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Adaptive Instructional Systems:
Some Attempts to Optimize
the Learning Process

Richard C. Atkinson'
Stanford University

INTRODUCTION

One cannot help but question the significance of psychelogy’s contribution to
the development of effective instructional procedures. On the one hand, psy-
chology has been very influential in the field of education. In the last 23 years
almost every major innovation in education—programmed tex (books, behavioral
objectives, ungraded schools, individually prescribed instruction, computer man-
aged und assisted instruction, token economies, and tailored testing to name a
few--can be traced to psychology. In many cases these innovations have not
been due to psychologists primarily identificd with education, but rather to
laboratory scientists whose research has suggested new approaches to instruc-
tion. Psychology can be proud of that record of accomplishment. But upon
closer cxamination, it is evident that these accomplishments are not as closely
linked to psychological research as many inight believe. Psychology has sug-
gested new approaches to education, but these suggestions have not led to
sustained research programs that have the promisc of producing a truly effective
theory of instruction. Rather, psycholugy seems to provide the stimulus for
innovation, but innovation that has not in turn led to a decper understanding of
the learning process.

Why has psychology not had a more substantial impact? There arc several
reasons. The brightest and ablest young psychologists usually are not aturacted
to educational rescarch, and the research thal has been done tends to be
piecemeal, not pursuing problems in rcal depth. This picture may change in the
near future due to the limited number of jobs for new Ph.D.s and to society's

' Present affiliation: Deputy Dircctor, National Science Foundation, Washington, D.C.
20550.
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increasing emphasis on applied research. The more serious problem, however, is
that psychologists know a great deal about the acquisition of individual facts and
skills, but very little about how these combine to form a meaningful mental
structure. Effective methods for acquiring skills and facts are important, but the
major problem is the development of knowledge structures that are more than
the sum of individual facts. In order to deal effectively’ with educational
problems, we need theories that tell us how knowledge is represented in
memory, how information is retrieved from that knowledge structure, how new
information is added to the structure, and how the system can expand that
knowledge structure by sclf-generative processes. The development of such
theories is under way, and increasingly work in cugnitive psychology is moving
in that direction. The contributions of Anderson and Bower (1973), Newell and
Simon (1972}, Rumelhart, Lindsay, 3nd Norman (1972}, and Schank (1972) are
examples of substantial efforts to develop comprehensive theories of cognition,
and it is alrcady evident that this work will have implications for education.
Such theories will not simply add another wrinkle to educational research, but
will lay the foundations for rescarch encompassing a larger set of educationally
significant problems than has been considered in the past.

In this paper [ want to review the ongoing work in my laboratory that has
implications for instruction. Some of that work represents attempts to deat with
the issue of complex knowledge structures, whereas some is more restrictive
dealing with the acquisition of specific skills and facts. All of the work involves
computer-based programs of instruction used on a daily basis in schools and
colieges. These programs can best be described as adaptive instructional systems.
By that term [ mean two things: (1) the sequence of instructional actions taken
by the program varies as a function of a given student’s performance history, and
{2) the program is organized to modify itsclf automatically as more students
complete the course and their response records identify defects in instructional
strategies.

Our work on adaptive instructional systems has three foci. One is the develop-
ment of a course in computer programming for jinior college and college
students; the second is a course for teaching reading in the first three grades of
elementary schools; and the third is a foreign-language vocubulary program being
used at the college level. Ilere 1 will review research on each of these projects.

INSTRUCTION IN COMPUTER PROGRAMMING

Our first efforts to teach computer programming involved the development of a
computer-assisted instruction (CAI) curriculum to teach the AID (Algebraic
Interpretive Dialogue) programming language; this course has been used exten-
sively in colleges and junior colleges as an introduction to computer program-
ming (Beard, Lorton, Scarle, & Atkinson, 1973). However, it is a linear, “frame-
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oriented”” CAl program and does not provide individualized instruction during
the problem-solving activily itself. After working through lesson segments on
syntax, expressions, cic., the student is assigned a problem to solve in AID. He
musi then leave the instructional program, call up a separate AlD interpreter,
perform the required programming task, and return to the instructional program
with an answer. As the student writes a program with AID, the only sources of
assistance are the error incssages provided by the noninstructional interpreler.
An inadequacy of the AID course, especially for research purposes, is its
limited ability to characterize individual students’ knowledge of specific skills,
and its inability to relate students’ skills te the curriculum as anything more than
a ratio of problems correct to problems attempted. The program cannot make
fine distinctions betwcen a student’s strengths and weaknesses. and cannot
present instructional material specifically appropriate to that student beyond
“harder” or “‘casicr” lessons. In order to explorc the cffects of different
curriculum sclection strategics in more detail, we developed another introduc-
tory programming course, capable of representing both its subject matter and
student performance more adequatcly. The intcrnal representation of program-
ming skills and their relationships to the curriculum is similar in some ways to
the semantic networks used in the “gencrative™ CAl programs developed by
Carbonell and others (Carbonell, 1970; Collins, Carbonell, & Warnock, 1973).

The BASIC Instructional Program

An important feature of a tutorial CAI program is to provide assistance as the
student attempts to solve a problem. The program must contain a representation
of the subject matter that is complex enough to allow the program to generate
appropriate assistance at any stage of the student’s solution attempt. The BASIC
(Beginners All-purpose Symbolic Instruction Code) Instructional Program (BIP)
contains a representation of information appropriate to the teaching of com-
puter programming that allows the program both to provide help to the student
and to perform a limited but adequate analysis of the correctness of the
student’s program as a solution to the given problem.

To the student seated at a terminal, BIP looks very much like a typical

" time-sharing BASIC operating system. The BASIC interpreter, written especiaBy
for BIP, analyzes each program line after the student types it, and notifics the
student of syntax errors. When the student runs his or her program it is checked
for structural illegalities, and duririg runtime “execution™ errors are indicated. A
file storage system, a calculator, and utility commands are available.

Residing above the simulated operating system is the “tutor,” or instructional
program (1P). It overlooks the entire student/BIP dialogue and motivatcs the
instructional interaction. In addition to selecting and presenting programming
problems to the student, the IP identifies the student’s problem areas, suggests
simpler “subtasks,” gives hints or model solutions when necessary, offers debug-
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FIG. 1 BIP informalion flow diagram.

ging aids, and supplies incidental instruction in the form of messages, interactive
lessons, or manual references.

At the core of BIP is an information network whose nodes are concepts, skills,
problcms, subproblems, prerequisites, BASIC commands, remedial lessons, hints,
and manuval references. The network is used to characierize both the logical
structure of the course and our estimate of the student’s current state of
knowledge; more will be said about the network later. Figure 1 illustrates the
interactions of ihe parts of the BIP program.

