = 1, 2, ..., N − 1), each of which depends on the (n+ 1)-particle

distribution. The Boltzmann equation is arrived at by truncating this hierarchy at the

first term. While a full reprinting of this derivation is beyond the scope of this thesis

- the interested reader may see any of the original papers cited above - it is important

to understand the assumptions that go into deriving (1.4). Some of the more important

assumptions and descriptions of their roles in the derivation are listed below.

• Pairwise collisions are time-reversible - a direct consequence of Newtonian mechanics.

This allows us to think of v′ and v′∗ as either post-collisional or pre-collisional velocities

at our whim. In particular, they were defined as post-collisional, but are treated as

pre-collisional in (1.4).

• The sphere of influence of a given particle is much smaller than the typical distance

between particles. This allows us to neglect events in which more than two particles

collide simultaneously, for such events are rare when a small fraction of space is occupied

by particles. This is the reason (1.4) involves products of f evaluated at two different

velocities, but not at three or more.

• The length scales of interest are considerably larger than the distance between two

colliding particles. This allows us to assume that two colliding particles are essentially

at the same position x, so that f is evaluated at multiple velocities but only at a single

position.

• To good approximation, the incoming velocities of two colliding particles are indepen-

dent. This is commonly referred to as the molecular chaos assumption. It bears some

elaboration, since immediately after a collision the outgoing velocities of the colliding

particles are certainly correlated. The assumption is that before those two particles

interact again, they will undergo a large number of collisions with other particles that

randomize their respective velocities to the point of being essentially independent. This

assumption is what allows us to write the distribution of velocity pairs (i.e. the two-

particle distribution in the BBGKY hierarchy) as the product of the distribution of
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individual velocities (i.e. the single-particle distribution f), which truncates the hierar-

chy and gives rise to the products ff∗ and f ′f ′∗ in (1.4). The assumption of molecular

chaos is both particularly fundamental and particularly controversial.

There is also the question of the functional form of B(w, θ). It is given by

B(w, cos θ) = w
dσ

dΩ
(w, θ), (1.5)

where dΩ = sin θdθdφ is the solid angle element, and dσ/dΩ is the differential cross section

associated with the inter-particle force law. The differential cross section may be derived

directly from the force law, but closed forms do not exist in all cases. Three particularly

important cross sections are:

• Coulomb/Rutherford: For the Coulomb force - the force between charged particles,

which scales as the inverse-square of their separation - the differential cross section is

given by
dσ

dΩ
(w, θ) =

[
Z1Z2e

2

8πε0µw2

]2
1

sin4 θ/2
, (1.6)

where e is the elementary charge unit (the magnitude of the electron charge), Z1 and

Z2 are the charge-numbers of the respective particles, µ = m1m2/(m1 + m2) is the

reduced mass of the particle pair, and ε0 is the permittivity of free space. This is the

relevant cross section in plasma simulation.

• Hard Spheres: For hard (impenetrable) spheres of radius R which exert no force on

each other when not in contact, the differential cross section is given by

dσ

dΩ
(w, θ) =

R2

4
. (1.7)

This cross section and some of its generalizations are popular in Monte Carlo simula-

tions of neutral fluids [Bir76].

• Maxwell Molecules: For a central force that decays as one over the sixth power of the

particle separation, the differential cross section has the general form

dσ

dΩ
(w, θ) =

1

w
f(θ). (1.8)
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Particles interacting through this force law and thus having this differential cross sec-

tion are often called Maxwell molecules. They are particularly important because they

give a collision rate B(w, θ) that is independent of w. This property is useful in anal-

ysis of the Boltzmann equation, so many analytic results are restricted to this case. It

is also useful in deriving binary collision algorithms for plasma simulation, as we shall

see in section 1.4.

Later in this introduction, we will also discuss the total cross section σ, which is defined by

σ =

∫
S2

dσ

dΩ
dΩ = 2π

∫ π

0

dσ

dΩ
sin θ dθ. (1.9)

Note that wσ is the rate at which a pair of particles is scattered through any angle.

For any cross section, the kinetic equation

ft + v · ∇xf = CB(f, f) (1.10)

is called the Boltzmann equation. It is an excellent model of many-particle interacting

systems. The remainder of this section is devoted to a discussion of its most important

properties and its connection to the Euler and Navier-Stokes equations. More detailed

discussions of this material may be found in [Cer69, CC91], among others.

1.2.1 Thermodynamic Equilibrium and Maxwellian Distributions

Equilibrium, or steady-state, is just the statement that the distribution function is constant

in time:
∂f

∂t
= 0. (1.11)

If we assume no variation in space, then the Boltzmann equation at steady state reduces to

CB(f, f) = 0. (1.12)

To find the solutions of this equation, it is helpful to consider the weak form of CB -

CW [ϕ] =

∫
R3

CB(f, f)ϕ(v) dv, (1.13)
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for arbitrary smooth functions ϕ(v) - which has useful symmetry properties. Note first that

the above integral is symmetric with respect to the exchange of v and v∗, and antisymmetric

with respect to exchange of the primed and unprimed variables. As such, we have the

following identity:

CW [ϕ] =
1

4

∫
B
(
w,

n ·w
w

)
(f ′f ′∗ − ff∗)(ϕ+ ϕ∗ − ϕ′ − ϕ′∗) dn dv dv∗, (1.14)

where the limits of integration are understood. The above is zero independent of f if

ϕ+ ϕ∗ = ϕ′ + ϕ′∗. (1.15)

A function ϕ satisfying (1.15) is called a collision invariant, since (1.14) represents the rate

of change in a ϕ’s expectation due to collisions (to see this, multiply through by ϕ in (1.10)

and integrate). Momentum and energy are two simple examples of collision invariants.

In fact, they are the only two examples, aside from constant functions. That is, CW [ϕ] = 0

if and only if

ϕ(v) = a+ b · v + cv2, (1.16)

with a and c scalars and b a vector, none of which depend on v. In proving this claim,

one direction is easy (just plug this form of ϕ into (1.15) and confirm that it works). The

other direction - showing that there are no other collision invariants - is lengthy, so we

will omit it here. It makes sense physically, however, because if there were another linearly

independent invariant, that would impose another constraint on the relationship between the

pre- and post-collision velocities, and we already have the right number by just considering

momentum and energy.

This leads to a solution of (1.12) in the following way: we notice that if

f ′f ′∗ = ff∗, (1.17)

then the collision integral is certainly zero. Taking the logarithm of this equation, it follows

that log f is a collision invariant of the form in (1.16). In fact, this is the only such f that

results in CB(f, f) = 0, a fact that we now show.
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Notice first that CB(f, f) = 0 implies that CW [φ] = 0 for every φ. Next, set φ = log f in

(1.14), finding

CW [log f ] =
1

4

∫
B
(
w,

n ·w
w

)
(f ′f ′∗ − ff∗) log

(
ff∗
f ′f ′∗

)
dn dv dv1. (1.18)

It is easy to see that

(x− y) log
(y
x

)
≤ 0 (1.19)

with equality only achieved if x = y. Using x = f ′f ′∗ and y = ff∗, and recalling that B ≥ 0,

we see that CW [log f ] = 0 if and only if (1.17) is satisfied. Therefore, this is a necessary

condition for CB(f, f) = 0 to hold. Thus, a collision invariant log f , i.e.

f(v) = exp(a+ b · v + cv2) (1.20)

characterizes all solutions of CB(f, f) = 0. Note that we’ve also shown that

CW [log f ] ≤ 0 (1.21)

for any f , which will be crucial in the next subsection.

We have just shown that all solutions of (1.12) have the form (1.20). Only a subset of

these solutions are physically relevant. In particular, we require c < 0 so that each point

in space contains a finite mass. We may then complete the square and rename constants to

arrive at

f(v) = A exp(−α|v − u|2). (1.22)

The velocity integral of f should give the spatial mass density ρ, so we set A = ρ(π/α)−3/2.

Using the well known fact that the mean energy in an ideal gas is (3/2)kT , we arrive at the

Maxwellian distribution for particle velocity in an ideal gas moving at net velocity u:

fM(v) = ρ
( m

2πkT

) 3
2

exp

(
−m|v − u|2

2kT

)
. (1.23)

It is important to note that CB(fM , fM) = 0 even if ρ, u, and T depend on space and

time. Such a distribution function is often called a local Maxwellian. It does not solve

the Boltzmann equation, but will be of great importance in the remainder of this thesis.
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Distributions f that are local Maxwellians at every point in space are said to be in local

thermodynamic equilibrium. A global Maxwellian has the form above with constant ρ, u,

and T , and is a solution to the Boltzmann equation. Such solutions are said to be in global

thermodynamic equilibrium.

1.2.2 Boltzmann’s H-theorem

As mentioned above, in the course of finding solutions to CB(f, f) = 0, we found (1.21).

This is one of the key components in proving the famous Boltzmann H-theorem. For this

section, let’s assume that all our particles exist in some bounded region U , which may be

moving with velocity v0. That is, f is zero outside U . Consider the quantity

H =

∫
R3

f log f dv. (1.24)

In particular, let’s consider it’s time derivative:

∂H
∂t

=

∫
R3

∂f

∂t
(1 + log f) dv. (1.25)

We may eliminate the time derivative of f using (1.10) to get

∂H
∂t

=

∫
R3

C(f, f) log f dv −∇x ·
∫
R3

v(f log f) dv, (1.26)

where we have noted that 1 is a collision invariant, integrated by parts and applied the

divergence theorem with the fact that f log f → 0 as v diverges.

The last term on the right side is the divergence of the flow of H. We will call this flow

FH. We also know from (1.21) that the other term on the right side is non-positive. Let us

now integrate this last equation over U in position space and find, after application of the

divergence theorem,
dH

dt
−
∫
∂U

(FH · n−Hv0 · n) dS ≤ 0, (1.27)

where n is the inward normal to ∂U , and

H =

∫
U

H dx (1.28)
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is the volume integral of H.

We have just shown the following:

Theorem 1.1 (Boltzmann H-theorem). If∫
∂U

(FH · n−Hv0 · n) dS ≤ 0,

then H is non-increasing in time. H is constant in time if and only if equality is achieved

in the above inequality and f is a Maxwellian.

The left side of the inequality in the theorem represents the flow of H into U , so we may

rephrase the theorem to say that if there is no net flux of H into the system, then H may

never increase. H is related to the macroscopic entropy S as follows:

S = −NkH, (1.29)

where N is the total number of particles as before and k is Boltzmann’s constant. Thus, the

H-theorem implies that entropy is non-decreasing so long as entropy is not flowing out of

the system. In this sense, the H-theorem is the mathematical formalization of the second

law of thermodynamics in physics.

1.2.3 Moment Equations and Fluid Mechanics

In applications, one is often uninterested in the full distribution function f ; of far greater

interest are macroscopically observable quantities like density ρ, flow velocity u, temperature

T , pressure p, and so forth. Each of these quantities is defined as a moment of f . We denote

the rth moment of f by Mr, and define it as

Mr =

∫
R3

vrf dv, (1.30)

where vr denotes the rank-r tensor composed of all possible r-fold products of the components

of v. Mr is thus also a rank-r tensor. The macroscopic quantities above are written as

ρ = M0, u =
1

ρ
M1, T =

1

3

m

ρk

{
tr(M2)− ρu2

}
, p =

ρ

m
kT, (1.31)
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where tr(·) denotes the trace operator.

In the course of our discussion, it will sometimes be easier to work with the moments

in different coordinates. In particular, it will be useful to separate the bulk motion of the

system u from the random fluctuations about that motion. With that in mind, we define

mr =

∫
R3

(v − u)rf dv, (1.32)

the moments in coordinates in which the mean velocity vanishes. Notice that m0 = M0 = ρ

and m1 = 0. It is clear that mr may be written in terms of the Ms, s = 0, 1, ..., r. Using

the lower-case moments makes the expression for temperature especially simple:

T =
1

3

m

ρk
tr(m2). (1.33)

Because these moments of f are the physically relevant quantities, one is inclined to seek

equations for them directly. These are obtained by multiplying the relevant kinetic equation

- we will work with Boltzmann equation here - by vr and integrating over all velocities. One

obtains
∂Mr

∂t
+∇x ·Mr+1 = CW [vr]. (1.34)

The key point here is that the time derivative of the rth moment depends on the (r + 1)st

moment. We thus have a hierarchy of infinitely-many moment equations.

Nevertheless, these equations are attractive because they are independent of the particle

velocity v - we have thus reduced the dimension of the problem by three. However, a

tractable solution procedure must rely on an appropriate truncation of the hierarchy. This is

analogous to the procedure of obtaining the Boltzmann equation from Liouville’s theorem.

There, the BBGKY hierarchy of equations for the n-particle distribution functions - each

of which depended on the (n + 1)-particle distribution - was truncated at the first term by

the molecular chaos assumption, which enabled us to write the two-particle distribution in

terms of the one-particle distribution.

In the case of the moment hierarchy, the goal is the same: to write some moment in terms

of lower moments, thereby avoiding the infinite, coupled hierarchy of moment equations - this
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general procedure is referred to as closure, for it yields a finite, closed system of equations.

This requires some a priori knowledge of the system, beyond what has already been set

out here. Typically, this takes the form of an asymptotic expansion in terms of some small

parameter. To carry further the analogy with the BBGKY hierarchy, the molecular chaos

assumption may be viewed as an asymptotic expansion with the correlation between the

velocities of colliding particles as the small parameter, and we obtain the Boltzmann equation

by truncating at the zero-th order term.

However, in contrast to the BBGKY closure procedure, there are many small parameters

that may be used in closing the moment hierarchy. We will focus on a single choice which

is particularly important and relevant to this thesis, but the reader should bear in mind the

existence of a plethora of alternative closure procedures, e.g. [CFP13, HR88, Lev96, Lev97].

The small parameter we focus on is the ratio of collisional mean free path λmfp to the

characteristic length scale L over which f varies. In the rarefied gas dynamics literature,

this ratio is commonly called the Knudsen number, so we will denote it by Kn. That is,

Kn =
λmfp
L

. (1.35)

In neutral fluids near standard temperature and pressure, the Knudsen number is typically

very small. The relevant analog of the Knudsen number can also be very small in relatively

quiescent plasmas. In both contexts, systems with small Knudsen number are said to be

highly collisional, while systems with large Knudsen number are said to be collisionless.

In the following subsection, we derive the Euler equations of fluid mechanics under the

assumption of high collisionallity (small Knudsen number).

1.2.4 Collisional Closure

Upon non-dimensionalization, the Boltzmann equation may be rewritten as

ft + v · ∇xf =
1

Kn
CB(f, f). (1.36)
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By expanding f in powers of the Knudsen number,

f =
∞∑
p=0

fpKnp, (1.37)

and solving order by order in Kn we find that

CB(f0, f0) = 0 (1.38)

to leading order. From section 1.2.1, we know this implies that f0 is a local Maxwellian.

We are, however, free to choose any local Maxwellian we like. We mean to truncate the

expansion after the first term, so it behooves us to choose the local Maxwellian with the

same ρ, u, and T as the full distribution f - in general, this choice leads to the so-called

Chapman-Enskog expansion [CC70].

Closure is achieved by truncating the asymptotic expansion. The simplest option is to

truncate it at that first term - that is, we assume f ≈ f0. By virtue of being a local

Maxwellian, f0 has arbitrary M0 (i.e. ρ), M1 (i.e. u), and tr(m2) (i.e. T ). The hierarchy is

closed by noting the restriction placed on m3 by the constraint the f0 is a local Maxwellian.

In particular, it is not difficult to show that

(m2)ij = δij
ρ

m
kT = δijp, m3 = 0, (1.39)

where δij is the Kronecker delta function, taking the value 1 when i = j, and 0 otherwise.

The results that m3 = 0 and that the off-diagonal components of m2 vanish are simple

consequences of symmetry.

With these facts in hand, we can begin to write down a closed system of moment equa-

tions. We begin with the 0th moment by simply setting r = 0 in (1.34). We find

ρt +∇ · (ρu) = 0, (1.40)

where we’ve used the fact that 1 is a collision invariant to show that the right-hand side

vanishes. Here, and in the rest of this section, all gradients in moment equations are assumed

to be over x. This equation is referred to as the conservation of mass or sometimes continuity

equation. It should be familiar to many readers.
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The equation for the first moment is more commonly written in terms of m1. To find

it, we multiply the Boltzmann equation by (v − u) and integrate over all v. Assuming all

functions are sufficiently smooth that derivatives and integrals may be commuted, we have,

after some algebra,

ρ

(
∂

∂t
+ u · ∇

)
u +∇ ·m2 = 0, (1.41)

where we’ve again used our knowledge of collision invariants to eliminate the right side.

Recalling (1.39), we can rewrite m2 and find

ρ

(
∂

∂t
+ u · ∇

)
u +∇p = 0. (1.42)

This is often called the conservation of momentum equation, and will be familiar to readers

with a background in fluid theory as the most famous of the Euler equations.

Similarly, to obtain the equation for the second moment (more precisely, its trace) we

multiply the Boltzmann equation by |v − u|2 and integrate over all v. After some algebra,

we obtain
∂

∂t
{tr(m2)}+∇ · (tr(m3) + utr(m2)) + 2∇u : m2 = 0. (1.43)

We again make use of our asymptotic assumption that f is a local Maxwellian, so that we

may use (1.39) to simplify (1.43). Doing so, we find

∂p

∂t
+∇ · (up) +

2

3
p (∇ · u) = 0. (1.44)

This is commonly referred to as the conservation of energy equation.

Together, (1.40), (1.42), and (1.44) form a closed system of equations for the variables ρ,

u, and p (or, equivalently, T ). These are the Euler equations for an ideal gas. The reader

should be cautioned that while the notation used here for the first two equations is typical,

the notation for the third (energy conservation) is not. A plethora of different notations

exist in the literature. This one has been chosen to emphasize the fact that the system of

equations is closed.

While no one would claim that the Euler equations are particularly simple to solve, they

are much more amenable to numerical solution than the Boltzmann equation because they do
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not involve v, thus reducing the dimensionality of the problem dramatically. Indeed, many

reasonably efficient schemes exist for the Euler equations in both two- and three-dimensions,

e.g. [JST81, Roe86, TT99, Van82].

Since the contents of this and the previous section are rather technical, let us summa-

rize: because f , the solution of the Boltzmann equation, contains more information than is

actually of interest, it is often desirable to derive equations for the moments of f . A closed

system of such equations is only possible through some additional assumption. While many

are possible, we’ve described the equations that result under the assumption of extremely

small Knudsen number, which is equivalent to high collisionality. We’ve shown that, to lead-

ing order, this assumption forces f to be a local Maxwellian, which in turn leads us to the

Euler equations of fluid dynamics. By carrying the asymptotic expansion one term further

(i.e. including f1 as well as f0), it is possible to derive the Navier-Stokes equations as well,

under the assumption the the collision operator is that of the Maxwell molecules [CC70].

However, such a derivation is beyond the scope of this thesis.

From the perspective of this thesis, the key point is this: Fluid equations are only valid

in some asymptotic limit. In particular, the Euler equations are only valid when f is (at

least approximately) a local Maxwellian. However, fluid equations are much easier to solve

than the Boltzmann equation because of their reduced dimensionality.

1.3 Kinetic Theory of Plamsas

The preceding introduction to kinetic theory is directly applicable to neutral fluids. However,

in the case of plasmas, some changes are necessary. Firstly, in the study of plasmas the

acceleration term a · ∇vf - which was largely ignored above - plays a much more important

role. In particular, a is the Lorentz force,

a =
e

m

(
E +

v

c
×B

)
, (1.45)

where E and B are the electric and magnetic fields and c is the speed of light. The fields

depend on charge density eρ and current density J = eρu through Maxwell’s equations.
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Second, and of much more direct importance to the work in this thesis, is the peculiar

nature of the Rutherford cross-section that describes Coulomb collisions. We reprint that

cross-section here in the case of Z1 = Z2 = 1 for clarity:

dσ

dΩ
(w, θ) =

[
e2

8πε0µw2

]2
1

sin4 θ/2
. (1.46)

This differential cross-section has divergent total cross section, since

σ = 2π

∫ π

0

dσ

dΩ
sin θ dθ ∼

∫ π

0

sin θ

sin4 θ/2
dθ →∞. (1.47)

This begins to hint that the Boltzmann collision operator (1.4) may not even make sense

for this cross-section. Worse yet, the mean momentum transfer due to Coulomb collisions,

given by

〈∆p〉 = 2πm

∫ π

0

dσ

dΩ
(v′ − v) dθ (1.48)

is logarithmically divergent [AV04]. Heuristically speaking, the Coulomb force between

charged particles is so long-range - that is, that each particle experiences a force from so

many others - that the collective effect diverges.

How are we to make any sense of a collision operator in this case? The standard answer

of plasma physicists is a phenomenon known as Debye shielding. We discuss this effect in

the following subsection, then discuss the Landau collision operator, which is the standard

one used in plasma simulations.

1.3.1 Debye Shielding

The Rutherford cross section arises from the electrostatic force between two point particles,

whose magnitude is given by

F =
Z1Z2e

2

4πε0

1

r2
, (1.49)

where r is the distance between the particles. However, in a plasma, two point particles do

not exist in a vacuum, but rather in a sea of many other particles. Gauss’s law gives the

electric field for a distribution of particles with charge e having number density ρ as

∇ · E =
eρ

ε0

. (1.50)
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In the electrostatic case, E is curl-free and may thus be written in the equivalent potential

form

∆φ = −eρ
ε0

, E = −∇φ, (1.51)

where φ is the electrostatic potential.

Even this equation, though, is not the whole story. Under no other forces but the

electrostatic, particles will tend to flow toward lower values of eφ. In fact, at equilibrium,

the charge density obeys the Boltzmann distribution:

eρ = 〈eρ〉 exp

{
−eφ
kT

}
, (1.52)

where 〈eρ〉 is some constant, reference charge density, and T is the plasma temperature. This

charge distribution is a classical result in equilibrium statistical mechanics, but the validity

of its application may not be obvious in this context. However, it is simple to show that it

is a steady state (∂tf = 0) solution to the kinetic equation - one assumes f to be a local

Maxwellian, shows that u and T must be constant at steady state, and the result follows

immediately.

When the electrostatic energies are small compared to the kinetic energies of the particles

- this is called a weakly coupled plasma and will be the case we’re concerned with - the

Boltzmann distribution is approximately

eρ ≈ 〈eρ〉
(

1− eφ

kT

)
. (1.53)

Substituting (1.53) into (1.51), we find

∆φ+

(
e2〈ρ〉
ε0kT

)
φ = e〈ρ〉. (1.54)

The Debye length is defined by

λD =

√
ε0kT

e2〈ρ〉
, (1.55)

so the above equation may be rewritten as

∆φ+
φ

λ2
D

=
e〈ρ〉
ε0

. (1.56)
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This equation admits exponentially decaying solutions. In particular the response to adding

a point charge to an otherwise quiescent system is

φ =
1

4πε0

e−r/λD

r
, (1.57)

in contrast to φ ∼ 1/r as would be the case for a point charge in a vacuum.

