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Abstract Today, embedded processors are expected to be able to run algorithmically com-
plex, memory-intensive applications that were originally designed and coded for general-
purpose processors. As such, the impact of memory latencies on the execution time increas-
ingly becomes evident. All the while, it is also expected that embedded processors be power-
conscientious as well as of minimal area impact, as they are often used in mobile devices
such as wireless smartphones and portable MP3 players. As a result, traditional methods for
addressing performance and memory latencies, such as multiple issue, out-of-order execu-
tion and large, associative caches, are not aptly suited for the mobile embedded domain due
to the significant area and power overhead. This paper explores a novel approach to mitigat-
ing execution delays caused by memory latencies that would otherwise not be possible in
a regular in-order, single-issue embedded processor without large, power-hungry constructs
like a Reorder Buffer (ROB). The concept relies on efficiently leveraging both compile-time
and run-time information to safely allow non-data-dependent instructions to continue exe-
cuting in the event of a memory stall. The simulation results show significant improvement
in overall execution throughput of approximately 11%, while having a minimal impact on
area overhead and power.

Keywords Embedded processors · Data cache · Pipeline stalls · Compiler assisted
hardware

1 Introduction

The prevalence of mobile embedded processors in modern computational systems has grown
significantly over the last few years. At the current rate, these mobile devices will become
increasingly ubiquitous throughout our society, resulting in a broader range of applications
that will be expected to run on these devices. Even today, mobile embedded processors are
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expected to be able to run algorithmically complex, memory-intensive applications that were
originally designed and coded for general-purpose processors. Furthermore, these proces-
sors are becoming increasingly complex to respond to this more diverse application base, as
can be seen by the current technological landscape of wireless smartphones. Many embed-
ded processors have begun to include features such as multi-level data caches, but the impact
from larger memory access times occurring as a result of cache misses becomes increasingly
evident [1].

With the constraints embodied by portable embedded processors, one typically is con-
cerned with high performance, power efficiency, better execution determinism, and mini-
mized area. Unfortunately, these characteristics are often adversarial, and focusing on im-
proving one often results in worsening the others. For example, in order to increase per-
formance, one adds a more complex cache hierarchy to exploit data locality, but introduces
larger power consumption, more data access time indeterminism, and increased area. How-
ever, if an application is highly regular and contains an abundance of both spatial and tem-
poral data locality, then the advantages in performance greatly outweigh the drawbacks. On
the other hand, as these applications become more complex and irregular, they are increas-
ingly prone to thrashing. For example, video codecs, which are increasingly being included
in portable wireless devices like smartphones and personal media players, utilize large data
buffers and significantly suffer from cache thrashing [2].

In particular, in mobile embedded systems, where power and area efficiency are para-
mount, smaller, less-associative caches are chosen. Earlier researchers realized that these
caches are more predisposed to thrashing, and proposed solutions such as the victim cache
[3] or dynamically associative caches [4] to improve cache hit rates. Yet, even with these
various solutions to reduce cache misses, today’s more aggressive and highly irregular ap-
plications inevitably will still suffer from some cache misses, slowing overall application
performance.

Furthermore, mobile embedded processors typically do not employ multiple-issue or
out-of-order execution, as the hardware overhead is prohibitive. Because of this in-order
behavior, when an instruction stalls the pipeline, subsequent instructions are not permitted
to execute, even if those instructions are independent and ready for execution. A cache miss
is an example of such a stalling instruction, and the processor must wait until the memory
reference is resolved before allowing the pipeline to begin issuing and executing instruc-
tions again. Each of these memory stalls can result in hundreds of processor cycles wasted
in the event that the cache miss needs to read from main memory [5]. As shown in Fig. 1,
memory-based instructions account for approximately 35% of the total number of opera-
tions executed on average in applications. Thus, minimizing the impact of cache miss stalls
can have a significant improvement on overall processor performance and execution time.