The curriculum is organized as a set of programming problems whose text
includes only the description of the problem, not lengthy descriptions of
programming structures or explanations of syntax. There is no fixed ordering of
the tasks; the decision to move from one task to another is made on the basis of
the information about the tasks (skills involved, prerequisites, subtasks available)
stored in BIPs network.

A student progresses through the curriculum by writing, and running, a
program that solves the problem presented on the terminal. Virtually no limita-
tions are imposed on the amount of time the student spends, the-number of lines
he writes, the number of errors he is allawed 1o make, the number of times he
chooses 1o execuie the program, etc. The task on which the student is working is
stored on a stack-like structure, so that he may work on another lask, for
whatever reason, and return to the previous task automatically. The curriculum
structure can accommodate a wide variety of student aptitudes and skills. Most
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of the curriculum-related options are designed with the less competent student
in mind. A more competent studcnt may simply ignore the options. Thus, BIP
gives studenis the opportunity to determine their own “chalienge levels” by
making assistance available butf not inevitable.

BIP offers the student considerable flexibility in making task-related decisions.
The student may ask for hints and subtasks to help solve the given problem, ur
may ponder the problem, using only the manual for additional information. The
student may request a different task by name cither completing the new task or
not, as he or she chooses. On the student’s return to the original tusk, BIP tells
him or her the name of the again-current task, md prints the text of the task if
requesicd. The student may request the model solution for any task at any time,
but BIP will not print the model for the current task unless the student has
exhausted the available hints and subtasks. Taken together, the curriculum
options allow for a wide range of student preferences and behaviaors.

The Information Network of BIP

Task selection, remedial assistance, and problem area determination require that
the program have a flexible information store interrelating tasks, hints, manual
references, etc. This store has been built using the associative language LEAP, a
SAIL (Stanford Artificial Intelligence Laboratory) subianguage, in which set, list
and ordered triple data structures are available (Feldman, Low, Swinehart, &
Taylor, 1972; Swinbart & Sproull, 1971; VanLehn, 1973). Figure 2 presents a

WRITE A PROGRAM THAT :
PRINTS THE NAME OF A
VARIABLE AND ITS VALUE

PROBLEMS / \

WRITE A PROGRAM THAT
PRINTS THE VALUE OF
A VARIABLE

WRITE A PROGRAM THAT:
PRINTS THE WORD"CAT"

SKILLS

[_FRINTING LITERALS I |PRINTING VARIABLES l IASSIGNING LITERALS]

CONCEPTS

QUTPUT VARIABLE ASSIGNMENT

FIG.2 A segment of BIP information network.
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simplified relationship among a few programming concepts, specific observable
skills that characterize the acquisition of the concepts, and programming prob-
lems that require the use of those skills. The network is constructed using the

associative triple structure, and is best described in terms of the various types of
nodes:

TASKS: All curriculum elements exist as task nodes in the network.
They are linked to each other as subtasks, prerequisite tasks,
or “must follow™ tasks. i

SKILLS: The skill nodes are intermediaries between the concept nodes
and the task nodes (Fig. 2). Skills are very specific, e.g.,
“concatenating string variables” or “incrementing a counter
variable.” By evaluating success on the individual skills, the
program estimates competence levels'in thc concept areas. 1n
the network, skills are related to the tasks that require them
and to the concepts that embody them.

CONCEPTS: The principal concept areas covered by BIP are the following:
interactive programs; variables and literals; expressions; input
and output; program control—branching; repetition--loops;
debugging; subroutines; and arrays.

OPERATORS: Each BASIC operation (PRINT, LET,...) is a node€in the
network. The operations are linked to the tasks in two ways:
either as elements that must be used in the solution of the
problem, or as those that must not be used in the solution.

HINTS: The hint nodes are linked to the tasks for which they may be
helpful. Each time a new skill, concept or BASIC operator is
introduced, there is an extra hint that gives a suitable manual
reference.

ERRORS: All discoverable syntax, structural, and execution errors exisl
as nodes in the network, linked to the relevant “help” mes-
sages, manual references and remedial lessons.

Clearly in some cases, a hicrarchy among skills or problems is implicit; more
frequently, however, such a relationship cannot be assumed. By imposing only 2
very loose hierarchy (e.g., requiring that all students begin the course with the
same problem), it is possible Lo sclect curriculum and provide assistance on the
basis of a student’s demonstrated competence level on specific skills, rather than
on the basis of a predetermined, nonindividualized, sequence of problems.
Students who acquire competence in skills in some manner other than that
assumed by subject-matter experts to be standard should benefit most from this
polential for individualization,

Upon completion of a task, the stodent is given a “post task interview” in
which BIP presents the model solulion stored for that problem. The student is
encouraged to regard the model as only one of many possible solutions. BIP asks
the student whether he or she has solved the problem, then asks (for each of the
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skills associated with the task) whether more practice is needed on that skill. In
addition to the information gained from this student self-analysis, BIP also stores
the result of a comparison between the student’s program and the model
solution, based on the output of both programs when run on a set of test data.
The student’s responses to the interview and the results of the program compari-
son are used in future BIP-gencrated curriculum decisions. BIP informs the
student that the task has been completed, and cither atlows the student to select
the next task by name (from an off-line printed lst of names and problem
texts), or makes the selection for the student.

An example of the role of the Information Network in BIPs tutorial capabil-
ities is the BIP-generated curriculum decisions mentioned above. By storing the
student’s own evaluation of his or her skills, and by comparing the student's
solution attempts to the stored models, BIP can be said to “learn™ about each
student as an individual who has attained a certain level of competence in the
skills associated with each task. For example, BIP might have recorded the fact
that a given student had demonstrated competence {and confidence) in the skill
of assigning a literal value to a variable (e.g., N = 1), but had failed to master the
skill of incrementing a counter variable (e.g., N=N+ 1). BIP can then search the
network to locate the skills that are appropriate to each student’s abilities and
present tasks that incorporate those skills. The network provides the base from
which BIP can generate decisions that take into account both the subject matter
and the student, behaving somewhat like a human tutor in presenting material
that cither corrects specific weaknesses or challenges and extends particular
strengths, proceeding into as yet unencountered areas.

The BIP program has been running successfully with both junior coliege and
university students. However, the program is still very much in an experimental
stage. From a psychological viewpoint, the principal research issues deal with (1)
procedures for obtaining on-line estimates of student abilities as represented in
the information network, and (2) alternative methods for using the current
estimates in the information network to make-instructional decisions. Neither of
these issues is restricted to this particular course, and a major goal in the
development of BIP is to provide an instructional model suitable to a variety of
different subject areas. Two topics must be discussed in relation to this goal: the
" nature of appropriate subject areas and the general characteristics of the BIP-like
structure that make it particularly useful in teaching such subjects.

