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Evolution of CMOS circuits has been leveraged by continuous scaling of the feature size. 

Scaling has enabled integration of several billions of transistors in a single die with lower 

power consumption and throughput increase for the last two decades [1]. Behind of such 

technological advance, however, the increasing process variability over die-to-die and 

within-die is a growing issue for the system reliability [2-3]. The device model for the 

most advanced technology is becoming too complicated [59] due to diverse physical 

effects arising from short channel length and high field [60-62], which makes it hard to 

rely on the model accuracy to precise estimate the productivity and reliability of a large-

scale system. Therefore, the need of accurate yield estimation model (or tool) based on 

the measurement data is required. 

This work presents simple and fast reliability estimation techniques for two of the most 

widely used systems: digital-to-analog converter (DAC) and SRAM. The DAC is 

exclusively adopted by most mixed-signal systems such as high performance transceivers, 
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digital phase-locked loop, clock-data recovery, and successive approximation. Depending 

on their purpose, the DAC design may demand different design targets. While many of 

the systematic performance degradations (especially dynamic linearity) can be handled 

by careful layout, circuit architecture, segmentation, and switching algorithm, the 

nonlinearity caused by unit element mismatch can only be handled by sizing up the 

device or by calibration. In any case, the achievable minimum nonlinearity should be 

carefully considered from a yield estimation model. This model must be based on 

measurable mismatch information of the unit element, such as unit current in a current-

steering DAC, and it should be applicable to arbitrarily segmented structure. From the 

survey of existing models and their limitations, this work proposes two general models 

for the differential nonlinearity (DNL) and integral nonlinearity (INL) yield. The validity 

of the model is verified by measurement data from an 8-bit current-steering DAC 

fabricated in 90nm CMOS.  

The second case study is for SRAM. Most microprocessors have various cache memories 

that are usually built by SRAM for its robust data retention and high access speed for 

both read and write. In a recent trend of multi-core processors in a single die in 

association with the decreasing feature size, the number of SRAM blocks and density of 

the SRAM cell increase such that reliability becomes a serious issue. As an old tradition 

of SRAM design, the size of the cell is generally determined by yield from static stability 

margin or from dynamic perspectives that are relying on the accuracy of the device model. 

Rapid yield estimation techniques such as importance sampling or response surface 

model are the extreme case, as their predictability of failure depends on the assumed 

variability of the few major parameters such as threshold level.  

For better estimation of SRAM yield, built-in self-test (BIST) circuits are suggested in 

numerous literatures that can improve the predictability of failure conditions. This failure 

condition is particularly useful for gauging time-dependent stability variation of the 

memory cell due to diverse effects such as NBTI [112] and aging effects. The estimated 

failure condition found in BIST circuits can be used to counteract the failure mechanism 
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to decrease the fail bit count such as controlling the cell supply. Such varying failure 

condition cannot be detected by traditional pass/fail based test. In addition, knowing the 

analog level of the stability distribution greatly helps in reducing the power of the entire 

memory array by exploring the optimum lower supply level without failing read/write 

operation. Another particular utilization of the stability information is to correlation to the 

device model. SRAM designers face countless combinations of the device parameters to 

satisfy a certain stability margin. With large stability measurement data, their design 

strategy can be more reliably verified. 

However, none of the proposed techniques can be applied to a large memory array 

because of the speed issue or relatively incorrect estimation result. This work proposes a 

rapid yield estimation technique for concerning static stability. By using small size on-

chip ADC and direct bit-line access technique, the static read stability and write-ability of 

6T SRAM cells are characterized. From the definitions of the new dynamic stability, the 

close correlation between the static estimation and the dynamic characteristics are 

demonstrated. The estimation results match very well to the measured stability from a test 

chip in 65nm CMOS. 
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Chapter 1  

Introduction 

Of the many important blocks consisting of a large scale mixed-signal system on a chip, 

DAC and SRAM are two common and important building blocks. These two systems are 

similar in implementation such that an identical unit element such as the current source in 

the DAC or the data storage cell in the SRAM is repeatedly used to comprise the whole 

system. As the number of the unit elements can be from several hundreds to millions in a 

typical mixed-signal system, the sizing of the element is the key factor in the area of the 

system. A smaller cell size can be used to increase the cell density (or reduce the whole 

system area) as well as to enhance the performance such as speed but the random 

fluctuation of device parameters is known to cause reliability issues. The goal of this 

work is to provide mechanisms to predict the reliability and yield. For DACs, we provide 

a model that has reduced computational order and accurate for design. For SRAMs, we 

introduce a measurement and estimation approach for post-silicon characterization and 

optimization.  

One of a DAC’s performance specifications is the linearity of its input-to-output (I/O) 

transfer characteristics. Statistically, the non-linear portion of the I/O curve caused by the 

random mismatch may exceed the required resolution or target output harmonic leading 
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to a reduced yield. The yield of a design can be estimated by running several tens of 

thousands MC simulations but this method can take hours for a high resolution DAC for 

each design iteration. Therefore, a computationally efficient yield model that relates by 

the unit element variation with the expected yield benefits a designer allowing her to 

quickly evaluate the impact of changing the size or bias of unit elements. Previously 

published models are discussed in Chapter 2. This work proposes yield models for both 

INL and DNL using multivariate Gaussian random variables that can be extended to 

arbitrarily segmented structures and takes less than a second to produce an accurate 

estimate using a mathematical tool such as MATLAB.  

For an SRAM, a similar issue exists for estimating the reliability of the entire memory 

array. The yield is defined by the number of cells that fail a read or write operation. As 

the SRAM cell is made with approximately minimum size devices, device variability is 

the primary cause of cell instability. Many publications have quantified the read/write 

stability and are reviewed in Chapter 4. A function that predicts yield is not easily derived 

from unit cell variation due to complex transient effects. Designs that meet yield 

requirements across all process corners in addition to device variation are typically 

substantially overdesigned in terms of supply voltage or device sizing. Instead of 

developing a yield-prediction model as we do for DACs, by obtaining the stability of the 

cells directly from a post-silicon IC, supply voltage can be better optimized to reduce 

power or be more robust to degradation of stability over time due to NBTI. As an 

example, the read stability of a SRAM cell can be enhanced by increasing the cell supply 

[89], [91-93], [97], [106] or reducing the word-line voltage [87], [94-104], [106]. Current 

on-die measurement approaches are reviewed in Chapter 4. Accurate measurements 

typically require measurement times of more than days for even small memory sizes such 

as 32kb. More rapidly estimation of SRAM stability have not been accurate with fitting 

accuracy as low as R
2
~0.6 [84], [117]. This dissertation proposes a rapid and accurate 

stability estimation technique from cell currents under varying supply that can provide 
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estimation accuracy of R
2
 > 0.8 with measurement times under a second for 32kb 

memory arrays. 

This chapter begins with a brief description of DAC and SRAM applications and how the 

basic structure depends on the matching of devices. The impact of technology scaling on 

device matching and as a result yield is discussed in Section 1.2. Section 1.3 presents an 

overview of the dissertation.   

 

Section 1.1 DAC and SRAM Application 

A DAC is an important component in mixed-signal processing and communication 

systems. It can be used as a full-scale signal generator like a transmitter [16-17] or can be 

associated with other feedback systems such as digital phase-locked loop (DPLL) [24], 

clock and data recovery (CDR) system [23], or successive approximation data converters 

[14]. A simple and commonly used approach to produce precise analog levels is to rely 

upon the matching of nominally identical unit cells in the fabrication process. Design of 

the unit cell involves diverse trade-off such as nonlinearity caused by device mismatch 

and by frequency dependent impedance modulation. Most of the systematic effects such 

as output impedance are addressed by circuit architecture. Variation of unit cells due to 

the inherently stochastic nature of dopant implantation and physical geometry [4-5] are 

among the root causes of static and dynamic nonlinearity.  

For digital processing applications, an SRAM is an essential memory block. Due to its 

reliable data retention and rapid read and write access, SRAMs are mostly adopted as 

low-level caches in processors for immediate high-locality data storage. Typically, the 

more processing cores in a system, the larger the memory blocks that are integrated. The 

denser and larger memories are possible by the continued scaling the size of SRAM bit 

cell. As shown in Figure 1 [1][65], the size of the SRAM bit cell has maintained a scaling 

rate of 50% per every technology node. As a result of the scaling, the SRAM design is 
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becoming increasingly difficult. Stability of the stored element depends upon limiting the 

parametric mismatch [4-5], [65], [71-75] and process variability [2-3], [64].  

Section 1.2 DAC and SRAM Reliability 

Figure 2 shows the threshold voltage variability per technology node from 65nm down 

to a predictive 15nm [87]. In this plot, two scenarios are assumed for the scaling of the 

oxide thickness: 1) the effective oxide thickness (EOT) does not scale further after 65nm 

and 2) EOT scales. As EOT is proportional to Pelgrom’s mismatch coefficient (AVth in 

[5]) according to [66-67], the first scenario assumes the worst threshold voltage variation 

with the scaling of the bit cell size. In reality after 32nm, high dielectric-K or multi-gate 

device such as FinFETs [63] improves the gate controllability and the threshold mismatch 

does not scale rapidly as the first scenario in Figure 2. However, even with the improved 

matching property, the scaling of the feature size increases the absolute magnitude of the 

threshold voltage variation as shown in the second scenario with EOT scaling in Figure 2. 

The reliability issue has led to the relatively invariant unit device size for the DAC and 

nearly constant supply scaling for the SRAM (Figure 1). For a DAC, proper sizing of the 

unit cell is necessary to reduce the statistical variation. Even designs with explicit 

calibration such as dynamic-element matching (DEM) [6-8], foreground calibration [9, 

45], and background calibration [10-14] still require a minimum yield since the 

calibration typically has a limited range.  Hence, a proper yield model is required to 

explore the correction limits by calibration.  

For an SRAM, while many publications suggest different techniques to reduce the 

minimum operating supply (VCCmin) such as read and write assist [87-106], the existing 

publications do not provide a systematical approach to set the optimum calibration targets 

for the assistant circuitry that is applicable to each die. Only process dependent variation 

can be tracked using built-in resistor divider [97-99], [103] or feedback circuitry [96]; 

however, neither method provides stability margin for the cells close to the failure 

conditions.  
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Figure 1. SRAM bit cell trend (size and supply level). Courtesy of [1]. 
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Figure 2. Threshold voltage variation trends of the SRAM bit cell (size and 

supply level). Courtesy of [87]. 
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Section 1.3 Organization 

Chapter 2 presents an overview of DAC design issues where the I/O nonlinearity 

caused by device mismatch is introduced. This chapter also describes the complexity of 

existing yield models for integral and differential nonlinearity (INL and DNL) since the 

yield calculation requires an integration over multi-dimensional Gaussian variables with a 

correlation matrix.  

This work proposes general yield models based on arbitrary unit cell variation and 

arbitrary structure and is described in Chapter 3. The yield of the DAC can be rapidly 

estimated using device variation models from either device simulations or process 

characterization measurements. A simplification of multivariate Gaussian random 

variables is suggested and applied to calculating a DAC’s INL and DNL by reducing by 

the function to a few terms. The yield model can be applied to any arbitrarily segmented 

DAC in contrast to current models that only apply to either binary or thermometer DACs. 

The model results are verified by both MC simulation and from measurement data. The 

data is extracted from an 8-bit current-steering DAC in 90nm CMOS. The measurement 

data shows excellent matching even though the model simplifies the random variation to 

Gaussian distributions.  

Chapter 4 reviews the design issues on SRAM with particularly focus on causes of cell 

instability. The stored data in a cell should remain undisrupted during read while the cell 

should be successfully programmable during write (read-stability and write-ability [68-

69], [75-80]). This chapter revisits published ideas that gauge the static and dynamic 

stability of the SRAM cell. The chapter ends by focusing on stability metrics that can be 

easily measured with built-in self-test (BIST) such as supply read-retention voltage 

(SRRV) and bit-line write trip voltage (BWTV). 

Chapter 5 utilizes the measured stability metrics to determine an estimation function 

that relates the stability to a minimal set of measured current. By separately measuring 

the predictor (cell current) and the estimator (stability) variables, a close relation between 

the two variables is found from a subset of memory array by using a non-linear 
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regression method. This technique can characterize the device variability and its impact 

on the read/write stability of the cell. Various trade-offs between the measurement 

requirements and the estimation accuracy are described in details. This work also shows 

that if the target control factor is identical, then there is a close relation between the static 

and dynamic stability. For instance, if the cell supply is lowered until the initial state is 

flipped during read access, the supply voltages measured during the static access (i.e. WL 

is always high) and during the pulsed access are strongly correlated especially for the 

cells close to failure. 

The proposed technique is verified by a chip implementation in Chapter 6. The built-in 

self-testing (BIST) circuitry can rapidly measure the stability of the SRAM cell without 

significant change of the memory array structure. The static stability estimation is 

demonstrated with a test chip in 65nm CMOS. This chapter also shows that near the edge 

of the stability distribution, the measured static and dynamic stability are strongly 

correlated. Using this fact, the estimation of the dynamic stability can be easily done from 

the estimated stability and a known factor from the correlation. This idea of matching 

static and dynamic behavior is verified across multiple dice. 
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Chapter 2  

Background on DAC Yield 

 

This chapter revisits the fundamentals of the device random mismatch and its impact on 

DAC’s input/output characteristics. For simplicity, current-steering DAC is analyzed in 

detail but the fundamentals can be applied to other types of DACs. Based on the 

arguments observed in this chapter, the next chapter suggests two yield models that can 

effectively gauge the maximum performance boundary caused by the unit element 

mismatch.  

 

Section 2.1 Current-Steering DAC Design 

   The current-steering DAC is comprised of identical unit current source (Figure 3). The 

input digital signal controls how many unit sources to be steered to OUT while the 

remaining units are steered to the other output terminal. This differential output current is 

converted to voltage signal by the termination resistance (50 ohms). Although the output 

level is determined by the integer number of cells that are chosen to drive the OUT 
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terminal, the I/O curve may not be linear due to random mismatch between the unit 

elements. Section 2.2 describes the statistical modeling of the random mismatch of the 

unit elements and their impacts on the I/O linearity. 

   Another key concern is the structure. The DAC structure may vary depending on how 

to group the current source array. If each current source is independently controlled by a 

dedicated bit such as thermometer-coded DAC, the area of the switch and control logics 

is too large for a high resolution DAC > 10-bit. For example, if a 14-bit DAC is 

implemented in a thermometer-coded structure, the total number of switches should be 

16k and each switch should be driven by the same number of latches. The binary 

structure is more compact but it shows more glitch energy and more serious linearity 

issues than the thermometer-coded DAC. The optimum DAC structure combines the 

binary for LSBs and the thermometer for MSBs. Table 2-1 compares the specs between 

the thermometer and binary DAC [18]. While the thermometer-coded structure has better 

glitch and DNL (Section 2.2), the binary structure prevails in aspects of the power, area, 

and layout complexity. Our DAC yield models are for any arbitrarily segmented DAC 

that visualizes the yield variation between different structures. 

Table 2-1 Comparison between thermometer and binary structure [18]. 

Specs Thermometer Binary 

INL Normal Normal 

DNL Good Poor 

Glitch Less harmonics More Harmonics 

Complexity (wiring, logics) Complex Simple 

Power High Low 

Area Large Small 

Section 2.2 Impact of Random Mismatch 

   Statistical variation of the unit element can be described as the sum of a nominal value 

and a random variable. For an N-bit current-steering DAC, each unit current source (Ii) is 
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modeled with a nominal current (Ī) and a variation (∆Ii) as shown in Figure 3. For a large 

N-bit DAC, Ī approximately equals to the 1 LSB size. The variation defined as ∆Ii can be 

modeled as a Gaussian random variable with zero mean and standard deviation σI.  

1
+I I∆

2 1−
+ NI I∆

2
+I I∆

3
+I I∆

 

Figure 3. An N-bit current-steering DAC with unary structure. Variation of 

each current source is modeled as an additive Gaussian random variable (∆I) with 

a variance σI
2
. 

The identical variation model can be used to other types of elements such as a resistor (R 

+ ΔRi) or a capacitor (C + ∆Ci).  

 , 1 2 1= + ∆ ≤ ≤ −NI I I i
i i

 
(Eq 2.1)  

   The variation ∆Ii results in random fluctuation of the analog output during input 

transition. This variation for each code transition when normalized by the mean current (Ī) 

is defined as the differential nonlinearity (DNL). As the number of unit elements 

switched at every input code is strongly dependent on the structure of the DAC, a binary-

coded DAC shows the worst output fluctuation especially when the MSB group switches. 

The integral nonlinearity (INL) is defined to be the distance between each output level 
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and the ideal linear line from interpolating the ends of the transfer curve normalized by 

the LSB.  

   The relative importance of DNL versus INL depends on the application and 

architecture. For a system that uses the full-scale output of a DAC for data transmission 

[16-17], the output spectrum requirements (e.g. SFDR) are strongly affected by the 

maximum tolerable INL [18-22]. However, for a DAC that is used inside a feedback loop 

such as CDR [23], DPLL [24], or successive approximation [14], INL is not a critical 

design target as long as the I/O characteristic of the DAC is monotonic. More importantly 

in this case, the maximum tolerable DNL should be carefully explored to avoid 

substantial performance degradation by incomplete settling of the loop (or even 

oscillation) due to a missing state or a non-monotonic I/O. Architecture of the DAC can 

be important. Compared to DNL, INL is relatively less sensitive to the segmentation 

structure. In general, the design specifies bounds that may be different for INL and DNL 

to meet a target yield.. 

   In the output structure of an N-bit segmented DAC with the last NB-LSBs assigned to 

the binary group, the increment of the output between the (i-1)-th and the i-th input code, 

∆Iout(i), is expressed as  
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(Eq 2.2)  

   A degenerate form of the equation can be used to express the current for either a binary 

or thermometer by removing the thermometer or binary current terms. In this equation, 

Dj(i) is a binary representation (0 or 1) of the input code (i) at the j-th LSB. ∆IBj is the 

sum of the current variations of the j-th binary group. For the thermometer group, Uk(i) is 
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1 if the input code (i) is equal to or greater than k×2NB otherwise Uk(i) is 0. Similarly, 

∆ITk is the sum of the current variations of the k-th thermometer group. Tk(i) is 1 if and 

only if the input code (i) is equal to k×2
NB

. From (Eq. 2.2), the DNL and INL of the i-th 

input code position can be expressed as the following equations. For estimating a high 

DNL yield level with a small unit cell variation, the averaged variation terms in (Eq. 2.3) 

can be ignored compared to Ī leading to the approximation. Note that this (unity gain) 

approximation cannot be applied when expressing the INL. 
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(Eq 2.3)  
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(Eq 2.4)  

   Equation (Eq. 2.4) is a common expression for INL for each input code, i. In (Eq. 2.4), 

when the resolution of the DAC is sufficiently high (≥8 bits), the denominator of (Eq. 2.4) 

can be simplified to the mean current of the unit cell, Ī. The first term in the numerator of 

(Eq. 2.4) represents the ideal linear output obtained from the curve interpolation. Due to 

averaging by (2
N
-1), the amount of this additive term between adjacent input codes is 

negligible.   

