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INTRODUCTION

Receptaculitids are calcareous, marine, solitary, invertebrate fossils that were locally
common during the Ordovician through Devonian Periods. These generally globose
fossils have a relatively simple gross morphology but a mineralogically complex
skeleton. Receptaculitids are identified by the intricate network of distinctive skeletal
elements called meroms, which are unknown in any other organism. Each receptaculitid
body structure consists of up to thousands of individual meroms that are interwoven with
neighboring meroms in a Fibonacci-like helicoid arrangement, ultimately producing
beautiful, tightly tessellated outer surfaces. This enigmatic fossil taxon has fueled a
phylogenetic debate among paleontologists for over 200 years and has been variously
classified as sponges, calcareous green algae, and an extinct clade of problematic
organisms that are unrelated to any other taxa (Nitecki et al., 1999). A definitive

conclusion on their taxonomic affinity is still yet to be resolved.

Receptaculitids first appear during the Early Ordovician and are relatively common in
Ordovician limestones and dolomites, utilized locally as index fossils. Along with
sponges, receptaculitids were the largest sessile benthic organisms during Early to Middle
Ordovician time and occupied reef environments that had previously been occupied by
the archaeocyathids, but were essentially vacated by the Late Cambrian (Nitecki et al.,
1999). Receptaculitids are known from all continents except Antarctica and remained
widespread through the Middle Devonian. Receptaculitids became rare by the Late

Devonian and disappeared during the Permian Period (Nitecki et al., 2004).



This paper defines a new species of Middle Ordovician receptaculitid from the Arrow
Canyon Range in the Great Basin, Ischadites n. sp. These fossils exhibit a unique
morphology and are restricted to a small geographic range in eastern California and
southern Nevada. A discussion of the geologic setting, history, and depositional
environment of the collection site is presented here. Receptaculitid terminology is
defined, previous investigations reviewed, and methods and materials outlined. The
systematic paleontology of Ischadites n. sp. is presented with investigations into
morphology, size, ontogeny, and microstructure, followed by discussion on results,

comments on previous research, and conclusions.



GEOLOGIC SETTING

Location

The Arrow Canyon Range (ACR) lies within the Basin and Range Province, a region
characterized by north-south trending mountain ranges separated by semi-arid, alluviated
valleys. The ACR trends north-south and runs approximately 40 km long and ranges
from 1 to 6 km in width, and the field location for this study lies on the western flank.
This is located in the Arrow Canyon quadrangle map, which ranges from 36.325° N to
36.750° N latitude and 114.875°W to 115.000°W longitude (Page, 1998). The ACR is
located in southeastern Nevada and runs parallel to the 1-93, which branches off of the I-
15 approximately 41.4 km (25.7 mi) northeast of Las Vegas, Clark County, NV. The
receptaculitids are restricted to a very narrow horizon of a few meters of strata, with the
primary collection site located at 36.726° N and 114.892° W (Figure 1). The site is
accessible from the I-93, turning off the eastern side of the road just north of mile marker
#77 at 36.721° N, 114.933° W. Travel east on the graded gravel and dirt road for 2 miles
until the road dead-ends relatively close to the base of the range, where Member C of the

Pogonip Group unit dips to the subsurface (Gunn, 1998).
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Figure 1. Moving clockwise, top left map (maps.google.com) shows location of the ACR field location in
southeastern Nevada in the western United States; right map (maps.google.com) shows location in relation
to highways and Las Vegas, NV; bottom left depicts the Arrow Canyon Range, with the collection site
located well below the dark band of Devonian strata and 80 m below the base of the thin orange band

(Eureka Quartzite).



Geologic History
The evolution of the Great Basin from the late Proterozoic to the present time can be

characterized as follows:

1. From Late Proterozoic (~800 Ma) to mid-Paleozoic time (~375 Ma),
intracontinental extension led to the development of a passive continental margin
(Levy & Christie-Blick, 1989). A miogeoclinal wedge formed thickening
westward along the eastern margin of the Great Basin to over 6,000 m in
thickness, the upper portion of which consists of peritidal carbonates and
mudstones of Middle Cambrian to Devonian age (Stewart & Poole, 1974).

2. From the late Devonian (~375 Ma) through early Eocene time (~50 Ma), there
was crustal shortening, accretion of terranes of varying affinity, and subduction-
related magmatism (Levy & Christie-Blick, 1989). From Mesozoic to early
Cenozoic time, especially from ~150 to ~50 Ma, most of the overall crustal
shortening occurred along the eastern margin of the Great Basin with deformation
migrating progressively toward the east. Thrusting was mostly eastward and
overall crustal shortening is estimated to have been at least 104-135 km (Levy &
Christie-Blick, 1989). In the Late Tertiary, the North American Plate overrode a
segment of the East Pacific Rise, creating extensive fault blocks that produced the
north-south trending mountain ranges of the Basin and Range complex (Osmond,

1971).



3. From mid- to late Cenozoic time (~37 Ma) to the present time, the entire region
between the Colorado Plateau and the Sierra Nevada was subject to lithospheric

extension and widespread magmatism (Levy & Christie-Blick, 1989).

The regionally conformable Cordilleran miogeocline is exposed across the entire width of
the Basin and Range province near the latitude of Las Vegas, and although disrupted by
Mesozoic thrust faults, these faults are distinctive and well-spaced enough that long
sequences of Paleozoic strata can be well-studied and age-constrained (Wernicke, Axen,
and Snow, 1988). Exposure is generally excellent in the region because it lies at low
elevation and in the rain shadow of the Sierra Nevada and carbonate rocks crop out
especially well in desert regions (Wernicke et al., 1988). Over 3,000 m of late Cambrian
through Permian rocks (primarily carbonates) crop out within the Arrow Canyon Range
near Las Vegas in Clark, County, Nevada (Langenheim et al., 1962). Between the
Pogonip Group (more recently separated into the Goodwin Limestone and Antelope
Valley Limestone by Page, 1998), Eureka Quartzite, and Ely Springs Dolomite, there are

nearly 900 m of exposed Ordovician strata at the ACR (Langenheim et al., 1962).

