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Runtime Adaptation of Applications Using Design Of
Experiments: A Smartphone-Based Case Study

Frank Maker, Rajeevan Amirtharajah, Member, IEEE, and Venkatesh Akella

Abstract—We consider the problem of adapting embedded soft-
ware to heterogeneous devices where it is impractical to obtain a
system-level power model for each target platform and operating
environment. Our solution leverages the emerging capability of
measuring power consumption at run-time using a built-in bat-
tery monitoring unit (BMU). We use a statistically rigorous design
of experiments (DoE) methodology to efficiently characterize the
power consumption configuration space of software online instead
of constructing a system-level power model offline. This approach
is simple, low-cost, and permits software to dynamically select suit-
able parameters at run-time to satisfy energy or performance con-
straints. We illustrate this approach using a camera trap applica-
tion as a case study deployed on a Nokia N80 smartphone.

Index Terms—Design of experiments, embedded software,
heuristic algorithms, predictive models, table lookup.

I. INTRODUCTION

A. Problem Statement

Our goal in this work is to create “write once, adapt every-
where” embedded software that automatically adapts software
parameters online without domain knowledge to satisfy con-
straints on energy consumption, performance, or both. This al-
lows devices to adjust performance based on available energy
or vice versa. These constraints may come from user demands,
the operating system, or a power management controller. In ad-
dition to time-varying constraints (Assumption A1), we assume
the following:
A1: application has sufficient heterogeneity (i.e., diversity)

that developing a universal power model is impractical;
A2: exhaustively evaluating the software configuration

space online would deplete limited system energy;.
A3: application tolerates an initial training period where con-

straints may not be satisfied;
A4: system has a built-in power measurement capability that

consumes negligible power.

B. Related Work & Challenges

One key distinction between this and related embedded soft-
ware power optimization work is Assumption A2. This is partic-
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ularly important on embedded systems with substantial hetero-
geneity such as smartphones, single-purpose devices and sensor
networks. Smartphone heterogeneity stems from applications
running on devices by different manufacturers, platforms, soft-
ware versions, and varying user demands. Single-purpose de-
vices (cameras, video recorders, smart watches, etc.) have sim-
ilar heterogeneity as their software platforms converge. Sensor
network heterogeneity results from software running on mul-
tiple generations of nodes and variations in the harvested energy
(solar, wind, etc.) available.
Most embedded software power models are generated of-

fline using software predictors. Predictor values are recorded
along with system power using benchtop power measurement
equipment while running benchmarks. Models are fitted to the
recorded data using linear regression [1], [2]. These models
have two drawbacks: 1) the benchmarks used to build each
model can have limited accuracy for nonbenchmarked appli-
cations; and 2) analytical models are unable to capture the
multiple states of components which impact power consump-
tion. System call finite state machine models [3] can overcome
these limitations, but require significant development time
and system knowledge, which makes targeting heterogeneous
devices with the same model intractable.

C. Key Contributions

Online modeling with built-in power monitoring [1], [4]
enables application benchmarking at run-time. However, pre-
vious work has not considered how to manage the energy of
online power modeling itself. If this energy is well-managed
then embedded software can build a run-time model to adapt
software configurations to different energy and performance
constraints. We propose a novel technique using built-in power
monitoring (Assumption A5) and Design of Experiments to
efficiently survey the configuration space of software and to
initialize a look-up table (LUT). This table is then consulted
to find configurations that satisfy constraints at run-time. By
using a LUT, our model captures multiple component states
for better accuracy. We will demonstrate how this very simple
strategy can guarantee efficient configuration space coverage.
There are several applications which satisfy assumptions

A1-A5 and can use this technique such as: camera traps, video
playback, and wireless data transmission. To evaluate the
performance of our approach, we present a case study using a
camera trap in Section II. Section III details how DoE was used
for online modeling. Section IV compares the performance of
DoE to random sampling and heuristic configuration searches,
and lastly in Section V we present our conclusions.
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Fig. 1. Configuration space (energy quality).