Physically, this has an intuitive explanation. The force due to any given charged particle

on its neighbors tends to move those particles in such a way as to shield the more distant

neighbors from that particle’s influence. This phenomenon is called Debye shielding, and has

characteristic length scale λD. The result is an effective potential that decays exponentially

in r, which leads to a finite total cross section and finite momentum transfer.

Ideally, one would derive the differential cross section associated with the potential (1.57)

and use that in the Boltzmann collision operator in place of the Rutherford cross section.

Unfortunately, no explicit form of the cross section is known, and the implicit form is complex

[AV04]. In practice, the following cruder approximation is used:

dσ

dΩ
(w, θ) =

[
e2

8πε0µw2

]2
1

sin4 θ
2

1θ≥θmin
, (1.58)

where 1 is the indicator function - i.e. one if θ ≥ θmin, and zero otherwise. The variable

θmin is some small scattering angle below which Debye shielding takes over and no collision

is assumed to take place. The computation of an appropriate value for θmin is the subject

of the next subsection. In the process of doing so, we will discover the range of validity of

the approximate cross section (1.58).

1.3.2 Plasma Parameter and Weak Coupling

We begin the computation of θmin by noting that in the course of the derivation of the

Rutherford cross section - see e.g. [GPS02] - one arrives at

b =
e2

4πε0µv2
0

cot
θ

2
, (1.59)

where b is the so called impact parameter - the distance of closest approach for the two

colliding particles if there were no force between them - µ the reduced mass, v0 the relative
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velocity between the collision partners, and θ the scattering angle in the center of mass

frame. The minimum angle clearly results from the largest impact parameter for which a

substantial force is still present. Since we have exponential decay on the Debye length scale,

a reasonable choice is b = λD. Typical particle kinetic energies are on the order kT , so we set

µv2
0 = kT . As we expect the minimum angle to be small, we approximate cot θ/2 ≈ (θ/2)−1.

Substituting each of these assumptions into (1.59), we find

2

θmin
≈ 4πρλ3

D, (1.60)

where we’ve dropped the angle brackets on ρ. The quantity on the right is called the plasma

parameter, typically denoted by Λ. It is (to within a factor of 3) the number of particles

within a sphere of radius λD - such a sphere is often called a Debye sphere.

Plasmas with Λ � 1 (and thus θmin � 1) are called weakly coupled. Earlier, in our

discussion of Debye shielding, we used the term ‘weakly coupled’ to mean a plasma in which

typical kinetic energies far exceed electrostatic energies. In fact, the two characterizations

are equivalent. To see this, define rc as the classical distance of closest approach, at which

particle kinetic energies and electrostatic potential energies are equal. That is, rc satisfies

e2

4πε0rc
= kT. (1.61)

Additionally, we define the typical distance between particles rd, given by rd = ρ−1/3. With

some simple algebra, we find rc = 1/4πρλ2
D, which implies that

Λ =
λD
rc

=
1√
4π

(
rd
rc

)3/2

. (1.62)

Thus, Λ � 1 is equivalent to rd � rc. That is, the distance between particles is much

greater than the distance at which kinetic and electrostatic energies are comparable, so that

electrostatic energies are typically much smaller than kinetic energies.

In general, weakly coupled plasmas are characterized by high temperature (since this

gives small rc) and low density (since this gives large rd). When discussing plasmas in this

thesis, they will always be assumed to be weakly coupled. Some examples of weakly coupled
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plasmas include interstellar and ionospheric plasmas, the solar wind, and both magnetic and

inertial confinement fusion plasmas [HW04].

Most significantly for our purposes, in weakly coupled plasmas a particle rarely expe-

riences significant electrostatic forces from two particles simultaneously. This allows us to

continue to treat collisions as essentially binary. Moreover, while the Rutherford cross-

section’s rapid divergence at small scattering angles already makes it clear that small angle

collisions dominate the dynamics, this point is further emphasized in the weakly coupled

case. Indeed, in the weakly coupled case it is extremely rare that particles pass close enough

to each other to experience a large angle collision.

1.3.3 The Landau-Fokker-Planck Collision Operator

The last two points in the previous subsection - that weakly coupled plasmas experience

essentially binary collisions, and that the effects of those collisions are dominated by small

scattering angle events - form the underpinnings of the derivation of the standard collision

operator in the kinetic theory of plasmas.

That operator was originally derived by Landau [Lan36], and takes the general form of a

Fokker-Planck operator. It is in various places referred to as the Landau operator, Fokker-

Planck operator, and Landau-Fokker-Planck operator. In this thesis, we will use the last of

these names, often abbreviating it to LFP.

A full reprinting of Landau’s original derivation is beyond the scope of this thesis, but

it has two key elements that warrant exposition. The first is that, since collisions may be

thought of as binary, we may begin from the Boltzmann operator with the cutoff Coulomb

potential (1.58). Second, since only small angle collisions are relevant, f(v′) and f(v′∗) are

well approximated by Taylor expansions of f about v and v∗, respectively.

Using these two assumptions, Landau arrived at

CLFP (f, f) ≡
(
e4 log Λ

8πε2
0m

2

)
∇v ·

∫
R3

(
w2I−ww

w3

)
· (f∗∇vf − f∇v∗f∗) dv∗. (1.63)

In fact, it was shown in [Bob75] that this is only the lowest order term in an infinite series
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expansion of the Boltzmann collision operator. However, the higher order terms are complex

and rarely used. An equivalent expression to (1.63), which we will find more convenient to

work with, was derived in [RMJ57] and is given by

CLFP (f, f) = −
(
e4 log Λ

8πε2
0m

2

)
∂

∂v
·
(

2
∂H

∂v
f − ∂2G

∂v∂v
· ∂f
∂v

)
, (1.64)

where the so-called Rosenbluth potentials H and G satisfy

∆vH = −4πf, ∆vG = 2H. (1.65)

For a demonstration of the equivalence of (1.63) and (1.64), see [HW04].

Notice that, in both forms, the operator is proportional to log Λ. This is a direct conse-

quence of the choice of θmin in (1.60), for in the course of the derivation, integrals related to

the mean momentum transfer arise, which we recall scale like θ−1 as θ → 0. The result is

that the integral is proportional to log 1/θmin ∼ log Λ.

In reality, the value of Λ varies in space - after all, Λ depends on both density ρ and

temperature T . However, because the LFP operator’s dependence on Λ is only logarithmic

- i.e. very weak - Λ may be regarded as a constant in most circumstances.

Throughout, a kinetic equation using the LFP collision operator, i.e.

ft + v · ∇xf + a · ∇vf = CLFP (f, f), (1.66)

will be referred to as a Landau-Fokker-Planck (LFP) equation. Much of this thesis is devoted

to this equation in the special case in which f does not depend on x - that is, the spatially

homogeneous case. In this case, we have

ft = CLFP (f, f). (1.67)

Chapter 2 of this thesis is dedicated to the derivation and testing of an accelerated Monte

Carlo method for the treatment of the LFP collision operator (1.64) that is particularly

applicable in the moderate to high collisionality regime. We characterize these regimes here.

We first note that the collision operator (1.64) has an associated frequency

νFP ∼
e4n

4πε2
0m

2v3
t

log Λ =
1

2
√

2
ωp

log Λ

Λ
, (1.68)
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where vt =
√

2T/m is the magnitude of the typical relative velocity between two colliding

particles and ωp = vt/
√

2λD is the plasma frequency [HW04]. Since Λ � 1 is required for

the LFP equation to be valid, the existence of a moderately to highly collisional regime may

appear questionable since νFP � ωp. However, one can see otherwise in - for instance - the

case of an electrostatic, single component, fully ionized plasma. In this case, a = eE/m,

with the electric field E given - as before - by Gauss’s law,

−∆φ =
e

ε0

(Zni − ne), −∇φ = E, (1.69)

where ni and ne are the ion and electron densities, respectively, and Z is the ion atomic num-

ber. A commonly accepted assumption (so long as high frequency oscillations are not present

in the system) is that the electron density - to good approximation - obeys a Boltzmann

response to the electrostatic potential 1:

ne = n0 exp

{
eφ

kT

}
, (1.70)

where n0 is a constant reference density. This is the same assumption used in deriving

the Debye screening potential in 1.3.1. Substituting (1.70) into (1.69) and performing a

simple perturbation analysis, we find the convection and mean field terms have associated

frequencies

νC ∼ νMF ∼
vt
L
, (1.71)

where L is a characteristic length scale. We see by comparing (1.68) to (1.71), we see that for

plasmas varying over large length scales - in particular, L� λD - it is indeed possible that

νFP � νC , νMF , leading to a highly collisional system. Indeed, the collision term dominates

if
L

λD
� Λ

log Λ
. (1.72)

1This assumption is commonly referred to as ‘quasineutrality’, or ‘the plasma approximation’. See e.g.
[CL84], among many other standard texts, for a discussion.
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1.4 Numerical Methods for LFP Equation

The LFP equation, like most kinetic equations, has very few known exact solutions. How-

ever, being a quite general model of plasma behavior, its solutions can provide invaluable

information in the design, testing, and interpretation of physical experiments and engineer-

ing projects. One is thus motivated to seek numerical solutions for problems of interest.

Such simulations play an important and growing role in plasmas [KK09, VKB09] and a

great many other fields.

Kinetic equations, and in particular the LFP equation, pose particular challenges for

numerical simulations. They are high-dimensional, nonlocal, nonlinear, and often feature a

wide range of spatial and/or temporal scales that must be resolved. As a consequence of the

problem having so many challenges, the optimal numerical method is problem dependent.

1.4.1 Survey of existing methods

The existing methods may be divided into three categories. The first category consists of

fluid-based methods, e.g. [CDW99, DUX09, KHY02]. These methods are based on some

asymptotic or ad hoc closure of the moment hierarchy of section 1.2.3. In plasmas, a com-

monly used closure is that of Braginskii [Bra65]. The resulting equations are solved using

any of a wide variety of applicable finite difference, finite element, or spectral methods (we

will collectively refer to these as continuum methods). When applicable, these methods are

usually the most efficient option available because of the reduced dimension of the fluid

equations. Their main drawback is in their limited range of applicability. As noted in 1.2.5,

fluid equations can only be valid in some asymptotic limit, and there is certainly no univer-

sally valid limit for all plasma systems. In fact, there are many circumstances in which no

natural small parameter can be identified. Fluid methods are thus efficient but of limited

applicability.

The second category consists of continuum methods applied to the LFP equation - or

some linearization of it - directly, e.g. [FP02, GH13, PRT00, PG11, TTT13]. These methods
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have the advantage over fluid methods of being much more generally applicable, but the

disadvantage of solving an equation in higher dimension - a considerable disadvantage, since

the complexity of continuum methods scales exponentially with dimension. Many applica-

tions of this class of methods are to systems with some sort of symmetry that can be used to

reduce the spatial and/or velocity dimension of the problem [FP02, TTT13], thereby making

the computation more tractable.

The third category is the particle based, Monte Carlo methods. These methods will

be the focus of this thesis. Their primary advantage is their excellent scaling with dimen-

sion, making them a good choice for high dimensional kinetic equations. In contrast to

the exponential scaling of continuum methods, Monte Carlo methods (often) scale linearly

with dimension2. On the other hand, Monte Carlo methods converge much more slowly

than continuum methods, being subject to statistical noise that is absent from continuum

methods.

Additional qualitative discussion of the relative advantages of these different methods

may be found in [TTR12]. We proceed with a more detailed discussion of Monte Carlo and

particle methods, as all the methods in this thesis fall into this category.

1.4.2 Monte Carlo and Particle in Cell

In very general terms, Monte Carlo methods work by formulating a problem in terms of the

computation of the expectation of a random variable. Then, many samples of that random

variable are generated and averaged to arrive at a solution. The price of Monte Carlo’s

excellent scaling with dimension is its slow convergence. As mentioned in 1.1, this is because

the error is governed by the central limit theorem, meaning that if N samples are generated,

the root mean square error (i.e. standard deviation of the sample mean) scales like N−1/2.

The computational cost K of achieving an RMS error ε is thus

K = O(ε−2Ks) (1.73)

2We will see examples in chapter 3 in which, for dimension D, the complexity is actually proportional to
D2 and D4. Each of these, however, is still preferable to eD.
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where Ks is the complexity of generating a single sample. For example, if a single sample

consists of the solution of an ODE using Euler’s method, the complexity scales with the

number of time steps taken, which scales with ∆t−1 ∼ ε−1, for the error ε scales like ∆t. We

would thus say that a such a Monte Carlo method has overall complexity O(ε−3).

Throughout this thesis, and especially in chapter 3, we will find the scaling of K with

dimension D and error ε a useful metric for evaluating the performance of a numerical

scheme. Since D is typically fixed in plasma applications, we will often speak only of the

scaling of K with ε, but we will revisit the issue of dimension near the end of chapter 3.

A typical Monte Carlo method for the LFP equation proceeds as follows. First, the spatial

domain is partitioned into cells which are sufficiently small that the distribution function

can be considered roughly independent of position within a given cell. Second, ‘particles’

are placed into each cell, with velocities randomly sampled so as to be representative of the

initial distribution at that point. That is, if f0(x,v) is the initial distribution and the jth

cell is centered at xj, then a histogram of the velocities of the particles within the jth cell

should approximate f0(xj,v).

Time is discretized into steps of size ∆t. The general structure of the time-stepping loop

may be characterized as follows.

• Compuation of mean fields:

– Compute a, if it’s present, by some appropriate method, depending on its de-

pendence on f . For example, in the electrostatic plasma case, one would solve

Poisson’s equation (1.51) on the grid formed by the cells, with the density ρ

computed from the number of particles in each cell.

• Convection Step:

– For each particle position xi and velocity vi, update them to be

xnewi = xi + ∆tvi, (1.74)

vnewi = vi + ∆t a(xi,vi). (1.75)
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• Collision Step:

– Alter the velocity of each particle in a manner consistent with the collision oper-

ator.

The rough outline above describes the Particle-In-Cell (PIC) method [Bir91]. There are

of course numerous variations on this general structure. The mean field may, for example,

include a magnetic field. A more advanced time-stepping scheme may be used in the convec-

tion step, including implicit schemes [Fri05]. Variations in the collision step are especially

large, with dramatically different methods in use for neutral fluids [Bir76, AG97] and for

plasmas.

In the remainder of this section, we discuss two standard Monte Carlo approaches to

simulation of LFP collisions.

1.4.3 Binary Collision Algorithms

In the binary collision approach, the particles within a given cell are first grouped into

random pairs. These particles are then ‘collided’ according to some algorithm which is

meant to approximate the effect of LFP operator. Two standard methods exist, due to

Takizuka & Abe [TA77] and Nanbu [Nan97].

The Takizuka-Abe method (henceforth TA) is more commonly used, and is the only

binary collision algorithm used in this thesis, so we will focus on its summary. Let vα and

vβ be the velocities of the particles in a given collision pair, with masses mα and mβ, charges

eα and eβ. The algorithm proceeds as follows:

• Generate two random variables ζ and φ, with ζ normally distributed with mean zero

and

Var[ζ] =
1

2

e2
αe

2
βnL log Λ

8πε2
0m

2
αβu

3
∆t, (1.76)

where u = vα − vβ, mαβ = mαmβ/(mα + mβ), and nL is the smaller of the densities

of the two particle species. Meanwhile, φ is uniformly distributed in 0 to 2π.
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• Set θ = 2 arctan ζ.

• Set the updated particle velocities to

v′α = vα +
mαβ

mα

∆u,

v′β = vβ −
mαβ

mβ

∆u,
(1.77)

where ∆u is defined by

∆ux = [(ux/u⊥)uz − (uy/u⊥)u] sin θ cosφ− ux(1− cos θ)

∆uy = [(uy/u⊥)uz + (ux/u⊥)u] sin θ cosφ− uy(1− cos θ)

∆uz = −u⊥ sin θ cosφ− uz(1− cos θ),

(1.78)

with u⊥ =
√
u2
x + u2

y.

The complex formula (1.78) just translates a scattering through angle θ with azimuthal angle

φ in the center-of-mass frame into the observer’s frame.

The method of Nanbu has the same general structure, but with a different probability

density for the scattering angle. As noted in [BP13], the similarity of the methods comes

from their common origin - each takes advantage of the fact that there are many cross-

sections which give rise to the same LFP collision operator as a leading order approximation

of the Boltzmann operator. It is computationally convenient to choose a cross section with

total collision rate independent of v - these are called Maxwellian-type, since this property is

shared with the Maxwellian cross section. This is what allows the algorithms to pair particles

at random, rather than having to perform a weighted pairing dependent on the velocities of

all the particles.

The issue of the accuracy of these algorithms is a subtle one, and not entirely resolved.

In [BN00], there appeared a formal argument that the error is O(∆t) for Nanbu, and in

[CWD08] it was shown that the same result holds for TA. However, an empirical study

[WLC08] appeared to show that TA and Nanbu each converge as O(
√

∆t). However, this

data was not entirely conclusive. As a side note in this thesis, we will find data in support of
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the hypothesis that TA in fact converges as O(∆t). Finally, a rigorous proof that the error

is no worse than O(
√

∆t) appears in [BP13].

In the error analysis contained in this thesis, we will simply assume that the error due

to binary collision algorithms scales as O(∆tα), for some 1/2 ≤ α ≤ 1. The methods we

develop are useful regardless of the particular value α takes within this range.

As a final comment, we note that for these time-stepping Monte Carlo methods, the

complexity Ks of generating a single sample3 scales as ∆t−1 ∼ ε−1/α, so that the total

complexity is

K = O
(
ε−(2+1/α)

)
. (1.79)

The total complexity of binary collision methods is thus between O(ε−3) and O(ε−4).

1.4.4 Langevin/SDE-Based Algorithms

An alternative Monte Carlo approach takes advantage of the equivalence between convection-

diffusion operators of the type seen in (1.64) and stochastic differential equations. This

relation is known as the forward Kolmogorov equation in mathematics, and as the Fokker-

Planck equation in other fields. It states that if a random variable S obeys the stochastic

differential equation (often called a Langevin equation in physics contexts)

dSi = αi(t,S) dt+ βij(t,S) dWj,

where the Wj are independent, standard Brownian motions, and summation over repeated

indices is implied, then the the probability density p of S obeys the PDE

∂

∂t
p(t, x) = − ∂

∂xi
(αi(t, x)p) +

1

2

∂2

∂vi∂vj

(
β2
ij(t, x)p

)
. (1.80)

A sketch of the proof of this result can be found in [Shr04], exercise 6.9.

Since f may be interpreted as a rescaling of the probability density of v, we may use this

result on (1.64) along with some integration by parts to find that v obeys

dvi = Fi dt+Dij dWj (1.81)

3In this case a sample is the full time evolution of the velocity of a single particle, the complexity of which
scales like the total number of time steps.
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with Fi and Dij given by

Fi =

(
e4 log Λ

2πε2
0m

2

)
∂H

∂vi
, Dij =

[(
e4 log Λ

4πε2
0m

2

)
∂2G

∂vi∂vj

]1/2

. (1.82)

In a particle method, we may thus think of the collision step as the evolution the SDE

(1.81) for each simulated particle through a single time step. This is done using a finite

difference time-stepping method for SDEs, the simplest of which is the Euler-Maruyama

method:

vi,n+1 = vi,n + Fi(vn) ∆t+Dij(vn) ∆Wj,n, (1.83)

where the ∆Wj,n are independent normal random variables with mean zero and variance ∆t.

Many other advanced methods are discussed in [KP11]. All the methods we will discuss in

this thesis have time-stepping error4 O(∆t).

It is worth emphasizing the two distinct roles of f and v in the two different formulations.

In the Langevin formulation, the distribution f is the (rescaled) probability density of the

dependent variable v of (1.81). It may be reconstructed from a histogram of many different

solutions of (1.81) for different Brownian paths Wj. This is to be contrasted with the original

LFP formulation, where v was an independent variable, and the dependent variable is f itself.

Langevin-based collision methods of this type for LFP collisions have been used in e.g.

[AV94, JLM96, MLJ97]. They have the advantage over binary collision algorithms of prov-

ably having computational complexity

K = O
(
ε−3
)

(1.84)

in the case of fixed Fi and Dij, while binary collision algorithms may be as bad as O(ε−4). On

the other hand, when Fi and Dij vary, Langevin methods have the disadvantage of needing

to re-compute Fi and Dij in every cell at every time step. This is not a simple task - in

general, it involves the solution of the two Poisson equations (1.65) with f as input - and

is one that is not faced in binary collision algorithms. There do, however, exist scenarios

4There are two senses of ‘error’ in SDEs, strong and weak. Here, we mean the weak sense, which is the
more relevant in this context. The distinction between the two will be discussed in detail in chapter 3.

31



in which a linearized collision operator suffices - see e.g. [TTT13, RRD13]. In these cases,

the SDE coefficients do not couple to the solutions v, and the solution procedure is much

simpler.

There are thus advantages and disadvantages to both binary collision methods and

Langevin methods. As such, it is worthwhile to pursue the improvement of both meth-

ods, as we do in this thesis.

1.5 Summary

In the introduction to this thesis, we have argued that while Monte Carlo methods are

effective, general simulation procedures for collisions in many-particle physical systems, the

simulation of such systems remains computationally onerous. Therefore, accelerated Monte

Carlo methods would be a great boon to simulation efforts.

We have focused on plasma physical applications of these methods, starting from funda-

mental kinetic theory and then deriving the Landau-Fokker-Planck collision operator as an

approximation of the Boltzmann operator in the case of charged particles. We discussed two

classes of Monte Carlo methods for approximating this operator - binary collision methods

and SDE-based methods.

In chapter 2 we present the first of two accelerated Monte Carlo methods for the spatially

homogeneous LFP equation. This method builds on binary collision methods, but relies

on the assumption that the distribution function is relatively close to a Maxwellian. It

then leverages the fact that collisions within a Maxwellian have no impact to reduce the

computational burden. The concept of ‘closeness’ to a Maxwellian is made precise by the

use of relative entropy. We analyze and test the new scheme, finding results in agreement

with out analysis.

In chapter 3, we discuss the application of the Multilevel Monte Carlo (MLMC) method

to the LFP operator through its reformulation as an SDE. We then proceed to develop several

variants of and improvements to the MLMC algorithm. These methods are not restricted to
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plasma applications, so they will be introduced in a more general mathematical setting. We

analyze and test each new method, comparing their performance to the existing state of the

art.

Finally, in chapter 4, we conclude by discussing avenues for future work. We discuss the

possibilities for extending both new methods to spatially inhomogeneous problems, as well

as to rarefied neutral fluids. Other applications for the novel MLMC variants are discussed

as well.
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CHAPTER 2

Hybrid Fluid-Monte Carlo Scheme

2.1 Introduction

Any model equation of a system of kinetic particles necessarily contains a degree of error.