   The maximum INL and DNL are typically specified to be bounded to ±A LSBs 

(defined as the decision boundary) to avoid significant nonlinear distortion of the N-bit 

output signal. Due to the relatively small impact of a single variable on the INL (or DNL), 



Chapter 2  Section 2.2 Impact of Random Mismatch  

14 

the INL values at different input codes are highly correlated. Due to this correlation, an 

accurate estimation of the INL yield would require integration of a multivariate Gaussian 

probability density function (PDF) with order 2
N
-1. The complexity grows exponentially 

with the number of bits and can be numerically intractable. A simplified approach to the 

yield based on multivariate Gaussian random variables is proposed in chapter 3.  

 

 
(a) 

 
(b) 

Figure 4. (a) DNL and (b) INL of 10-bit binary DAC samples.  
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The SFDR caused by the element mismatch can be formulated for the binary-coded DAC 

[21] by using the normalized sigma of the current variation. 

 
3

20 log 3 20 log
4

 
≈ + −  

 
ISFDR N

I

π σ  
(Eq 2.5)  

(Eq. 2.5) clearly shows that halving the variability of the unit element can increase the 

dynamic linearity by 20dB. For this reason, static calibration techniques proposed in [6-

10] also enhance the dynamic linearity for all input frequency range.  

Section 2.3 Yield Model for DAC Linearity 

   This dissertation focuses on a estimating the percentage yield for a design to meet a 

target INL or DNL with a given DAC architecture (number of bits and segmentation) as a 

function of unit device variability. A common way to estimate the INL and DNL yield of 

the DAC is to run behavioral Monte-Carlo (MC) simulations by assuming independent 

Gaussian distribution of the unit cell element. From multiple MC simulations combined 

with a sizing algorithm, proper requirements on the unit cell can be found that determines 

geometry and bias conditions [5]. However, MC simulations require a large number of 

runs to accurately estimate the yield. According to [25], for example, at least 40,000 runs 

are necessary when targeting 99% yield level with 5% estimation error sigma (i.e. the 

yield results is bound by [98.95%, 99.05%] for in ±1σ certainty). Since the yield should 

be verified by running multiple statistical conditions on the unit cell, the total amount of 

MC simulations can be large and require long run-times even with using high-

performance computation servers. The design cycle time can be especially long when 

calibration is concerned or when a higher yield level is targeted with small uncertainty. 

For greater accuracy than behavior simulations to account for realistic device 

characteristics, more precise yield estimation may incorporate HSPICE MC simulation 

which requires substantially longer computation time. Therefore, an accurate and simple 

modeling of the yield can be useful to accelerate design cycle, especially one that 
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accounts for the effect of non-Gaussian distribution of the unit cell variation (i.e. 

verifiable with measured current data).  

   The required yield should precisely estimate the maximum bound of the INL and DNL 

for a given unit cell variation and a structure of the DAC. The INL yield models are well 

studied but no literature established a unified model for arbitrary structure. The DNL 

yield is overshadowed by the importance of the INL such that not a single complete study 

has been carried over its yield model. The next two sections briefly review the existing 

INL and DNL models. 

2.3.1. Existing Models on INL Yield 

   In general, with most of the existing models, the ratio between the standard deviation 

and the mean of the least significant bit (LSB) current is primary piece of information 

used to estimate the INL yield of the current-steering DAC. The yield is defined by a 

decision boundary (A, maximum tolerable INL) for each input level, which is typically 

set at ±0.5 LSBs.  

   An early, commonly cited, INL yield model for a DAC [46] is based on statistical 

independence between different digital codes. The predicted yield from such a model has 

been shown to be pessimistic and hence has been modified by considering only most-

probable error cases [47]. However, the modified method estimated errors on being 

overly optimistic. These two simple approaches can be considered as bounds and reveal 

the complexity of estimating INL yield. For example, using (Eq. 2.4), the required 

mathematics for calculating INL yield of an N-bit thermometer-coded DAC can be 

expressed as the following. 
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(Eq 2.6)  



Chapter 2  Section 2.3 Yield Model for DAC Linearity  

17 

Note that the INLLSB terms in (Eq. 2.6) are correlated as seen from (Eq. 2.4). With 

increasing number of codes, the order of joint Gaussian probability density function 

(PDF) of the INL increases exponentially; hence fully describing the random behavior of 

the INL at every digital code is not a practical solution.  

   An intuitive model has been suggested in [48] by introducing a fictive 2
N
-th code. 

However, this model fails to account for gain error. As a result, the model generally does 

not match to the INL yield curve obtained from MC simulations. A Z-table-based 

empirical method given by [49-50] gives the most accurate estimation of INL yield. 

While the Z-table is invariant to various DAC resolution, it is not an efficient way to 

express the yield since a table entry is needed for every combination of number of bits, 

LSB statistics, segmentation structure, and decision boundary.  Finally, a Brownian-

Bridge-based analysis [51] is recently introduced and demonstrates excellent accuracy for 

a high resolution thermometer DAC. However, the model loses accuracy as the number 

of bits decreases below 8 where the INL depends on the discrete random variables of 

each unit cell rather than a continuous Wiener process. For the same reason, the accuracy 

degrades for a binary DAC or a segmented DAC.  

   The next chapter extends the yield estimation concept upon the previous models by 

introducing an intuitive INL expression with the number of bits, the unit cells’ statistical 

properties, and the decision boundary as parameters. An empirically-fitted model based 

on the expression can accurately fit yield data for thermometer, binary, and arbitrarily 

segmented DACs. 

2.3.2. Existing Models on DNL Yield 

   Compared to the previously published papers on INL characteristics caused by device 

mismatch, an analytical model for statistically estimating the DNL yield has not been 

formulated even though the DNL yield may demand a more precise matching of the unit 

cell (e.g. in a binary DAC). A few empirical models exist based on Z-table [49] or 
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regression model [50]. Even published analytical models do not completely relate a target 

yield to the required device variation [52].  

Section 2.4 Summary 

   This chapter discussed the random error caused by device mismatch in current-steering 

DAC. DNL and INL are the two key expressions of the impact of the random error. The 

DAC yield model can be formulated by the maximum bound of DNL/INL. However, 

there is a notable lack of a similar model for DNL. The limitations of the existing INL 

yield models lead to a low accuracy (> 7% device area estimation error, Chapter 3). The 

next chapter proposes a simple yet logical approach to fully address both INL and DNL 

of any arbitrarily segmented DAC. The function results in substantial improvement in 

accuracy especially in low yield situations. This low yield situation can be particularly 

important because of lot-to-lot yield variation (Chapter 3). 
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Chapter 3  

DAC’s Linearity Yield Model Caused by Random 

Mismatch  

(Eq. 2.3) shows that the DNL terms are multivariate Gaussian random variables and each 

term is correlated. The same argument can be made for the INL terms as seen in (Eq. 2.4). 

From (Eq. 2.6), the PDF of the correlated random variables should be integrated. A 

simplified way to carry out such complicated integration is proposed in this section. An 

intuitive yield model for the multivariate Gaussian random variables is first proposed and 

analyzed. This model is then extended to precisely approximate the general DNL/INL 

yield models. 

Section 3.1 Multivariate Gaussian Random Variables 

   From textbook statistics [54, 57], the joint PDF of two normal random variables can be 

expressed as the term inside the integral of (Eq. 3.1). A probability of success (PC) can 

be found by integrating the PDF within an interval [-A, A]. 
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 (Eq 3.1)  

The shape of the PDF depends on the correlation coefficient, rho, a value between 0 

(uncorrelated) and 1 (fully correlated to form a single variable). Figure 5 illustrates the 

PDF for an intermediate value.  

 
(a) 

 
(b) 

Figure 5. Probability density function (pdf) of 2D Gaussian random variables 

(solid lines) and decision boundary (dotted square).  

In Figure 5, the decision boundary is placed near the tails of the distribution: (a) when σx 

= σy and the correlation coefficient is between 0 and 1, and (b) when σx > σy. Instead of 

solving (Eq. 3.1), for any correlation coefficient, we consider two observations/scenarios 

that simplify the model. Both can be illustrated with a two-variable PDF. In the first 

scenario, if σx and σy are close in value, the equation can be approximated by an error 

function with a fractional power between 1 and 2 as shown in (Eq. 3.2). This 

approximation is valid with infrequent error event. The validity of the approximation in 

(Eq. 3.2) as the basis for our model is discussed in the Appendix. 
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(Eq 3.2)  

   Numerical examples of (Eq. 3.2) and 10,000 MC simulation results are plotted in 

Figure 6 to show that the approximation is accurate with the proper choice of k especially 

when σx = σy. As the correlation coefficients increase, the fitting parameter moves from 2 

to 1.  
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Figure 6. Probability of success for two random variables with the decision 

boundary placed at ±0.5.  

   In the second scenario, if σx is several times larger than σy (or vice versa), the error 

events (for a given decision boundary where PC is high) are usually determined by the 

random variable with the larger variance, regardless of the correlation coefficient. Figure 

7 shows two examples where the decision boundary is placed at ±0.5 and the correlation 

coefficient is fixed by 0.5.  

   In the first case, two variables have an identical variance and the fitting power factor is 

1.87. In the second case, x has a four times larger standard deviation than y. As x has a 

greater contribution to the error probability especially when the error rate is low, this case 
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is approximated by a single random variable (i.e. k = 1). The two observations can be 

used to simplify higher order multivariate Gaussian random variables. As discussed in the 

second scenario, only dominant sources of errors need to be included in the model. Using 

this simplified yield approximation, the DNL and INL yield can be easily formulated. 
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Figure 7. Probability of success with change of variances.  

 

Section 3.2 DNL Yield Formulation 

   (Eq. 2.3) shows that the DNL of each thermometer group appears once at a single code, 

as the input code sweeps from 0 to full-scale, while the binary group repeatedly shows up 

as a combination with other groups. Figure 8 shows the essential test input codes for the 

DNL yield estimation for an N-bit segmented DAC with the number of binary bits (NB) 

= N-2.  

   Other codes are redundant for the DNL test as identical current sources repetitively 

appear due to binary switching [53]. In Figure 9, 10
5
 behavioral MC simulation runs are 

performed for characterizing the standard deviation of the DNLs of a 10-bit DAC with 

the last 8 bits assigned to the binary group. 
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Except for the three maximum peaks by the thermometer group switching, the DNLs at 

each lower peak level have essentially identical expressions. Due to periodic switching of 

the binary groups at each code (e.g. all the binary groups appear at 2
N-2

, 2×2
N-2

, and 3×2
N-

2
), the DNL yield calculation involves analysis on the correlated error sources. From an 

analysis of the DNL correlation, the next section describes simple DNL yield models that 

effectively reduce the integration to a single dimension for thermometer, binary, and 

arbitrarily segmented DAC. 
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Figure 8. Switching diagram of current sources for an N-bit segmented DAC 

with the last N-2 bits assigned to the binary group (NB = N-2).   
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Figure 9. Standard deviation of DNLs of a 10-bit segmented DAC with NB = 

8. The sigma of ∆I is 1% of the averaged current (Ī). 

  

3.2.1. Thermometer-Coded DAC 

   The DNL of a thermometer-coded DAC at each input code is a normalized current 

variation of the unit cell. As is well known, the DNL yield can be simply calculated by 

using a product of multiple Gaussian PDFs due to the statistical independence of the unit 

cell variation. The following expression assumes that the decision boundary equals ±A.  
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(Eq 3.3)  

The erf term in (Eq. 3.3) is very close to 1 unless the normalized standard variation of the 

unit cell (σI/Ī) is comparable to A. For this reason, a thermometer DAC shows a higher 

DNL yield than any other structure with a given σI/Ī. 

3.2.2. Binary-Coded DAC 

   The DNL yield of a binary DAC can be approached in a similar manner. There are N 

binary current groups. Testing of the DNL is conducted at N input codes where each 
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binary group switches at least once. The essential DNL test codes are as follows (without 

losing generality, Ī = 1) 
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(Eq 3.4)  

   Any two DNL terms in (Eq. 3.4) share identical current groups implying a correlation 

(e.g. ∆I1~∆I15 in DNL(8) and DNL(16)). However, these current sources are subtractive 

in one DNL (e.g. (∆I8+…+∆I15)–(∆I1+…+∆I7) for DNL(8)), and are additive for the 

other DNL terms (e.g. (∆I8+…+∆I15)+(∆I1+…+∆I7) for DNL(16)). Therefore, the 

correlation coefficient between any two DNL terms can be expressed as 
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(Eq 3.5)  

For a large n or a large k, ρDNL is sufficiently small such that the statistical correlation 

between two DNL terms vanishes. For a small ρDNL < 0.2, the two random variables can 

be assumed as nearly statistically independent when a yield calculation is concerned as 

seen from (Eq. 3.2) and Figure 6. Although there still exists a strong correlation between 

LSB groups such as ρDNL(1, 2), their contributions on the DNL yield can be ignored 

especially for a high yield level (> 90%). By approximating statistical independence of 

the primary sources (i.e. MSB terms in (Eq. 3.4)) of the DNL errors, the DNL yield of a 

binary DAC is expressed as products of error functions. 
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(Eq 3.6)  
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Figure 10. DNL yield plots of the theoretical model and 100k behavioral MC 

simulation results for 12~14-bit binary DACs.  (A = ±0.5LSB). 

   Figure 10 shows the DNL yield plots of 12~14-bit resolution binary DAC with the 

analytical model (Eq. 3.6). The precise matching of the model and the 100k behavioral 

MC simulation results proves the validity of the assumption on the statistical 

independence between the major DNL terms in (Eq. 3.4). Impact of the correlated error 

sources between LSB terms in (Eq. 3.4) can be observed in Figure 11.  
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Figure 11. Yield estimation error for 6~14-bit binary DACs. Errors are 

averaged over 70~99.9%, 40~70%, 10~40%, and 0.1~10% yield ranges. 

   This figure shows the average yield estimation error between the simulated yield and 

the model yield for 6~14 bit binary DACs. For any resolution, the MSB DNL term (2
N-1

) 

contributes to most of the error events when the unit element has a small variation (i.e. a 

high yield level > 95%). For a slightly higher device variation, DNL(2
N-2

) can exclusively 

contribute to the error event although this case is infrequent. The same argument can be 

applied sequentially to less significant DNL terms. For this reason, our model shows 

excellent accuracy for estimating high yield levels > 70% where only MSB DNL terms (ρ 

< 0.2) contribute to the majority of the error events. For other yield ranges, the DNL yield 

is generally underestimated especially for a low resolution DAC as correlated LSB DNL 

terms may have more chances to add to the number of errors.  

3.2.3. Segmented DAC 

   The approximation used for the binary DAC and the resulting model in (Eq. 3.6) can be 

extended to explain the yield of a segmented DAC. For an N-bit segmented DAC with 

NB (number of binary bits), the most probable DNL error occurs when all the binary 

groups and one of the thermometer groups switch. For an entire input range, there are 

(2
(N-NB)

-1) worst-case transitions. From the same viewpoint of (Eq. 3.6), a statistical 

independence is assumed between the binary transitions and any one of these worst-case 

transitions (Figure 8). Therefore, the DNL yield can be approximated as a multiplication 

of the yield of the binary group (PNB) and the yield of the worst-case thermometer 

transitions (PW).  

    ≈ ×
NB W

DNL Yield P P  
(Eq 3.7)  
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PNB can be expressed as (Eq. 3.6) with replacing N by NB. PW requires a 1-D integration 

of a conditional Gaussian PDF. To illustrate the calculation using the example of Figure 

8, there are three input codes where each thermometer group switches. (Eq. 3.8) 

expresses the probability of the worst-case DNL being bounded by ±A.  
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(Eq 3.8)  

   The contribution of the binary group’s variation to the worst-case DNL is expressed in 

equation (Eq. 3.8) as x. The contribution of each of the three largest code transitions 

corresponds to the latter three terms of the equation. The difference, ∆ITk – x where ∆ITk  

is defined in (Eq. 2.2), is the DNL  contribution of an entire group of binary bits switch 

from ON to OFF while a thermometer bit switches ON. The integration bound of x in 

(Eq. 3.8) is taken from the equivalent bounding condition on DNL(2
N-3

) in (Eq. 3.4). 

Note that x is not necessarily bounded by ±A, but this simplification for high yield targets 

leads to a negligible estimation error. By substituting (Eq. 3.6) and (Eq. 3.8) to (Eq. 3.7), 

the DNL yield of a segmented DAC (only for NB = 1 ~ N-2) is expressed as 
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(Eq 3.9)  

   In this equation, σB represents the normalized standard deviation of the current sum of 

all binary groups while σT stands for the normalized current variation of a thermometer 

group. Using σI/Ī, σB and σT are expressed as (Eq. 3.10).  

   ( )2 1 ,  2= − ⋅ = ⋅NB NBI I
B T

I I

σ σ
σ σ  

(Eq 3.10)  

 (Eq. 3.9) contains a 1-D integration that can be easily implemented in any mathematical 

analysis tool (e.g. MATLAB). In Figure 12, the model accuracy is demonstrated for 

8~14-bit segmented DACs. As two extreme cases, two segmentation structures are given 

for NB = 1 and NB = N-2. The model (Eq. 3.9) matches to the simulation results very 

well. 
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Figure 12. DNL yield plots of the model and 100k behavioral MC simulation 

results for 8~14 bit segmented DACs with (a) NB = 1, and (b) NB = N-2.  

 

Section 3.3 INL Yield Expression 

   The INL yield model can be analyzed in a similar way to the DNL yield formulation. 

However, the expression is much more complicated than (Eq. 3.9) as the INL terms do 

not show such nice correlation distribution between thermometer groups. As a reference 

case, the INL correlation characteristics of the thermometer, binary, and segmented 

structures are analyzed. Based on the discussions made in section 4.2, two simple models 

are suggested per model complexity. 

3.3.1. INL Yield Estimation of a Thermometer-Coded DAC 

   (Eq. 3.2) and the two scenarios approximated the yield calculation based on a single 

random variable having the maximum variance. The same argument can be applied to the 

INL. From (Eq. 2.4), the uncertainty of the INL is maximized at the middle of the input 

range, where squared sum of the coefficients in the numerator is maximized, and then it 

gradually diminishes to zero as the input code moves away from the middle. Note that 

this argument is not dependent on the structure of the DAC.  
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(Eq 3.11)  

As for initial approach, the maximum INL is used to approximate the yield of the INL. 

For this purpose, the correlation between the maximum and all other INL terms should be 

investigated. As an example of 6-bit DACs, Figure 13(a) shows the INL’s correlation 

coefficients between each input code and the middle code (i.e. maximum variance) for 

the thermometer, binary, and segmented structure (NB = 3).  
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(a) 

 
(b) 

Figure 13.  INL characteristics of 6-bit segmented DACs. (a) INL correlation 

coefficient between the entire input code (x-axis) and code 2
N-1 

(middle). (b) INL 

variance at each input code.  