II. CAMERA TRAP CASE STUDY

A camera trap is a battery powered device with a motion
sensor to trigger photographs. Their use has grown exponen-
tially in biology field research with 19% more publications
using camera traps each year since the 1990’s [5]. They
are used for evaluating population size and diversity, nest
ecology1, wildlife photography, detecting rare species, studying
human-built structure occupation, and habitat monitoring [6].
Existing traps use a static configuration to capture photos,

however we modeled a camera trap which uses online adap-
tation with one of three constraints: energy, image quality, and
energy efficiency (quality/energy). These constraints reflect the
tradeoff between energy and quality for each use case. For popu-
lation size and nest ecology (to maximize image count) we used
energy constraints. For wildlife viewing and rare species detec-
tion we used quality constraints. For the remaining use cases
we employed energy efficiency to search for pareto optimal so-
lutions2 which had the largest energy efficiency values in our
configuration space (see pareto frontier in Fig. 1).
Next we discuss how a camera trap can use one of these con-

straints, energy, to perform online adaptation. The user first de-
ploys the camera trap, programs the deployment duration using
a built-in dial, and presses the start button. This button press
triggers a DoE survey to build a look-up table for the new loca-
tion using a built-in battery monitor unit (BMU) to measure the
energy consumption of each configuration. Afterwards, when
the motion sensor is triggered an energy constraint is calculated
using the deployment duration, remaining system energy, and a
preprogrammed range (e.g., ).
The system next tries to retrieve a configuration from the

LUT that satisfies the constraint within the specified range. This
table is small and can be easily cached in main memory because
it contains only each configuration’s parameter values, image
quality, and energy requirement. If no configuration is returned,
an iterative search is performed for a satisfactory configuration.
This search is limited to evaluating a fixed number of configura-
tions to avoid an exhaustive search. If a suitable configuration is
still not found, the closest configuration is used instead and the
same constraint in future requests will trigger further searching.

1Nest ecology is the study of how organisms construct and use their nests.
2The lowest energy configurations for quality constraints are pareto optimal.

This camera trap scenario fulfills the assumptions (A1–A5)
required for online adaptation.
A1: Motion trigger events generate energy constraints which

will vary over time based on the number of triggered
photos and the battery energy depleted while idle.

A2: Traps are often relocated and parameters must adapt
to new conditions such as lighting conditions, depth of
field, and background scenery [7]. These conditions cor-
respond to selecting camera parameters such as white
balance, zoom, and image compression, respectively.

A3: We estimated the initial training period impact using a
published camera trap study [7] with Equations 1 and 2.
The trap captured 2.6 images per day, Hz ( ), over
30 days. Because of the low image frequencymost of the
system energy was used while idle. We estimated this
usage (corresponding to system overhead) to be 50 mW
( ) by dividing the battery energy, 129.6 kJ ( ),
by the deployment duration. According to the manufac-
turer, each capture (including system overhead) requires
4.86 J ( ) and 0.5 s ( ) [8]. We can then calcu-
late the deployment time ( ) based on the number of
training configurations ( )

(1)

Since is negligible, Equation 1 can be simplified

(2)

Assuming an exhaustive search over a 7-bit configura-
tion space (128 configurations) then days and
exhaustive characterization has negligible impact. How-
ever, if we assume a 13-bit configuration space (8,192
configurations), then days and there is a 31%
reduction in operating lifetime.

A4: Deployments last from days to several weeks [7], pro-
viding sufficient time for training.

A5: We used a benchtop power monitor, however new cam-
eras traps could use a built-in BMU.

Online adaptation’s efficacy for camera traps depends on the
energy balance between capturing images and system overhead
for each particular use case. For example, rare species detection
may require only 2.6 images per day [7], representing 0.29%
of the battery energy. However, nest ecology would demand a
higher image rate, for example one image every 30 seconds thus
consuming 50% of the battery. The scope for energy savings lies
between these two scenarios.