The challenge, in the applied mathematics sense, is to control this error. For example,

in the introduction to this thesis we discussed the fluid equations of Euler and Navier-

Stokes, whose errors are bounded to the degree that collisions dominate the dynamics. Other

examples include the Vlasov equation [Vla68], whose errors are bounded to the degree that

collisions may be ignored; the Braginskii equations [Bra65], to the degree that collisions and

magnetic fields jointly dominate; the kinetic MHD equations, to the degree the gyrofrequency

exceeds other frequencies. Each of these may be regarded as a perturbation expansion of the

Boltzmann or LFP equation.

Each of these expansions has the benefit of considerably simplifying the numerical simula-

tion of the system in question, usually by virtue of dimension reduction. Of obvious interest

is the extension of such computational simplifications to regimes in which these expansions

are not directly applicable. In one such regime - that of intermediate collisionality - the idea

of combining Monte Carlo methods with fluid solvers to get accurate and efficient simula-

tions has gained popularity in the last 15 years or so [CWD08, DL93, Hew03, HH07, HK94,

JLM96, Lar03, PC99, She08], with applications to both plasmas and rarefied gases. While

useful in practice, the modeling considerations inherent in many of these schemes prevent a

mathematical account of the size and scaling of the associated errors.

In this chapter, we take a step toward a scheme applicable to this regime whose errors
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may be bounded in the same sense as in the perturbation expansions above. The scheme

we present is a modification of those developed in [CWD08, DCC10] that is more mathe-

matically justified than either and more accurate than the scheme in [CWD08]. While we

treat the case of Coulomb collisions in a plasma - that is, the method generates approxi-

mate solutions to the spatially homogeneous LFP equation - an advantage of the present

scheme over those in [CWD08, DCC10] is that the core ideas may be applied to any elastic

collision process described by the Boltzmann equation. The present work focuses on the

spatially homogeneous case, while its extension to the full LFP equation is a topic of active

research. We also treat only single component plasmas, but the extension to multiple species

is straightforward.

Moderately collisional plasmas appear in a variety of applications, including the tokamak

edge plasma [KCK12, PCJ10], inertial confinement fusion [CDL06], and counter-streaming

astrophysical plasmas [BBF92]. Generically, any system characterized by large variations

in temperature and/or density is likely to feature a region in space where collisionality is

moderate. Moreover, even in largely collisionless systems, collisional simulation may be

necessary to model turbulence due to the small-scale structure developed [ABC08].

Typically, simulation of the full LFP equation is required when plasma collisionality is

moderate. While some continuum methods for the LFP equations were mentioned in the

introduction, and some simplified model collision operators [ABC08, BGK54, HS76] that

simplify the numerics have been used, we will focus here on the binary collision method of

Takizuka and Abe, outlined in section 1.4.1.

In this and other Monte Carlo methods, the simulation of Coulomb collisions frequently

represents a computational bottleneck in LFP simulations. Not only can the smallness of

the collisional time scale restrict the time step size, but there may be multiple disparate

collisional time scales in a single system [CWD08]. The necessity of capturing the shortest

scale makes the observation of long time scale effects - sometimes the more important ones

- very inefficient. To see this, we consider a simple example. Let fm(v;n,u, T ) denote a
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Maxwellian distribution with density n, mean velocity u, and temperature T . Consider

f = fm(v;n1,0, T1) + fm(v;n2,uB, T2) (2.1)

with uB � maxi
√
Ti. The time scale tFP = ν−1

FP , where νFP is as defined in (1.68), for

intra-Maxwellian collisions is much shorter than that for inter-Maxwellian collisions, since

νFP scales like one over the typical relative velocity cubed. Thus, the former dominate the

computational effort, but they don’t change the distribution because the collision operator

vanishes on Maxwellians. This makes direct Monte Carlo methods very inefficient for this

and similar problems.

The scheme we present here accelerates LFP collisional simulation by assigning time-

dependent passive scalars to each simulated particle. The scheme has commonalities with

those presented in [FS01, Hew03, Lar03, SB02], but the development here is independent

and less heuristic. The mathematical nature of the derivation makes it possible to perform

a formal error analysis of the scheme, a property not shared by previous efforts.

The remainder of this chapter is structured as follows: Section 2.2 summarizes previous

results on hybrid schemes of the type introduced in [CWD08]. Section 2.3 motivates and

outlines the steps in our new scheme. Section 2.4 details our methodology for tracking the

values of the passive scalars assigned to each particle. Section 2.5 summarizes and presents

an error analysis of the complete algorithm. Section 2.6 presents numerical results for two

test initial conditions: a slightly anisotropic Maxwellian and a bump-on-tail distribution.

Finally, Section 2.7 presents conclusions and indicates directions for future work. Some

details are left to appendices.

2.2 Hybrid Fluid-Monte Carlo Schemes

Hybrid schemes of the type we consider arise from a splitting of the distribution f into

f = fM + fk, where fM is some initially Maxwellian distribution satisfying fM ≤ f . If fM
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and fk satisfy

∂tfM = C(fM , fM) + C(fM , fk) + S (2.2)

∂tfk = C(fk, fk) + C(fk, fM)− S (2.3)

where S is some arbitrary function of (v, t), then the spatially homogeneous LFP equation

(1.67) is satisfied by f = fM + fk. We let C denote the LFP collision operator, since this is

the only collision operator with which we will be concerned in this chapter.

Since we choose our splitting such that fM is initially Maxwellian, C(fM , fM) = 0 ini-

tially. If fM happens to remain close to a Maxwellian throughout the evolution, we are

justified in ignoring C(fM , fM) completely. In this way, this splitting generates a computa-

tional savings over traditional Monte Carlo by avoiding the necessity of simulating collisions

between particles within fM . If fM constitutes a large fraction of the system’s mass, then

this saving will be significant. The scheme also gains accuracy over a pure fluid scheme,

because such schemes treat only perturbative deviations from a Maxwellian, while the split

kinetic system (2.2)-(2.3) does not assume fk is asymptotically small.

The problem, then, becomes choosing S in such a way that fM remains - at least approxi-

mately - a Maxwellian for all future times, while at the same time maximizing the fraction of

the system’s mass residing in fM . The closer S keeps fM to a Maxwellian, the more accurate

the scheme. The more positive S is, the faster the scheme.

Previous efforts resort to model equations for S [CWD08, DCC10]. These models are

more easily summarized if we rewrite

S = fkrT − fMrD (2.4)

for some positive rT and rD representing distribution normalized v-dependent exchange rates

into and out of fM , respectively.

In the presence only of collisions, the system tends toward a Maxwellian distribution.

The quantity rT represents the transfer of particles from fk to fM to reflect this. Increasing

rT makes the scheme more efficient but less accurate. The movement of kinetic particles into

fM will be referred to as thermalization.
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Similarly, collisions between particles in fM and fk drive fM away from its current equi-

librium state. The quantity rD represents the transfer of particles from fM to fk to reflect

this. Decreasing rD makes the scheme more efficient but less accurate. The movement of

particles from fM into fk will be referred to as dethermalization.

We shall refer to any method that prescribes rT and rD - and therefore the number and

variety of particles to be thermalized and dethermalized at each time step - as a thermaliza-

tion scheme. The derivation and testing of an improved thermalization scheme is the subject

of this paper.

We first discuss previous thermalization schemes used in hybrid methods of the type de-

scribed here. Since these methods require finite time steps, we choose to write our statements

in terms of

pT = rT∆t, pD = rD∆t, (2.5)

the probabilities of a given particle being thermalized or dethermalized in a given time step

of length ∆t. The variables on which pT and pD depend characterize previous thermalization

schemes.

2.2.1 Velocity-based Schemes

Introduced in [CWD08], velocity-based schemes have pT , pD dependent only on |uM − vp|,

where vp is the particle’s present velocity and uM is the mean velocity of fM . pT is a

decreasing function of this quantity, while pD is increasing.

This scheme is intuitively sensible, but has numerous drawbacks. Firstly, there are many

choices for pT and pD, and it is unclear if an optimal choice even exists. In [CWD08], choices

were made to reduce this to two free parameters, but we will find that the scheme presented

here has only one free parameter. An equally serious drawback, we claim, is the conflation

of “similar velocity” with “many collisions”. It is true that if a particle undergoes many

collisions with particles from a given Maxwellian, its mean velocity will tend toward that of

the Maxwellian. However, the converse is most certainly false. To illustrate this, consider
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the following initial distribution

f = fm(v;n1,0, T ) + fm(v;n2,0, εT ) (2.6)

for ε � 1 and n2 < n1. A hybrid method might divide this distribution into a Maxwellian

component (fM) given by the first Maxwellian and kinetic component (fk) given by the

second Maxwellian.

If a velocity based scheme is to be efficient then for the example (2.6), it should imme-

diately thermalize every kinetic particle, because their velocities are very near the center of

fM . On the other hand, this is not possible since if a velocity based scheme is to be accu-

rate, pT must be relatively small, even at fM ’s mean velocity, thereby sacrificing efficiency

for other initial conditions. We conclude that the velocity of a particle alone is not enough

information to decide whether or not it should be thermalized.

Moreover, in [CWD08], the number of particles in fk does not tend to zero as a Maxwellian

distribution is approached, but instead approaches some constant fraction of the total dis-

tribution. This is clearly undesirable, for it greatly diminishes the possible speed-up of the

hybrid scheme. In contrast, in the method presented here number of particles in fk does

converge to zero as a Maxwellian is approached.

2.2.2 Scattering Angle-based Schemes

The thermalization scheme developed by Dimits et. al. [DCC10] is such that pT depends

only on θ, the scattering angle the particle subtended in its most recent collision, and one

additional (overall multiplier) parameter. In its current form, this scheme sets pD = 0. pT

is typically an increasing function of θ.

This scheme is intuitively sensible for the case of Coulomb collisions in which small angle

collisions dominate the dynamics. The applicability of this scheme to other potentials, for

which small angle collisions do not dominate, is questionable.

Like velocity based schemes, scattering angle schemes use only velocity information from

the most recent time step in making decisions about thermalization. We argue that it is
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desirable for a scheme to make use of additional variables, which better capture the long-

term collisional history of the kinetic particles.

2.3 Paradigm and Theoretical Background

As discussed in the previous section, we claim that a particle’s velocity is not enough infor-

mation to determine whether it should be thermalized, nor is any information dependent on

only the most recent time step. We claim that one should look at the distribution of velocities

that particle might have had, given its collisional history. This point merits elaboration.

A Monte Carlo scheme represents f as a sum of particles with known velocities. Each

particle undergoes a sequence of random collisions throughout the simulation, so that after

any given number of time steps, the velocity of a single simulated particle may be regarded as

a random variable. Let us denote by fj(v, t) the probability density function of the velocity

v of the jth simulation particle’s velocity at time t, rescaled so that the total mass of the fj’s

matches that of f . Notice that this is initially a delta function at the particle’s designated

velocity. In a Monte Carlo scheme, f is realized - conceptually - as

f =
∑
j

fj, (2.7)

where the sum is taken over all simulated particles.

The analogous equation for the hybrid scheme is

f = fM +
∑
j

fj. (2.8)

Moreover, we may apply a splitting analogous to that in (2.2)-(16):

∂tfM = C(fM , fM) +
∑
j

C(fM , fj) +
∑
j

Sj (2.9)

∂tfj =
∑
i

C(fj, fi) + C(fj, fM)− Sj, (2.10)

where the indices j and i run over all the simulated particles. We will often write fk =
∑

j fj.
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In this framework, once (2.9)-(2.10) are discretized with time step ∆t, the thermalization

of the jth particle amounts to setting

fM(t+ ∆t) = ΠM(fM(t) + fj), (2.11)

where ΠM is the projection operator onto a Maxwellian - that is, ΠMf is a Maxwellian with

the same (n,u, T ) as f . The goal of the scheme we propose is to thermalize particles in such

a way as to introduce as little error as possible into the overall scheme. That is, the decision

to thermalize a particle should have little effect on the overall distribution. This is achieved

by thermalizing the jth particle only if

1

nj
‖fM + fj − ΠM(fM + fj)‖L1

v
≤ ε (2.12)

for some ε > 0, where nj is the density associated with fj. The choice of norm is somewhat

arbitrary, but L1 will prove convenient later. By the triangle inequality, (2.12) is implied by∥∥∥f̂M − fj∥∥∥
L1
v

+

∥∥∥∥(1 +
nj
nM

)
fM − ΠM(fM + fj)

∥∥∥∥
L1
v

≤ njε, (2.13)

where f̂M = (nj/nM)fM . The second norm is small if fj ≈ f̂M , which it must be for the first

norm to be small. It’s even smaller if nj � nM , which is the case in the parameter regimes

we consider. We therefore find it sufficient to enforce

1

nj

∥∥∥f̂M − fj∥∥∥
L1
v

≤ ε (2.14)

as a condition for thermalization.

We propose to thermalize the jth particle whenever (2.14) is satisfied and to dethermalize

it when (2.14) is violated. In order to implement this, we need a way of computing the L1

norm in (2.14). This is not a simple task. We instead compute a quantity called relative

entropy, which bounds the L1 norm from above, and thermalize particles when this quantity

is sufficiently small and dethermalize them when it is sufficiently large. Relative entropy

has the added advantage of evolving monotonically through the action of collisions with a

Maxwellian background, as we show below.
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2.3.1 Relative Entropy

Define the relative entropy (sometimes called the Kullback-Leibler divergence) H(f |g) by

H(f |g) =

∫
R3

log

(
f

g

)
f dv. (2.15)

for any two non-negative functions f , g depending on v. This quantity has its origins in

information theory, where it is used in the context of coding information sources [CT06].

Here, we need only cite four properties: for any non-negative f and g satisfying 〈f〉 = 〈g〉,

where 〈·〉 denotes the integral over all velocity space,

H(f |g) ≥ 0 (2.16)

H(f |g) = 0 iff f ≡ g (2.17)

‖f − g‖2
L1 ≤ 2〈f〉2H(f̄ |ḡ) (2.18)∫

R3

C(f, fm) log

(
f

f̂m

)
dv ≤ 0 (2.19)

where fm is a Maxwellian, f̂m = (〈f〉/〈fm〉)fm, f̄ = f/〈f〉 and similarly for ḡ.

The first two properties are standard (e.g. [CT06]). The third is a straightforward gen-

eralization of the CKP inequality [DV05, Kul67] to distributions with non-unit mass. The

fourth is a modification of Boltzmann’s H-theorem whose proof we present in appendix A.

The inequality (2.18) allows us to impose (2.14) by bounding H(f̄j|f̄M), since (2.18)

implies

H(f̄j|f̄M) ≤ ε2

2
=⇒ 1

nj

∥∥∥f̂M − fj∥∥∥
L1
v

≤ ε. (2.20)

The result (2.19) states that the role of the term C(fj, fM) in (19) is to drive fj irreversibly

toward f̂M . Moreover, (2.19) shows that collisions between f and fM tighten the L1 bound

monotonically in time. We have not shown that C(fj, fM) drives fj toward f̂M at any

particular rate. However, numerical experiments in section 7 suggest the rate is comparable

to νFP . The final thermalization criterion is

H(f̄j|f̄M) ≤ Hc, (2.21)
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where Hc is a parameter of the scheme. We specify the scale of this parameter in section

2.6.1.

2.3.2 Idea for Thermalization Scheme

This leads us to a more precise formulation of the thermalization scheme previously pro-

posed: To the jth kinetic particle fj, assign a passive scalar representing its relative entropy,

H(f̄j|f̄M). Whenever it undergoes a collision in a given time-step with a particle whose dis-

tribution is given by fi, we evolve this passive scalar in a way that is consistent with (2.10).

If at the end of any time step the particle’s relative entropy has dipped below the threshold

Hc, we thermalize it.

Similarly, whenever a particle’s velocity must be sampled from the Maxwellian component

in order to perform a collision, we assign it a relative entropy of zero (corresponding to

fj ≡ f̂M), and evolve it one time step according to the same kinetic equation. If at the end

of the time step, the particle’s relative entropy exceeds Hc, we dethermalize it, and it carries

with it this relative entropy value.

It remains to specify the details of evolving the relative entropy of fj according to colli-

sional terms in (2.10). The following section is devoted to doing this for the case of Coulomb

interactions.

2.4 Approximating Relative Entropy

Toward evaluating H(f̄j|f̄M), we note from (23) that its rate of change due to collisions with

fM during a single time step is

(∂tH)M =

∫
R3

log

(
fj

f̂M

)
C(f̄j, fM) dv, (2.22)

where the subscript M indicates that we’re only treating collisions with fM . In 5.3, we show

how to extend this treatment to the other terms in (20).

The right hand side of (2.22) is, in general, difficult to evaluate. In particular, evaluating
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the right side exactly requires knowledge of the full distribution fj for each kinetic particle,

which is not computationally feasible. We approximate the integral by approximating fj by a

finite-moment truncation of a tensor expansion (see [Cer88], chapter 7). The more moments

we keep, the better the approximation of fj, but the more quantities we have to evolve at

each time step for each kinetic particle. We make the compromise of keeping the standard

five moments ρ, u, T that define a Maxwellian, corresponding to the assumption that fj is

in fact Maxwellian. This is justified both early in the simulation - when fj ≈ δ3(v − uj) -

and late - when fj ≈ f̂M .

We will say that fM has temperature TM and mean velocity uM , while fj has mean

velocity uj and temperature Tj. Algebraic manipulation of (2.15) reveals that

H(f̄j|f̄M) =
3

2

(
Tj − TM
TM

+ log

(
TM
Tj

))
+
mu2

jM

2TM
, (2.23)

where m is the common mass of all the particles under consideration and ujM = uj − uM .

Notice that here, in in the remainder of this thesis, we let kT → T , as is common in physical

kinetic theoretic literature. To specify the relative entropy in this case, it is thus enough to

specify uj and Tj, so instead of having to compute the integral in (2.22), we can work with

the comparatively simple collisional rates of change of mean velocity and temperature:

(∂tuj)M =

∫
R3

vCFP (f̄j, fM) dv, (2.24)

(∂tTj)M =
1

3
m

∫
R3

|v − uj|2CFP (f̄j, fM) dv. (2.25)

This approach has the additional advantage of avoiding the direct approximation of ∂tH,

which can be arbitrarily large, as indeed can H itself (consider Tj → 0 in (2.23)). Derivatives

of uj and Tj are much more well behaved.

Some results on the integrals in (2.24) and (2.25) are derived in [HW04], and some others

are attributed to Decoster in [JLM96, Lar03]. Here, we make use of both results as well as

deriving some that are new to the best knowledge of the authors. Because the derivations

are lengthy and the results partially known, we leave the details to appendix B and present

only the results here.
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Define FjM as the right hand side of (2.24), and 2WjM/3 the right side of (2.25). When

Tj � TM , we show in appendix B that

FjM ≈ Fδ
jM ≡

4γnM
m2v2

tM

UjM

U3
jM

[
UjM

d erf(UjM)

dx
− erf(UjM)

]
, (2.26)

WjM ≈ W δ
jM ≡

2γnM
mvtM

erf(UjM)

UjM
. (2.27)

where UjM = ujM/vtM , with vtM =
√

2TM/m denoting the thermal velocity of fM . For the

definition of the constant γ, see (B.3). Equation (2.26) is equivalent to the analogous result

in [JLM96, Lar03].

When ujM � vtj, with vtj denoting the thermal velocity of fj, we show in appendix B

that

FjM ≈ Fm
jM ≡ −

1

τjM
ujM , (2.28)

WjM ≈ Wm
jM ≡

1

τjM

[
3

2

(
1−

u2
jM

v2
tj

)
(TM − Tj) +mu2

jM

]
, (2.29)

where

τjM =
3
√
πm2

16

(
v2
tj + v2

tM

)3/2

γnM
. (2.30)

Note that (2.28) is equivalent to the analogous result in [HW04], while (2.29) is a general-

ization of the analogous result in same.

2.4.1 Toward a uniformly valid approximation of relative entropy

While the above asymptotic expressions are interesting in their own right, we require ex-

pressions that are uniformly valid throughout parameter space. The integrals in (2.24) and

(2.25) can be calculated numerically, but the inline evaluation of multi-dimensional integrals

is computationally prohibitive in this context. It is possible to reduce the problem to one

dimensional integrals dependent on only two non-dimensional parameters (see appendix C),

from which a look-up table can be generated. However, numerical experiments presented in

section 7.1 show that the majority of the error in our relative entropy estimation comes from
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the assumption that fj is Maxwellian, rather than from the asymptotic assumptions used to

derive (2.26)-(2.29). We will therefore find it satisfactory to set

(∂tuj)M =

 Fδ
jM : ujM ≥ αvtj

Fm
jM : ujM < αvtj

(2.31)

(∂tTj)M =
2

3
·

 W δ
jM : ujM ≥ αvtj

Wm
jM : ujM < αvtj

(2.32)

where α ∈ (0, 1). This clearly recovers the correct behavior when ujM � vtj. To see

the recovery of the other limit, we rely on numerical experiments to confirm that when

ujM � vtj, it is also the case that Tj � TM , making (2.26)-(2.27) valid. All tests indicate

that the properties of the scheme are not sensitive to the choice of α. In all results that

follow, we use α = 0.9.

2.4.2 Monte Carlo Implementation

Thus far, we have discussed the role of the term C(fj, fM) in (2.9)-(20) in the evolution of

Tj and uj. There are two other collisional effects that must be taken into account.

Firstly, we must also evolve Tj and uj through collisions with other kinetic particles. That

is, we must account for the term
∑

iC(fj, fi). This is done by retaining our assumption that

each of the particle distributions is a Maxwellian. Then, the difference between treating

collisions with fM and with fi is merely a matter of changing parameters, since both satisfy

the assumptions in previous subsections. For instance, if we were to rewrite (2.29) to give

the rate of change of Tj due to collisions with the ith particle, we would have

Wji ≈ Wm
ji ≡

1

τji

[
3

2

(
1−

u2
ji

v2
tj

)
(Ti − Tj) +mu2

ji

]
, (2.33)

where uji = uj − ui, and

τji =
3
√
πm2

16

(
v2
tj + v2

ti

)3/2

γni
. (2.34)

The expression (2.33) is then valid when uji � vtj. Analogous changes are made to (2.26)-

(2.28), and when the jth kinetic particle collides with the ith kinetic particle, we evolve uj
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and Tj according to

(∂tuj)i =

 Fδ
ji : uji ≥ αvtj

Fm
ji : uji < αvtj

(2.35)

(∂tTj)i =
2

3
·

 W δ
ji : uji ≥ αvtj

Wm
ji : uji < αvtj

(2.36)

where the i subscript denotes change due to ith particle.

Secondly, we have so far only looked at the rate of change in uj and Tj for one of the two

collision partners. The collision also affects the moments of the other distribution. These

effects are captured by recalling that collisions conserve momentum and energy. That is,

〈v [C(f, g) + C(g, f)]〉 = 0, (2.37)〈
v2 [C(f, g) + C(g, f)]

〉
= 0, (2.38)

for any f and g. Therefore, we have

Fji ≡ 〈vCFP (f̄j, fi)〉 = −〈vCFP (f̄i, fj)〉 ≡ −Fij, (2.39)

and

2m−1Wji = 2m−1Wij − 2uji · Fij. (2.40)

In this way, our treatment of the terms C(fj, fM) and C(fj, fi) implicitly generates the

analogous formulas for C(fM , fj) and C(fi, fj).