Stratigraphic Framework

Ordovician stratigraphy in the Basin and Range province is characterized by stratigraphic
sections as thick as 1500 m in provincial basins on the carbonate platform (Droser and

Sheehan, 1997). Ordovician strata are divided into Lower, Middle, and Upper units.



After the late Cambrian, carbonate shelf sedimentation patterns in the western United
States shifted: outer-shelf-edge or slope limestones graded eastward into interior-shelf,
shallow-water algal banks, which prograded intermittently westward through Ibexian
(Lower Ordovician) time within equatorial latitudes (Ross, 1977). There are
approximately 800 m of predominantly shallow subtidal and intertidal platform
carbonates and calcareous siltstones, including formations such as the House Formation,
Fillmore Formation, Wah Wah Limstone, Goodwin Limestone, and Ninemile Shale

(Ross, 1977); (Figure 2).

Whiterockian (Middle Ordovician) deposition was initiated by the accumulation of
shallow-water carbonate mounds, followed by the extensive deposition of great algal
banks covering most of southern and east-central Nevada (Ross, 1977). East and north of
this bank was a lagoonal system floored by green muds of the richly fossiliferous Kanosh
Shale (Ross, 1977). Additional middle Ordovician units in the Great Basin include the
Antelope Valley Limestone, Juab Limestone, Lehman Limestone, and Crystal Peak
Dolomite (Ross, 1977); (Figure 2). There are indications that there was a brief
transgression of the carbonate shelf in the north during early Whiterockian to late
Whiterockian time (Ketner, 1968). By earliest Cincinnatian time (Late Ordovician), sand
smothered nearly all carbonate deposition (Ross, 1977). At the ACR, this extensive sand

deposition is recorded as the Eureka Quartzite (see Figure 6).
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Figure 2. Correlation of the Ordovician units in key areas of the Basin Ranges (from Ross, 1977).



The Pogonip Group
(Goodwin Limestone and Antelope Valley Limestone)

The Middle Ordovician Pogonip Group is recognized across a large portion of the Great
Basin of the western United States of America. The Pogonip Group is approximately 730
m thick at the ACR and is subdivided into six units, Members A through F and noted as
Opa, Opb, Opc, Opd, Ope, and Opf (Langenheim et al., 1962). Well-preserved
receptaculitids occur in great abundance in limestones of the Ordovician Pogonip Group
Member F (Opf). This portion of strata in Opf correlates to the Antelope Valley
Limestone (Nolan et al., 1956). The most recent USGS quadrangle map of the Arrow
Canyon Range (Page, 1998) reassigns the Pogonip Group strata with its 6 members Opa
through Opf (Langenheim et al., 1962), in favor of the Goodwin Limestone (Opg) and the
Antelope Valley Limestone (Opa — not to be confused with Langenheim’s identically

abbreviated term for Member A of the Pogonip Group).

Nolan et al. (1956) divided the Pogonip Group into three different formations at Eureka,
Nevada. In agreement with Hintze (1951), the definitions selected for the Pogonip Group
confine the group name to post-Cambrian rocks. The Goodwin Limestone is the lowest
formation of the three and is composed of well-bedded, massive, gray limestones. The
Ninemile Formation (which is not present at the ACR) overlies the Goodwin Limestone
and is composed of platy, thin-bedded limestones. The uppermost of the three
formations, the Antelope Valley Limestone, consists of thick-bedded, massive, medium-
gray limestones with abundant fossils. Receptaculitids occur in the Antelope Valley

Limestone in many locations throughout the Great Basin (See Appendix I).



Age
Langenheim et al. (1962) documented the first detailed description of the Arrow Canyon
Range, measuring 2400 feet (732 m) of the Pogonip Group. They divided this strata into
the previously mentioned units of Opa through Opf: Ordovician Pogonip Group Members
A through F. Ross (1964) correlated Opa to both the Goodwin Limestone and Ninemile
Formation and correlated Opb through Opf to the Antelope Valley Limestone. Siewers
(1995) refined the ages for parts of the Pogonip Group by using established trilobite-
brachiopod zones in the Great Basin in conjunction with mid-continent and North
Atlantic conodont zones. At the Arrow Canyon Range, he assigned Opd to Ibexian time,
Ope to Lower to Middle Whiterockian time, Opf to Middle Whiterockian time, and the
Eureka Quartzite to Upper Whiterockian time (Figure 3). In this system, the
Whiterockian Series represents approximately 12 million years of Early Middle
Ordovician time (Siewers, 1995). The collection site for this paper lies in Opf, which is
stratigraphically equivalent to the Upper Antelope Valley Limestone, the Crystal Peak
Dolomite, the Lehman Limestone, and the Kanosh Shale based on the aforementioned

criteria.
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Figure 3. Stratigraphic age relationships based on established trilobite-brachiopod zones in the Great Basin
and conodont zones across the United States (from Siewers, 1995, revised from Ross, 1977).

