
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Network-Level Control of Collaborative UAVs

Permalink
https://escholarship.org/uc/item/28k1t5jj

Author
Love, Joshua Alan

Publication Date
2011

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/28k1t5jj
https://escholarship.org
http://www.cdlib.org/

Network-Level Control of Collaborative UAVs

by

Joshua Alan Love

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Engineering - Mechanical Engineering

in the

GRADUATE DIVISION

of the

UNIVERSITY OF CALIFORNIA, BERKELEY

Committee in charge:
Professor J. Karl Hedrick, Chair
Professor Francesco Borrelli
Professor Raja Sengupta

Fall 2011

Network-Level Control of Collaborative UAVs

Copyright 2011
by

Joshua Alan Love

1

Abstract

Network-Level Control of Collaborative UAVs

by

Joshua Alan Love
Doctor of Philosophy in Engineering - Mechanical Engineering

University of California, Berkeley

Professor J. Karl Hedrick, Chair

This dissertation addresses how a single human operator can interactively control
a network of collaborative unmanned aerial vehicles (UAVs). It provides a model
of computation for network-level controllers. These network-level controllers enable
a single human operator to monitor, order, and supervise the progress of an en-
tire network of autonomous collaborative UAVs. As the human operator observes
the network’s progress, they may make changes by applying runtime patches to the
network-level controller. The resulting network-level controller can be analyzed to
verify that it meets required conditions.

UAV networks produce significantly more information than any single human can
concentrate on. To ease this cognitive burden, the human operator should interact
with the UAVs at an appropriately high level of abstraction. They should focus on
monitoring what is being done, deciding what should be done, and determining in
what order. Other lower-level decisions can be automated by the network. To this
end, Petri nets are used as a theoretical basis for stating network-level controllers.
Petri nets have a graphical description that is extremely intuitive. They also convey
exactly what is being done, what will be done, and in what order using a network-
focused perspective.

Developing a novel Petri net-based model of computation for network-level control
is the main contribution of this work. This includes forming the syntax and semantics
for network-level controllers. Other related contributions include identifying invariant
and analyzable properties of the network-level controllers, proofs of their correctness,
and interpretations of their meanings. These allow a human operator to understand
and assert that a proposed controller is indeed correct. A runtime patching language
to enable modifications by the human operator is another contribution.

The theoretical concepts behind network-level controllers provide a mathematical
basis for the more concrete Collaborative Sensing Language (CSL). This formal XML-
based language allows a precise specification of network-level controllers for UAVs.
This dissertation also describes an implementation that enabled CSL for the UAV

2

fleet at the Center for Collaborative Control of Unmanned Vehicles (C3UV). CSL
and its implementation are also original contributions.

Previous related research has focused on the detailed off-line specification of indi-
vidual reactive UAV behaviors. This creates a fixed preprogrammed network which
produces a specific but predetermined behavior. The various existing alternatives are
not well suited for interactive control of a network by a single human operator. They
either suffer from no graphical description (process algebras), excessive information
(hybrid systems), an individual component and not network focus (networks of finite
state machines), a fixed dimension network, or a static specification that cannot be
affected on-line. The novelty and usefulness of this dissertation lies in its ability to
address these issues.

Professor J. Karl Hedrick
Dissertation Committee Chair

i

Dedicated to my parents, Randy and Dixie Love, for their continual

and unwavering support and the belief that I can do anything I set
my mind to doing, even when it sounds ridiculous.

ii

Contents

List of Figures v

List of Tables viii

Symbols and Abbreviations ix

1 Introduction 1
1.1 Motivation . 1
1.2 Contributions . 3
1.3 Greater Applicability . 4
1.4 Contents of Dissertation . 5

2 Modeling Systems of Systems 6
2.1 Process Algebras . 8

2.1.1 Communicating Sequential Processes (CSP) 10
2.1.2 Calculus of Communicating Systems (CCS) 14
2.1.3 Algebra of Communicating Processes (ACP) 16
2.1.4 π-Calculus . 19

2.2 Finite State Machines . 22
2.2.1 Individual Finite State Machines 23
2.2.2 Systems of Finite State Machines 29
2.2.3 Supervisory Control . 35
2.2.4 Applications of FSMs to UAVs 39

2.3 Hybrid Systems . 42
2.3.1 Individual Hybrid Automata 44
2.3.2 Networks of Hybrid Automata 50

2.4 Petri Nets . 56
2.4.1 Models . 56
2.4.2 Compositional Modeling . 63
2.4.3 Analysis . 66
2.4.4 Applications . 69

iii

3 Network-Level Controllers 71
3.1 UAVs and Tasks . 71

3.1.1 UAVs . 73
3.1.2 Tasks . 75

3.2 The Concept of Network-Level Control 77
3.3 Syntax of Network-Level Controllers 80
3.4 Semantics of Network-Level Controllers 82
3.5 Example Network-Level Controller 84

4 Properties of Network-Level Controllers 86
4.1 Invariance Properties . 86

4.1.1 Task-Token Consistency . 87
4.2 Analyzable Properties . 88

4.2.1 Weak Bisimulation . 89
4.2.2 Reachability . 92
4.2.3 Boundedness . 93
4.2.4 Liveness . 95
4.2.5 Deadlock . 95
4.2.6 Additional Properties . 96

5 Runtime Patching Language for Network-Level Controllers 97
5.1 Syntax . 97
5.2 Structural Operational Semantics . 98
5.3 Conclusions . 102

6 Network-Level Controllers Modified By Runtime Patching 103
6.1 Syntax . 103
6.2 Semantics . 105
6.3 Example . 108
6.4 Invariance Theorems . 110

6.4.1 Well Formed . 110
6.4.2 Fully Representative . 111
6.4.3 Task-Token Consistent . 112

6.5 Analyzable Properties . 114
6.6 Conclusions . 115

7 The Collaborative Sensing Language 117
7.1 Implementation . 118
7.2 C3UV Platforms . 121
7.3 XML-based Syntax . 123

7.3.1 CSL’s State Representation 125
7.3.2 CSL’s Runtime Patches . 141

iv

8 Conclusions 148
8.1 Contributions . 148
8.2 Critiques . 149
8.3 Directions for Future Work . 149

Bibliography 151

A Proof of Lemma 6 168

B Proof of Lemma 7 179

C Proof of Lemma 8 183

v

List of Figures

2.1 Notions of Time . 7
2.2 Behavior of a System of Processes . 9
2.3 CSP Buffer . 12
2.4 π-calculus Mobility . 21
2.5 State Transition Diagram . 24
2.6 System of FSMs . 29
2.7 Interleaved System of FSMs . 30
2.8 Parallel System of FSMs . 31
2.9 Product System of FSMs . 32
2.10 Accessible Product System of FSMs 33
2.11 Moore Machines . 33
2.12 Mealy Machines . 34
2.13 Feedback Control . 35
2.14 FSM Controller/Plant Coupling . 36
2.15 FSM Feedback Control . 37
2.16 Discretized Environment . 40
2.17 Hybrid Trajectories . 43
2.18 Liquid Tanks . 44
2.19 Liquid Tanks Hybrid Automaton Model 46
2.20 Liquid Tanks Hybrid Behavior . 48
2.21 Hierarchical Hybrid Automaton . 52
2.22 Simplified Automated Highway Example from [56]. 54
2.23 SHIFT Automata for Simplified Automated Highway from [56]. . . . 54
2.24 Petri Net Structure . 57
2.25 Petri Net Behavior . 58
2.26 State Machine Petri Net . 60
2.27 Marked Graph/State Machine . 61
2.28 Component Petri Sub-nets . 63
2.29 FSM Interleaving vs. Petri Net Interleaving 64
2.30 Transition Fusion . 64
2.31 Asynchronous Petri Net Communication 65

vi

2.32 Place Fusion . 65
2.33 Transition Expansion . 66
2.34 Place Expansion . 66

3.1 Types of Spring-Mass-Damper Systems 72
3.2 C3UV Aircraft . 74
3.3 NLC Feedback Loop . 77
3.4 NLC Tokens and Places . 78
3.5 NLC Example 1 . 79
3.6 NLC Example 1 Execution . 80
3.7 NLC Example 2 . 84
3.8 NLC Example 2 Execution . 85

4.1 Analysis of Network-Level Controllers 89

6.1 Runtime Patching Example . 109
6.2 Simple Example Network-Level Controller 114
6.3 Network-Level Controller After Arc Weight Modification 114
6.4 Network-Level Controller After Arc Deletion 115

7.1 GUI Interface . 119
7.2 Image from Camp Roberts . 120
7.3 Simulated Google Earth Image . 120
7.4 Bat IV . 121
7.5 Rascal . 122
7.6 Piccolo II Autopilot . 122
7.7 Root CSL Message . 124
7.8 NLC State Representation . 125
7.9 Sub-Petri Net . 126
7.10 Places . 126
7.11 Transitions . 127
7.12 Arcs . 127
7.13 Common Number Types . 130
7.14 GPS Points and Rotiations . 130
7.15 Probability Grid . 131
7.16 Task Types . 131
7.17 Task Definitions . 132
7.18 Visit Task Definitions . 134
7.19 Watch Task Definitions . 135
7.20 Task States . 136
7.21 Visit Task States . 137
7.22 Watch Task States . 138

vii

7.23 UAV Types . 139
7.24 List of UAV Definitions . 139
7.25 UAV Definitions . 140
7.26 List of UAV States . 141
7.27 Bat and Rascal UAV States . 142
7.28 Send Runtime Patch . 143
7.29 Add/Delete Places/Transitions . 144
7.30 Add/Delete/Modify Arcs . 144
7.31 Modify Capacity Constraint, Add/Delete Token 145
7.32 Modify Task Definitions and States 145
7.33 Runtime Patch Confirmation . 147

viii

List of Tables

2.1 Syntax of Communicating Sequential Processes (CSP) [89] 11
2.2 Semantics of Calculus of Communicating Systems (CCS) 14
2.3 Axiom System for ACP [37] . 17
2.4 Semantics of the π-calculus [133] . 20

5.1 Syntactic Meta-Variables for the Runtime Patching Language 98
5.2 Runtime Patching Language BNF . 98
5.3 Structural Operational Semantics of RPL4NLC-part a 99
5.4 Structural Operational Semantics of RPL4NLC-part b 100
5.5 Structural Operational Semantics of RPL4NLC-part c 101

ix

Symbols

Variables

R The set of real numbers
Z The set of integers {...− 1, 0, 1...}
N The set of natural numbers {0, 1, 2...}
N+ The set of positive integers {1, 2...}

x

Acknowledgments

This dissertation would not have been possible without the guidance and patience
of my co-advisors Professors J. Karl Hedrick and Raja Sengupta. They believed in
and encouraged my abilities in areas ranging well beyond my expertise and com-
fort zone. Through these experiences I have gained more than knowledge about
unfamiliar topics; I have gained the confidence necessary to master new topics and
situations. Special thanks to Professor Sengupta for acting as the technical advisor on
my disseration. The hours of feedback helped produce a more complete and cohesive
dissertation.

I would also like to thank the other members of the Center for Collaborative Con-
trol of Unmanned Vehicles (C3UV), the Vehicle Dynamics Lab (VDL), and members
of the Civil Systems program. The many conversations about related and unrelated
topics have helped stimulate my interests and expose me to many different perspec-
tives that I may have otherwise missed.

Additionally, this dissertation and my research were financially supported by a UC
Berkeley Graduate Fellowship and then a National Defense Science and Engineering
Graduate Fellowship (NDSEG). These fellowships allowed me the freedom to pursue
this ‘non-traditional’ line of research.

Finally, I would like to thank the many fine teachers and professors that have
poured years of effort into my education. Hopefully I have, and will continue to, seize
the opportunities you opened before me.

1

Chapter 1

Introduction

1.1 Motivation

Unmanned aerial vehicles (UAVs) seem like a very recent military development.
In the beginning of the 21st century they gained substantial press due to their heavy
use in Operation Enduring Freedom in Afghanistan and Operation Iraqi Freedom in
Iraq. Thanks to the continual news coverage of these conflicts and the release of UAV
video streams, UAV technologies were thrust into the public consciousness. These
remotely piloted vehicles allowed the United States to exercise its air superiority with
less risk and longer endurance than manned aircraft. The pilots controlling the drones
over Afghanistan could be stationed in an air conditioned building within the safety
of the continental United States. The pilots could even switch in and out so that
UAVs with 24+ hour endurances could be remotely operated with 8 hour shifts.

While the technology was new to the general public, it was envisioned at least as
early as 1917 when the United States pursued building an unmanned flying bomb for
World War I. In World War II Nazi Germany developed the V-1 Rocket, which did not
gather intelligence information, but was one of the first successful unmanned aerial
vehicles in production. U.S. research continued in waves and during the Vietnam
Conflict UAVs were secretly flown over China, Laos, North Vietnam, and other South
Asian countries. These UAVs performed tasks similar to ’modern’ UAVs: collected
photographs, took electronic measurements, made damage assessments, and dropped
propaganda leaflets [52]. In 2000 the global military UAV market was estimated at $2
billion and predicted to grow to $42 billion by 2008. With the U.S. then consuming
a third of this market, it was anticipated to spend $13.5 billion in 2008 [84]. More
recently it was estimated that from 2010 to 2015 the U.S. will spend at least $62
billion on UAV technology (roughly $12.5 billion per year) [18].

This substantial investment not only provided cutting-edge military systems that
help keep U.S. service members safe, but also spurred on research and development.
Similarly to how NASA’s Space Race investment helped produce integrated circuits

1.1. MOTIVATION 2

and computers, UAV research required sophisticated electronics, more accurate and
compact sensors, reliable and fast wireless communications, autopilots, and embedded
computation. The progress made on UAVs since 1917 has matured these technologies
to the point where new non-military applications are being developed and conceived
at an amazing rate. These commercial off-the-shelf autopilots, sensors, actuators, and
even complete UAVs allow an organization to take any idea and quickly turn it into
a testable reality.

One of the first non-military UAV applications was envisioned by the U.S. Depart-
ment of Homeland Security. They now use UAVs to conduct border patrol enforce-
ment and drug trafficking interdiction [38]. The UAVs can stay aloft for hours and
monitor miles of the border, tracking illegal entrants as necessary. As UAV use within
the government became more common, the potential uses of UAVs were expanded
to include: measuring and monitoring volcanic activity [148], measuring the health
of rangelands and crops and general ecological health [157, 182], taking population
counts of animal species [152], providing a mobile communications backbone that
could be used in the recovery after national disasters [160], monitoring traffic conges-
tion [170], and measuring chemical weapons or pollutants in the atmosphere [108].
These are just a few of the many public and private organizations and applications
that are currently being developed.

For many existing and future applications, individual UAVs may hold significant
advantages over manned aircraft. They are just as mobile, are more easily packed and
transported, are often significantly cheaper, can have longer endurance, and do not
put a human pilot at risk. These qualities almost assure the continued propagation
of UAV technology for specific applications where a single manned aircraft can be
replaced. However, it is unlikely that UAV technology will stop with single UAV
applications.

As the applications grow in complexity to require coverage of larger areas or time-
critical completions, it may be necessary to utilize several UAVs as a collaborative
network. Despite border patrol UAVs flying at high altitudes and having powerful
optics, more than one is necessary to provide coverage of the border at any moment.
With only a single UAV patrolling the border, the time separation between observing
any one crossing of the border would be hours. As more UAVs are added to the
patrol this can be brought down significantly. Similarly, using several UAVs to form
a communications backbone will provide emergency communications to a much larger
area than a single UAV could provide. Most of the individual UAV applications can
be extended to collaborative systems that either perform the objectives faster or over
a larger area, thus expanding their usefulness and impact.

Part of the allure of UAV networks is an increase in autonomy. Both individual
UAVs and networks of UAVs come in various levels of automation. Many of the
original UAVs were entirely automated (e.g. World War II’s Nazi V-1 Rocket). They
were given a target at start-up and launched. It was later that advanced circuitry

1.2. CONTRIBUTIONS 3

and communications made remote operation possible. Currently, the MQ-1 Predator
is a remotely piloted vehicle with minimal automation augmenting the remote pilot’s
commands. These UAVs do not intend to fully automate the system, but merely
remove the human operator from danger. For large missions that require multiple
Predators, the number of pilots required is directly proportional to the number of
UAVs; if 4 Predators are needed then so are 4 pilots. The pilots can communicate
with each other verbally and make collective decisions as if they were still embedded in
the physical aircraft. There are many intermediate levels of UAV automation between
fully automated with almost no human interaction and remotely piloted with almost
no automation. One of the potential benefits of automation is reducing the manpower
necessary to conduct UAV missions. Automated systems also make decisions faster
and can choose optimal solutions that may be hard for a human to identify. However,
automated systems still respond poorly to unexpected situations.

Depending on the application, different levels of autonomy are appropriate. Vol-
cano monitoring could easily be fully autonomous with the path and objectives spec-
ified before the flight begins. Offensive military applications (bombardments) will
likely remain remotely operated due to the high risks and collateral damage that
could occur from any ’bug’ in the code.

This dissertation intends to address UAV networks that fall between fully au-
tonomous and remotely operated. This work provides a method for a single human
operator to supervise a collaborative network of UAVs. As the network executes its
tasks, the human operator can interactively modify the tasks and the order they are
to be performed. Since the human operator is interactively modifying the network’s
intended behavior it is clearly not a fully autonomous system. Neither is it a sys-
tem of remotely operated vehicles; flying a single UAV manually is so difficult that
flying several manually at the same time is practically impossible. Thus, the system
described is an example of mixed-initiative automation where the human interaction
enters at the highest and most abstract levels of control. The human operator su-
pervises what is being done, what will be done, and in what order while the UAVs
executes these tasks autonomously.

1.2 Contributions

The contributions made in this dissertation are:

• This dissertation presents the syntax and semantics for a novel model of com-
putation that specifies network-level controllers. These concepts allow both a
rigorous mathematical definition along with an abstracted graphical interpreta-
tion. The simplicity and focus of the graphical interpretation allows a human
operator to understand the network-level controller at an appropriate level.

1.3. GREATER APPLICABILITY 4

• Invariant and analyzable properties of the network-level controllers are identified
and interpreted based on the developed syntax and semantics. These properties
allow a human operator to check that the network-level controller specified is
indeed ’correct’.

• The network-level controller concept is extended with runtime patching to al-
low the human operator to drastically alter the network-level controller during
operation in a manner that is guaranteed to be correct.

• The Collaborative Sensing Language (CSL) is developed as an XML-based
domain specific language to specify network-level controllers for Intelligence
Surveillance and Reconnaissance (ISR) applications by UAVs.

• An implementation of the Collaborative Sensing Language is described that
allows one to specify and execute CSL network-level controllers.

1.3 Greater Applicability

While this dissertation focuses on the network-level control of a network of collab-
orative UAVs performing ISR tasks, the concepts discussed could be useful in other
areas. Obviously the type of tasks performed by the UAV network could be extended
or modified from ISR to another domain of interest. UAVs could be used to drop off
medical supplies in emergencies or fight forest fires. In the motivation above several
alternative UAV applications were discussed, but this list will grow as UAVs continue
to prove themselves capable and economical solutions.

There is no reason why the concepts provided for network-level control must be
confined to UAV networks. Unmanned ground vehicles (UGVs), unmanned surface
vehicles (USVs), and unmanned underwater vehicles (UUVs) provide additional types
of networks that could be controlled in this manner. A team of collaborative UUVs
could have been very beneficial to measure and monitor the situation at the Deepwater
Horizon oil spill. They could have potentially measured and tracked the oil patches
at different depths of the ocean in an organized and automated manner.

Additionally, network-level control could be useful in applications that do not
involve mobile robots. If a system of resources has some allocation layer to assign
tasks to individual resources, network-level control could be implemented on top of
this to provide a way for a human operator to supervise the network at a high level
of abstraction.

1.4. CONTENTS OF DISSERTATION 5

1.4 Contents of Dissertation

Chapter 2 will discuss various existing modeling formalisms. It provides both
the background material necessary to understand this dissertation and the research
most relevant and related to this dissertation. It is organized by individual modeling
formalism. Each section discusses the purely theoretical definitions of a formalism
and then presents some concrete applications and research that utilize that specific
modeling formalism.

Chapter 3 will present the theoretical concepts behind network-level control. It
will discuss why Petri nets are the appropriate foundation for the new model of
computation. It will present the syntax and semantics for network-level controllers.

Chapter 4 will present several invariant properties of network-level controllers.
These properties will be results of the network-level controller semantics and will
apply to all controllers. Several analyzable properties of network-level controllers will
also be discussed. These properties (reachability, boundedness, liveness, deadlock)
will depend on the individual network-level controller.

Chapter 5 will present a runtime patching language for network-level controllers.
It will give a BNF syntax and a structural operational semantics to describe how a
human operator can make modifications to the network-level controller.

Chapter 6 will connect the runtime patching language and the network-level con-
troller. It will explain how a network-level controller being modified by runtime
patches operates. It will also discuss invariant and analyzable properties for such
controllers.

Chapter 7 presents the XML-based Collaborative Sensing Language (CSL). CSL
was the precursor to the concepts of the previous chapters. It produces network-
level controllers for ISR UAV applications at the Center for Collaborative Control of
Unmanned Vehicles (C3UV).

Finally, Chapter 8 will summarize the benefits and detriments of this approach to
controlling a network. It will make suggestions for future research in this area.

6

Chapter 2

Modeling Systems of Systems

Systems of systems is a concept synonymous with complexity. Individual systems,
themselves, are often quite complex. Be they electrical, fluid, thermal, mechanical,
or information systems their complexities continue to provide many active areas of
research. The different types of individual systems can be represented by different
types of models and controlled using different types of control techniques. Part of the
art of control is knowing which tools are appropriate for which occasions. The notion
of taking these already complex components and combining them into a larger system
compounds the existing complexities with new complexities due to the components’
interactions. Systems of systems addresses these interactions and provides a useful
set of modeling formalisms, analysis tools, and control techniques to aid in the devel-
opment of these ever-growing systems. Obviously, this includes networks composed
from individual UAVs.

One commonality of all engineered systems is time. A system’s behavior evolves
as time progresses. No matter how complex, the systems considered cannot violate
time’s forward progression. Since one cannot go back in time to correct previous
actions, control must be deliberately and carefully crafted based on a model that can
faithfully predict future behavior. Each modeling formalism to be discussed will have
some notion of time, but these notions will often be different.

The most intuitive model of time is the continuous-time model used in modern
control [69]. In this model, time comes from the set of real numbers, and between
every two time instances there is another time instance, see figure 2.1a. Behaviors of
continuous-time systems are represented as trajectories, which are curves describing
the state of the system changing with time.

As digital processing became more and more prevalent, discrete-time models pro-
vided a theoretical basis for additional control tools that integrated computers with
analog components [139]. Digital computers can only operate at specific clock speeds.
Regardless of how fast they operate, they are by definition and design not analog.
To bridge this difference, computers can use analog-to-digital samplers to convert the

7

0 1 2 3 4 5 6 7 8 9 10

1

2

3

a.)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10

1

2

3

b.)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10

1

2

3

c.)

0 1 2 3 4 5 6 7 8 9 10

d.)

3 3 2 1 1 2 3 3 2 1

0 1 2 3 4 5 6 7 8 9 10

e.)

time

3 3 2 1 1 2 3 3 2 1

Figure 2.1: a) the behavior of a continuous-time model represented as a curve. b) a
sampled sequence generated by sampling a) at a rate of ∆t = 0.5. c) a continuous-time
signal generated from a zero-order hold D/A converter and the sampled sequence from
b). d) an event trace from a discrete-event system recording when a) goes through
values 1,2,3. e) an event trace that is equivalent in ’logic-time’ to d), but with entirely
different spacing in ’continuous-time’.

continuous-time trajectories of analog signals into digital sequences of sampled values,
see figure 2.1b. This abstraction allows one to work with the discrete-time notion of
time, where every time instance k is followed by an instance k + 1 which is always
some ∆t later. This periodic view of time is closely related to the operation of CPUs,
which can execute blocks of control code at rather constant, but still finite rates.
To form a closed loop system, computers also utilize digital-to-analog converters to
produce analog output (e.g. a zero-order hold D/A converter, figure 2.1c). These
converters take a digital sequence and produce a continuous-time trajectory under
some assumptions (e.g. a zero-order hold assumes a stair-step pattern between sam-
ples). By comparing figure 2.1a and c it is obvious that some information abstracted
by the sampling in b) is lost and cannot be reproduced, but an appropriate assump-
tion from selecting a zero-order hold (stair-steps) can produce a ’similar’ signal in
c) that approximates a). It is important to note that different modeling formalisms
retain different subsets of information, this allows them to retain only the information
important to what that modeling formalism is intended to describe and analyze.