   The coefficient (ρINL) is high around the middle, and it gradually diminishes to zero as 

the input code moves away from the middle. Similarly, Figure 13(b) shows that the 

variance of the INL has a flat region around the middle and it rapidly diminishes at the 

ends. Focused on the high yield level estimation, most of the error events are contributed 

from the codes near the middle. Therefore, as shown in the first scenario in Figure 6, the 

overall yield level can be found by adjusting the power factor k in (Eq. 3.2) where the 

standard deviation is found at the middle of the input range (Eq. 3.11). If the decision 

boundary is set to be ±A (in LSB), the INL yield of a thermometer DAC can be expressed 

as (Eq. 3.12). 
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(Eq 3.12)  

   The power factor k is an empirically-fitted parameter to minimize estimation error (e.g. 

minimum sum of squared error) between the model (Eq. 3.12) and the MC simulation 

data. Since the number of elements near the middle and their correlation depends on the 

number of current sources, the fitting parameter is a function of the number of bits. From 

Figure 13(a), adding 1 more LSB to the N-bit DAC (equivalently N+1 bits) introduces 

new error sources but the overall shape of ρINL does not change. These new error sources 

must be highly correlated to the existing N-bit codes as ρINL varies smoothly. Hence 

applying the scenario 1 in Figure 6 indicates that the fitting parameter in (Eq. 3.12) is 

eventually saturate as the number of bits increases. Figure 14 shows an example of a 6-bit 

thermometer DAC. The fitting factor is 4.9. The plot shows that the theoretical model fits 

well for the yield level >50%. As (Eq. 3.12) is valid for rare failure events, the theoretical 

model also loses accuracy for estimating low yield level.  

0 5 10 15 20 25
0

10

20

30

40

50

60

70

80

90

100
INL Yield of the Thermometer & Binary DAC (6 bits)

σσσσ
I
/I (%)

IN
L

 Y
ie

ld
 (

%
)

 

 

Theoretical Model (Eq. (6))

100k Monte-Carlo Simulation

 



Chapter 3  Section 3.3 INL Yield Expression  

33 

Figure 14.  INL yield plots of the theoretical model and 100k behavioral MC 

simulation results for a 6 bit thermometer and binary DAC. 

3.3.2. INL Yield Estimation of a Binary-Coded DAC 

   While each unit current source in the thermometer-coded DAC has same contribution 

to the INL, a binary-coded DAC would have each bit weight contributing differently to 

the INL. In Figure 13(a), compared to the thermometer structure, the correlation 

coefficient shows anti-symmetry at the center of the input code, where the MSB group 

switches (ρINL = ±1). The identical behavior can be observed from (Eq. 2.4) that the INL 

itself is anti-symmetry near the middle of the code for the binary-coded DAC. This (anti-

)symmetry implies that for the binary-coded DAC, the equivalent INL yield test can be 

carried over for either left or right half of the input code. Behavioral MC simulation 

results also support this observation: the INL test range is varied from [0, 2
N-1

] to [2
N-1

, 

2
N
-1] but the yield level remains roughly constant. Due to this strong correlation of the 

INL distribution over the input code, the power factor of a binary DAC is usually smaller 

than the power factor of a thermometer DAC for a given resolution bit.  

   INL yield of a 6-bit binary DAC is displayed in Figure 14 with k factor of 3.8. The 

theoretical model shows a higher accuracy for the entire range of yield. Since the MSB 

group has the largest variance and most of the errors are caused by this group, the 

simplification to a fewer equivalent random variable fits better for the binary structure.  

3.3.3. INL Yield Estimation of a Segmented DAC 

   The error in a thermometer (or binary) DAC can be attributed to approximating high 

correlation to a dominant error source. This approximation allowed us to use a single 

term in (Eq. 3.12). A segmented DAC with a few binary-coded LSBs can be expected to 

exhibit the same behavior. For a fixed total number of bits, the segmented DAC is known 

to have the worst yield compared to a fully thermometer or a fully-binary structure [50]. 

Figure 15 shows an example of a 14-bit DAC with the last 12 LSBs assigned to the 
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binary group. The yield curve of MC simulations starts to drop sharply, and the analytical 

model of (Eq. 3.12) does not track such transition even when the curve fitting is focused 

on the high yield levels > 50%.  

   This discrepancy can be clearly visualized in Figure 13(a). From the center of the input 

code, only right half region [2
N-1

, 2
N
-1] shows similar ρINL distribution as the 

thermometer’s case. From MC simulation results, the model of (Eq. 3.12) fits precisely 

for high yield level > 50% in any arbitrary segmented DAC if the INL test is confined to 

the right half of the input code. For the left half of the input code in Figure 13(a), the 

segmented DAC shows periodical jumps in ρINL distribution. Such jumps indicate that 

more error sources are less-correlated and the INL yield degrades more than the other two 

structures (unary and binary), which makes the simplification of a single term model in 

(Eq. 3.12) less effective. 

   To extend the model to include a segmented DAC, the left and right side of ρINL are 

separately modeled as multiplication terms. Since section 3.2 shows that the error 

function can effectively model a subset of the random variables (i.e. the dominant ones), 

multiple error functions can be employed to model the different sections in Figure 13(a). 
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Figure 15. INL yield curve and estimation error of a 14-bit segmented DAC 

with the last 12 LSBs assigned to the binary group. 

 

(Eq. 3.13) shows the extended model that uses a multiplication of multiple (n) error 

functions to fit the yield curve. The decision boundary for the yield is set to be ±A (in 

LSB).  
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(Eq 3.14)  

   Note that error functions in (Eq. 3.13) can be replaced by exponential expressions [55-

56] for further simplification. The number of terms can be arbitrarily large though four 

terms in (Eq. 3.14) show extremely precise fitting results for any segmented DACs. From 

(Eq. 3.14), C2 is from the right half of the input code (Eq. 3.12) while C1 has a slightly 

larger value than C2. As explained in Appendix, when the two random variables have 

different variances, (Eq. 3.2) can be modified to fit better by adjusting σmax with an 

additional fitting parameter c×σmax. Combining C1 and C2 enhances flexibility of the 

model to fit the initial curvature of the yield at a high level > 90%. The last two terms are 

from input code 2
N-3 

and 2
N-4

, respectively. As the value of ρINL in Figure 13(a) drops 

below 0.35 at those input codes, their error contributions can be modeled as separate error 

function multiplied to C1 and C2 terms (Figure 6). All the four terms are used to fit the 

yield curve for the entire region with minimum sum of squared errors.  

   Examples of this new model are plotted in Figure 16. Each plot shows three lines: a 

complete model using all four terms in (Eq. 3.13), a model-order reduction by ignoring 

the last two terms in (Eq. 3.13), and 100k behavioral MC simulation results. The two-

term model accurately tracks the simulation results for the yield   level >70%. As 

mentioned previously, the order of the model depends on the DAC architecture. A single-

term model in (Eq. 3.12) can reliably estimate the yield > 70% for binary-coded and most 

thermometer-coded DACs. 
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Figure 16. INL yield plots of the segmented DACs for 12 and 14 bits (NB = 7).  

3.3.4. Single-Term Model Simulation Results 

   The simulation results of the single-term yield model in (Eq. 3.12) are plotted in Figure 

17 for thermometer DACs and binary DACs, respectively. The resolution of the DACs is 

swept from 3-bit to 14-bit with the decision boundary placed at ±0.5 LSBs.  

   For each DAC resolution, the single-term yield model is listed the corresponding fitting 

parameter k (in (Eq. 3.12)). The fitting parameter k is found to minimize the sum of 

errors for the yield level above 70%, and the results are summarized in Table 3-1.  

Table 3-1 Resolution bits and the required power factor in (Eq. 3.12) 

Bits (N) 
Power (k) 

BITS (N) 
Power (k) 

Unary Binary Unary Binary 

3 2.0 1.3 9 6.0 5.23 

4 2.97 2.05 10 6.26 5.51 

5 3.86 2.87 11 6.4 5.75 

6 4.63 3.65 12 6.5 5.9 

7 5.2 4.3 13 6.6 6.06 

8 5.7 4.83 14 6.6 6.08 
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(a) (b) 

Figure 17. INL yield plots of the theoretical model and 100k behavioral MC 

simulation results for 8~14-bit (a) thermometer DAC and (b) binary DAC.  

 

 

Figure 18. Power factor k for thermometer DAC and binary DAC as a function 

of the number of bits of resolution. 

   As expected in section 3.4.1, the power factor converges as the number of bits increases 

(Figure 18). For a low resolution thermometer DAC (3~7 bits), the k factor varies rapidly 

from 2.0 to 5.2. However as the number of bits exceed 8, the parameter gradually 

converges to 6.6. This convergence is because at higher resolution, the added elements 
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result validates similar claims [49] that the INL yield of a thermometer DAC or a binary 

DAC does not vary if the normalized current variation (σI/I) is suppressed by half for 

every two bit increase in resolution.  

3.3.5. Multi-Term Model Simulation Results 

   This section provides the complete table of the fitting parameters used in the proposed 

INL yield models. As the parameters are structure dependent, behavioral MC simulations 

are carried over for every available combination of thermometer and binary structure. 

The simulation is limited up to a 14-bit DAC due to convergence of the parameters. The 

results of the fitting parameters for the multiple-term model are presented in this section. 

As indicated in Section 3.4.3, the last two terms in (Eq. 3.13) do not need to be included 

in using the model when only estimating for high yield. The parameters (k1~k4) are fit 

using least square fitting across the entire yield curve. Table 3-2 shows all the parameters 

including fully thermometer-coded (NB = 0) and fully binary-coded (NB = N-1) 

structures.  

Table 3-2 Resolution bits and the required power factor in (Eq. 3.13) 

Bits Power Factor Bits Power Factor 

N NB k1 k2 k3 k4 N NB k1 k2 k3 k4 

6 

0 0.53 3.7 1.7 8.3 

11 

5 3.03 2.63 5.2 12.4 

1 0.75 3.7 2.3 7.4 6 2.89 3.45 4.1 16.3 

2 0.77 4.13 2.5 5.1 7 3.44 3.38 4.6 8.2 

3 0.72 4.9 0.9 3.5 8 3.55 4.29 0.3 12.2 

4 1.47 3.73 0.0 0.0 9 4.7 2.19 0.0 0.0 

5 0.03 3.6 0.2 0.9 10 1.67 3.39 0.0 2.7 

7 

0 1.1 3.4 2.4 9.8 

12 

0 2.11 3.12 2.9 16.0 

1 0.9 4.05 1.8 10.9 1 1.89 3.58 2.4 17.0 

2 1.33 3.76 2.8 8.6 2 1.97 3.57 2.3 17.6 

3 1.54 4.0 3.0 5.8 3 2.26 3.23 3.2 15.7 

4 1.69 4.5 1.3 4.1 4 2.41 3.18 3.3 17.7 

5 2.5 3.2 0.0 0.0 5 2.85 2.78 4.3 15.7 

6 0.38 3.77 0.0 1.5 6 2.95 3.03 4.0 19.4 
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8 

0 1.55 3.13 3.0 10.6 7 3.51 2.75 5.1 15.1 

1 1.39 3.66 2.3 12.0 8 3.73 3.26 4.2 12.1 

2 2.04 2.97 3.8 9.4 9 3.69 4.34 0.4 11.1 

3 2.29 3.0 4.4 8.4 10 5.13 1.84 0.0 0.0 

4 2.03 4.15 2.8 8.6 11 1.97 3.11 0.3 2.3 

5 2.51 4.17 1.9 2.3 

13 

0 2.35 2.77 3.8 13.5 

6 3.21 2.95 0.0 0.0 1 2.2 3.17 2.8 16.5 

7 0.88 3.55 0.4 0.9 2 2.28 3.17 2.3 19.6 

9 

0 1.54 3.48 2.7 11.9 3 2.47 2.8 4.5 12.1 

1 1.75 3.34 2.8 12.9 4 2.52 2.92 3.7 16.2 

2 1.59 3.95 1.4 19.2 5 2.72 2.94 2.7 22.2 

3 2.22 3.21 3.5 13.5 6 2.66 3.35 2.6 22.1 

4 2.56 3.2 4.0 11.8 7 3.25 2.71 4.9 15.5 

5 2.59 3.9 3.5 9.1 8 3 3.74 3.9 17.7 

6 2.76 4.54 0.9 5.8 9 3.94 3.03 5.6 6.3 

7 4.12 2.31 0.0 0.0 10 4.37 3.43 1.8 8.6 

8 1.19 3.54 0.0 2.0 11 5.36 1.68 0.0 0.0 

10 

0 1.96 3.02 3.6 11.2 12 1.97 3.2 0.0 3.1 

1 2.07 3.02 3.4 13.2 

14 

0 2.4 2.8 3.8 14.0 

2 1.85 3.63 2.4 15.9 1 1.86 3.79 1.6 20.4 

3 2.33 3.08 3.6 14.1 2 2.26 3.06 3.9 13.6 

4 2.71 2.8 4.9 11.9 3 2.36 3 3.8 14.6 

5 2.98 3.04 4.5 11.7 4 2.23 3.37 2.8 18.3 

6 3.24 3.33 4.4 8.1 5 2.94 2.29 5.5 10.9 

7 3.28 4.36 0.0 11.7 6 2.87 2.63 4.9 14.2 

8 4.48 2.21 0.0 0.0 7 2.81 3.07 4.3 16.5 

9 1.45 3.49 0.0 2.1 8 3.28 2.85 4.2 19.0 

11 

0 1.99 3.19 3.1 13.6 9 3.32 3.41 3.8 20.8 

1 2.05 3.15 3.5 12.9 10 3.91 3.16 5.8 6.6 

2 2.18 3.1 3.7 12.9 11 4.42 3.48 2.1 6.0 

3 2.3 3.11 3.6 15.1 12 5.46 1.64 0.0 0.0 

4 2.24 3.59 2.5 19.7 13 1.99 3.27 0.3 1.8 

 

   Similar to the single-term model, the first two power factors (k1 and k2) converge as 

the number of bits increases. The power factor k3 and k4 has a dependency on the 

number of bits assigned to the binary group (NB) and diminishes as NB is larger. This 



Chapter 3  Section 3.3 INL Yield Expression  

41 

effect is explained by the single-term model that accurately addresses the yield curve of a 

binary DAC for the entire range of the current variation. Figure 19 compares different 

yield models for a 14-bit segmented DAC (NB = 10). As seen from the figure, the multi-

term model precisely matches to the MC simulation results. For other models, only [49, 

51] show reasonable accuracy for high yield level > 99%.  The required Z-table for [49] 

is generated from behavioral MC simulation results of a 10-bit thermometer DAC.  

   Accuracy of the models is summarized in Table 3-3 where the estimation errors of 

normalized current variation (σI/Ī) are listed at different target yields. Each value in the 

table is   selected from the worst-case estimation error when each model is applied to 

6~14 bit arbitrarily segmented DAC. The values in percentage are insensitive to the 

decision boundary (A). 

 

 

Figure 19. Comparison of INL yield models for a 14-bit segmented DAC 

(NB=10). 

 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

10

20

30

40

50

60

70

80

90

100
INL Yield of 14-bit Segmented DAC (NB = 10)

σσσσ
I
/I (%)

IN
L

 Y
ie

ld
 (

%
)

 

 

100k MC Simulation

Eq. (2.14)

Ref [46]

Ref [47]

Ref [48]

Ref [49]

Ref [51]



Chapter 3  Section 3.4 Discussions on Current Distribution  

42 

Table 3-3 The worst estimation error of the normalized current variation (εMAX(σI/Ī)) for 

6~14-bit arbitrarily segmented DAC 

Target 

Yield 
[46] [47] [48] [49] [51] (Eq. 3.13) 

99% 31.3% 22.1% 46.7% 7.1% 7.3% 2.2% 

95% 38.7% 29.6% 45% 8.2% 8.7% <1% 

90% 42.6% 35.2% 44% 9.4% 9.6% <1% 

 

   In terms of geometry estimation, models in [46~48] may incorrectly estimate the area 

of the unit cell by more than 50%, models in [49, 51] by 15%, and (Eq. 3.13) by less than 

5% when the target yield is 99%. If only high resolution (>10 bit) thermometer or binary 

DACs are considered, [49] and [51] produce less than 1% error. The accuracy of other 

models degrades as the target yield decreases to 90% while the proposed multi-term 

model stays in a small error bound. 

   Since the yield estimation must include lot-to-lot variation, the overall yield must be 

averaged from the expected range of the current variation. Overall yield can be greatly 

affected by the low-yield lots. Therefore, the yield model should maintain reasonable 

accuracy at moderate yield level such as > 90%.   
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(Eq 3.15)  

Section 3.4 Discussions on Current Distribution 

    This section provides measurement data from an 8-bit current-steering DAC fabricated 

in a 90-nm CMOS technology. The measured currents are used to estimate the DNL and 

INL yield with respect to the decision boundary. The measurement data can include 
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diverse effects on the current distribution such as WPE, STI-stress, geometric gradient 

[39-40], and device non-linearity (I-V curve). As expected, the unit cell statistical 

distribution is nearly but not entirely Gaussian. The impacts of device non-linearity on 

the INL yield are analyzed in more details using HSPICE MC simulations. 

 

 

Figure 20. Die microphotograph of an 8-bit current-steering DAC. 

 

Figure 21. Diagram of current cell distribution 
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3.4.1. Yield Estimation from Measurement Data 

    Figure 20 shows the micrograph of the testchip. The die area is 2×1 mm
2
. In Figure 21, 

the DAC core is comprised of unit current source arrays with seven thermometer groups 

and five binary groups. The twelve bit (7+5) input signals are coming from a data SRAM. 

Auxiliary control signals Don and SEL can toggle on/off state of each current unit cell by 

programming its dedicated memory for biasing. Figure 22 shows the detailed schematics 

of the unit current source.  

 

 

Figure 22. Unit current cell with a dedicated memory for biasing. 

 

    There are more than 340 unit current cells in a single chip including redundancy. The 

testchip is designed such that the current of each unit cell can be measured independently 

and the DAC can be organized in arbitrary segmentation structure if the DAC output is 

measured statically. More than 1,000 cell currents are measured from multiple chips 

(three) and stored as a set of random number generator. Chip-to-chip variations are 

corrected by matching mean of each data group. The distribution of the measured 

currents is shown in Figure 23(a).  
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    The amount of non-ideal deflection can   be visualized using a Quantile-Quantile (Q-

Q) plot [58]. In the Q-Q plot of Figure 23(b), a slight deviation from the reference line 

indicates that the tails of the current distribution is weakly distorted by the device 

nonlinearity and geometric gradient. The measured normalized current variation (σI/I) is 

9.55%.  Since the current variation is a fixed quantity, the decision boundary (A) is swept 

to produce a yield curve varying from 0 to 100%. 

    As the number of current sources is limited, random data are generated from the 1,000 

measurement set. Figure 23(c) shows the flow diagram of the validation methodology.  A 

total 100k 8-bit arbitrarily segmented DACs are generated based on the measurement 

data. In each case, the maximum DNL and INL is compared to a variable decision 

boundary ranging from ±0.1 LSBs to ±4 LSBs. The DNL and INL yield curves for the 

analytical model and 100k Pseudo-MC simulation results are shown in Figure 22 for 8-bit 

segmented DACs.  

    Figure 24 compares the yield levels of three different structures: thermometer, binary, 

and segmented. The structure sensitivity on each linearity yield curve is quite different. 

As shown in the Figure 24(a), the DNL yield improves a lot as the structure changes from 

fully binary to fully thermometer. Although Figure 24(b) shows that the INL yield is 

relatively insensitive to the structure, the segmented DAC has the worst-case yield level, 

followed by the thermometer, and the binary DAC shows the best yield.  