Depositional Environment
The paleogeography of the Great Basin during Whiterockian time consisted of a
westward facing continental shelf and slope to deep basin that was approximately
centered on the equator (Ross, 1989). At the time, the field location at ACR was in
shallow, tropical ocean waters off of the western coast of Laurentia and in the equatorial
zone (Ross, 1977). Ross et al. (1989) classified the Whiterockian miogeocline into two
major depositional facies based on lithologic and stratigraphic framework: the platform
facies (nearshore setting) and the shelf edge or platform margin facies (the edge of the
carbonate shelf). The collection site is part of the shelf edge or platform margin facies,

11



characterized by an oncolotic shoal unit between the shelf and slope facies, discontinuous
outer-shelf, scattered spongal buildups, and a peritidal carbonate lithofacies consisting of

meter-scale cycles of subtidal, intertidal, and supratidal sequences (Ross et al., 1989;

(Figure 4)).
sw LIMIT OF E
ROP
RO EUREKA QUARTZITE “" B3 Qe
UPPER — e —————
5 >
MDDLE s EUREKA
/] LE HMAN LI TON
ANTELOPE v LIMESTONE QUARTZITE (upper]
ANOMALORTHIS
VALLEY zoNE
LOWER LIMESTONE KANOSH SHALE [ower]
L~ ANTELOPE
ORTHIDIELLA
NINE VALLEY - }SHINGLE LIMESTONE RE T HIDIE! l
/;/) MILE .
— — _ SHALE
100 MILES
ed
100 KILOMETERS
NE
sw SILTY LIMESTONE

LIMIT OF
OUTCROFP

PERITIDAL DOLOMITE QUARTZITE

. [pHasE 4)

CALCAREQUS
CB:GILL?)TL)J-'P!‘E SILTSTONE

MUD MOUND
100 MILES

100 KILOMETERS

Figure 4. From Ross et al., 1989 — Schematic diagram of formations and depositional environments.

Siewers (1995) modified Ross et al.’s (1989) depositional facies to lithological units on
the basis of wave base interpretations from detailed field and petrographic analysis. The
collection site for this study (previously assigned to the platform margin facies by Ross et
al., 1989) was reassigned to the “middle ramp facies” by Siewers (1995) in the subsidiary

lithofacies of the argillaceous bioclastic wackestone-grainstone unit, characterized by

12



receptaculitids, large, filter-feeding gastropod species Palliseria and Maclurites (Figure
5A), oncoids (Figure 5B), brachiopods, trilobites, bryozoans, ostracods, and echinoderms
(for a complete, detailed listing of Siewer’s facies descriptions and subsidiary lithofacies
descriptions, see Siewers, 1995.). Throughout the Great Basin, receptaculitids are
commonly found in conjunction with the extensive Girvanella oncolitic shoal banks and
Palliseria and Maclurites snails, and the ACR displays this same assemblage type. It is
relatively uncommon to find receptaculitids in the Great Basin in the absence of these

other components, and this assemblage has become somewhat of a trademark of the

Antelope Valley Limestone to Great Basin geologists.

Figure SA. (Left) Photograph of a representative macluritid snail fossil collected from ACR, with cm scale
bar. 5B. (Right) Photograph taken in the field of densely packed Girvanella oncoids located just below the
receptaculitid horizon at ACR. The pencil included for scale is approximately 8 mm in width.

Arrow Canyon Range Lithofacies
The primary lithologies in Opf (lower Middle Whiterockian) are grainstones and
wackestones with interbedded mudstones (Figure 6). The receptaculitids are restricted to
a narrow horizon of approximately 5 m, starting 20 m above the base of Opf in bioclastic

packestone. This lithofacies consists of thin to thick interbedded packestones that are

13



medium gray and can weather to a brown-orange color. Receptaculitids are abundant and
range in size from 2 cm to 19 cm in length. Girvanella oncoids (Figure 5B) are common,
but less common than lower in Opf (Figure 6). Palliseria and Maclurites, large, filter-
feeding snails, are common and can range up to 6 cm in size (Figure 5A). Also common
are crinoid ossicles, bryozoans, fragments of orthoconic cephalopods, orthid brachiopods,
and rare fragments of trilobites. For a complete analysis and description of the entirety of
the Opf unit, see Gunn (1998), who assessed the paleoenvironment and paleoecology of
Opf and also addressed its unusual lack of abundance and dominance of brachiopods and

trilobites.

The paleoenvironment at the collection site is interpreted to be one of subtidal nature,
based on abundant shell fragments and bioturbation, placing it between fairweather wave
base and storm wave base (Gunn, 1998; Siewers, 1995). It has slightly less energy than
the oncolitic-grainstone lithofacies present below it, based on the less abundant oncoids
and the presence of significant amounts of silt at the receptaculitid horizon. Based on this
information, it is interpreted that the receptaculitids were likely inhabiting the area of the
oncolitic shoal that was just over the crest of the oncolitic shoal unit on the eastern,
lagoonal side. This is in disagreement with other previously suggested receptaculitid life
positions as at the crest of the oncolite bank (Kaya, 1997). Energy levels at the crest of
the shoal would have been too high to allow for the deposition of silt that is found
associated with the receptaculitid horizon at the Arrow Canyon Range. The Girvanella
(cyanobacteria) oncoids imply a high-energy, subtidal environment, with a water depth of

at least 6-12 m and in a position near the paleoequator (Kaya, 1997).
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TERMINOLOGY

Because receptaculitids have been aligned with both algal models and sponge models by
previous authors, the terminology used in publications on these organisms has fluctuated
regularly. Since the phylogenetic relationships of receptaculitids are unknown, the
terminology used to describe their morphology should be as neutral as possible so as not
to imply function or phylogenetic relationships (Nitecki et al., 1999). Neutral
terminology was established by Nitecki (et al., 1999) and was based on Rauff (1892a),
Rietschel (1969), Fisher and Nitecki (1982a), and Finney et al. (1994). This terminology

has been adopted for use here and is listed below with a few minor, noted exceptions.