2.5 Algorithm Summary and Error Scalings

Denote the number of simulated particles constituting fk by Nk, and that constituting fM

by Nm. To generate a numerical solution of the spatially homogeneous LFP equation, at

each time step the following substeps are taken.

1. Determine the number of collisions of each type to perform. In the algorithms of Nanbu

and TA, each particle undergoes exactly one collision with a randomly selected partner:
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(a) Nkk = N2
k/2(Nk +Nm) is the number of collisions between two kinetic particles.

(b) Nmk = NmNk/(Nm + Nk) is the number of collisions between a kinetic and a

Maxwellian particle.

(c) Collisions between Maxwellian particles do not affect the distribution and are thus

not simulated.

2. Perform collisions:

(a) Randomly select Nkk kinetic particles, and assign each a partner from among those

not already selected. Perform collisions between each pair by altering their actual

velocities according to the collision algorithm as well as their mean velocities and

temperatures according to (2.35) and (2.36), respectively.

(b) For each kinetic particle unused in (a), generate a particle with velocity sampled

from fM , and with mean velocity and temperature equal to those of fM . Per-

form a collision between this and the kinetic particle as in (a), but evolve the

mean velocity and temperature of each particle according to (2.31) and (2.32),

respectively.

3. Thermalization/Dethermalization:

(a) For each kinetic particle, computeH(f̄j|f̄M) from uj, Tj using (2.23). If this quan-

tity is less than Hc, remove the particle from the kinetic component, increment

Nm and decrement Nk.

(b) For each particle sampled from fM , compute H(f̄j|f̄M) as in (a). If this num-

ber exceeds Hc, add the particle to the kinetic component, decrement Nm and

increment Nk.

4. Enforce conservation:

(a) Adjust uM so that the total momentum in the system is the same as before the

collisions.
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(b) Adjust TM so that the total energy in the system is the same as before the colli-

sions.

If there exists spatial dependence in the problem, fluid equations which adjust nM , uM , and

TM must also be evolved.

2.5.1 Choice of Hc

The algorithm outlined above has one free parameter: Hc, the value of relative entropy

below which a particle is thermalized and above which it is dethermalized. We now present

an argument that specifies the scale of this quantity, although not its precise value.

Notice that, unlike the thermalization process, the dethermalization process occurs over

a single time step. That is, if the scheme doesn’t dethermalize a given particle, that particle

is inserted back into the Maxwellian and its interaction with the kinetic component of the

scheme is forgotten. Accuracy demands that this does not happen to every particle sampled

from the Maxwellian, so that some particles get dethermalized. Thus, Hc should not be

much larger than the change in relative entropy experienced by a Maxwellian particle in a

single time step.

Similarly, efficiency demands that not every sampled particle be dethermalized. There-

fore, Hc should not be much smaller than the aforementioned change in relative entropy. We

conclude that Hc should be comparable to the typical change in relative entropy experienced

by a particle sampled from the Maxwellian. It remains only to specify this scale.

Denote the change in temperature a Maxwellian particle undergoes during a collision

with a kinetic particle by ∆T and the change in u by ∆u. If we assume ∆T/TM � 1, then

to leading order in (2.23), the change in relative entropy is

∆H ≈ 3

4

(
∆T

TM

)2

+

(
∆u

vtM

)2

. (2.41)

From (2.29) and (2.40), we can estimate ∆T .

∆T ≈ 8√
π

γ

m2v3
tM

TM∆t. (2.42)
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Similarly, by using (2.28), we can estimate

∆u ≈ 3

4
√
π

γ

m2v3
tM

u∆t (2.43)

By rewriting the above in terms of tFP = ν−1
FP using (1.68) and (B.3), then plugging into

(2.41), we have

Hc ≈ ∆H ≈ 12

π

(
1 +

3

256

(
u

vtM

)2
)(

∆t

tFP

)2

≈ 3.8

(
∆t

tFP

)2

. (2.44)

In the last approximation, we’ve assumed that u is not so large as to make the second term

significant, which is valid so long as u . 9vtM . In general, we set

Hc = c

(
∆t

tFP

)2

(2.45)

for some c we choose. Unless otherwise specified, we use c = 12.9 henceforth. This choice

makes the errors more visible, although the fidelity of the results is not sensitive to this

choice.

This scaling for Hc implies that the (de-)thermalization error scales like ∆t, since by

(2.20) we have

H(f̄j|f̄M) ≤ O

(
∆t2

t2FP

)
=⇒ 1

nj

∥∥∥fj − f̂M∥∥∥
L1
v

≤ O

(
∆t

tFP

)
. (2.46)

In numerical experiments to follow, we find that the accuracy and efficiency of the scheme

are each insensitive to changes in Hc within a factor of 10 to 100 around the value in (2.44).

2.5.2 Error Analysis

For a spatially homogeneous scheme using the collision algorithm of TA or Nanbu, we have

‖ftrue − fMC‖L1
v

= O ((∆t/tFP )q) +O(N−1/2), (2.47)

where ftrue is the analytic solution and fMC its approximation by a standard Monte Carlo

method with N particles and time step ∆t. The exponent q is between 1/2 and 1, but is left
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unspecified to account for the fact that the temporal convergence rate of the TA and Nanbu

schemes remains a subtle issue [BP13].

A hybrid method which never thermalizes particles and dethermalizes every particle sam-

pled from the Maxwellian component reproduces the result of the Monte Carlo scheme in

expectation. Moreover, because each simulated particle carries equal weight, we have nj =

n/N . Thus, each thermalization or failed dethermalization event introduces an O(∆t/tFPN)

error by (2.46). There are O(N) failed dethermalizations at each time step, and O(1/∆t)

total time steps, so there are O(N/∆t) failed dethermalizations over the course of the simu-

lation.

Contrast this with the scaling of the number of thermalization events. This number

may be said to be F(Hc)O(N), where F is the fraction of the simulated particles that are

thermalized during a simulation, which is clearly an increasing function of Hc. Since, in

addition, Hc is an increasing function of ∆t, we may say that F = O(∆tβ) for some β > 0.

This gives the overall scaling

‖fMC − fhybrid‖L1
v

= O

(
∆t

tFPN

)(
O

(
N

∆t

)
+O

(
N∆tβ

))
= O

(
t−1
FP

)
+O

(
∆t1+β

tFP

)
.

(2.48)

Combining (2.47) and (2.48) gives the error scaling for the hybrid scheme proposed here:

‖ftrue − fhybrid‖L1
v

= O

((
∆t

tFP

)q)
+O

(
N−1/2

)
+O

(
t−1
FP

)
+O

(
∆t1+β

tFP

)
, (2.49)

where the first term is the finite time step error, the second the sampling error, the third

the (failed) dethermalization error, and the fourth the thermalization error.

The formal derivation of (2.49) is hardly rigorous, and in particular has the following

weakness: it assumes that we know the actual value of the relative entropy for each fj, when

in fact we only have an estimate of it based on the assumption that fj is Maxwellian. The

derivation of (2.49) remains unchanged if we have

Htrue ≤ kHest (2.50)

for some k > 0, where the superscript true indicates the actual relative entropy for a given

particle, and est indicates our estimate of that quantity.
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However, for any Hest computed using a finite moment truncation of fj, there exist

pathological cases in which Hest = 0 while Htrue is strictly positive, so (2.50) cannot hold

in general. However, for many problems these pathological conditions may not be achieved,

giving hope that (2.49) may be realized. Indeed, results in the following section are consistent

with the scaling relations presented here.

2.5.3 Dethermalization Error

Since failed dethermalizations are shown in (2.49) to be the dominant error source, it warrants

more discussion. In particular, having seen that this error doesn’t scale with ∆t or N , we

seek to understand what sets the size of this error.

By (2.18) and (2.44), we have a bound on the error incurred by each failed dethermal-

ization event, which we denote by εe:

εe ≤
√

2c
n

N

∆t

tFP
(2.51)

for some constant c. The growth rate of this error, denoted by εt, is thus given by

εt = εeR, (2.52)

where R is the number of failed dethermalization events per unit time, which may be written

as

R =
nk
n

N

∆t
(2.53)

when nk/n is small. Combining (2.51)-(2.53), we have

εt
n
≤
√

2c

tFP

nk
n
, (2.54)

where we divide through by n so that the right side may be thought of as a fractional error.

The tFP above is the characteristic time for collisions between fM and fk, which will

change throughout the simulation. We find it instructive to express the same statement in

terms of the characteristic time for collisions within fM , denoted by tMFP .

εt
n
≤
√

2c

tMFP

nk
n

(
vtM
ukM

)3

, (2.55)
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where ukM is the characteristic relative velocity between a particle sampled from fk and one

from fM .

The inequality (2.55) highlights two ways in which the dethermalization error can be made

small: the kinetic component can be small - i.e. nk � n - and/or the kinetic component can

have velocity very different from the maxwellian component - ukM � vtM . Moreover, the

case in which neither of these conditions is realized is short lived, as a kinetic component

with ukM . vtM will be rapidly thermalized.

We compare results from numerical tests to the predictions of (2.55) in the following

section.

2.6 Numerical Results

We perform two types of numerical test. First, we check that the approximations (2.23),

(2.31), and (2.32) capture the actual evolution of relative entropy through collisions with

a Maxwellian background. Second, we test the entire algorithm’s accuracy and efficiency

against pure Monte Carlo simulations in two test cases: the relaxation of a slightly anisotropic

Maxwellian and a bump-on-tail distribution.

2.6.1 Testing Relative Entropy Approximations

We are interested in the following problem: given a distribution f(v, t) solving

∂tf = CFP (f, fm), f(v, 0) = δ(v − v0), (2.56)

where fm is Maxwellian and constant in time, what is the time evolution of H(f |fm)?

We attack the problem in three different ways. First, we represent f by a single test

particle with initial velocity v0, and evolve its velocity according to the algorithm of TA,

where each collision partner has velocity sampled from fm. The test particle’s velocity is

then a random variable vp(t) whose distribution is given by f(v, t). By simulating the

evolution of vp repeatedly, we may generate - at each t - a histogram that, by definition,
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approximates f at that time. We then evaluate H(f |fm) by direct numerical integration of

(2.15). This will be thought of as the true value of the relative entropy, as it is subject only

to the errors in the Monte Carlo scheme and the numerical integration, each of which can

be made arbitrarily small. Results from this method are plotted in solid blue in fig. 1.

Second, we evolve the mean velocity and temperature of f according to the collisional

moments F and W under the assumption that f is a Maxwellian. F and W are numerically

integrated (refer to (C.5) and (C.11) in appendix C) to find the rates of change of u and T ,

which are then evolved by forward Euler and plugged into (2.23) to find H. This method is

designed to test the validity of the assumption that f is Maxwellian, since this is the only

assumption made here that was not used in the direct simulation of collisions outlined above.

Results from this method are plotted in dash-dot black in fig. 1.

Third, we evolve u and T according to the numerical solution of the ODEs (2.31) and

(2.32), then evaluate H using (2.23). This tests the validity of our asymptotic expressions,

since this is the only assumption used here but not in the previous method. Results from

this method are plotted in dashed red in fig. 1.

Fig. 2.6.1 shows the values of u, T , and H(f̄j|f̄M) computed from each of the three meth-

ods above for three different values of v0. From this, we conclude that the approximations

(2.23), (2.31), (2.32) are a satisfactory framework for the approximation of relative entropy

evolution. In particular, the approximation captures the monotonicity and overall rate of

relative entropy decay, and is especially accurate when the relative entropy is small, which

is of particular importance for our application.

Increased accuracy in the evolution of T and u may be obtained through numerical

integration of (B.5), (B.14), which may be of independent interest, but this does little to

improve the relative entropy approximation, and in fact even degrades the quality of the

approximation in some regimes (see bottom right plot in fig. 1). The numerical evaluation

also greatly increases the complexity of the scheme in practice, so we use the asymptotic

approximations (2.23), (2.31), and (2.32) in all numerical tests that follow.
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Figure 2.1: Comparison of scaled temperature (T), mean velocity (u), and relative entropy

(H) of the distribution of a test particle in a Maxwellian background computed by three

different methods: direct Monte Carlo collision simulation (solid blue), evolution via numer-

ical integration of F and W (dash-dot black), and evolution according to the asymptotic

expressions (2.31) and (2.32) (dashed red). The left-most column has v0 = 0, the middle

v0 = vtM , and the right-most v0 = 2vtM

2.6.2 Full Numerical Tests

We now present numerical results for the full algorithm outlined in section 6 when applied

to two test problems: a slightly anisotropic Maxwellian, and a bump-on-tail distribution.

As the goal of this algorithm is to accelerate the simulation of collisions, a discussion

of computational cost is warranted. To leading order, the computational cost of collisional

simulation is proportional to the number of collisions simulated during the scheme, which is

proportional to the number of simulated particles, averaged over the full run. Therefore, a
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hybrid scheme of the type we discuss is faster than a pure Monte Carlo scheme by a factor

of roughly

S =

〈
N

Nk

〉
=

〈
Nm +Nk

Nk

〉
, (2.57)

where the angle brackets now represent an average over all time steps. This is the measure

of efficiency we use when testing schemes of the types outlined in sections 3.1 and 3.2.

However, the entropy based scheme proposed here incurs an additional computational

load for each collision due to the passive scalars that must be evolved. The cost of the

simulation of any given collision is roughly proportional to the number of scalar quantities

that must be evolved. This implies that the analogous efficiency measure for the entropy

based scheme is

SH =
3

4 + du

〈
Nm +Nk

Nk

〉
, (2.58)

where du is the number of components of u that we track, which will be problem dependent.

In most cases, du is the number of spatial dimensions in the problem since velocities in

other dimensions are assumed to vanish on average. However, in problems with no spatial

dependence but non-Maxwellian initial data, we will require du 6= 0. In the bump-on-tail

problem in 7.2.2, for instance, we set du = 1.

All of the following results were performed in a dimensionless formulation with m = 1,

tMFP = 5.348275, T = 0.05065776, and n = 0.1 (consistent with parameters in [CWD08]).

2.6.2.1 Two-temperature Maxwellian Relaxation

We first test the fidelity of our implementation in a scenario with a known approximate

solution. Consider the initial distribution

f =
nm3/2

(2π)3/2T
√
T + δT

exp

(
−
m(v2

x + v2
y)

2T

)
exp

(
− mv2

z

2(T + δT )

)
(2.59)

with δT � T . In [Tru65], Trubnikov showed that the temperature difference δT - to leading

order - decays exponentially in time:

δT (t) = δT (0)e−t/τ , (2.60)
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with τ given in Gaussian units by

τ =
5

8
√
π

√
mT 3/2

ne4 log Λ
. (2.61)

In fig. 2, we compare this approximate solution to the method of TA and the entropy-

based hybrid method proposed here. We use δT (0)/T = 1/10, ∆t = tMFP/20, and N =

1.024× 106 with the other parameters as described above. We find agreement between all
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Figure 2.2: The temperature anisotropy in a two temperature Maxwellian as a function of

time. Computation compares the linearized analytic result (solid black), pure Monte Carlo

using Takizuka-Abe (dash-dot red), and the hybrid scheme proposed herein (dashed blue).

three solutions up to the level of statistical fluctuations in the numerical solutions.
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2.6.2.2 Accuracy and Efficiency Tests

The bump-on-tail initial distribution we treat is given by

f(t = 0) = fm(v; βn,0, T ) + fm(v; (1− β)n,uk, Tk) (2.62)

with β ∈ (0, 1) corresponding to the fraction of the total mass in each Maxwellian. We set

the initial fM equal to the first Maxwellian term and fk equal to the second, and display

plots for β = 0.9, uk = 2.83vtM x̂, and Tk = 10−4.
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Figure 2.3: Six time snapshots of the velocity distribution in the x dimension for the

bump-on-tail problem. Monte Carlo solution: solid red; hybrid solution: black “x”.

In fig. 3, we plot a time series of the hybrid solution compared to the Takizuka-Abe

solution using ∆t = tMFP/20 and N = 256, 000 total particles. The plots show excellent

qualitative agreement between the pure Monte Carlo solution and the hybrid solution with

SH ≈ 10.

In fig. 4, we compare the efficiency and accuracy of the entropy-based scheme proposed
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here to the scattering angle-based scheme outlined in section 3.2. Analogous results for

the velocity-based scheme described in section 3.1 may be found in [CWD08], showing infe-

rior performance compared to both schemes tested here. For each scheme, the accuracy is

measured by

Γacc =
1

tmaxn

∫ tmax

0

‖fMC(t)− fhybrid(t)‖L1
v
dt, (2.63)

the same measure used in [CWD08]. We set tmax = 11tFP to capture most of the progress

toward equilibrium shown in fig. 3, although the results we present are not sensitive to this

choice.

For the scattering angle-based scheme, we set

pT = min

{
k sin

θ

2
, 1

}
, (2.64)

where θ is the scattering angle in the two-particle center of mass frame, and vary k to change

the efficiency - S - of the scheme. For the entropy based scheme, we vary the efficiency SH

by varying Hc about the value prescribed in (2.44).

We test each scheme in two cases. In the first, no particle is ever dethermalized. In

the second, we dethermalize particles according to pD = pT/2 for the scattering angle based

scheme and as described in section 6 for the entropy based scheme. This is intended to test

whether collisionally driven dethermalization plays a significant role in the evolution of the

distribution and how efficiently each scheme handles the dethermalization process. Results

for ∆t = tMFP/20 and N = 256, 000 are shown in fig. 4. The sampling error is estimated at

0.015 by comparing multiple independent Monte Carlo simulations.

We see immediately the improved accuracy effected by the entropy-based scheme for a

fixed number of simulated collisions by comparing the green and red curves. However, the

additional computational load incurred by the entropy scheme effectively cancels this gain

in the absence of dethermalization, as seen by comparing the blue and red curves. However,

in the presence of dethermalization the advantage is restored - seen by comparing magenta

and black.

Moreover, we notice that adding dethermalization has no effect on the efficiency of the
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entropy scheme (compare blue and magenta curves in fig. 4), while it degrades that of

the scattering angle scheme (compare red and black curves). Dethermalization slows the

scattering-angle scheme because dethermalized particles are slow to be re-thermalized. In

the entropy scheme, on the other hand, recently dethermalized particles are re-thermalized

quickly because they have particle temperature and mean velocity very close to those of the

Maxwellian. We discuss the consequences of these observations in more detail in section 8.

2.6.2.3 Convergence Study

In fig. 5 we present a numerical convergence study comparing the various sources of error in

(2.49), again using the bump-on-tail initial distribution. In an effort to isolate the systematic

errors, we increase the number of simulated particles to N = 2.5398×106. We use time steps

∆t = tMFP2−k for k = 2, ..., 7. The sampling error is of course not completely eliminated, and

is thus subtracted from each curve in fig 5. For each curve, the sampling error is estimated

by comparing multiple independent simulations.

The red, unmarked curve in fig. 5 shows the errors between Monte Carlo schemes at

the various time steps and the Monte Carlo scheme at the finest time. The black, x-marked

curve shows errors for the entropy-based hybrid scheme with no thermalization (we simply

skip step 3a in section 6), i.e. it shows the dethermalization error. As expected, this curve

is asymptotically constant, and begins to show the time-stepping error only to the right of

the plot when time-stepping error becomes comparable to the dethermalization error.

The blue, square-marked curve shows errors for the entropy based hybrid scheme exactly

as summarized in section 6. The difference between the blue and black curves is the ther-

malization error, shown in the green, triangle-marked curve, and is found to scale like o(∆t),

as predicted in (2.49). All hybrid simulations presented in the plot have SH ≥ 5.9, with the

full hybrid simulations (blue) having efficiency as high as SH ≈ 8.6.

We notice that the time stepping error appears to be smaller by a constant factor for the

hybrid scheme as compared to the Monte Carlo simulations - i.e. at the right edge of fig. 5,
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the blue, square marked curve lies slightly below the red, unmarked curve. We hypothesize

that this is because only a small portion of the distribution is subject to the time stepping

error in the hybrid scheme, while the whole of the distribution is subject to it for Monte

Carlo schemes.

Moreover, we note that the slope of the red, unmarked curve may be of interest indepen-

dent of the hybrid scheme, for we find O(∆t) convergence, consistent with formal arguments

in [BN00, CWD08], but at odds previous empirical results [WLC08] and improved relative

to the rigorous argument in [BP13].

2.6.2.4 Dethermalization Error Study

Lastly, we test some of the predictions of (2.55) using the bump-on-tail distribution. We

investigate the rate of error generation by plotting the L1 difference between the hybrid and

Monte Carlo solutions as a function of time, using only dethermalization. We vary uk in

(2.62), which is analogous to ukM in (2.55), and display the results in fig. 6.

Notice that, as expected, increasing uk decreases the error generation rate, while decreas-

ing uk shortens the time to equilibration. Moreover, the scale of the error generation rate is

correctly predicted by (2.55). For instance, with uk = 2.83vtM , (2.55) sets an upper bound

on the error generation near two percent per tMFP , while the plot shows a maximum rate of

approximately one percent per tMFP .

2.7 Discussion and Conclusions

A hybrid algorithm for the accelerated simulation of Coulomb collisions has been presented.

The algorithm is derived directly from the LFP equation without appealing to the ad hoc

modeling used in other hybrid particle methods [CWD08, Hew03, Lar03], permitting quan-

tification of error sources and scalings, at least at a formal level. The accuracy and efficiency

of the method are confirmed by the results of numerical simulations. Moreover, for this

method the number of kinetic particles tends to zero as equilibrium is approached, thus re-
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covering the efficiency of a fluid scheme for Maxwellian distributions, which is not a feature

of the scheme in [CWD08].

It is an unfortunate - but not unexpected - consequence of the approximations used to

accelerate the algorithm that the hybrid scheme does not converge as ∆t→ 0. It bears noting

that one could make the hybrid scheme presented here formally convergent by taking the

relative entropy cutoff Hc = O(∆tk) for any k > 2. However, such a scheme inevitably has

the property that the speed-up factor S → 1 as ∆t→ 0, thus recovering the computational

efficiency of a Monte Carlo scheme in the limit. The choice of k = 2 made in the preceding

results is the unique choice that bounds the computational gain from below and the error

from above. Moreover, we demonstrate in sections 6.3 and 7.2.4 the ability to predict the

scale of the dominant error and find it to be small for the intended applications.

For a given number of simulated particles, the entropy based scheme has been shown

to be more accurate than the particle- and scattering angle-based schemes. However, the

additional computational load incurred by the tracking of the passive scalars assigned to

each particle is seen to effectively cancel this gain in the case of a spatially homogeneous

relaxation process. However, in the application of the hybrid scheme to problems with other

potentially destabilizing agents - e.g. spatial inhomogeneity or electromagnetic fields - we

expect that the dethermalization error will become more significant, and it is reasonable to

expect the entropy scheme’s improved treatment of dethermalization to yield dividends.