In this paper, we propose a solution that will utilize both the compiler and a nominal
amount of specialized hardware to extract and allow guaranteed independent instructions to
continue execution during memory stalls, which in turn reduces the overall execution time.
In this manner, the delay induced by memory stalls can be effectively hidden, allowing the
processor to continue safely executing independent instructions similar to an out-of-order
processor. Fundamentally, this approach extends the communication link between the com-
piler and the processor architecture by transferring a small amount of application informa-
tion directly to the microarchitecture without modifying the existent instruction set. Thus,
by combining global application information known at compile-time with run-time cache
behavior, we are able to intelligently keep feeding the pipeline with instructions we know
are guaranteed to be independent of the memory operation, and thus can be safely executed
without any data hazards. We show the implementation of this architecture and provide ex-
perimental data taken over a general sample of complex, real-world applications to show
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Fig. 1 Average distribution of memory instructions

the benefits of such an approach. The simulation results show significant improvement in
execution throughput of approximately 11% by hiding approximately 64% of cache miss
stalls, while having a minimal impact on area overhead and power consumption.

2 Related work

In the last ten years, the industrial embedded processor space has seen enormous expansion.
Processors provided by companies such as ARM and Tensilica have become increasingly
more powerful and complex, and are used in a wide variety of industrial applications. For
example, current cellular smartphone technology often incorporates one or more embed-
ded processors, such as the ARM11, ARM Cortex-A8, or Qualcomm Snapdragon Scorpion
processor, along with a number of sophisticated specialized DSP processors, such as Qual-
comm’s QDSP6. These mobile smartphones are expected to handle a wide variety of pur-
poses, from broadband data communication to high-definition audio/video processing, and
even real-time GPS tracking. These target applications are becoming increasingly complex
and memory-intensive, and numerous techniques have been proposed to address the mem-
ory access challenges involved. Unfortunately, embedded processors are often more highly
constrained than general-purpose processors, and many general solutions are precluded by
these tougher design constraints.

Various techniques have been proposed and used in the computer architecture community
to attack the problem of memory stalls. In general, superscalar, out-of-order processors in-
herently can mitigate memory stalls by leveraging the reorder buffer (ROB) to dynamically
allow multiple instructions to issue whenever resources are available and data dependencies
have been met [6, 7]. However, as mentioned in [8], even though in-order execution suffers
from a 46% performance gap when compared to out-of-order, an out-of-order architecture is
not ideal for embedded systems since it is prohibitively costly in terms of power, complexity,
and area.

As an alternative to costly out-of-order processors, [9] proposes having the compiler
provide reordering by explicitly placing instructions into per-functional-unit delay queues,
which in turn still operate in an in-order fashion. While this is less complex than a full out-
of-order processor, it still requires a rather large area overhead for the delay queues and does
not allow for fine-grained, dynamic adjustment based on runtime cache hit/miss behavior.
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Proactively prefetching data into the cache is another well-established approach to re-
ducing the performance impact of memory stalls. Software prefetching methods [10–13]
rely on the compiler to statically insert prefetch instructions before that actual load instruc-
tion to help mitigate potential memory stalls. Unfortunately, these instructions may cause
code bloat and increase register pressure. Furthermore, purely software approaches cannot
leverage runtime information relating to cache hit/miss behavior, and thus could result in
wasted cycles from unnecessary prefetching. Alternatively, hardware prefetching methods
[3, 14–16] utilize access patterns to predict cache misses and inject necessary prefetch logic
in the hardware. Unfortunately, as with all prediction schemes, these techniques heavily rely
on memory access patterns and react poorly to applications with large or irregular mem-
ory accesses. Incorrect prediction can lead to cache pollution and a significant performance
penalty.

The authors in [17] propose using a combination of compiler and hardware support to pri-
oritize instructions that are needed to keep the pipeline moving, and when none are available,
allows for the buffered low-priority instructions to execute. While this proposed scheme is
said to be for an in-order embedded processor, it unfortunately still fundamentally relies
upon a reorder buffer (ROB) and run-time register renaming, which are the largest contrib-
utors of area and power consumption in an out-of-order system. In fact, as exemplified by
[18], the 56-entry instruction issue queue in the HP PA-8000 utilizes 20% of the die area,
which is impractical for most mobile embedded systems.

3 Motivation

A typical data-processing algorithm consists of data elements (usually part of an array or
matrix) being manipulated within some looping construct. These data elements each effec-
tively map to a predetermined row in the data cache. Unfortunately, different data elements
may map to the same row due to the inherent design of caches. In this case, the data ele-
ments are said to be in “conflict”. This is typically not a large concern if the conflicting data
elements are accessed in disjoint algorithmic hot-spots, but if they happen to exist within
the same hot-spot, each time one is brought into the cache, the other will be evicted, and this
thrashing will continue for the entire hot-spot.