A subject well suited to this approach generally fits the following description:
it has clearly definable, demonstrable skills, whose relationships are well known;
the real content of the subject matter is of a problem-solving, rather than a
fact-acquiring; nature; the problems presented to the student involve overlapping
sets of skills; and a student’s solution to a given problem can be judged as
adequate or inadequate with some degree of confidence. The BASIC language, as
taught by BIP, is one such subject, but the range of appropriate curriculums goes
well beyond "the area of computer science. For example, elementary statistics
could be taught by a similar approach, as could algebra, navigation, accounting,
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-or organic chemistry. All these subject areas involve the manipulation of infor-
mation by the student toward a known goal, all involve processes that can be
carried out or simulated by a computer, and all are based on a body of skills
whose acquisition by the student can be measured with an acceptable degree of
accuracy. .

Because they require the development of problem-solving skills, rather than
the memorization of facts, these subject areas are frequently difficult to master
and difficult to tutof, especially using standard CAI techniques. One limitation
of such standard techniqucs is their dependence on a “right™ answer to a given
question or problem, which precludes active student participation in a problem-
solving process consisting of many steps, none of which can be evaluated as
correct or incorrect except within the context of the solution as a whole. In
addition, standard CAI techniques usually consist of an instructional facility
alone—a mechanism by which information is presented and responses are judged.
This facility can be linked to a true problem-solving facility that allows the
student to proceed through the steps to a solution, but the link does not allow
the transfer of information between the instructional and the problem-soiving
portions of the program. The complete integration of the two parts is a key
feature of BIP, making it appropriate to instruction in subject areas that have
been inadequately trcated in CAIL _

The most general characteristics of the “network™ structure include a represen-
tation of the curriculum jn terms of the specific skills required in its mastery and
a representation of the student’s current levels of competence in each of the
skills he has been required to use. Individual record-kceping relates each stu-
dent’s progress to the curriculum at all times, and any number of schemes may
be used to apply that relationship to the sclection of tasks or the presentation of
additional information, hints, advice, etc.

An important element of our network structure is the absence of an estab-
lished path through the curriculum, providing the built-in flexibility (like that of
a human tutor) to respond to individual students’ strengths and weaknesses as
each student waorks with the course. This can only be accomplished through a
careful analysis and precise specification of the skills inhercnt in the subject
matter, the construction of a thoreugh curriculum providing in-depth experience-
with all the skills, and a structure of associations among clements of the
curricutum that allows for the implementation of various instructional strategics.
[nstructional flexibility is complemented by research flexibility in such a struc-
ture, because the nature of the associations can be modilied for ditferent
experimental purposes. Once the clements of the network have been established,
it is easy, for cxample, to change the prercquisite relationship between two
problems, or to specily a highcr level of competence in a given skill as a criterion
measure. _ _

The considcrable complexity involved in programming this kind of flexible
structure imposes a certain limitation. Standard CAI “author languages™ are not
appropriate to this network approach, and constructing a CAl course on BIP's
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pattern is not a task.to be undertaken by the educator (or researcher) who has
no programming support. The usefulness of author languages is their simplicity,
which allows subject-matter experts to prepare course material relatively quickly
and easily. Most author languages provide for alternative paths through a
curriculum, for alternative answer-matching schemes, and so forth; considerable
complexity is certainly possible. However, the limits, once reached, are real, and
the author simply cannot expand the sophistication of his course beyond those
limits.

The programming support required by the network approach, on the other
hand, implies (1) the use of a general, powerful language allowing access to all
the capabilities of the computer itself, and (2) a programming group with the
training and cxperience to make full use of the machine. It has been our
experience that the flexibility of a general purpose language, while expensive in a
number of ways, is worth the costs by virtne of the much preater freedom it
allows in the construction of the curriculum and the implementation of experi-
mental conditions. For a more complcte description of BIP and 2 review of our
plans for further research see Barr, Beard, and Atkinson (1974).

INSTRUCTION IN INITIAL READING
{GRADES -3}

Our first efforts to teach reading under computer control were aimed at a total

curriculum that would be virtually independent of the classroom teacher (Atkin-

son, 1968). These early efforts proved reasonably stccessful, but it soon became

apparent that the cost of such a program would be prohibitive if applied on a

large-scale basis. Further, it was demonstrated that some aspects of instruction

could be done very effectively using a computer, but that there were other tasks -
for which the computer did not have any advantages over classroom teaching.

Thus, during the last four ycars, our orientation has changed and the goal now is

to develop low-cost CAI that supplements classroom teaching and concentrates

on those tasks in which individualization is critically important.?

Reading Curriculum

Reading instruction can be divided into two areas which have been referred to as
“decoding” and *“‘communication.” Decoding is the rapid, il not automatic,
association of phonemes or phoneme groups with their respective graphic repre-

*A student terminal in the currcnt program consists only of a Model-33 tfeletypewriter
-with an audio headset. There is no graphic or photographic capability at the student
terminal as there was in our first system, and the character set of the telctypewriter inclides
only uppercase letters. On the other hand, the audio system is extremely flcxil;le and
provides virtually instantaneous access to ariy one of 6,000 recorded words and messages.
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FIG. 3 Schemalic presentalion of the strand structure. Entry into each strand depends on a
student's performance in earlier strands. The vertical dotted lines rcpresent maximal rate
contours which control the student's progress in cach strand relative to the other strands.

sentations. Communication involves reading for meaning, aesthetic enjoyment,
emphasis, and the like. Our CAl program provides instruction in both types of
tasks, but focuses primarily on decoding. The program is divided into eight parts
or strands. As indicated in Fig. 3, entry into a strand is determined by the
student’s level of achievement in the other strands. Instruction begins in Strand
0, which teaches the skills required to interact with the program. Entry into the
other strands is dependent on the student’s performance in_ earlier strands. For
example, the letter identification strand starts with a subset of letters used in the_
earliest sight words. When a student reaches a point in the letter identification
strand where he has exhibited mastery over the letters used in the first words of
the sight-word strand, the student enters that strand. Similarly, enfry into the
spelling-pattern strand and the phonics strand is controlled by the student’s
placement in the sight-word strand. On any given day, a student may be seeing
exerciscs drawn from as many as five strands. The dotted veriical lines in Fig. 3
represent “‘maximal rate contours,” which control the student’s progréss in each
strand relative to progress in other strands. The rationale underlying thesc
contours is that learning particular material in one strand facilitates learning in
another strand; thus, the contours are constructed so that the student learns
specific items from one strand in conjunction with specific items from other
strands. '
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The CAI program is highly individualized so that a trace through the curricu-
lum is unique for cach student. Qur problem is 1o specify how a given subject’s
response history should be used to make instructional decisions. The approach
that we have adopted is to develop mathematical models for the acquisition of
the various skills in the curriculum, and then use these models to specify optimal
sequencing schemes. Basically, this approach is what has come to be known in
the engineering literature as “‘optimal control theory,” or, more simply, “control
theory.” In the area of instruction, the system to be contratled is the human
lcarner rather than a machine or group of industries. If a learning model can be
specified, then methods of control theory can be used to derive optimal
instructional stralcgies.