2.1. PROCESS ALGEBRAS 8

The logical-time model in discrete-event systems (DES) is similar to the discrete-
time model, except that it is not assumed that the time instances are evenly spaced.
Discrete-event systems allow one to compare the order of sequences of events, but not
the spacing between events. For instance, figure 2.1d shows an abstraction of a) where
the discrete events are generated when the system’s value is 1, 2, or 3. The trace
of events is 3, 3, 2, 1, 1, 2, 3, 3, 2, 1, but the spacing is not recorded by the model (it is
shown in figure 2.1 for illustration). A trace of events that is identical in logical-time
is shown in e), meaning they are the same events in the same order. However, the
two behaviors appear very different when the time of occurrence is considered. In a
logical-time model, that spacing information and the actual continuous-time time of
occurrence is abstracted away.

The modeling formalisms covered in the remainder of this Chapter can be used
to describe, model, and analyze systems of systems; specifically, they could be used
to discuss networks of UAVs. The formalisms allow simple component models to be
combined to form larger systems in the same formalism (e.g. individual UAVs mod-
eled as finite state machines can be combined to produce a finite state machine model
for a network of UAVs). An important part of each formalism are the limitations on
how individual components can interact with each other.

Process algebras are discrete-event system formalisms whose behaviors are de-
scribed by traces of instantaneous actions in a logical-time model (they are described
by sequences of ordered actions). Any individual process algebra model describes
which actions can occur and in what order. Similarly, finite state machines also
describe instantaneous events that cause the machine to transition from one state
to the next, also constraining event orderings. Hybrid systems, specifically hybrid
automata, combine finite state machines with continuous-time dynamics. This, un-
like pure finite state machines or process algebras, creates a model that can describe
both continuous-time and discrete-event behaviors. Finally, Petri nets are another
alternative to describing interacting systems under a discrete-event notion of time.
Petri nets have a fundamentally different representation of concurrency than process
algebras and finite state machines. These different modeling formalisms focus on dif-
ferent aspects of the system’s behavior. They differ on representations of individual
components, the ways of combining individual components into larger systems, and
their properties that can be analyzed. These variations affect which formalism is most
appropriate for any specific application.

2.1 Process Algebras

Process algebras are intended to describe the sequence of instantaneous actions
a process can take. The process’ syntactic definition, along with its semantics [185],
determine exactly which traces (sequences) of actions are possible. When a process
is allowed to have output and input actions, several communicating processes can

2.1. PROCESS ALGEBRAS 9

then be composed into a larger process. In this way, small systems represented in the
process algebra can be combined into a larger communicating system of systems in
the same process algebra, figure 2.2.

0 1 2 3 4 5 6 7 8 9 10

Process 1

a b c d

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10

Process 2

i j k

0 1 2 3 4 5 6 7 8 9 10

Process 3

w x y z

0 1 2 3 4 5 6 7 8 9 10

System Composed of Processes 1,2,3

time

a b c di j kw x y z

Figure 2.2: Process 1 performing a, b, c, d. Process 2 performing i, j, k. Process 3
performing w, x, y, z. A larger system composed of all three processes performing
w, a, x, i, b, y, j, k, z, c, d.

The differing details about output, input, and composition allow for multiple
views and representations within the field of process algebra. All variants are closely
related by common notions while retaining unique aspects. Each process algebra also
has accompanying analysis tools and techniques that can be utilized for verification
purposes.

These formalisms are theoretical in nature and intended as design tools. They
lack many of the features that would make them more practical for common pro-
gramming use (variables, functions, arithmetic). These convenient features would
only complicate and muddy the theory, which is intended to describe the interactions
of processes rather than the internal machine’s detailed behavior. For example, often
a process will have to internally choose between several alternative actions. These
formalisms do not specify how this is done, but in a practical implementation this
would be based on some programmed criterion.

In real-life applications, a process already designed and coded in some language
(e.g. C++ or Java) could have its irrelevant activities abstracted away to create an

2.1. PROCESS ALGEBRAS 10

approximate model of its behavior in a particular process algebra. This could then be
analyzed with other processes to validate a design. Equally appropriate, the design
could be performed in the process algebra domain. This would create a specification
model that the ’real’ code would have to remain faithful to in its implementation.

The next four sub-sections describe the most prominent process algebra for-
malisms. They are presented in chronological order; as research progressed the core
notions became clearer, more mathematically precise, and more expressive.

2.1.1 Communicating Sequential Processes (CSP)

In 1978 Hoare presented a paper that “suggests that input and output are basic
primitives of programming and that parallel composition of communicating sequential
processes is a fundamental program structuring method”. Up to this point, input and
output were informally added onto existing programming languages with no theoret-
ical justification or explanation. He created what he called a “programming language
fragment” which “should not be regarded as suitable for use as a programming lan-
guage” [89]. This fragment was named Communicating Sequential Processes (CSP)
and along with Milner’s Calculus of Communicating Systems (CCS), presented next,
began the field of process algebra.

Hoare was specifically targeting CSP as a theoretical basis for programming mul-
tiprocessor computers. He foresaw that to fully utilize these multiple core machines,
individual processors must be able to communicate and synchronize with each other
in order to work on a single task in unison. His proposed language provided a way
of describing these interactions for a “fixed network of processors connected by in-
put/output channels” [89]. One of CSP’s main goals was to prove whether a fixed
network could deadlock, resulting in all processors waiting on each other and making
no progress forever. While CSP is theoretical in nature, it was highly influential and
provides the core functionalities for the parallel programming language Occam [11].

The original syntax of CSP is shown in Table 2.1 using a Backus-Naur Form
(BNF). The language uses a command list to represent the system of processes being
modeled.

The simple commands include the expected: input, output, as well as assign-
ment. One critical contribution of CSP is that processes block on communication.
This means that an output command can only happen if an input command is also
ready, and an input command can only happen if an output command is also ready.
Whichever process, the sender or the receiver, is ready first must wait until the other
process is ready for communication. This causes the processes to synchronize on
communication. Instead of having the output and input of information being two
separate events, communication is a single event undertaken by two processes at the
same moment. Additionally, the sender process is listening to exactly one explicitly
named receiver process, and vice versa. Only two processes are ever involved in any

2.1. PROCESS ALGEBRAS 11

Table 2.1: Syntax of Communicating Sequential Processes (CSP) [89]
Commands

command ::= simple command | structured command
simple command ::= null command | assignment command |

input command | output command
structured command ::= alternative command | repetitive command |

parallel command
null command ::= skip
command list ::= {declaration; | command ;}* command

Parallel Commands
parallel command ::= [process {‖ process}*]

process ::= process label command list
process label ::= empty | identifier :: |

identifier (label subscript{, label subscript}* ::
label subscript ::= integer constant | range

integer constant ::= numeral | bound variable
bound variable ::= identifier

range ::= bound variable:lower bound..upper bound
lower bound ::= integer constant
upper bound ::= integer constant

Assignment Commands
assignment command ::= target variable := expression

expression ::= simple expression | structured expression
structured expression ::= constructor(expression list)

constructor ::= identifier | empty
expression list ::= empty | expression{, expression}*
target variable ::= simple variable | structured target

structured target ::= constructor(target variable list)
target variable list ::= empty | target variable{, target variable}*

Input and Output Commands
input command ::= source?target variable

output command ::= destination!expression
source ::= process name

destination ::= process name
process name ::= identifier | identifier(subscripts)

subscripts ::= integer expression{, integer expression}*
Alternative and Repetitive Commands

repetitive command ::= ?alternative command
alternative command ::= [guarded command { � guarded command}*]

guarded command ::= guard → command list |
(range{,range}*)guard → command list

guard ::= guard list | guard list ;input command | input command
guard list ::= guard element{;guard element}*

guard element ::= boolean expression | declaration

2.1. PROCESS ALGEBRAS 12

single communication event, unlike other process algebras that can have multi-way
communication events.

The parallel command allows the language to take two individual processes and
combine them into a larger composite process. That larger process may or may
not involve communication between the sub-processes. It is possible that the two
processes do not interact with each other. The alternative command allows for a
non-deterministic choice to be made. This command allows the process to choose
from several potential processes to continue on as. The repetitive command simply
repeats execution of the included alternative command until it cannot be continued
any further.

P Q
west middle east

Figure 2.3: A CSP buffer holding 2 entries: the first in P, the second in Q.

Figure 2.3 shows a CSP-based buffer that holds two entries (adapted from [89]).
The process definitions are:

P :: ∗[west?c → middle!c] (2.1)

and
Q :: ∗[middle?d → east!d] (2.2)

Process P repeatedly accepts input from channel west and stores the value input
to local variable c, which it then outputs on channel middle. Process Q repeatedly
receives input on channelmiddle, stores that value as it’s local variable d, then outputs
on channel east. Output on channel middle by P must occur exactly when input on
middle occurs by Q. Figure 2.3 shows the channels connecting the overall system,
P ‖ Q, but does not give any details about the defined behaviors of P or Q.

[89, 90] contain a more thorough description of each syntactic construct. [43]
introduces a denotational style of semantics (semantics represent the ’meaning’ of the
process’ syntactic definition). The semantic meaning is described using the failures
of the system. These failures characterize any model in CSP. A failure is a tuple
(s,X): s is a trace of actions that is possible in the model, X is the set of actions
that can be refused after the trace s has been executed. This type of semantics (a set
of failures) records more information than the set of traces accepted; it also allows one
to consider if a given trace can be continued. If a behavior s progresses to the point
where X contains all possible events, then no event can occur and deadlock ensues.
This type of reasoning is used extensively in the Failures-Divergence Refinement tool,
FDR2 [5].

2.1. PROCESS ALGEBRAS 13

FDR2 allows one to check for deadlock, livelock, and to compare a refinement of
processes. A process Q refines a process P if all of the traces and refusals of Q are
also traces and refusals of P (written P v Q, if traces(Q) ⊆ traces(P) and refusals(Q)
⊆ refusals(P), called reverse inclusion) [68]. In this manner, a simpler specification
process can be created and the actual complex process can checked to be a refinement
of the specification. This means that only behaviors in the specification are in the
actual process, with several specification behaviors having possibly been removed.

CSP’s notation was modified based on concepts from CCS for Hoare’s book [90].
The concepts are very similar with a few additions, notably the distinction between
internal choice where the process must non-deterministically determine for itself which
path to take and external choice where the processes’ environment chooses which path
to take. Additionally the repetitive command was based on and supplemented with
a more generic recursion construct.

CSP is excellent for designing algorithms for a specific number of components
in a specific communication configuration. However, the formalism includes neither
replication (creating new processes on-the-fly) nor a re-configuration of the commu-
nication connections between processes. This makes its applicability questionable in
some situations (such as open network with a non-fixed number of UAVs and tasks).
Where it is practical, it can provide a capable design tool assuming the properties of
interest can be expressed through deadlock, livelock, or a refinement.

In 2007 [20] briefly mentioned the possibility of using CSP to model and certify
autonomous systems such as individual military UAVs. This was merely an obser-
vation of one option among a list of many, but CSP could be relevant for designing
multiprocessor code for UAVs. This could be for vision processing or local optimiza-
tion algorithms (e.g. path planning) on UAVs with multiple CPUs. At the very least,
it would allow developers to verify that the processors will not deadlock due to a
flaw in the communication scheme between CPUs. In [150] CSP was used to design
and verify a communication scheme between a single UAV and its ground station.
There were multiple alternative communication channels (3G, WiFi, Satellite). As
the higher bandwidth but lower range channel degraded and failed, the communica-
tion scheme allowed the UAV to switch over to a longer range but lower bandwidth
channel in a verified manner (switch from WiFi to 3G to Satellite). This was possible
because the communication channels and their configuration were known and fixed
by design.

CSP could potentially be used for modeling and specifying network-level con-
trollers, but it would have several significant drawbacks. First, the network would
have to be of a fixed dimension and configuration, no UAVs or tasks would be entering
and exiting the system. Second, CSP’s notation is not ’human friendly’ and has no
equivalent graphical representation. The density and complexity of CSP statements
would make it very difficult for even experts to use it in an interactive on-line manner.
Third, all properties to be verified would either have to be deadlock, livelock, or re-

2.1. PROCESS ALGEBRAS 14

finements of other CSP models. While CSP could potentially be quite useful in UAV
applications, it does not seem appropriate for the network-level control application.

2.1.2 Calculus of Communicating Systems (CCS)

At the same time Hoare was developing CSP, Robin Milner was developing the
Calculus of Communicating Systems (CCS) [131]. Both were investigating the behav-
ior of a system of communicating processes, but from different perspectives. Milner
sought to make his work as mathematically rigorous and concise as possible, while
Hoare focused on providing a language fragment that could be practically useful for
common applications. Milner’s opinion was that “In a definitive calculus there should
be as few operators or combinators as possible, each of which embodies some distinct
and intuitive idea, and which together give completely general expressive power”[132].
Milner was hoping to produce ’the’ concurrency theory from which everything else
stemmed. Unlike CSP whose semantics were originally described informally, Milner
also provided operational semantics to give a rigorous mathematical definition to his
syntax.

CCS’s syntax is deceptively simple:

E ::= X | a.E |
∑

Ē | E|E | E \N | fixiX̄Ē | E[φ] (2.3)

Obviously CCS’s syntax in equation 2.3 is significantly more compact than CSP’s
in table 2.1. Any CCS system is defined as an expression, E. Each E can contain
named variables, X , which are statically bound to expressions. This means that vari-
ables X are merely short-hand for longer CCS expressions and not program variables
that are actively over-written during execution.

Table 2.2: Semantics of Calculus of Communicating Systems (CCS)

Action
a.E

a
−→ E

Sum
Ei

a
−→ E ′

∑

Ē
a
−→ E ′

Composition-1
E

a
−→ E ′

E |F
a
−→ E ′ |F

Composition-2
F

a
−→ F ′

E |F
a
−→ E |F ′

Composition-3
E

a
−→ E ′ F

ā
−→ F ′

E |F
1
−→ E ′ |F ′

Restriction
E

a
−→ E ′ a /∈ N

E \N
a
−→ E ′ \N

Recursion
Ei{fixX̄Ē/X̄}

a
−→ E ′

fixiX̄Ē
a
−→ E ′

The operational semantics of CCS are shown in table 2.2. The action operator,
a.E, allows an action a to be prefixed to any expression E. For example a.b.c.0 is
the process that can execute action a then action b then action c then finally be-
come the special ’inaction’ process 0. The summation operation allows a process

2.1. PROCESS ALGEBRAS 15

to non-deterministically choose between potential futures. Typically the summation
is written as: a.E + b.F , meaning the process either behaves like a.E or b.F . The
composition operation allows two CCS processes to be composed into a larger system
with the two acting in parallel (E | F is the parallel composition of E and F). It
is possible for either E or F to take individual actions which affect only themselves
(Composition-1 & Composition-2). It is also possible that the two engage in com-
plementary actions signifying synchronous communication between the two, where
a and ā are complementary (Composition-3). The result of the complementary ac-
tions a and ā is an unobservable single internal action, called 1, which is hidden
from its environment. Finally, the restriction operation E \N allows a set of events
N to be prevented from occurring by process E. This allows one to force output
communication only to occur when input communication also occurs. For example
a.0 | ā.0 \ {a, ā} will only allow action 1 to occur. Since input a and output ā
cannot occur individually, the only way for the two processes to progress is for them
to communicate together executing the allowed action 1 and then becoming 0 | 0.
Recursion, fixiX̄Ē, is the standard mutual recursion and E[φ] is simply a renaming
of the variables in E using a function φ.

Consider again the two-place CSP buffer from figure 2.3. This could be equiva-
lently coded in CCS. Let the set of characters to possibly be transmitted be {0, 1}.

The CCS definition of P is:

P
M
= fixX.(west0.middle0.X + west1.middle1.X) (2.4)

So when P experiences an input event west0 it will then experience an output event
middle0, thereby passing from the input on channel west to the output on channel
middle the value 0. Similarly if P experiences an input event west1 it will then
experience an output event middle1 before continuing on.

The CCS definition of Q is:

Q
M
= fixX.(middle0.east0.X +middle1.east1.X) (2.5)

If Q experiences an input event middle0 it will then experience an output event east0,
and similarly for the other messages.

CCS’s method of storing which message was input is allowing multiple possible
initial events and then choosing a specific path when that specific input occurs. Af-
ter the matching output follows the input, the process recurses and continues again
offering the choice between 0 and 1.

The two-place CCS buffer is:

(P | Q) \ {middle0, middle1, middle0, middle1} (2.6)

(fixX.(west0.middle0.X + west1.middle1.X) | fixX.(middle0.east0.X +middle1.east1.X))

\{middle0,middle1,middle0,middle1}

(2.7)

2.1. PROCESS ALGEBRAS 16

Equation 2.7 substitutes in the values of variables P and Q to show the full
definition. It behaves similarly to the CSP version. Due to the restrictions on the
middle events, the output of the first buffer can only occur when the input of the
second is ready and vice versa.

One drawback of CCS can already be seen. Comparing the buffer specification
in equation 2.7 with CSP’s, CCS’s is made of more ’primitive’ operations causing
it to end up requiring a larger and more complicated looking specification. Experts
and non-experts will struggle with the meanings of more complex combinations of
recursion, choice, and restriction.

Much like CSP had the toolkit of FDR2, CCS has the Concurrency Workbench of
Edinburgh [4, 171]. This tool allows the user to walk through a simulation a CCS sys-
tem, generate random traces of the system, or check for different congruences between
systems. If the overall CCS system produced has a finite dimension, the Concurrency
Workbench also allows modal mu-calculus statements to be verified against the model
[42, 172]. The modal mu-calculus contains other more familiar temporal calculi like
LTL and CTL.

While Milner’s CCS is more fundamental and primitive than CSP, for network-
level control it shares the same detriments. First, it too specifies a pre-determined
network configuration. Like CSP it also has no equivalent graphical representation.
While CSP was certainly not ’human friendly’ for on-line interaction, CCS’s syntax
is even more difficult to comprehend and lengthier due to its fundamental nature.

However, CCS was not intended for these purposes (network-level control). Milner
was searching for a Turing machine-like representation of concurrency. Just as coding
simple operations in Turing machines seems very inefficient and impractical when
compared with coding in C++, coding in CCS will also require much more complexity
and require much larger specifications than coding in concurrency representations that
are not based on such fundamental primitives. CCS’s contributions are theoretical
justifications instead of practical code for implementations.

2.1.3 Algebra of Communicating Processes (ACP)

After Milner and Hoare produced apparently competing notions for networks of
processes, Bergstra and Klop observed the many similarities between CSP and CCS.
In [37] they produced a “theory of concurrency, along the lines of an algebraic ap-
proach.” They recognized that both the programming language fragment CSP and
the calculus CCS could be posed as algebras, thus leading to the field of process
algebra (which has also been called process calculi due to CCS’s use of the term
calculus).

They would pose their rules as an axiom system defined over the domain of pro-
cesses. The axioms would explain the different allowed ways of combining smaller

2.1. PROCESS ALGEBRAS 17

processes into larger processes. They also made sure to point out that with different
axiom systems come different notions of processes interacting. CSP and CCS were
merely different ways of describing similar axiom systems. In [37, 35] they discuss sev-
eral closely related axiom systems: BPA, the Basic Process Algebra axiom system for
describing only single processes; PA, the Process Algebra axiom system for describing
concurrent merging processes; ACP, the Algebra of Communicating Processes axiom
system for describing concurrent and communicating processes; AMP, the Algebra for
Mutual exclusions of tight regions in Processes; ACMP, a combination of ACP and
AMP that has both tight regions and communication between concurrent processes;
ASP, the Algebra of Synchronous Processes which forces all individual processes to
operate fully synchronously.

Table 2.3: Axiom System for ACP [37]

x+ y = y + x A1
x+ (y + z) = (x+ y) + z A2
x+ x = x A3
(x+ y) ∗ z = x ∗ z + y ∗ z A4
(x ∗ y) ∗ z = x ∗ (y ∗ z) A5

x+ δ = x A6
δ ∗ x = δ A7

a | b = b | a C1
(a | b) | c = a | (b | c) C2
δ | a = δ C3

x ‖ y = x|by + y|bx + x | y CM1
a|bx = a ∗ x CM2
(a ∗ x)|by = a ∗ (x ‖ y) CM3
(x+ y)|bz = x|bz + y|bz CM4
(a ∗ x) | b = (a | b) ∗ x CM5
a | (b ∗ x) = (a | b) ∗ x CM6
(a ∗ x) | (b ∗ y) = (a | b) ∗ (x ‖ y) CM7
(x+ y) | z = x | z + y | z CM8
x | (y + z) = x | y + x | z CM9

∂H(a) = a if a /∈ H D1
∂H(a) = δ if a ∈ H D2
∂H(x+ y) = ∂H(x) + ∂H(y) D3
∂H(x ∗ y) = ∂H(x) ∗ ∂H(y) D4

2.1. PROCESS ALGEBRAS 18

Table 2.3 shows the axiom system for ACP. Notationally a, b, c stand for arbitrary
events with δ being the failure/deadlock event and x, y, z stand for arbitrary ACP
processes. ACP allows the following operations on processes: alternative composition
(or choice) with +; sequential composition with ∗; composite communication events
with | that combine individual events into a larger unique composite event, a | (b | c) is
a unique event representing a multi-way communication event made from and distinct
from events a, b, c; parallel composition with ‖ and |b; and encapsulation (restriction)
with ∂H .

The axiom system provides an algebra of processes which can be manipulated and
simplified using the various axioms. It makes statements like:

• A1: ”the choice between doing x or y is the same as between doing y or x”

• A7: ”failure followed by any process is still failure”

• C1: ”the composite communication event a | b is the same as the composite
communication event b | a”

• CM1: ”x in parallel with y can either have x execute first, or y execute first, or
x and y can execute a communication event together”

While Bergstra and Klop suggested that different process algebras have different
axiom systems, their BPA was the subset of ACP containing A1-A5 and their PA
was the subset of ACP containing A1-A5 and CM1-CM4 [37]. Similarly ACMP is an
extension of ACP containing the missing axioms that appear in AMP. This highlighted
the fact that the addition/removal of specific rules could still produce a consistent
process algebra, just one that described different types of systems.

The purpose of ACP and its variants was to help unify and focus the field of process
algebra. In addition it provided a process algebra with multi-way communication
and showed with ASP how synchronously executing processes could be realized with
asynchronously executing processes; the opposite was shown by Milner with SCCS
illustrating that asynchronous processes could be realized with synchronous processes
[132].

Like CSP and CCS, ACP has a toolkit designed to support its use. Because ACP
lacks recursion, it has a finite state space. This allows the toolkit mCRL2 [8, 173] to
calculate the finite labeled transition system and perform model checking algorithms,
provide simulation support, or view the labeled transition system itself.

Also like CSP and CCS, ACP shares the same properties that make it inappropri-
ate for the type of interactive network-level control sought in this dissertation (ACP
has a fixed communication configuration, no graphical representation, and is difficult
to comprehend interactively).

2.1. PROCESS ALGEBRAS 19

2.1.4 π-Calculus

As networking and wireless communications became more prevalent, the limita-
tions of assuming a fixed communication configuration became more obvious. Hoare
and Milner identified that this could be a potential problem limiting the usefulness
of both CSP and CCS. However, they preferred to focus their initial efforts on the
simpler, but still frequently occurring, fixed configuration networks [131, 89]. After
more than a decade of CCS research, in 1989 Milner moved on to address “systems
in which one can naturally express processes which have changing structure” [135].
This work, the π-calculus, was used for applications such as modeling mobile cellular
phones moving throughout a telecommunications network.

The π-calculus models the changing configuration of communicating processes
that can pass a communication link from one process to another. To do this “com-
munication links are identified by names, and computation is represented purely as
the communication of names across links” [135]. For example, consider three people
with email addresses. Persons 1 and 2 have each other’s email addresses. Persons 2
and 3 have each other’s email addresses. Person 2 can send Person 3 the email address
for Person 1. This can create a new communication link that could eventually be used
(Person 3 can now email Person 1). This ‘link mobility’ is not present in either CCS
or CSP [135]. It is important to note that the mobility the π-calculus is referring to
is the movement of abstract communication links and not the physical motion of the
processes as they move through a physical space [133].

π ::= x(y) | x̄〈y〉 | τ (2.8)

P ::=
∑

i∈I

πi.Pi | P1|P2 | (new a)P | !P (2.9)

Milner’s π-calculus syntax is quite similar to his CCS syntax [133]. Equation
2.8 shows the three different types of atomic actions. The first, x(y), represents
receiving an incoming communication on channel x and storing what is transmitted
to the bound variable y. This means that y will be replaced by the content of the
communication. The second, x̄〈y〉, represents sending an outgoing communication on
channel x where the content transmitted is y. The third, τ , is the unobservable action
that can occur. τ can simply be something not modeled, or can represent a process
that is actually several processes making a private communication.

Equation 2.9 shows the four ways of constructing a composite process from simpler

processes. The first option,
∑

i∈I

πi.Pi, is the non-deterministic choice between several

alternative processes. An example of how it is most often written is: a(b).P1+m̄〈n〉.P2,
where the overall process can either receive input for b on a and continue as P1

or output n on m and continue as P2. The second option, P1|P2, is the parallel

2.1. PROCESS ALGEBRAS 20

composition of two processes. The third option, (new a)P , is the creation of a
new variable a that is not bound by any other processes (it is like a local variable
declaration). Finally, !P , is the replication operator that allows multiple copies of P
to be created.