Apex (Rauff) — Terminal end of the skeleton that is furthest from the nucleus.

Axiomorph - the central axis of symmetry, about which whorls or circlets of meroms are
arranged.

Body — the receptaculitid body consists of two components, the axiomorph and the
meroms. Also referred to as thallus in many papers (e.g., Finney et al., 1994).

Central cavity — the empty space at the center of each specimen.

Connecting neck — The short cylindrical process connecting the outer plate and the
tangential rays.

Distal ray — the meridional tangential ray directed toward the apex. Of the tangential
rays, the distal ray is the furthest below the outer plate.

Lacuna — The opening, aperture, or orifice around which the last-formed (oldest) lacunar
whorl or circlet consisting of numerous meroms encircles

Lateral rays (Hinde) — the two tangential rays paralleling the horizontal row of elements.

Meridional rays (Rauff) — The two tangential rays paralleling the vertical row of
elements that run from the nucleus to apex.

16



Merom — Each individual structural/skeletal element or unit in a receptaculitid specimen.
These meroms are arranged in whorls about the axiomorph to create the body of the
receptaculitid.

Nucleus — the acute, closed lower end of a receptaculitid, consisting of the first-formed
whorl or circlet of four to eight meroms.

Outer plate — the rhombic or subrhombic structure located at the extremity of the element
nearest the outside of the specimen. The plates cap the outer end of each shaft.

Proximal ray (Hinde) — the meridional tangential ray directed toward the nucleus. Of the
tangential rays, the proximal ray is the closest to the outer plate.

Shaft — The portion of the merom directed toward the central cavity and situated below
the tangential rays.

Tangential rays — The four blades lying approximately at right angles to one another and
located slightly below the outer plate. These rays are distinguished from one another
as the lateral rays and the meridonal rays (distal and proximal).

OUTER PLATE

APEX
ONNECTING NECK

LATERAL RAY

OUTER PLATES

CENTRAL caviTy

NUCLEUS

Figure 7. Schematic diagram of a receptaculitid to illustrate terminology (Modified from Foster, 1973).
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PREVIOUS INVESTIGATIONS

Receptaculitids have fueled such a strong phylogenetic debate that even the highest
taxonomic assignment has been questioned, with some authors assigning the organisms to
Kingdom Animalia (suggesting they are sponges or sponge-like animals) and others to
Kingdom Plantae (suggesting that they are a type of dasycladacean green algae). Barring
their clear assignment to either sponges or algae is the inimitability of the way
receptaculitids meroms are arranged: in whorls or circlets around the central axis of
symmetry in a unique pattern that is absent in sponges and dasyclads (Nitecki et al.,
2004). Another possibility is that receptaculitids are a problematic taxon that is neither
poriferan nor algal, but rather a phylum unto its own: an initially successful marine taxon
that met an evolutionary dead end (Nitecki et al., 1999). Despite the extensive and
lengthy debate, the majority of paleontologists (especially in recent years) have largely
shifted toward the position that receptaculitids are likely proper members of Kingdom
Animalia (based on comprehensive receptaculitid classification index in Appendix I of

Nitecki et al., 1999, and subsequent publications).

Receptaculitids have been extensively studied and at least 120 species have been named,
48 of them from the Ordovician Period (Nitecki et al., 1999). During the Ordovician
Period, there were 4 families, 9 genera, and 48 species of receptaculitids. The three
dominant receptaculitid families are Soanitidae, Ischaditidae, and Receptaculitidae
(Nitecki et al., 1999) and are described below. The fourth family, referred to as “Family

Unknown” by Nitecki et al. (2004) is composed of two monospecific short-ranged
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genera, both of which are based on a single locality (one in Kentucky and one in Ohio).
Specimens were documented in the 1880s by Ulrich, who stated that their “position... is
somewhat doubtful”, that their “general aspect... is suggestive of the Hexactinellidae”
[hexactinellid sponges], which aligns them with Dictyospongidae sponges and “less
strongly, the Receptaculitidae” (Ulrich, 1889). In addition to this very weak suggestion
of receptaculitid identification, these specimens lack fine preserved detail (Ulrich, 1889)
that would allow proper study. Lastly, these two species lack the features characteristic
of other receptaculitids (outlined below), such as a branching calathid structure or inner
and/or outer rhomboidal or hexagonal plates. The three dominant receptaculitid families

are Soanitidae, Ischaditidae, and Receptaculitidae (Nitecki et al., 1999).

The oldest receptaculitid family of these three is Family Soanitidae, commonly known as
calathids. Soanitids are the only branching type of receptaculitids and they have a
distinctive porous structure that lacks the distinctive outer plates all other receptaculitids
possess. Soanitids have more recently been proposed to be reclassified into Phylum
Porifera (Bingli et al., 2005) or a possible transition group between sponges and
receptaculitids (Church, 2009). Family Ischaditidae have rhomboidal plates and take
globular forms with fewer, larger plates relative to their body size when compared to
some other receptaculitids. They are found relatively frequently throughout the Great
Basin and around the world in shallow carbonates and siliciclastic sediments during the
Ordovician (Appendix I). Its largest genus is Ischadites, with 12 species defined
(Nitecki, et al., 2004). Lastly, Family Receptaculitidae is characterized by having an

inner wall in addition to their outer wall, with plates at both the “head” and “foot” of each
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shaft. Ischaditids only have an outer wall of plates and do not have this additional inner
wall and also have more slender shafts. The most common genus, and arguably the most

well-known genus, within the Family Receptaculitidae is Receptaculites.