Some of the optimization procedures will be reviewed later, but in order lor
the reader to have some idea of how the CAl program operates, let me first
describe a few of the simpler exercises used in Strands 11, III, and IV. Strand {1
provides for the development of a sight-word vocabulary. Vocabulary items are
presented in five exercisc formats; only the copy exercise and the recognition
cxercise will be described here. The top panel of Table I illustrates the copy
exercise, and the lower panel illustrates the recognition exercise. Note that when
a student makes an error, the system responds with an audio message and prints

TABLE1
Examples of Two Exercises Used in Strand i
iSight-Word Recognition)?

Teletypewriter Audio
display message

Copy exercise
The program outputs PEN (Type pen.)
The student responds by typing PEN
The program outputs + (Great!)
The program outputs EGG (Type cgg.)
The student responds by typing EFF
The program outputs {HIEGG (No, egg.)

Recognition exercise

The program outputs PEN NET EGG (Type pen.)
The student responds by typing PEN

The program outputs +

The program outputs PEN EGG NET (Type net.)
The student responds by typing .NET

The program outputs + (Fabulous!

“The top panel displays the copy cxercise and the bottom the
recognition exercise. Rows in the table correspond to successive
lines on the teletypewriter priniout.



out the correct response. In earlier versions of the program, the student was
required to copy the correct response following an error. Experiments demon-
strated that the overt correction procedure was not particularly effective; simply
displaying the correct word following an error provided more useful fecdback.

Strand 111 offers practice with spelling patterns and emphasizes the regular
graphcme—phoneme correspondences that exist in English. Table 2 iltustrates
exercises from this strand. For the exercise in thc top panel of Table 2, the
student is presented with three words involving the same spelling pattern and is
required to select the correct one based on its initial le{ters. Once the student
has learned to use the initial leticr or letter sequence 1o distinguish between
words, he moves to the recall excrcise illustrated in the bottem panel of Table 2.
Here the student works with a group of words, all involving the same spelling
pattern. On each trial the audiv system requests a word that requires adding.an
initial consonant or consonant cluster to the spefling pattern mastered in the
preceding exercise. Whenever a student makes a correct response, a “+7'sign is
printed on the teletypewriter. In addition, every so often the program will give
an audio fcedback message; these messages vary from simple ones like “great.”
“that’s fabulous,” “you're doing brilliantly,” to some that have cheering, clup-
ping, or bells ringing in the background. These messages are not generated at
random, but depend on the student’s performance on that parficular day.

When the student has mastered a specified number of words in the sight-word
strand, he or she begins exercises in the phonics strand; this strand concentrates
on initial and final consonants and consonant clusters in combination with
medial vowels. As in most linguistically orientated curricula, students are not
required to rchearse or identify consonant sounds in isolation. The emphasis is
on patterns of vowels and consonants that bear regular currespondences Lo

TABLE 2
Examples of the Recognition and Recall Exercises Used in
Strand 1 {Spelling Patterns)

Teletypewriter Audio
display message

Recognition cxercise

The program oulputs KEPT SLEPT CREPT  (Type kept.)
The student responds by typing  KEPT
The program outputs +

Recall exercise

The program outputs (Tvpe crept.)
The studen! responds by typing  CREPT
+

The program outputs (That's fabulous!)
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TABLE 3
Examples of Two Exercises from Strand |V {Phonics)

Telety pewriter Audio
display message

Recognition exercisce

The program culputs —AIN-IT -IG (Type /1G/ as in fig.)
The student responds by typing 1G

The program outputs + (Good!)

The program outputs —IT-IN-IG {Type /IT/ as in fit.)
The student responds by typing IT

The program outputs +

Build-a-word exercise

The program outputs —IN-IT ~1G

P—— (Type pin.)
The student responds by typing PIN
The program outputs + (Great!)
The program outputs -IG -IN —IT

F—— (Type fig.)

The student responds by typing FIN
The program outputs [HFiG (No, we wanted fig.)

phonemes. The phonic strand is the most complicated one of the group and
involves eight exercisc formats; two of the formats will be described here. The.
upper panel of Table 3 illustrates an exercise in which the student is required to
identify the graphic representation of phonemes occuring at the end of words.
Each trial begins with an audio presentation of a word that includes the
phonemes, and the student is asked to identify the graphic representation. After.
mastering this exercise the student is transferred to the exercisc illustrated in the
bottom panel of Table 3. The same phonemes are presented, but now the
student is required to construct words by adding appropriate consonants.

Optimal Sequences for individual Students

This has been a brief overview of some of the exercises used in the curriculum; a
more detailed account of the program can be found in Atkinson, Fletcher,
Lindsay, Campbell, and Barr (1973). The key to the curricuium is the optimiza-
tion schemes that control the sequencing of the exercises; these schemes can be
classified at three levels. One level involves decision making within each strand.
The problem is to decide which items to present for study, which exercise
formats to present them in, and when to schedule review. A complete response
history exists for each student, and this history is used to make trial-by-trial
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decisions regarding what to present next. The second level of Optimiz.atibn deals
with decisions about allocation of instructional time among strands for a given
‘student. At the end of an instructional session, the student will have reached a
certain point in each strand and a decision must be mmade about the time to be
atlocated to each strand in the next session. The third level of optimization deals
with the distribution of instructional time among students. The question here is
to allocate computer time among students to achieve instructional objectives
that are defined not for the individual student but for the class as a whole. In
some global sense, these three levels of optimization should be integrated into a .
unified program. However, we have been satisfied to work with each scparately,
hoping that later they can be incorporated into a single package.

Optimization within a strand (what has been called Level I) can be |llustrated
- using the sight-word strand. The strand comprises a list of about 1,000 words;
the words are ordered in terms of their frequency in the student’s vocabulary,
and words at the beginning of the list have highly regular grapheme—phoneme
correspondences. At any point in time a student will be working on a limited
pool of words from the master list; the size of this working pool depends on the
student’s ability level and is usnally between 5 and 10 words. When one of these
words is mastered, it is deleted from the pool and replaced by the next word on
the list or by a word due for review. Figure 4 presents a flow chart for the
strand. Each woid in the working pool is in one of five possible insiructional
states. A trial involves sampling a word from the working pool and presenting it
in an appropriate exercise format. The student is prelested on a word the first
few times it is presented to eliminate words already known. If the student knows
the word it will be dropped from the working pool. If not, the student first
studies the word using the recognition exercise. If review is required, the student
studies the word again in what is designated in Fig. 4 as Exercises 4 and 5.