    The sensitivity of the decision boundary on the yield is observed from Figure 24. As an 

example, the yield of the 8-bit segmented DAC with the given measurement data is 95% 

when the decision boundary is at ±2 LSBs. If the decision boundary is at ±2.5 LSBs, the 

yield level is over 99%. Since other types of nonlinearity such as finite output impedance 

of the unit current source may also contribute to the INL [22], a proper decision margin 

should be considered to maintain the target yield level. 
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Figure 23. (a) Histogram of the measured current data. (b) Q-Q plot of the 

measured current data. (c) Procedure of pseudo MC simulations. 
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(b) 

Figure 24. (a) DNL yield and (b) INL yield curves of 8-bit segmented DACs.  
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    Figure 24 shows that the analytical models can be reliably used for estimating the yield 

of the two linearity metrics. However, a slight deviation is observed for the DNL yield of 

the thermometer-coded DAC. This deviation caused by the slight non-Gaussian current 

distribution is more discussed in the next section.  
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Figure 25. (a) Bias point of a current source and its corresponding current 

distribution. Q-Q plots of current data (normalized by its mean) versus standard 

normal distribution: (b) with the current source biased at a low overdrive voltage 

and (c) with the current source biased at a high overdrive voltage.  
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3.4.2. Impact of Device Nonlinearity 

    Device nonlinearity becomes substantial when the devices in a unit cell are biased at a 

low overdrive voltage and have small area (∆vth↑) or large aspect ratio (W/L). Figure 

25(a) shows such nonlinear deflection of the current distribution, generated by HSPICE 

MC simulation. Near the tails of the distribution, the CDF of the current cell’s variation 

deviates from the CDF of the standard Gaussian distribution.  
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Figure 26. (a) INL yield curve of several 6-bit segmented DACs. Current data 

are generated from HSPICE MC simulations. (b) Similar INL yield curve of 

several 10-bit segmented DACs. 

 

    Figure 26 shows the INL yield simulated using the nonlinear distribution of Figure 

25(b) for several DAC designs. The yield is derived from 100k MC simulations at each 

case. Figure 26(a) and (b) show that the yield curves of three different 6-bit and 10-bit 

segmented DACs are not sensitive to nonlinearity and still matches accurately to our 

model. Nonlinearity does not have significant impact on the yield curve because of two 

reasons. First, since a noticeable nonlinear deflection is accompanied by large current 
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variation (σI/I), the portion of the yield curve that is affected is where the yield is very 

low and not a concern for a practical high resolution DACs. Second, since INL is a 

cumulative sum of individual current variations, the Central Limit Theorem leads to 

relatively Gaussian behavior near the middle of the input code.  
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Figure 27. DNL yield plots of the model and 100k HSPICE MC simulation 

results for 10-bit segmented DACs with NB = 0~3.  

 

    The same HSPICE simulation is performed for the DNL test. In Figure 27, results from 

100k HSPICE MC simulation for 10-bit segmented DACs with NB = 0, 1, 2, and 3 are 

plotted with the analytical model. Except for a fully thermometer-coded DAC (NB=0), 

the model prediction matches the simulation results well. From the same viewpoint of the 

INL characteristics, the Central Limit Theorem leads to asymptotic Gaussian behavior for 

each thermometer group and MSB groups of the binary section. Therefore, the DNL yield 

models can be applied to most of segmented DACs that are built with active unit cells 

while thermometer-coded DAC may result an optimistic estimation of the DNL yield. 
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3.4.3. DNL and INL Yield Comparison 

    Design targets typically need to satisfy both of the INL and the DNL requirements. For 

the same target yield level and the decision boundary, either the INL or the DNL may 

determine the yield. As shown in Figure 28 (only 14-bit results are shown but other 

resolutions have similar plots), for 6~14-bit arbitrarily segmented DACs, the DNL yield 

is more error-tolerant compared to the INL yield as long as NB < N-2. Using the two 

models, more diverse yield levels can be compared between the two metrics.  
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Figure 28. DNL and INL yield plot of 14-bit segmented DACs. A = ±0.5 LSB. 

 

Section 3.5 Summary of DAC Yield Models 

    Simple analytical formulations of the DNL and INL yield for any arbitrarily segmented 

DAC are presented. Combination of the two models can rapidly estimate yield levels for 

a given unit cell variation. The inverse of the yield models can be used to explore the 

maximum resolution of the system for a pre-defined area and a decision boundary (A) or 
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to pre-estimate the necessary device geometry and the bias condition for a target yield 

and A. The choice of the model depends on the segmentation structure of the DAC.  

    Each DNL yield model has a unified formulation across different resolution bits so the 

model can be easily implemented in a mathematical tool. The INL model is based on 

fitting parameters and the complete table for 6~14bit arbitrary segmented DAC is given 

as a table (3-2). This work clearly showed the condition when the DNL yield requirement 

is lower than the INL yield requirement such as NB ≥ N-2.  
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Chapter 4  

Background on SRAM Stability 

 

In this chapter, the existing definitions on the SRAM cell stability is reviewed. Section 

4.1 and Section 4.2 discuss static and dynamic stability respectively including the 

definition and various metrics. Section 4.3 describes circuit techniques for assisting read 

and write stability. These techniques are closely related to measuring the stability of a 

cell without incurring hardware overhead. Section 4.4 reviews previously  published 

BIST circuits. Two of the stability metrics reviewed in this chapter is used in Chapter 5 

as the target metric for the proposed stability estimation 

 

Section 4.1 Static Stability 

    SRAM failure can be generally categorized by 1) read failure and 2) write failure 

[107]. The read failure is either due to unstable read stability of the cell or due to too 

small read current to create sufficient voltage swing that can be detected by the sense 

amplifier. Each case is characterized as read stability, IREAD, and write-ability. These 
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error types are defined as “soft fails.” According to [87], the occurrence of hard fails
1
 due 

to defective cells is diminishing by process improvement, while the soft failure rate is 

increasing by the device mismatch. In this section, the static stability margins for the read 

and write are reviewed and their benefits and limits are discussed.  

 

 

Figure 29. Trend of SRAM hard and soft fails. Courtesy of [87]. 

 

4.1.1. Static Noise Margin 

    Static noise margin (SNM) is a widely used term to quantify static logic’s stability in 

terms of the tolerable amount of DC noise voltage injected at the data storage nodes 

without changing the stored states. Read SNM (RSNM) and write noise margin (WNM) 

are extended definitions of the static noise margin [68-69].  

    Figure 30 shows the schematics of the 6T SRAM cell for the test of the static read 

disturbance. The word-line (WL) is statically driven to the nominal VDD level and the bit-

                                                
1
 Time dependent aging effects such as negative bias temperature instability (NBTI) shift the threshold voltage of the PMOS 

device, which affects the failure conditions [109-112]. 
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lines (BL) are tied to VDD that represents the stress during the initial phase of the read 

access. In a normal operation, the word-line is accessed by a fixed pulse and the bit-lines 

are slowly discharged from the pre-charged level. These two effects create dynamic read 

stability issues that are discussed in section 4.3. The voltage transfer characteristics 

(VTC) of the two inverter pairs can be independently drawn by controlling the internal 

nodes VR and VL. Figure 30(b) shows the two VTCs from each half of the SRAM cell. 

The RSNM is defined as the maximum square that can be fit into the enclosed area. 

Depending on the direction of the area, RSNM can be defined as RSNML or RSNMR.  

    The WNM is defined in a similar way. Instead of driving the two BLs to VDD, one of 

the bit-lines is discharged to ground to change the state of the cell. Figure 31(a) shows the 

schematics during the static write access. The WNM is defined as the minimum square fit 

into the enclosed area by the two VTCs (Figure 31(b)). The RSNM and WNM are to 

represent the maximum tolerable noise that can be injected into the internal nodes of the 

SRAM cells without disturbing the intended operation.  

    The static margins are determined by relative strength between cells. For the read 

stability, the strength ratio between the pull-down (PD) and access (AC) device is 

important to reliably discharge the bit-line. The device size ratio between PD and AC is 

defined as pull-down ratio (β). During write access, the access device pulls down the 

node storing ‘1’ to ground. The initial fighting between the pull-up (PU) and access (AC) 

device determines the write-ability. The device ratio between PU and AC is defined as 

pull-up ratio (γ). As the SNM and WNM are determined by device strength ratio, the 

variations of the margins can be expressed as threshold voltage variation of each device 

[71-74]. These analytical models are widely used to explore tolerable threshold voltage 

variations to guarantee 6σ yield of the static margins.  

    Despite the simple interpretation, the actual measurement of the RSNM and the WNM 

requires an internal node access of every single cell and graphical analysis on the 

measured data. This internal access demands additional wiring and switches to the 6T cell 
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layout structure, which cannot be feasible in a dense SRAM array. Also they cannot 

model the dynamic behavior of the pulsed read/write access such that the static margins 

generally underestimate the dynamic read stability or overestimate the dynamic write-

ability. 

 

 

 
(a) (b) 

Figure 30. (a) Schematics of the 6T SRAM cells and (b) voltage transfer 

characteristics (VTC) during the static read operation. 

 

 

 
(a) (b) 
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Figure 31. (a) Schematics of the 6T SRAM cells and (b) voltage transfer 

characteristics (VTC) during the static write operation. 

 

4.1.2. SINM and WTI 

    Static current noise margin (SINM) and write trip current (WTI) are alternative metrics 

to address the read stability and write-ability of the SRAM cell [75]. In this measurement, 

bit-lines are tied to the supply level, and the access transistors are turned on, and a tester 

voltage source is applied to the node at the “low” state (VR in Figure 32(a)). Sweeping 

the test voltage gives two stable and one meta-stable points where the pull-down and 

pull-up currents created by each device balance. At these points, the input tester does not 

conduct input current (Iin = 0A). Figure 32(b) shows the VTCL by sweeping the node 

voltage VR using the input tester. The amount of the input current (Iin) is plotted in the 

same figure, which is called N-curve.  

    The voltage distance from the initial condition ‘A’ to the meta-stable point ‘B’ is the 

required noise magnitude to flip the initial state. This distance between A and B is called 

static voltage noise margin (SVNM) for the read access. The maximum amplitude of the 

input current between A and B is called static current noise margin (SINM), and this 

current quantifies the amount of charges necessary to change the cell state. [75] noted 

that although these two metrics represents the same read static margin, their values can be 

greatly different depending on their dynamic stability. For example, the voltage margin 

such as RSNM or SVNM is determined by device ratio. However, the dynamic 

characteristics are also strongly dependent on the maximum tolerable charge injection 

without flipping the state; hence SINM has an additional dependency on the device size 

(plus ratio).  

    In opposite way, during write operation, the initial condition at ‘C’ should be reversed 

back to ‘A’ for successful programming. Even during this write test, the bit-lines are still 
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tied to VDD that implies the worst-case scenario for pessimistic write-ability estimation. 

The voltage distance between C and B is defined as write trip voltage (WTV) while the 

peak current is defined as write trip current (WTI). While WTV mostly depends on the 

pull-up ratio (effective width of pull-up device/effective width of the access device), WTI 

also depends on the device size (e.g. cap). 

    From the new definitions of SINM and WTI, [75] revealed that the dynamic stability 

cannot be expressed by RSNM or WNM. However, the tester voltage source required for 

SINM or WTI has to access the internal nodes of every single SRAM cell. In addition, as 

the word-line and bit-line are always driven high, this testing setup does not properly 

addresses the dynamic issues such as pulse width of the WL access or bit-line cap. Later 

in [118], the authors claimed that WTI and WTV defined in N-curve do not properly 

characterize the write-ability under a pulsed word-line access condition.  

 

 
(a) 
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(b) 

Figure 32. (a) Test setups for SVNM and SINM (plus WTV and WTI). (b) VTC 

and N-curve that defines SVNM, SINM, WTV, and WTI. 

 

4.1.3. Read Retention Voltage 

    Read retention voltage (RRV) is a measurable quantity for an in-situ cell by changing 

the cell supply (SRRV) or word-line driver supply (WRRV) [80]. As these two metrics 

are highly correlated, this paper focuses on SRRV. This technique can be used to extract 

the cell’s read stability without changing the cell layout. The approach measures the 

lowest cell supply voltage before disturbing the stored bit. From Figure 33(a), all bit lines 

are tied to the supply line with the word-line on, and the cell supply voltage (VCELL) is 

swept from high to low. At the beginning of the test, ‘0’ is written into the target cell 

hence VR stores a low state. Next, VCELL scales down by a predefined step ∆V, and then 

the bit-line current (IBL) is measured. If the data is not changed, non-zero amount of 
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current can be measured. This procedure is repeated until the stored bit is flipped. At this 

cell supply level, IBL suddenly drops to zero. The amount of the supply voltage scaling is 

recorded as the SRRV.  

    This process is conceptually illustrated in Figure 33(b). This plot is drawn based on the 

read access outlined in Figure 33(a). During the SRRV test, the internal node VL is pulled 

up high to VCELL and this level is scaled down by a multiple of ∆V. The initial flat part 

(in Figure 33(b)) of the VTCL shifts linearly downward by ∆V. One observation is that 

the “tail” of the VTCR does not shift unless VCELL reaches a certain voltage level such 

that NACL turns on. For every shift in supply of ∆V, the enclosed area is also linearly 

decreased. Due to the asymmetry between the left and right side inverters, one of the 

cross-sections of the two VTCs may have a smaller enclosed area. When VCELL drops to a 

sufficiently low level, the VTC curves have only one stable point and the stored data is 

lost. In the case of Figure 33(b), where the enclosed area of the right side is larger than 

the left side, a 1 to 0 (i.e. B to A) transition is not likely to happen while 0 to 1 (i.e. A1 to 

Bf) can be easily detected with a small VCELL variation. Depending on the direction of the 

flipping, the SRRV can be divided into SRRVL and SRRVR.  

    As reported in [117], SRAM cell’s read stability is critically affected by the cell supply 

level. Other stability enhancing techniques such as reverse body bias or adjustment of the 

word-line driver supply level have relatively small impact on the read stability. 

Therefore, a proper cell supply level should be chosen based on the SRRV distribution to 

minimize the read disturbance.  
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(a) (b) 

Figure 33. (a) Schematics of the 6T SRAM cells and (b) VTC variations during 

the static read access by sweeping the cell supply. 

 

    Figure 34 shows how the SRRV is correlated to the RSNM. This scatter plot is from 

MC simulation results in a 45nm CMOS technology. For relatively unstable cells, the 

SRRV test effectively extracts the enclosed area by the VTCs as seen in Figure 33(b), 

leading to a high correlation to the RSNM. However, the scatter plot becomes gradually 

dispersive as the RSNM is higher. When the cell supply scales down, the flat part of each 

VTC should be linearly scaled for ideal extraction of the enclosed area. When the cell is 

highly stable such that the cell supply needs to be scaled to a significantly low level to 

flip the state, the access transistor (NACL) turns on. As a result, the internal node storing 

‘1’ (VR in Figure 33(a)) is partially pulled up by NACL preventing the cell from flipping. 

The measured SRRV is greater than if the measurement is without the influence of NACL. 

This error deflects the scatter plot in Figure 34(a) when the SRRV is larger than 35% of 

the nominal supply level (VDD). This effect indicates that the SRRV is more useful for the 

cells close to failure.  

    The correlation can be improved with a modification of the SRRV technique by 

suppressing the unwanted pull-up of the access device. In Figure 33(a) during the SRRVL 
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measurement, if BLB is tied to VCELL (not to the nominal VDD), then NACL does not raise 

VL above VCELL. The elimination of this extra pull-up strength improves the linear 

correlation between the SRRV and the RSNM as shown in Figure 34(b). The coefficient 

of determination (R
2
) is improved from 0.75 to 0.84. Note that for SRRVR measurement, 

the voltage setups of BL and BLB should be switched.  

    Even though the RRV is focused on the characterization of the static stability of the 

SRAM cell, this dissertation proposes dynamic SRRV that captures the dynamic 

disturbance arising during the read access. The dynamic SRRV is introduced in section 

4.3. 

  
(a) (b) 

Figure 34. Correlation scatter plot between the RSNM and the SRRV (10,000 

MC simulation results in a 45nm CMOS technology). The results are normalized 

by the nominal supply level (VDD). (b) Modified SRRV simulation. 

 

4.1.4. Write Trip Voltage 

    Similar to the concept of RRV, the write-ability of a cell can be expressed as the 

marginal voltage of the bit-line (BWTV) or the word-line (WWTV) during the write 

operation [76-77]. The BWTV is defined as the maximum tolerable voltage on the low 
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bit-line side for the successful writing of the wanted data bit without wasting too much 

energy for discharging the bit-line cap [75], [78]. In Figure 35(a), if the BLB voltage is 

not fully low, the internal state of the 6T cell resists against the forced state reversal by 

the write access. The maximum tolerable non-zero bit-line voltage effectively represents 

how easily the cell can change its state during the write access and how the cell is robust 

against noise injected at the low-side bit-line. The WWTV is defined as the minimum 

word-line voltage for the successful programming of the cell. As is already verified from 

the measurement data [80], these two metrics are highly correlated so this paper focuses 

on the BWTV. 

 

 

 

(a) (b) 

Figure 35. (a) Schematics of the 6T SRAM cells and (b) VTC variations during 

the static write access by sweeping the low side bit-line voltage. 

 

    Similar to the SRRV measurement, the BWTV can be measured without change of the 

cell layout. From Figure 35(a), one of the bit lines storing ‘0’ is tied to VDD, and other bit-

line storing ‘1’ is swept from high to low. The VTCs under this condition is named as A1 
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in Figure 35(b). If the given cell has a positive SRRV (i.e. nonnegative read stability), a 

non-zero IBL can be measured. As VBLB scales down linearly, the operating point moves 

from A1 to Bf where IBL becomes zero. This bit-line voltage is recorded as the BWTVL. 

The BWTVR can be tested on the opposite bit line.  

    Although the BWTV is representing the static write-ability of the SRAM cell, it also 

characterizes well the dynamic behavior during write access. The dynamic BWTV is 

introduced in section 4.3. 

    This section reviewed the published static read stability and write-ability metrics. 

Among these definitions, only SRRV (or WRRV) and BWTV (or WWTV) can be 

applied to the given memory array without changing the major structure. In the following 

section, the dynamic characteristics of the read and write access is reviewed. Based on 

the discussions, the dynamic SRRV and BWTV are proposed that are used as a primary 

way to gauge the dynamic stability of 6T SRAM cell. The validity of the metrics is 

verified using the test chip built in a 65nm CMOS in Chapter 6. 

 

Section 4.2 Dynamic Stability 

4.2.1. Dynamic Stability 

    Although the conventional design methodology of SRAM bit cell highly depends on 

the static margin, the soft error caused by dynamic behavior is depicted in recent 

literatures [113-119]. During the read access, the cell is stressed by a short pulse width 

for high performance SRAM. This pulse width may not be sufficient to inject a large 

amount of charge to the internal node to flip the cell state. Hence, the dynamic read 

stability is greater than the conventional RSNM that is extracted from the worst-case 

scenario with the infinite access time. The opposite situation can be expected for dynamic 

write access, where a certain amount of charge should be extracted from internal nodes 
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during the access time. Literatures in [117-118] used adjustable pulse generator to 

measure the minimum pulse width for read disturbance or successful write. In [117], the 

measured pulse width shows a large number of outliers for the read disturbance while the 

write access shows better correlations. The major problem of the author’s claims is that 

they used timing metric to the voltage (or current) metrics defined in Section 4.2. 