A special note on the incorrect usage of the genus name Receptaculites:

The proper term for a member of the Phylum Receptaculita is “receptaculitid”. However,
the genus name Receptaculites has frequently and incorrectly been used in place of
“receptaculitid” in many publications, often when documenting the presence of
receptaculitids within a stratigraphic column. Many Great Basin stratigraphers simply
listed Receptaculites or Receptaculites sp. when they were often looking at Ischadites
specimens, as Receptaculites had become the casual, overly-inclusive term for
receptaculitids in general (Appendix 1). This is an incorrect usage and in fact,
Receptaculites is a Devonian genus that is not present during the Ordovician (Finney &
Nitecki, 1979). The only Ordovician genus from Family Recetaculitidae was Fisherites

(Nitecki, et al., 2004) which is not recorded within the Great Basin.

This study addresses a unique morphotype discovered in the Middle Ordovician Great
Basin at the Arrow Canyon Range. The only other example of this particular
receptaculitid morphology (to be discussed in the next section) was described by Foster
(1973) of samples he collected in temporally equivalent strata in the Grapevine
Mountains of eastern California, approximately 200 km west of our ACR locality. Foster
remarked that the specimens he collected seemed to fall into one highly variable species,
Receptaculites mammillaris as named by Walcott (1884; and originally proposed in
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manuscript by Newberry, 1880). However, he noted that these specimens lacked the
inner plates that are characteristic of Receptaculites and possessed longer and more
slender merom shafts. Foster (1973) reassigned the species to Ischadites because of its
greater similarity to species in that genus, but speculated that species differed enough
from other species of Ischadites to provide some grounds for establishing it as the type
for an entirely new genus of receptaculitids, although he did not propose one at the time.
Foster (1973) collected approximately 75 specimens from his field area. Abundant
receptaculitids at our field location at ACR has yielded over 300 collected specimens,
which has provided a more clear view of the complex ontogeny of these organisms and a
second opportunity to consider whether these unique and highly morphologically variable
specimens are indeed 1.) a single species, 2.) if it is a new species, and 3.) if that species
is different enough from other Ischadites species that it constitutes a new, monospecific

genus, as Foster (1973) postulated.
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METHODS AND MATERIALS

A section of 188 m was measured at the Arrow Canyon Range using a Brunton compass
and Jacob’s staff. Over 300 receptaculitid specimens were collected, the vast majority of
which were collected from float just below the narrow receptaculitid horizon located
approximately 25 m above the base of the Pogonip Group Member F (Opf). Many
samples stood out in relief from the outcrop, providing helpful data regarding life
orientation. In situ samples were also collected by breaking off blocks with a
sledgehammer, noting the orientation on the sample, and recording the collection site
within the measured stratigraphic column. While many specimens were conveniently
weathered out of the limestone matrix, others required portions of matrix material to be

carefully removed from the fossil surface using a Dremel tool.

In the laboratory, receptaculitids were processed and measured for a checklist of

morphological features:

e Body length

e Body width

e Lacuna (aperture) diameter

e Length from nucleus to midpoint of lacuna

e Angle of widening from nucleus toward apex
e Length from nucleus to nuclear end of lacuna
e Width of body at nuclear end of lacuna

e Merom concentration counts wherever visible, noting distance from nucleus
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Of the over 300 specimens collected from the Arrow Canyon Range, 13 were complete
and well-preserved enough to process for the above measurement parameters (Plate II).
Body length and width were measured in two ways: true length and width were recorded
for 13 samples, with projected lengths also noted. These projected numbers for length,
width, lacuna diameter, and other aspects were only recorded when enough of the fossil
remained intact that an estimate could be made based on basic symmetry and remaining
features of the specimen. Merom concentration counts were taken by using a single
square cm grid, laid over the surface of the receptaculitid where shafts are exposed
(plates are rarely preserved but circular shafts indicate individual meroms that would
have each been capped with 4 tangential rays and an outer, rhomboidal plate), and
oriented in accordance with the whorl pattern such that the maximum number of shafts
are within the cm grid. Counts were taken using a hand lens and recorded along with the
distance from the nucleus to the position centered in the cm grid for that count. Size
measurements were taken at the maximum length possible and considered well-exposed,
weathered out specimens and blocks in which only portions of a receptaculitid are visible
in cross section. The longest visible section is measured and recorded to within 1 cm

blocks for size distribution histograms.

Tangential ray structures were observed with magnification and photography to show
depth of tangential ray interlocking patterns exposed by the weathering away of outer
plates. This proved to be the most useful method of observation, with many specimens
weathered in a way that effectively displayed these features. Thin sections taken in cross

sectional cuts of specimens provided further insight into the nature of the tangential rays
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and the pattern that meroms were arranged in to create the receptaculitid skeletal
structure. Additional confirmation of the pattern of tangential rays was achieved by
slowly polishing through the outer plates in stages to reveal the orientation of the delicate
structures. Between polishing stages, high-resolution images were collected via wet
scanning that allowed for later three dimensional reconstruction that was in direct
agreement with observations using the first two methods. These images are not as
visually demonstrative as the first two methods described here and thus have not been

included in this manuscript.
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SYSTEMATIC PALEONTOLOGY

Phylum RECEPTACULITA Myagkova, 1987
Class RECEPTACULITIDA Weiss, 1954
Order RECEPTACULITIDAE James, 1885
Family ISCHADITIDAE Miiller, 1968

Genus ISCHADITES Murchison, 1839

This systematic paleontology is in agreement with recent publications (specifically
Nitecki, et al., 1999), but these assignments have been debated over the years, reclassified
and renamed multiple times, and publications throughout the decades reflect the frequent
changes and arguments regarding the systematic assignment of receptaculitids. Notable
groups that are part of the receptaculitid phylum but which have names outside of the
above systematic classification are Class Squamiferida (Sushkin, 1962) and Order
Receptaculitida (Miiller, 1968). The microstructural pattern of connection between
meroms, outer plate shape, and overall gross morphology are the main criteria for

identification and classification of receptaculitids (Nitecki et al., 1999).