As indicated in Fig. 4, a given word passes from one state to the next when it
reaches criterion. And this presents the crux of the optimization prablem, which
is to define an appropriate criterion for each exercise. This has been done using
simple mathematical models to describe the acquisition process for each exercise
and the transfer functions that hold between exercises (Atkinson & Paulson,
1972). These models are simple Markov processes that provide reasonably
accurate accounts of performance on our tasks. Parameters of thc models are
defined as functions of two factors: (1) the ability of the particular student and
{2) the difficulty of the particular word. An cstimate of the student’s ability is
obtained by analyzing his or her response record on all previous words, and an
estimate of a word’s difficulty is obtained by analyzing performance on that

FIG. 4 Partial flow chart for Strand II (sight-ward recognition). The various decisions
represented in the bottom part of the chart are based on fairly complicated computations

that make use of the student’s response history. The same recognition exercise is used in
both state §, and S,.
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particular word for all students run on the program. The student records are
continually updated by the computer and are used to compute a maximum
likelihood estimate of each student’s ability factor and each word’s difficulty
factor. Given a well-defined model and estimates of its parameters, we can use
the methods of control theory to define an optimal criterion for each exercise.
The criterion will vary depending on the difficulty of the item, the student’s
ability level, and the precise sequence of correct and incorrect responses made
by the student to the item. It is important to realize that the optimization
scheme is not a simple branching program based on the student’s last response,
but depends in a complicated way on the student’s complete response history.
Optimization between strands (what has been called Level i1) was mentioned
earlier in the description of maximum-rate contours. In some respects this
optimization program is the most intercsting of the group, but it cannot be
explained without going into considerable mathemaltical detail. In essence, a
Jearning model is developed that specifies the learning rate on each strand as a
function of the amount of material that has been mastered in each of the other
strands. Using mathematical methods of control theory, an optimal instructional
strategy is determined based on the model. This strategy defines a closed-loop
feedback controller that specifies daily instructional allocations for each strand
based on the best current estimate of how much the student has mastered in

each strand. An account of the theoretical rationale for the program is presented
in Chant and Atkinson (1973).

Optimizing Class Performance

Next let us consider an example of oplimization at what has been called Level
Il The effectiveness of the CAI program can be increased by optimally
allocating instructional time among students. Suppuse that a school has bud-
geted a fixed amount of time for CAI and must decide how to allocate that time
among a class of first-grade students. For this example, maximizing the effective-
ness of the CAl program will be interpreted as meaning that we want to
maximize the class performance on a standardized reading (est administered at
the end of the first grade.

On the basis of prior studics, the following cquation has been developed to

predict performance on a standardized reading test as a function of the time a
student spends on the CAl system:

P(t; 1)y = A() — B()) exp|~1Q4)].

The equation predicts Student i's performance on a standardized test as a
function of the time, f, spent on the CAI sysicm during the school year. The
parameters A(7), B(#), and (i) characterize Student i, and vary from one student
to another. These parameters can be estimated from scores on reading readiness
tests and from the student’s performance during his first hour of CAl. After
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estimates of these parameters have been made, the above equation can be used
to predict end-of-year test scores as a function of the CAl time allocated to that
student.

Let us suppose that a school has budgeted a fixed amount of time T on the
CAl system for a first-grade class of A students; further, suppose that students
have had reading readiness tests and a preliminary run on the CAl system so that
estimates of the parameters A, B, and C have been made for each student. The
problem then is to allocate time 7" among the N students so as to optimize
lcarning. In order to do this, it is first necessary to have a model of the learning
process. Although the above equation does not offer a very detailed account of
learning, it suffices as a model for purposes of this problem. This is an important
point to keep in mind; the nature of the specific optimization problem deter-
mines the level of complexity that needs 1o be represented in the learning model.
For some optimization problems, the model must provide a relatively detailed
account of learning to specify a viable strategy, but for other problems a simple
descriptive equation may suffice.

In addition to a modcl of the learning process, we must also specify an
instructional objective. Only three possible objectives will be considered here:

I. Maximize the mean value of P over the class of students.
I1. Minimize the variance of P over the class of students.
[ll. Maximize the mean value of P under the constraint that the resulting

variance of P is less than or equal to the variance that would be obtained if
no CAI were administered.

Obijective [ maximizes the gain for the class as a whole: Objective 11 reduces
differences among students by making the class as homogeneous as possibie; and
Objective 111 attempts to maximize the class performance while insuring that
differences among students are not amplified by CAl. 1f we select Objective I as
the instructional objective, then the problem of deriving an optimal strategy
reduces to maximizing the function:

T, ). 1] = 22 40D - BOexpl-0)C0 1},
K)+HD+ - + () =T,

where #(f)} is the time allocated to Student i. This maximization can be done
using the methods of dynamic programming. To illustrate the approach, compu-
tations were made for a first-grade class for which the parameters 4, B, and C
had been estimated for each student. Employing these estimates, computations
were carried out to determine the time allocations that maximized the above
equation. For the optimal policy, the predicted mean performance level of the
class on the end-of-year tests was 14% higher than a policy that allocated time
equally among students (i.e., an equal-time policy, where (i} = T/N for all ).
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TABLE 4 .
Predicted Percent Gain in the Mean of P and
in the Variance of P When Compared with the
Mean and Variance of the Equal-Time Policy

Instructional objective

I It HI
Gain in mean of P (%) 14 -15 8
Gain in variance of P (%) 15 ~-12 -5

This gain represents a substantial improvement; the drawback is that the class
variance is roughly 15% greater than the variance for the class using an equal-
time policy. This means that if we are only interested in raising the class average,
we will have to give the rapid learners substantially more time on the CAI system
and let them progress far beyond the slow learners.

Although a time allocation that complies with Objective 1 does increase overall
class performance, other objectives need to be considered. For comparison, time
allocations also »ere computed for Objectives 11 and III. Table 4 presents the
predicted gain in average class performance as a percentage of the mean value for
the equal-time pulicy. Objective 11 yielded a negative gain in the mean; and so it
should, since its goal was to minimize variability, which is accomplished by
reducing the time allocations for rapid learners and giving more attention to the
dower ones. The reduction in variability for Objective II is 12%. Objective III,
which strikes a balance between Objective 1 and Objective II, yields an 8% gain
in mean performance yet reduces variability by 6%.

In view of these resuits, Objective III would be preferred by most educators
and laymen. It offers a substantial increase in average performance while main-
taining a low level of variability. These computations make it clear that the
selection of an instructional objective should not be done in isolation but should
involve a comparative analysis of several objectives, taking into account more
than one dimension of performance. Even if the principal goal is to maximize
the class average, it is inappropriate in most educational situations to select
Objective 1 over U1 if it is only slightly better for the class average, while
permitting variability to mushroom.?