A. Experimental Setup

Camera trap images are usually stored for later collection
[7], however newer traps transmit photos wirelessly [6]. Since
most devices currently lack this feature, we modeled a wireless
camera trap using a smartphone instead. To verify that a smart-
phone was an appropriate powermodel, wemeasured the energy
for capturing and transmitting an image using the same config-
uration on three smartphones: HTC Magic, Google Nexus One,
and Nokia N80. Each required 610, 522 and 1074 mW of power
and 3.69, 5.41, and 7.14 s, resulting in 2.25, 2.83, and 7.67 J of
energy respectively. Idle power ranged from 1 to 5 mW, which
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is an order of magnitude smaller than the camera trap. However,
the energy capacity was also an order of magnitude smaller, re-
sulting in a simliar operational time.. For example, the Nokia
N80 with an 820 mAh battery stored 10.9 kJ, required 5 mW
when idle, and would last 25.28 days, which was similar to the
durations from Assumption A3 in the previous section.
To compare configurations we used a standard test image

(Lena), under the same conditions, and quantified picture
quality using peak signal-to-noise ratio (PSNR). To select a
reference image, or “signal,” for calculating PSNR we em-
ployed a focus group of five people to rank reference images
based on perceived quality. The selected reference images were
then removed from our experiments, since they have infinite
PSNR values. Energy measurements were averaged continu-
ously using a general purpose interface bus (GPIB) controlled
power supply, stored in a SQLite database for simulations, and
required approximately a month.
Fig. 1 shows the range of energy and quality values mea-

sured (19 200 total) for the camera trap application on a Nokia
N80 smartphone. The majority of the configurations, 97%, con-
sumed between 4–21 J of energy and had picture qualities be-
tween 10–24 PSNR, with an additional 296 configurations with
higher PSNR outside this cluster. The most efficient configu-
rations (i.e., the highest quality with least energy) were found
along the left-hand side (Pareto frontier).
The best fit frontier line had a slope of 12.42 meaning the

most efficient solutions required one joule of energy for each
12.42 increase in PSNR. The five highest efficiency configura-
tions are labeled in Fig. 1. These configurations shared some
settings (Bluetooth, no flash, 640 x 480) that match intuition
based on knowledge of the application domain, but others (Ex-
posure set to Night versus Backlight versus Auto) did not.

III. DESIGN OF EXPERIMENTS APPROACH

Design of Experiments (DoE) is a statistical methodology
used in the natural sciences, agriculture, and manufacturing to
design a series of experiments when they are subject to time
financial constraints [9]. DoE efficiently samples the experi-
mental space to maximize the information obtained and offers
a statistically rigorous alternative to searches based on heuris-
tics. This survey can be used to establish domain knowledge
automatically. In computer engineering it is primarily used for
computer architecture design space exploration (DSE) due to
the extensive search time required [10].
Each variable in a DoE experiment is called a factor. Fac-

tors with a natural numerical ordering are quantitative factors
and those without are qualitative factors. We chose a design in
this work that uses all combinations of the minimum and max-
imum values for each factor. This approach is known as a
full factorial design where is the number of factors with 2
levels (minimum and maximum) used. We used a full factorial
design because it is the most comprehensive for factors with
two levels, however other designs such as randomized blocks,
Latin squares, and Graeco-Latin squares can be used if nui-
sance factors are present. If too many experiments are required
for a full factorial, a fractional factorial approach, such as a
Plackett–Burman design, can reduce the number of experiments
at the expense of not detecting higher order interactions [9].

TABLE I
CONFIGURATION SPACE PARAMETERS

To use DoE in our application we mapped experiments to
configurations and factors to camera settings. However, our con-
figuration space (see Table I) had only two quantitative param-
eters (zoom and size) and the remaining qualitative parame-
ters had to be evaluated individually. For radio and flash the
highest and lowest settings were clear: Bluetooth versus Wi-Fi
and None versus Forced respectively. For color mode, we used
the largest uncompressed setting, RGB24, and the only com-
pressed setting, JPEG. For exposure and white balance mode we
did not identify any extrema and instead distributed the values
across each experiment. In Design 1 (D1) we used all 32 combi-
nations of the quantitative parameters (zoom, size, radio, flash,
color) with the whitebalance value changed every experiment
and exposure every other experiment. In Design 2 (D2), Design
1 was repeated four times to cover more quantitative-qualita-
tive interactions. Lastly, in Design 3 (D3) all 640 combinations
( ) of all values were used.