Diagnosis.—A species of Ischadites with common tangential ray structures, but with
smaller, more numerous meroms and a unique gross morphology: large body structures
shaped like a shallow, open bowl with one section of wall tapered to a point (Figure 8).

Adults have a large, open lacuna oriented upward.
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Description.— Adults reached an average size of 13.6 cm in length from nucleus to apex,
with one exceptionally large specimen reaching a projected 22 cm in length, based on the
proportions of the surviving fossil fragment (Plate I, photo E). The following dimensions
for a reconstructed representative (illustrated below) are based on measurements of the 10
best preserved, most articulated specimens selected within a collection of over 300
specimens, the great majority of which were fragments. Other data collected also
considered 3 juveniles in addition to the adult specimens, though these specimens were

excluded from the adult reconstruction here.

Figure 8A, 8B, and 8C (starting top left and moving clockwise). Reconstructions of top, bottom, and
profile views of the average dimensions of a full grown adult receptaculitid (Tables 1-4). Illustrations by
K. R. Henry, 2014.
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Ischadites n. sp. has a unique gross morphology and is shaped like a slipper or shoe. In
the mature body the nucleus lies at the pointed “toe” and a large, open, upward-facing
lacuna is located at the “heel”. From the nuclear end, the receptaculitid expands at a
relatively consistent 67.9° angle for about two thirds of the total length before rounding
out around a nearly circular, but sometimes slightly ovoid aperture. For the average 13.6
cm long specimen, the lacuna has a diameter of 8.7 cm, with the midpoint of the lacuna

lying 8.8 cm from the nucleus.

The pointed nuclear “toe” end is the oldest portion of the receptaculitid and the meroms
at this extremity are often difficult to observe due to heavy recrystallization. Other
authors have noticed similar conditions and have postulated that the plates near the
nucleus were fused, either during life or post-mortem (Nitecki et al., 1999). The body is
covered in an unusually large number of meroms that are exceptionally small when
compared to other species of Ischadites. Specimens of Ischadites n. sp. from ACR have
over 130 meroms per square cm near the nucleus and less than 50 meroms per square cm
at the apical end (Table 4). As such, the outer plates of meroms are approximately 75%
larger at the apical end than the nuclear end. For an average adult specimen that is 13.6
cm in length, the major diagonal length of the rhombic outer plates ranges from about 0.9

mm to 1.6 mm within a single adult specimen.
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All data are listed in the following charts and graphs. Italicized numbers indicate that the
measurement was at least partially projected. Data was plotted logarithmically as
logarithmic transformation of size data typically produces a more accurate representation
of population structure and better reflects age distributions than non-transformed data

(Darroch et al., 2013; Bak and Meesters, 1999; Meesters et al., 2001).
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Body Length to Body Width

N
SN

N
N

y = 6.0438In(x) - 5.6161

-
o

Body width (cm)

0 2 4 6 8 10 12 14 16 18 20
Body length (cm)

n=13
Sample | Length | Width
A 10.3 9.0
B 16.0 10.5
C 13.8 9.8
D 14.1 11.2
E 15.0 11.1
F 17.4 10.2
G 15.9 12.7
H 12.0 9.7
I 9.5 8.0
J 5.3 4.0
K 3.6 2.5
L 12.4 9.4
M 8.3 6.4

n=13 Average 11.8 8.8 Allsizes
n=10 Average 13.6 10.2  Adults only

Figure 9 and Table 1, depicting length and width data collected from 13 samples. There is a clear and
distinctive trend when graphed logarithmically, even between the juvenile and adult forms.
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Nucleus to Lacuna Midpoint Length vs. Lacuna Diameter
12

10
y =7.1696In(x) - 6.8616

Lacuna diameter (cm)
(e}

0 1 2 3 4 5 6 7 8 9 10 11 12
Distance from nucleus to lacuna midpoint (cm)

n=12
Sample Dist. from Width of
nucleus aperture
A 6.4 7.4
B 10.0 9.5
C 9.0 8.5
D 9.3 10.0
E 9.7 9.0
F 11.5 8.9
G 8.7 10.8
I 6.1 6.5
J 4.0 1.0
K 2.7 0.8
L 8.2 8.0
M 5.3 5.2
n=12  Average 7.6 71 All sizes

Figure 10 and Table 2, depicting data on the length from the nucleus to the midpoint of the lacuna vs. the
diameter of the lacuna (both in cm). Data was collected from 13 samples. There is a clear and distinctive
trend when graphed logarithmically, even between the juvenile and adult forms.
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Length from Nucleus to Lacuna vs. Width at that point

-
o

Y = 1.0668X + 2.0138

o =~ N W b OO N © ©

0 1 2 3 4 5 6 7
Length from nucleus to lacuna (cm)