Effectiveness of the Reading Program

Several evaluation studies of the reading program have been conducted in the
last few years. Rather than review these here, I would prefer to describe one in
some detail (Fletcher & Atkinson, 1972). In this particular study, 50 pairs of

3For a more detailed discussion of some of the issue involved in sclecting objective
funciions see Jamison, Fletcher, Suppes, and Atkinson {1975}.
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kindergarten students were matched on a number of variables, including sex and
readiness scorcs. At the start of the first grade, one. member of each pair was
assigned to the experimental group and the other to the control group. Students
in the experimental group reccived CAlL but only during the first grade: students
in the control group received nu CAL. The CAL lasted approximately 15 min per
day*: during this period the control group studied reading in the classroom.
Except for this 15 min period, the school day for the CAI group was like that of
the control group. Standardized tests were administercd at the end of the f{irst
grade and again at the end of the sccond grade. All the tests showed roughly the
same pattern of results; to summarize the findings, only data from the California
Cooperative Primary Reading Test will be described. At the end of the first
grade, the experimental group showed a 5.05-month gain over the control group.
The gronps. when tested a year later (with no intervening CAI treatment),
showed a difference of 4.90 months. Thus, the initial difference observed
following one year of CAl was maintained, although not amplified, during the
second year when no CAl was administered to either group.

No definitive conclusions can be drawn from evaluation studies of this sort
about the specific contributions of CAI versus other aspects of the situation.
Obviously the curriculum materials used in the CAl program are important, as
well as other factors. To do the type of study that would isolate the important
variables is too large an undertaking to be worthwhile at this junclure in the
development of the reading program. Thus, to some extent it is a matter of
judgment in deciding which variables account for the differences observed in the
above study. In my view, individualizing instruction is the key factor in success-
fully teaching reading. This does not mean that all phases of instruction should
be individualized, but certain skills can be masiered only if instruction is
sensitive to the student’s particular difficulties. A reading teacher interacting on
a one-to-one basis with a student may be more effective than our CAI program.
However, when working with a group of children (even as few as four or five), it
is unlikely that the teacher can match the computer’s effectiveness in making
instructional decisions over an extended period of time.

SECOND-LANGUAGE VOCABULARY LEARNING

[n this section, research on CAI programs for second-language vocabulary fearn-
ing will be discussed. As noted elsewhere in this chapter, the principal goal of
our research on ¢omputerized instruction has been to develop adaptive teaching -
procedures—procedures that make moment-by-moment decisions about which
instructional action should be taken next based on the student’s unique response
history. To help guide the theoretical aspects of this work, some years ago we

*In this study no attempt was made to allocate time optimally among studenis in the
experimental group; rather, an equal-time policy was employed.
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initiated a series of experiments on the very restricted but well-defined problem
of optimizing the teaching of a foreign-language vocabulary. This is an area
where mathematical models provide an accurate description of learning, and
these models can be used in conjunction with the methods of control theory to
derive precise algorithms for sequencing instruction among vocabulay items.
Although our original inierest in this topic was primarily theoretical, the work
has proved 1o have significant practical applications. These applications involve
computerized vocabulary learning programs designed to supplcment college-level
courses in second-language instruction. A particularly intéresting effort involves
a supplementary Russian program in use at Stanford University. Students are
exposed to approximately 1,000 words per academic quarter using the com-
puter; in conjunction with normal classroom work this program enables them to
develop a substantial vocabulary.® Many foreign-language instructors believe that
the major obstacle to successful instruction in a second language is not learning
the grammar of the language, but rather in acquiring a sufficient vocabulary so
that the student can engage in meaningful conversations and read materials other
than the textbook.

In examining the work on vocabulary acquisition [ will not describe the CAI
programs, but will review some rescarch on optimal scquencing schemes that
provide the theoretical rationale for the programs. 1t will be useful to describe
one experiment in some detail before considering more general issues.

An Experiment on Optimal Sequencing Schemes

In this study 2 large set of German—English items are to be learned during an
instructional session that involves a series of trials. On each trial, one of the
German words is presented and the student atlempts to give the English
transtation; the correct translation is then presented for a brief study period. A
predetermined number of trials is allocated for the instructional session, and
after some intervening period a test is administered over the entire vocabulary.
The problem is to specify a strategy for presenting items during the instructional
session so that performance on the delayed test will be maximized.

Four strategies for sequencing the instructional material will be considered.
The random-order strategy, (RO), is to cycle through the set of items randomly;
this strategy is not expecled to be particularly effective, but it provides a
benchmark against which to cvaluate other procedures. The self-selection
strategy (88S). is to let the student determine how hest to scquence the material.
In this mode, the student decides on each trial which item is to be presented: the
learncr rather than an external controller determines the sequence of instruction.

*These CAl vocabulary programs make use of opltimal sequencing schemes of the sort to
be discussed in this scction, as well as certain mnemonic aids. For a discussion of these
mnemonic aids see Raugh and Atkinson (1975) and Atkinson and Raugh (1975).
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The third and fourth schemes are based on a decision-theoretic analysis of the
task. A mathematical model that provides an accurate account of vocabulary
acquisition is assumed to hold in the present situation. The model is used to
compute, on a trial-by-teial basis, an individual student’s current state of learn-
ing. Based on these computations, items are selected for test and study so as Lo
optimize the level of learning achicved at the termination of the instructional
scssion. Two optimization strategies derived from this type of analysis will be
cxamined. In one case, the computations for determining an optimal strategy are
carried out assuming that all vocabulary items are of equal difficulty; this
stratcgy is designated OE (i.., optimal under the assumption of equal item
difficulty). In the other case, the computatiens take into account variations in
difficulty level among items; this strategy is called QU (i.e., optimal under the
assumption of uncqual item difficulty). The details of these two strategies will
be described later.

The experiment was carried out under computer control; the details of the
experimental procedure are given in Atkinson (1972b). The students partici-
pated in two sessions: an “instructional session™ of approximately two hours
and a briefer “‘delayed-test session™ administered one week later. The delayed
test was the same for all students and involved a test over the entire vocabulary.
The instructional session was more complicated. The vocabulary items were
divided into seven lists, each containing 12 German words; the seven lists were
arranged in a round-robin order. On each trial of the instructional session a list
was displayed on a projection screen, and the student inspected it for a brief
period of time: the list involved only the 12 German words and not their English
translations. Then one of the items on the list was selected for test and study. In
the RO, OE, and OU conditions the .item was selected by the computer; in the
SS condition the item was chosen by the student. After an item was sclected for
test, the student attempted to provide a translation by typing it on the computer
console; then feedback regarding the correct translation was given. The next triat
began with the computer displaying the next list in the round robin, and the
same procedure was repeated. The instructional session continued in this fashion
for 336 trials.