There are a number of directions in which the present work could be extended. The first

is the treatment of spatially inhomogeneous problems, which is of obvious importance for

application to real world scenarios, and may reveal more benefits of the entropy scheme, as

just mentioned. A second is the extension to other collision operators, which only requires

modification of the expressions for W and F. Thirdly, one might incorporate unequal weight-

ing of the simulated particles [HK94], potentially including negative weights as in [HH07].

The incorporation of negative weights is of particular interest because it would allow the

scheme to efficiently capture small negative deviations from Maxwellian distributions. A

fourth is to use the numerical evaluation of the expressions in appendix C to evolve the rel-
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evant passive scalars, which may yield a more robust scheme. Other directions include the

potential for adaptively choosing the number of moments used to approximate the particle

distributions and the possibility of fusing multiple kinetic particles when the relative entropy

between them is small so as to further reduce computational cost, an approach similar to

[Hew03, Lar03]. Each of these is a topic of current research of the authors.
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Figure 2.4: A comparison of accuracy Γacc and efficiency S, SH for four different realizations

of a hybrid scheme: the entropy-based and scattering angle-based schemes, each with and

without dethermalization. The entropy scheme is plotted against both S (green ‘+’) and SH

(blue and magenta dots). The scattering angle scheme is plotted both with thermalization

(dashed black) and without (solid red). Comparing the green ‘+’ curve to the solid red

and dashed black compares the entropy and scattering angle schemes when the number of

simulated particles is equal. Comparing the dotted blue to the solid red compares the two

schemes when the total computational load is equal and when there is no dethermalization.

Comparing the dotted magenta to the dashed black compares the two schemes for equal

computational load when thermalization is present. A sixth possible curve - Entropy scheme

without dethermalization vs. S - is not plotted, because it falls directly on top of the green

‘+’ curve.
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Figure 2.5: A comparison of the errors incurred by pure Monte Carlo and hybrid schemes.
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CHAPTER 3

Multi-Level Monte Carlo - Improvements

3.1 Introduction

Stochastic differential equations (SDEs) have numerous applications: neuroscience [Bur06,

KW87], chemical kinetics [Gil00], civil engineering [HFU88, Har77], biological fluid dynam-

ics [KPA08], plasma physics [LWD09, MT04], particle physics [Lee94], polymer dynamics

[Fre02], and finance [Shr04], to name a few. While the author’s primary interest is in plasma

physical applications, the methods presented in this thesis are of more general applicability.

As such, the presentation here will be more mathematical in nature, and various applica-

tions will be mentioned but not dwelled upon. For a more detailed discussion of the plasma

applications of multilevel Monte Carlo, see [RRD13].

A prototypical class of problems appearing in many of the applications above may be

characterized as follows: let S(t) ∈ Rd satisfy the system of SDEs

dSi = ai(S, t) dt+
D∑
j=1

bij(S, t) dWj, S(0) = S0 (3.1)

for t ∈ [0, T ] and some given S0, where Si is the ith component of S, W (t) ∈ RD is a D

dimensional Brownian motion, ai : Rd → R for each i ∈ {1, 2, ..., d}, and similarly for bij.

Then, for some given P : Rd → R, evaluate E[P (S(T ))]. That is, we wish to find the mean

value of some functional of the solution of an SDE.

Since exact solutions are available for only the simplest of SDEs, finite difference methods

are frequently used to approximate their solutions. The expectation is then evaluated via a

Monte Carlo method. The purpose of the present chapter is to present three improvements
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to the class of multilevel Monte Carlo (MLMC) methods - introduced in [Gil08b] - which are

the current state of the art.

The MLMC methods themselves improve upon the most straightforward numerical method

for the archetypal SDE problem above. That method is to approximate the SDE’s solution

by the well-known Euler-Maruyama discretization with time step h, given by

Si,n+1 = Si,n + ai(Sn, tn)h+
D∑
j=1

bij(Sn, tn)∆Wj,n, (3.2)

where Sn approximates S(tn), with tn = nh, and the ∆Wj,n are independent normal random

variables with mean zero and variance h. We may then generate N independent samples of

ST/h by generating different ∆Wj,n for each sample, and estimate the desired expectation by

E[P (S(T ))] ≈ 1

N

N∑
r=1

P
(
S

(r)
T/h

)
, (3.3)

where r indexes the N samples.

One desires to approximate the true expectation to within an RMS error ε, which will

scale as O(N−1/2) and O(h). The computational cost of the scheme is proportional to

the total number of time steps taken, which scales as O(N/h). Thus, we see that the

computational cost of achieving an RMS error1 ε - which we henceforth denote by K - is

O(ε−3).

In many contexts, such a scaling is prohibitive, so a number of methods which improve

upon it have been developed. To understand them, we must define the notions of strong and

weak errors for SDE approximations. Let Sh be an approximate solution of (3.1) obtained

by some discretization with time-step h. We say that discretization has weak error of order

p if

|E[g(Sh)]− E[g(S)]| = O(hp) (3.4)

for some broad class of functions g : Rd → R (in particular, that class should include P ).

We say that discretization has strong error of order q if

E [|Sh − S|] = O(hq). (3.5)

1Root Mean Square (RMS) error is defined in the usual way -
√

E[(Strue − Sapprox)2]
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We note that the Euler discretization has p = 1 and q = 1/2 [KP11].

It is straightforward to see that if we modify the naive scheme presented above to use a

discretization of weak order p, we have

K = O
(
ε−(2+1/p)

)
, (3.6)

independent of q. In contrast, the multilevel Monte Carlo (MLMC) methods introduced in

[Gil08b] and expanded in [Gil08a, GS12a] achieve

K =

 O (ε−2(log ε)2) : q = 1/2

O (ε−2) : q > 1/2
(3.7)

so long as p > 0. The proof of this fact may be found in [Gil08b], and we sketch the argument

in section 2.

We thus see that the multilevel method scales better than the naive method outlined

above for any discretization with finite weak order p. Moreover, the larger the weak order

of a discretization, the more regularity we require of P to achieve that order [KP11], further

limiting the use of high-order weak schemes. Multilevel schemes are thus a great improvement

over simple schemes of the type outlined above.

The MLMC schemes achieve their improved cost scaling by approximating the SDE’s

solution with many different time-steps (called ‘levels’) and taking advantage of the dis-

cretization’s strong convergence to get low variance estimates of the difference in the payoff

at adjacent levels. The remaining high variance quantity - the payoff’s expectation at the

lowest level - is relatively cheap to compute because of the large time-step. However, the

algorithm could be further improved by also applying a variance reduction at this lowest

level. The first contribution of the present work is to show that, when the payoff function is

twice continuously differentiable, we can reduce the variance at the lowest level to zero by

finding the payoff using Ito’s lemma instead of direct evaluation.

Our second contribution is to again make use of Ito’s lemma to derive a variant of the

MLMC method that achieves the cost scaling O(ε−2) in spite of having q = 1/2. This is a
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desirable result because discretizations with q > 1/2 require the simulation of Lévy areas

whenD > 1, and Lévy areas are notoriously difficult to sample. Indeed, no suitable algorithm

has been implemented for D > 2. A method achieving O(ε−2) scaling without Lévy area

simulation was also derived in [GS12a]. However, the method we propose, while similar in

some respects, is simpler to derive and slightly faster for twice differentiable payoffs.

Thirdly, we make use of our analysis to generalize the antithetic method in [GS12a] to

arbitrary refinement factor - that is, the ratio between the time-steps at adjacent levels. The

method was originally derived for the case of refinement factor M = 2, but we show that M ≈

4 to 5 is optimal. Importantly, the generalization to arbitrary M still requires the sampling of

only one antithetic path, so the generalization introduces no extra computational complexity.

The key lemma in this development - Lemma 3.5 in the present work - was originally proved

in [GS12b] toward a different end. Given this lemma, the result is straightforward, but does

not appear elsewhere in the literature to the author’s knowledge.

The remainder of the chapter is structured as follows. Section 2 reviews the details of

MLMC methods and the difficulty in implementing SDE solvers with q > 1/2, focusing in

particular on the Milstein discretization. In section 3, we show how Ito’s lemma can be used

to eliminate the lowest level variance in MLMC methods. In section 4, we use the results

of the previous section to derive an ‘approximate Milstein’ version of the MLMC method

that achieves the O(ε−2) cost scaling. In section 5, we leverage results from the previous

section to generalize the antithetic method of [GS12a]. In section 6, we summarize results

and present pseudocode for the algorithms proposed in previous sections. In section 7, we

present and discuss numerical results. We conclude in section 8.

3.2 Background

The first portion of this section reviews the derivation and basic properties of MLMC meth-

ods, while the second reviews the Milstein discretization, the difficulties inherent in its imple-

mentation, and some previous efforts to negotiate those difficulties. For more details on ele-
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mentary MLMC, see [Gil08b]. For more information on Milstein, see [GL94, KPW92, Wik01].

3.2.1 MLMC Review

The MLMC schemes are constructed in the following way: for some integer M > 1, let

hl = TM−l for l = 0, 1, 2, ..., L. Setting Pl = P (Shl(T )), the following identity holds:

E [PL] = E [P0] +
L∑
l=1

E [Pl − Pl−1] . (3.8)

The weak convergence of the discretization guarantees that E[PL] differs from the true ex-

pectation by O(hpL), and (3.8) shows that it can be estimated by estimating the L + 1

expectations on the right side. The first term is relatively cheap to compute, since the time-

step h0 = T is much larger than hL. Meanwhile, the quantities Pl − Pl−1 have variances

controlled by the strong convergence of the discretization, so that their expectations can be

estimated accurately with a relatively small number of samples.

We make this more concrete by defining

Vl = Var [Pl − Pl−1] , (3.9)

for l > 0, where Var[·] denotes the variance of a random variable, and assuming P has a

global Lipschitz bound. Then, if Pl and Pl−1 are sampled using the same Brownian paths,

we have

Vl = E
[
(Pl − Pl−1)2

]
− E [Pl − Pl−1]2

. E
[
|Shl − Shl−1

|2
]

+O
(
h2p
l

)
= O

(
h2q
l

)
+O

(
h2p
l

)
.

(3.10)

It is a general feature of SDE finite difference methods that p ≥ q [KP11], so we will write

Vl = O
(
h2q
l

)
(3.11)

henceforth.
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If we estimate E [Pl − Pl−1] with Nl samples - that is

E [Pl − Pl−1] ≈ Ŷl ≡
1

Nl

Nl∑
r=1

(
P

(r)
l − P

(r)
l−1

)
, (3.12)

where r again indexes the Nl samples - then the variance in this estimate is Vl/Nl. Similarly,

define V0 = Var[P0] and let

Ŷ0 =
1

N0

N0∑
r=1

P
(r)
0 . (3.13)

Then, let P̂L be our estimate of E[PL] defined by

P̂L =
L∑
l=0

Ŷl. (3.14)

This estimate has variance

Var
[
P̂L

]
=

L∑
l=0

Vl
Nl

. (3.15)

The desired RMS error bound of ε may thus be written as

(c1hL)2 +
L∑
l=0

Vl
Nl

≤ ε2, (3.16)

where c1 is the constant of proportionality in the weak error estimate of the SDE scheme.

That is,

|E[P (S(T ))− E[PL]| ≈ c1hL (3.17)

for sufficiently small hL. Note that we assume the scheme is first order in the weak sense

(p = 1), a quality shared by all the schemes considered in this chapter. We call the first term

in (3.16) the bias error ; it is deterministic and arises from the finite time-step approximation

of the SDE’s solution. We call the second term - the sum - the sampling error ; it arises from

the estimation of expectations using a finite number of samples.

In the analysis of Giles, (3.16) is satisfied by setting each of the two mean squared errors

to ε2/2. The bias error constraint then immediately gives a formula for L, the total number

of levels to be used:

L =

⌈
log
(√

2c1T/ε
)

logM

⌉
. (3.18)
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The sampling error constraint gives rise to a constrained optimization problem: one wishes

to minimize the computational cost - modeled by the total number of time steps taken -

K ∝
L∑
l=0

Nl(h
−1
l + h−1

l−1) =

(
1 +

1

M

) L∑
l=0

Nl

hl
, (3.19)

subject to the constraint
∑L

l=0(Vl/Nl) ≤ ε2/2. A Lagrange multiplier argument shows that

the optimal choice is

Nl =
2

ε2

√
Vlhl

(
L∑
l=0

√
Vl/hl

)
, (3.20)

which in turn gives the cost

K ∝ 2

ε2

(
1 +

1

M

)( L∑
l=0

√
Vl/hl

)2

. (3.21)

When q = 1/2, we have Vl = O(hl), so that each term in the sum is O(1), making the sum

O(L). Since L scales like log ε, we see that K = O(ε−2(log ε)2), as stated in the introduction.

When q > 1/2, the terms in the sum decrease geometrically, so that the sum to L is bounded

by a convergent infinite sum, giving K = O(ε−2).

In practice, the constant c1 is not known, so L cannot be specified at the start of the

simulation. One typically performs the necessary steps for L = 1, estimates the bias error

by looking at ŶL, and increments L while the bias error is estimated to be more that ε/
√

2.

More details can be found in [Gil08b] and in section 6 of this chapter.

3.2.2 Milstein and Lévy Areas

The simplest finite difference scheme for SDEs achieving q > 1/2 - and thus yielding the

optimal MLMC scaling - is the Milstein scheme, written as

Si,n+1 = Si,n + ai,n∆t+
D∑
j=1

bij,n∆Wj,n +
D∑

j,k=1

hijk,n(∆Wj,n∆Wk,n − Ωjk∆t− Ajk,n), (3.22)

where we’ve abbreviated ai(Sn, tn) = ai,n and similarly for bij,n and hijk,n, Ωjk is the corre-

lation matrix associated with W , and h and A are defined by

hijk =
1

2

d∑
l=1

blk
∂bij
∂xl

, (3.23)
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Ajk,n =

∫ tn+1

tn

∫ s

tn

[dWj(u)dWk(s)− dWk(u)dWj(s)] . (3.24)

The Ajk,n are known as Lévy areas. When D = 1, they vanish, since Ajj,n = 0, and

Milstein is straightforward to implement. When D = 2, there is effectively only one non-

zero Lévy area, since Ajk,n = −Akj,n. Recently, an efficient method has been developed

for sampling a single Lévy area [DCC13], making Milstein implementation feasible when

D = 2. Sampling multiple Lévy areas is a more challenging problem because they are

not independent. A method for jointly sampling multiple Lévy areas was also proposed

in [DCC13, GL94] that builds upon the methods therein and involves sampling a random

orthogonal matrix, techniques for which are available in [Mez07]. However, this method

has not been implemented or tested with MLMC. As a result, implementing the Milstein

discretization and thus achieving the O(ε−2) scaling for MLMC methods is quite challenging

when D > 2, except in special cases.

Fortunately, in [GS12a] it was observed that while q > 1/2 is sufficient to achieve the

optimal scaling, it is not necessary. The necessary condition is

Var[Pl − Pl−1] = O
(
hβl

)
(3.25)

for some β > 1. We can see from (3.10) that if P has a global Lipschitz bound, this necessary

condition is achieved if

E
[
|Shl − Shl−1

|2
]

= O
(
hβl

)
. (3.26)

This resembles a strong scaling requirement (3.5), but there is a key difference. Here, we

require two approximate solutions to be within O(hβl ) of each other in the mean square sense.

It is not necessary that either one of these approximate solutions be within O(hβl ) of the

true solution, as would be the case if we were relying on strong convergence.

In [GS12a], the Milstein scheme (3.22) with the Lévy areas set to zero, along with an

antithetic path sampling method, is used in order to achieve (3.26) with β > 1, and thus

achieve the O(ε−2) cost scaling for SDE systems with arbitrary D. For the moment, we refer

the reader to that paper for its detailed derivation and implementation. We will discuss some
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key aspects of the antithetic method as they become relevant in the course of our discussion

here.

In section 4 of this chapter, we derive an alternative method to that in [GS12a]. We also

achieve the O(ε−2) cost scaling for arbitrary D without simulating Lévy areas. Our method

requires more regularity of the payoff function, but is slightly cheaper and simpler to derive.

In section 5, we generalize the results of [GS12a] to M > 2. Since much of the analysis from

[GS12a] carries over directly, we simply cite several results without reprinting proofs.

3.3 Variance Reduction via Ito’s Lemma

We begin with a simple observation. Suppose that P (S) = Sm, for some 1 ≤ m ≤ d. That is,

P simply picks out one of the components of S. Such a payoff function is useful in chemical

kinetics, for example, in which each component of the SDE represents the concentration

of a particular species and we may desire to compute the mean concentration of some key

compound.

Then, we may write a simple analytic expression for P0 - the payoff when the time-step

is T - when the Euler discretization is used:

P0 = Sm,0 + am(S0)T +
D∑
j=1

bmj(S0)Wj(T ), (3.27)

where S0 is the initial data and Sm,0 is its mth component. The expectation of this expression

is simple to evaluate:

E[P0] = Sm,0 + am(S0)T. (3.28)

The same result applies to the Milstein scheme, since the additional term has zero expecta-

tion. Thus, when P has this simple form (or, indeed, is any linear function of S), the base

payoff can be evaluated exactly in terms of the initial condition. There is no need to sample

any random variables at all. In effect, V0 = 0 and N0 = 1.

This can represent a great computational saving for MLMC because, as already noted,

the lowest level is the only level at which no variance reduction is gained. That is, with the
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Figure 3.1: The fraction of the computational work exerted at each level in a sample MLMC

computation. The Heston model - see (3.84) and proceeding text for specification - is solved

with a sinusoidal payoff function, and M = 2.

standard approach, V0 need not obey the same scaling as the other Vl, and may very well be

disproportionately large, thus causing the cost of computing P0 to dominate other costs.

To illustrate this point, we show in fig. 1 the fraction of the computational work at each

level in a sample MLMC computation, using both the Euler and antithetic methods. We see

that, for each method, the base level (zero) is the most expensive. The base level represents

an even larger fraction of the work in the antithetic method. This is a result of the improved

variance scaling, which reduces the cost of the higher levels.

There is thus a motivation to investigate whether the technique of eliminating the cost

of computing the base level payoff can be generalized to less trivial payoff functions. Toward

that end, assume P is twice continuously differentiable. Then, Ito’s lemma gives an SDE for

P :

dP =

(
d∑
i=1

aiPxi +
1

2

D∑
j=1

d∑
i,k=1

bijbkjPxixk

)
dt+

D∑
j=1

d∑
i=1

bijPxi dWj, (3.29)

where subscripts on P denote partial derivatives, and all functions are evaluated at S(t).
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With this in mind, construct a vector S ∈ Rd+1 as follows: for 1 ≤ k ≤ d, set Sk = Sk,

and set Sd+1 = P (S). Then, S solves

dSi = αi dt+
D∑
j=1

βij dWj (3.30)

where αi(S) = ai(S) and βij(S) = bij(S) for i ≤ d, and

αd+1(S) =
d∑
i=1

aiPxi +
1

2

D∑
j=1

d∑
i,k=1

bijbkjPxixk , β(d+1)j(S) =
d∑
i=1

bijPxi . (3.31)

This is a system of SDEs in the usual sense. Consider further the “payoff” function P̃ (S) =

Sd+1, which is equal to P (S). We now have two distinct formulations of the same problem.

The first is to find E[P (S(T ))] when S solves (3.1). The second is to find E[P̃ (S(T ))] =

E[Sd+1(T )] when S solves (3.30).

The second, new formulation has the considerable advantage that its payoff function is

linear, and in particular is of the form considered above, so that E[P0] may be immediately

evaluated using (3.28) with m = d+1. The MLMC method may be applied to (3.30) with P̃

using any discretization available. This approach will not change the resulting cost scaling,

but will reduce the cost by a constant factor that may be significant. We demonstrate in

section 7 via numerical experiments that these savings are frequently considerable.

This method of using Ito’s lemma to linearize the payoff function - we refer to this

henceforth as the Ito linearization technique - does have two drawbacks. The first, and

most serious, is that two continuous derivatives are required of P for Ito’s lemma to apply.

In finance the payoff frequently has a discontinuity in the first derivative - e.g. European

options - or even in the function itself - e.g. digital options. Ito linearization in its present

form is not useful for these problems.

In many applications though, there are many natural payoffs with sufficient regularity.

We have already noted that in chemical kinetics a simple linear payoff function is of interest.

One may also wish to compute the covariances of the chemical concentrations, which may

be computed from the means and the payoffs P (S) = SiSj for each i, j, which of course have

the necessary smoothness.
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The second drawback is that (3.30) is a (d + 1)-dimensional system, while (3.1) is only

d-dimensional. Each time-step of (3.30) is thus slightly more expensive - by a factor of

roughly (d+ 1)/d - than a corresponding time-step of (3.1). In numerical tests, we find that

the savings at the base level more than compensate for this added expense.

3.4 Approximate Milstein for MLMC

We now turn to the derivation of an approximate version of the Milstein discretization that

achieves O(ε−2) cost scaling in arbitrary dimension. There are several observations that

make this possible, the first of which is that when estimating E[Pl−Pl−1], the discretizations

used to compute Pl and Pl−1 need not be identical for the reformulated problem (3.30).

To clarify this point, let us assume we have two discretizations. Given the same h and

∆W , the ‘fine’ discretization yields the payoff P f while the ‘coarse’ one yields P c. We have

the following generalization of (3.8):

E
[
P f
L

]
= E

[
P f

0

]
+

L∑
l=1

{
E
[
P f
l − P

c
l

]
+ E

[
P c
l − P

f
l−1

]}
. (3.32)

In the methods of Giles, it is required that

E [P c
l ] = E[P f

l−1] (3.33)

for some large class of functions P , so that the second term in the sum in (3.32) is identi-

cally zero and (3.32) reduces to (3.8). This requires that Sfhl(T ) and Schl(T ) be identically

distributed, which in turn requires that the discretizations used at the fine and coarse levels

be at least very nearly identical.

However, when solving the reformulation afforded by Ito’s lemma in the previous section,

we may rewrite (3.32) as

E
[
Sf,Ld+1

]
= E

[
Sf,0d+1

]
+

L∑
l=1

{
E
[
Sf,ld+1 − S

c,l
d+1

]
+ E

[
Sc,ld+1 − S

f,l−1
d+1

]}
, (3.34)

where Sf,l is the result of the ‘fine’ discretization with time-step hl, and similarly for Sc,l.
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This now reduces to the analogue of (3.8) if

E[Sc,l] = E[Sf,l−1]. (3.35)

This condition is actually more than is necessary - we only need the expectations of the last

components to match - but there will be no additional difficulty in enforcing this condition.

Being constrained by (3.35) instead of (3.33) creates considerable freedom in choosing dif-

ferent fine and coarse discretizations. We leverage this freedom extensively in the remainder

of this section.

In what follows, we develop an ‘approximate Milstein’ method, whose intended applica-

tion is MLMC methods applied to the modified SDE (3.30), as it takes advantage of this

system’s linear payoff function. We will, however, denote the solution of the SDE by S -

rather than S - to emphasize the generality of the specific results. It is only their application

to MLMC that requires the modified SDE.