Unfortunately, none of the literatures clearly addressed the correlation between the 

identical control factors such as voltage-to-voltage with fixed access timing. In the next 

section, this dissertation proposes two dynamic stability metrics that are more realistic in 

SRAM operation. The main idea is to fix the access time, and the cell stability is 

measured statically or dynamically by sweeping a supply source (e.g. cell supply or 

word-line supply). The simulation results show an excellent correlation between the two 

metrics. 

 

4.2.2. Dynamic SRRV 

    As the SRRV is measured by tying the bit-lines and the word-lines to static voltage 

sources, the measurement does not consider many of the dynamic behavior from a short 

access pulse width when a cell is normally accessed. The measurement of the static 

stability assumes infinite capacitance on the bit-line.  This assumption leads to the worst 

disturbance to the internal node, which results in underestimation of the actual read 

stability. The actual read failure is strongly affected by the time constant of the internal 

node.  

    Figure 36(a) shows an example of pulsed read access with different cell supply levels. 

If the given cell is sufficiently stable at high VCELL, the internal nodes does not flip during 

the access time (TW) as in Figure 36(b). Figure 36(c) shows a read failure when VCELL is 

lowered and the cell becomes unstable. As is done for the static SRRV, the dynamic 

SRRV with a fixed TW can be defined by the changed in VCELL required to flip the cell’s 
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state. From the definition, the dynamic SRRV with infinitely long TW is equivalent to the 

static SRRV. In Figure 36(c), the transient of the internal node voltages indicate that the 

dynamic stability not only depends on the static noise margin of the cell but also depends 

on the time constant of the internal nodes [117-118]. However, if the stability estimation 

is focused on the cells close to failure, a strong correlation can be observed between the 

static and the dynamic behaviors.  

 
(a) 

  
(b) (c) 

Figure 36. (a) Simulation setups for the dynamic SRRV measurement. Internal 

node voltages (b) at high VCELL and (c) at reduced VCELL. 

 

    Figure 37 depicts such correlation when TW is (a) 250ps and (b) 100ns. The dynamic 

SRRV is generally larger than the static SRRV but the amount of such improvement 
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depends on the access pulse width. The excellent correlation near failure is because their 

weak internal nodes are flipped due to the rising edge of the word-line signal and are not 

influenced by the time constants of internal nodes. By extending the access time, the cell 

behavior is closer to quasi-static such that the strong correlation extends for more stable 

cells as in Figure 37(b) (TW =100ns).  

    Therefore, the static SRRV (SRRV hereinafter) is a valid metric to characterize both of 

the static and the dynamic stability of the SRAM cells near the tails of the stability 

distribution. Since the environmental issues such as the bit-line capacitance and the slope 

of the word-line transition cause estimation errors of the dynamic stability, the SRRV sets 

the pessimistic boundary of the cell supply voltage with the worst disturbance scenario 

during the read access. In Chapter 6, the relation between the static and dynamic SRRV is 

verified from measurement data in 65nm CMOS. 

 

  
(a) (b) 

Figure 37. Correlation plot of the static SRRV and the dynamic SRRV 

measured with (a) 250ps and (b) 100ns access time.  
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4.2.3. Dynamic BWTV  

    Similar to the concepts of the dynamic SRRV, the dynamic write-ability (BWTV) can 

be defined with pulsed access (Figure 38(a)). The word-line is accessed for a fixed time 

(TW) while the low-side bit-line voltage is slowly changing to low. If the bit-line voltage 

is not sufficiently low (Figure 38(b)), the internal state does not fully change during the 

access time and the write fails. For longer TW, the probability of the write success 

increases such that the dynamic BWTV converges to the static BWTV.  

 

 
(a) 

  
(b) (c) 

Figure 38. (a) Simulation setups for the dynamic BWTV measurement. Internal 

node voltages (b) at high VBLB and (c) at reduced VBLB. 
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Figure 39 shows the correlation plots between the dynamic and the static BWTV with 

250ps and 100ns access time. As the state change is strongly dependent on the 

discharging speed of PPUL and NACL in Figure 35(a), the required bit-line voltage scales 

down for a narrower pulse width. Interestingly, the dynamic and the static BWTV show 

very linear correlation over the entire range
2
. Such high correlation enables the static 

BWTV to again be a valid metric to extract the distribution of the dynamic write-ability. 

The measured static and dynamic BWTV are provided in Chapter 6. 

 

  
(a) (b) 

Figure 39. Correlation plot of the static BWTV and the dynamic BWTV 

measured with (a) 250ps access time and with (b) 100ns access time. 10,000 MC 

simulation results are used in 45nm CMOS. 

 

Section 4.3 Read and Write Assist Circuit Technique 

    To reliably reduce the SRAM’s power supply level (for leakage and active power 

reduction), the read stability and write-ability should be guaranteed. Most of the existing 

                                                
2
 Similar observation is claimed in [117-118] that the minimum write access time to flip the state under fixed bias has a close 

correlation to the static BWTV. 
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techniques are based on controlling the cell supply (VCELL), the word-line signal level 

(VWL), and bit-line level (VBL).  

4.3.1. Read Assist 

    The read stability is enhanced by increasing VCELL [89], [91-93], [97], [106] or 

reducing VWL [87], [94-104], [106]. While VCELL greatly impacts the cell stability, it also 

increases the leakage and switching power of the entire system. Most literatures on the 

cell supply control are directed to reduce VCELL as much as possible from the read test 

that does not include other source of errors such as power supply noise [119] or internal 

noise. In Chapter 6, a systematical approach to assign safety margin from measured 

stability is discussed. Control on VWL has relatively a lower impact on the read stability, 

but lowering the gate voltage of the access device can significantly reduce the read 

current that leads to increase of the access time [85]. Note that VWL has a contradictory 

tradeoff between the read stability and write-ability since lowering VWL reduces the pull-

down strength of the access device during write access. More detailed descriptions on the 

word-line control is presented in the next section. 

    Another read stability issue is from half-cell select for column interleaving structure 

[86-87]. Figure 40 shows the typical memory array structure that multiple columns share 

a single periphery such as sense amplifier. During read or write access, the entire row is 

selected while only one of them is connected to the sense amplifier. Other columns left 

with the pre-charged bit-line. The unselected cells should discharge the large bit-line 

caps, and the discharging speed is usually slow such that these cells experience stress 

from nearly static bit-line voltage. The half-cell select issue can be mitigated by using 

cross-point array such as 10T cell [86], placing sense amplifier per each column to write 

back unselected cells [87], or column-based VDD control [88].  All of these solutions 

demands increased area and complex wiring issues that is not suitable for high 

performance SRAM (but preferred from low power systems). 
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The amount of the required VCELL or VWL is expressed as SRRV or WRRV as defined in 

Section 4.3. Chapter 5 provides a rapid SRRV estimation technique that is applicable to 

the actual memory array (measurement data in Chapter 6). 

 

 

Figure 40. Half-cell select issue 

 

4.3.2. Write Assist 

    The write-ability can be enhanced by boosting VWL [87], [94-104], [106] or by driving 

the bit-line lower than ground [103-105]. The VWL control affects both of the read 

stability and write-ability, literatures typically incorporates VCELL control as well. The 

optimum VWL can be found from equal read and write margin that is provided from 

modified cell structure with OP-Amp based feedback circuitry [76], [96] or by manual 

calibration with resistive divider to track process variation [97-99], [101-103].  The 

negative bit-line is especially useful for a low-power SRAM < 0.6V. This technique, 

however, requires a negative source generator by capacitive coupling or regulator. If the 

amount of the negative voltage is too large, it may cause device reliability issue [86]. For 

normal high performance SRAM, the bit-line does not necessarily be discharged below 
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ground. In this case, the bit-line can be driven to a non-zero potential to save active 

power to fully discharge the bit-line cap.  

    The amount of the required VWL or VBL is expressed as WWTV or BWTV as defined 

in Section 4.3. Chapter 5 provides a rapid BWTV estimation technique that is applicable 

to the actual memory array (measurement data in Chapter 6). 

 

Section 4.4 Built-In Self-Test Circuits 

    From the increasing use of the read/write assist circuits, the need for built-in self test 

(BIST) circuits is also growing up. Primary purpose of BIST is to obtain the distribution 

of safety margin that can be used to properly set the optimum supply level. As the device 

model is becoming complicated and the 6σ boundary can be estimated too optimistically 

or too pessimistically from the simulation results, the read/write margin obtained from 

the BIST can precisely estimate the failure condition of the cells. 

    From the conventional definition of the static noise margin, [81-82] integrated the 6T 

cell array with additional switches to access the internal nodes. As a result, the size of the 

entire array increased and the wiring is very complicated. From measurements of I/O 

characteristics of each half cell, the authors successfully obtained the distribution of 

RSNM and WNM of the entire array that shows Gaussian distribution. However, the 

change of the original cell structure and the excessive increase of the area are the major 

limits in applying this technique to a large size memory array. 

    In [83], the read current and BWTV are measured for a 1Mb SRAM array by accessing 

each bit-line. This technique does not require access to the internal node of each cell, and 

the area required for the bit-line access can be small (~10% of the original array size). 

From the measurements, the distribution of the read current and BWTV are displayed to 

the 5σ tails that are useful in building database of the cell variability. In [80], the same 

bit-line access technique is expanded for other stability metrics such as SRRV or 
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WWTV, and the authors claim that the measurement technique can be applied to large 

scale memory arrays. However, the supply control cannot be rapidly done for large size 

memory array due to long time constant at the supply node, which limits the 

measurement time.  

    In [84], the authors used the read current and write current produced by the selected 

cell to build a relaxation oscillator. The amount of time to charge/discharge the large bit-

line cap is a good indicator of the cell stability. For the first time, this technique also 

addresses how to measure the dynamic stability of the cell by periodically switching 

on/off the gate voltage of the access device. However, the measurement results in [84] do 

not show a good agreement to the existing stability metrics. Even simulation results were 

not nicely matched.  

    Despite the early works in SRAM BIST circuitry, none of the methods can be applied 

to the large scale memory array due to 1) excessive measurement time or 2) poor 

indicator of the cell stability. This dissertation proposes a rapid stability estimation 

technique that reliably predicts the failure conditions for both of static and dynamic 

concerns. 

 

Section 4.5 Summary 

    This chapter reviewed the design trend of SRAM bit cell, and the associated reliability 

issues. The continuous 50% cell area reduction per technology node has induced the 

growing concerns on the reliability issues. Even though various read/write assist circuit 

techniques are suggested, none of the literatures clearly addressed a proper way to set the 

optimum margin per die. From the efforts to gauge the cell stability in a large scale, two 

major concerns in BIST circuits are discussed. The measurement time and prediction 

accuracy for both static and dynamic stability are considered by the proposed stability 

estimation technique in Chapter 5 and 6. 
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Chapter 5  

Static Stability Estimation Technique for SRAM 

 

Static noise margin is one of the key metrics to estimate the likelihood of failure of a 6T-

SRAM cell. This chapter proposes a technique to accurately estimate the stability of a 

conventional SRAM cell without modifying the cell structure. The main idea is to 

measure specific cell’s currents with variant supply levels via the bit-lines. The measured 

currents are used to estimate the read stability and the write-ability by nonlinear 

regression. Compared to the published stability testing circuits, the cell stability can be 

rapidly estimated with the estimation accuracy R
2
 (coefficient of determination) as high 

as 0.95 once applied to an arbitrary data set. Simulation results show that the estimation 

error sigma is as small as 2.44% for the read stability and 3% for the write-ability 

estimation. Validity of the idea is verified by Monte-Carlo simulations using SRAM 

models in a 45nm CMOS technology. In chapter 6, the proposed technique and its 

estimation for the dynamic stability are discussed with measurement data from a standard 

SRAM block fabricated in 65nm CMOS. 
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Section 5.1 On-Chip Measurement for Estimating Cell 

Stability 

    As discussed in Chapter 4, the required precise supply control was the main issue in 

measurement time of the SRAM cell stability such as SRRV or BWTV. These types of 

measurements cannot be applied to entire cells in a large array as a method of pre-

screening unstable cells (or determining the optimum supply voltage). To save the 

measurement time and efforts, this section proposes a static margin estimation technique 

with the cell currents under controllable operating conditions.  

    The estimation strategy is shown in Figure 41. For a given memory array, a small 

number of cells are randomly selected as a reference data set. This group is called the 

regression group. The way to select cells is more systematically described in Chapter 6 

from an actual test chip. For the selected cells, the read stability (or write-ability) is 

measured not precisely but coarsely such as by sweeping the supply by tens of mVs. This 

coarse measurement of the stability induces quantization error. The maximum tolerable 

resolution of the stability measurement is discussed in section 5.4.  

    As a next step, the cell currents are measured under specific supply levels. Combining 

the measured stability and the cell currents under different supply levels, the relation 

between the two measured data is established. This formulation is applied to the 

remaining set of cells. By using the formulation and the cell current, the read stability (or 

write-ability) is estimated.  

    The standard metrics for the read stability and write-ability are presented as SRRV and 

BWTV, respectively. Compared to other published stability metrics, only these two 

definitions can be measured from an intact memory array without changing its layout 

structure. Nevertheless, the suggested technique can be applied to any stability metrics 

such as the conventional RSNM.  
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Figure 41. Concepts of the stability estimation using cell currents. 

 

5.1.1. Cell Current Measurement 

    One way of accelerating the characterization of the variability of an intact 6T-SRAM 

cell structure is to measure the cell current via bit-lines while other peripheral circuits 

such as sense-amplifiers are turned off [70]. The cell current can be measured in two 

different ways: pull-down of the two NMOS devices and pull-up of the PMOS and the 

access NMOS devices. In Figure 42, the 6-T SRAM cell is driven either for the pull-

down or pull-up (in parenthesis) current measurement. As the pull-down current is 

strongly dependent on the combined strength of the pull-down (triode region) and the 

access transistor (velocity saturation), this current contains information of the device 

variations of NACR and NPDR (or NACL and NPDL). Similarly, the pull-up current contains 

device variations of PPUR and NACR (or PPUL and NACL).  

    For most stable cells, when measuring the pull-down current IBL in Figure 42, the node 

voltage VL is approximately equal to VCELL since NPDL (in subthreshold region) does not 

conduct substantial amount of current to affect the node voltage. Consequently, the left 

half of the cell (NACL, NPDL, and PPUL) is nearly inactive during the measurement of IBL, 
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and their variations can be isolated. This can be observed in Figure 33 where VR is solely 

determined by VTCR not by VTCL. In the same way, IBLB is purely determined by the left 

half cell.  

 

 

Figure 42. Pull-down (or pull-up) current simulation setup. 

 

  

(a) (b) 

Figure 43. (a) Load lines and operating points of NPDR and NACR. VINT means 

internal voltage (VR or VL). (c) Load lines and operating points of PPUR and NACR.  

 

    If only variation of the pull-down transistors is estimated, a single measurement of IBL 

can be used as a direct indicator of the read stability. However, combined variation of 

multiple devices requires more measurements for precise extraction of the device 
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variability. The sensitivity of IBL to VCELL can be used as an indicator of the threshold 

variation of NPDR. Note that this sensitivity also contains the threshold variation of NACR 

as IBL is dependent on Vth,ACR as well. Alternatively, the word-line voltage (VWL) can be 

controlled to obtain IBL sensitivity to VWL (Figure 43(a)). Although either method can 

extract information on the device variations of NPDR and NACR, controlling both of VCELL 

and VWL do not improve the extraction results as shown later from the simulation results 

in section 5.2. By considering the layout complexity, VCELL can be chosen as an 

independent control factor while other supply voltages remain at the nominal VDD.   

    Similar to the pull-down current measurement, the pull-up strength of PPUR is tested 

with changing levels of VCELL. In Figure 42, BL is tied to half of the main supply (VDD). 

At this level, the operating point of NACR is in triode region. Such weak pull-down 

strength of NACR prevents turn-on of PPUL, and VR is only determined by PPUR and NACR. 

From this measurement, the device variations on each side can be measured 

independently. In Figure 43(b), IPU indicates a pull-up current with changing levels of 

VCELL.  

    To determine the sensitivity, multiple discrete control levels for VCELL are introduced. 

By scaling down VCELL from a nominal level (VDD) to a minimum value, the variation of 

IBL is recorded by running HSPICE Monte-Carlo (MC) simulation. The minimum cell 

supply voltage to safely hold the stored data is defined as critical VDD [84]. In Figure 

34(a), the simulation results show that the critical VDD (VCritical) is roughly 80% of the 

nominal VDD. If a stored bit in a test cell flips at VCritical, the test cell must be at the verge 

of unstable state; equivalently its read stability is close to 0. Note that VCELL can be swept 

in multiple steps from VDD to VCritical to more accurately track variation of IBL. 

    In summary, the following steps are required for each cell to characterize the device 

variability.  
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1) For pull-down current measurements via BL, the cell should be programmed to 

store ‘0’ at VR. Tie BLB and WL to the nominal VDD. By driving BL at the nominal VDD 

level, measure the bit-line current. Repeat this process with different levels of VCELL.  

2) For pull-up current measurements via BL, the cell should be programmed to store 

‘1’ at VR. Tie BLB to ground and tie WL to the nominal VDD. By driving BL at half of 

the nominal VDD level, measure the bit-line current. Repeat this process with different 

levels of VCELL. 

 

5.1.2. Measurement Concerns 

    Since many SRAM cells share a single bit-line pair, leakage of inactive cells may 

introduce random error in the measurement data. To avoid leakage added to the active 

bit-line current, all the cells in the same bit-line should be uni-directionally programmed 

before measurement. For IPDR measurement in Figure 42, other idle-state cells must be 

programmed such that their internal node voltage VR is pulled-up high. Note that the 

residual leakage current can be measured first and then subtracted from the active bit-line 

current. For the MC simulations in the following sections, the effect of leakage current is 

considered by placing inactive (low word-line voltage) 63 SRAM cells in the same bit-

line pair with appropriate internal states.  

    For the current measurement, the stored data precision is limited by the measurement 

circuits. Here assumes that an N-bit on-chip ADC converts the cell current into digital 

data. For the analysis in section 5.2 and 5.3, the resolution is infinite (ideal ADC). The 

required minimum resolution of the on-chip ADC and the controllability on the supply 

voltage is analyzed in section 5.4 with detailed simulation results.  
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Section 5.2 Estimation of the Read Stability 

    The goal of the estimation is to establish a functional relationship between the 

measured currents and the read stability. In this section, the metric for the read stability is 

the SRRV. Instead of measuring the read current while lowering the supply voltage until 

the cell fails, the proposed model makes a few key measurements at the periphery to 

extract the SRRV (i.e. failure point). This concept is illustrated in Figure 44.  

 

 

Figure 44. Estimation of the failure condition. The failure condition can be 

extrapolated from the cell current variation with variant supply levels. 