The results of the cxperiment are summarized in Fig. 5. Data are presented on
the left side of the figure for performance on successive blocks of trials during
the instructional scssion; on the right are results from the test session adminis-
tered one week after the instructional session, The data from the ‘instructional
scssion are presented in successive blocks of 84 trials; for the RO condition this
means that on the average each item was presented once in cach of these blocks.
Note that performance during the instructional session is best for-the RO
condition, next best for the OE condition which is slightly better than the SS
condition, and poorest for the OU condition. The order of the groups is reversed
on the delayed test. (Two points arc displayed in the figure for the delayed test
to indicate that the test involved two random cycles through the entire vocabu-
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FiG.5 Proportion of correct responscs in successive trial blocks during the Tnstructional
session and on the delayed test administered one week later.

lary; however, the values given are the average over the two test cycles.) The OU
condition is best with a correct response probability of .79; the SS condition is
next with .58; the OE coadition follows closely at..54 and the RO condilion is
poarest at .38. The obscrved pattern of results is what one would expect. In the
SS condition, the students arc trying (o lest themselves on items they do not
know; conscquently, during the instructional session, they should have a lower
proportion of correct responses than students run on the RO procedure where -
items are tested at random. Similarly, the O and OU conditions involve a
procedure that attempts to identify and test thosc items that have not yet been
mastercd and should producc high error rates during the instructional session.
The ordering of groups on the delayed test is reversed since all words are tested
in a nonsclective fashion; under these conditions the proportion of correct
responses provides a measure of a student’s true mastery of the total set of
vocabulary itcms.

The magnitude of the cifects abserved on the delayed test are of practical
significance. The SS condition (when compared to the RO condition) leads to a
relative gain of 53%, whereas the OU condition yiclds a relative gain of 108%. It
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is interesting that students werc somewhat effective in determining an optimal
study sequence, but not so effective as the best of the two adaptive teaching
systems.

Rationale for Sequencing Scheme

Bath the OU and OE schemes assume that vocabulary learning can be described
by a faitly simple model. We postulate that a given item is in one of three states
(P, T, and U) at any moment in time. [f the item is in State P, then its translation
is known and this knowledge is “relatively” permancnt in the sensc that the
learning of other items will not interfere with it. If (he item is in State T, then it
is also known but on a “temporary™ basis; in State T the learning of other items
can give rise to interfercnce effects that cause the item to be forgotten. In State
U the item is not known, and the student is unable to give a translation.

When Item i is presented on a trial during the instructional session, the
following transition matrix describes the possible change in its state:

P T U
Pl 0 0

LG) =T x() 1-xG) 0
upp@ =z 1-y()-z(@)

Rows of the matrix represent the state of the item at the start of the trial, and
columns the state at the end of the trial. On a trial when some item other than
Item { is presented for test and study, transitions in the state of [tem i also may
take place. Such transitions can occur only if the student makes an error to the
other item;.in that case the transition matrix applied to ltem { is as follows:

P T U
Pl 0 0
FO)=T|0 1-/) AW
vlo o 1

Basically, the idea is that when some other item is presented that the student
does not know, forgetting may occur for Item ¢ if it is in State T,

To summarize, when Item { is presented for test and study, transition matrix
L(Y) is applied; when some other item is presented that clicits an error, matrix
F(i) is applied. It is also assumed that at the start of the instructional session
Item i is either in State P, with probability g(f), or in State U, with probability 1
~ g(i); the student either knows the translation without having studied the item
or does not. The above assumptions provide a complete description of the
learning process. The parameter vector [x(), y(7), z(i), /i), g(i)] charactcrizes
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the tearning of Item i in the vocabulary set. The {irst threc parameters govern the
acquisition process; the next parameter, forgetting; and the last, the student’s
knowledge prior to entering the experiment.

We now turn to a discussion of how the OE and OU procedures were derived
from the model. Prior to conducting the experiment reported here, a pilot study
was run using the same word lists and the RO procedure described above. Data
from the pilot study were employed to estimate the parameters of the model;
the eslimates were obtained using the minimum chi-square procedures described
in Atkinson (1972b). Two separate estimates of paramelters weré made. In one
case it was assumed that.the items were all equally difficult, and data {rom all 84
items were lumped together to obtain a single estimate of the parameter vector;
this estimation procedure will be called the equal-parameter case (£ casc). In the
second case the data were separated by ilems, and an estimate of the parameter
vector was made for each of the 84 items; this procedure will be called the
unequal-parameter case (U case). The two sets of parameter estimates were then
used to penerate the optimization schemes previously referred to as the OE and
OU procedures. )

In order to formulate an instructional strategy. it is necessary to be precise
about the quantity to be maximized. For the present experiment the goal is to
maximize the total number of items the student correctly translates on the
delayed test.® To do this, we need to specify the relationship between the state
of learning at the end of the instructional session and performance on the
delayed test. The assumption made here is that only those items in Statc P at the
end of the instructional session will be translated correctly on the delayed test;
an item in State T is presumed to be forgotten during the intervening weck.
Thus, the problem of maximizing delayed-test performance involves maximizing
the number of items in State P at the end of the instructional scssion.

Having numerical values for parameters and knowing a student’s response
history, it is possible to estimate the student’s current state of learning.” Stated

“Other measures can be used to assess the benefits of an instructional stratepy: for
example, in this case weights could be assigned to items measuring their relative importance.
Also costs may be associated with the various actions taken during an instructional session.
Thus, for the general case, the optimization problem involves assessing costs wrd benetits
and finding a strategy thal maximizes an appropriate function defined on them, For a
discussion of these points sce Dear, Silberinan, Estavan, and Atkinson (1967), and Small-
waod (1962, 1971).

The student’s “response history™ is a record for cach trinl of (he vocabulary item
presenicd and the response that occurred. It can he shown that there exists a “sufficient
history™ that contains nnly the infonnation necessary to estiinate the student's current state
of leaming; the sufficient history is a function of the complete history and the assumed
lcarning model (Groen & Atkinson, 1966). Far the model considered inn this paper the
sufficicnt history is fairly simple. Tt is specified in terms of individual vocabulary items for
cach student; we need to know the ordered sequence of correct and incorrect sesponses to a
given item plus the number of crrors (to other items) that intervene belween cach
presentation of the item.
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more precisely, the learning model can be used to derive equations and, in turn,
compute the probabilities of being in States P, T, and U for each item at the
start of any trial, conditionalized on the student’s response history up to that
trial. Given numerical estimates of these probabilities, a strategy for optimizing
performance is to select that item for presentation that has the greatest proba-
bility of moving into State P. This strategy has heen termed the one-stage
optimization procedure because it looks ahead one trial in making decisions. The
true optimal policy (i.e., an NV-stage procedure) would consider all possible
item—response sequences for the remaining trials and select the next item so asto
maximize the number of items in State P at the termination of the instruc-
tional session. Unfortunately, for the present case the N-stage policy cannot he
applied because the computations are too time consuming even for a large
computer. Monte Carlo studies indicate that the one-stage policy is a good
approximation to the optimal strategy; it was for this reason, as well as the
relative ease of computing, that the one-stage procedure was employed. For a
discussion of one-stage and N-stage policies and Monte Carlo studies comparing
them see Groen and Atkinson (1966), Calfee (1970), and Laubsch (1970).