Given complex and data-intensive applications, the probability of multiple cache lines
being active within a hot-spot, as well as the probability of those cache lines mapping to the
same cache set, increases dramatically. As mentioned, much prior work has already gone
into minimizing and avoiding cache conflicts and thrashing. Nevertheless, as applications
continue to become more complex, the working set of data may exceed the capacity of the
cache or lack localized regularity, both of which will degrade cache performance and lead
to an increased miss rate. Additionally, since mobile embedded processors are constrained
to frugal hardware budgets and compact form factors, they often lack complex hardware
to allow out-of-order execution (e.g. reorder buffer, register renaming, and multiple-issue).
Thus, when these cache misses do occur, the pipeline must stall and wait until the missed
cache line is resolved before continuing execution. Given the current trajectory of appli-
cation complexity expected to run on these mobile embedded systems, the possibility of
such cache misses and resulting memory pipeline stalls will become more prevalent and
detrimental to execution speed.

To illustrate this point, Fig. 2 shows an excerpt of assembly code from a GSM full-
rate speech transcoder compression algorithm, which could be found on a typical GSM
cellular phone. This basic block contains a single load instruction, and based on profiling,
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Fig. 2 GSM example basic
block

01: addiu $18, $29, 16
02: addiu $19, $0, 320
03: addiu $17, $29, 336
04: lui $20, 4096
05: addiu $20, $20, 604
# Following load 4.07% miss rate
06: lw $2, -32064($28)
07: addiu $4, $29, 16
08: jalr $31, $2

it was found that this particular instruction encountered a cache miss 4.07% of the time.
If one were to assume that the cache miss penalty was 10 cycles and that all instructions
take one cycle, the impact of cache misses would amount to an execution cycle increase of
5.09% for this particular basic block. Since this particular basic block was executed 178,009
times, this would result in an additional 9,061 cycles, which translates to about 0.011 ms
of additional execution time overhead (assuming an 800 MHz clock rate). Obviously, this
example was looking at just a single basic block; a given application would have many
more basic blocks, each of which could suffer a similar fate and manifest into a much larger
increase in execution time for the entire application.

The goal of this paper is to allow the compiler to analyze the basic block above, noting
that the only instruction dependent on the memory load is the jump-and-link (jalr). Thus,
the compiler can safely rearrange the code above to place the memory load at the begin-
ning and leave the jump-and-link at the end, effectively positioning six instructions between
the memory load and the next dependent instruction. This information is then provided to
a specialized hardware structure when the application is loaded for execution. This hard-
ware structure will then be able to detect if a cache miss occurred, and instead of blindly
stalling the pipeline like before, it can safely know that six instructions can execute while the
memory subsystem is resolving the cache miss. Thus, in this example, the execution cycle
increase will become 2.04% instead of 5.09%, effectively hiding about 60% of the cache
miss penalty.

4 Implementation

In order to address the issue of cache miss induced pipeline stalls within an in-order embed-
ded processor, we plan to strengthen the interaction between the compiler and the underlying
hardware microarchitecture. Inherently, there are certain algorithmic features that can more
easily be ascertained during static compile-time analysis, such as examining the global pro-
gram data flow and understanding data interdependencies. This information would be pro-
hibitively costly and complex to generate on the fly during run-time. On the other hand,
there are certain behavioral aspects of the application that can only be ascertained during
run-time, such as actual cache hit/miss behavior and when a cache miss is resolved. These
events cannot statically be known a priori, and thus require real-time system information.
Given this trade-off between information available at compile-time versus run-time analysis,
it becomes evident that some mixture of the two will be essential. The compiler will help
glean crucial information regarding our application that would otherwise be too costly to
obtain at run-time, and pass this information to the underlying hardware microarchitecture
to help the hardware make intelligent decisions in response to run-time events. A high-level
overview of this architecture is shown in Fig. 3.

The proposed solution for cache miss pipeline stalls is composed of two parts: a compile-
time mechanism, which will analyze and reorder the instructions within basic blocks and a
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Fig. 3 Overview compiler and hardware interaction

run-time instruction execution mechanism that allows independent instructions to continue
running during cache misses. Each part is described in detail in the following sections.