Table 2.4: Semantics of the π-calculus [133]

Tau
τ.P +M −→ P

React
(x(y).P +M)|(x̄〈z〉.Q +N) −→ {z/y}P |Q

Par
P −→ P ′

P |Q −→ P ′|Q

Res
P −→ P ′

(new x)P −→ (new x)P ′

Struct
P −→ P ′

Q −→ Q′
if P ≡ Q and P ′ ≡ Q′

Table 2.4 shows the semantics of the π-calculus. The Tau rule shows that if a
silent action occurs the process continues as that silent action’s continuation, P , while
possibly throwing away alternative paths, M . The React rule shows two processes
communicating on x. The outputting process simply continues on as Q while the
inputting process also continues on, but does so replacing the bound variable y with
the message content z to become {z/y}P . The Par rule shows that if P can indepen-
dently evolve to P ′, it can do so without affecting Q. This happens if P is actually
several processes composed together that interact privately. Res shows the restriction
that is created by using a new variable x. Finally, Struct is the rule that explains !P ,
but first one has to note that !P ≡ P |!P . This means that !P is as many copies of P
in parallel as you need.

Milner’s π-calculus is actually an algebra with an axiom system, similar to ACP’s
in Table 2.3. For detail see [134, 146].

While the buffer example for CSP and CCS could be reproduced, and is in [133], it
does not illustrate the mobility of links that is the purpose for the π-calculus. Figure
2.4 shows the first π-calculus example from Chapter 9 of Milner’s book [133]. There
are three processes: P,Q,R. Processes P and R share a private link z that no one
else knows. Processes P and Q share a link x that other processes may also use.
Process P = x̄〈z〉.P ′, meaning that it outputs z on x. Process Q = x(y).Q′ meaning
that it accepts an input y on channel x. After the communication on x, Q becomes
{z/y}Q′ which contains and can use the restricted link z. This could be given a more
concrete interpretation as Person P emailing Person Q the email address of Person

2.1. PROCESS ALGEBRAS 21

P Q

R

x

z

P’ Q’

R

x

z

new z (P | R) | Q P’ | new z (R | {z/y}Q’)

{z/y}

Figure 2.4: A simple example of the mobility of π-calculus links.

R.
The π-calculus’s toolkit primarily consists of the Spatial Logic Model Checker

(SLMC) [13, 179]. This tool allows one to specify a π-calculus process and check
it against a SLMC logic statement [45, 46]. The process can be proved to satisfy
the statement. Other logic languages such as LTL, CTL, and the modal mu-calculus
specify behavioral patterns that processes are verified against. SLMC includes these
types of predicates allowing a user to verify that certain interaction patterns are met
(e.g. output then input repeatedly). SLMC extends this to include ’spatial’ patterns
[44]. This allows one to verify that a process is composed of at least 3 processes, or
that only one process at a time can ever output on a specific name (channel). These
types of properties cannot be observed purely from the system’s behavior (traces of
actions). This allows a user to form statements evaluating how the structure of the
processes evolves as well as how the behavior evolves.

SLMC’s development is a recent addition to the π-calculus literature and has
allowed its developers to model and verify security protocols [175]. Private keys are
modeled as restricted channels that can potentially be passed around to grant access.
Secure systems are evaluated to make sure they always properly handle these secret
keys. Even prior to SLMC and the ability to verify π-calculus processes, the potential
use of the π-calculus for modeling and controlling systems of changing structure was
pointed out. In [71] it is proposed that this could be useful for networks of AUVs or
UAVs, but the thought is not elaborated on or further pursued. NASA recognized it
as a potential option for future modeling of the communications of swarms of pico-
class spacecraft [85]. It does not appear that the π-calculus has yet been successfully
utilized to model, develop, and control networks of UAVs/AUVs/UGVs with changing
communication configurations. However, it was an instrumental influence on the

2.2. FINITE STATE MACHINES 22

development of Dynamic Networks of Hybrid Automata (DNHA) which is the the
modeling formalism developed for the specification and simulation language SHIFT.
SHIFT combines concepts from hybrid systems with concepts from the π-calculus
to create networks of hybrid systems where individual processes (hyrbrid automata)
can enter and exit the system as well as be re-configured [2]. SHIFT was utilized to
model and simulate automated highways where cars enter, exit, and change position.
Interestingly, SHIFT occurred well before SLMC and so does not leverage any of its
verification procedures, simply using the π-calculus concepts of links. SHIFT and
DNHA will be discussed in more detail in Section 2.3.2.

While the π-calculus does allow specification and analysis of systems that change
communication structure, it still retains several properties that make it unsuitable
for specifying network-level controllers for our purpose. There is still no graphical
equivalent of a process’s definition. The ’flow graphs’ like figure 2.4 simply show the
current connections of the system, they do nothing to explain the processes’ potential
behaviors. To understand how the system may behave, a user would still need to ob-
serve and analyze the textual definition of the component processes. The π-calculus,
like CCS, is also intended to be ‘primitive’. This causes long definitions to be needed
for simple tasks. Even if syntactic-sugar (abbreviations) were added, the specification
of network-level controllers using multiple nested levels of least fixed-points, parallel
compositions, choices, and new restricted variables would make understanding and
specifying the controllers on-line difficult for the most experienced experts.

The π-calculus, like the other process algebras, is a terrific theoretical tool to
be used off-line by experienced experts who have the time required to iterate on
theoretical designs, specifications, and analyses. However, this dissertation’s goal
is to provide a set of tools to be used by non-experts in an on-line manner under
time-critical circumstances. These considerations make process algebras, in general,
inappropriate for our purposes.

2.2 Finite State Machines

Finite state machines are also discrete-event system formalisms [47]. They are
an older, more mature, and more frequently used modeling formalism than process
algebras. They have been used to model individual sequential programs and are
closely related to regular languages, both of which appear frequently in computer
science [167]. They can describe a software component that has a discrete number of
states and changes from one state to another during the occurrence of an event. This
closely mirrors the execution of a digital computer program whose state is fixed until
the next discrete action is executed (e.g. the evaluation of a command), after which
the program is in a new state [174, 31].

A traditional finite state machine (FSM) describes the discrete internal behavior
of an individual component, whereas the process algebras focus purely on the inter-

2.2. FINITE STATE MACHINES 23

actions between networked components. As networking and embedded applications
became more prominent, FSMs were extended to include input and output to allow
a large system to be described as several interacting component systems. In this
way small FSM systems can be composed together to produce a larger system of
systems, which itself is represented as a FSM [60]. Like the many process algebras,
there are multiple approaches to FSM input/output that allow different notions of
communication [113].

Finite state machines, like process algebras, have theoretical properties that can
be analyzed and verified to prove the correctness of a design. However, unlike pro-
cess algebras, they also have an equivalent graphical description that eases human
comprehension.

2.2.1 Individual Finite State Machines

The finite state machine modeling formalism provides ways to: describe an indi-
vidual FSM as a model, determine a FSM’s potential behaviors from the model, and
analyze the properties of a FSM model.

Syntax

Any FSM model can be represented either syntactically or graphically. The two
representations are equivalent [47]. In the future the term ‘model’ may be dropped,
but it is understood that the actual physical machine is the FSM and the syntactic
or graphic description is the FSM model.

Definition 1 An individual finite state machine can be modeled as a tuple
M = (X,E, f, x0, Xm) where:

• X: is the finite set of states that M can be in,

• E: is the finite set of events that can occur in M (called M ’s alphabet),

• f : is the transition function (f : X × E ⇀ X),

• x0: is the initial state,

• Xm: is the set of marked states.

Alternatively, the model’s definition can be represented graphically. The graphical
representation is called a state transition diagram. Figure 2.5 is the state transition
diagram for example 1 given below. The finite set of states, X , can be represented with
a finite set of circular nodes. There is one unique labeled circular node corresponding
to each unique state. The finite set of events, E, are used to label the transitions of the
transition function, f . The transition function is represented as directed edges drawn

2.2. FINITE STATE MACHINES 24

from one node to another node. For every pair in X ×E where f is defined, there is
an edge in the state transition diagram labeled with the event from the domain. The
edge goes from the state in the domain to the state in the co-domain. The initial
state, x0, is represented as an edge to x0 that has no origin. The marked states, Xm,
have a second circle around the node to distinguish them from un-marked states.

Example 1 Let FSM M1 = (X,E, f, x0, Xm) where:

• X = {one, two, three}

• E = {a, b, c}

• f is defined as:

a b c
one two
two two three

three two one

• x0 = one

• Xm = {three}

one

two

three

a
a

a
b

c

Figure 2.5: A state transition diagram equivalent to example 1 for FSM M1

Example 1 and figure 2.5 demonstrate the equivalence of the two representations.
Both forms show that the transition function, f , is only partially defined representing
that certain events are not possible in certain states (e.g. M1 cannot experience event
c in state two). This occurs often in physical machines, where certain events are not
possible in certain states (e.g. a vending machine will not give change, an event, if in
the current state you have not already made a deposit).

2.2. FINITE STATE MACHINES 25

Semantics

The above syntactic and graphic representations are enough to specify a FSM
model, but they do not describe how a FSM model ‘runs’. One can intuitively guess
how a FSM behaves, but it is better to give a rigorous semantic definition to pin down
exactly what the syntax means. The process algebras already discussed often use
operational semantics to describe how a process executes in a step-by-step operational
manner. FSM behavior is typically given in terms of a language [167]. In this sense
the language denotes all the possible behaviors of the FSM (the language is a form
of denotational semantics).

Definition 2 A trace/string/word is a sequence of 0 or more events from a finite
alphabet of events.

Informally, a string abcd represents a behavior where event a occurred, followed
by event b, followed by event c, followed by event d. The empty string is of length 0
and is often written as ε. It represents a behavior where no events have yet occurred.
If a string represents a behavior of a FSM, that string’s events must be drawn from
the alphabet of the FSM, the set E in definition 1. A word can contain a finite or
infinite number of events. Infinite words are often referred to as ω-words.

Example 2 The following are all words over the alphabet {a, b, c}:

• ε: the empty string

• aba: a then b then a

• ccccc...: an infinite number of c’s.

Definition 3 A language is a set of words over a common alphabet.

A language can be finite if it contains a finite set of words. A language can also
be infinite if it contains an infinite set of words. Like there is an empty string of
length 0, there is also an empty language that contains 0 strings. It is referred to as
the null language and represented as ∅. Individual strings are used to describe any
one potential behavior of a FSM, but languages are used to describe the set of all
potential behaviors of a FSM.

Example 3 The following are all languages over the alphabet {a, b, c}:

• {}: the empty language, written shorthand as ∅.

• {ε, aba, cccc...}: the language with the three strings from example 2.

2.2. FINITE STATE MACHINES 26

• {ε, a, aa, aaa, aaaa, aaaaa, ...}: the infinite language with every string of length
n ∈ N made of only a’s.

The set of all possible strings that the FSM can generate from its initial state is
called the generated language of the FSM. In order to determine this language the
transition function f must be extended from events to strings in an obvious manner.

Definition 4 The extended transition function (f ∗ : X × E∗ ⇀ X) is based on the
original transition function (f : X × E ⇀ X). It takes in a state and a string (an
element of E∗) and may produce a destination state that is the result of executing the
string from the given state according to:

• f ∗(x, ε) := x

• f ∗(x, se) := f(f ∗(x, s), e) for s ∈ E∗ and e ∈ E

The extended transition function states that executing no event, ε, keeps the FSM
in the same state. It also states that the execution of a string happens incrementally,
the FSM executes the first event to end up in a new state then executes the next
event in the sequence according to f . Using definition 4, a formal definition of the
language generated can be given.

Definition 5 The language generated by a FSM M is:

L(M) := {s ∈ E∗ : f ∗(x0, s) is defined}

The language generated by a FSM is the set of all strings of events that can
be executed starting from the initial state. This is the simplest and most obvious
language used to describe the behavior of a FSM, but a second language is often used
as well. The language marked by a FSM is the subset of the language generated by
the FSM that ends in a marked state. Marking a state is used to denote successful
completion of some ‘task’. In this way checking that a FSM can always end in a
marked state means proving that the FSM can always complete its tasks.

Definition 6 The language marked by a FSM M is:

Lm(M) := {s ∈ L(M) : f ∗(x0, s) ∈ Xm}

The languages marked and generated by a FSM can be automatically computed
from the syntactic/graphic representations of the FSM. It can also be proved if all
states in the FSM can be reached from the initial state by some string. If this is
not true the accessibility operation will eliminate all un-reachable states. Similarly
it can be proved if all states in the FSM can be continued with some string to end
in a marked state (if the machine can be run to successful completion). If this is

2.2. FINITE STATE MACHINES 27

not true the co-accessibility operation will eliminate all states that cannot reach a
marked state. Algorithms to check these properties and perform these operations can
be found in [47].

The languages generated and marked by FSMs are referred to as regular languages.
They can be represented by enumerating the set of all potential strings, but for infinite
languages this is not feasible. Regular expressions are a form of ‘short-hand’ that
can be used to represent an infinite language. Additionally, the FSM model itself
can be viewed as a representation of the regular language since it either generates
or marks the language [167]. These representations are equivalent (graphical FSM
models, syntactic FSM models, sets of strings representing a regular language, regular
expressions representing a language).

Example 4 The FSM modeled in example 1 and shown in figure 2.5 is equivalently
represented as the regular expression M1 := a(a∗b(a+ ca))∗.

Alternative Automata Formalisms

Finite state machines are a specific type of automaton. Automata, in general,
do not have to have a finite set of states. Infinite state automata can represent any
language, but do so by requiring infinite memory. By limiting automata to a finite
number of states, FSMs become representable with a finite amount of memory (but
are limited to representing regular languages) [47].

FSMs are also referred to as finite state automata. These automata come in two
varieties: deterministic and non-deterministic. In deterministic finite state automata
(DFA) the resulting state is uniquely produced by the transition function from any
state/event pair. In non-deterministic finite state automata (NFA) a state/event pair
can create a set of possible successor states. In NFA the specific successor state is
chosen randomly from the set of possibilities [167].

Besides deterministic vs. non-deterministic and finite vs. infinite, whether the
transition function is a partially or fully defined function separates different types
of automata models. In classical DFA theory, often used for computer parsers, it
is assumed that the transition function is fully defined. This makes practical sense
since a parser reads a user generated text file that may potentially include any char-
acter in the alphabet at any point in the file. The parser must know how to handle
that character, including possibly throwing an error for ’unacceptable’ characters.
In contrast, physical machines often have limitations preventing certain events from
occurring while in a specific state. This is why the FSMs used to describe physical
machines typically have only partially defined transition functions [47].

Additional types of automata are used for only considering infinite length strings.
These ω-automata only generate ω-words. These modeling formalisms are used when
a machine is expected to never terminate [184]. If the machine never terminates, the
traditional interpretation of marked states is useless. Instead, additional conditions

2.2. FINITE STATE MACHINES 28

are required of all of the generated ω-words. These conditions typically relate how
often the marked states must be visited during the infinite execution. For example,
Büchi acceptance is a condition requiring at least one of the marked states be visited
infinitely often during the execution. A Büchi Automaton is an ω-automata that sat-
isfies the Büchi acceptance condition. Other acceptance conditions include: Muller,
Rabin, Street [63].

Despite the many flavors of automata, they all retain the same central character-
istics. There are discrete states and the machine switches from one state to another
during an instantaneous event. The new state is defined by the transition function.
If the events are recorded in a sequence they produce a word in a language that
represents all possible behaviors of the machine.

Properties of Individual FSMs

All of the different types of automata have properties that can be analyzed. Here,
FSMs will be specifically discussed. The properties of accessibility and co-accessibility
have already been mentioned.

Possibly the most fundamental property is whether a FSM’s language is included
inside another language. If language A is included inside language B, then all strings
in language A are also in language B. This allows language B to be a minimally-
restrictive specification of some desired FSM condition. Language A is then used to
describe the actual FSM. If language A is included inside language B, then all of the
behaviors of the actual FSM satisfy the condition. Cassandras and Lafortune [47] use
this language inclusion property and the algorithm for its verification extensively for
supervisory control, discussed in section 2.2.3.

Another property to be evaluated is if the initial state can be verified from the
FSM output. The state verification problem has an algorithm to determine if the
FSM can be state verified. It also has a constructive algorithm for determining a test
that performs the state verification if possible. This allows an on-line verification of
the initial state to be performed [114].

A related problem is state identification. State identification assumes an unknown
initial state. It determines if it is possible to find the initial state from the machine’s
output. If it is possible, it creates the appropriate test procedure [114]. This is similar
to the concept of observability in modern control. First observability is checked as
a property, then an observer is created that can be run on-line to perform state
identification after a certain upper bounded number of observations.

These types of properties can be evaluated with automated academic tools. UMDES
is a set of C libraries from the University of Michigan that can be used to evaluate
these properties [16, 111]. DESUMA utilizes UMDES and provides a graphical in-
teraction to make checking these properties simpler [3, 158]. Supremica provides an
alternative graphical FSM modeling and verification environment [14, 19]. It performs

2.2. FINITE STATE MACHINES 29

many of the same operations but appears simpler and more exhaustive.
Additionally, since FSMs have a finite state space and are essentially a labeled

transition system, they can be translated to a Promela description (which is based on
Kripke Systems [103]) and have LTL [151] properties verified using the SPIN model
checker [10]. Alternatively the SMV model checker [9] can be used to verify CTL
properties [50].

2.2.2 Systems of Finite State Machines

Individual FSM models are good for modeling and analyzing individual machines,
but what actually is an ‘individual machine’? Many systems are actually several
distinct smaller systems working together in unison. Finding an overall model of
a complex system may be quite difficult. It is often much simpler to model each
individual component machine as a separate FSM and then somehow combine them
to form the overall system model. Typically this overall model is an equivalent FSM,
meaning it is an individual FSM that is equal in behavior to the entire composed
system [29]. This is similar to process algebras where large networks are modeled
by the compositions of smaller component processes, each of which may itself be a
composition of yet smaller processes. Like process algebras, the many different ways
that FSMs could potentially communicate produce many different notions of FSM
composition.

a
b c

three

four

one

two

a

M2 := M3 :=

Figure 2.6: A system composed of FSM M2 and FSM M3

The simplest form of composition is interleaving. It is used to take a set of
FSMs and let them run entirely independently from each other. This means that
no machines communicate with synchronized events. No machines can restrict other
machines’ behaviors. Each machine acts entirely on its own and the overall system
allows every possible interleaving of events.

2.2. FINITE STATE MACHINES 30

Definition 7 The interleaved composition of FSMs Mi and Mj is:

Mi|||Mj := acc(Xi ×Xj , Ei ∪ Ej , f, (x0,i, x0,j), Xm,i ×Xm,j)

f((xi, xj), e) :=







(fi(xi, e), xj) if fi(xi, e) is defined
(xi, fj(xj , e)) if fj(xj , e) is defined
undefined otherwise

a
b b

(one,four)

(two,four)

(one,three)

(two,three)

a

M2 ||| M3:=

c

a

a

c

Figure 2.7: A system composed of FSM M2 interleaved with FSM M3

Definition 7 shows how to form the FSM equivalent to the interleaved composition
of two FSMs. Figure 2.6 shows two example FSMs and figure 2.7 shows the FSM
equivalent to M2 interleaved with M3. The states of M2|||M3 are ordered pairs from
M2 × M3 (meaning the state of the overall system is composed of the states of the
individual components). The accessibility operation in the definition removes any
unreachable states from the resulting FSM. Since those states weren’t reachable,
removing them will not affect the system’s behavior. The events that can occur are
all the events in either M2 or M3. The initial state is the pair corresponding to
the initial state of each component FSM. The marked states correspond to all states
where both components are marked. Finally, the transition relation is formed from
the component transition relations. Any event only causes one component to change
its individual state. It seems odd that in state (one, three) event a can occur in
either M2 or M3 causing different resulting states. However, since the FSMs evolve
independently they cannot synchronize on this event, and which FSM evolves depends
on which one individually experiences the event.

This oddity is removed by using parallel composition instead of interleaved compo-
sition. In parallel composition, events common to both machine’s alphabets can only
occur if they happen simultaneously in each machine. This synchronous execution of

2.2. FINITE STATE MACHINES 31

common events is typically used to represent communication of some form. Figure
2.8 shows the parallel composition for M2 and M3.

Definition 8 The parallel composition of FSMs Mi and Mj is:

Mi||Mj := acc(Xi ×Xj , Ei ∪ Ej , f, (x0,i, x0,j), Xm,i ×Xm,j)

f((xi, xj), e) :=















(fi(xi, e), fj(xj, e)) if fi(xi, e) and fj(xj , e) are defined
(fi(xi, e), xj) if fi(xi, e) is defined and e /∈ Ej

(xi, fj(xj, e)) if fj(xj, e) is defined and e /∈ Ei

undefined otherwise

Definition 8 shows that parallel composition is similar to interleaved composition
except for common events. If an event is only in one FSM’s alphabet, that machine
can experience the event whenever it is ready to. When an event is in both FSM’s
alphabets, both machines must be in a place to experience the event. This synchro-
nization event does not indicate which machine ’caused’ the event or which machine
is output/input. That information can be additionally associated to events, but is
not directly in the modeling formalism (e.g. for a specific application event a could be
regarded as M2 causing an output to be sent to M3 which is waiting for the input).
Figure 2.8 shows that the a-transitions from figure 2.7 are replaced with a single
synchronized transition.

b b

(one,four)

(two,four)

(one,three)

(two,three)

M2 || M3:=

c

a

c

Figure 2.8: A system composed of FSM M2 in parallel with FSM M3

Interleaving has the least amount of synchronization (none), parallel composition
has an intermediate amount of synchronization based on the common overlap of the
alphabets, and product composition has the largest amount of synchronization by
requiring every event to occur in each component FSM.

2.2. FINITE STATE MACHINES 32

Definition 9 The product composition of FSMs Mi and Mj is:

Mi ×Mj := acc(Xi ×Xj , Ei ∪ Ej, f, (x0,i, x0,j), Xm,i ×Xm,j)

f((xi, xj), e) :=

{

(fi(xi, e), fj(xj , e)) if fi(xi, e) and fj(xj , e) are defined
undefined otherwise

Definition 9 shows why product composition is sometimes referred to as ’totally
synchronous’. If an event is only in one FSM’s alphabet, it cannot possibly occur
in the other FSM. This makes it impossible for that event to occur in the product
composition of the two (see figure 2.10 and notice the absence of events b and c). Fig-
ure 2.9 shows that, before taking the accessibility operation, the product composition
has several states that cannot be reached. Figure 2.10 shows the finished product
composition.

(one,four)

(two,four)

(one,three)

(two,three)

M2 product M3:=

a

Figure 2.9: A system composed of FSM M2 and FSM M3 under product composition,
before taking the accessibility operation

The definitions of interleaved, parallel, and product composition are adapted from
[47] where additional descriptions can be found. There the associative and commu-
tative properties of the operators are also discussed.

Tools like the aforementioned UMDES, DESUMA, and Supremica have built-in
support for creating the equivalent FSMs from component FSMs and the different
methods of composition. The equivalent FSM can then be analyzed like any other
individual FSM. In this manner the overall system of systems can be checked for
deadlock, livelock, language inclusion, and LTL/CTL properties.

There are a number of refined FSM modeling formalisms which choose specific
methods of representing input/output events. These models give a specific syntax to
individual events and provide additional rules explaining how different machines are

2.2. FINITE STATE MACHINES 33

(two,four)

(one,three)

acc(M2 ×M3) :=

a

Figure 2.10: A system composed of FSMM2 and FSMM3 under product composition,
after taking the accessibility operation to remove un-reachable states

allowed to synchronize on input/output events. The oldest examples are the Mealy
and Moore machines.

b b

(one,four)

(two,four)

(one,three)

(two,three)

M2||M3 :=

c

a

c

a
b c

three

four

one

two

a

M2 := M3 :=

{a}

{b} {c}

{ } {a} {a,c}

{b} {b,c}

Figure 2.11: A system composed of Moore machines M2 and M3 under parallel
composition

Moore machines can transition from state to state by observing an input event.
When a Moore machine transitions to a new state it may produce an output associated
with being in the new state. Moore machines are automata with state outputs. Figure
2.11 shows an example.

Mealy machines have transitions made of an (input, output) event pair. Whenever
a transition occurs the machine receives the input event and produces the output
event. Mealy machines can be converted to Moore machines and vice versa. The

2.2. FINITE STATE MACHINES 34

b / a b / c

(one,four)

(two,four)

(one,three)

(two,three)

M2||M3 :=

c / -

a / {b,c}

c / b

a / b

b / a c / -

three

four

one

two

a / c

M2 := M3 :=

Figure 2.12: A system composed of Mealy machines M2 and M3 under parallel
composition

second part of the Mealy machine event is the same as the output marking on the
Moore machine’s destination state. Both receive an input and produce an output, but
the output is associated with measuring the state in Moore machines while the output
is associated with producing an output communication message in Mealy machines
[47, 156].