We begin by establishing some notation: define

Df
i (S, t, h,∆Wn) ≡ ai(S, t)h+

D∑
j=1

bij(S, t)∆Wj,n +
D∑

j,k=1

hijk(S, t)(∆Wj,n∆Wk,n − Ωjkh),

(3.36)

Dc
i (S1,S2, t, h, δWn, δWn+ 1

2
) ≡ ai(S1, t)∆t+

D∑
j=1

bij(S2, t)∆Wj,n

+
D∑

j,k=1

hijk(S2, t)(∆Wj,n∆Wk,n − Ωjk∆t− δWj,nδWk,n+ 1
2

+ δWj,n+ 1
2
δWk,n),

(3.37)

where ∆Wn is a vector in RD whose jth component is ∆Wj,n = δWj,n+δWj,n+ 1
2
. The analysis

is simpler when M = 2, so we proceed with that case initially and generalize to arbitrary M

in section 4.3. Fix l and set δt = hl, ∆t = 2δt = hl−1, tn = n∆t.

3.4.1 Review of Antithetic Method

Because the method we develop here is closely related to the antithetic method of [GS12a],

we first state and review that algorithm. In our notation, the antithetic scheme may be
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written as

Sf,ln+1 = Sf,l
n+ 1

2

+ Df (Sf,l
n+ 1

2

, tn+ 1
2
, δt, δWn+ 1

2
), Sf,l

n+ 1
2

= Sf,ln + Df (Sf,ln , tn, δt, δWn)

Sa,ln+1 = Sa,l
n+ 1

2

+ Df (Sa,l
n+ 1

2

, tn+ 1
2
, δt, δWn), Sa,l

n+ 1
2

= Sa,ln + Df (Sa,ln , tn, δt, δWn+ 1
2
)

(3.38)

where Df is the vector whose ith component is Df
i , and the fine payoff is set to

P f
l =

1

2

(
P (Sfl ) + P (Sal )

)
. (3.39)

Meanwhile, the coarse evolution is given by

Sc,ln+1 = Sc,ln + Df (Sc,ln , tn,∆t,∆Wn), (3.40)

with the coarse payoff set to P c
l = P (Scl ).

Notice that the evolution equations for Sfl and Sal are identical except that the Brownian

steps δWn and δWn+ 1
2

have been switched. This has the effect of canceling the leading order

contribution of the Lévy areas when the two are averaged, as in (3.39). This cancellation

makes the Vl scale like O(h2
l ) for twice differentiable payoffs and like O(h

3/2−δ
l ) for any δ > 0

when the payoff is Lipschitz, only non-differentiable on a set of measure zero, and the solution

is unlikely to be near this set in a certain sense (see [GS12a] for details). The scheme thus

achieves the O(ε−2) cost scaling in both cases.

The scheme has two primary drawbacks: 1) it requires twice as much effort to generate

P f
l - due to the need to evolve the antithetic variable Sal - as an Euler based multilevel

scheme, and 2) its derivation in [GS12a] is restricted to M = 2. In our development, we offer

a slight improvement to 1) by moving the doubled effort to the coarse level, which is cheaper

by a factor of M . Moreover, we generalize both our method and the antithetic method to

M > 2 in sections 4.3 and 5.

3.4.2 Approximate Milstein for M = 2

We consider the following pair of schemes for Sf and Sc:

Sf,l
n+ 1

2

= Sf,ln + Df (Sf,ln , tn, δt, δWn), (3.41)
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Sc,ln+1 = Sc,ln + Dc(S∗,ln ,S
c,l
n , tn,∆t, δWn, δWn+ 1

2
), (3.42)

where S∗,l is given by

S∗,ln+1 = S∗,ln + Df (S∗,ln , tn,∆t,∆W ). (3.43)

We set P f
l = P (Sfl ) and P c

l = P (Scl ).

It is worth clarifying that in this description the number n always indexes the number of

level-l coarse time steps taken. This is equal to the number of level-(l − 1) fine time steps

taken, so that number is also indexed by n. By writing (3.41) the way we have, we ensure

that Sf,ln , Sc,ln , and Sf,l−1
n are all approximations to S(n∆t) for each whole number n. In

addition to n = 0, 1, 2, 3, ..., we have definitions of Sf,ln at n = 1/2, 3/2, 5/2, ..., but this fact

will not concern us.

In the remainder of this section, we state and prove results that establish first (3.35)

and then (3.26) with β = 2 for this pair of discretizations. The more technical proofs are

confined to appendices.

3.4.2.1 Equal Expectations

Theorem 3.1 (Equal Expectations). For Sf and Sc as defined in (3.41)-(3.43), we have

E
[
Sf,l−1
n

]
= E

[
Sc,ln
]

(3.44)

for each n = 0, 1, 2, 3, ...

Proof. At the (l − 1)st level, we have

Sf,l−1
n+1 = Sf,l−1

n + Df (Sf,l−1
n , tn,∆t,∆W ). (3.45)
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If we subtract (3.42) from (3.45), we find

Sf,l−1
n+1 − Sc,ln+1 = Sf,l−1

n − Sc,ln

+
{
a
(
Sf,l−1
n

)
− a

(
S∗,ln
)}

∆t

+
D∑
j=1

{
bj
(
Sf,l−1
n

)
− bj

(
Sc,ln
)}

[∆Wj,n]

+
D∑

j,k=1

{
hjk
(
Sf,l−1
n

)
− hjk

(
Sc,ln
)}

[∆Wj,n∆Wk,n − Ωjk∆t]

−
D∑

j,k=1

{
hjk
(
Sc,ln
)} [

δWj,nδWk,n+ 1
2
− δWj,n+ 1

2
δWk,n

]
,

(3.46)

where a is the vector whose ith component is ai, and analogously for bj and hjk.

We look at (3.46) term by term. In the last three lines, the term in square brackets has

zero expectation and is independent of the term in curly braces - this follows from the fact

that each Brownian increment is independent of all those before it. Therefore, each of these

lines has vanishing expectation. In the second line, S∗,ln and Sf,l−1
n are identically distributed

for each n because they are approximated by exactly the same method - compare (3.45)

and (3.43) - so the term in curly braces has zero expectation. Therefore, if we take the

expectation of (3.46), everything vanishes except the first line. Thus, we have

E
[
Sf,l−1
n+1

]
− E

[
Sc,ln+1

]
= E

[
Sf,l−1
n

]
− E

[
Sc,ln
]
. (3.47)

Since the coarse and fine approximations start at the same initial condition, the difference in

expectation is zero for n = 0, and (3.47) guarantees that this remains the case for all integer

n > 0.

Corollary 3.1. With the same definitions as in Theorem 3.1,

E
[
S∗,ln
]

= E
[
Sc,ln
]
. (3.48)

Proof. Since S∗,l and Sf,l−1 are identically distributed, they have the same expectation, so

this follows directly from Theorem 3.1.
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3.4.2.2 Variance Scaling

Before establishing the variance scaling (3.26) required for the ε−2 cost scaling, we need

three lemmas. The first establishes that the weak difference between coarse and starred

approximations is O(∆t), while the last two are convenient rewritings of the fine and coarse

discretizations.

Lemma 3.1. The weak difference between Sc,l and S∗,l is O(∆t). That is, for sufficiently

differentiable f : Rd → R, we have

∣∣E [f(Sc,ln )
]
− E

[
f(S∗,ln )

]∣∣ = O(∆t) (3.49)

for all n ≤ T/∆t.

Proof. See appendix A.

In the proof of lemma 3.1 above, we require that f have four continuous and bounded

derivatives. Elsewhere in our development, the payoff and SDE coefficients are only required

to possess two derivatives, and in practice the scaling predicted by lemma 3.1 is observed in

these cases as well. It seems likely that by following [KP11], lemma 3.1 could be reestablished

for f merely Hölder continuous, but such an exercise is beyond the scope of this thesis.

Lemma 3.2. The fine discretization (3.41) can be rewritten as

Sf,li,n+1 = Sf,li,n +Dc
i (S

f,l
n ,S

f,l
n , tn,∆t, δWn, δWn+ 1

2
) +M f

i,n +N f
i,n (3.50)

where E[M f
i,n] = 0 and

E
[
max
n≤N

∥∥M f
n

∥∥p] = O
(
∆t3p/2

)
, E

[
max
n≤N

∥∥N f
n

∥∥p] = O
(
∆t2p

)
(3.51)

for any integer p ≥ 2.

Proof. The lemma and proof are identical to Lemma 4.7 and its proof in [GS12a].
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Lemma 3.3. The coarse discretization (3.42) may be rewritten as

Sc,li,n+1 = Sc,li,n +Dc
i (S

c,l
n ,S

c,l
n , tn,∆t, δWn, δWn+ 1

2
) +M c

i,n +N c
i,n (3.52)

where E[M c
i,n] = 0 and

E
[
max
n≤N
‖M c

n‖
p

]
= O

(
∆t3p/2

)
, E

[
max
n≤N
‖N c

n‖
p

]
= O

(
∆t2p

)
. (3.53)

Proof. Simple algebra shows that

Sc,li,n+1 = Sc,li,n +Dc
i (S

c,l
n ,S

c,l
n , tn,∆t, δWn, δWn+ 1

2
)

+
[
ai
(
S∗,ln
)
− ai

(
Sc,ln
)]

∆t,
(3.54)

so the lemma reduces to analyzing the second line of this expression. Define ∆ai,n =

ai
(
S∗,ln
)
− ai

(
Sc,ln
)
, and write the term in question as

∆ai,n∆t = E [∆ai,n] ∆t+ {∆ai,n − E [∆ai,n]}∆t. (3.55)

By Lemma 3.1 above (which we again note uses four derivatives), we have E[∆ai,n] = O(∆t),

so that the first term is O(∆t2). Thus, we define N c
i,n = E[∆ai,n]∆t.

The second term on the right of (3.55) clearly has zero expectation. The first term in

the curly braces is O(
√

∆t) by strong convergence of both schemes (3.42) and (3.43), and

the second term in the curly braces is O(∆t) as before, so their difference is O(
√

∆t). Thus,

the second term on the right of (3.55) is O(∆t3/2), so we define it to be M c
i,n.

Finally, we are ready to prove the desired scaling of the variances:

Theorem 3.2 (Variance Scaling). Assume the ai have four continuous bounded derivatives,

bij are twice continuously differentiable with both derivatives uniformly bounded, and that the

hijk have uniformly bounded first derivative. Then, for the pair of fine and coarse discretiza-

tions (3.41)-(3.43), we have (3.26) with β = 2. In fact, we have the stronger statement

E
[
max
n≤N

∥∥Sf,ln − Sc,ln
∥∥2
]

= O
(
∆t2
)
, (3.56)

where N = T/∆t.

Proof. See appendix B.
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3.4.3 Generalization to M > 2

Thus far, we’ve developed the approximate Milstein method assuming that the difference

in time step at adjacent levels (refinement factor) M is equal to two. This assumption is

also made in Giles’ development of the antithetic method. However, in [Gil08b] Giles argues

that the optimal refinement factor is near seven for an Euler-based multilevel scheme, and a

similar argument for Milstein shows the optimal choice to be near four.

Following [Gil08b], the latter argument proceeds as follows: Noting that P f
l − P c

l =

(P f
l − P )− (P c

l − P ), where P is the exact mean payoff, we infer that

(M − 1)2kh2
l ≤ Vl ≤ (M + 1)2kh2

l , (3.57)

for some constant k, where the lower and upper bounds correspond to perfect correlation

and anti-correlation between P f
l − P and P c

l − P . Supposing for simplicity that the actual

variance is approximately the geometric mean of the two extremes, we have

Vl ≈ (M2 − 1)kh2
l . (3.58)

Substituting this expression into the cost formula (3.21), we have (ignoring for clarity the

fact that V0 need not obey any scaling law)

K ∝ ε−2 (M2 − 1)(1 +M−1)(√
M − 1

)2 , (3.59)

which for fixed ε has its minimum for M between 4 and 5. There is thus motivation to study

arbitrary M .

Notationally, moving to arbitrary M changes (3.41) to read

Sf,l
n+ 1

M

= Sf,ln + Df (Sf,ln , tn, δt, δWj,n), (3.60)

and we set

∆t = Mδt, ∆Wj,n =
M−1∑
m=0

δWj,n+ m
M
. (3.61)

To see how to change (3.42), we present the following generalization of Lemma 3.2:
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Lemma 3.4. The fine discretization (3.60) can be rewritten as

Sf,li,n+1 = Sf,li,n +Df
i (Sf,ln , tn,∆t,∆Wn, )

−
D∑

j,k=1

hijk
(
Sf,ln
)

(Ajk,n −Akj,n)

+M f
i,n +N f

i,n,

(3.62)

where E[M f
i,n] = 0 and

E
[
max
n≤N

∥∥M f
n

∥∥p] = O
(
∆t3p/2

)
, E

[
max
n≤N

∥∥N f
n

∥∥p] = O
(
∆t2p

)
, (3.63)

and Ajk,n is defined by

Ajk,n ≡
M−1∑
m=1

(
δWk,n+ m

M

m−1∑
q=0

δWj,n+ q
M

)
. (3.64)

Proof. See appendix C.

We note that, as described in [DCC13], (Ajk,n − Akj,n) is a quadrature scheme for the

Levy area Ajk,n obtained by dividing up the time step ∆t into M equal parts. As noted in

[DCC13], computing the Ajk,n as written can be done in O(M) operations, even though the

double sum contains O(M2) terms.

With Lemma 3.4 in hand, we can generalize the coarse discretization to arbitrary M . We

define

Dc,M
i

(
S1,S2, t,∆t, δWj,n+ m

M

)
≡ ai(S1, t)∆t+

D∑
j=1

bij(S2, t)∆Wj,n

+
D∑

j,k=1

hijk(S2, t)(∆Wj,n∆Wk,n − Ωjk∆t−Ajk,n +Akj,n).

(3.65)

Meanwhile, the starred discretization (3.43) remains unchanged. With these definitions and

Lemma 3.4 in place of Lemma 3.2, the proofs of Theorems 3.1 and 3.2 generalize to arbitrary

M with only straightforward notational changes.
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3.5 Generalization of Antithetic Method to M > 2

In this section, we demonstrate that the antithetic method (3.38) may be straightforwardly

generalized to arbitrary M . In particular, the same variance scaling can be achieved by using

an antithetic variable for which the order of the M Brownian fine sub-steps of each coarse

Brownian step is completely reversed.

More explicitly, set m̄ = (M − 1)−m, then we rewrite (3.38) as

Sf,l
n+m+1

M

= Sf,ln+ m
M

+ Df (Sf,ln+ m
M
, tn+ m

M
, δt, δWn+m/M),

Sa,l
n+m+1

M

= Sa,ln+ m
M

+ Df (Sa,ln+ m
M
, tn+ m

M
, δt, δWn+m̄/M),

(3.66)

for each m = 0, 1, 2, ...,M−1. As before, Sf,l and Sa,l are identical except that the Brownian

motions are indexed by m̄ rather than m for the antithetic variable. By applying Lemma

3.4 to the antithetic variable Sa,l, we find that its discretization can be rewritten as

Sa,li,n+1 = Sa,li,n +Df
i (Sa,ln , tn,∆t,∆Wn, )

−
D∑

j,k=1

hijk
(
Sa,ln
) (
Ājk,n − Ākj,n

)
+Ma

i,n +Na
i,n,

(3.67)

where Ma
i,n and Na

i,n obey the same scalings as M f
i,n and N f

i,n. The quantity Ājk,n is defined

by

Ājk,n ≡
M−1∑
m=1

(
δWk,n+m̄/M

m−1∑
q=0

δWj,n+q̄/M

)
, (3.68)

with m̄ as defined before and q̄ = (M−1)−q. The improved variance scaling then results from

the following lemma, originally published in [GS12b] with different notation and reprinted

here for clarity.

Lemma 3.5.

Ājk,n = Akj,n. (3.69)
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Proof. The proof amounts to a computation:

Ājk,n =
M−1∑
m=1

m−1∑
q=0

δWk,n+m̄/MδWj,n+q̄/M (3.70)

=
M−2∑
q=0

M−1∑
m=q+1

δWk,n+m̄/MδWj,n+q̄/M (3.71)

=
M−1∑
q̄=1

q̄−1∑
m̄=0

δWk,n+m̄/MδWj,n+q̄/M (3.72)

= Akj,n. (3.73)

Notice that (3.71) comes from simply switching the order of summation, while (3.72) results

from rewriting the sums in terms of m̄ and q̄.

This lemma implies that, if we define S̄f,l = 1
2
(Sf,l + Sa,l), we can write

S̄f,li,n+1 = S̄f,li,n +Df
i (S̄f,ln , tn,∆t,∆Wn, )

+Mi,n +Ni,n,
(3.74)

where Mi,n and Ni,n obey the same scalings as usual. This is in direct analogue to Lemma

4.9 in [GS12a], and its proof is identical, so we omit it. This, in turn, allows one to show the

analogue of Theorem 4.10 in [GS12a] and Theorem 3.2 in the present work:

E
[
max
n≤N

∥∥S̄f,ln − Sc,ln
∥∥p] = O (∆tp) (3.75)

for each p ≥ 2. The desired variance scaling finally follows directly from Lemma 2.2 in

[GS12a], which we restate without proof here:

E
[(

1

2

(
P (Sf ) + P (Sa)

)
− P (Sc)

)p]
. E

[∥∥S̄f − Sc
∥∥p]+ E

[∥∥Sf − Sa
∥∥2p
]
, (3.76)

where we’ve omitted the l superscripts and assumed that P had two continuous and bounded

derivatives. The first term on the right is O(∆tp) by (3.75), and the second term has the

same scaling by strong convergence: indeed, Sf − Sa = (Sf − Sc) − (Sa − Sc), and each of

the latter two terms is O(∆t1/2) by the strong convergence of the discretization.
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Finally, we note that Theorem 5.2 in [GS12a] may be applied - unchanged - to these

results, demonstrating that Vl = O(h
3/2−δ
l ) for any δ > 0 when P is merely Lipschitz - so

long as the set A on which P is non-differentiable is measure zero and

P
(

min
y∈A
‖S(T )− y‖ ≤ ε

)
≤ c ε (3.77)

for some c > 0 and for all ε > 0.

This completes the generalization of the antithetic method to arbitrary M .

3.6 Summary and Implementation

We present an outline of the modified MLMC method including the Ito linearization at the

lowest level. This is to be compared to the analogous algorithm in [Gil08b]. This may be used

with any discretization we choose - including the approximate Milstein method introduced

in section 4 and the generalized antithetic method in section 5 - so long as the discretization

is first order in the weak sense. We denote by β the expected scaling of the Vl. That is,

β = 2 for approximate Milstein or generalized antithetic (assuming P has the necessary

regularity), and β = 1 for Euler.

1. Set

E[P0] = P (S0) + αd+1(S0)T, (3.78)

where αd+1 is as defined in (3.31).

2. Begin with L = 1.

3. Estimate VL and ŶL using an initial N i
L samples, defined by

N i
L =

 400 : L = 1

M−(β+1)/2NL−1 : L > 1
(3.79)

4. Set Nl according to

Nl =

⌈
2

ε2

√
Vlhl

(
L∑
l=1

√
Vl/hl

)⌉
(3.80)

for each l = 1, 2, ..., L, as per (3.20).
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5. Generate additional samples at each level as needed for new Nl, using discretization of

your choice to generate approximate solutions of (3.30). Use these samples to update

the estimates of the Vl and Ŷl.

6. If L < 2 or

max
{∣∣∣ŶL∣∣∣ ,M−1

∣∣∣ŶL−1

∣∣∣} > ε√
2
, (3.81)

let L→ L+ 1 and go to step 3. Else, end with payoff estimate of

P̂L = E[P0] +
L∑
l=1

Ŷl. (3.82)

The inequality (3.81) is the convergence criterion used in [Gil08b]. It determines the

algorithm to be converged if the bias error is estimated to be at most ε/
√

2 when using

either of the two finest levels in the estimation.

Equation (3.79) in step 3 is worthy of elaboration. When L = 1, we have no information

about how many samples we might expect to need, so we pick an arbitrary large number -

we find that 400 works well in our test cases, but the number will be problem dependent.

However, for L > 1, the expected scaling of the Vl allows us to estimate the number of

samples needed at the Lth level, using

NL ∝
√
VLhL = M−(β+1)/2

√
VL−1hL−1 ∝M−(β+1)/2NL−1. (3.83)

Particularly at large L, when there is relatively little change to the sum in (3.80) as a result

of incrementing L, (3.79) is thus a good estimate of NL as it will be set in step 4. This is

preferable to the technique used in [Gil08b] - where N i
L = 104, regardless of L - because we

avoid wasteful sampling at the high levels where it may be the case that Nl � 104.
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3.7 Numerical Results

For our numerical tests, we apply our methods to the Heston model - a financial stochastic

volatility model [Hes93] - given by

dS1 = κ(θ − S1) dt+ ξ
√
S1 dW1,

dS2 = µS2 dt+ η
√
S1S2 dW2,

(3.84)

where S1 represents the volatility and S2 the asset price. Throughout our tests, we set the

constants θ = µ = ξ = κ = 1 and η = 1/4. We find that this choice of constants allows us

to conduct tests with relatively large L, where the benefits of MLMC are most obvious. We

set S0 = (0.5, 1), Ωjk = δjk, and T = 0.125 - a short time simulation allows us to push the

limits of the accuracy of the method. Notice that, for this system, h221 = ηS2/4, so that the

Milstein discretization does in fact feature Lévy areas.

Notice also that the coefficients of this SDE system do not have uniformly bounded

derivatives - namely, the b’s have divergent derivative at S1 = 0 - so the assumptions for

all of the foregoing results do not hold (see e.g. theorem 3.2), nor do those for standard

weak convergence results. However, we have constructed the system so that S1 is extremely

unlikely to approach zero, so that in practice all derivatives are essentially bounded. Indeed,

we find excellent agreement between the theory and numerical results.

We test several distinct new MLMC variants:

1. Generalized antithetic method for a payoff with discontinuous derivative

2. Ito linearization technique for smooth payoff using:

(a) Euler discretization

(b) Approximate Milstein discretization

(c) Generalized antithetic discretization

Each of these is compared to the original Euler-based MLMC method introduced in [Gil08b]

and the original antithetic method proposed in [GS12a].
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In all tests, the computational cost is estimated by the total number of time steps taken,

weighted by the dimension of the system being solved. That is, for the standard Euler

MLMC method, we set

Ke =
L∑
l=0

Nl(h
−1
l + h−1

l−1), (3.85)

while for the antithetic and generalized antithetic methods (without Ito linearization), we

set

Ka =
L∑
l=0

Nl(2h
−1
l + h−1

l−1) (3.86)

to account for the added computation of the antithetic variable Sa,l. For the approximate

Milstein method, we set

Km =
d+ 1

d

L∑
l=0

Nl(h
−1
l + 2h−1

l−1), (3.87)

accounting both for the added cost of computing S∗,l and the extra dimension. When Ito

linearization is applied to Euler and antithetic methods, we simply scale (3.85) and (3.86)

by the factor (d+ 1)/d and note that N0 = 1.