The optimization procedure described above was implemented on the com-
puter and permitted decisions to be made for each student on a trial-by-trial
basis. For students in the OE group, the computations were carried out using the
five parameter values estimated under the assumption of homogeneous items
(E case); for students in the QU group the computations were based on the 420
parameter values estimated under the assumption of heterogeneous items (U
case).

The OU procedure is sensitive to interitem differences and consequently
generates a more effective optimization strategy than the OE procedure. The OE
procedure, however, is almost as effective as having the student make his own
instructional decisions and far superior to a random presentation scheme.,

The study reported here is one in a series of experiments dealing with optimal
sequencing schemes. It was selected because it is easily described and permits
direct comparison between a learner-controlled procedure versus procedures
based on a decision-theoretic analysis. For a review of other studics similar to
the one reported above see Chiang (1974), Delaney (1973), Laubsch (1970),
Kimball (1973), Paulson (1973), and Atkinson and Paulson (1972). Some of
these studies examine procedures that are more powerful than the ones de-
scribed here, but they are complicated and difficult to describe without going
into mathematical detail. The major improvements involve two factors: (1)
methods for estimating the model’s parameters during the course of instruction,
and (2) more sophisticaled ways of inlerpreting the parameters of the model to
take account of both differences among students and ditferences among items.
For example, let P(i, /) be a generic symbol for a parameter vector characterizing
siudent i learning vocubulary item j. In these studies P(i, j) is specified as a
function of a vector A({) measuring the ability of student i and a vector D{f)
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measuring the difficulty of item /. The problem then is to estimate the ability
level of each student and the difficuity of each item while the student is running
on the program. In a study reported in Atkinson and Paulson (1972), rather
dramatic results were obtained using such a procedure. A special feature of the
study was that students were run in soccessive groups, each starting after the
prior group had completed the experiment. As would be expected, the overall
gains increased from one group to the next. The reason is that for the first group
of students the estimates of item difficulty, D{), were crude but improved with
the accumulation of data from each successive wave of students. Near the end of
the study estimates of D{f} were quile precise and were essentially constants in
the system. The only task that remained when a new student came on the
system was to estimate A(i); that is, the parameters characterizing his particular
ability level. This study provides an example of an adaptive instructional system
that meets both of the requirements stated earlier in this chapter. The sequenc-
ing of instruction varies as a function of each student’s history record, and over
time the system improved in efficiency by using data {from previous students to
sharpen its estimates of the difficulty of instructional materials.

CONCLUDING REMARKS

The projects described in this chapter have one theme in common, namely,
developing computer-controlled procedures for optimizing the instructional pro-
cess. For several of the instructional tasks considered here, mathemautical models
of the learning process were formulated which made it possible to vse formal
methods in deriving optimal policies. In other cases the *““optimal schemes” were
not optimal in a well-defined sense, but were based on our intuitions about
learning and some relevant experiments. Lt a sense, the diversity répresented in
these examples corresponds to the state of the art in the field of instructional
design. For some tasks we can use psychological theory to help defline optimal
procedures; for others our intuitions, modified by experiments, must guide the
effort. Hopefully. our understanding of thesec matters will increase as more
projects are undertaken to develop sophisticated instructional procedurcs.

Some have argued that any attempt to devise oplimal strategies is doomed to
failure, and that the learner is the best judge of appropriate instructional actions.
am not sympathetic to a learner-controlled approach to instruction, because [
believe its advocates are trying to avoid the difficult but challenging
task of developing a viable theory of instruction. There obviously is a place for
the learner’s judgments in making insiructional decisions; for example, such
judgments play an important role in several parts of our BIP course. However,
using the learner’s judgment as oune of several items of information in making
instructional decisions is different from proposing that the learner should have
complete control. Results presented in this chapter and those cited in Beard,
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Lorton, Scarle, and Atkinson (1973) indicate that the fcarner is not a particu-
larly effective decision maker in guiding the learning process.

Elsewhere [ have defined the criteria that must be satisfied before an optimal
instructional procedure can be derived using formal methods (Atkinson, 1972a).
Roughly stated, they require that the following elements of an instructional
situation be clearly speeificd:

1. The sct of admissible instructional actions.

2. The instructional objectives.

3. A measurement scale that permits costs to be assigned to each of the
instructional actiuns and payoffs to the achievement of instructional objec-
lives. '

4. A mode] of the learning process.

If these four clements can be given a precise interpretation, then it is usually
possible to derive an optimal-instructional policy. The solution for an optimal
policy is not guaranteed, but in recent years powerful tools have been developed
for discovering optimal, or near optimal. procedures if they cxist. I will not
discuss these four elements here except 10 note that the first three can usuatly be
specified with a fair degree of consensus. Issues of shori-lerm versus long-term
. assessments of costs and payoffs raise important questions regarding educational
policy, but at lcast for the types of instructional situations examined here
rcasonable specifications can be offered for the first three elements. However,
the fourth efement—the specification of a model of the learning process—
represents 2 major obstacle. Our theoretical understanding of learning is so
limited that only in very special cases can a model be specified in enough detail
to enable the derivation of optimal procedures. Until we have a much deeper
understanding of the learning process, the identification of truly effective
strategics will not be possible. However, an all-inclusive theory of learning is not
a prerequisite for the development of optimal procedures. What is needed”is a
model that captures the essential features of that part of the learning process
being tapped by a given instructional task. Even models that have been rejected
on the basis of laboratory investigations may be useful in deriving instructional
strategics. Several of the learning models considered in this chapter have proven
unsatisfaclory when tested in the laboratory and evaluated using standard
goodness-of-fit criteria: ncvertheless, the optimal strategics they generate are
often quite effective. My own preference is to formulate as complete a learning
model as intuition and data will permit and then usc that model to investigate
optimal procedures. When possible the learning model should be represented in
the form of mathematical equations, but otherwise as a set of statémenls in a
computer-simulation program. The main point is that the development of a
theory of instruction cannot progress if one holds the view that a comprehensive
theory of learning is a prerequisite. Rather, advances in learning theory will
affect the development of a theory of instruction, and conversely the develop-
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ment of a thcory of instruction will influence the dircction of rescarch on
learning.
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