4.1 Compile-time analysis and reordering

The first aspect of our methodology is to have the compiler statically analyze the application
and identify those instructions that can safely be executed during a memory stall. Intuitively,
these are the instructions that are not data dependent on a memory load and will not cause a
hazard if executed prior to the completion of the memory load. Once these instructions are
found, they will be aggregated and placed between the load instruction and any subsequent
dependent instructions, which will enable us to execute those instructions during a cache
miss.

In order to accomplish this analysis, we will leverage the data flow graph (DFG) nor-
mally used during compilation. The DFG provides an algorithmic representation of the data
dependencies between a number of operations. To simplify and bound our analysis, we will
operate on a basic block granularity, where a basic block is just a segment of code which has
only one entry point and one exit point (e.g. no control flow changes exist within the block
of code). Each basic block is represented with a DFG G = (V ,E), where each v ∈ V is an
instruction in the basic block. There exists a directed edge e = (vi, vj ) ∈ E if operation vi is
data dependent on operation vj within the basic block.

We propose an algorithm that will make use of the DFG to analyze the instruction depen-
dency characteristics and rearrange the instructions in a manner which will place memory
loads earlier while pushing instructions dependent on these memory loads later within the
basic block. The algorithm to reorder the instructions within a basic block is provided in
Fig. 4.

This algorithm must fulfill the following three constraints in order to maintain proper
program execution correctness and behavior:

• True data dependencies must be maintained
• The order of store operations must be maintained
• The order of load operations respective to store operations must be maintained

In particular, it is important to note that the constraints listed above with regard to mem-
ory store ordering could be relaxed if the effective destination address is statically guaran-
teed not to conflict with other memory load/store instructions. For simplicity, we conserva-
tively assume that this cannot be guaranteed. However, our algorithm can easily be extended
to support this additional compile-time analysis, which would increase the degrees of free-
dom available for reordering.

After this algorithm completes, the basic blocks will have the following characteristics:
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ReorderAlgorithm {
unvisitedSet.initialize( basicBlock.getAllLoadInstrns() );
visitedStack.clear();
topPtr = basicBlock.firstInstrnPosition();

// Optionally remove any anti-dependencies via static register renaming
// (using a basic register liveness analysis, employing use-define chains)
// or immediate value adjustment

while( unvisitedSet.hasElements() ) {
// Select and remove the load instruction reference which depends on the
// least number of prior instructions from the unvisitedSet
currLoadInstrn = unvisitedSet.removeLoadWithLeastNumOfParentInstrnDeps();

// Bubble the selected load instruction and those instructions it depends
// on as far towards the topPtr position without violating constraints
newLoadPosition = BubbleInstrnWithParentsTowardPtr(currLoadInstrn, topPtr);

topPtr = newLoadPosition + 1;
visitedStack.push(currLoadInstrn);

}

bottomPtr = basicBlock.lastNonControlInstrnPosition();

while( visitedStack.hasElements() && topPtr != bottomPtr ) {
currLoadInstrn = visitedStack.pop();
while( currLoadInstrn.hasDependentInstrns() && topPtr != bottomPtr ) {

// Select the instruction within the topPtr and bottomPtr which most
// directly depends on the selected load instruction reference
myInstrn = SelectInstrnWithinBoundsThatMostDirectlyDependsOnLoadInstrn(

currLoadInstrn, topPtr, bottomPtr
);

// Bubble the selected instruction and those instructions that depend on
// it as far towards the bottomPtr position without violating constraints
newPosition = BubbleInstrnWithChildrenTowardPtr(myInstrn, bottomPtr);

bottomPtr = newPosition - 1;
}

}
}

Fig. 4 Compile-time basic block reordering algorithm

• Memory load instructions as early as possible
• Instructions that depend on memory loads as late as possible
• Instructions that depend on earlier memory loads will occur before instructions that de-

pend on later memory loads
• Memory-independent instructions that can be moved will be placed in between the mem-

ory loads and instructions that depend on those loads

To illustrate this point, Fig. 5(a) provides an example of a basic block from the Fast
Fourier Transform algorithm, along with the corresponding DFG in Fig. 5(b). Running
the aforementioned algorithm will reorder the instructions as shown in Fig. 5(c). Observe
that instructions 01, 02, 09, and 13 are located between the memory loads and memory-
dependent instructions. Furthermore, instruction 04 is located before instruction 07. The
importance of this second observation will be described shortly.