Lynch’s I/O automata are similar to Mealy and Moore machines except that any
transition contains only a single input, output, or internal event [126]. The I/O au-
tomata’s alphabet is partitioned into these three sets (input, output, internal) and
form the signature of the machine. The signature represents the machine’s interface
with its environment. An individual machine’s internal events do not appear in any
other machine’s alphabet and may be taken whenever the machine wishes. Any indi-
vidual communication event can only be output by a single machine and that machine
causes the event to occur. Every other machine with that event in its alphabet must
accept it as input at any state. This models one machine broadcasting an output
event and every other machine listening having to transition appropriately.

Lynch extended I/O automata to Dynamic I/O Automata (DIOA) in [26]. Here
the signature of the automata was made to vary with state. This allowed some of the
inputs to be disabled in some of the states. It also allowed a machine to transition
into a state where it had no events in its signature, meaning that it could never input,
output, or internally transition. This effectively removes the automata from the sys-
tem since it can no longer interact. The set of output events was also augmented with
a create(A) action where an automata could call a specific and pre-defined DIOA A
into existance, thus creating it. The standard notion of an equivalent machine had to
be modified since the number of components in a DIOA system varies during execu-
tion. Lynch created a configuration automata which is itself an automaton, but where
each state is made of the set of machines currently in existence and their individual
states. So if a component automata makes an internal transition, the global config-

2.2. FINITE STATE MACHINES 35

uration also makes a transition but will not change which components exist. If one
component automata transitions to a state with an empty signature, the global con-
figuration will remove that ‘dead’ automata. If one component executes a create(A)
action, that component will transition and the automata A will be augmented to the
configuration. DIOA does allow a dynamic dimension system, but all of the compo-
nents have to be predefined and according to Lynch “I/O automata could be used
for this purpose, with the addition of some extra structure (special Boolean flags)”
[26]. It is not like the π-calculus that can replicate arbitrarily many copies from an
individual process definition. The global state space contains every combination of
every predefined automata in every possible state, which is extremely large but finite
and predefined.

There are several other types of communicating FSMs. Shaw’s communicating
real-time state machines (CRSMs) are FSMs with events written using a CSP-style
notation [166]. Lee discusses how to combine FSMs with multiple other concurrency
models [113, 74]. Harel’s Statecharts are similar to the I/O automata concepts, but
additionally add hierarchy [80, 81]. Unlike most of the purely academic formalisms,
Statecharts have been used for implementations [183] and are the basis for the popular
Matlab Stateflow toolbox (they are Matlab’s FSM formalism).

2.2.3 Supervisory Control

In traditional control applications there are typically physical components called
plants whose definitions and behaviors cannot be modified. To affect the plant’s be-
havior additional component systems, called controllers, are added and connected to
the plant. The interaction of the two components alters the overall system’s behavior
to be more desirable, figure 2.13.

Gc Gp
yu

ref

Gcl

ref
y

=

Figure 2.13: The controller Gc connected to the plant Gp in feedback is equivalent to
the closed-loop system Gcl

This separation of controller and plant does not typically appear in computer
science (e.g. it is not in process algebras). Most CS research deals with digital
computer programs whose source files are immediately available. A physical system
does not have a source file. To understand its behavior, it must be modeled using
first principles [140] or system identification techniques [117]. Computer programs
can also be easily changed to achieve almost any desired behavior. This is possible

2.2. FINITE STATE MACHINES 36

because computers are essentially Universal Turing Machines which can execute any
Turing machine specified. Physical systems have fixed definitions based on physics.
One cannot choose to negate the effect of gravity as one would add a negative sign
to a C++ equation. Physical systems are more like compiled executable code with
a fixed interface. One knows the inputs and outputs but does not have access to its
source code and definitely does not have the ability to modify it.

This difference in approaches caused traditional automata theory from computer
science to ignore control issues; after all there rarely was anything resembling a fixed
plant. However, Ramadge and Wonham developed supervisory control techniques
based on FSMs. They enabled the control of DES’s containing physical as well as
digital components [187, 186]. Several interacting component systems, each modeled
as a FSM, can be composed together to form a plant (typically using parallel com-
position). Since this plant contains physical components, abstractly modeled with
FSMs, it should be considered fixed. To alter the overall system’s behavior, another
controller FSM can be composed in parallel. This supervisory controller restricts the
behavior of the overall system so that it becomes ‘acceptable’.

a

b

one

two

three

a

M4 := M5 :=

(three,one)

(three,two)

a

M4||M5 :=

aa

Figure 2.14: The controller M4 connected to the plant M5 in parallel is equivalent to
the “closed-loop” system M4||M5

Since the supervisory controller is implemented with a FSM composed in parallel
to the plant, the control interaction must be through the events common to their
alphabets. For example, figure 2.14 shows a controller M4 and a plant M5, both
defined over the common alphabet {a, b}. Any event in both the controller M4 and
the plant M5 can only occur if it happens concurrently in both FSMs. In this way the
controller can ‘enable’ and ‘disable’ events by either having or not having transitions
for that event in the current state. Since M4 has no event b, it disables the event b

2.2. FINITE STATE MACHINES 37

and prevents M5 from ever executing it. This type of control action produces, at each
moment, a set of possible events the plant can then choose to execute. The controller
does not normally ‘force’ a specific event to occur, but it could enable only a single
event, leaving the plant to choose when to execute it [76]. The controller and plant
could also enter a state where no events were enabled causing deadlock to occur.

With this method, controllable events can be enabled and disabled by the con-
trolling FSM. Some events in the plant, however, are not controllable. If an event is
not controllable, obviously the controller cannot disable it. This creates a require-
ment that all uncontrollable events must be enabled at every state. The controller
may still observe the uncontrollable event which can cause a state change in the con-
troller FSM. This state change can result in a new set of enabled/disabled events.
The alphabet of events can be partitioned into either controllable or uncontrollable
events.

Similar to controllability, there is a concept of observability of events [154]. Some
events in the plant occur, but cannot be sensed. These events are unobservable. Obvi-
ously the controller FSM cannot react to unobservable events. Like controllable/un-
controllable, any FSM’s alphabet can be partitioned into observable/unobservable
[49].

A controllable and observable event can be disabled or enabled by the controller.
If it is enabled and occurs the controller will sense it. A controllable and unobservable
event can still be disabled or enabled by the controller, but the controller will not be
able to sense it when it occurs. An uncontrollable and observable event must always
be enabled by the controller. The controller can still change state based on the event
occurring. Finally, an uncontrollable and unobservable event cannot be disabled and
cannot be sensed when it occurs.

Mc Mp
observable events

enabled eventsexternal events

Mcl=

external events
observable events

set of

Figure 2.15: The controller Mc connected to the plant Mp in parallel is essentially a
feedback control loop.

As shown in figure 2.15, a practical physical implementation of supervisory control
will have sensors in the plant to measure the state and detect any of the observable
events. When an enabled event occurs in the plant it causes a transition in the plant.
If the event is observable it is immediately communicated to the supervisory con-
troller. The observable events from the plant are essentially inputs to the controller.
The controller immediately takes a transition with the same event to a new state. In
this new state there are a new set of outgoing transitions which are the new ‘enabled

2.2. FINITE STATE MACHINES 38

events’. This set of enabled events is communicated back to the plant which then
enables those events. The plant may then execute one of those new enabled events
whenever it pleases. Again, an enabled event may occur and possibly be observed
and communicated to the controller. Additionally, there may be external events in
Mc that are not in Mp; these function similarly to a reference input.

Ramadge-Wonham supervisory control introduced more than just how to create
a feedback control system with FSMs. It included a synthesis procedure that takes a
plant model and a desired system behavior specification and synthesizes a controller.
When that controller is coupled with the plant it produces exactly the same language
as the specification. The procedure either produces the desired controller, or fails,
indicating that it is impossible to generate such a controller.

The overall design process begins with modeling the plant as a FSM. This can
either be done using first principles or system identification tools for FSMs [114].
The plant components could be individually modeled and then composed to form
the overall plant. Once there is a FSM describing the uncontrolled system (plant),
a specification representing the desired closed-loop behavior must be created. The
desired behavior could be represented as a language, but it is more convenient to
represent it with another FSM. Common techniques for creating this specification
FSM are in [47, 187] and tend to use the product composition of FSMs for representing
several individual requirements. Once one has the plant and the specification FSMs,
the algorithms found in [153, 155, 47] allow one to compute the supervisory controller
that exactly produces the closed-loop behavior of the specification, if it exists. There
are conditions which depend on the observability and controllability of the plant’s
events and the desired specification behavior that determine if finding a supervisory
controller is possible [47, 49].

Often the desired closed-loop behavior cannot be achieved with the given parti-
tioning of controllability and observability. One option is to change the design of the
plant by adding additional sensors and/or actuators to modify which events are ob-
servable and which events are controllable. This is not always possible or economical.
The other option is to modify the desired behavior so that it is achievable. Several
operations defined using the specification FSM make this easier. The supremal con-
trollable sublanguage of a language L is written L↑C [187]. It represents the largest
controllable language inside L. So while L may not be controllable, L↑C is guaranteed
to be controllable. This operation can take the original specification FSM and com-
pute a new specification FSM that is guaranteed to be controllable, but will contain
fewer possible behaviors than the original. If the system is severely defective the new
closed-loop system may have the null language, meaning that there are no behaviors
in the original specification that can be achieved by the plant.

Instead of removing behaviors from the specification FSM, the infimal prefix-closed
controllable superlanguage (L↓C) adds as few additional behaviors as necessary to form
a new language that is guaranteed to be controllable. With the infimal prefix-closed

2.2. FINITE STATE MACHINES 39

controllable superlanguage a designer must check that the new behaviors are tolerable.
With the supremal controllable sublanguage a designer must check that all necessary
old behaviors still exist. Cassandras and Lafortune discuss similar operations related
to the concept of observability [47].

Ramadge-Wonham supervisory control has been used in many theoretical decen-
tralized control problems where the plant can be modeled ahead of time and does not
change configuration during execution [161]. The design and controller synthesis are
done off-line and automatically produce the desired controller. The literature pro-
vides many simple theoretical distributed examples, but there does not appear to be
much use of Ramadge-Wonham supervisory control within UAV research or the more
general mobile robotics. It is quite likely that it has been influential without being
directly applied. The only example found also notes the inexplicably few practical
applications found in literature: “Despite numerous theoretical contributions to the
field, only a few applications of the RW method have been reported” [116]. In [116]
a system composed of two reactive wheeled robots with proximity sensors is modeled
as the parallel composition of two FSMs. These robots are then composed with a
supervisory controller that guarantees they don’t collide with each other. While this
application was almost as simple as possible, the notions from supervisory control
could still end up being quite useful and influential in more general networked mobile
robotics research.

2.2.4 Applications of FSMs to UAVs

Finite state machines are a popular modeling formalism and have appeared regu-
larly in UAV literature. One issue with using a FSM to model a UAV is the discrete
nature of a FSM’s dynamics and the continuous nature of a UAV’s dynamics. Some-
thing in the system must be appropriately discretized in order to make a FSM model
useful. One common approach is to discretize the environment. A second common
approach is to discretize the behaviors a UAV can perform into a set of maneuvers.

Language over a Discretized Environment

If the UAV’s environment is a fixed predefined space, it can be discretized into
a set of triangular regions, figure 2.16. Each region is a state in a FSM describing
the environment. Any regions adjacent to each other have transitions connecting the
two. In this way a string of the FSM records a path through the environment from
one region to another, always requiring the next region to be adjacent to the current
region. The language of the environment FSM is the set of all possible paths through
the discretized environment.

In [110, 34] CTL or LTL statements are used to specify a desired robot motion.
The system then searches off-line for a single string that satisfies the requested state-
ment. When one string is found it is used as the planned robot path (a discretized

2.2. FINITE STATE MACHINES 40

Figure 2.16: A path through a static a priori known environment which is discretized
into triangular regions [34].

series of regions to be visited). This plan is then used to generate a reactive behav-
ior that runs fully autonomously. The application described moves a wheeled robot
through an indoor research laboratory environment. The robot is assumed to be
fully actuated. The low-level controllers depend on this fully actuated assumption
to guarantee that they can move from one region to any specified adjacent region.
The authors note that this is not an appropriate assumption for more complex dy-
namics such as vehicles with non-holonomic constraints (e.g. UAVs). They note:
“it is restricted to static, a priori known environments and simple robot dynamics”.
For network-level control neither of these assumptions is appropriate. Additionally,
computing a compiled reactive behavior in an off-line manner is not the form of
mixed-initiative interaction desired.

2.2. FINITE STATE MACHINES 41

Language over Discretized Maneuvers

FSMs can also be used to describe the several different low-level control modes
that a UAV can switch between. This is closely related to the hybrid systems to
be discussed in section 2.3. If a UAV is represented as a FSM and not a hybrid
system, the low-level continuous-time dynamics cannot be modeled but the linguistic
switching between behaviors can. One major reason for using FSMs instead of hybrid
systems is that analyzing FSM properties can be done much faster than analyzing
hybrid system properties. If the property of interest is preventing deadlock, prevent-
ing livelock, ensuring a specific pattern of modal behavior, or any other linguistic
property, it is best checked as a FSM and not a hybrid system.

Several groups have used maneuver automata to represent the potential behaviors
of a mobile robot. An automated helicopter’s behavior is specified in [34, 70]. The
maneuver automata models a library of aggressive acrobatic maneuvers. A string
from this maneuver automata can be selected off-line and used to create and compile
the fully automated reactive behavior’s implementation. Other research directly runs
the maneuver automata without specifying a specific string to be executed [100].
This is closer to how a plant from supervisory control would operate. [100] uses a
maneuver automata to specify the behavior of a UAV in a military battlefield. There
is no explicit controller composed with the maneuver automata, instead the switching
occurs based solely on the evolving probability of target locations.

MissionLab also implements FSM-based reactive behaviors. It is an implemen-
tation of the Configuration Description Language (CDL) defined at Georgia Tech
[127, 64]. MissionLab does not directly define a maneuver automata for a mobile
robot, but allows every component of the robot to be represented as a FSM that can
be composed with other FSMs both inside the same robot and inside other robots.
MissionLab’s computer science based approach does not focus on the low-level con-
trol aspects, but ignores modeling and controlling these dynamics. The many FSMs
communicate through common events. MissionLab uses this architecture to create
a Societal Agent from many interacting sub-agents. The system’s overall behavior
emerges from the composition of the many sub-agents. The system is reactive; its
sub-agents are specified in the CDL file that is then compiled and downloaded onto
the physical robots where it is executed until the user chooses to abort. There is
no explicit notion of plant or controller. There is no notion of a specified desired
behavior. There is no human operator interaction during execution. If the human
operator wants something specifically done, they must understand how to create a
set of FSMs that will accomplish exactly what they want, then run that compiled
program in an open-loop manner.

Finite state machines have many desirable characteristics that may make them
useful for network-level controllers. They have equivalent graphical and textual def-
initions. This makes it easier for a human operator to understand on-the-fly what
any individual machine is doing and will do. They can be composed together to form

2.3. HYBRID SYSTEMS 42

large systems from smaller sub-systems. There is a well developed notion of plant and
controller, thanks to Ramadge and Wonham. There are relatively efficient verification
techniques.

One detriment of FSMs is the state explosion problem. FSM composition is a
combinatorial process that produces an extremely large number of states. A system
of 5 components each having 10 states produces up to 10×10×10×10×10 = 100, 000
states in the equivalent FSM. This makes model checking slow, but also creates large
equivalent systems. It would be difficult to present a FSM with 100,000 states to a
human operator and have them understand any part of it. Representing concurrent
sub-systems in this manner makes viewing and understanding the entire system’s
state complicated. This is one argument for using an alternative representation of
concurrency, such as the one in Petri nets, presented in section 2.4.

2.3 Hybrid Systems

In engineering, hybrid systems result from combinations of discrete-event systems
and continuous-time systems. Some engineered systems can be accurately represented
with continuous-time models, such as those used in classical control. Some systems
can be accurately represented with discrete-event models, such as those used for
FSMs. Interestingly, some systems cannot be described by a discrete-event model, a
continuous-time model, or separate discrete-event models and continuous-time mod-
els. These systems can only be accurately represented by models that include interde-
pendent continuous-time and discrete-event dynamics. These hybrid systems include
the expressiveness, complexities, and challenges of both parents and should not be
used if either of the simpler parent models would suffice.

Embedded computing is a common example where hybrid systems can be used
to describe an analog environment that is controlled by an embedded computer
which samples connected sensors and produces commands for connected actuators
[115]. The environment evolves in continuous-time while the computer is inherently
a discrete-event system. Mode switches in the control logic also add to the discrete-
event behavior.

Hybrid systems, such as embedded systems, have a state that is unsurprisingly
comprised of discrete states and continuous states. In continuous-time models the
states flow and form trajectories that are continuous functions of time, figure 2.17. In
discrete-event models the states form trajectories that are piecewise constant func-
tions of time that change instantaneously during events. In hybrid models the hybrid
states can contain both types of behaviors, continuous and piecewise constant. Ad-
ditionally, the interaction between the discrete-event and continuous-time dynamics
also produces continuous states whose trajectories are piecewise continuous.

There are several competing types of hybrid systems formalisms. Each describes
a model of computation that produces hybrid behaviors. Some process algebras, like

2.3. HYBRID SYSTEMS 43

0 1 2 3 4 5 6 7 8 9 10

1

2

3

a.)

st
at

e

0 1 2 3 4 5 6 7 8 9 10

1
2
3
4
5

b.)

st
at

e

0 1 2 3 4 5 6 7 8 9 10

−2

0

2

c.)

time

st
at

e

Figure 2.17: Hybrid systems have state trajectories that include: a. the continuous
trajectories found in modern control, b. the piecewise constant trajectories found in
FSMs, c. piecewise continuous trajectories not found in modern control or FSMs

ACP, have been extended with simple continuous-time dynamics to produce hybrid
process algebras [36, 54, 159]. Embedded graph grammars add continuous-time dy-
namics to graph grammars (graph grammars are graphs whose edges are allowed to
change according to a predetermined set of rules: the system’s grammar). The em-
bedded graph grammar produces graph nodes who change their connected edges while
wandering through an analog environment [129]. The two previous types of hybrid
modeling formalisms are discussed by researchers who developed them as extensions
to their previous work on process algebras or graph grammars [105, 130].

Hybrid automata, on the other hand, have become more popular, more thoroughly
investigated, and are still a very active area of research. Hybrid automata are the
combination of finite state machines and continuous-time dynamics (e.g. non-linear
differential equations). They have become the de facto modeling formalism for hybrid
systems and are used in many applications and implemented by many tools. Like
the FSMs from section 2.2, hybrid automata include many different and specialized
formalisms.

2.3. HYBRID SYSTEMS 44

2.3.1 Individual Hybrid Automata

The hybrid automata model described in [123] is similar syntactically and seman-
tically to most other models found in literature and will be the basis for the termi-
nology used in this section. Different researchers coming from different perspectives
use varying terminology when referring to the same parts the hybrid automata model
(e.g. the discrete state is also called the mode or the location of the automata). The
terminology may vary but the ideas, behaviors, and examples are typically consistent.

Figure 2.18: Two liquid filled tanks from example 5.

Example 5 A frequently presented hybrid automata example involves two tanks hold-
ing liquids, figure 2.18. The tanks have liquid levels x1 and x2 that vary based on con-
stant outflows v1 and v2 as well as an inflow from a hose that can be instantaneously
switched between tanks, w. The intended behavior of the system is for each tank to
remain at the provided reference levels r1 and r2 [123].

Syntax

In order to specify a hybrid automaton, a mathematical set-based syntax similar
to that in definition 1 for FSMs is most often used.

Definition 10 An individual hybrid automaton can be modeled as a tuple
H = (Q,X, Init, f, Inv, E,G,R) where:

• Q is the finite set of discrete states (variables, modes, locations),

• X is the finite set of continuous states,

• Init ⊆ Q×X is the set of initial states,

• f : Q×X → X produces the derivative of the continuous variables,

2.3. HYBRID SYSTEMS 45

• Inv : Q → 2X is the invariant describing when continuous evolution is possible,

• E ⊆ Q×Q is the set of discrete transitions between states,

• G : E → 2X is the guard function determining if a discrete transition is enabled,

• R : E × X → 2X is the reset relation reassigning continuous states after a
discrete transition.

In hybrid automaton models for describing networks, to be discussed in section
2.3.2, the discrete transitions between states are additionally given explicit event
labels from a specified alphabet (E ⊆ Q × Σ × Q). These events are then used for
synchronization just as in FSMs and can be further partitioned into input, output,
and internal events (Σ = in ∪ out ∪ int).

Example 6 The liquid tanks in example 5 can be given a syntactic description as
Htanks = (Qtanks, Xtanks, Inittanks, ftanks, Invtanks, Etanks, Gtanks, Rtanks) where:

• Qtanks = {q1, q2}

• Xtanks = <2

• Inittanks = {q1, q2} × {x ∈ <2|x1 ≥ r1 ∧ x2 ≥ r2}

• ftanks(q1, x) =

[

w − v1
−v2

]

, and ftanks(q2, x) =

[

−v1
w − v2

]

• Invtanks(q1) = {x ∈ <2|x2 ≥ r2}, and Invtanks(q2) = {x ∈ <2|x1 ≥ r1}

• Etanks = {(q1, q2), (q2, q1)}

• Gtanks(q1, q2) = {x ∈ <2|x2 ≤ r2}, Gtanks(q2, q1) = {x ∈ <2|x1 ≤ r1}

• Rtanks(q1, q2, x) = Rtanks(q2, q1, x) = {x}

Much like FSMs have an equivalent graphical representation, hybrid automata
can be represented graphically. Figure 2.19 shows the hybrid automata equivalent to
the syntax in example 6. The discrete states are that the hose is either filling tank 1
in q1 or filling tank 2 in q2. Graphically, the discrete states (circular nodes) contain
a label at the top for identifying the mode, the continuous dynamics in the middle,
and the invariant in effect shown at the bottom. The guards and resets are shown
next to the discrete transitions which are represented as directed arcs (directed edges)
between modes. The arcs used to denote the possible initial states are also annotated
with the conditions necessary upon initialization.

2.3. HYBRID SYSTEMS 46

Figure 2.19: The hybrid automaton representing the two tanks of liquid specified in
example 6.

Semantics

Specifying the behavior of a hybrid automaton based on its syntactic definition
is somewhat more complicated than in the case of FSMs or differential equations.
Hybrid automaton behavior involves two types of evolutions: continuous flows and
discrete jumps. This requires a new description of time than includes both continuous
flows and ordered instantaneous events.

Definition 11 A hybrid time set τ is composed of a sequence of intervals Ii of con-
tinuous time, τ = {Ii}Ni=0. It is possible for an infinite number of intervals to occur,
N = ∞. The intervals must satisfy:

• Ii = [τi, τ
′
i] ∀i < N ,

• if N < ∞ then either IN = [τN , τ
′
N] or IN = [τN , τ

′
N),

• τi ≤ (τ ′i = τi+1) ∀i.

The hybrid time sets are used as the model of time for specifying the hybrid
trajectories.

Definition 12 A hybrid trajectory is a triple (τ, q, x) where:

• τ is a hybrid time set according to definition 11,

• q is a series of functions qi mapping intervals to discrete states (qi : Ii → Q),

• x is a series of functions xi mapping intervals to continuous states
(xi : Ii → X).

2.3. HYBRID SYSTEMS 47

Figure 2.20 shows a hybrid trajectory with a hybrid time set
τ = {[0, 2], [2, 3], [3, 3.5]}. Multiple single point intervals can occur in a row at the
same continuous time indicating the ordered execution of instantaneous events (e.g.
a hybrid time set {[0, 1], [1, 1], [1, 1], [1, 4], [4,∞)} would have three events occur at
t = 1 in the hybrid trajectory to cause the jumps).

There are many hybrid trajectories, not all of them are hybrid behaviors of a given
hybrid automaton.

Definition 13 A hybrid trajectory (τ, q, x) is a behavior (execution) of a hybrid au-
tomaton H if:

• Correctly Initialized: (q0(0), x0(0)) ∈ Init,

• Correct Discrete Behavior: for all intervals i,

– (qi(τ
′
i), qi+1(τi+1)) ∈ E,

– xi(τ
′
i) ∈ G(qi(τ

′
i), qi+1(τi+1)),

– xi+1(τi+1) ∈ R(qi(τ
′
i), qi+1(τi+1), xi(τ

′
i)),

• Correct Continuous Behavior: for all intervals i,

– qi : Ii → Q is constant over t ∈ Ii,

– xi : Ii → X satisfies the differential equation, dxi

dt
= f(qi(t), xi(t)) ∀t ∈ Ii,

– xi(t) ∈ Inv(qi(t)) for all t ∈ Ii.