Width at muclear end of lacuna (cm)

n=13
Sample | Length | Width
A 3.0 6.1
B 6.5 8.1
C 5.5 8.0
D 3.1 6.1
E 4.8 8.0
F 5.3 6.2
G 2.3 6.0
H 5.0 9.0
I 3.8 5.9
J 3.3 3.5
K 2.2 2.4
L 5.1 8.1
M 2.8 5.0
n=13 Average 4.1 6.3  All sizes

n=10 Average 4.4 7.2 Adults only

Figure 11 and Table 3, depicting data on the length from the nucleus to the nuclear end of the lacuna vs
the width of the body at that point. Data was collected from 13 samples. There is a vague trend when
graphed logarithmically, but not as strong as the trends plotted in Graphs 1 and 2.
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Distance from Nucleus vs. Merom Concentration
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(]

° = -37.66In(x) + 132.89

_\
N
o

o’

100

Number of meroms per cm?
(0]
o

60
40
20
0
0 1 2 3 4 5 6 7 8 9 10 11 12
Distance from nucleus (cm)
Sample Dist. from Meroms Sample Dist. from Meroms
nucleus per cm”2 nucleus per cm”2

A 10.0 68 H 1.9 140

B 3.2 122 H 3.6 108

B 4.8 86 H 5.0 84

B 8.5 56 I 3.3 68

C 1.3 107 I 6.6 46

C 2.8 85 I 7.0 48

C 6.5 67 J 1.0 144

C 7.0 66 J 3.0 96

D 10.0 50 J 4.4 92

D 10.0 49 K 1.3 116

E 6.1 77 K 1.4 112

G 2.8 66 K 3.0 88

G 5.8 48 L 3.5 77

G 8.9 37 L 5.0 60

H 1.9 140 L 6.5 54

H 3.6 108 L 7.5 47

H 5.0 84 L 8.5 46

Figure 12 and Table 4, depicting data on the length from the nucleus vs number of meroms in a single
square cm grid. Data was collected from 31 square cm surfaces on 11 different specimens. There is a very
strong logarithmic trend between data points collected from both adults and juveniles.
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Body Length vs. Nuclear Angle
80
75 *
- y =(0.9411In(x) + 65.369 ¢ o ¢
=70 .
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©
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S
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40
0 2 4 6 8 10 12 14 16 18 20
Body length (cm)

n=13
Sample Length | Angle

A 10.3 75

B 16.0 65

C 13.8 75

D 14.1 75

E 15.0 73 -]
F 174 45 68
G 15.9 74

H 12.0 63

I 9.5 64

J 5.3 62

K 3.6 64

L 12.4 70

M 8.3 74

n=13  Average 11.8 67.6 All sizes
n=10  Average 13.6 67.9  Adults only

Figure 13 and Table 5, depicting data on body length vs. nuclear angle. Data was collected from 13
samples including adults and juveniles. As shown in Graph 5, there is no particular change in the nuclear
angle despite overall size. The average angle falls at 67.6° for all sizes. Average taken for adults only is
almost identical, at 67.9°.
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Size.—The receptaculitids at the Arrow Canyon Range are remarkably larger than
receptaculitids in other portions of the Antelope Valley Limestone. A much less
intensive search at Lone Mountain, approximately 400 km north of ACR near Eureka,
NV, yielded 41 samples. These were measured and compared to the size distribution of
receptaculitids collected from ACR, and although the sample size is small, a clear trend is
present (see below histograms). The samples from Lone Mountain are limited to less
than 7 cm in length and are generally around 4 to 5 cm in length, while samples from
ACR have a much wider distribution, measuring up to nearly 20 cm in length. In both

categories, no receptaculitids under 1 cm in length were observed.

Arrow Canyon Range n =300
35

92 30
£ 25
$ 20 -
B 15 -
310 -
E 5 -
Z 0

1 2 3 45 6 7 8 9 1011121314 1516 17 18 19

Size ranges (cm)
Lone Mountain n =41
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o
o
g 15
(49
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(@]
g 5
S
3 0 I T T T T T T T T T T T T 1
z

1 2 3 45 6 7 8 9 10111213 14 1516 17 18 19

Size ranges (cm)

Figure 14A and 14B (top and bottom, respectively). Size distribution charts for samples collected
from ACR (n=300) and Lone Mountain (n=41). Longest exposed dimension was measured for each
sample and binned by width to the cm. For example, samples binned in Size Range 7 cm are between 6
and 7 cm in length at the longest exposed dimension.
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Ontogeny.—Y ounger, smaller specimens have skeletal structures shaped like inverted,
hemispherical domes with an open top, later growing and slumping over into a
cornucopia-like shape, and ultimately growing as large as 20 cm in length in a unique but
consistently body shape. This large morphotype resembles a pointed slipper or an ancient
oil lamp, shaped like a shallow, open bowl with one section of wall tapered to a point.

See Photographic Plates I and II for specimens in various stages of growth.

Throughout ontogeny, the receptaculitid makes modifications that keep the aperture
oriented upward or at least angled upward. The overwhelming majority of samples found
in life position have their lacuna pointed mostly upright, although not completely level,
with the apical end slightly lower in profile such that the lacuna points upward and
slightly away from the nucleus (Figures 8 and 15). There is a strong tendency toward

larger forms at ACR and young juvenile forms are present, but rare.

AR

Figure 15. Schematic reconstructions of top and profile views at four stages of growth, with the youngest
on the left and the full-size adult on the right with and average total length of 13.6 and average total width
0f 10.2 cm (see Table 1). Illustration by K. R. Henry (2014).
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MICROSTRUCTURE

Outer Plates

Figure 16. Rare specimen in which rhombic outer plates are retained. Increments marked by horizontal
red lines represent mm units.