 

5.2.1. Nonlinear Regression 

    From the pull-down and pull-up currents measured as in Figure 43, the cell currents are 

predictors and the SRRV is an estimation target. From the discussions in section 5.1, a 

polynomial fitting is used to resolve the inherent nonlinearity between the predictors and 

the estimators.  
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(Eq 5.1)  
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(Eq 5.2)  

    In (Eq. 5.1) and (Eq. 5.2), each column of the predictor matrix (e.g. IPDL) is comprised 

of an n-by-m vector where n is the total number of samples and m denotes the number of 

supply levels. Subscript PD, AC, and PU are defined in Figure 43(a) and (b). Subscript L 

and R are used to separate each half cell and the two squares enclosed by the VTCs in 

Figure 33. The fitting coefficients used for the SRRVL and the SRRVR are identical if the 

SRAM cell is symmetric (e.g. aPDR1 = bPDL1).  Each coefficient is a 1-by-m matrix except 

for a0. The coefficient a0 can handle any type of constant error that is added during the 

measurement. In (Eq. 5.1), the coefficients aPDR1~aPDRk estimate variation of the VTCR 

curve from IPDR. The coefficients aPDL1~aPDLk and aPUL1~aPULk combined with IPDL and 

IPUL estimate the initial curvature of VTCL. Hence (Eq. 4.1) is an estimate of the SRRVL.  

     (Eq. 5.1) and (Eq. 5.2) are solved using polynomial regression. To account for any 

types of errors caused by non-ideal models, this work uses the robust regression by 

iteratively re-assigning weight factors to each data point to calculate the weighted square 

sum of errors [58]. If data sets are away from the main cluster, small weights are assigned 

in the next iteration while data sets close to the cluster have higher weights. Within a few 

iterations, erroneous data sets are placed out of the main cluster and the curve fitting is 

done with the cluster data sets. The correlation between the predictors and the estimators 

is numerically calculated by the coefficient of determination (R
2
) without the weight 

factors.  

    Figure 45(a) shows a regression example when m is 5, k is 2, and all six predictors are 

used for 4,000 samples. The estimator of the SRRV can be found by comparing SRRVL 

to SRRVR and taking the minimum of these two. The high coefficient of determination 

0.95 validates the approach of using the measured currents to estimate the SRRV.  
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Once the fitting coefficients are found from a reference data group, the resulting 

relationship can be applied to the measured IBL from any cell in the target data group to 

estimate its SRRV. Figure 45(b) is a scatter plot that shows the performance of the 

estimation by comparing the actual SRRV (from simulation) with the estimated SRRV of 

the target data group. The R
2
 is as high as the correlation of the reference data group. 

Normalized errors of the SRRV estimation for the target data group are plotted in Figure 

46(a). This histogram shows Gaussian distribution of the normalized error, and the 

standard deviation is 2.44%. With 3σ certainty, most of the estimation errors are confined 

within ±7.32% of the original SRRV. The predictability of the failure condition can be 

more clearly visualized by comparing the cumulative distribution of the simulated SRRV 

and the estimated SRRV. Figure 46(b) shows the difference for the cells close to the 

failure. The two CDFs deviate slightly for the relatively less stable cells but the amount is 

smaller than 5mV (for 1V nominal VDD).  

 

(a) (b) 

Figure 45. SRRV estimation from the cell current measurement. Six types of 

currents (IPD, IAC, IPU, and L-R for each) with five supply steps are used. From 

(Eq.  5.1) and (Eq. 5.2), n = 4,000, m = 5, and k = 4. (a) SRRV versus its 
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estimator for 4,000 MC runs (regression data set). (b) Another 12,000 MC runs 

(target data set) with the estimation model (Eq. 5.1) and (Eq. 5.2). 

 

  
(a) (b) 

Figure 46. (a) Normalized error (in %) histogram for the target data group. (b) 

Cumulative distribution of the simulated SRRV and the estimated SRRV.  
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Figure 47. Sensitivity of SRRVL to the cell current (m = 2, k = 2). 
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5.2.2. Sensitivity of SRRV to Cell Currents 

    Each coefficient in (Eq. 5.1) and (Eq. 5.2) determines the sensitivity of the SRRV to 

the cell current variation at different VCELL. In Figure 47, the regression coefficients are 

derived with two supply levels (m=2) and with quadratic equation (k=2). Using the fitting 

parameters extracted from the reference group, the SRRVL is estimated for various 

combinations of the cell currents at the nominal VDD and at the critical VDD. As discussed 

in section 5.1.1, a higher IPDR at the nominal VDD corresponds to a strong pull-down at 

the BL side, thus the SRRVL improves. Also, the threshold level of NPDR and NACR 

should be small to reliably pull down the bit-line. Therefore, a low supply sensitivity of 

IPDR indicates a larger SRRVL value. The opposite behavior is observed for the case of 

IPDL since the VTCL in Figure 33 is shifting to the left as NPDL is stronger (reduced 

SRRVL).  
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Figure 48. Normalized error sigma (in %) as a function of the reference data 

size for different number of measurements per cell. 
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5.2.3. Required Data Size of the Reference Group 

    The size of the reference data group must be sufficiently large to accurately 

characterize the estimation coefficients. If the regression is performed with a small data 

set that does not cover the full range of the SRRV distribution, any estimation target out 

of the guaranteed range may produce over-fitting errors. Since a larger data size requires 

more number of the SRRV measurements with the increased regression complexity, there 

is a trade-off between the estimation accuracy and the data size. Figure 48 shows the 

normalized error sigma of the target data group when the coefficients are extracted from a 

different size of the reference data group. The first case (upper triangle) shows the 

normalized error sigma of the target group with the regression parameters identical to 

Figure 45. To avoid substantial estimation error, the reference data size should be greater 

than 1,000 samples. The second case (circle) used only IPDL and IPDR with two supply 

sweeps (m=2) and the second order fitting (k=2). Note that for this case only 500 samples 

are sufficient to suppress the error. The convergence speed of the normalized error varies 

since more predictors increase the regression complexity.  

5.2.4. Number of Predictor Variables  

     (Eq. 5.1) and (Eq. 5.2) have three variable parameters: the number of supply sweeps 

(m), the maximum polynomial order (k), and the number of predictor variables (IPD, IAC, 

IPU, and L-R for each). By sweeping all the three fitting variables (m, k, and the number 

of predictor variables), the impact of each parameter on the estimation accuracy can be 

visualized. With each given parameter set, estimation accuracy is expressed by R
2
. Figure 

49 shows how R
2
 of the SRRVL varies as a function of the number of predictor variables 

with changes of  (a) the order of the polynomial functions, k, and (b) the step size of the 

supply sweeps, m. The included predictor variables at each number of the x-axis are 

tabulated in Table 5-1. At each column in Table 5-1, the most dominant predictor 

variables are selected to maximize the estimation accuracy, which matches well to the 

published sensitivity analysis of the RSNM to each device variation [71-73]. 
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    In each case, R
2
 is affected mostly by the pull-down current (IPD). Figure 49(a) shows 

how the SRRVL estimation is improved by the choice of the predictor variables. The 

initial jumps of R
2
 by the first two predictors (IPDL and IPDR) imply that the NMOS 

devices (pull-down and access) have a dominant impact on the SRRVL. IAC does not 

contribute to the characterization of the NMOS device variability since the information it 

provides is redundant as indicated in Figure 43(a). In Figure 49(a), a small improvement 

of R
2
 from the second order to the fourth order fitting indicates that k can be as small as 2 

without significant degradation. Figure 49(b) shows variation of R
2
 as the number of 

supply sweeps, m, is changed from 2 to 5. The maximum sweep range is fixed by 20% of 

the nominal VDD   (Figure 34(a)). The number of supply sweeps determines how finely 

the supply should be controlled. If m is 2, the cell current is measured at VDD and 

0.8×VDD. If m is 3, an additional cell current is measured at 0.9×VDD. Note that IACL can 

have a modest contribution to the SRRVL estimation. Since IPUL contains device 

characteristics of PPUL and NACL, including IACL eliminates uncertainty in characterizing 

PPUL variability from the measured pull-up current.  
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Figure 49. Coefficient of Determination (R
2
) for SRRVL estimation with respect 

to the number of predictor variables (Table 5-1). (a) With ∆Vsweep = 0.1×VDD, the 
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fitting order (k) is varied from 1 to 4. (b) With k = 2, ∆Vsweep is varied from 

0.05×VDD to 0.2×VDD. The sweep range is fixed by 0.2×VDD and the fitting order 

is 2 (square). 

 

Table 5-1 Predictor Variables used in Figure 49. 

 Number of Predictor Variables 

1 2 3 4 5 6 

Predictor Variables used 

in (Eq. 5.1) and Figure 49 

IPDR IPDR 

IPDL 

IPDR 

IPDL 

IPUL 

IPDR 

IPDL 

IPUL 

IACL 

 

IPDR 

IPDL 

IPUL 

IACL 

IACR  

IPDR 

IPDL 

IPUL 

IACL 

IACR 

IPUR 

Predictor Variables used 

in (Eq. 5.2)  

IPDL IPDL 

IPDR 

IPDL 

IPDR 

IPUR 

IPDL 

IPDR 

IPUR 

IACR 

 

IPDL 

IPDR 

IPUR 

IACR 

IACL  

IPDL 

IPDR 

IPUR 

IACR 

IACL 

IPUL 

 

  

Section 5.3 Estimation of the Write-Ability 

5.3.1. Nonlinear Regression 

    The write-ability (i.e. BWTV) of the SRAM cell can be estimated using a similar 

nonlinear regression. The basic equations used for the BWTV estimation are shown in 

(Eq. 5.3) and (Eq. 5.4). 
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(Eq 5.3)  
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(Eq 5.4)  

 

    The coefficients defined in (Eq. 5.3) and (Eq. 5.4) are counter parts of the coefficients 

in (Eq. 5.1) and (Eq. 5.2). Their size should be identical if the same fitting order and the 

same supply sweeps are used for the SRRV and the BWTV estimation. With the six 

predictors, five supply sweeps, and the second order fitting, the regression result of the 

first group is shown in Figure 50(a). As the BWTVL and the BWTVR specify the 

maximum tolerable noise voltage on each bit-line, the BWTV is defined as minimum of 

these two. Figure 50(b) is the estimation result by applying (Eq. 5.3) and (Eq. 5.4) with 

the coefficients found from the reference group. Both of the two groups show R
2
 as high 

as 0.95. From Figure 50(b), the normalized estimation errors of the BWTV can be 

calculated, which is drawn in Figure 51(a). The estimation error is roughly Gaussian with 

the standard deviation of 3%, which is close to the error sigma of the SRRV estimation. 

In Figure 51(b), the CDF difference between the simulated and the estimated BWTV is 

approximately 10mV (for 1V nominal VDD) which corresponds to 5% estimation error. 

From the small estimation error, it is concluded that the pull-down and pull-up currents 

contain sufficient information of the device variations.  
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(a) (b) 

Figure 50. BWTV estimation from the cell current measurement. Six types of 

currents (IPD, IAC, IPU, and L-R for each) with five supply steps are used. From 

(Eq. 5.3) and (Eq. 5.4), n = 4,000, m = 5, and k = 4. (a) BWTV versus its 

estimator for 4,000 MC runs (regression data set). (b) Another 12,000 MC runs 

(target data set) with the estimation model (Eq. 5.3) and (Eq. 5.4). 

 

  
(a) (b) 

Figure 51. (a) Normalized error (in %) histogram for the target data group. (b) 

Cumulative distribution of the simulated BWTV and the estimated BWTV.  
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5.3.2. Sensitivity of BWTV to Cell Currents 

    The sensitivity of the BWTV to the cell currents are depicted in Figure 52. The total 

number of supply sweeps is two (m=2) and a quadratic equation is used for the regression 

(k=2). The write-ability is strongly affected by the pull-down strength of the access 

device to force the high state node to the ground. In Figure 43(b), this pull-down strength 

is created by NACL in association with PPUL, denoted by IPUL in Figure 52. As IPUL at the 

nominal VDD is smaller, the pull-down strength is weaker hence leading to a reduced 

write-ability or a reduced BWTV. On the other hand, if IPUL varies significantly for the 

cell supply change from the nominal VDD to the critical VDD, PPUL must be weak due to 

such high sensitivity to the cell supply. Therefore the flipping of the state can easily take 

place as seen in Figure 52 (higher BWTV). The amount of the voltage drop at VL, created 

by the pull-down, is regenerated by NPDR. If NPDR is strong, the gate voltage of PPUL does 

not change sufficiently and the regeneration may fail. The contribution of NPDR to the 

write-ability can be clearly seen from Figure 52. If IPDR at the nominal VDD is small, the 

BWTV improves as NPDR is weak. If IPDR shows less supply sensitivity, NPDR is strong 

and the BWTV   degrades.  
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Figure 52. Sensitivity of BWTVL to the cell current (m = 2, k = 2). 
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5.3.3. Number of Predictor Variables 

    The sensitivity to the number of predictor variables and the resulting regression 

complexity are similar to that of the SRRV. Figure 53 shows how R
2
 of the BWTVL 

varies as a function of the number of predictor variables with changes of  (a) the order of 

the polynomial functions, k, and (b) the step size of the supply sweeps, m. The predictor 

variables are ordered from the maximum to the minimum impact on the BWTVL.  

    In most cases, BWTVL is determined by IPUL and IPDR. The addition of IACL helps 

characterize the variations of NACL and PPUL. The remaining three predictors have very 

small impact on the BWTVL. Therefore, compared to the SRRV estimation, the   BWTV 

estimation is less complex with the reduced number of the predictor variables to achieve 

similar R
2
. 
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(a) (b) 

Figure 53. Coefficient of Determination (R
2
) for BWTVL estimation with 

respect to the number of predictor variables (Table 5-2). (a) With ∆Vsweep = 

0.1×VDD, the fitting order (k) is varied from 1 to 4. (b) With k = 2, ∆Vsweep is 

varied from 0.05×VDD to 0.2×VDD. The sweep range is fixed by 0.2×VDD and the 

fitting order is 2 (square). 
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Table 5-2 Predictor Variables used in Figure 53. 

 Number of Predictor Variables 

1 2 3 4 5 6 

Predictor Variables used 

in (3) and Figure 53 

IPUL IPUL 

IPDR 

IPUL 

IPDR 

IACL 

IPUL 

IPDR 

IACL 

IPDL 

 

IPUL 

IPDR 

IACL 

IPDL 

IACR  

IPUL 

IPDR 

IACL 

IPDL 

IACR 

IPUR 

Predictor Variables used 

in (4)  

IPUR IPUR 

IPDL 

IPUR 

IPDL 

IACR 

IPUR 

IPDL 

IACR 

IPDR 

 

IPUR 

IPDL 

IACR 

IPDR 

IACL  

IPUR 

IPDL 

IACR 

IPDR 

IACL 

IPUL 

 

 

Section 5.4 Discussion 

    In this section, the estimation approach is validated for different device ratios, process 

corners, temperatures, and the power supply levels. Unless otherwise noted, the 

estimation model uses the same condition as Figure 45 and Figure 50 where all the six 

predictors are used with 5 supply sweeps (m=5)  and the second order fitting (k=2). The 

measurement limitation due to the finite resolution of the ADC and the supply control is 

discussed in the last sub-section.  

5.4.1. Device Ratio 

    The device ratio used in the previous example is 1.5 for the cell ratio (PD/AC) and 0.8 

for the pull-up ratio (PU/AC). The estimation accuracy with variable device ratios is 

depicted in Figure 54. Figure 54(a) is the SRRV estimation of the target group for 

different cell ratios. There is not a noticeable change in the estimation result. The BWTV 
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estimation result is also shown in Figure 54(b) with different pull-up ratios. These two 

figures indicate that the polynomial fit appropriately accounts for device ratios. 

 

  
(a) (b) 

Figure 54. Correlation of the estimation for different device ratios. (a) SRRV 

estimation with cell ratio sweep. (b) BWTV estimation with pull-up ratio sweep. 

Six predictor variables, ∆Vsweep = 0.05×VDD, and k = 2. 

 

5.4.2. Global Process Variation 

    The estimation results so far focus on random local mismatch and do not account for 

variation across dice or wafers [2-3]. The estimation results for different process corners 

are shown in Figure 55. In Figure 55(a), the first result set is based on the standard 

current measurement as explained in Section 5.1. At the SS, SF, and FS corner, the R
2
 

drops substantially. According to the simulation data at those corners, the internal node 

voltage (VL or VR in Figure 42) is not precisely determined by the cell supply during the 

pull-down current test. As discussed in section 5.1.2, if the node voltage is set by the 

feedback devices and not by the cell supply, the pull-down current would contain more 

device variation hence leading to lower estimation accuracy.  

 



Chapter 5  Section 5.4 Discussion  

93 

  
(a) (b) 

Figure 55. Correlation of the estimation for different process corners. (a) SRRV 

estimation with corner variations. The second case increased the cell supply 

voltage by 20% higher than the nominal level during the pull-down current 

measurement. (b) BWTV estimation with corner variation. Six predictor 

variables, ∆Vsweep = 0.05×VDD, and k = 2.  

    To avoid the internal nodes being arbitrarily settled, one minor modification to the 

estimation is to increase the cell supply level during the pull-down current measurement. 

By using a 20% increase in VCELL to measure the pull-down current while keeping other 

measurements the same, the result of the FS corner improves to be comparable to the 

typical corner. The estimation result can be seen as the second data set in Figure 55(a). 

The other two corners at SS and SF are not improved. As mentioned previously in Figure 

33, the SRRV measurement is less accurate for the stable cells and both corners have 

higher read stability. It is noteworthy that while the accuracy is degraded across corners, 

an R
2
 of 0.9 is still sufficiently accurate such that this technique can be viable for the cell 

stability estimation across wafers using regression parameters from a subset in a run of 

wafers. 

    The BWTV estimation results at different corners are displayed in Figure 55(b). 

Compared to the SRRV estimation, the BWTV has lower process sensitivity on the 

estimation result. As the BTWV estimation is highly dependent on the pull-up current, 

increasing the cell supply for the pull-down current does not enhance R
2
. 



Chapter 5  Section 5.4 Discussion  

94 

5.4.3. Temperature Variation 

    To reduce the sensitivity to temperature variation, estimation of the stability and the 

cell currents is accurate when measured at the desired operating junction temperature. 

The estimation results with temperature sweeps are displayed in Figure 56 for wide 

operating temperature ranging from -20ºC to 85ºC. Both of the SRRV and the BWTV 

estimations show reliable accuracy. However, there is a loss of accuracy if the fitting 

coefficients are extracted at one reference temperature and used for prediction at a 

different temperature. The regression model should be simplified to prevent over-fitting. 

As an example of the SRRV estimation, three supply sweeps with the second order fitting 

(k=2) leads to 0.85~0.88 R
2
 variation for the temperature range of 20~60ºC. With the 

same condition, the BWTV’s R
2
 varies from 0.85~0.87.  

 

  
(a) (b) 

Figure 56. Correlation of the estimation per temperature sweeps. (a) SRRV 

estimation and (b) BWTV estimation for -20ºC~85ºC. Six predictor variables, 

∆Vsweep = 0.05×VDD, and k = 2. 
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5.4.4.   Supply Level 

    The estimation technique is verified for a single supply level (nominal VDD). The 

supply levels (cell supply, word-line driver, and the bit-line driver) are scaled down by 

40% to test if the identical measurement data can be used for estimation of the stability at 

such reduced supply level. Figure 57 shows the estimation results for the SRRV and the 

BWTV. The cell-current measured at the nominal VDD still fits well to the stability 

information at the reduced supply level.  

 

  
(a) (b) 

Figure 57. Correlation of the estimation for different process corners at a 

reduced supply level (40% reduction from the nominal VDD). (a) SRRV 

estimation and (b) BWTV estimation. Six predictor variables, ∆Vsweep = 

0.05×VDD, and k = 2. 