Definition 13 starts by requiring a hybrid behavior to start in an acceptable initial
condition. The second requirement is that discrete-event jumps can only occur where
transitions exist, where their guards are enabled, and where they correctly execute
the continuous state reassignment. The third requirement is that during continuous
evolution the discrete state stays constant, the continuous state satisfies the stated
dynamics, and the invariant always remains true.

Figure 2.20 shows a hybrid behavior of the hybrid automaton in figure 2.19. One
can see that the initial discrete state is q1 and the initial continuous state is x1 =
0, x2 = 1. The inflow of liquid in tank 1 causes x1 to increase while the outflow
from tank 2 causes x2 to decrease. At t = 2 the guard for switching to filling tank 2
becomes true and the invariant for staying in tank 1 becomes false. This forces the
discrete state to switch to q2.

[123] contains a more thorough exploration and explanation of the example’s be-
havior. It also discusses conditions for the existence of a hybrid behavior for a given
hybrid automaton. It is possible that a hybrid automaton’s syntax specifies a ’de-
fective’ automaton that accepts no behaviors. Additionally the uniqueness of any
behaviors is discussed.

2.3. HYBRID SYSTEMS 48

Figure 2.20: Hybrid behavior of example 5.

Non-determinism can arise due to multiple transitions being enabled at the same
moment. Alternatively, if a transition is enabled while the invariant still allows the
system to evolve continuously, the automaton must non-deterministically choose be-
tween transitioning and flowing.

Finally, [101] discusses the Zeno behavior that can rarely result from overly ab-
stracting models. Zeno behavior is a mathematical curiosity whereby the system
switches an infinite number of times in a finite duration. This results in the sys-
tem ’stalling at the Zeno time’. It is argued that this never happens in reality, but
the mathematical oddity causes problems for numerical simulations using the hybrid
automaton’s semantics.

Provable Properties

While simulating hybrid automata provides a useful analysis technique, explicitly
proving other guaranteed properties is often necessary and more enlightening than
running several simulations. One commonly desired property is stability. Individ-
ual discrete states (modes) of the hybrid automaton can be separately analyzed for
continuous-time properties such as stability, but the discrete transitions (jumps) can
cause systems composed of only stable modes to become unstable and systems of only
unstable modes to become stable. This results in stability being a composite property
of the entire hybrid automaton that cannot be proved in isolation [123]. Where it can
be proved, it typically requires a manually crafted Lyapunov function that depends
on the discrete state as well as the continuous state. However, there are some special

2.3. HYBRID SYSTEMS 49

cases and applications that allow for automated verification techniques [28, 27].
Calculating the reachable states to guarantee that the system avoids an unsafe

region is another common area of interest, often called the ’safety problem’. This is
sometimes proved manually as in [163] where two simple UAVs are given a simple
collision avoidance controller. More often, the systems to be analyzed are complex
and automated methods for computing the reachable states is desired. Other LTL
and CTL properties besides safety can also be stated, and potentially verified auto-
matically.

Unfortunately, the labeled transition systems for hybrid automata have an infinite
number of states. FSMs and most process algebras can be model checked because they
have finite transition systems that can be exhaustively searched. Once continuous
variables are included this becomes more complex. A continuous variable can itself
take on an infinite number of values; these points cannot all be checked individually
in finite time. This makes it necessary to somehow symbolically represent a section
of states as an equivalence class.

In [22] Alur et al. describe how this can be done to produce a finite discrete ab-
straction of a hybrid automaton that preserves LTL or CTL properties. This equiva-
lent FSM can then be model checked automatically for these LTL or CTL properties.
Unfortunately, the classes of hybrid automata where this works are limited. Alur et
al. describe how this works for timed automata, multi-rate automata, and rectangular
automata and then give arguments for why this set cannot be expanded.

Timed automata are simply hybrid automata with all continuous variables being
clocks. All clocks progress at the same rate, 1. All transitions can only compare the
clocks to constants for guards and can only reinitialize or leave alone any individual
clock. This can also be viewed as adding simple timing to FSMs. While the model
may be rather restricted, thanks to a property preserving finite discrete abstraction,
tools like KRONOS and UPPAAL can automatically model check timed automata
[17, 33].

Multi-rate automata are similar to timed automata except that their clocks all
progress at different fixed rates. By redefining the units one can scale all of the clocks
to execute at rate=1, thus converting a multi-rate automaton into a timed automaton.

Rectangular automata are the least restricted of these modeling formalisms. Rect-
angular automata allow the continuous variables to be given a rectangular range in
which they execute (meaning ẋ ∈ [4, 6] allows the rate anywhere between 4 and 6).
Additionally all invariants, guards, and resets have to be rectangular specifications.
Rectangular automata can be model checked by HyTech [82, 83, 21].

Additional research is being done on specific types of hybrid automata that can
be given these property preserving finite discrete abstractions, but another current
research direction is the possibility is using approximation techniques. If one can
over-approximate the reachable set, checking that the over-approximation does not
intersect the unsafe set is sufficient to guarantee safety. In this way tools like the

2.3. HYBRID SYSTEMS 50

level set methods described in [136, 123] can still verify some properties of the sys-
tem. These tools currently only work on systems of small dimension and still take a
significant amount of time to compute.

While the limited types of hybrid automata that can be model checked don’t
include the non-linear dynamics that characterize UAVs, they could still be useful for
giving precise specifications to the hybrid UAV systems. Hybrid automata provide a
common language and terminology that enable accurate simulations and allow concise
discussions to occur. For example, the system architecture of the Australian Center
for Field Robotics is specified with a hybrid automaton that describes how their
system is anticipated to behave [51, 79]. Anyone with knowledge of hybrid automata
can understand its expected behavior despite the fact that it cannot be automatically
checked for stability or automatically checked to satisfy LTL/CTL properties.

2.3.2 Networks of Hybrid Automata

Since many individual hybrid automata cannot be automatically verified, it is
obviously true that networks of hybrid automata may suffer from limited automated
analysis tools as well. Restricted models like timed automata, multi-rate automata,
and rectangular automata can have models for interacting networks. The tools like
UPPAAL mentioned in section 2.3.1 typically enable networks of automata to be
automatically converted into an equivalent automaton and then verified just as indi-
vidual automata.

More expressive hybrid automata formalisms may not allow automated verifica-
tion, but they do provide a language for specifying models for interacting networks
of realistic hybrid automata. These specifications, along with their semantics, allow
sophisticated simulators to be designed and developed to explore network behaviors.

Hybrid I/O Automata

Nancy Lynch augmented her I/O automata with continuous dynamics to create
Hybrid I/O Automata (HIOA) [125]. Like I/O automata, the discrete transitions have
associated broadcast-like events which can be used for synchronization between au-
tomata. These events are partitioned into input, output, and internal events. Internal
events of an automaton are not allowed to occur in any other automaton. Each output
event is only allowed to be emitted by one automaton, a single-writer assumption.
Input events in the signature of any automaton must always be enabled. Whenever
an output event occurs, all HIOA with that event as an input must synchronously
transition.

In addition to the I/O automata-like behavior, HIOA has continuous states which
are also partitioned into input, output, and internal. Like all input events must be
enabled, HIOA assumes all continuous input states must be enabled (read) at all
times. So as I/O automata change modes they are not allowed to change accepted

2.3. HYBRID SYSTEMS 51

events or accepted continuous input signals. Continuous output is also forced to be
written by a single HIOA. Interestingly, in [124], the continuous flows and discrete
transitions are lumped together in a single transition relation D, which takes the
automaton from one HIOA state to the next. How this is done and how the relation
is specified is not defined, merely that it transitions from a predecessor to a successor
state. It seems to ignore any detail about guards, invariants, resets, or differential
equations.

HIOA are used in several theoretical examples including modeling DNA replication
[107] and automated platooning of cars on highways [61, 122]. Some properties are
manually inductively proved based on the HIOA models, but it does not appear that
a HIOA simulator has yet been created.

CHARON

CHARON is a modeling formalism from the University of Pennsylvania that also
allows the parallel composition of interacting hybrid automata to form networks.
CHARON adds hierarchy to the model to allow modes to be refined into sub-modes,
figure 2.21. This hierarchy allows systems to be abstracted/refined into simpler/more-
complex models. This makes analysis easier for the more abstract system descriptions.
The hierarchical system could be ‘flattened’, but the hierarchy makes comprehension
and analysis simpler [67].

Unlike HIOA, CHARON does not have any events labeling discrete transitions.
All coordination is done through shared global variables. This means hybrid automata
do not synchronize on transitions [23]. This helps to allow a compositional semantics
in which individual component automata’s semantics depend only on the traces of
shared global variables. The shared variables are partitioned into input and output
variables, but no distinction of a single writer for outputs seems to be present (but is
likely understood).

The stated purpose of CHARON is to provide a modeling formalism that includes
hierarchy and a compositional semantics [67, 24]. It does this as well as provides
a hierarchical hybrid automaton specification language and simulation environment.
Due to the compositional nature of the CHARON model and semantics, it is pos-
tulated that a parallel implementation of the simulation environment would speed
up simulations. Much of the work on CHARON has involved efficiently simulating a
network of hybrid automata [23].

The compositional modeling language has been used to describe several applica-
tions at U. Penn. It has been used to analyze a fixed network of fully autonomous
UAVs [78, 32]. It has also been suggested for use in general platform-independent
robot modeling [168, 92, 93]. Current work is being done on allowing CHARON
models to automatically generate embedded software for execution [25].

If a system can be modeled by a fixed configuration network that doesn’t require

2.3. HYBRID SYSTEMS 52

Figure 2.21: Example of a hierarchical hybrid automaton from CHARON [23].
The top-level mode Controller is composed of sub-modes TrackPrevious and
TrackOptimal.

explicit synchronization events, CHARON provides a very useful and well developed
toolset for graphical specification and simulation.

Dynamic Networks of Hybrid Automata (DNHA)

UC Berkeley and the California research group PATH [1] created the SHIFT
language to specify and simulate Dynamic Networks of Hybrid Automata (DNHA)[2].
SHIFT and its simulator were used to create SmartAHS, which is a framework to
compare alternative design concepts for automated highway systems [55, 77].

To properly model an automated highway SHIFT needed a dynamic network, one
where the set of hybrid automata and their interconnections to each other can change
during execution. This is necessary because any automated highway will naturally
have cars entering and exiting during normal operation. This additional complexity
made using previously existing hybrid automata specification languages and their
simulators impossible since they assumed the world was in a static configuration,
such as HIOA and CHARON still do[58].

The DNHA model is an extension of standard hybrid automata that aims to
support dynamic reconfiguration of the network. The world is at any moment a set
of hybrid automata. Each hybrid automaton is of a predefined type. Types are generic
hybrid automata that can be used to create different instances with different initial

2.3. HYBRID SYSTEMS 53

conditions matching that type. In addition to the continuous and discrete variables
that appear in standard hybrid automata, DNHA can have reference variables that
point to other automata. These variables are typed and can only point to automata
of that type. This is very similar to C++’s reference variables that allow one object
to refer to another. These ’link’ variables determine the configuration of the world.
An automaton X containing a linked reference to another automaton Y has access
to Y’s events and output variables (DNHA also partitions the variables into state,
input, and output variables). Through passing and re-assigning reference variables
the configuration of the world and its behavior can change [59].

Using these reference variables DNHA can perform asynchronous communication.
For example, a first automaton can set the value of one of its output variables. After
that value has been set, a second linked automaton would then be able to read that
value and react accordingly. The first automaton must finish setting the value before
the second automaton can read it. Alternatively, DNHA can perform synchronous
communication. Each transition can be labeled with events; automata can require
that linked automata transition synchronously with them on the same event. This
causes the linked automata to transition together (synchronously) based on the same
event.

A DNHA network could be dynamic only due to changes in the linking configu-
ration of a fixed set of automata, but this is extended by adding the capability to
create/delete hybrid automata in the system. The new automata can be created from
the predefined types. This is done by instantiating a new instance with parameters
formed from expressions of variables already in the system. When an old automa-
ton decides to create a new automaton instance, the new should be either passed a
reference variable in the initialization by the old, so that the new can interact with
someone, or the old automaton should record the new as a reference variable so that
it can eventually let someone interact with the new. Otherwise, no hybrid automaton
will ever have a link to the new automaton. (This is similar to a memory leak in
object-oriented programming where memory is allocated and any reference to that
memory is lost).

The dynamic creation/deletion of automata introduces uncertainty about how
many automata will be present at one time. This mirrors the reality of the IVHS
where the number of vehicles entering or exiting a stretch of highway over a given
time cannot be predicted. To accommodate this uncertainty, DNHA allows variables
to refer to sets of references. For example, these set-valued variables could contain
references to all cars, or all semis, or all emergency vehicles. These set-valued vari-
ables can then be quantified over with an existential quantifier on the transition’s
guards. The transition’s actions can then bind a specific car/semi/ambulance in a
set-valued variable to a single-reference variable and then respond accordingly (e.g. if
there is an ambulance, increase the speed of the ambulance and decrease the speeds
of all cars).

2.3. HYBRID SYSTEMS 54

A simplified IVHS example was presented in [56]. In the example a road-side
monitor is informed when cars enter its section of road and it can optionally change
some of the cars’ speeds until they exit the monitored section of road. The example is
shown in figure 2.22. Figure 2.23 shows that the ’Source’ simulates cars that enter a
section of road. Each ’Particle’ (or car) has its own associated control and dynamics.
Finally, the ’Monitor’ can increase the speeds of cars in the second half of the section
of road and can use the exit speeds of leaving particles to update the speeds of the
other particles.

Figure 2.22: Simplified Automated Highway Example from [56].

Figure 2.23: SHIFT Automata for Simplified Automated Highway from [56].

DNHA’s extensions to standard hybrid automata (reference variables, dynamic
creation/deletion, set-valued variables, existential quantifiers) allow the details nec-
essary for modeling dynamic reconfigurable networks of hybrid automata like an auto-
mated highway system. SHIFT’s run-time system implements a compiler that trans-
lates an entire SHIFT DNHA world specification into an equivalent C format that
is then compiled with a SHIFT library to produce the simulation executable. The
different automata in the world are composed to form a world automaton which is
then simulated at a single rate until a discrete event occurs that either changes the
world or its configuration [56]. SHIFT’s only available analysis tool is a thorough sim-
ulation of the reconfigurable world. For the complete SHIFT syntax and an informal
discussion of the semantics see [57].

2.3. HYBRID SYSTEMS 55

While DNHA and SHIFT were initially conceived for IVHS, they have also been
used for describing the control of a mobile offshore base (MOB). This base would
allow the military to assemble a floating air-strip, significantly larger than an aircraft
carrier, out on the open sea from several individual barge-like vehicles [72, 73]. DNHA
have also been used to describe a detailed, highly-coordinated, pre-planned, wave-
based attack of UAVs on ground-based defenses [169, 39, 41, 40].

DNHA adds the additional features required to specify and simulate complex
systems that include reconfiguration of the network. These features are not found in
other hybrid automata formalisms, but have been proposed to be added to CHARON
to create a Reconfigurable CHARON (R-CHARON) in [109].

Conclusions

Hybrid automata provide models that could include both the discrete and contin-
uous behaviors of UAVs. The non-linear dynamics of UAVs make timed, multi-rate,
and rectangular automata less than ideal for describing the position and orientation
dynamics. These restricted models could however be used to verify that all on-board
processes can execute at the correct rates based on their interdependent communica-
tion requirements. The complex dynamics of a UAV can be described with the more
general hybrid automata models, but the analysis and verification cannot be auto-
mated and executed on-line. Even the approximation techniques require significant
computation.

While there is still value in using hybrid automata to specify and simulate in-
dividual and networks of UAVs, they may not be appropriate here for specifying
network-level controllers. First, the lack of automated verification techniques would
provide little on-line feedback to the human operator. Second, the model itself is
somewhat complicated with the interactions between the continuous and discrete dy-
namics. Even with the graphical representation, presenting and understanding the
how the continuous state is expected to behave based on the stated continuous dy-
namics, guards, and resets would be difficult in an on-line setting. Understanding
the interconnected behaviors of multiple coordinating hybrid automata would further
complicate the situation. Additionally, asking a human operator to craft hybrid au-
tomata supervisors in an on-line manner would likely lead to systems that are both
unstable and violate safety requirements since neither of these can be checked on-line.

Hybrid automata models can be extremely useful in the off-line detailed analysis
and verification of UAVs. They allow a more complete perspective on the entire
system which is quite useful for designers. However, this completeness is inappropriate
and not needed for on-line network-level control by non-experts.

2.4. PETRI NETS 56

2.4 Petri Nets

Petri nets are a well established alternative to finite state machines. They were
introduced in the 1960s by Carl Petri to add asynchronous communication to au-
tomata representing physical computing machines [149]. Like finite state machines,
Petri nets are discrete-event models that have equivalent graphical and textual de-
scriptions. Unlike FSMs, Petri nets have a distributed state representation that is
beneficial to describing and understanding concurrency.

This distributed representation was quickly leveraged to describe flexible man-
ufacturing systems [180, 65]. Once industrial engineers became accustomed to the
techniques, they applied them not just to a company’s physical assembly lines but
also to the workflow processes of the front office employees [164, 176]. This allowed en-
gineers to verify that the assembly line would not deadlock waiting for parts and that
the front office would not deadlock waiting for completed paperwork. More recently
this has been extended to multi-business processes thanks to the internet and web
services (e.g. BPEL [119, 147]). This allows multiple vendors to communicate and
coordinate their complex interdependent processes in an automated on-line manner.

2.4.1 Models

Petri nets have been augmented in various ways, but the original and most com-
mon Petri net concept refers to Place-Transition nets (P/T nets) [47, 137].

Definition 14 A Petri net (P/T net) can be modeled as a tuple
PN = (P, T, F,W,M0) where:

• P is the finite set of places,

• T is the finite set of transitions with P ∩ T = ∅ and P ∪ T 6= ∅,

• F ⊆ (P×T)∪(T×P) is the flow relation (arcs connecting places to transitions),

• W : F → N is the weight of each arc in F ,

• M0: P → N is the initial marking of tokens for each place in P ,

the Petri net’s structure is N = (P, T, F,W).

Some Petri net properties can be evaluated based on the Petri net’s structure,
independent of the initial marking. The marking represents the Petri net’s state and
is what evolves during execution.

Definition 15 The marking M of a Petri net is the number of tokens in each place,
M : P → N .

2.4. PETRI NETS 57

Figure 2.24: Petri net structure from example 7.

Each place pi ∈ P is graphically represented as a circle, shown in figure 2.24.
The transitions ti ∈ T are graphically represented as bars. The flow relation F is
graphically presented as directed arcs connecting places to transitions or transitions
to places. The weights W annotate the arcs to indicate how many tokens are moved
by each arc.

Example 7 Figure 2.24 is the graphical equivalent to the Petri net structure
N = (P, T, F,W) where:

• P = {p0, p1, p2, p3},

• T = {t0, t1} ,

• F = {(p0, t0), (t0, p1), (p1, t1), (t1, p0), (t1, p2), (t1, p3)},

• W : F → 1.

The distributed nature of the transitions and places make it important to know
which places connect to which transitions and how. While this information is con-
tained in the flow relation F , the pre-set and post-set operations help simplify this
discussion.

Definition 16 The pre-set of x is: •x = {y ∈ P ∪ T | (y, x) ∈ F}.

Definition 17 The post-set of x is: x• = {z ∈ P ∪ T | (x, z) ∈ F}.

2.4. PETRI NETS 58

The pre-set of any transition •t is the set of all places that have directed arcs from
the place to transition t. The pre-set of any place •p is the set of all transitions that
have directed arcs from the transition to place p. The post-set of any transition t• is
the set of all places that have directed arcs from t to the place. The post-set of any
place p• is the set of all transitions that have directed arcs from p to the transition.

Example 7 and figure 2.24 have •t0 = {p0}, •t1 = {p1}, t•0 = {p1}, t•1 = {p0, p2, p3}
for the transitions. The places have pre-sets and post-sets as well which should be
obvious by inspection.

While the Petri net structure N can be structurally analyzed without any marking
(discussed in section 2.4.3), the model cannot execute without an initial state M0.
Figure 2.25 shows a Petri net behavior for N that results from an initial marking
M0 = [M0(p0),M0(p1),M0(p2),M0(p3)] = [1, 0, 0, 0], where vector notation is adopted
in the obvious order. The marking is graphically represented by drawing the tokens
as filled circles inside the places. If the marking of a place is 0 there will be no tokens
drawn. If the marking of a place is n there will be n individual tokens drawn.

Figure 2.25: Example Petri net behavior (trajectory) from example 7.
M0 = [1, 0, 0, 0];M1 = [0, 1, 0, 0]; M2 = [1, 0, 1, 1]; M3 = [0, 1, 1, 1]; M4 = [1, 0, 2, 2]

Petri nets execute by transitions ’firing’ and changing the marking appropriately.
A transition must be enabled for it to fire.

2.4. PETRI NETS 59

Definition 18 A transition ti is enabled if: ∀pj ∈ (•ti) | M(pj) ≥ W (pj, ti).

For a transition to be enabled, all arcs pointing to the transition must come from
places who are marked with as many or more tokens than that arc’s weight requires.
A transition being enabled does not guarantee that it will ever fire; being enabled is
a necessary but not sufficient condition to guarantee firing. When a transition ti is
enabled and does fire, it then removes tokens from •ti and adds tokens to t•i according
to the directed arc’s weights.

Definition 19 A transition ti firing causes the marking to change: Mi
ti−→ Mi+1.

where Mi+1(pj) = Mi(pj)−W (pj, ti) +W (ti, pj).

Definition 20 A firing sequence is a sequence of transitions: σ = t1t2t3....

Definition 21 A state sequence is a sequence of markings M = M0M1M2....

Definition 22 A firing sequence σ = t1t2t3...tk is a behavior of a Petri net PN if:

• there exists a state sequence M = M0M1M2...Mk,

• M0 is the initial marking of PN ,

• ∀i ∈ [0, k − 1] | Mi

ti+1

−−→ Mi+1,

σ being a behavior of PN can be written compactly as M0
σ
−→ Mk.

Figure 2.25 shows the Petri net behavior generated by the firing sequence σ =
t0t1t0t1 causing the state sequence M = M0M1M2M3M4.

Petri nets can be easily extended to labeled Petri nets by adding an alphabet of
events Σ and a labeling function l.

Definition 23 A labeled Petri net can be modeled as a tuple
PN = (P, T, F,W,M0,Σ, l) where:

• Σ is the alphabet of events,

• l: T → Σ is the labeling function assigning events to transitions,

everything else is identical to P/T nets.

Labeled Petri nets behave identical to P/T nets but have additional information
associated to each transition. The net’s firing sequence, along with the labeling
function, define strings in the language of the labeled Petri net.

Definition 24 A trace/string/word of a labeled Petri net is the mapping a behavior’s
firing sequence to an equal length sequence of events via the labeling function l.

2.4. PETRI NETS 60

The language generated by the labeled Petri net is the set of all strings mapped
from any behavior.

There are several special subclasses of P/T nets that further restrict the structure.
A net is called ’ordinary’ if all of the arcs have a weight of 1.

Definition 25 A state machine is an ordinary Petri net where each transition has
exactly one incoming and one outgoing arc (∀t ∈ T | |•t| = |t•| = 1).

As the name suggests, a state machine Petri net is similar to a FSM. Every FSM
can be converted into a language-equivalent state machine Petri net and vice versa.
This means that Petri nets can represent every regular language (first represent the
language as a FSM, then convert it to an equivalent state machine Petri net). There
are non-state machine Petri nets that cannot be represented as regular languages.
In fact, general P/T nets represent their own class of context-sensitive languages. If
’inhibitor arcs’ are added to the model the expressiveness increases to that of Turing
machines, but also makes many properties undecidable [137].

Figure 2.26: Language-equivalent FSM M2 and state machine Petri net PN2.

Similar to the one incoming/outgoing restriction on transitions for state machines,
marked graphs have a one incoming/outgoing arc restriction on each place.

Definition 26 A marked graph is an ordinary Petri net where each place has exactly
one incoming and one outgoing arc (∀p ∈ P | |•p| = |p•| = 1).

State machines are typically used to represent the internal behavior of individual
processes. In figure 2.27 the state machine can execute either T0 or T2, but once it
makes a choice it evolves to another state still marked by a single token. Since the

2.4. PETRI NETS 61

Figure 2.27: Example State Machine and Marked Graph.

number of arcs into and out of a transition are always 1, the number of tokens stays
fixed, representing that the number of active processes is a constant.

Alternatively, marked graphs are used to represent the synchronization of multiple
processes. Figure 2.27 shows that P3 and P4 both have to be ready for T4 to occur.
Once T4 occurs P5 is ready and along with P6 and P7 enables T5 to occur. The
places in the marked graphs always have one incoming/outgoing arc representing
that these processes have no choice about what happens next. This is often used to
model assembly lines where multiple parts are required at the same time to create a
new assembly. These parts do not have a choice as to how they progress along the
line. Once they are deposited in a bin, they remain there until the next event in the
manufacturing process occurs to move them further along the assembly line.