The counting of time steps is the standard method of estimating computational complex-

ity in the MLMC literature - it is used in [Gil08b, GS12a], among others. However, we note

in our discussion at the end of this section that there are other relevant considerations as

well.

3.7.1 Generalized antithetic test

We use a standard European option as the payoff function:

P (S) = max {0, S2(T )− S2(0)} . (3.88)

Figure 2 demonstrates both the improved variance scaling (left) and corresponding reduction

in computational cost (right) afforded by antithetic methods. As predicted in section 4.3,

M equal to 4 or 5 minimizes the computational cost. The reduction in cost gained by the

generalization to arbitrary M is comparable to that gained by moving from Euler to the
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Figure 3.2: Left: A plot of Vl/∆t against ∆t for the Euler, standard antithetic, and gener-

alized antithetic methods. As expected, the Euler curve is constant, while both antithetic

methods demonstrate the same scaling. Right: A comparison of the computational cost of

the Euler method to the antithetic method for various refinement factors M as a function of

the error tolerance ε. As expected, an M of 4 or 5 is optimal.

original antithetic method. We note that the cost is reduced for larger M in spite of the fact

that increasing M actually increases the individual Vl. This because at large M , we need

fewer levels, so the sum of the variances is smaller because there are fewer terms in the sum.

3.7.2 Ito linearization and approximate Milstein test

We again use the Heston model with the same parameters but change the payoff function to

P (S) = sinS2, (3.89)

which of course has the requisite regularity. Figure 3 shows the results, plotting compu-

tational cost against error tolerance ε. The Euler, antithetic, and approximate Milstein

discretizations are all plotted, each with and without Ito linearization.

For each discretization, Ito linearization improves the efficiency of the scheme, by an

order of magnitude in some cases. Note that in the case of approximate Milstein, the use of
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Figure 3.3: Computational cost of MLMC variants with sinusoidal payoff as a function of

error tolerance. Euler (red), antithetic (blue), and approximate Milstein (black) discretiza-

tions are shown, each with Ito linearization (solid) and without (dashed). All results in this

plot use M = 4.

Ito’s lemma is required for the expectations at adjacent levels to match - see the beginning

of section 4 for details - so that the exclusion of Ito linearization is somewhat artificial. This

accounts for the disproportionately large expense when Ito linearization is excluded, since

the use of Ito’s lemma increases the dimension of the system we solve.

The most efficient scheme of those tested is approximate Milstein with Ito linearization,

although the advantage over generalized antithetic with Ito linearization is relatively small.

As expected based on fig. 1, the approximate Milstein and antithetic methods benefit more

from Ito linearization than does Euler because a larger fraction of the work is concentrated

at the base level.

We note that neither the approximate Milstein nor the antithetic method produces a

completely flat curve when we plot ε2K against ε, as would be predicted by the asymptotic

analysis. However, the observations are perfectly consistent with (3.21): the finite sum is

bounded by an infinite sum, but is not itself constant in ε. We in fact only expect a flat
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curve as L→∞, and all of the tests conducted here have L ≤ 7.

Finally, we note that in many cases we get a better-than-expected cost scaling for large ε.

This is a result of setting a fixed number of initial samples for L = 1 in (3.79) - and for L = 0

when Ito linearization is not used - which can turn out to be more than is actually necessary

for large ε, making the cost artificially large. We leave this effect in the plots because it is a

practical reality of MLMC.

3.7.3 Discussion

The techniques introduced in the present work have the common aim of optimizing MLMC

simulations of SDEs. Since the standard MLMC algorithm with the Euler discretization

already achieves a nearly optimal cost-to-error scaling, the savings are relatively modest -

we rarely save more than a single order of magnitude. While these improvements are hardly

negligible, they are small enough that some care in analyzing all sources of computational

cost and coding optimization is justified.

In particular, the estimation of computational cost by the total number of time steps

taken ignores the fact that not all time steps have identical complexity. In the antithetic and

approximate Milstein discretizations, there is an additional term to be computed at each

time step. The dominant cost turns out to be the computation of the rank-3 tensor hijk,

which requires O(d2D2) operations - the tensor has dD2 elements, and the computation of

each requires a sum of d terms. In contrast, the dominant computation in an Euler time

step is the matrix-vector product
∑

j bijWj, which is O(dD).

With this in mind, a fairer estimate of the computational cost for each method is

K =

 O (ε−2(log ε)2dD) : Euler

O (ε−2d2D2) : Anithetic & Approx. Milst.
(3.90)

Thus, the optimal discretization is problem dependent - for any fixed ε, Euler with be optimal

for some sufficiently large value of dD, while antithetic/approximate Milstein is optimal for

smaller values of dD. In financial and chemical kinetic applications, d and D are frequently
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large - very possibly exceeding log ε. Thus, the optimal method is problem dependent, and

one should be discouraged from the naive notion that the Milstein and antithetic methods

are uniformly more efficient simply because of their more favorable scaling with ε.

This situation is, however, the worst case. Often, bij and/or hijk exhibit some form of

sparsity, which the code may be written to exploit. It may be possible to leverage the rela-

tionship between bij and hijk to further accelerate their computation. This is an interesting

area of future research.

3.8 Conclusions

In this chapter we have introduced three related improvements to MLMC methods for SDEs.

First, we have introduced the idea of Ito linearization, which makes the computation of the

base level payoff essentially free, at the price of increasing the dimension of the SDE by one.

Secondly, we have introduced an approximate Milstein discretization which, in conjunction

with Ito linearization, achieves an O(ε−2) cost scaling with slightly reduced cost compared

to the antithetic method. Finally, we demonstrated that the antithetic method can be

generalized to arbitrary M without introducing any additional antithetic paths.

The first two techniques are applicable only to payoff functions with two continuous

derivatives. As such, they are of very limited use in financial applications, but are expected

to be applicable to other fields - examples from chemical kinetics have been cited in the text.

The generalized antithetic method, however, requires only a Lipschitz, piecewise smooth

payoff, and may thus find applications in finance as well as other disciplines.

Each new method has been tested on a simple SDE system, and we find excellent agree-

ment between the analysis and the numerical results. In the cases in which they are appli-

cable, our new methods consistently outperform the present state-of-the-art.
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CHAPTER 4

Conclusions and Future Work

In this thesis, we have addressed the simulation of collisional plasma dynamics, which is a

computationally intensive process of importance in many applications. In particular, we have

presented two approaches that accelerate Monte Carlo simulation of Coulomb collisions.

The first is a hybrid fluid-Monte Carlo method that leverages the efficiency of fluid

schemes to accelerate the simulation by representing some particles using fluid equations.

The key insight here is the use of relative entropy as a metric for determining which particles

should be part of the fluid representation at any given time. We found that the scheme could

be accelerated by a factor of 30 while incurring a relatively small error.

The second uses a Langevin/SDE formulation of the problem and applies the Multi-

level Monte Carlo (MLMC) method. The value of the present work is the improvements

to MLMC, which take three forms. Firstly, we used Ito’s lemma to eliminate the computa-

tional cost associated with the base level in the multilevel scheme. It was shown that this

could accelerate computations by an order of magnitude when the payoff function is twice

differentiable. Secondly, we presented a so-called approximate Milstein scheme that achieves

the optimal computational complexity. Thirdly, we generalized the antithetic scheme of

Giles and Szpruch to arbitrary refinement factors. Each of these latter two represents an

incremental, but still noticeable, improvement to the present state of the art.

All of the work presented in this thesis is focused on the spatially homogeneous case.

Of obvious interest is the extension of these methods to spatially varying systems. In this

final chapter, we discuss some of the challenges inherent in this extension and some avenues

forward. We conclude by discussing the implications of this and future work.
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4.1 Hybrid Fluid-Monte Carlo Scheme

In our discussion of the hybrid fluid-Monte Carlo scheme, we dealt with one potentially

dethermalizing agent - collisions between the fluid and kinetic components of the scheme.

In spatially inhomogeneous systems, there are two additional drivers of dethermalization

- spatial gradients and electromagnetic fields. We will discuss the difficulties inherent in

spatial gradients, which capture the spirit of the challenges associates with electromagnetic

fields as well.

In a typical particle-based plasma simulation (PIC), particle positions are updated by

xj,n+1 = xj,n + ∆tvj,n, (4.1)

where xj,n denotes the position of the jth particle at the nth time step, vj,n the corresponding

velocity, and ∆t is the size of the time step. In the hybrid scheme, the issue arises that each

simulated particle now has two velocities associated with it - vj and uj. Which is the more

appropriate to use in the convection step (4.1)?

Recall that we conceptualize vj as being a sample from a distribution of possible veloc-

ities for the jth particle, and that uj is the mean of this distribution. By the very fact of

introducing a distribution in velocity, we generate a distribution in position at the next time

step as well, for a particle with uncertain velocity cannot have known position in the future.

Thus, the answer to the question above regarding the appropriate velocity for convection is,

strictly speaking, neither.

We must instead introduce a distribution in position as well as velocity space. A natural

choice is a Maxwellian distribution in space. This approach was taken in [Hew03, Lar03], but

in an ad hoc manner. Some mathematical backing can be leant to the idea by noticing that

if fm(x,v; ρ,u, T ) is a Maxwellian in both velocity and position, with the moments constant

in space, then

f(x,v, t) = fm(x− vt,v; ρ,u, T ) (4.2)
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is an exact solution of

ft + v · ∇xf = C(f, f) (4.3)

for any collision operator that vanishes on local Maxwellians [Cer88]. It is thus promising

to investigate a scheme which evolves particle distributions in this way. The challenge is to

maintain a sense in which particles can remain localized within a single cell.

4.2 Multilevel Monte Carlo

At first glance, the extension of MLMC to spatially inhomogeneous problems appears simple.

One can simply write down an SDE associated with the full LFP equation:

dx = v dt,

dv =
e

m

{
E[f ] +

v ×B[f ]

c
+ F[f ]

}
dt+ D[f ] · dW.

(4.4)

Here, D and F are the drift and diffusion coefficients associated with the Fokker-Planck

collision operator as before, E and B are the electric and magnetic fields, respectively, e is

the particle charge and m its mass.

The difficulty here is that, unlike in standards SDEs, the coefficients depend not only

on the pathwise variables x and v, but on their distribution f , as indicated by the square

bracket notation. Equations of this type are often called McKean-Vlasov equations, after

[McK66]. Monte Carlo methods and their convergence for such equations have been studied

[AK02, BT97, Oga92].

A multilevel version of these methods, though, faces some difficulties. First of all, to

compute E, B, F and D at accurately at each time step, we require information about the

distribution f at the corresponding time steps. However, at the finest level in MLMC, there

are many time steps which have no partner at coarser levels, making it unclear how to obtain

the variance reduction that makes MLMC so effective.

Secondly, because the coefficients of the SDE can’t be computed exactly for any given

path, the errors in the coefficients propagate through to errors in any payoff functions. An
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analysis of this propagation in the multilevel context is necessary to determine the accuracy

of any extension of MLMC to such equations.

4.3 Concluding Remarks

Each portion of this thesis holds the promise of increasing the efficiency of collisional plasma

simulations, with additional applications in rarefied gas dynamics and chemical kinetics.

In each context, computer simulations play a crucial role in experimental design and in-

terpretation of results. The acceleration of complex, time-consuming simulations through

novel numerical methods like those considered here can dramatically increase their utility

for practitioners.

We hope that the methods laid out and tested in this thesis will be useful in their present

form, and will also lead to further research. We have discussed some prospects for future

work in this concluding chapter, but there is no doubt that more exist. Additionally, we hope

that the findings presented here have provided insight into the nature collisions in plasmas,

and perhaps sparked new interests in plasma physics and Monte Carlo methods.
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APPENDIX A

Proof of Relative Entropy Theorem

In 4.1, we state a theorem about decay of relative entropy:∫
R3

C(f, fm) log

(
f

f̂m

)
dv ≤ 0. (A.1)

Here, we provide a proof for the case of the Boltzmann collision operator, given by

C(f, g) =

∫
R3

∫
S2

(
dσ

dΩ

)
|v − v∗|(f ′g′∗ − fg∗) dΩ dv∗, (A.2)

where dσ/dΩ is the differential cross section of the inter-particle force mediating the colli-

sions, the pre-collision velocities are v, v∗, the post-collision velocities v′, v′∗ obey particle

momentum and energy conservation, f ′ = f(v′), and similarly for the other evaluations of f

and g.

Because it adds little in the way of complication here, we treat the general case of species

with distinct mass. This does require some additional notation: let the two species have

distributions f and g, with fM and gM being Maxwellian distributions for each respective

species having identical mean velocity and temperature.

We initially proceed as in the proof of the H-theorem. Let φ(v) be an arbitrary function

of v. Writing out C(f, g),∫
R3

C(f, gM)φ(v) dv =

∫
B(θ, |v − v∗|)(f ′g′M∗ − fgM∗)φ(v) dΩdv∗dv, (A.3)

where B = |v − v∗|dσ/dΩ. Conservation implies

mfv +mgv∗ = mfv
′ +mgv

′
∗, (A.4)

mfv
2 +mgv

2
∗ = mfv

′2 +mgv
′2
∗ . (A.5)
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We see that the operator in (A.3) features one of the two symmetries exploited in proving

the H-theorem: It is anti-symmetric with respect to exchange of the primed and un-primed

velocities. Thus, we can write∫
R3

C(f, gM)φ(v) dv =
1

2

∫
B(θ, |v − v∗|)(f ′g′M∗ − fgM∗)(φ− φ′) dΩdv∗dv. (A.6)

Straightforward algebraic manipulation can be used to show that |v − v∗| = |v′ − v′∗|, even

when mf 6= mg. A shorter argument can be made by appealing to the time symmetry of

binary collisions.

Now set φ = log(f/fM), so that

φ− φ′ = log(f/f ′)− log(fM/f
′
M). (A.7)

Now, note that a simple calculation and observation of (A.4) and (A.5) implies that

log(fM) + log(gM∗) = log(f ′M) + log(g′M∗). (A.8)

This arises because each side is a linear combination of quantities that are invariant un-

der collisions (total momentum, energy, and mass). As a result, we have log(fM/f
′
M) =

log(g′M∗/gM∗). Plugging this into the formula for φ− φ′, and then putting that in (A.6), we

have ∫
R3

log

(
f

fM

)
C(f, gM) dv =

1

2

∫
B(f ′g′M∗ − fgM∗) log

(
fgM∗
f ′g′M∗

)
dΩdv∗dv, (A.9)

where we’ve now omitted the arguments on B. Now, since B is non-negative, it doesn’t affect

the sign of the integrand, and the rest is of the form (x− y)log(y/x), which is non-positive

and zero just in case x = y. Thus, the entire integral is at most zero.

It just remains to show when equality is achieved. As already noted, (x − y)log(y/x)

is zero just in case x = y, so the right side of (A.9) vanishes if and only if fgM∗ = f ′g′M∗.

Taking the logarithm of both sides gives

log(f) + log(gM∗) = log(f ′) + log(g′M∗). (A.10)
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By (A.8), f = fM satisfies this equation. If we write h = f/fM , (A.10) reduces to h = h′.

Fixing v, we can pick v∗ and v′∗ such that v′ has any value we like. Thus, the only solution

to h = h′ is h = c(x), independent of velocity. Since we assume 〈f〉 = 〈fM〉, we must have

c = 1.
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APPENDIX B

Results on Collisional Moments

To compute the integrals in (2.24) and (2.25), we begin by adopting the notation of [HW04]

for the LFP collision operator. We write

CFP (fj, fM) = − ∂

∂v
·
(
fj
m

R−D · ∂fj
∂v

)
, (B.1)

where

R =
2γ

m

∂H

∂v
, D =

γ

m2

∂2G

∂v∂v
, (B.2)

and

γ =
e4 log Λ

8πε2
0

. (B.3)

We’ve assumed all the particles under consideration have common mass m and charge e. All

subsequent results can be straightforwardly generalized to the case where these quantities

differ between species.

Moreover, both here and in appendix C, we find it convenient to work in the rest frame

of fM , so that uM = 0 and ujM = uj.

B.1 Approximating uj

We define

FjM ≡
∫
R3

vCFP (f̄j, fM) dv, (B.4)

so that (∂tuj)M = FjM . Using (B.1), we may integrate by parts and use properties relating

R and D (see [HW04] for more detail) to find

FjM =
2

m

∫
R3

f̄jR dv. (B.5)
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Then, using (B.2) and (??), we can write an explicit expression for R.

R =
2γnM
m

v

v3

[
x
d erf(x)

dx
− erf(x)

]
, (B.6)

where nM is the number density associated fM , and x = v/vtM . Under the assumption that

fj is Maxwellian, the integral in (B.5) can now be evaluated numerically in general, and

analytically in two important limits.

Firstly, as mentioned earlier, near the beginning of a hybrid simulation, fj is well approx-

imated by a δ-function at the particle’s actual velocity, which now coincides with its mean

velocity uj. Making this approximation, we easily find that

FjM ≈
4γnM
m2v2

tM

UjM

U3
jM

[
UjM

d erf(UjM)

dx
− erf(UjM)

]
, (B.7)

where UjM = ujM/vtM . We’ll refer to this expression for FjM as Fδ
jM , which is valid when

vtj � vtM (i.e. Tj � TM).

Secondly, at late times in the simulation, we expect that ujM � vtj, so that we may

approximate f̄j = fm(v; 1,uj, Tj) by

f̄j ≈ fm (v; 1,0, Tj)

(
1 +

2v · ujM

v2
tj

)
. (B.8)

Plugging this approximation into (B.5) gives (see [HW04] for more detail)

FjM ≈ −
1

τjM
ujM , (B.9)

where

τjM =
3
√
πm2

16

(
v2
tj + v2

tM

)3/2

γnM
. (B.10)

This expression for FjM will be called Fm
jM and is valid when ujM � vtj.

B.2 Approximating T

We define

WjM ≡
1

2
m

∫
R3

|v − uj|2CFP (f̄j, fM) dv, (B.11)
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so that (∂tTj)M = 2WjM/3. By expanding the squared term in WjM , we find

WjM =
1

2
m

∫
R3

v2CFP (f̄j, fM) dv −muj · FjM . (B.12)

Having already computed expressions for F, it suffices to compute what we’ll call W ′, defined

by

W ′
jM ≡

1

2
m

∫
R3

v2CFP (f̄j, fM) dv. (B.13)

Again, by plugging in the definition of CFP into (B.13) and integrating by parts - twice this

time - then using the definitions of R and D, we find

W ′
jM = κ

∫
R3

[
2
d erf(x)

dx
− erf(x)

x

]
f̄j dv, (B.14)

where

κ =
2γnM
mvtM

(B.15)

and x = v/vtM . Again, the integral in (B.14) can be evaluated numerically for a general

Maxwellian f , and analytically in two important limits.

We again treat the case in which vtj � vtM . As before, we approximate fj by δ3(v−uj).

The integral for W ′
jM is now easily evaluated, and when combined with (B.7) and (B.12)

gives

WjM = κ
erf(UjM)

UjM
=

2γnM
mvtM

erf(UjM)

UjM
. (B.16)

In analogue to the previous subsection, this expression for WjM will be referred to as W δ
jM

and is valid when vtj � vtM .

Finally, we consider the ujM � vtj limit, just as we did when approximating FjM . As

before, we approximate f̄j by a Taylor series expansion, this time keeping

f̄j ≈ fm (v; 1,0, Tj)

(
1 +

2v · ujM
v2
tj

−
u2
jM

v2
tj

)
(B.17)

(we ignored the last term before because it gave no contribution to the previous integral).

Using this expression for f in (B.14) and integrating gives

WjM =
1

τjM

[
3

2

(
1−

u2
jM

v2
tj

)
(TM − Tj) +mu2

jM

]
. (B.18)
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Again in analogue to the previous subsection, we will denote this expression for WjM by

Wm
jM and it is valid when ujM � vtj.
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APPENDIX C

Numerical Integration of Collisional Moments

Because of the length of the expressions in this appendix, we abbreviate our notation by

dropping the subscripts j and M wherever possible, and again work in coordinates where

uM vanishes. That is, we let fj → f , vtj → vt, ujM = uj → u, FjM → F, and WjM → W .

In appendix B, we derived integral expressions for F and W ′, the collisional rates of

change of the first and second moments of f , respectively:

F =
2

m

∫
R3

f̄R dv (C.1)

W ′ = κ

∫
R3

[
2
d erf(x)

dx
− erf(x)

x

]
f̄ dv, (C.2)

where expressions for R and κ are given in (B.6) and (B.15), respectively, and x is as

defined in appendix B. We then derived asymptotically valid analytic expressions for the

case when f is Maxwellian with either vt � vtM or u � vt. In this appendix, we further

demonstrate that the above expressions for F and W ′ can expressed in terms of easily

computable, one dimensional integrals depending on only two non-dimensional parameters

and physical constants for a general Maxwellian f .

C.1 Simplifying W ′

Let us work in spherical coordinates with the z-axis aligned with u, the mean velocity of f .

Then, a Maxwellian f̄ may be written as

f̄ =
1

π3/2v3
t

exp

(
−|v − u|2

v2
t

)
=

1

π3/2v3
t

exp

(
−v

2 + u2

v2
t

)
exp

(
2uv cosφ

v2
t

)
. (C.3)
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We observe that every term in (C.2) is spherically symmetric except for the right-most term

in (C.3). The angular integration is thus easily performed, giving∫ 2π

0

∫ π

0

exp

(
2uv cosϕ

v2
t

)
sinϕdϕdθ =

2πv2
t

uv
sinh

(
2uv

v2
t

)
. (C.4)

Next, we define Γ = vtM/vt, so that v/vt = Γx and u/vt = ΓU , with U as defined in

appendix B. We can now rewrite

W ′ =
κ√
π

Γ

U

∫ ∞
0

xG(x; U,Γ)

[
2
derf(x)

dx
− erf(x)

x

]
dx, (C.5)

where

G(x; U,Γ) ≡ exp
(
−Γ2(x− U)2

)
− exp

(
−Γ2(x+ U)2

)
. (C.6)

The expression for W ′ in (C.5) is now a one dimensional integral that is straightforward

to evaluate numerically.

C.2 Simplifying F

We work in the same coordinates, and the expression (C.3) for f̄ still applies. However, the

vector R contributes to the angular integrals. We write R = (v/v)R(x), where

R(x) =
2γnM
mv2

tM

1

x2

[
x
d erf(x)

dx
− erf(x)

]
. (C.7)

The angular portion of the integral for F now reads∫ 2π

0

∫ π

0

(v

v

)
exp

(
2uv cosϕ

v2
t

)
sinϕdϕdθ. (C.8)

All the components of this vector vanish except for that aligned with u, because the inte-

gration against θ yields zero in the other cases. The component along u may be evaluated,

giving∫ 2π

0

∫ π

0

(v

v

)
exp

(
2uv cosϕ

v2
t

)
sinϕdϕdθ =

2πU

Γ2U2x

(
cosh(ψ)− sinh(ψ)

ψ

)
, (C.9)

where

ψ ≡ 2Γ2Ux. (C.10)
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We then write F as

F =
4√
πm

Γ

U

(
U

U

)∫ ∞
0

xR(x)exp
(
−Γ2

(
x2 + U2

))(
cosh(ψ)− sinh(ψ)

ψ

)
dx. (C.11)

Again, this integral is now easily evaluated numerically.