IV. RESULTS AND DISCUSSION

How well does DoE perform? Table II shows the results
of the designed surveys averaged over ten simulations of
500 image captures for randomly generated energy, quality,
or energy efficiency constraints (fulfilling Assumption A1).
Constraints were uniformly distributed between the extrema
values (see Fig. 1) and were satisfied if a configuration was
found within 500 search iterations and of the constraint.
D1, with only 32 configurations, satisfied 56% of the energy
and energy efficiency constraints and 81% of the quality con-
straints. Energy constraints had the lowest success rate because
37% of the values lie within range of only three outliers at
23.03, 25.66, and 34.15 J. D3, with a table size of 640, satisfied
over 96% of the efficiency and 100% of the image quality
constraints, but required an additional six hours and 4.7 kJ.
The surveys performed well considering they did not require
domain knowledge and were easy to deploy.
Why not just initialize the table with a random survey? A

random survey is a simpler alternative to DoE for sampling
a configuration space without domain knowledge. We com-
pared our designed survey (D2) to an equal size random survey
(Random) to compare their coverage of the configuration space.
Results from both surveys are shown in Table II. Random per-
formed slightly better on energy constraints because of its
ability to discover outliers however, D2 was more successful
for efficiency and quality constraints by covering a larger
range of values. We also considered the limits of satisfiable
constraints for each survey. The heat maps in Fig. 2 identify the
number of configurations which satisfied energy and quality
constraints within using both surveys. Random covered
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TABLE II
RESULTS FROM 10 SIMULATIONS WITH 500 CAPTURES

Fig. 2. Designed versus Random configuration space survey (a) Random
Survey of 128 Configurations (b) Designed Survey of 128 Configurations (D2).

the highest density regions, but could discover outliers whereas
our designed survey covered a larger range.
Does postinitialization search improve performance? Next

we evaluated our DoE survey with a limited heuristic search to
satisfy constraints when a request cannot be satisfied from the
initial survey. We considered five different heuristics: 1) genetic

algorithm; 2) hill climbing; 3) random greedy; 4) random new
(required each random configuration to be previously unevalu-
ated); and 5) exhaustive search.
For energy constraints the nonrandom searches (genetic

algorithm and hill climbing) were 7.5% more successful than
each DoE survey, requiring an additional 2–19 kJ (2%–15%
battery life) and 1–14 hours (0.1%–1.9% deployment time).
Both Random Greedy and Random New were 29.5% more
successful on average than D1, D2, and D3. Both random
searches were also more successful, but used 155–185 kJ more
energy (120%–142% battery life), and 169–202 more hours
(23%–28% deployment time), than the largest survey (D3).
For energy efficiency constraints D3 performed better than
nonrandom searches and within 1% of both random searches
using 51–56 kJ less energy and 55–59 less hours. Quality
constraints were easily satisfied by D2 without searching and
therefore the energy and time requirements were the same.

V. CONCLUSION

In summary, we presented a DoE approach for runtime adap-
tation of embedded software on heterogeneous devices without
domain knowledge. We outlined the requirements for this tech-
nique and a representative camera trap case study. A designed
survey with only 32 configurations covered the configuration
space better than random sampling, fulfilled 56% of energy and
energy efficiency constraints, and 81% of quality constraints.
For energy efficiency and quality constraints a 640 configura-
tion survey was only 1% less successful than the best search
and required 56 kJ less energy and 59 hours less. For energy
constraints the best search satisfied 31% more constraints than
the same survey, but evaluated 99.99% of the search space. An
extension of this work has also been published with a sensitivity
analysis to resource constraints and platform heterogeneity [11].
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