State machines and marked graphs are both subclasses of free-choice nets.

Definition 27 A free-choice net is an ordinary Petri net where all outgoing arcs
from a place are either unique outgoing arcs from that place or are unique incoming
arcs to the destination transition (∀p ∈ P | |p•| ≤ 1 or •(p•) = {p}).

Free-choice nets are themselves a subclass of extended-free-choice nets, which are a
subclass of asymmetric choice nets. As the model class becomes more restricted from
general P/T nets towards marked graphs or state machines, the number of provable
properties increases and the analysis algorithms become more efficient. This suggests
that engineers should use the most restricted modeling formalism possible to gain as
much provability and efficiency as possible.

Just as P/T nets and their more restricted subclasses can be labeled or not, they
can also be given capacity constraints. These constraints prevent transitions from
‘over filling’ any place with tokens. These finite capacity nets can be transformed
into language-equivalent P/T nets. The procedure outlined in [137] adds a set of
complementary places and arcs that enforce the capacity bounds. After the transfor-
mation, the P/T net can be analyzed by standard P/T net techniques with no regard
to the capacity constraints.

2.4. PETRI NETS 62

Definition 28 A finite capacity Petri net can be modeled as a tuple
PN = (P, T, F,W,M0, K) where:

• K: P → N is the capacity (bound) of each place,

everything else is identical to P/T nets.

The previous types of Petri nets were all subclasses or minor additions to the
original concept. There have also been several extensions that drastically change the
expressiveness and detail of the models. Coloured Petri nets (CP nets) resulted from
an observation that certain structures were often repeated in large Petri net models
[98]. The many identical structures represented different processes with the same
behavior. For example, consider an automobile assembly line that assembles cars and
trucks. While the hoods for the cars and trucks are physically different and cannot
be interchanged, the assembly processes may be identical. CP nets allow the two
hood assembly processes to be merged into a single hood assembly process where the
tokens are additionally assigned colors. The colors are simply a typing mechanism
to allow a car hood token to be distinguished from a truck hood token. These colors
then allow the CP net to appropriately route the hoods after assembly. This would
allow the car and truck assembly processes to share a common hood assembly process,
then diverge back onto individual tracks.

An important property of the original CP nets is that they assumed a finite color
set. This allowed the CP net to be transformed into a much larger P/T net. This
unfolded P/T net can be analyzed for properties like structural invariants [96]. This
unfolding is to be expected since CP nets’ main use is to fold large P/T nets into
more compact representations that are easier for engineers to understand [97]. The
folded CP nets are easier for humans to understand while the unfolded P/T nets are
easier for automated analysis.

The idea of attaching additional information to the tokens did not stop with finite
color sets. The colors became more and more complicated tuples of information until
arbitrary object oriented structures were added [99]. These High-Level Petri nets now
treat tokens as typed objects with possibly infinite state spaces [112]. This greatly
reduces the amount of applicable automated analysis. This is similar to how the
addition of continuous variables make hybrid systems significantly more difficult to
analyze than FSMs. Some simple High-Level net properties can be analyzed under
strict limiting assumptions.

There have also been timed [66, 181] and hybrid [189] extensions to Petri nets.
Much like timed and hybrid automata, these extensions complicate and reduce auto-
mated analysis in exchange for additional expressiveness.

2.4. PETRI NETS 63

2.4.2 Compositional Modeling

Petri nets are somewhat different than process algebras, FSMs, and hybrid au-
tomata in how their networks are composed. A network of FSMs is formed by speci-
fying a set of individual FSMs and which composition operators to use. An equivalent
FSM which models the entire network is the end result. The specification of the com-
position operator indirectly determines how the events are combined, thus indirectly
affecting the resulting network model. Combining subnets into an overall Petri net
requires a more direct specification of interaction.

Figure 2.28: Petri nets PN2 and PN3 model components of a larger network.

For example, figure 2.28 shows state machines PN2 and PN3 which represent
component subsystems of a larger network. These machines are the Petri net equiv-
alent to FSMs M2 and M3 in figure 2.6.

The individual component Petri net models can be most easily combined by taking
the union of the nets to create a network of two entirely independent interleaved
components. Figure 2.29 shows the resulting net PN4 compared to the interleaving
of M2 and M3. The combination of FSMs creates a FSM resulting in a state that is
graphically represented as a single location. The combination of Petri nets creates a
Petri net which results in a state that is graphically distributed throughout the net.
This allows the behavior of PN2 to be viewed in isolation of PN3. With extremely
large systems this distributed state representation makes it easy to focus on local
interactions without worrying about the entire network’s behavior.

The Petri net composition method of transition fusion takes several transitions and
fuses them into one transition. All arcs connected to any of the previous transitions
end up connected to the resulting transition. Figure 2.30 illustrates how transition t1
in PN2 can be fused with t2 in PN3 to create t4 in PN5. It is obvious that both the
Petri net and the parallel composition FSM produce the same behavior. Transition
fusion is how synchronous communication is represented in Petri nets. The resulting

2.4. PETRI NETS 64

Figure 2.29: The Petri net PN4 is language-equivalent to M2 interleaved with M3.

FSM was created automatically by the specification of the parallel composition oper-
ation, while the Petri net’s composition was manually specified. While this requires
more involvement by the developer, it also allows the developer to customize each
communication instead of assuming that all communications are either synchronous
or asynchronous[138, 118]. Figure 2.31 shows how asynchronous communication can
be added with place and arc addition. The ’send’ event of transition t1 occurs be-
fore the ’receive’ event of transition t2. Large networks composed from individual
components may utilize both synchronous and asynchronous communication where
appropriate.

Figure 2.30: The Petri net PN5 uses transition fusion which is similar to the parallel
composition of M2 and M3.

In many situations the subnets must share resources (e.g. assembly lines). This
is modeled by another form of composition: place fusion [65, 180]. Place fusion takes
a set of places and merges them together. Any arc connected to the original places is
connected to the new fused place. For example, consider an assembly line where two

2.4. PETRI NETS 65

Figure 2.31: Asynchronous communication in a Petri net.

workers (call them Bill and Ted) must share a welder, figure 2.32. Sometimes Bill
doesn’t need the welder (represented by a token in p1 of PN7). When Bill does need
the welder he takes it and uses it (represented by moving a token to p2 of PN7) until
he doesn’t need it and puts it back. Ted works the same way, represented by PN8.
PN9 shows a model where they share a single welder, represented by the fusion of
p1 and p3 to form p5.

Figure 2.32: Representing limited resources with place fusion.

While the composition of components is essential, the ability to create hierarchical
models is important as well. Petri nets do have a notion of abstraction and refinement
for both transitions and places. This refinement replaces simple places or transitions
with expanded subnets. A transition can be refined (expanded) by a subnet that
has a single source transition and a single sink transition. Here, upon firing the sink
transition the subnet should be empty. This corresponds to one incoming transition
fire resulting in only one outgoing transition fire. This represents breaking down an
event at a high-level of abstraction into its sequence of sub-events at a lower-level of
abstraction. An example is shown in figure 2.33. Similarly places can be refined by a
subnet that has a single source place and a single sink place, figure 2.34 [176].

2.4. PETRI NETS 66

Figure 2.33: Hierarchy through transition refinement. Replace t0 with an appropriate
subnet.

Figure 2.34: Hierarchy through place refinement. Replace p0 with an appropriate
subnet.

These are substitution-based forms of hierarchy and will always result in a single-
level Petri net. There has been one proposal for a non-substitution hierarchy where
the tokens of a Petri net are themselves a Petri net. These ’Petri nets in Petri nets’
or PN2 never seemed to gain any traction beyond their author [87, 88].

2.4.3 Analysis

Like the previous modeling formalisms, Petri nets can be analyzed to better under-
stand the network and its potential behaviors. Since most of the formalisms discussed
can be transformed into P/T nets or are subclasses of P/T nets, the properties to be
analyzed will be discussed in the P/T net context.

It is convenient to use matrix equations to describe the behavior of Petri nets.
The behavior can be written in a form similar to the algebraic difference equations of
discrete-time control.

Mk = Mk−1 + ATuk (2.10)

Mk ∈ Nm is the marking (state) of the net with m being the number of places in
the net. M0 is the initial marking.

2.4. PETRI NETS 67

uk ∈ N n is the firing vector with n being the number of transitions in the net. The
firing vector represents which transition occurs and is all 0’s except for the transition
firing, which is represented as a 1 (e.g. [0, 0, 1, 0]T is a firing vector where the third
of four transitions is firing).

A ∈ Zn×m is the incidence matrix of the Petri net and represents the affect of firing
a transition on the marking of the net. When ATuk is added to Mk−1 it represents
the tokens removed from places by the firing as well as the tokens added to places
by the firing. The incidence matrix A contains information about the arcs between
places and transitions as well as their weights. If there is no arc between a place pj
and a transition ti assume W (pj, ti) = W (ti, pj) = 0.

A(i, j) = W (ti, pj)−W (pj, ti) ∀ti ∈ T, ∀pj ∈ P (2.11)

From equation 2.10 one can easily see that by recursive substitution:

Mk = Mk−1 +ATuk = Mk−2 +ATuk−1 +ATuk = Mk−3 +ATuk−2+ATuk−1 +ATuk...
(2.12)

In order for a specific marking Md to be reached there must be a firing sequence
such that:

Md = M0 + AT

d
∑

k=0

uk (2.13)

Meaning that there must exist a firing sequence that starts from the initial state
M0 and follows the firing vector sequence (that matches the firing sequence) u1u2u3...

to bring the net to Md. If x =
d
∑

k=0

uk is the firing count vector, where the order is not

recorded, a necessary but not sufficient condition for reachability is that Md −M0 =
ATx. So given M0, Md, A if a non-negative solution x does not exist the Petri net is
guaranteed to never reach Md. Unfortunately, if a non-negative solution x does exist
the reachability of Md is not guaranteed.

Some properties can be evaluated independent of the initial marking. These struc-
tural properties depend only on the incidence matrix A. These include T-Invariants
which correspond to potential transition firing sequences that move the Petri net from
a marking M through intermediate markings and back to M . These T-Invariants al-
low for infinite cycles.

Definition 29 A T-Invariant is a solution x to ATx = 0.
It allows Md −M0 = 0 = ATx.

P-Invariants are another structural property. These invariants describe a conser-
vation of tokens through all possible reachable markings [137].

Definition 30 A P-Invariant is a solution y to Ay = 0.

2.4. PETRI NETS 68

While determining potential cycles of transitions and conservations of tokens are
important, determining if a given marking Md is guaranteed to be reachable is also
very important. A matrix algebra method to prove that Md was not reachable was
already mentioned, but if the state space of the Petri net is finite, all potentially
reachable markings can be computed [128]. This can be used to create a labeled
transition system on which model verification techniques can be used. This can show
if Md is or is not reachable as well as prove any other LTL/CTL properties. An easy
way to guarantee a finite state space is to add capacity constraints to the Petri net.
If the system is actually unbounded, the algorithms such as mentioned in [137] will
not terminate.

This potential non-termination problem lead to the development of the coverabil-
ity graph as an alternative to the reachability graph. Each marking in a reachability
graph is a vector in Nm. The coverability graph extends this to vectors of {N ∪ω}m.
The symbol ω is used to represent ’unbounded’ or ’infinite’. If ω appears in a marking
of the coverability graph it indicates that there is an unbounded place (e.g. the cov-
erability marking [5, 4, ω, 0]T indicates that place 3 can become unbounded through
some cyclic behavior). The coverability algorithm in [137] is guaranteed to termi-
nate on bounded and unbounded Petri nets. Checking for the absence of ω in the
coverability graph proves that the Petri net is bounded. If the net is bounded the
coverability graph is exactly the same as the reachability graph and can be analyzed
by the above reachability algorithms.

One common term that is slightly different in Petri net literature is ’safe’. In
Petri nets ’safe’ refers to a net that has markings consisting of only 0’s and 1’s. This
property can be checked by evaluating all states in the coverability graph. If only 0’s
and 1’s appear, the net is considered safe. This evolved from networks of electronic
buffers and registers where safety refers to never over-flowing. The register can only
have 0 or 1 values stored at a time.

The coverability graph also proves is any transition is ’dead’. If a transition ti
does not appear anywhere in the coverability graph, it will never occur and is thus
termed ’dead’. If from every reachable marking a transition tj can always later occur
that transition is termed ’live’. If every transition can always potentially occur at
each reachable marking the Petri net itself is referred to as ’live’.

Petri net analysis algorithms have been implemented by several toolkits of varying
sophistication. The Low-Level Petri Net Analyzer (LoLA) provides a set of C++
libraries for creating and analyzing the reachability and coverability graphs of P/T
nets [7]. The Integrated Net Analyzer (INA) does the same thing for P/T nets as well
as Colored nets (which can be transformed into P/T nets) based on the programming
language MODULA-2 [6]. The graphical tool TINA does the same, but provides a
convenient user interface as well as on-the-fly model checking to hasten the analysis
[15]. The most convenient and thorough tool is the Platform Independent Petri net
Editor [12]. This provides all of the analysis tools for P/T nets as well as some for

2.4. PETRI NETS 69

deterministically timed Petri nets. It allows the simulation of the system as well as
analysis and exporting figures (such as all the Petri nets shown in this dissertation).

2.4.4 Applications

Petri nets have been utilized in many applications, but the area where they ini-
tially gained prominence was in modeling assembly lines such as flexible manufactur-
ing systems [65]. The tokens in places were used to represent parts in bins or scarce
resources needed for assembly such as robots and workers. The transitions represented
small incremental steps in the assembly processes. For any one subassembly certain
parts would be required as well as certain tools and workers, these requirements were
encoded in the arcs connecting the net. These models could then be evaluated for
deadlock to guarantee that the line would never freeze [188]. The bounds on the
places could also be computed to appropriately size bins or buffers. Finally, if the
physical processes’ behavior needed to be modified because it had undesirable behav-
iors, additional supervisory controllers could be added. Language-based supervision
similar to the Ramadge-Wonham methods proved somewhat difficult because of the
distributed nature of the state [91]. However, state-based supervision by P-Invariants
provided a capable method of adding control. This would add control places and
control arcs in order to create additional P-Invariants that would modify the net’s
behavior to be acceptable [94, 95, 165].

These assembly line techniques were then adapted to apply to the workflow of
offices [164]. Instead of dealing with physical parts, the model would specify the
dependencies and movement of forms and paperwork. Again, the system would be
analyzed for deadlock as well as bounds. Supervisory control would be added to
achieve the desired network behavior [176].

As the internet grew in size, companies began to depend on it heavily for com-
munication and coordination with other suppliers and customers. This sparked the
expansion of workflow modeling from intra-company to inter-company. The Business
Process Execution Language (BPEL) allows different companies to communicate and
coordinate automatically using web services [119, 147]. BPEL can be given a Petri
net interpretation and analyzed [62, 178, 86]. This allows a company to evaluate its
entire workflow including its suppliers and customers to guarantee and implement
provably correct automated interactions [143, 118].

Petri nets have also been used in traffic modeling. The places of the net represent
physical segments of road and the number of tokens represent how many cars are on
that road segment. These models typically include hybrid behaviors and so hybrid
Petri nets are often used to simulate the city-grid behavior [104, 177].

Petri nets have also recently been used to model embedded networked systems
[53, 102]. The Petri net model is used primarily as an alternative to communicating
FSMs. The benefits of using Petri nets instead of FSMs included the previously

2.4. PETRI NETS 70

mentioned ability to represent both synchronous and asynchronous communications.
Finally, and most directly related to this dissertation, Petri nets have seen very

limited use in describing mobile robotic systems. In [106] they were used to describe
the communication protocol behavior between a fixed set of agents. They have also
been used to give an interpretation of the Predator/Prey problem as a Petri net [48].
The places corresponded to a discretized environment. The Predator and Prey were
colored tokens in the places corresponding to their physical locations. A Fuzzy Petri
net was used in [121] to make the strike/no-strike decision for aggressive military
UAVs.

In [145] a control architecture for an AUV inspecting a dam used Petri nets to
specify which control processes to execute in which order during a predefined mission.
In this way the sensor processes were not run until the appropriate time, then turned
off. Other processes controlling thrusters and actuators were turned on and off like-
wise. Single AUV control was also addressed in [141, 142]. They addressed more
general single AUV missions by similarly turning on/off processes from a predefined
library. This style of single vehicle control was also utilized for a fully autonomous
and predefined behavior UAV in [30].

While the above research deals with mobile robotics, it deals with individual robots
and not communicating networks of mobile robots. Additionally, the behaviors are
predetermined and there is not the separation of plant and controller that is sought
for network-level control. There is no concept of a task since each robot’s behavior is
explicitly predetermined.

The research most similar to the concept of network-level controllers is the very
recent development of Petri Net Plans [144, 190]. This work intends to enable the
multi-robot teams from the RoboCup competitions to perform complex soccer ma-
neuvers like passing a soccer ball. Each robot’s individual behavior is defined as a
Petri net. The Petri nets are then combined and synchronized to form a centralized
plan. The plan is then broken up and distributed to the individual robots. This
research does coordinate multiple robots, but the roles of each robot appear to be
fixed and the network’s behavior predetermined.

71

Chapter 3

Network-Level Controllers

An individual UAV’s behavior should be specified as a plant model that allows
all potentially desirable behaviors to be executed. A supervisory controller (task)
composed with the plant then determines the exact behavior of the individual UAV
during execution. In order to change the UAV’s execution behavior one modifies this
task instead of changing the UAV’s compiled plant behavior. In this way an inter-
preter can be created that accepts task specifications. These interpreted specifications
can be easily changed on-line instead of requiring the fixed-behavior UAV to stop or
shutdown during recompilation of its behavior.

With the separation of task and UAV, a network of several UAVs can be combined
with several task specifications. The process of pairing tasks to UAVs can become
automated task-allocation based on optimization criteria. The network’s human op-
erator must then only control which tasks are inserted into the network and when
they are inserted.

Control of the network can be further simplified and automated by a Petri net-
based network-level controller. Petri nets are utilized because the fluctuation in the
number of tokens mirrors the fluctuation in the number of tasks. Additionally, the
Petri net formalism allows an intuitive graphical representation of the tasks in the
system as well as the concurrency relationships and orderings between tasks.

3.1 UAVs and Tasks

Two fundamental concepts for the system are UAVs and tasks. Both tasks and
UAVs have some ‘structure’ and ’information’ associated with them. This data is
partitioned into types, definitions, and states. This partitioning can be understood
through an analogy with spring-mass-damper systems, figure 3.1.

The types of systems shown in figure 3.1 all behave differently. Models can be
created that predict the behavior of each type. While for these simple cases the models
are based on similar modeling techniques, they result in different dynamic interactions

3.1. UAVS AND TASKS 72

x1 x2

m1 m2

k1 k2

b2b1

x1 x2

m1 m2

k1 k2

b2b1

x1 x2

m1 m2

k1 k2

b1

type 1

type 2

type 3

Figure 3.1: Types of spring-mass-damper systems.

of springs, masses, and dampers. It is impossible to predict the behavior of a type
1 system with algorithms coded for a type 2 system. The type of a spring-mass-
damper system and its models are created during the modeling and development of
that system. The type of an individual system is fixed during any execution because
it does not make sense to physically switch from a type 3 to a type 2 system.

The algorithms and models for a specific type of system can be created utilizing
variables abstracting the real system’s parameter values. This allows the algorithms to
be re-used repeatedly. In order to model a specific concrete system, these parameters
must be provided (e.g. a ’real’ type 1 system needs values for m1, b1, k1, m2, b2, k2).
The system type determines which parameters need to be filled by an appropriate
spring-mass-damper definition. Different definitions of the same type behave ’sim-
ilarly’ but not identically. The parameters that define a system are assumed fixed
during execution like the system’s type.

The spring-mass-damper state variables are changing continuously during execu-
tion under the constraints imposed by the system’s type and definition parameters.
These values are expected to flow automatically starting at an appropriate initial
state.

Consider a network made of several spring-mass-damper systems that enter and
exit during an execution. Each spring-mass-damper system has a state, definition,
and type. If the set of types in the network is considered fixed then the developers
can create the models and analysis algorithms needed for the execution of every
potential system in the network. If arbitrary types of new systems were allowed, new

3.1. UAVS AND TASKS 73

models and analysis algorithms would need to be generated and incorporated into the
network on-the-fly. This may be interesting, but would add significant complications
not directly related to the content of this dissertation. When a new definition of an
expected type is created and communicated, the network then understands and can
predict how systems based on this definition will behave. That definition only needs
to be communicated once. When the spring-mass-damper systems enter, the state
variables correspond to proper initial states. Their behavior is produced by their type
of system under the parameters listed in their definition. The type, definition, state
partitioning is meant as a simple separation of model structure, model parameters,
and model state.

3.1.1 UAVs

Definition 31 Different UAV types have different data and model structures as well
as fixed information that is specified by the UAV’s developers during development. A
specific UAV type ut is from the domain of all UAV types, ut ∈ UT . The UAV
types can be superscripted for identification (e.g. uta, utb, utc) or grouped in sets
(UT ∈ P(UT) such as UT 1 = {uta, utb, utc}).

In general lower-case letters will be used for individuals. Upper-case letters will
be used for sets. Superscripts will be used for identification. Subscripts will be used
for representing the evolution in time (as in xk → xk+1).

The set of UAV types can change when a new type of UAV is added to the system
or when an old type of UAV is retired from the system. An individual UAV type
can change when physical or software upgrades significantly alter the capabilities
of the UAV (e.g. an electric motor is replaced with a gas engine that increases the
range/speed/duration of the UAV, or a new type of behavioral algorithm is developed
to maneuver the UAV). These version changes occur off-line and are executed by the
system developers. During any execution of the network, the set of UAV types is
expected to remain fixed.

For C3UV the UAV types include the MLB Bat IV and Sig Rascal. The type
specifies which parameters need to be filled to create a UAV definition. Chapter 7
will give details about exactly what information is in each C3UV UAV type.

The network also has a set of UAV definitions that are based on the existing set
of UAV types. The UAV definitions fill in the parameters required for any UAV type.

Definition 32 Different UAV definitions have different data and model parameters
that are specified during start-up. A specific UAV definition ud is from the domain
of all UAV definitions, ud ∈ UD. The UAV definitions can be superscripted for
identification (e.g. uda, udb, udc) or grouped in sets (UD ∈ P(UD) such as UD1 =
{uda, udb, udc}).

3.1. UAVS AND TASKS 74

Figure 3.2: Types of aircraft in the C3UV fleet: left-MLB Bat IV, middle-Sig Rascal,
right-Zagi

The UAV definition contains information such as the IP address, call sign, or
sensors on board. Two Rascal UAVs are of the same type but would have different
definitions with different IP addresses, call signs, etc. This information is assumed
fixed during execution, but could possibly be changed on request of the ground crew
or human operator (e.g. the encryption key could be changed on request and the
UAV definition appropriately updated, communicated, and synchronized). As new
UAVs are turned on and enter the system, they disseminate their definitions which are
assumed fixed. If parameters are changed the new definitions are communicated. As
old UAVs are turned off and removed from the system their definitions are removed.

Definition 33 uavType : UD → UT , there exists a function mapping each UAV
definition to an existing UAV type.

The network has a set of UAV states that are based on existing UAV definitions.
The UAV states contain the state information that is updated automatically by the
UAV. State variables may be continuous-time, discrete-time, or discrete-event and
are automatically changed by the UAV’s execution. This could include information
about position, orientation, etc.

Definition 34 Different UAV states have different state information that changes
during execution. A specific UAV state us is from the domain of all UAV states,
us ∈ US. The UAV states can be superscripted for identification (e.g. usa, usb, usc)
or grouped in sets (US ∈ P(US) such as US1 = {usa, usb, usc}).

Each physical UAV has a UAV state, a UAV definition, and a UAV type. The
state is based on the definition which is based on the type.

Definition 35 uavDef : US → UD, there exists a function mapping each UAV state
to an existing UAV definition.

3.1. UAVS AND TASKS 75

This partitioning of information illustrates how some information is specified by
the developers at design time, some information is specified by the human operator
or ground crew at run time, and some information is specified by the UAVs during
execution. This partitioning allows subsets of information about the UAVs to be com-
municated as necessary. Since the UAV types do not change during execution, they
can be assumed static and are not transmitted. Since the set of UAV definitions do
change during execution, they can be transmitted by the UAVs during initialization
and then whenever changes are made. Since the UAV states change continuously,
their information can be updated, read, transmitted, and synchronized automatically
by the UAVs. This allows the network to perform less communication than meth-
ods like the original C3UV Mission State Estimate (MSE) which lumped all of this
information into one table that was transmitted periodically [162]. There, the type
and definition information was repeated in each communication packet despite the
content not changing.