 

5.4.5. Measurement Limitation 

    This section provides analysis on two types of quantization noise from the 

measurements of the stability (SRRV and BWTV) and the cell currents. To obtain the 

data set for the reference group, the supply voltage is lowered by a fixed step ∆VCELL (or 

∆VBL) until read failure (or write success) is detected. The controllability of the supply 

voltage (∆VCELL) involves a tradeoff between the measurement time and the estimation 
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accuracy. Figure 58 shows an example that used 20mV as the minimum supply step in 

the measurement. Interestingly, the SRRV quantization noise has a small impact on the 

estimation results since the regression can be done based on the distribution of the SRRV. 

However, if the quantization step is too large such that the distribution is not clearly seen 

from the SRRV data, the regression fails and the errors start to increase rapidly.  

 

 

Figure 58. SRRVL estimation error with discrete supply control (∆VCELL = 

20mV). 

 

    The amount of the cell current can be measured by an N-bit ADC and would have the 

associated quantization noise. Figure 59 shows the estimation accuracy of the SRRV and 

the BWTV per ∆VCELL (or ∆VBL) and the ADC resolution. Figure 59(a) and (b) shows 

that the SRRV estimation is generally insensitive to the supply control up to 50mV. To 

obtain R
2
 higher than 0.9, the required ADC resolution is larger than 10 bits.  

    The BWTV shows a higher sensitivity on the ADC resolution. As the BWTV is 

strongly affected by the pull-up current that is usually much smaller than the pull-down 
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current, the quantization noise imposed on such tiny current variation can quickly 

degrade the estimation accuracy.  

    Figure 59 clearly indicates that the finite resolution of the supply control and the 

measurement ADC limits the improvement from increasing of the number of the 

predictor variables. Practical estimation target including the circuit complexity can be 

focused on around 0.8 as the R
2
 with a reduced number of measurements such as 4 

predictors with 3 supply sweeps.  

 

  
(a) (b) 

  

(c) (d) 

Figure 59. Estimation results of the target group for the SRRV and the BTWV 

for the supply control and the ADC resolution. (a) R
2
 of the SRRV estimation. (b) 

Error sigma of the SRRV estimation. (c) R
2
 of the BWTV estimation. (b) Error 

sigma of the BWTV estimation. With 6 predictor variables, ∆Vsweep = 0.05×VDD, 

and the fitting order is 2 (k=2). 
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Section 5.5 Conclusion 

    The stability of a 6T-SRAM cell is estimated using a nonlinear regression from cell 

currents under variant supply levels. To apply this technique in a real IC, the modified 

measurable failure conditions (SRRV and BWTV) are considered. The static cell current 

measurements show the best read stability and the write-ability estimation results with R
2
 

= 0.95 when all the six predictor variables are used with the 5 supply sweeps and the 4th 

fitting order. The estimation also shows a small error sigma less than 3%. Since the 

limitations of the measurement circuits place the practical bound on R
2
 (e.g. 0.8), a much 

reduced number of measurement data set can be used such as a reduced number of the 

predictor variables (without IAC), a lower order fitting (2nd), and a smaller supply sweeps 

(3). From the estimation model, any specific SRAM cell can be tested to quantify the 

likelihood of failure. This technique can be implemented in a modern CMOS SRAM chip 

with small extra cost for the area of the measurement circuitry without change of the 

SRAM array structure. Based on the discussions made in the Chapter, the next Chapter 

presents a test chip implementation in 65nm CMOS. The measured data shows promising 

estimation results. 
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Chapter 6  

Measurement Data for SRAM Stability Estimation 

 

This Chapter extends the previous discussions with actual circuit implementation in a 

65nm CMOS technology. The entire arguments made in Chapter 5 still apply to the 

estimation setups for the actual measurement data except for the supply sweep range for 

the pull-down current. In Chapter 5, the supply sweep is limited by the critical VDD where 

none of the cells flips. As VCritical is typically close to the nominal VDD, the supply sweep 

range is on the order of few hundred mVs. From the simulation data, where the cell 

current and stability can be measured without any internal or external error such as noise 

and line impedance, the estimation worked very well with such limited sweep range. 

However, the actual measurement is highly affected by diverse source of errors. These 

error sources are described in section 6.2 with circuit details to minimize their effects. 

Another major reason of the error is that the pull-down currents measured near the 

nominal VDD do not properly predict the failure supply levels for the stable cells that 

demand huge supply sweep > 400mV.  

This fact implies a major discrepancy between the device model and actual device 

characteristics. The conventional device model like BSIM4 still relies on the threshold 
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voltage based equation with a substantial set of fitting coefficients that are useful in 

predicting the worst-case boundary of the device variations. While the major device 

parameters can be effectively extracted from the simulation data to improve the stability 

estimation technique, the actual individual device may not be fully described by those 

fitting coefficients. Consequently, the estimation was not accurately done with small 

supply sweep. As an example, the maximum R
2
 of 0.7 is obtained from 150mV supply 

sweep range. The R
2
 dropped by more than 0.25 compared to the simulation results. To 

enhance the estimation accuracy, the supply level is swept down to 0.5V for the current 

measurement. By measuring the pull-down current at the supply level where the stable 

cells flip, the R
2
 increased over 0.8. 

The next section briefly summarizes the stability estimation concepts introduced in 

Chapter 5 with different supply sweep range. The following two sections address the 

overall architecture and design issues. Section 6.3 provides measurement data for static 

stability estimation. The fundamental correlation between the static and dynamic stability 

is discussed in section 6.4. Finally, die-to-die variation of the stability estimation results 

(static and dynamic) is investigated. 

 

Section 6.1 Stability Estimation  

6.1.1. Overview on Stability Estimation 

The SRAM cell’s characteristics can be obtained from the measured current created by 

the pull-down or pull-up device in combined with the access transistor. As the current 

contains multiple device information, a single measurement is not sufficient as a primary 

indicator of either read stability or write-ability. If the currents are measured under 

multiple supply levels, however, the combined data show an excellent estimation result 

for any stability metrics such as RRV, WTV, or even the conventional RSNM. This 

Chapter focuses on estimation of SRRV and BWTV as they are useful in determining of 
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the cell supply and bit-line level
3
 for successful read and write access.  

The read/write stability of an SRAM cell is a function of the characteristics of multiple 

devices (e.g. six degree of freedom for a 6T cell). The literatures on the stability analysis 

have shown that the contribution to the stability variation from each device can be 

modeled as a nonlinear function of the device parameters such as the threshold voltage. 

Extraction of such individual device parameters from the dense memory arrays may 

demand substantial area overhead due to extra wirings and transmission gates to access 

the internal nodes of an SRAM cell.  

Alternatively, the read/write current from a selected cell can be measured by accessing 

the bit-line that can used to characterize the parameter variation of each device. Since the 

read/write current is also a function of multi-dimensional random variables, a single 

current measurement is not sufficient to determine either the read-stability or the write-

ability. For precise extraction of the device parameters, the cell currents need to be 

measured under multiple supply levels. The collected current data set are combined to 

accurately estimate the stability metrics such as the read-stability (RRV or RSNM) and 

the write-ability (WTV). This paper focuses on the estimation of the supply read retention 

voltage (SRRV) and the bit-line write trip voltage (BWTV) as they are useful in 

determining of the necessary cell supply and the bit-line level  for successful read and 

write access.  

In the previous chapter, a non-linear function was proposed to translate the current data 

set into the stability metric. The function has arbitrary polynomial expansions of the 

measured current variables with undetermined coefficients. The coefficients can be found 

using regression with a complete set of the measured currents and the measured stability 

data. In a large memory array, a subset of the array should be tested first to obtain the 

coefficients. The size of the subset should be as large as 1,000 cells to reduce the 

incorrect coefficient extraction. However, increasing the subset size would not help in 

improving the overall estimation accuracy as the maximum bound is more heavily limited 

                                                
3
 The word-line level for successful write access can be gauged by WWTV. BWTV and WWTV are highly correlated [xx]. 
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by the other sources of error such as the measurement noise from ADC. 

The estimation procedure is conceptually visualized in Figure 60. At the first step, the 

bit-line currents are measured under different supply levels. This measurement can be 

rapidly done by help of on-chip ADC with intermediate resolution such as 8~10 bits. The 

choice of the on-chip ADC is discussed in the next section. Next, 1,000 cells are selected 

and their stability is measured not precisely but coarsely (e.g. 25mV step). This 1,000-

cell group is called a regression group. From the regression group, the relation between 

the measured currents and the stability is formulated. This formula is applied to the 

remaining cells to estimate the stability.  

The regression set should be a sample of the cells that covers the worst case variations 

across an array. The procedure for determining the regression set for stability is shown in 

Error! Reference source not found.Figure 61. Initially the stability (either SRRV or 

BWTV) of the entire memory array is measured by stepping down the control variable 

(cell supply or bit-line voltage) at 25mV steps. The stability does not necessarily be 

measured precisely as the regression formula in section II.D can handle the quantization 

noise such as 25mV step size.  The measured SRRV or BWTV may show a slightly 

distorted Gaussian distribution as seen in Figure 61. If the regression is done with the 

entire data set, the estimation result is focused at the center of the distribution leading to 

reduced accuracy at the tails. For the linear estimation over the entire stability range, the 

regression data set is selected from the N uniformly spaced bins. In this paper, the total 

number of bins (N) is five. The maximum samples at each bin are limited by 1000/N.  

The sampling methodology appeared in Figure 61 is focused on result precision. We 

have chosen this sampling method to apply the extracted formula to the other dice (hence, 

the errors in the coefficients must be small). In fact, the stability measurement over the 

entire array, although it is measured coarsely, may sound contradictory to the fast 

estimation. If the stability estimation is for a single die, a normal write/read test under 

multiple supply levels also leads to close sampling results especially for the less reliable 

cells. Using this faster sampling method, the selected subset’s characteristics can be 
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quickly tested to estimate the stability over the entire array. 

 

 

Figure 60. Flow diagram for the stability estimation from the measured 

currents. A 1,000 sample group (regression group) is selected to formulate the 

relation between the bit-line currents (predictor variables) and stability 

(estimation target). This formula can be applied to the other dies to estimate their 

stability. 
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Figure 61. Uniform sampling of the subset of the memory array during step 1 in 

Figure 60. In this paper, N is 5 for the read-stability (SRRV) and write-ability 

(BWTV). 

 

6.1.2. Current Measurement 

The read/write currents are measured for the cells in the regression set to find the 

estimation function. Figure 62 shows the measurement setups for the pull-down and pull-

up current for the read stability and write-ability respectively. For the pull-down current 

measurement (or equivalently read current), BL (storing ‘1’) side is tied to the nominal 

pre-charge level (e.g. 1V) while the other bit-line is tied to the cell supply. The current is 

measured by directly accessing the bit-line at the end of the memory array. The cell 

supply (VCELL) is varied from the nominal supply level (1V) to 0.5V while the two bit-

lines are tied to 1V. The number of supply steps between these two supply levels 

determines the estimation accuracy at the cost of measurement time and it should be 

chosen to avoid over-fitting. Section 6.3 provides the estimation result with 4 supply 

steps (150mV step size) and 6 supply steps (100mV step size) for comparison. The pull-

up current (or equivalently write current) in Figure 62 (b) quantifies the strength of the 

pull-up device that resists against the write access. The bit-line of the pull-up side is fixed 

by 0.4V while the other bit-line is tied to 1V. The pull-up current need less data and is 



Chapter 6  Section 6.1 Stability Estimation  

105 

measured at 2 VCELL values of 1V and 0.7V (300mV step size).  

It is important to note that the bit-line current can be as small as a few tens of micro-

amperes as the supply level is lowered. Leakage current and long-term device noise 

arising from the sensing circuits may perturb the cell current measurement. Prior to 

measuring each column, a calibration current is measured without activating the word-

line. This calibration current contains the leakage of the measurement path. The actual 

cell current is obtained by calculating the difference of the pull-down (or pull-up) current 

with this calibration current. 

 

  

(a) (b) 

Figure 62. Test setups for (a) pull-down current measurement and (b) pull-up 

current measurement. All the currents are measured using the direct bit-line 

access. 

6.1.3. Estimation Formula 

The measured currents at each of BL and BLB side are correlated to a stability metric 

using a second-order polynomial equation (Eq. 5.1 ~ Eq. 5.4). There are four types of 

measurements per cell (IPDR, IPDL, IPUR, and IPUL) with ‘m’ sweeps of VCELL for IPD and 2 

sweeps of VCELL for IPU. Note that the current measurement is required once and any 

stability (even at a different supply level) can be estimated from the same current data. 
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Section 6.2 System Architecture 

6.2.1. Chip Overview 

A memory test chip is built in a 65-nm CMOS technology. Figure 63 shows the die 

micrograph and Figure 64 show the block diagram of the memory array. This chip is 

comprised of two banks of 16kb SRAM (DUT) with in-situ current-sensing circuits 

embedded in the array, on-chip ADC, memory control unit, and storage of the measured 

data. This section discusses each of these blocks. The specifications on the measurement 

circuits are based on a 0.8 R
2
 for the estimation accuracy (of SRRV and BWTV). 

 

Figure 63. Die microphotograph of the test chip. The chip area is 2×1.1 mm
2
. 

 



Chapter 6  Section 6.2 System Architecture  

107 

Figure 64. Simplified block diagram of the main 32kb SRAM with the sensing 

circuitry. 

 

 

Figure 65. The architecture of the memory array with the mode switches and 

the bit-line MUX arrays.  

 

The SRAM array uses the 6T-cell available in the technology library. The word-line 

drivers and bit-line sensing and driving circuits are modified versions of the library 

elements. Figure 6 shows the detailed schematics of the memory and the interface. The 

SRAM operates normally as a memory when the mode selection signals (SRAM_MODE 
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= 1, BL_ENABLE = 0) connects the bit-line pairs to the sense amplifiers and write 

buffers. When SRAM_MODE = 0, the memory is configured in the current-sensing 

mode. The normal sense-amplifiers are disabled. At the top end of the bit-lines, an 

additional MUX array and sensing circuits are added to measure the bit-line current.  A 

cell’s current from one of the bit-lines of a sub-array is multiplexed onto one of the local 

bit-line pairs (LBL and LBLB) and then the LBL pair from each sub-array is multiplexed 

again onto global bit-lines (GBL and GBLB). To measure the write-ability metric, the 

bit-lines can also be connected to a variable voltage by tying the global bit-lines to a 

voltage generator and connecting the multiplexed switches appropriately. To minimize 

the impact on speed and performance, the switches at each end of the each bit-line pair 

are sized to minimize parasitic capacitance, leakage current, and voltage drop across the 

switch. The parasitic capacitance of the switch is less than 10% of the total bit-line 

capacitance with 64 cells on each column. 

The word-line signal (VWL) for measuring the cell current must be statically high. The 

wordline buffer is designed for both a dynamic pulse for a normal access and statically 

high for the stability estimation. This feature is used in Section 6.4 where we show the 

relationship between the static and dynamic stability.  

 

 

Figure 66. Schematics of the current sensing units. Each pull-down or pull-up 

sensing circuit and its associated dummy current source can be switched on/off. 

The bit-line current is transferred to the voltage-controlled oscillator (VCO). 
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6.2.2. Sensing Circuits 

The pull-down and pull-up current sensing circuits are shown in Figure 66. The 

selected global bit-lines (either GBL or GBLB) are connected to a low-dropout regulator 

(LDO) that provides low output impedance to the subsequent circuit so that GBL and 

GBLB are not perturbed.  Only one of the two amplifiers (and the associated current 

source) on the pull-up and pull-down paths is turned on to transfer the bit-line current of 

the proper polarity to the next stage. The current sources at the top and bottom branches 

of the sensing circuit are independently adjustable. Since the cell value can be flipped 

leading to very low bit-line currents, this current source stabilizes the feedback loop. The 

current source also enhances the linearity of the VCO-based ADC that follows the buffer. 

The area occupied by the bit-line multiplexer array is 650×12µm
2
 (10% of the memory 

array) and the area of the sensing circuitry is 650×13µm
2
. The area of the sensing 

circuitry can be reduced by using a simpler LDO amplifier.  

6.2.3. On-Chip ADC 

The on-chip ADC is designed for 1.25MHz sampling rate, low power, small area, and 

10-bit resolution. A VCO-based ADC is chosen. Even though this type of ADC has 

inherent non-linearity [120], the I/O characteristics are inherently monotonic since every 

cycle (and phase increment) accumulates as a thermometer-coded ADC. Furthermore, the 

estimation equations (5.1~5.4) can tolerate this second-order nonlinearity in the 

measurement data. Therefore, the linearity correction such as look-up table [121] is not 

required.  

The schematic of the VCO-based ADC is shown in Figure 67(a). The measurement is 

done by applying a pulse of a fixed width such 400ns. As the input current is integrated 

during the measurement, the SNR improves due to sinc filtering of the wideband noise 

[121-122]. The phase difference captured at the rising and falling edge of the clock 
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determines the 3 LSBs while the number of cycles counted within the pulse determines 

the 7 MSBs. Figure 67(b) shows details of the oscillator. The cell current information 

buffered from the sensing circuit sets the bias voltage of the current source of the 

oscillator, hence determining the oscillation frequency. Note that measurement time can 

be reduced if using a linear ADC because only 8-bits of linear conversion levels are 

needed for a 0.8 R
2
 during the read-stability estimation (Chapter 5). The area of the VCO 

and phase sampler is 32×48µm2. 

 

 

 

(a) (b) 

Figure 67. (a) Schematics of the VCO-based ADC. The ring oscillator’s initial 

and last phase determine the three LSBs while the number of cycles produces the 

MSBs. Depending on the target resolution bit, the counter can be made smaller. 

(b) Schematics of the delay stage. 
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Section 6.3 Static Stability Estimation 

6.3.1. Read Stability Estimation Results 

The read-stability is estimated using the measured current data at different supply 

voltages (SRRV). Figure 68 shows the estimation results of the entire 32k cells using the 

coefficients from the regression set.  The pull-down currents are measured at four supply 

levels (1, 0.85, 0.7, and 0.55V) while the pull-up currents are measured at two supply 

levels (1 and 0.7V). The coefficient of determination (R
2
) is as high as 0.8 at the nominal 

supply voltage (1V). We also measured the SRRV at 0.8V, and 0.6V. The R
2
 drops 

slightly but is still higher than 0.7 indicating that the current measured under the nominal 

supply reliably estimates the read-stability at a lower supply level. In Figure 69(a), the 

cumulative distributions of the estimated and measured SRRV at 1V supply match very 

well. From the estimated stability distribution, the tails of the distribution is accurately 

predicted. Figure 69(b) shows that the normalized estimation error has zero mean and 

4.77% sigma. The same technique is applied with six supply steps (1, 0.9, 0.8, 0.7, 0.6 

and 0.55V) and all other conditions are identical. The new estimation result increased R
2
 

only from 0.8 to 0.83 with the error sigma decreased from 4.77% to 4.39%. Considering 

the increase of the regression complexity and measurement time, increasing the number 

of supply sweeps more than four is not practically necessary.  

The estimation results are more heavily dependent on the noise. As the pull-down 

currents are measured with lowering the cell supply, the testing cell can be marginally 

stable at a low VCELL level. With small noise injection, the cell may flip and no read 

current is measured. As the currents are measured on a few discrete supply levels, this 

random cell flipping can lead to substantial estimation error from the model (1). As 

shown in Figure 70, we measured the currents by multiple times (e.g. 10 times) under 

every supply level and the majority value is selected for the estimation. This way the 

effect of noise is eliminated but the entire estimation time increases accordingly. The 

pull-up current data do not require this type of majority selection as the testing cell is 
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more robust during the pull-up measurement. 