An additional observation relates to instruction 12. This instruction causes an anti-
dependency (write-after-read) on instruction 11 (shown by the dotted line). In the example
above, we did not eliminate this dependency. Static register renaming could remove this de-
pendency, but at the cost of an additional instruction and added register pressure. However,
an alternative in this instance is to note that instruction 11 [s.s $f0, 0($5)] could be
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Fig. 5 Excerpt from FFT algorithm with DFG and reordering

Fig. 6 Basic block memory independence annotation (memTable)

changed to [s.s $f0, -4($5)] and then instruction 12 can be moved above it. This
more aggressive anti-dependency analysis can help identify additional opportunities that
assist in finding instructions that are memory-independent.

Now that the basic block instruction order has been primed, we will selectively annotate
those basic blocks which have the greatest potential impact on run-time performance (e.g.
the hot-spots). The data structure we will be creating is shown in Fig. 6. Essentially, we
need to capture the instruction address (PC) for the first load instruction of the basic block
and the number of independent instructions as counted from that initial load instruction.
Furthermore, we can capture the increase in independent instructions as we resolve each
load instruction in the basic block (up to nine in this example, including the initial load
instruction).

The first entry in Fig. 6 corresponds to the instructions shown in Fig. 5(c) as an example
of this data structure. As one can see, when the first load instruction (03) is encountered,
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we know that we can safely execute six additional instructions were a cache miss to occur.
Furthermore, once instruction 03 completes, we can execute one more instruction, and when
instruction 06 completes, we can execute six more instructions.

This compile-time data structure must then be stored and conveyed to the underlying
hardware when the application is executed. To accomplish this, the data structure is encoded
into the application binary’s text segment at a special reserved address range. When a pro-
gram binary is loaded onto the processor, this special address range will be read and the
corresponding hardware data structure populated with this information. An overview of this
concept was shown earlier in Fig. 3. As one can see, the interaction between the compiler
and the underlying hardware microarchitecture is augmented to allow this new information
regarding memory dependencies to be efficiently conveyed. The hardware mechanism that
will detect and enable this independent instruction execution will be described in the next
section.

4.2 Run-time stall execution mechanism

Given that the compile-time analysis (described in the previous section) has reordered the in-
structions and annotated the application’s program binary, a hardware mechanism is needed
to make use of this information. Intuitively, the goal of this mechanism is to leverage the
annotated information provided at compile-time along with real-time information on cache
misses and memory stall completion to allow the pipeline to keep executing when it would
have otherwise needed to stall. To accomplish this behavior, we will need a nominal amount
of additional hardware. It is important to note that the magnitude of this new hardware is
greatly smaller than a typical out-of-order processor’s reorder buffer (ROB).

The first structure we will need is the memory access table (memTable) that will hold
the information stored in the application binary. This is essentially what is shown in Fig. 6.
Namely, this structure will hold the PC, the initial independent instruction count, and nine
additional increments for a given basic block’s memory operations. A total entry width of
64-bits is chosen for this purpose. This choice allows for 32-bits for the PC address, 5-bits
for the initial instruction count, and nine increment slots, each having 3-bits. This corre-
sponds well to the characteristics of hot-spot basic blocks found in real-world benchmark
applications that were analyzed.

In particular, Fig. 7 provides the average number of load instructions present per basic
block for our various benchmarks. The average number of load instructions across the ag-
gregate of these benchmarks is approximately 8.75, and hence hardware support for up to
nine load instructions was chosen. Similarly, Fig. 8 provides the average number of inde-
pendent instructions found within basic blocks following their first load instruction, as well
as the 90th percentile1 number of independent instructions. Given that the independent in-
struction 90th percentile value across the benchmarks is approximately 26.33 instructions,
5-bits (i.e. up to 31 instructions) were alloted for the initial independent instruction count.
Additionally, the number of entries in this table can be varied, but based on our analysis of
these benchmark applications, 256 entries was chosen to allow us to apply this optimization
on up to 256 basic blocks within a given application.

An additional feature of our implementation is that we allow subsequent load instructions
to be “executed” during the stall of a previous load. As is typical with most embedded
processors, the memory subsystem can only service one memory instruction at a given time.

190% of the basic blocks analyzed could have all of their independent instructions contained within this
value.
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Fig. 7 Average number of load instructions per basic block

Fig. 8 Average and 90th percentile number of independent instructions per basic block

Thus, it is not possible to execute a load while a prior load is still waiting on a cache miss
(e.g. this would be a structural hazard). Nevertheless, instead of always assuming that a
load may stall, which requires constraining the number of independent instructions found at
compile-time to halt at the first memory instruction, we chose to take an innovative hardware
approach, which will be described shortly. With respect to memory stores, we assume the use
of a write-back buffer which can be serviced even while the memory subsystem is resolving
a memory load, as is common practice in modern embedded processors.