The outer plates are almost always missing from the specimens (less than 10% of the
over 300 collected), leaving exposed shafts that look circular in top view (Photographic
Plate I, photos A and D). When plates are preserved (Figure 16), they are rhomboidal in
shape. Edges of these thin outer plates vary slightly in order to fit with neighboring
meroms. As previously stated, these outer plates range in major diagonal length from

around 0.9 mm to 1.6 mm and possibly larger (based on calculations from Table 4 data),
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although neither merom shafts nor outer plates were preserved in the largest (over 20 cm

in length) specimens and this could not be absolutely confirmed.

Merom Interlocking Patterm

The microstructure of the meroms and the interlocking pattern between sets of tangential
rays reveals that Ischadites n. sp. retains the same microstructural patterns as other
species in the genus, despite the extreme gross morphological differences. Figure 17 is a
microscopic photograph that shows an exceptionally well-preserved specimen prepared
as a thin section, cut to show a cross-sectional view of an adult receptaculitid

specimen. The photo clearly shows the interwoven pattern of tangential rays between
five meroms. The thin outer plates are at the top of the specimen, which is at the top of
the photo. Directly below the outer plates are proximal rays jutting outward to the right
from each merom shaft. Just below the proximal rays are the lateral rays, which run
parallel to the horizontal rows of meroms. The lateral rays are seen here as the pairs of
circles, tucked between the overlying, rightward-pointing proximal rays and the
underlying, leftward-pointing distal rays. These lateral rays are oriented at right angles to
the meridional rays (the proximal and distal rays) and thus are oriented directly toward
the camera view, protruding from the meroms directly behind and in front of the row of
shafts seen here. Below the pairs of lateral rays are the distal rays pointing leftward,
three of which are clearly seen in the middle of the photo. Also of interest is a broken
merom shaft that has turned at a right angle away from the camera view, and is tucked

between the two leftmost shafts.
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Figure 17. Microscopic view of shafts in cross section from an adult receptaculitid. True size of the above
cross-sectional view is approximately 3.5 mm wide and 2.1 mm tall.

The schematic, labeled diagrams below (Figure 18) more clearly show the orientation and
network of tangential rays for Ischadites, which are also exhibited by the newly defined

Ischadites n. sp. Figures 19A and 19B also effectively display this microstructure.

Outer plates

Proximal
rays

* Shafts

Figure 18. Reconstruction of distal portion of meroms in ischaditid receptaculitids, seen in oblique view,
with terminology labeled. Orientation is shown by the arrows. Recreated from Fisher & Nitecki, 1978.
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Figure 19A (above) and 19B (below). Tangential rays exposed by natural weathering processes.
Increments marked by horizontal red lines represent mm units.

.




DISCUSSION

The body or thallus of Ischadites n. sp. is covered in an unusually large number of
meroms that are exceptionally small when compared to other species of Ischadites. For
example, a more typical Ischadites specimen is pictured here (Figure 20): Ischadites
barrandei. Notice the large plate size to body size on this specimen, with the white scale
bar representing 1 cm, as well as the overall small size of the receptaculitid. This
ischaditid has approximately 56 meroms per square cm at its nucleus and as few as 25
meroms per square cm as the meroms increase in size as the whorls spiral away from the
nucleus. This is in stark contrast to the over 130 meroms per square cm exhibited near
the nucleus of specimens of Ischadites n. sp. collected from the Arrow Canyon Range.
At the apical ends of these Ischadites n. sp. specimens, where the plates are largest, there
is still no less than 46 meroms per square cm recorded. Another clear difference is in
gross morphology and size, with other Ischadites species exhibiting radially symmetrical,
globular or disk-shaped body types without a distinctive aperture, and maintain

significantly smaller body sizes.

Figure 20. Photo of Ischadites barrandei (Fisher and Nitecki, 1982). White scale bar represents 1 cm.
Note the large plate size to body size.
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Comments on Previous Research

Ischadites n. sp. displays the same microstructure type exhibited in other species in this
genus which would not necessarily justify the erection of a new genus of receptaculitids,
as Foster (1973) had suggested regarding similar fossils recovered in the Grapevine
Mountains. In addition to the unusually high number of meroms and their small size,
Foster had based this suggestion on what he described and depicted as an interlocking
zone further down the shafts of each merom, in addition to the tangential ray interlocking
zone. However, this was not observed in any of the ACR fossils collected. It should be
noted that relatively heavy recrystallization has obscured the terminal ends (the ends on
the inside of the body) of merom shafts in most ACR samples that could potentially

obscure these features, but it was not observed in any of the best preserved samples.
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CONCLUSIONS

Large, well-preserved receptaculitids from the Middle Ordovician Pogonip Group of the
Arrow Canyon Range in southeastern Nevada have been collected and studied. A new
receptaculitid species, Ischadites n. sp., is described and will be named in a forthcoming
manuscript. These highly variable specimens are regarded as intrapopulational variants of
this new species, with the variety arising primarily from the occurrence of individuals at

various stages of growth.

This species differs from the similar species of Ischadites in the following features: 1.)
small, numerous outer plates, 2.) large body size, 3.) unique gross morphotype that defers

from strict radial symmetry, and 4.) exceptionally large aperture to body size ratio.
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PHOTOGRAPHIC PLATE I

Plate I (above). Photos of ten representative receptaculitids demonstrating the size and variability among
specimens. Banded scale bar is in cm increments. Photos are referred to as A through H, lettered from left
to right, top row to bottom row.

Plate II (next page). Photos of the top and bottom views (positioned at the top and bottom, respectively)
thirteen samples selected for having the greatest proportions of measurable features and best preserved
microstructure with the least amount of surface area obstructed by heavy calcite recrystallization. Banded
scale bar is in cm increments. Specimens have been labeled as Specimens A through M, lettered from left
to right in the photo, top row to bottom row, such that A is the top left sample and M is at the bottom right.
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