 

 

Figure 68. SRRV estimation results of a 32kb memory array with four VCELL 

sweeps for the pull-down and with two VCELL sweeps for the pull-up. Correlation 

(R
2
) of the measured and estimated SRRV for VDD at 1.0, 0.8, and 0.6V. 

 

  

(a) (b) 

Figure 69. (a) Cumulative distribution (CDF) of the measured and estimated 

SRRV at 1V supply. (b) Histogram of the estimation error at 1V supply. 



Chapter 6  Section 6.3 Static Stability Estimation  

113 

 

Figure 70. Majority current selection from data. The cell near the stability edge 

can be flipped by the noise during the current measurement. 

6.3.2. Write-Ability Estimation 

The write-ability estimation using BWTV is strongly dependent on the pull-up current. 

The estimation example in Figure 71 uses the pull-down currents at two supply levels (1 

and 0.85V) and pull-up currents at 1 and 0.7V. Note that the current data used in the 

SRRV estimation can be shared for the BWTV estimation. Even with fewer current 

measurements, the BWTV estimation shows better estimation results when compared to 

the SRRV results due to a strong dependency of the metric on the pull-up current. In 

Figure 71Figure 72(a), the estimation R
2
 is 0.91 at 1V supply and this number does not 

substantially decrease when the cell has lower supply of 0.8V. However, at 0.6V, the 

estimation is no longer sufficiently accurate because the transistors enter into weak 

inversion which is not properly estimated by using the currents measured at strong 

inversion.  

In Figure 72(b), the CDF for the estimation and measured data shows slightly larger 

deviation when predicting the tails of the distribution. Nevertheless, the estimation error 

is bounded to several millivolts. In Figure 72(c), the error sigma of the BWTV estimation 

at 1V supply of only 1.29% indicating very good estimation of the write-ability. 
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Figure 71. BWTV estimation results of a 32kb memory array with two VCELL 

sweeps for the pull-down and with two VCELL sweeps for the pull-up. Correlation 

(R
2
) of the measured and estimated BWTV for VDD at 1.0, 0.8, and 0.6V. 

 

  

(a) (b) 

Figure 72. (a) Cumulative distribution (CDF) of the measured and estimated 

BWTV at 1V supply. (b) Histogram of the estimation error at 1V supply. 

 

6.3.3. Impact of the ADC Quantization Noise 

Figure 73 shows the impact of the ADC resolution on the stability estimation from 

another die measurement results. In this plot, the current data are initially measured by 
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10-bit resolution, and then the MSBs are taken to effectively model a lower resolution 

ADC. As the measurement time does not change, the noise filtering effect described in 

Section 6.2.3 is still valid and we can observe the pure impact of the ADC quantization 

noise without changing the magnitude of the device or supply noise. Figure 73(a) 

visualizes that the ADC resolution is not a primary factor in improving the read-stability 

estimation accuracy. Rather, above 8 bits the estimation error is limited by the other 

source of noise such as device and supply. Below 7 bits, however, the error rapidly surges 

up as the tiny cell current near the critical supply level (around VDD-SRRV) may not be 

properly measured due to the limited resolution. Similarly for the write-ability estimation, 

the estimation accuracy does not improve for the ADC resolution above 8 bits (Figure 

73(b)). 

 

  

(a) (b) 

Figure 73. Impact of the ADC quantization noise on the read stability 

estimation of a die. The error surges below 7 bits as the current information at a 

lower supply level is lost. 

 

Section 6.4 Dynamic Stability 

6.4.1. Dynamic Read Stability 

During a read, the cell is accessed with a word-line pulse of TWL often with a pre-
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charged bit-line [114-115], [123]. SRRV with a finite access time differs from the static 

measurement (static SRRV or SSRRV). Since the internal nodes of an SRAM cell has 

capacitance and has a transient response during a read, the cell may not be perturbed even 

when the supply is at the critical level (i.e. VCELL=VDD-SRRV).  

To illustrate, consider a ‘0’ node (VR) that is charged by the access device during TWL 

leading to a ΔVR. The internal capacitance (CR) is critical in determining the dynamic 

stability of the cell [75] since a larger CR effectively prevents a large initial ΔVR and 

subsequent ΔVL. For a dynamically stable cell, since ΔVR is not sufficiently large, the 

residual pull-down current IPDL-IPUL is too small to discharge VL and change the state. For 

less dynamically stable cells, the residual current is larger and the internal capacitance is 

smaller leading to faster state changes during a read. 

We follow the notation in Chapter 5 and define the value of VCELL when the read is 

disturbed during a pulsed word-line access as dynamic SRRV (DSRRV). The definition 

of DSRRV is illustrated in Figure 74. This technique is an improvement from measuring 

the require time to flip the state [117] because it is substantially less sensitive to 

variations and can be related to SSRRV  

The concept of DSRRV can be illustrated using state space trajectories [116]. Figure 

75(a) shows simulated voltage transfer characteristics (VTC) of an SRAM cell during the 

hold and read access. The cell supply is slightly below the critical level (VCELL < VDD – 

SRRV) such that the cell is statically unstable. The hold VTC divide the state space into 

two regions of convergence (ROC0 and ROC1) that regenerate any intermediate state to 

either S0 (“0” cell value) or S1 (”1” cell value). Figure 75(b) shows the three trajectories 

during the single read access with a step or unlimited pulse width (step response, solid 

line), 0.5×TO (triangle), and TO (circle and rectangle). For TWL=TO (circle), the cell is 

marginally stable. If VCELL is reduced by a small amount, the final state changes from S0 

to S1 (rectangle). If the pulse width is half (triangle), VCELL needs to be reduced further to 

flip the state as the distance between the return path of the trajectory and the ROC 
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boundary increases. 

 

 

(a) (b) 

Figure 74. Dynamic SRRV test setup. (a) Schematics during the initial read 

disturbance. (b) Testing waveform. 
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(a) (b) (c) 

Figure 75. (a) Simulated VTCs of an SRAM cell during hold and read access. 

(b) Trajectories of the internal voltage (VL and VR) during single read access with 

variable pulse widths. The initial state S0 is transitioning to S1 as the pulse width 

increases. (c) During repeated access with different duty cycle and a fixed pulse 

width (TWL = TO). For all cases, VCELL is slightly lower than the critical level (i.e. 

VCELL < VDD-SRRV).  

 

The difference of these two metrics can be visualized from the scatter plot of the 

measured SSRRV and DSRRV in Figure 76(a). The word line pulse is generated 
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internally with TWL=1ns (13×τregeneration). The DSRRV is measured for the two different 

cases:  loaded bit-lines and floating bit-lines. Only marginal difference is observable with 

floating bit-line showing slightly better stability. The reason is that since the bit-line 

capacitance (CBL) is typically large for bit-lines with more than 64 cells, the transient 

voltage of the bit-line does not vary substantially during the narrow word-line pulse and 

hence there is little impact on the DSRRV.  

As shown in Figure 76(a), for each SSRRV value, there is a distribution of DSRRV. 

The distribution is due to variation in the internal capacitances (CL and CR). The smaller 

the internal capacitance, the closer the DSRRV is to the SSRRV because the internal time 

constant of the cell has less impact. Along the left envelope of the DSRRV distribution, 

we can observe excellent correlation to the SSRRV especially for cells with low noise 

margin or small SSRRV. In this test chip, the measured envelope of the DSRRV shows a 

constant shift from the SSRRV (min(DSRRV–SSRRV)) of 15mV. This curve shift is 

shown in simulations in Figure 76(b) to be inversely proportional to the access time. The 

SSRRV becomes very close in to DSRRV when the TWL is >30τregeneration.   

The dynamic read-stability can also be measured under repeated access [115-117]. As 

one expects, more frequent access does not allow cells to fully recover back to the initial 

state (S0) resulting in degraded dynamic read-stability. However, as observed in [117], 

the cells with a lower dynamic margin have smaller internal capacitances, and hence the 

recovery time is shorter such that repeated access does not substantially impact the 

DSRRV. Simulation results in Figure 77 support this fact such that the difference in 

DSRRV between the single and repeated access is negligible for relatively weak cells 

regardless of the cycle time. 

Our results indicate that, for a given word-line pulse width, we can measure the 

DSRRV for cells with low SSRRV. The difference in the measurement can be directly 

used to determine the lower bound of the DSRRV by subtracting the difference from the 

estimated SSRRV.  
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(a) (b) 

Figure 76. (a) Scatter plot of the static and dynamic SRRV. The dynamic SRRV 

is measured with the bit-lines driven by external sources (circle) and with pre-

charging the bit-lines (cross). (b) The amount of the curve shift during the read 

operation with variant access time (simulation results). 

  

(a) (b) 

Figure 77. Simulated static and dynamic SRRV with a fixed pulse width (TO) 

for a single time read access (cross) and for repeated read access with (a) 50% and 

(b) 70% duty cycle (circle). The two dynamic stabilities match exactly for the 

relatively unstable cells. Stables cells show larger stability degradation by 

repeated access.  
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6.4.2. Dynamic Write-Ability 

We apply a similar approach as dynamic read-stability to measure dynamic write-

ability. Figure 78(a) shows the schematics of a cell under test at the beginning of a write 

access. During a write, both sides of a cell inject current resulting in ΔVL and ΔVR. As 

illustrated in Figure 78(b), the dynamic BWTV (DBWTV) is defined to be highest level 

of the bit-line while still flipping the cell. With limited access time (TWL), a lower VBL is 

needed to flip a cell and hence a lower write margin than static BWTV (SBWTV). To 

better illustrate the difference, the state-space trajectories are plotted in Figure 79. Figure 

79(a) shows the two VTCs during a hold and a write operation. Figure 79(b) shows two 

trajectories with the same pulse width (TO) but different VBL. At the higher VBL, with a 

step at VWL, the cell’s state from S0 to S1; however, with a pulsed write access, the state 

stays in ROC 0 converging to S0. When VBL is reduced by a small amount, the new 

trajectory successfully ends at S1. 

Figure 80(a) shows the scatter plot of the measured SBWTV and DBWTV with 1ns 

write access time. A dynamic write operation has less noise margin, and the amount of 

the shift in the BWTV is within 25mV for the entire write-ability distribution. Unlike 

read-stability, DBWTV is not very different from SBWTV and the estimating the write-

ability using SBWTV can be directly applied to dynamic behavior. Figure 80(b) shows 

the curve shift (max(SBWTV–DBWTV)) for the write-ability with various access times. 

The shift is considerable only for very narrow access pulses (<500ps or 7τregeneration). The 

dynamic write-ability can be predictably bounded to within a few tens of millivolts from 

the SBWTV. 
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(a) (b) 

Figure 78. Dynamic WWTV test setup. (a) Schematics during the initial write 

access. (b) Testing waveform.  
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(a) (b) 

Figure 79. (a) Simulated VTCs of an SRAM cell during hold and write access. 

(b) Simulated trajectories of the internal voltage (VL and VR) during single write 

access with variable VBL. For all cases, VBL is slightly lower than the write-trip 

voltage level (i.e. VBL < BWTV).  

 



Chapter 6  Section 6.4 Dynamic Stability  

122 

  

(a) (b) 

Figure 80. (a) Scatter plot of the static and dynamic BWTV. (b) Extra dynamic 

noise margin (EDNM) for the write operation with variant access time. 

 

6.4.3. Predictability of the Failure Condition for Multiple Dies 

The estimated data in Section 6.3 are used to predict the read and write failure 

conditions. Figure 81(a) shows the number of failed reads per VCELL sweep. The triangle 

is from normal read operation with TWL = 1ns and the circle is from the static stability 

estimation data. The difference of the two curves at the tails is the estimation error of the 

failure condition. In this case the dynamic read-stability is underestimated when using the 

static estimates by about 22mV. Figure 81(b) shows the number of failed writes per VBL 

sweep with TWL = 1ns.  

Once the fitting coefficients in (5.1~5.4) are found from a subset of a memory array, 

this coefficient set can be applied to other memory arrays in different dies. Figure 82(a) 

shows the absolute error distribution for 11 dies. Die-to-die variation of the DC offset and 

gain error of the current sensing circuits is properly corrected based on their I/O 

characteristics. This distribution shows that the error is confined to a range less than +/-

5mV. Figure 82(b) shows the difference between the static and dynamic stability for 

read/write. The amount of the difference does not vary too much across multiple dies. 

Even if the internal pulse generator may produce variable TWL, its impact on the curve 
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shift is relatively small unless the pulse width is much narrower than 1ns (Figure 76 and 

Figure 80). If the difference can be obtained from a few sample dies, the prediction error 

in Figure 82 can be reduced further. 

 

  

(a) (b) 

Figure 81. (a) Measured and estimated read fail bit count per VCELL sweep. (b) 

Measured and estimated write fail bit count per low side VBL sweep. 

  

(a) (b) 

Figure 82. Die-to-die variation of (a) failure prediction error between the 

dynamic read/write operation and the statically estimated results from the bit-line 

current measurements and (b) the difference between the measured dynamic and 

static margin.  
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Section 6.5 Summary 

A rapid SRAM cell stability estimation is enabled by using the embedded current sensing 

circuits with controlled supply. The estimation accuracy is much improved compared to 

the prior works (R
2
> 0.8). The dynamic concerns arising from diverse effects are 

investigated and proper testing setups are demonstrated. A close correlation to the static 

estimation is verified from measurement data. Using the self-testing technique explored 

in this work, each supply level for a 6T-SRAM array can be more systematically 

controlled to guarantee read/write stability with dynamic characteristics. 
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Chapter 7  

Conclusions 

 

This dissertation has addressed improving the yield and reliability of two common IC 

building blocks, DACs and SRAMs. Instead of performing exhaustive MC simulations, 

this dissertation focusses on estimation functions for either pre- or post-silicon designs. 

The key element of the proposed approaches is maintaining the accuracy without 

computational or extensive measurement complexity leading to fast estimation. 

The simple mathematical derivation of the integration of the multivariate Gaussian 

random variables enables intuitive formulation of the linearity yield model of the DAC. 

The proposed models can handle the yield estimation for arbitrary structure from the 

measured current variation. The DNL yield model is analyzed and suggested for the first 

time with dramatic matching to the simulation and measurement data. While the existing 

INL yield models typically do not accurately predict the yield for segmented DAC, this 

work used multiple error functions with fractional power factors that match to the 

measured yield very well. The yield models are verified by measured current data from 8-

bit current-steering DACs fabricated in 90nm CMOS. Even with non-Gaussian 
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distribution the accuracy of the models does not degrade. Therefore, the proposed yield 

models are reliable and applicable to future technologies. By using these models, the time 

and efforts of traditional MC simulation-based methods can be greatly reduced. This 

dissertation does not extend the suggested static models to include dynamic effects; a 

dynamic yield model is a potential future work. 

The second technique used built-in testing circuits for the embedded SRAM as a way to 

rapidly and reliably estimate the cell stability. With a test chip made in 65nm CMOS, this 

technique improved the estimation accuracy and measurement speed greatly compared to 

any published literature. Another contribution of this work is establishing excellent 

correlation between the static and dynamic stability. From the scatter plot and failure 

prediction, the extra dynamic noise margin is defined and is used to gauge the dynamic 

stability from the static noise margin. The correlation observed between the static and 

dynamic stability defined in this work shows small variation across the multiple dies, 

hence more reliable dynamic yield estimation is feasible using the technique. 

The use of the technique (not only from yield estimation) can be found from many 

practical needs. The extracted parameters from a subset of a die are useful as they can be 

applied to the other dies for the stability estimation. This basic information leads to more 

possible applications of the technique. Primary application is to obtain the accurate 

analog amount of the stability information that is not only useful in adjusting the supply 

level of the chip to enhance the yield, but it is also helpful in placing a margin on the 

control variable (e.g. VCELL) from a known expected device variation due to environment 

stress. Also the analog stability level is determined by six random variables in a 6T-cell. 

The stability number is purely random and is obtained from every single cell. The whole 

SRAM cell array can be treated as a random code generator. Both these applications have 

potential as future extensions of this work. 
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Appendices 

 

A.1 Simplified Yield Model of 2-D Correlated Gaussian 

Random Variables 

This section discusses the conditions for the approximation in (Eq. 3.3). This discussion 

starts with two nearly identical variables (σx ~ σy). When the variables are weakly 

correlated (ρ < 0.2), the xy-term in (Eq. 3.2) can be ignored and square root of (1-ρ2
) is 

approximately 1. Thus, (Eq. 3.2) can be simplified as multiplication of two error 

functions. As seen from Figure 6, the fitting coefficient of (Eq. 3.3) stays close to 2 when 

ρ < 0.2. For highly correlated variables, (Eq. 3.2) can be simplified by rotating the x-y 

axis by 45 degrees.  
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(Eq A.2)  

Note that if the two variables have different variances but in close value such as 

0.9<σx/σy<1 (Figure 5(b)), the rotation angle can be properly adjusted to eliminate the xy-

term in (Eq. 3.2). In that case, PC_2D can be simplified as (Eq. A.2) by adding proper gain 

factors to σX in f(x) and g(x) while the integration bound is approximately identical. The 

g(x) function can be simplified to be a step function with the step transition where the 

error function is at 0.5 (Figure 83). This simplification reduces the equation to (Eq. A.3). 

Note that this simplification is accurate when ρ is close to 1, and when the curvature of 

f(x) is not too sharp which implies a high probability of success or small σX.  

 

Figure 83. Numerical approximation of (Eq. A.2). The decision boundary A is 

2.5 times σx in this figure. 
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(Eq A.4)  

When comparing this reduced equation with PC of a 1-D normal random variable (Eq. 

A.4), the probability of success of 2-D normal random variables (PC_2D) can be 

recognized as a single error function with modified decision boundary that is a function 

of σx and ρ. The amount of yield loss due to shrinking of the decision boundary has a 

close correlation to the original yield (PC_1D) and hence can be expressed as a function of 

PC_1D. An arbitrary polynomial expansion is tried at a certain estimation target P0. 
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(Eq A.5)  

By numerically analyzing the polynomial coefficients (b0, b1, etc.) as seen in Table A-1, 

the polynomial fit (third order) closely matches the expression for an exponential. The 

fitting factor k in this table can be different from the value in Figure 6 as ρ becomes 

smaller than 0.9. Due to small curvature of f(x) in (Eq. A.2), the step transition is slightly 

modified (from erf-1(0.5) to erf-1(0.51)) such that (Eq. A.3) is valid for high probability 

of success. Although the derivation is based on a high ρ value, (Eq. 3.3) shows 

reasonable accuracy for entire ρ value if focused on high yield level as seen in Figure 6. 
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Table A- 1 Numerical analysis of (Eq. A.5) with P0 = 0.9 

ρ 
Polynomial Coefficients 

Equivalent k 
b0 b1 b2 b3 

0.999 0.9 1.03 0.05 0.09 1.03 

0.99 0.9 1.09 0.15 0.26 1.1 

0.95 0.88 1.19 0.27 0.42 1.22 

0.9 0.87 1.26 0.3 0.39 1.31 

0.85 0.86 1.31 0.28 0.24 1.37 
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