The essential issue is that there may be a cache miss on a given load instruction at run-
time, but then again, there may not be. Instead of always assuming the worst-case that is
necessary at compile-time, we can leverage this run-time behavior to overcome this issue.
We propose the addition of a small circular load instruction buffer (loadBuf ). The purpose of
this buffer is to accumulate the effective address, destination register, and memory-specific
opcode for a load instruction when the memory subsystem is occupied. For example, if one
were to have two back-to-back load instructions, the first instruction could hit or could miss.
If it hits, the next instruction can execute normally. On the other hand, if the first instruction
misses, we allow the second instruction to get executed in the pipeline and captured in this
new load buffer. Immediately after the first instruction completes, the pipeline will inject the
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Fig. 9 Load instruction buffer
(loadBuf)

buffered memory signals to the memory subsystem and begin the second load. The structure
of this load buffer is shown in Fig. 9. We calculated the entry width to be 41-bits, to allow
for the typical 32-bit address, 5-bit register number (either integer or floating-point), and
4-bit opcode (which can handle up to 15 types of memory load instructions). We chose eight
entries to correspond to the nine additional increment positions in the memTable (since one
of those positions is for the initial load instruction). Since this buffer is circular and has eight
entries, we would also need a 3-bit index register and 3-bits to keep track of how full the
buffer is. Thus, this structure accounts for a total storage increase of 334 bits. This structure
can be integrated into the memory subsystem to easily capture subsequent load instructions
coming into the subsystem.

Lastly, we need to have a counter register (counterReg) to keep track of the number of in-
structions we executed and an increment register (incrReg) to store the additional increment
values that may occur in the basic block. The counterReg lets us know if we have exhausted
the number of guaranteed independent instructions and thus must stall if the memory access
is not complete. This counterReg will be 7-bits, which will allow the initial 5-bit count, plus
the possibility of nine additional 3-bit increases without having an overflow. The incrReg is
a shift register that will shift out the upper 3-bits and add them to the counterReg whenever
a memory access completes.

The basic idea at run-time is to compare the PC at the memory stage with the entries
in the memTable. If there is a match, load the corresponding count number and additional
increments stored in the memTable into the counterReg and the incrReg, respectively. If
the memory access is a miss, continue executing and decrementing the counterReg until
it becomes zero. At that point, the pipeline will need to be stalled. If the cache miss re-
solves before the counterReg expires, the incrReg’s upper 3-bits are shifted out and added to
the counterReg. This increase to the counterReg indicates the number of additional instruc-
tions that can now be executed since the previously-stalled memory reference completed.
Additional logic exists to account for buffered loads. The full explanation of the run-time
behavioral algorithm is provided in Fig. 10.

An important observation is that this implementation will never result in worse cycle
throughput than the original, non-optimized architecture. If one were to assume 100% cache
hit rates, this implementation will behave identically with regard to instruction throughput
when compared against the baseline architecture. Only in the event of cache misses, this
implementation will allow additional instructions to be executed in otherwise dead cycles
during the memory stall. Furthermore, it is necessary that we utilize a run-time control for
the algorithm, since having multi-level caches in our architecture can lead to having dynamic
miss penalties that cannot be assumed or anticipated at compile-time alone.



320 G. Bournoutian, A. Orailoglu

In memory (M) stage:
if( PC matches an entry in memTable ) {

load memTable entry’s count into counterReg
load memTable entry’s increment into incrReg

}

if( cacheMissSignal ) {
if( counterReg > 0 ) {

if( M stage instruction was load ) {
latch memory instruction information inside subsystem

(e.g. effective address and dest. reg)
kill memory instruction (e.g. inject nop as result

to WB stage)
}
if( EX stage instruction was a load ) {

if( loadBuf is full ) {
stall pipeline

} else {
push instruction to loadBuf and inject nop

}
}

} else {
stall pipeline (same behavior as default)

}
}
else {

if( loadInst just completed -- stall or no stall ) {
if( M stage instr != instruction that just completed ) {

create a bubble in M stage (e.g. only shift M & WB
stages in pipeline)

place memory data and dest reg as input to pipeline regs
}
take upper 3-bits of incrReg and add to counterReg
left shift incrReg by 3-bits