3.1.2 Tasks

Tasks are similarly partitioned into task types, task definitions, and task states.

Definition 36 Different task types have different data and model structures as well
as fixed information that is specified by the task’s developers during development. A
specific task type tt is from the domain of all task types, tt ∈ T T . The task types can
be superscripted for identification (e.g. tta, ttb, ttc) or grouped in sets (TT ∈ P(T T)
such as TT 1 = {tta, ttb, ttc}).

The set of task types is also assumed fixed during any execution. Developers
can create additional types of tasks for the system off-line. They must then update
any tools such as GUIs and web servers so that these task types can be properly
displayed, communicated, or used to create new task definitions. Chapter 7 contains
details about the C3UV task types.

Definition 37 Different task definitions have different data and model parameters
that are initially specified during execution. A specific task definition td is from the
domain of all task definitions, td ∈ T D. The task definitions can be superscripted
for identification (e.g. tda, tdb, tdc) or grouped in sets (TD ∈ P(T D) such as TD1 =
{tda, tdb, tdc}).

The set of task definitions changes during execution. The human operator loads
or creates new task definitions for the network. These definitions are assumed fixed
unless they are manually modified by the human operator. Each task definition is
based on a task type and specifies the values of the parameters for that task type. For
example, two task definitions can both be of type ’visit point’, while having different

3.1. UAVS AND TASKS 76

values for the latitudes and longitudes of the points to be visited. There can be
multiple task definitions based on the same task type.

Definition 38 taskType : T D → T T , there exists a function mapping each task
definition to an existing task type.

The task’s state information is changed automatically by the UAVs.

Definition 39 Different task states have different state information that changes
during execution. A specific task state ts is from the domain of all task states,
ts ∈ T S. The task states can be superscripted for identification (e.g. tsa, tsb, tsc)
or grouped in sets (TS ∈ P(T S) such as TS1 = {tsa, tsb, tsc}).

Every task has a state, definition, and type. This information is partitioned based
on how often it changes as well as who changes it. Just like for UAVs, it is possible
to have task types in the system and have no task definitions based on them. It is
also possible to have task definitions in the system that have no task states based on
them.

Definition 40 taskDef : T S → T D, there exists a function mapping each task state
to an existing task definition.

The fixed sets of task and UAV types detail what ’kinds’ of tasks and UAVs the
network is equipped to handle. The definitions show possible parameter values for
the tasks and UAVs that may be in the network. The states give detailed state
information about the tasks and UAVs that currently do exist in the network.

Many of the different elements mentioned above will evolve in time. A logical time
will be represented with subscripts. For example: tsk → tsk+1 would represent a task
state evolving from its value at time k to a new value at k+1 during an instantaneous
event.

In the future the following projection operation will become convenient.

Definition 41 The subset of task states matching a specific task definition:
TS|td = {tsj ∈ TS | taskDef(tsj) = td} .

Additionally, the network-level controller will assume the ability to read if a task
is completed from its state.

Definition 42 done : T S → {true, false}, task states can be checked for completion.

3.2. THE CONCEPT OF NETWORK-LEVEL CONTROL 77

3.2 The Concept of Network-Level Control

The separation of UAV and task (plant and controller) enables the UAV’s behavior
to be drastically altered during execution to adapt for unforseen circumstances by
changing which task the UAV is executing. It also enables collaboration through
task allocation. There can be many different methods for automatically assigning
tasks to UAVs. Some are centralized while others are decentralized. They can be
based on heuristics or optimization criteria. The exact details of these methods
are not discussed in this dissertation, but an appropriate algorithm for assigning
tasks to UAVs is assumed. The C3UV implementation operates with the sub-optimal
distributed algorithm developed by Mark Godwin [162, 75].

Network-level control adds one layer of automation on top of the assumed task
allocation layer. It monitors the network’s progress on existing tasks and then cre-
ates new tasks while removing old completed tasks, figure 3.3. In this manner it is
controlling the network through the direct manipulation of the set of tasks in the
network. The network-level controller only indirectly affects the UAVs’ behaviors,
through task allocation.

Network-Level

Controller

UAV

Fleet

add/remove tasks

task & uav state

Figure 3.3: Interaction of the network-level controller and the UAVs through addi-
tion/removal of tasks.

Chapter 2 discussed several potential models for the network-level controllers.
As was previously mentioned, Petri nets were chosen as the fundamental basis for
network-level controllers. They provide a simple rigorous model that can be analyzed
with available algorithms as well as graphically displayed in an intuitive manner.
They provide just enough information in a network-focused perspective. While other
more detailed models could have been chosen (e.g. Dynamic Networks of Hybrid
Automata), Petri nets provide the desired functionality as well as much needed sim-
plicity.

Task states are indirectly represented using the Petri net’s tokens. Every task in
the network has a state and every state is represented graphically by a token. By

3.2. THE CONCEPT OF NETWORK-LEVEL CONTROL 78

observing the tokens in the net, the human operator indirectly observes the number
of tasks in the network.

Each task state has a corresponding task definition. These definitions are rep-
resented by the Petri net’s places. If there are several tasks (each having a unique
state) based on the same task definition, there will be several tokens in the associated
place. Every task definition in the network will have a corresponding place.

Figure 3.4: Network-level controller’s graphical representation of task states (tokens)
and task definitions (places).

Figure 3.4 shows an example where there are 3 tasks in the network. There are
2 tasks based on task definition 1, which is labeled “search area A”. There is 1 task
based on task definition 3, which is labeled “video point C”. There are no tasks based
on task definition 2, which is labeled “visit point B”. Every task state in the network
is shown with a token. Every task definition in the network is shown with a place.

The graphical representation of the network-level controller shows the existence
of task definitions and states but does not display the detailed contents of either.
Each task definition has parameters that define what “search area A” or “visit point
B” really means. The human operator who created these definitions likely knows
that they are, but the detailed information is not immediately graphically available.
Similarly, the task states contain state information that can be rapidly changing. This
information is also not immediately presented. The network-level controller associates
a place to a task definition and a token to a task state. Showing all of the textual
content of the definitions and states would clutter up the otherwise simple graphical
description. A GUI implementation should allow a human operator to click on a place
and open up the details for that associated definition. Likewise, one should be able
to click on tokens and open up the details for the associated task states. In this way
the details are easily accessible without always cluttering the display.

Figure 3.4 contained no arcs or transitions so it would be expected not to change
its marking (not to automatically add/remove tasks). Figure 3.5 adds arcs and tran-

3.2. THE CONCEPT OF NETWORK-LEVEL CONTROL 79

Figure 3.5: A simple network-level controller’s graphical representation.

sitions. The anticipated behavior is that a “search area A” task is done followed by
“visit point B” and “video point C” in parallel. Once “video point C” is done a new
“search area A” is started, regardless of if “visit point B” is finished, figure 3.6. The
firing of the transitions removes old tasks/tokens and creates new tasks/tokens. One
additional semantic detail is the assumption that a task must be completed before
it can be removed by a transition firing. Without this detail the network-level con-
troller could create then immediately remove new tasks, never allowing the UAVs the
time necessary to complete the task. The completion assumption prevents this from
occurring.

Previously the completion assumption was represented with a boolean condition
on each arc that would by default take the value “on done” [120]. The other options
included “on to do”, “on assigned”, and “on canceled”. Based on feedback received
from the Navy SEALs during experiments at Camp Roberts these were rethought and
eventually removed. The “on to do” condition would identify a task that had just
been created and immediately remove it to create another task. These phantom tasks
would just appear and disappear with no real affect on the system’s behavior. The “on
assigned” condition would identify a task that had just been assigned to be executed
by a UAV and then remove it to create another task. This also had no apparent
use and only added confusion and frustration. The “on canceled” condition seemed
somewhat useful, but the canceling of tasks is done by the human operator and is
now directly incorporated into the runtime patching used to modify the network-level
controller. Runtime patching will be discussed in chapter 5.

3.3. SYNTAX OF NETWORK-LEVEL CONTROLLERS 80

Figure 3.6: Execution of a simple network-level controller. Start as a.), when the task
in definition 1 is completed fire transition T0 to become b).

3.3 Syntax of Network-Level Controllers

Definition 43 A network-level controller can be modeled as a tuple
NLC = (P, T, F,W,K,M0, def, TD, TS0) where:

• P is the finite set of places,

• T is the finite set of transitions,

• F ⊆ (P×T)∪(T×P) is the flow relation (arcs connecting places to transitions),

• W : F → N is the weight of each arc in F ,

• K: P → N+ is the capacity constraint for each place,

• M0: P → N is the initial marking of tokens for each place in P ,

3.3. SYNTAX OF NETWORK-LEVEL CONTROLLERS 81

• def : P → TD ∪ {null} associates each place to a single task definition or a
special indicator null of no task definition,

• TD is the set of task definitions in the network,

• TS0 is the initial set of task states in the network,

the network-level controller’s structure is SNLC = (P, T, F,W,K, def, TD).

The first part of the network-level controller is the structure for a capacity con-
strained Petri net, (P, T, F,W,K). The network-level controller’s structure is aug-
mented with a set of task definitions TD and a function def associating each place
in P to either a task definition or a special null symbol null. The places associated
to null can be used for purely logical control conveniences and any tokens created in
these places will not have actual tasks associated. This is similar to the virtual com-
plimentary places added to assembly lines to create new place invariants. The null
places will be demonstrated later in an example. As in standard Petri net structures,
the network-level control structure is independent of its state/marking.

The initial markingM0 is the number of tokens in the Petri net initially. The initial
task state set TS0 includes all task states initially in the network. The network-level
controller’s state is the marking and set of task states, (Mk, TSk); these are the values
expected to change during execution. The structure of the network-level controller
does not automatically evolve.

A network-level controller should always be well formed. This simply means there
should be no dangling arcs or places without capacity constraints.

Definition 44 A network-level controller NLC is well formed if its structure and
initial state satisfy all the criteria in definition 43.

Additionally, it should also be fully representative. Every task definition should
be represented by exactly one place. It would not be useful to have ’hidden’ task
definitions and ’hidden’ task states that the human operator could not see in the
network-level controller, and therefore could not control.

Definition 45 A network-level controller NLC is fully representative if its structure
satisfies:

∀td ∈ TD.(∃!p ∈ P.def(p) = td).

A NLC’s state is task-token consistent if: for each place that has a task definition,
the number of tokens in that place matches the number of task states of the correct
definition.

Definition 46 A NLC state (Mk, TSk) is task-token consistent if the following holds:

3.4. SEMANTICS OF NETWORK-LEVEL CONTROLLERS 82

∀p ∈ P.[def(p) 6= null] ⇒ [Mk(p) = cardinality(TSk|def(p))]

Task-token consistency allows a human operator to observe the number and lo-
cations of tokens in places and understand the number of task states and which
definitions they are based upon.

3.4 Semantics of Network-Level Controllers

For a NLC transition to be enabled the standard Petri net enabling conditions
from definition 18 must be satisfied (here referred to as token enabled). As was
stated earlier a “transition being enabled does not guarantee that it will ever fire;
being enabled is a necessary but not sufficient condition to guarantee firing”. NLC
imposes the additional task completion requirement before a NLC firing can occur.

Definition 47 A NLC transition t ∈ T is completion enabled if:
∀p ∈ (•t).[def(p) 6= null] ⇒ [∃!ts1, ...tsW (p,t) ∈ TSk.taskDef(ts1) = def(p) ∧
done(ts1) ∧ ... ∧ taskDef(tsW (p,t)) = def(p) ∧ done(tsW (p,t))].

Completion enabled requires that each place with an associated definition have
a sufficient number of tasks with the correct definition that are also finished. When
checking for a completion enabled transition, the task states bound are recorded in
the set TS−. If the transition ends up being both token and completion enabled it
can be fired and the set of tasks TS− will be removed from the network along with
the correct number of tokens.

Similarly a set of new tasks, TS+, must be created when a NLC transition t fires.
TS+ is the union of subsets TSt,p, created for each outgoing arc from the transition
t . If the destination of the arc is a place that is associated to a null definition, no
actual tasks will be added. If the destination of the arc is a place with a non-null
definition the correct number of new tasks will be added based on the arc weight.

Definition 48 The set of tasks created after a transition t ∈ T fires is:
TS+ =

⋃

p∈(t•)

TSt,p

• if def(p) = null then TSt,p = {},

• if def(p) 6= null then TSt,p = {ts1, ...tsW (t,p)}
where taskDef(tsm) = def(p) and done(tsm) = false for each new task state.

When a NLC transition is token and completion enabled it can fire causing the
tokens and the set of task states to change. The tokens change exactly as in a standard
Petri net. The task states TS− are removed and TS+ are added.

3.4. SEMANTICS OF NETWORK-LEVEL CONTROLLERS 83

Definition 49 A transition ti ∈ T firing causes a state change

(Mk, TSk)
firing(ti)
−−−−−→ (Mk+1, TSk+1) where:

• Mk+1(p
j) = Mk(p

j)−W (pj, ti) +W (ti, pj),

• TSk+1 = TSk − TS− + TS+.

In addition to transitions firing, the environment (the UAVs) can complete the
tasks.

Assumption 1 It is assumed that all tasks initially start not done, done(ts) =
false (see definition 48). Once a UAV completes the task, it sets the task to done,
done(ts) = done. It is also assumed that this task is never set back to not done.

From the perspective of the network-level controller the environment can cause
an instantaneous change in TSk.

Definition 50 The environment completing a task tsi ∈ TSk causes a state change

(Mk, TSk)
complete(tsi)
−−−−−−−→ (Mk+1, TSk+1) where:

• Mk+1 = Mk the marking is not affected,

• TSk+1 = TSk − tsik + tsik+1 only the task state tsi is updated,
this update satisfies done(tsik) = false ∧ done(tsik+1) = true.

The behavior of any network-level controller involves the environment completing
tasks and the network-level controller firing transitions to remove completed tasks
and insert new tasks.

Definition 51 A string of states, (M0, TS0), (M1, TS1), (M2, TS2)... , is a behavior
of a network-level controller NLC if:

• (M0, TS0) matches the initial state in the definition of NLC,

• ∀k.[(Mk, TSk)
firing(ta)
−−−−−→ (Mk+1, TSk+1)]∨[(Mk, TSk)

complete(tsb)
−−−−−−−→ (Mk+1, TSk+1)],

the successor state is caused by a firing of a token enabled and completion en-
abled transition ta, or by the completion of a task tsb by the environment.

The semantics of a network-level controller is given in terms of its behaviors.

Definition 52 The language of the network-level controller NLC, L(NLC), is the
set of all potential behaviors of NLC.

3.5. EXAMPLE NETWORK-LEVEL CONTROLLER 84

3.5 Example Network-Level Controller

An example network-level controller will help illustrate the previous developments.
Assume the network is designed to have two types of tasks: tt1 is a visit point type
of task, tt2 is a visit line type of task. This set of task types remains fixed during
execution. The human operator uses these types to create three task definitions: td1

looks to “visit point A”, td2 looks to “visit point B”, td3 looks to “visit line C-D”.
Obviously taskType(td1) = tt1, taskType(td2) = tt1, and taskType(td3) = tt2.

The definitions appear associated to places P1, P2, P3 in the network-level con-
troller, figure 3.7. Additionally, the human operator created a place P0 without an
associated task definition. This null place is used as a logical convenience that holds
tokens associated to no task. Figure 3.7 shows a NLC that will “visit point A” in
parallel with “visit point B”. When both of those tasks are completed by the UAVs,
the network-level controller will create “visit line C-D” and remove the completed
tasks. When “visit line C-D” is completed by the UAVs, the network-level controller
will remove it and will repeat.

Figure 3.7: Second simple network-level controller example.

While this is a very useful and desirable behavior, it does not illustrate the benefits
of the null places. If the human operator wanted to execute this loop only 1 time,
a minor modification makes this constraint possible. At k = 0 in figure 3.8 the
additional null place P4 has only 1 token. The tokens in P4 limit how many cycles
can be executed. If there were x tokens, the cycle could execute up to x times. The
null places give the ability to create additional logical constraints like limits and place
invariants.

In figure 3.8 the NLC starts at k = 0 with 2 tokens in null places and no tasks

3.5. EXAMPLE NETWORK-LEVEL CONTROLLER 85

Figure 3.8: The behavior of the second simple network controller, but with an ad-
ditional constraint of only 1 cycle iteration. The initial time is k = 0 and the NLC
deadlocks at k = 6.

in the network. The transition t0 fires causing these two tokens to be removed and 2
new tokens and 2 new tasks to be created at k = 1. The network completes task tsa

to move to k = 2 and then task tsb to move to k = 3. From k = 3 the transition t1

is both token and completion enabled and can fire, resulting in k = 4. The network
completes tsc to move to k = 5. Now t2 is token and completion enabled and can fire
to produce k = 6. At k = 6 the NLC deadlocks and is prevented from continuing the
cyclic behavior. If there were more tokens placed in P4 the cycle would repeat.

86

Chapter 4

Properties of Network-Level
Controllers

Chapter 3 described how a network-level controller is defined and how it operates.
In order to understand if any given network-level controller will operate ’well’, addi-
tional properties are needed. The first set of properties will be invariance properties.
These properties will be true for all network-level controllers; they are based solely on
the NLC semantics. The second set of properties will be analyzable properties. These
will provide analysis results for each individual network-level controller to understand
how the individual controller is expected to behave. These analyzable properties will
be formed from the standard Petri net properties of section 2.4.3.

4.1 Invariance Properties

As the network-level controller evolves through transitions firing and the environ-
ment completing tasks, it is important that it remain well formed, fully representative,
and task-token consistent. The invariance of these properties is important to guaran-
tee that the controller remain a properly defined representation of all task definitions
and task states in the network.

The structure of a network-level controller remains fixed during execution. This
guarantees that if a NLC begins well formed and fully representative, it will remain
well formed and fully representative. This invariance is obvious and expected. How-
ever, when runtime patching is added in chapter 5, the network-level controller’s
structure from definition 43 will effectively become part of the state and can be mod-
ified through runtime patching. It is then important to show that the runtime patches
always produce well formed and fully representative network-level controllers.

4.1. INVARIANCE PROPERTIES 87

4.1.1 Task-Token Consistency

Lemma 1 shows that for a single step task-token consistency is preserved for
network-level controllers. Theorem 1 then shows that if the NLC starts task-token
consistent, it will remain task-token consistent throughout execution.

Lemma 1 If a network-level controller is in a task-token consistent state (Mk, TSk),
then every state (Mk+1, TSk+1) immediately reachable is also task-token consistent.

Proof: There are only two ways that (Mk, TSk) can transition to become (Mk+1, TSk+1),
either the UAVs complete a task or the network-level controller fires a transition.

Case 1.) the environment completed a task tsa

Changing tsa from not done to done affects neither the number of task states nor
the marking, thus this event cannot affect task-token consistency. Since (Mk, TSk) is
task-token consistent by assumption, the resulting state is also task-token consistent.

Case 2.) the network-level controller fired an enabled transition ti

For this case to be true, all places pj that do have an associated task definition
(def(pj) 6= null) must satisfy: Mk+1(p

j) = cardinality(TSk+1|def(pj)).
Before the firing, Mk(p

j) = cardinality(TSk|def(pj)) = x by assumption.
According to definition 49, W (pj, ti) = m tokens will be removed from place pj. Also
W (ti, pj) = n tokens will be added. This means Mk+1(p

j) = x−m+ n.
According to definition 47, there must be exactly W (pj , ti) = m task states matching
def(pj) in the set of task states to be removed, TS−. Definition 48 shows that there
are exactly W (ti, pj) = n task states matching def(pj) to be added in set TS+. The
original number of task states matching definition def(pj) was x, then m were re-
moved and n added. This produces cardinality(TSk+1|def(pj)) = x−m+ n.
Therefore, Mk+1(p

j) = x−m+n = cardinality(TSk+1|def(pj)) and the resulting state
is task-token consistent. �

Theorem 1 If a network-level controller starts in a task-token consistent initial
state (M0, TS0), then it will remain task-token consistent through all reachable states
(Mk, TSk).

Proof: The proof will proceed by an inductive argument on the length of the firing
sequence required to reach the reachable state, (Mk, TSk), where k is the length of the
firing sequence.

Base Case (k = 0): If the reachable state is the initial state (M0, TS0), it is task-
token consistent by assumption.

4.2. ANALYZABLE PROPERTIES 88

Inductive Step (k 6= 0): Every reachable state can be reached through a firing sequence
of some finite length k. The state (Mk−1, TSk−1) in the behavioral sequence prior to
(Mk, TSk) is also reachable, but with a firing sequence of length k−1. By the inductive
hypothesis (Mk−1, TSk−1) must be task-token consistent. This with lemma 1 proves
that (Mk, TSk) is also task-token consistent. �

Assumption 2 The network-level controller is well formed, fully representative, and
has an initial state that is task-token consistent.

Assumption 2 should be standard for all network-level controllers. Since a NLC
satisfying assumption 2 starts task-token consistent, theorem 1 shows that it will also
stay task-token consistent.

There can be many task-token consistent initial states. The most trivial of which
is the empty state. It is obvious from definition 46 that the following proposition
holds.

Proposition 1 An empty state, one with no tokens or task states, is task-token con-
sistent.

It is possible that the NLC will eventually evolve into the empty state where
no transitions are enabled (the NLC would become deadlocked). It is also possible
that this state is used as an initial state. If the NLC started empty it would stay
empty indefinitely, unless manual modifications were made to add tokens/tasks by
runtime patching. Starting with a default empty state and showing that runtime
patches always produce task-token consistent states from task-token consistent states
will later allow the proof that the entire system, including manual modifications by
the human operator, will always remain task-token consistent.

Corollary 1 A NLC that starts at an empty state stays task-token consistent.

Proof: By proposition 1 the empty state is task-token consistent. By theorem 1 the
NLC will stay task-token consistent in all states reachable from this task-token con-
sistent initial state, which happens to be empty. �

4.2 Analyzable Properties

The invariance of being well formed, fully representative, and task-token consistent
is a result of the semantics defined for network-level controllers. The use of Petri
nets within the modeling formalism allows additional properties to be proven about
specific network-level controllers by analyzing the sub-Petri nets embedded within
those specific network-level controllers. This allows a case-by-case analysis of different
network-level controllers.

4.2. ANALYZABLE PROPERTIES 89

Definition 53 The sub-Petri net for a network level controller can be extracted by
SPN : NLC → PN where: NLC = (P, T, F,W,K,M0, def, TD, TS0) and
SPN(NLC) = (P, T, F,W,K,M0) is a standard capacity constrained Petri net.

Reachability Graph
for NLC

states: (M,TS)

Reachability Graph
for SPN(NLC)

states: (M)

SPN(NLC)NLC

custom algorithm standard algorithm

extract sub-Petri net

weak bisimulation

Figure 4.1: Analyze a specific network-level controller NLC by extracting the sub-
Petri net, analyzing SPN(NLC) with standard algorithms, then relating the results
using a weak bisimulation relation.

Figure 4.1 shows that instead of developing a custom algorithm to determine the
reachability graph for network-level controllers, standard Petri net algorithms can
be applied to the sub-Petri net embedded within any network-level controller. The
results of the sub-Petri net analysis can then be related to the network-level controller.

Since SPN(NLC) is a capacity constrained Petri net, standard algorithms are
guaranteed to compute all reachable states and determine properties like bound-
edness, liveness, and the potential for deadlock. In order for the results about
SPN(NLC) to be useful to understanding the parent NLC, there must be a well
established relationship between the states of SPN(NLC) and the states of NLC.

4.2.1 Weak Bisimulation

Petri nets and network-level controllers are both non-deterministic, making a
bisimulation relation an obvious candidate for expressing a relationship between the
two’s states [131]. If a state of NLC is weakly bisimilar to a state of SPN(NLC),
written (Mk, TSk)B(Mj), then sequences of observable events taken by NLC from
state (Mk, TSk) can be mirrored by SPN(NLC) from state (Mj) resulting in states
that are again weakly bisimilar. Conversely, sequences of observable events taken by

4.2. ANALYZABLE PROPERTIES 90

SPN(NLC) from state (Mj) can be mirrored by NLC from state (Mk, TSk) resulting
in states that are again weakly bisimilar.

The proposed weak bisimulation relation B is: (Mk, TSk)B(Mj) if Mk = Mj .
This means that every state (Mj) of SPN(NLC) is weakly bisimilar to the states
(Mk, TSk) of NLC that have the same marking.

Weak bisimilarity is used instead of strong bisimilarity because certain events
occur only in NLC and not in SPN(NLC). These events, the completions of tasks
by UAVs, are undertaken by NLC but not SPN(NLC). The network-level controller
cares about tasks being completed, whereas the sub-Petri net has no notion of a task.
These events are effectively unobservable to SPN(NLC). Milner would replace these
events with the symbol τ .

For the proofs below standard weak bisimulation notation will be used. Individual

observable events (i.e. a transition firing) are represented as normal with
firing(t)
−−−−−→.