The expressions (C.5) and (C.11) are used to generate the black curves in fig. 1 and may

in theory be used to generate two dimensional (Γ, U) lookup tables which can then govern

the evolution of the particle temperatures and mean velocities.
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APPENDIX D

Proof of Lemma 3.1

The argument here follows that in [Mil79]. It proceeds in two stages: first, we express the

total error as a sum of various local truncation errors, totaling O(∆t−1) in number. Second,

we show that each local truncation error is O(∆t2).

Toward the first end, we introduce some notation for this proof not used elsewhere:

Denote by Sc,ln [x] that solution of the recursion equation (3.42) at time tn which starts at

x at time zero, and similarly for S∗,ln [x]. For this proof we will assume that the system is

autonomous, so that

Sc,ln+1[x] = Sc,l1

[
Sc,ln [x]

]
, (D.1)

and similarly for S∗,ln+1[x]. All of the arguments presented here generalize to the non-

autonomous case, but the notation is much cleaner if autonomy is assumed. Define gcn(x) =

Ef(Sc,ln [x]) and similarly for g∗n(x). Then, leveraging (D.1), we have

gcn+1(x)− g∗n+1(x) = Ef
(
Sc,l1

[
Sc,ln [x]

])
− Ef

(
S∗,l1

[
S∗,ln [x]

])
= Egc1

(
Sc,ln [x]

)
− Eg∗1

(
S∗,ln [x]

)
= E

{
gc1
(
Sc,ln [x]

)
− g∗1

(
Sc,ln [x]

)}
+ E

{
g∗1
(
Sc,ln [x]

)
− g∗1

(
S∗,ln [x]

)}
.

(D.2)

The first expectation in the third line is a local truncation error: it’s the difference in f

evaluated at the coarse and starred discretizations after one time step, when both started at

the same place; namely, Sc,ln [x]. Due to the nature of the coarse and starred discretizations,

the function g∗1 is as smooth as f , so the second expectation is of the same sort we’re trying

to bound, but one time step earlier than where we started.
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If we define εn[f ] = Ef(Sc,ln [x])− Ef(S∗,ln [x]), then (D.2) reads

εn+1[f ] = E
{
gc1
(
Sc,ln [x]

)
− g∗1

(
Sc,ln [x]

)}
+ εn[g∗1]. (D.3)

In the same way, we may go on to derive

εn[g∗1] = E
{
hc1
(
Sc,ln [x]

)
− h∗1

(
Sc,ln [x]

)}
+ εn−1[h∗1] (D.4)

for appropriate definitions of hcn and h∗n. Iterating this process, we find

εn[f ] =
n−1∑
k=1

E
{
hk,c1

(
Sc,lk [x]

)
− hk,∗1

(
Sc,lk [x]

)}
(D.5)

for some sequences of functions {hk,c1 } and {h∗,c1 }, each of which is as smooth as f and

represents the error in the given function after a single time step (we’ve used the fact that

Sc,l0 = S∗,l0 ). This completes the first step of expressing the total error in terms of local

truncation errors.

It just remains to show that each of these errors isO(∆t2). We do this by Taylor expansion

of f . Suppose f has four continuous derivatives, so that we can write out its fourth order

Taylor series:

f
(
Sc,l1 [x]

)
= f(x) +∇f(x) ·Dc(x,x, t0,∆t, δW0, δW 1

2
)

+
1

2!
∇2f(x) : DcDc +

1

3!
∇3f(x)(Dc)3 +

1

4!
∇4f(ξ)(Dc)4

(D.6)

for some ξ on the line between x and Sc,l1 , and Dc has the same arguments in all instances.

A similar expression holds for f(S∗,l1 [x]). Subtracting the two expressions and taking expec-

tations, we have

Ef
(
Sc,l1 [x]

)
− Ef

(
S∗,l1 [x]

)
=

1

2!
∇2f(x) : E

{
DcDc −DfDf

}
+

1

3!
∇3f(x)E

{
(Dc)3 − (Df )3

}
+

1

4!
E
{
∇4f(ξ1)(Dc)4

}
− E

{
∇4f(ξ2)(Df )4

}
.

(D.7)

Careful but straightforward examination of all the expectations in (D.7) reveals that the

lowest order terms that don’t vanish in expectation are all O(∆t2). This is true for any

function as smooth as f , and so is true of each hk,c1 and hk,∗1 in (D.5). The number of terms

in the sum in (D.5) is O(∆t−1), so we have the desired result.
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APPENDIX E

Proof of Theorem 3.2

Using Lemmas 3.2 and 3.3, we may write

Sfi,n − Sci,n =
(
Sfi,n−1 − Sci,n−1

)
+
[
ai(S

f
n−1)− ai(Scn−1)

]
∆t

+
D∑
j=1

[
bij(S

f
n−1)− bij(Scn−1)

]
∆Wj,n−1

+
D∑

j,k=1

[
hijk(S

f
n−1)− hijk(Scn−1)

]
Ljk,n−1

+Mi,n−1 +Ni,n−1.

(E.1)

where Mi,n = M f
i,n +M c

i,n and similarly for Ni,n, and

Ljk,n = ∆Wj,n∆Wk,n − Ωjk∆t. (E.2)

If we add up (E.1) all the way back to the initial time and use Sf0 = Sc0, we have

Sfi,n − Sci,n =
n−1∑
m=0

[
ai(S

f
m)− ai(Scm)

]
∆t

+
n−1∑
m=0

D∑
j=1

[
bij(S

f
m)− bij(Scm)

]
∆Wj,m

+
n−1∑
m=0

D∑
j,k=1

[
hijk(S

f
m)− hijk(Scm)

]
Ljk,m

+
n−1∑
m=0

(Mi,m +Ni,m).

(E.3)

This is conceptually identical to the second equation in the proof of theorem 4.10 (Appendix

4) in [GS12a], and may be treated with exactly the same methods found therein.
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In particular, defining

Rn = E
[
max
m≤n

∥∥Sfm − Scm
∥∥2
]
, (E.4)

one can establish the recursive relation

Rn ≤ C

(
∆t2 + ∆t

n−1∑
m=0

Rm

)
(E.5)

for some C > 0. A discrete version of the Grönwall inequality implies

Rn ≤ C

(
∆t2 +

n−1∑
m=0

∆t3 exp

{
n−1∑
k=m

∆t

})
≤ C

(
∆t2 + n∆t3 exp(n∆t)

)
. (E.6)

Letting n→ N , we have

RN ≤ C(1 + T expT )∆t2, (E.7)

which immediately implies the desired result.
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APPENDIX F

Proof of Lemma 3.4

The first step is to reestablish Lemma 3.2 in the case when the fine steps are allowed to have

different step sizes. The desired result will follow by induction, in that we will treat the

first r time-steps as a single step, and the (r + 1)st as the second step. Let δt1 be the time

step for the first fine step, and δt2 the time step for the second, with δWj,n and δWj,n+ 1
2

the

corresponding Brownian increments with variances δt1 and δt2, respectively. That is,

Sf
n+ 1

2

= Sfn + Df (Sfn, tn, δt1, δWj,n), (F.1)

Sfn+1 = Sf
n+ 1

2

+ Df (Sf
n+ 1

2

, tn + δt1, δt2, δWj,n+ 1
2
), (F.2)

where we’ve omitted the l superscripts.

Through diligent algebra, we can show that

Sfi,n+1 = Sfi,n +Df
i (Sfn, tn, δt1 + δt2, δWj,n + δWj,n+ 1

2
)

−
D∑

j,k=1

hijk,n

(
δWj,nδWk,n+ 1

2
− δWk,nδWj,n+ 1

2

)
+Ri,n +M

(1)
i,n +M

(2)
i,n

(F.3)

where

Ri,n =
(
ai,n+ 1

2
− ai,n

)
δt2

M
(1)
i,n =

D∑
j=1

(
bij,n+ 1

2
− bij,n − 2

D∑
k=1

hijk,nδWk,n

)
δWj,n+ 1

2

M
(2)
i,n =

D∑
j,k=1

(
hijk,n+ 1

2
− hijk,n

)(
δWj,n+ 1

2
δWk,n+ 1

2
− Ωjkδt2

)
.

(F.4)
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From here, the argument bounding the remainder terms proceeds exactly as in Lemma 4.7

in [GS12a]. In particular, M
(1)
i,n and M

(2)
i,n have vanishing expectation, and may be shown to

scale like ∆t3/2 by Taylor expanding bij,n+ 1
2

and hijk,n+ 1
2

about tn. Similarly, ai,n+ 1
2

is Taylor

expanded to separate Ri,n into two terms, one of which satisfies the appropriate scaling for

Mi,n while the other satisfies the scaling for Ni,n. We refer the interested reader to [GS12a]

for a thorough treatment.

We now proceed by induction: Suppose that for some r < M , we’ve shown that

Sf,li,n+ r
M

= Sf,li,n +Df
i

(
Sf,ln , tn, rδt,

r−1∑
q=0

δWj,n+ q
M

)

−
D∑

j,k=1

hijk(S
f,l
n )
(
A(r)
jk,n −A

(r)
kj,n

)
+M f

i,n +N f
i,n

(F.5)

where

A(r)
jk,n =

r−1∑
m=1

(
δWk,n+ m

M

m−1∑
q=0

δWj,n+ q
M

)
. (F.6)

and M f
i,n and N f

i,n have the scalings stated in the lemma. Note that the base case r = 1

is trivial, and that r = 2 is given by Lemma 3.2. Then, applying our modified version of

Lemma 3.2 to (F.5) and

Sf,l
i,n+ r+1

M

= Sf,li,n+ r
M

+Df
i

(
Sf,ln+ r

M
, tn + rδt, δt, δWj,n+ r

M

)
, (F.7)

we have

Sf,l
i,n+ r+1

M

= Sf,li,n +Df
i

(
Sf,ln , tn, rδt,

r∑
q=0

δWj,n+ q
M

)

−
D∑

j,k=1

hijk(S
f,l
n )

[
δWk,n+ r

M

(
r−1∑
q=0

δWj,n+ q
M

)
− δWj,n+ r

M

(
r−1∑
q=0

δWk,n+ q
M

)]

−
D∑

j,k=1

hijk(S
f,l
n )
(
A(r)
jk,n −A

(r)
kj,n

)
+M f

i,n +N f
i,n

(F.8)
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where the new remainder terms have been absorbed into the M f
i,n and N f

i,n. The second and

third lines can be combined to obtain

Sf,l
i,n+ r+1

M

= Sf,li,n +Df
i

(
Sf,ln , tn, rδt,

r∑
q=0

δWj,n+ q
M

)

−
D∑

j,k=1

hijk(S
f,l
n )
(
A(r+1)
jk,n −A

(r+1)
kj,n

)
+M f

i,n +N f
i,n

(F.9)

Letting the induction carry to M , we have the desired result, for A(M)
jk,n = Ajk,n by definition.
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for multi-dimensional SDEs without Lévy area simulation.” arXiv preprint
arXiv:1202.6283, 2012.

[GS12b] Michael B. Giles and Lukasz Szpruch. “Antithetic multilevel Monte Carlo estima-
tion for multidimensional SDEs.” Monte Carlo and Quasi-Monte Carlo Methods
2012 (submitted), 2012.

[Har77] C.J. Harris. “Modelling, simulation and control of stochastic systems with ap-
plications in wastewater treatment.” International Journal of Systems Science,
8(4):393–411, 1977.

[Hes93] Steven L. Heston. “A closed-form solution for options with stochastic volatility
with applications to bond and currency options.” Review of financial studies,
6(2):327–343, 1993.

[Hew03] Dennis W. Hewett. “Fragmentation, merging, and internal dynamics for PIC sim-
ulation with finite size particles.” Journal of Computational Physics, 189(2):390–
426, 2003.

[HFU88] F. Haghighat, P. Fazio, and T.E. Unny. “A predictive stochastic model for indoor
air quality.” Building and Environment, 23(3):195–201, 1988.

120



[HH07] Thomas M.M. Homolle and Nicolas G. Hadjiconstantinou. “A low-variance devi-
ational simulation Monte Carlo for the Boltzmann equation.” Journal of Compu-
tational Physics, 226(2):2341–2358, 2007.

[HK94] Genze Hu and John A. Krommes. “Generalized weighting scheme for δf particle-
simulation method.” Physics of plasmas, 1:863, 1994.

[HR88] Teddy Holt and Sethu Raman. “A review and comparative evaluation of multi-
level boundary layer parameterizations for first-order and turbulent kinetic energy
closure schemes.” Reviews of geophysics, 26(4):761–780, 1988.

[HS76] S.P. Hirshman and D.J. Sigmar. “Approximate Fokker–Planck collision operator
for transport theory applications.” Physics of Fluids, 19:1532, 1976.

[HW04] R.D. Hazeltine and F.L. Waelbroeck. “The Framework of Plasma Physics (Boul-
der, CO.”, 2004.

[IKV11] M.S. Ivanov, A.V. Kashkovsky, P.V. Vashchenkov, Ye A. Bondar, Deborah A.
Levin, Ingrid J. Wysong, and Alejandro L. Garcia. “Parallel object-oriented soft-
ware system for DSMC modeling of high-altitude aerothermodynamic problems.”
In AIP Conference Proceedings-American Institute of Physics, volume 1333, p.
211, 2011.

[JLM96] M.E. Jones, D.S. Lemons, R.J. Mason, V.A. Thomas, and D. Winske. “A grid-
based Coulomb collision model for PIC codes.” Journal of Computational Physics,
123:169, 1996.

[JNS06] T. Johzaki, H. Nagatomo, H. Sakagami, Y. Sentoku, T. Nakamura, K. Mima,
Y. Nakao, and T. Yokota. “Core heating analysis of fast ignition targets by
integrated simulations.” In Journal de Physique IV (Proceedings), volume 133,
pp. 385–389. EDP sciences, 2006.

[JST81] Antony Jameson, Wolfgang Schmidt, Eli Turkel, et al. “Numerical solutions of
the Euler equations by finite volume methods using Runge-Kutta time-stepping
schemes.” AIAA paper, 1259:1981, 1981.

[KCK12] S. Koh, C.S. Chang, S. Ku, J.E. Menard, H. Weitzner, and W. Choe. “Bootstrap
current for the edge pedestal plasma in a diverted tokamak geometry.” Physics
of Plasmas, 19:072505, 2012.

[KHY02] H.C. Kim, M.S. Hur, S.S. Yang, S.W. Shin, and J.K. Lee. “Three-dimensional
fluid simulation of a plasma display panel cell.” Journal of applied physics,
91(12):9513–9520, 2002.

[Kir46] John G. Kirkwood. “The statistical mechanical theory of transport processes I.
General theory.” The Journal of Chemical Physics, 14:180, 1946.

121



[KK09] Arnold Kritz and David Keyes. “Fusion simulation project workshop report.”
Journal of fusion energy, 28(1):1–59, 2009.

[KP11] Peter E Kloeden and Eckhard Platen. Numerical solution of stochastic differential
equations, volume 23. Springer, 2011.

[KPA08] Peter R. Kramer, Charles S. Peskin, and Paul J. Atzberger. “On the foundations
of the stochastic immersed boundary method.” Computer Methods in Applied
Mechanics and Engineering, 197(25):2232–2249, 2008.

[KPV04] Andreas J. Kemp, Robert E.W. Pfund, and Jürgen Meyer-ter Vehn. “Modeling
ultrafast laser-driven ionization dynamics with monte carlo collisional particle-in-
cell simulations.” Physics of Plasmas, 11:5648, 2004.

[KPW92] Peter E. Kloeden, Eckhard Platen, and I.W. Wright. “The approximation of
multiple stochastic integrals.” Stochastic analysis and applications, 10(4):431–
441, 1992.

[Kul67] Solomon Kullback. “A lower bound for discrimination information in terms of
variation (corresp.).” Information Theory, IEEE Transactions on, 13(1):126–127,
1967.

[KW87] G. Kallianpur and Robert L. Wolpert. “Weak convergence of stochastic neuronal
models.” In Stochastic methods in biology, pp. 116–145. Springer, 1987.

[Lan36] L.D. Landau. “The transport equation in the case of Coulomb interactions.”
Phys. Z. Sowjetunion, 10(154), 1936.

[Lar03] David J. Larson. “A Coulomb collision model for PIC plasma simulation.” Jour-
nal of Computational Physics, 188(1):123–138, 2003.

[Lee94] Sean Lee. “The convergence of complex Langevin simulations.” Nuclear Physics
B, 413(3):827–848, 1994.

[Lev96] C. David Levermore. “Moment closure hierarchies for kinetic theories.” Journal
of Statistical Physics, 83(5-6):1021–1065, 1996.

[Lev97] C. David Levermore. “Entropy-based moment closures for kinetic equations.”
Transport Theory and Statistical Physics, 26(4-5):591–606, 1997.

[LWD09] D.S. Lemons, D. Winske, W. Daughton, and B. Albright. “Small-angle Coulomb
collision model for particle-in-cell simulations.” Journal of Computational
Physics, 228:1391, 2009.

[LWW07] Hongwei Liu, Moran Wang, Jinku Wang, Guoyan Zhang, Huailin Liao, Ru Huang,
and Xing Zhang. “Monte Carlo simulations of gas flow and heat transfer in
vacuum packaged MEMS devices.” Applied thermal engineering, 27(2):323–329,
2007.

122



[McK66] H.P. McKean Jr. “A class of Markov processes associated with nonlinear parabolic
equations.” Proceedings of the National Academy of Sciences of the United States
of America, 56(6):1907, 1966.

[Mez07] Francesco Mezzadri. “How to generate random matrices from the classical com-
pact groups.” Notices Amer. Math. Soc., 54(5):592–604, 2007.

[Mil79] G.N. Mil’shtein. “A method of second-order accuracy integration of stochastic
differential equations.” Theory of Probability & Its Applications, 23(2):396–401,
1979.

[MLJ97] W.M. Manheimer, M. Lampe, and G. Joyce. “Langevin representation of
Coulomb collisions in PIC simulations.” Journal of Computational Physics,
138:563, 1997.

[MT04] Grigori N. Milstein and Michael V. Tretyakov. Stochastic numerics for mathe-
matical physics. Springer-Verlag, Berlin, 2004.

[Nan97] K. Nanbu. “Theory of cumulative small-angle collisions in plasmas.” Physical
Review E, 55(4):4642, 1997.

[NHH98] Robert P. Nance, David B. Hash, and H.A. Hassan. “Role of boundary condi-
tions in Monte Carlo simulation of microelectromechanical systems.” Journal of
Thermophysics and Heat Transfer, 12(3):447–449, 1998.

[Oga92] Shigeyoshi Ogawa. “Monte Carlo simulation of nonlinear diffusion processes.”
Japan journal of industrial and applied mathematics, 9(1):25–33, 1992.

[PC99] L. Pareschi and R.E. Caflisch. “An Implicit Monte Carlo Method for Rarefied Gas
Dynamics: I. The Space Homogeneous Case.” Journal of Computational Physics,
154(1):90, 1999.

[PCJ10] G. Park, C.S. Chang, I. Joseph, and R.A. Moyer. “Plasma transport in stochastic
magnetic field caused by vacuum resonant magnetic perturbations at diverted
tokamak edge.” Physics of Plasmas, 17:102503, 2010.

[PG11] A. Pataki and L. Greengard. “Fast elliptic solvers in cylindrical coordi-
nates and the Coulomb collision operator.” Journal of Computational Physics,
230(21):7840–7852, 2011.

[PRT00] L. Pareschi, G. Russo, and G. Toscani. “Fast spectral methods for the
Fokker–Planck–Landau collision operator.” Journal of Computational Physics,
165(1):216–236, 2000.

[RMJ57] M.N. Rosenbluth, W.M. MacDonald, and D.L. Judd. “Fokker-Planck equation
for an inverse-square force.” Physical Review, 107:1, 1957.

123



[Roe86] P.L. Roe. “Characteristic-based schemes for the Euler equations.” Annual review
of fluid mechanics, 18(1):337–365, 1986.

[RRD13] M.S. Rosin, L.F. Ricketson, A.M. Dimits, R.E. Caflisch, and B.I. Cohen.
“Multilevel Monte Carlo simulation of Coulomb collisions.” arXiv preprint
arXiv:1310.3591, 2013.

[SB02] Q. Sun and I.D. Boyd. “A direct simulation method for subsonic, microscale gas
flows.” Journal of Computational Physics, 179:400, 2002.

[SF03] Hongwei Sun and Mohammad Faghri. “Effect of surface roughness on nitrogen
flow in a microchannel using the direct simulation Monte Carlo method.” Numer-
ical Heat Transfer: Part A: Applications, 43(1):1–8, 2003.

[She08] M. Sherlock. “A Monte-Carlo method for Coulomb collisions in hybrid plasma
models.” Journal of Computational Physics, 227:2286, 2008.

[Shr04] Steven E. Shreve. Stochastic Calculus for Finance II, Continuous Time Models.
springer, 2004.

[SMK00] Yasuhiko Sentoku, Kunioki Mima, Shin-ichi Kojima, and Hartmut Ruhl. “Mag-
netic instability by the relativistic laser pulses in overdense plasmas.” Physics of
Plasmas, 7:689, 2000.

[TA77] Tomonor Takizuka and Hirotada Abe. “A binary collision model for plasma sim-
ulation with a particle code.” Journal of Computational Physics, 25(3):205–219,
1977.

[Tru65] B.A. Trubnikov. “Particle interactions in a fully ionized plasma.” Reviews of
plasma physics, 1:105, 1965.

[TT99] Eleuterio F Toro and Eleuterio F Toro. Riemann solvers and numerical methods
for fluid dynamics, volume 16. Springer, 1999.

[TTR12] A.G.R. Thomas, M. Tzoufras, A.P.L. Robinson, R.J. Kingham, C.P. Ridgers,
M. Sherlock, and A.R. Bell. “A review of Vlasov–Fokker–Planck numerical mod-
eling of inertial confinement fusion plasma.” Journal of Computational Physics,
231(3):1051–1079, 2012.

[TTT13] M. Tzoufras, A. Tableman, F.S. Tsung, W.B. Mori, and A.R. Bell. “A multi-
dimensional Vlasov-Fokker-Planck code for arbitrarily anisotropic high-energy-
density plasmasa).” Physics of Plasmas (1994-present), 20(5):056303, 2013.

[Van82] Bram Van Leer. “Flux-vector splitting for the Euler equations.” In Eighth
international conference on numerical methods in fluid dynamics, pp. 507–512.
Springer, 1982.

124



[VKB09] J. Van Dijk, G.M.W. Kroesen, and A. Bogaerts. “Plasma modelling and numerical
simulation.” Journal of Physics D: Applied Physics, 42(19):190301, 2009.

[Vla68] A.A. Vlasov. “The vibrational properties of an electron gas.” Physics-Uspekhi,
10(6):721–733, 1968.

[Wik01] Magnus Wiktorsson. “Joint characteristic function and simultaneous simulation
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