}
if( loadBuf not empty ) {

create a bubble in EX stage
insert next load instruction as input to M stage

}
}

if( counterReg > 0 ) {
decrement counterReg

}

Fig. 10 Run-time independent instruction execution behavioral algorithm

5 Experimental results

In order to assess the benefit from this proposed architectural design, we utilized the Sim-
pleScalar toolset [19]. We chose a representative mobile embedded system configuration,
having a 256-set, direct-mapped L1 data cache with a 32-byte line size. This processor
model utilized a typical in-order simulation engine, with dedicated L1 caches for data and
instruction memory, backed by a unified L2 cache.

Twelve representative benchmark programs from the SPEC CPU2000 suite [20], the Me-
diaBench video suite [21], and the MiBench telecomm suite [22] are used. A listing of these
benchmarks and their respective descriptions are provided in Table 1.

Figure 11 shows a metric of how well our algorithm was able to identify and allow
independent instructions to fill in the delays caused by memory stalls. As one can see, a
large amount of the stalled cycles are able to be utilized using our implementation. The
average quantity of dead stall cycles that were able to be recouped to run useful instructions
was 64.02%, which is rather substantial.
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Table 1 Description of
benchmarks Benchmark Description

bzip2 Memory-based compression algorithm

crafty High-performance chess playing game

crc32 32-bit CRC framing hash checksum

fft Discrete fast Fourier transform algorithm

gcc GNU C compiler

gsm Telecomm speech transcoder compression algorithm

gzip LZ77 compression algorithm

h264dec H.264 block-oriented video decoder

mpeg4enc MPEG-4 discrete cosine transform video encoder

parser Dictionary-based word processing

twolf CAD place-and-route simulation

vpr FPGA circuit placement and routing

Fig. 11 Success of filling stalls with independent instructions

Given this success in mitigating wasted stall cycles shown above, it is also important to
observe what the resulting overall application performance impact would be. To begin with,
it is important to look at the baseline cache miss rates. Since the goal of this proposed archi-
tecture is to mitigate cache miss induced pipeline stalls, the actual miss rates encountered
will directly impact the potential global benefits we hope to achieve. Simply absolving the
penalty from a cache miss may not have any tangible improvement on the overall appli-
cation if there are an infinitesimal amount of cache misses to optimize. Fortunately, there
is still a large amount of cache misses that occur within complex, data-intensive applica-
tions. Figure 12 provides the L1 cache miss rates observed for the various benchmarks we
examined, having an average miss rate of 6.48%. Using this information and the success
in filling stalled cycles described earlier, we can now compute the actual overall execution
improvement for the application.

Table 2 provides the total number of execution cycles, number of dead execution cycles
from cache miss stalls, and percentage of execution overhead due to memory stalls for the
baseline architecture. Table 3 provides the total number of execution cycles and number of
dead cycles after our architecture allowed independent instructions to execute during mem-
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Fig. 12 L1 cache miss rates

Table 2 Baseline execution run-time inefficiency

Benchmark Baseline

Total cycles [107] Dead cycles [107] Inefficiency [%]

bzip2 23,265.90 3,708.52 15.94

crafty 3,992.23 1,270.59 31.83

crc32 55.15 1.81 3.29

fft 67.30 4.34 6.45

gcc 255.01 53.31 20.91

gsm 65.32 1.66 2.54

gzip 12,562.51 1,670.36 13.30

h264dec 1,717.58 388.47 22.62

mpeg4enc 1,161.36 107.22 9.23

parser 1,750.59 407.27 23.26

twolf 1,916.39 596.40 31.12

vpr 1,567.28 496.37 31.67

ory stalls, along with the associated percentage of execution overhead due to memory stalls,
and the percentage improvement over the baseline in terms of overall run-time execution.
In addition, Fig. 13 graphically shows the percentage improvement in run-time execution
behavior using our implementation. The average of the execution time improvement across
the benchmarks for our proposed implementation is 11.27%.

In terms of area impact, our proposed augmentations to the hardware are quite mini-
mal. Assuming a 45 nm process technology, the additional storage elements and associated
combinational logic account for an area impact of approximately 0.0211 mm2. Comparing
this to the ARM1156T2(F)-S processor, whose die size measures 1.25 mm2 with the same
cache configuration used in simulation, one can see that the area overhead is nominal; the
additional hardware equates to an area increase of about 1.69%.

Since we only use a small amount of additional hardware, the power efficiency impact of
the proposed technique is also quite small. Overall, the structures proposed account for ap-
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Table 3 Overall execution run-time improvement over baseline

Benchmark Proposed design

Total cycles [107] Dead cycles [107] Inefficiency [%] Improvement [%]

bzip2 20,360.27 817.21 4.01 12.43

crafty 3,040.86 316.45 10.41 23.91

crc32 54.19 0.91 1.67 1.65

fft 63.75 0.80 1.26 5.26

gcc 219.46 17.83 8.12 13.92

gsm 64.49 0.81 1.25 1.30

gzip 11,293.27 399.37 3.54 10.12

h264dec 1,478.33 146.97 9.94 14.07

mpeg4enc 1,091.96 39.45 3.61 5.83

parser 1,507.21 163.41 10.84 13.93

twolf 1,715.91 395.36 23.04 10.50

vpr 1,217.55 146.29 12.02 22.34

Fig. 13 Overall run-time execution improvement

proximately 2 KB of additional storage elements, along with some necessary routing signals
and muxing. Since our implementation does not rely on creating a central register/operand
storage area, we do not suffer the same routing and muxing overhead that exponentially
grows when dealing with reorder buffers and instruction queues. Furthermore, indexing into
our hardware structure only occurs during load instructions, as opposed to every single in-
struction. Thus, when compared to the complexity of a fully dynamic instruction reordering
processor, our implementation is far more efficient. According to [23], a typical out-of-order
processor’s ROB, register renaming table, and instruction queue on average consume about
27%, 13.5%, and 26% of the total energy usage of the processor, respectively. This com-
bines for a total energy consumption of about 67% of the total processor, a figure that is not
feasible when considering the power-conscientious mobile embedded domain. On the other
hand, the energy consumption of our proposal is about 0.6% of the total energy footprint for



324 G. Bournoutian, A. Orailoglu

Fig. 14 Overall energy consumption contribution

a comparable in-order processor, using a CACTI [24] approximation as shown in Fig. 14.
Therefore, our proposed technique can deliver most of the same benefits with regard to re-
solving memory stalls, but at a fraction of the energy consumption and area utilization of an
out-of-order processor.

6 Conclusions

We have presented a novel architecture for leveraging static compile-time analysis infor-
mation and hiding the impact of memory stalls by configuring and allowing independent
instructions to continue executing during a memory stall at run-time. As shown, memory in-
structions account for a large proportion of the instructions within an application. Although
much work has gone into mitigating cache misses, processors still encounter a substantial
amount of overhead when misses do occur. Mobile embedded processors, being far more
resource constrained, cannot easily leverage the same technology used in general-purpose
machines to overcome memory stalls. In particular, out-of-order execution is prohibitively
expensive in terms of area and power utilization in the mobile embedded domain.

By leveraging both compile-time and run-time information, we are able to propose an
architecture capable of delivering most of the benefits of out-of-order execution with regard
to memory pipeline stalls, but at far less the cost. The key principle is the strengthening of the
interaction between the compiler and the underlying hardware microarchitecture, allowing
information not readily available during run-time (e.g. global data interdependencies) to be
gathered and conveyed to the hardware by the compiler.

The achievement of these goals has been confirmed by extensive experimental results.
A significant reduction in the number of dead cycles due to memory stalls has been demon-
strated by a representative set of simulation results. By mitigating a large majority of these
wasted pipeline cycles during cache misses, we are able to realize substantial improvements
in the overall program execution time. The proposed technique has significant implica-
tions for mobile embedded processors, especially with regard to high-performance, power-
sensitive devices such as cellular smartphones and MP3 players, as it yields improvements
to execution time while minimally affecting power consumption. Thus, we can deliver faster
performance without negatively affecting battery life.

As portable embedded processors continue to spread and become ubiquitous, it is es-
sential to maintain high performance, low power, and small size. The proposed architecture
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fulfills these requirements and enables mobile embedded processors to continue to mature
and be able to handle exceedingly complex and aggressive applications, while maintaining
their battery life.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommer-
cial License which permits any noncommercial use, distribution, and reproduction in any medium, provided
the original author(s) and source are credited.
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