The unobservable events (i.e. a task being completed) are represented with
τ
−→. A

series of zero or more unobservable events is represented as =⇒.
firing(t)
=⇒ represents

a sequence of unobservable tasks being completed by a single transition t firing,
τ
−→ ...

τ
−→

firing(t)
−−−−−→.

Lemma 2 The relation B is a weak simulation.

Proof: According to Milner’s proposition 6.3 of [131], B is a weak simulation if,
assuming (Mk, TSk)B(Mj) holds, the following two cases hold.

Case 1.) if (Mk, TSk)
τ
−→ (Mk+1, TSk+1) then there exists a (Mn) such that

(Mj) =⇒ (Mn) and (Mk+1, TSk+1)B(Mn):
By assumption Mk = Mj. The τ events are UAVs completing tasks. According to
definition 50 this does not change the marking of the NLC state. This means that
when (Mk, TSk)

τ
−→ (Mk+1, TSk+1) the marking does not change, Mk+1 = Mk. Let the

sought resultant SPN(NLC) state be the initial state, (Mj) = (Mn). This state can
be achieved by allowing =⇒ to represent zero events. Since Mk+1 = Mk = Mj = Mn,
it is obvious that (Mk+1, TSk+1)B(Mn) holds.

Case 2.) if (Mk, TSk)
firing(t)
−−−−−→ (Mk+1, TSk+1) then there exists a (Mn) such that

(Mj)
firing(t)
=⇒ (Mn) and (Mk+1, TSk+1)B(Mn):

By assumption Mk = Mj. The semantics of network-level control guarantee that a
transition t firing causes Mk+1(p

i) = Mk(p
i)−W (pi, t)+W (t, pi). Since the network-

level controller fired t, t was token enabled. This guarantees that at (Mj) = (Mk)
the sub-Petri net transition t is also enabled. Let the sought resultant SPN(NLC)

state (Mn) be produced by immediately firing t from (Mj), (Mj)
firing(t)
−−−−−→ (Mn). The

semantics of a Petri net also guarantee that Mn(p
i) = Mj(p

i) −W (pi, t) +W (t, pi).

4.2. ANALYZABLE PROPERTIES 91

By assumption Mk = Mj, leaving Mn(p
i) = Mk(p

i)−W (pi, t) +W (t, pi). The mark-
ing Mk+1 of the NLC and Mn of the SPN(NLC) are identical. This results in
(Mk+1, TSk+1)B(Mn). �

Lemma 3 The converse of relation B, noted B−, is also a weak simulation.

Proof: According to Milner’s proposition 6.3 of [131], B− is a weak simulation if,
assuming (Mj)B−(Mk, TSk) holds, the following two cases hold.

Case 1.) if (Mj)
τ
−→ (Mj+1) then there exists a (Mn, TSn) such that

(Mk, TSk) =⇒ (Mn, TSn) and (Mj+1)B−(Mn, TSn):

The Petri net SPN(NLC) never experiences any unobservable events (completions of
tasks). The Petri net only experiences transitions firing. This condition is vacuously
true.

Case 2.) if (Mj)
firing(t)
−−−−−→ (Mj+1) then there exists a (Mn, TSn) such that

(Mk, TSk)
firing(t)
=⇒ (Mn, TSn) and (Mj+1)B−(Mn, TSn):

By assumptionMj = Mk. From the semantics of Petri nets, firing t causesMj+1(p
i) =

Mj(p
i)−W (pi, t)+W (t, pi). Since t can fire, t is enabled. This implies that t is token

enabled in NLC. In order for NLC to fire, t also needs to become completion enabled.
Let (Mk, TSk) experience only completion events until all tasks are completed becom-
ing (Mm, TSm). Completion of tasks does not change the marking, Mm = Mk. At
(Mm, TSm) transition t is both token and completion enabled. Let the state produced
by firing t from (Mm, TSm) be (Mn, TSn):

(Mk, TSk)
τ
−→ ...

τ
−→ (Mm, TSm)

firing(t)
−−−−−→ (Mn, TSn)

From the semantics of network-level controllers, Mn(p
i) = Mm(p

i) − W (pi, t) +
W (t, pi), but Mm = Mk = Mj showing that, Mn(p

i) = Mj(p
i) −W (pi, t) +W (t, pi).

This proves that Mj+1 = Mn, showing (Mj+1)B−(Mn, TSn) because the markings are
identical. �

Theorem 2 The relation B is a weak bisimulation between states of NLC and states
of SPN(NLC) where the markings match.

Proof:
Lemma 2 shows that B is a weak simulation. Lemma 3 shows that the converse of B
is also a weak simulation. This proves that B is a weak bisimulation. �

Proposition 2 The initial state of NLC and the initial state of its sub-Petri net
SPN(NLC) are weakly bisimilar, (M0, TS0)B(M0). This is trivially true since M0 =
M0 and by definition satisfies B.

4.2. ANALYZABLE PROPERTIES 92

4.2.2 Reachability

The weak bisimulation relation B between states of NLC and SPN(NLC) can
be exploited to understand how the reachable states of NLC are connected to the
reachable states of SPN(NLC).

Lemma 4 Given a network-level controller NLC, every state (Mk, TSk) reachable
by NLC is weakly bisimilar to a state (Mj) reachable by SPN(NLC).

Proof:
The network-level controller’s initial state is (M0, TS0). The sub-Petri net
SPN(NLC) has an initial state of (M0). Proposition 2 explains why these two states
are weakly bisimilar, (M0, TS0)B(M0).

Every reachable state of NLC, (Mk, TSk), can be reached from the initial state
(M0, TS0) through a finite length string of events s, (M0, TS0)

s
=⇒ (Mk, TSk).

Since B is a weak bisimulation, and since (M0, TS0)B(M0), the sub-Petri net can
also execute s from (M0) to produce a new state (Mj), (M0)

s
=⇒ (Mj) . Additionally,

(Mj) is guaranteed to be weakly bisimilar to (Mk, TSk). �

Lemma 5 Given a network-level controller NLC, every state (Mj) reachable by
SPN(NLC) is weakly bisimilar to a state (Mk, TSk) reachable by NLC.

Proof:
The network-level controller’s initial state is (M0, TS0). The sub-Petri net
SPN(NLC) has an initial state of (M0). Proposition 2 explains why these two states
are weakly bisimilar, (M0, TS0)B(M0).

Every reachable state of SPN(NLC), (Mj), can be reached from the initial state

(M0) through a finite length string of events s, (M0)
s

=⇒ (Mj).

Since B is a weak bisimulation, and since (M0, TS0)B(M0), the network-level con-
troller can also execute s from (M0, TS0) to produce a new state (Mk, TSk),
(M0, TS0)

s
=⇒ (Mk, TSk) . Additionally, (Mk, TSk) is guaranteed to be weakly bisim-

ilar to (Mj). �

Theorem 3 Given a network-level controller NLC, a state (Mj) is reachable by
SPN(NLC) if and only if a weakly bisimilar state (Mk, TSk) is reachable by NLC.

Proof:
Case 1.) if (Mk, TSk) is reachable then a weakly bisimilar (Mj) is reachable

4.2. ANALYZABLE PROPERTIES 93

Lemma 4.
Case 2.) if (Mj) is reachable then a weakly bisimilar (Mk, TSk) is reachable
Lemma 5.
�

Theorem 3 shows that the reachability graph of SPN(NLC) can be used to indi-
rectly understand the entire reachability graph ofNLC through the weak bisimulation
B. All of the reachable states of SPN(NLC) can be explicitly calculated by standard
algorithms. Each of these reachable states (Mj) is weakly bisimilar to a reachable
state (Mk, TSk) in NLC. This specific weak bisimulation guarantees that Mj = Mk,
so the corresponding number of tokens for the NLC is exactly known. Since NLC is
assumed to stay task-token consistent, knowing the marking Mk also reveals exactly
how many task states exist and which task definitions they are based upon.

The Petri nets in figure 3.8 show all of the reachable states for the sub-Petri net of
that network-level controller. The reachable states of SPN(NLC) could be presented
to a human operator as a reachability graph, but this information is normally complex
and used to evaluate other simpler properties.

4.2.3 Boundedness

A Petri net place’s bound is the maximum number of tokens that can exist in that
place for any reachable state. For network-level controllers, a place’s token bound
also refers to the maximum number of tokens that exist in the place for any reachable
state, definition 54. A network-level controller place also has a task bound which is
the maximum number of task states that exist based on the place’s associated task
definition for any reachable state, definition 55.

Definition 54 A NLC place pi ∈ P has a token bound of y if and only if all reachable
states, (Mk, TSk), satisfy: Mk(p

i) ≤ y.

Definition 55 A NLC place pi ∈ P has a task bound of y if and only if all reachable
states, (Mk, TSk), satisfy: cardinality(TSk|def(pi)) ≤ y.

Theorem 4 will show that the Petri net bounds for SPN(NLC) provide the token
bounds for NLC. Theorem 5 will then show that if the place has a null definition,
the task bound is always 0. Theorem 6 will then show that if the place has a task
definition and if NLC stays task-token consistent, the task bound matches the token
bound.

Theorem 4 A place pi of NLC has a token bound of y if and only if pi of SPN(NLC)
also has a bound of y.

4.2. ANALYZABLE PROPERTIES 94

Proof:
Case 1.) pi of NLC has a token bound of y if pi of SPN(NLC) has a bound of y

Theorem 3 shows that every reachable state (Mk, TSk) of NLC will be weakly bisim-
ilar to some reachable state (Mj) of SPN(NLC), with Mk = Mj.
Since pi of SPN(NLC) has a bound of y, every reachable state (Mj) of SPN(NLC)
has a marking that satisfies Mj(p

i) ≤ y.
So every reachable state (Mk, TSk) satisfies: Mk(p

i) = Mj(p
i) ≤ y.

Case 2.) pi of SPN(NLC) has a bound of y if pi of NLC has a token bound of y
Theorem 3 shows that every reachable state (Mj) of SPN(NLC) will be weakly bisim-
ilar to some reachable state (Mk, TSk) of NLC, with Mj = Mk.
Since pi of NLC has a token bound of y, every reachable state (Mk, TSk) of NLC
has a marking that satisfies Mk(p

i) ≤ y.
So every reachable state (Mj) satisfies: Mj(p

i) = Mk(p
i) ≤ y.

�

Theorem 5 If a NLC place pi has a token bound of y and an associated null task
definition, def(pi) = null, then pi has a task bound of 0.

Proof:
The place pi has no associated task definition, therefore there can be no tasks in
TSk based upon the non-existent definition. The tokens in the marking exist, but no
matching task states exist. �

Theorem 6 Assuming NLC starts task-token consistent, if a place pi has a token
bound of y and an associated task definition, def(pi) 6= null, then pi has a task bound
of y.

Proof:
Theorem 1 shows that all reachable states (Mk, TSk) will also be task-token consistent.
By the token bound assumption every reachable state (Mk, TSk) satisfies Mk(p

i) ≤ y.
The task-token consistency assumption shows that [Mk(p

i) = cardinality(TSk|def(pi))].
Re-arranging and equating: cardinality(TSk|def(pi)) = Mk(p

i) ≤ y. �

Corollary 2 If a place pi of SPN(NLC) has a bound of y, and if pi of NLC has
an associated task definition def(pi) 6= null; then pi of NLC has a token bound of y
and a task bound of y.

Proof:
Theorem 4 shows that if a place pi of SPN(NLC) has a bound of y then pi of NLC
has a token bound of y. Theorem 6 then shows that since pi of NLC has a token

4.2. ANALYZABLE PROPERTIES 95

bound of y, pi also has a task bound of y.
�

Corollary 3 If a place pi of SPN(NLC) has a bound of y, and if pi of NLC has a
null associated task definition def(pi) = null; then pi of NLC has a token bound of
y and a task bound of 0.

Proof:
Theorem 4 shows that if a place pi of SPN(NLC) has a bound of y then pi of NLC
has a token bound of y. Theorem 5 then shows that since pi of NLC has a null asso-
ciated task definition, pi has a task bound of 0.
�

Standard algorithms can be used to calculate the bound for any place pi of
SPN(NLC). If a place pi in SPN(NLC) has a calculated bound of y, then pi

in NLC also has a token bound of y. If pi in NLC has a null task definition,
def(pi) = null, then the task bound for pi is 0. If pi in NLC has an associated task
definition, def(pi) 6= null, then due to the task-token consistency there will be at
most y task states of definition def(pi) in the network at any moment.

If the token bounds or task bounds are too high then too many copies may po-
tentially exist; the human operator may want to modify the network-level controller
either structurally or by changing capacity constraints. The capacity constraints pre-
vent the number of tokens from exceeding the constrained values. By computing the
reachable states one may determine possibly tighter theoretical bounds than those
guaranteed by the capacity constraints. If any place in SPN(NLC) is behaviorally
bounded below the constrained value, this tighter bound value is useful to know.

Figure 3.8 shows that place P1 has a behavioral bound of 1. Using the standard
Petri net terminology this net is safe because each bound never exceeds 1. The
bounds on the places informs the human operator that there will never be more than
1 identical task in the network at the same time.

4.2.4 Liveness

The reachability graph can also be used to guarantee that each transition could
potentially fire. If there is a transition that will never possibly fire, there is no reason
for it being included in the network-level controller. In this situation the human
operator should be informed of the dead transition. Figure 3.8 shows that all of the
transitions in that NLC will eventually fire, thus it is a live NLC.

4.2.5 Deadlock

Deadlock in Petri nets is often considered a bad thing. Here, it could indicate that
a network-level controller is in a state that is ‘stuck’ or, as in figure 3.8 at k = 6, that

4.2. ANALYZABLE PROPERTIES 96

the NLC is ‘finished’. The difference between being ‘stuck’ and ‘finished’ is merely the
expectation of the human operator. If the human operator finds the lack of further
progress acceptable, it is ‘finished’. If the human operator finds the lack of further
progress unacceptable, it is ‘stuck’ and some modifications through runtime patching
must be made.

4.2.6 Additional Properties

There are many other Petri net properties that can be analyzed. However reach-
ability, boundedness, liveness, and deadlock are the most obvious, fundamental, and
easily understandable.

Conflicts, where one transition firing disables another previously enabled transi-
tion, could be identified. Identifying them does nothing to suggest possible modifi-
cations; and if a conflict exists, it is likely that the human operator intended for the
specified conflict to exist.

Similarly, mutual exclusions could be identified to show that two definitions never
have tasks in the network at the same moment.

Mutual exclusions are sub-cases of the more general place invariants and transition
invariants that could be identified. Understanding what these sets of inequalities
signify would require a deep understanding of Petri net theory. These properties,
like general LTL/CTL properties that could also be proven, are better used off-line
by experienced industrial engineers evaluating automated assembly lines instead of
on-line by non-experts in time-critical situations.

Reachability, boundedness, liveness, and deadlock are easy to evaluate and explain
making them very useful as on-line feedback to human operators. Formal proofs are
future work for both liveness and deadlock, but should also be rather obvious and
straightforward.

97

Chapter 5

Runtime Patching Language for
Network-Level Controllers

Knowledge of if a network-level controller is task bounded, token bounded, live, or
deadlocked is only useful if the human operator can then manipulate the controller’s
structure to adjust its behavior. These manipulations are done through the run-
time patching language for network-level controllers (RPL4NLC). Runtime patching
allows a human operator to make a small incremental change to the network-level
controller[120]. Since the human operator can now manipulate the network-level con-
troller’s structure, what was the structure becomes a part of the extended state.

Network-level controllers without runtime patching had fixed structures,
(P, T, F,W,K, def, TD), and the state contained only the marking and set of task
states, (M,TS). Runtime patching intends to allow these structures to be manipu-
lated by the human operator so that the controller can be significantly altered. This
extends the state to include all parts of the network-level controller,
(P, T, F,W,K,M, def, TD, TS). This state will often be written shorthand as (NLC),
or even more concisely as σ to save space. Every piece of the network-level controller
can be somehow affected through the runtime patching language.

5.1 Syntax

The syntax and semantics for the runtime patching language for network-level
controllers will be presented following the example of Winskel’s IMP from [185].

Table 5.1 shows the different syntactic meta-variables that will stand for arbitrary
elements of the correct type. These elements will often be given superscripts for
identification (e.g. tdm vs tdn). The detailed syntactic representations for integers,
places, transitions, etc. is not specified; this is similar to how Winskel assumes a
representation for integers and variables in IMP. These details would do little to
illuminate what runtime patching does.

5.2. STRUCTURAL OPERATIONAL SEMANTICS 98

Table 5.1: Syntactic meta-variables for the runtime patching language

• rp ranges over runtime patches

• q ranges over positive integers

• p ranges over places

• t ranges over transitions

• f ranges over arcs

• td ranges over task definitions

• ts ranges over task states

The runtime patching language describes individual runtime patches rp. The
language for rp is presented with a Backus-Naur Form (BNF). The BNF shows that
rp can be one of 16 different individual runtime patches that incrementally modify
the network-level controllers.

The runtime patching options are: adding a null place, adding a place with an
associated task definition, deleting a place, adding a transition, deleting a transition,
adding an arc (incoming/outgoing), deleting an arc (incoming/outgoing), modifying
the weight of an arc (incoming/outgoing), modifying the capacity constraint of a
place, adding a token, deleting a token, updating the content of a task definition, and
updating the content of a task state.

Table 5.2: The runtime patching language presented as a BNF.

rp ::= addPlace() | addPlace(tdm) | deletePlace(pm) | addTransition() |
deleteTransition(tm) | addArc(pm, tn) | addArc(tm, pn) |
deleteArc(pm, tn) | deleteArc(tm, pn) | modifyWeight(pm, tn, q) |
modifyWeight(tm, pn, q) | modifyCapacity(pm, q) | addToken(pm) |
deleteToken(pm) | modifyTaskDefinition(tdm, tdn) |
modifyTaskState(tsm, tsn)

5.2 Structural Operational Semantics

The structural operational semantics presented below detail exactly how each
patch is applied to modify the current state σ. The resulting state will be displayed

5.2. STRUCTURAL OPERATIONAL SEMANTICS 99

as in IMP with σ[A/B][C/D] representing the state that is identical to σ but with A
replacing B and C replacing D.

Table 5.3: Structural operational semantics for runtime patching language.

addPlace-null
< addPlace(), σ >−→ σ[P ′/P][K ′/K][M ′/M][def ′/def]

P ′ = P + {pm}, pm /∈ P and K ′(p) =

{

K(p), if p 6= pm

defaultK, if p = pm
and

M ′(p) =

{

M(p), if p 6= pm

0, if p = pm
and def ′(p) =

{

def(p), if p 6= pm

null, if p = pm

addPlace
< addPlace(tdm), σ >−→ σ[P ′/P][K ′/K][M ′/M][def ′/def][TD′/TD]

P ′ = P + {pm}, pm /∈ P and K ′(p) =

{

K(p), if p 6= pm

defaultK, if p = pm
and

M ′(p) =

{

M(p), if p 6= pm

0, if p = pm
and def ′(p) =

{

def(p), if p 6= pm

tdm, if p = pm
and TD′ = TD+ {tdm}

deletePlace
< deletePlace(pm), σ >−→ σ[P ′/P][F ′/F][TD′/TD][TS ′/TS]

P ′ = P − {pm} and F ′ = F − {pm × T } − {T × pm} and

TD′ =

{

TD, if def(pm) = null

TD− {def(pm)}, if def(pm) 6= null
, TS′ =

{

TS, if def(pm) = null

TS − TS|def(pm), if def(pm) 6= null

addTransition
< addTransition(), σ >−→ σ[T ′/T]

T ′ = T + {tm}, tm /∈ T

deleteTransition
< deleteTransition(tm), σ >−→ σ[T ′/T][F ′/F]

T ′ = T − {tm} and F ′ = F − {P × tm} − {tm × P}

The ’addPlace-null’ and ’addPlace’ rules from table 5.3 specify how runtime patch-
ing can create new places. These new places always have a default capacity constraint
value, defaultK, and zero tokens. If a task definition was provided, it is added to the
set of task definitions in the system and the def function is appropriately updated.
If no task definition is provided, def is given a null value for the new place.

The ’deletePlace’ rule removes a place, its connected arcs, and any associated
task definitions and task states. These changes may shrink the domains of the other
functions: W,K, def,M . These function’s domains change but their values are not
modified. Thus, to save space they will not be explicitly listed. For example, if
deleteP lace(pm) removes a place pm from P to create the smaller P ′, the capacity
function K ′ will not be explicitly listed since the function’s values do not change, only

5.2. STRUCTURAL OPERATIONAL SEMANTICS 100

its domain. In a practical implementation, if a table is used to store these function’s
values the rows or columns related to pm may need to be removed to prevent the
tables from growing arbitrarily large over time (this is essentially a form of garbage
collection).

Rule ’addTransition’ simply creates a new transition. The ’deleteTransition’ rule
removes the transition and any connected arcs; this may shrink the domain of W .

Table 5.4: Structural operational semantics for runtime patching language.

addArc-incoming
< addArc(pm, tn), σ >−→ σ[F ′/F][W ′/W]

F ′ =

{

F + {(pm, tn)}, if pm ∈ P, tn ∈ T

F, otherwise
and

W ′(f) =

{

defaultW, if f = (pm, tn), pm ∈ P, tn ∈ T

W (f), otherwise

addArc-outgoing
< addArc(tm, pn), σ >−→ σ[F ′/F][W ′/W]

F ′ =

{

F + {(tm, pn)}, if tm ∈ T, pn ∈ P

F, otherwise
and

W ′(f) =

{

defaultW, if f = (tm, pn), tm ∈ T, pn ∈ P

W (f), otherwise

deleteArc-incoming
< deleteArc(pm, tn), σ >−→ σ[F ′/F]

F ′ =

{

F − {(pm, tn)}, if (pm, tn) ∈ F

F, otherwise

deleteArc-outgoing
< deleteArc(tm, pn), σ >−→ σ[F ′/F]

F ′ =

{

F − {(tm, pn)}, if (tm, pn) ∈ F

F, otherwise

modifyWeight-incoming
< modifyWeight(pm, tn, q), σ >−→ σ[W ′/W]

W ′(f) =

{

q, if f = (pm, tn), f ∈ F

W (f), otherwise

modifyWeight-outgoing
< modifyWeight(tm, pn, q), σ >−→ σ[W ′/W]

W ′(f) =

{

q, if f = (tm, pn), f ∈ F

W (f), otherwise

Incoming arcs go from a place to a transition and outgoing arcs go from a transition

5.2. STRUCTURAL OPERATIONAL SEMANTICS 101

to a place. The ’addArc-incoming’ and ’addArc-outgoing’ rules in table 5.4 reflect
this. They simply insert a new arc with a default weight value, defaultW .

Similarly the ’deleteArc-incoming’ and ’deleteArc-outgoing’ rules remove existing
arcs. Deleting arcs may shrink the domain of the weights, W .

Every arc should have a weight at all times. It does not make sense to add or delete
these values, instead they are given default values at creation and can be modified
as necessary. The ’modifyWeight-incoming’ and ’modifyWeight-outgoing’ rules allow
for arc weights to be updated to new positive integer values.

Table 5.5: Structural operational semantics for runtime patching language.

modifyCapacity
< modifyCapacity(pm, q), σ >−→ σ[K ′/K]

K ′(p) =

{

q, if p = pm, M(pm) ≤ q

K(p), otherwise

addToken
< addToken(pm), σ >−→ σ[M ′/M][TS ′/TS]

M ′(p) =

{

M(p) + 1, if p = pm, M(pm) < K(pm)

M(p), otherwise

TS′ =











TS + {tsq}, if M(pm) < K(pm), def(pm) 6= null

where: def(pm) = taskDef(tsq), done(tsq) = false

TS, otherwise

deleteToken
< deleteToken(pm), σ >−→ σ[M ′/M][TS ′/TS]

M ′(p) =

{

M(p)− 1, if p = pm,M(pm) > 0

M(p), otherwise

TS′ =











TS − {tsq}, if M(pm) > 0, def(pm) 6= null

where: def(pm) = taskDef(tsq)

TS, otherwise

modifyTaskDefinition
< modifyTaskDefinition(tdm, tdn), σ >−→ σ[TD′/TD]

if tdm ∈ TD then details(tdn) replace the details(tdm)

modifyTaskState
< modifyTaskState(tsm, tsn), σ >−→ σ[TS ′/TS]

if tsm ∈ TS then details(tsn) replace the details(tsm)

Every place has a capacity constraint at all times. Again, it does not make
sense to add or delete these values. Instead, during the place’s creation the capacity
constraint is given a default value, defaultK. This value can then be modified as

5.3. CONCLUSIONS 102

necessary through the ’modifyCapacity’ rule in table 5.5. The new capacity constraint
value is required to be greater than or equal to the current marking.

The ’addToken’ rule shows how individual tokens (and possibly task states) can
be added. If a place has no additional capacity, no more tokens or task states will be
added. If there is space, a new token will be created. If the place is associated to a
task definition, a new task state of the correct definition will also be created.

The ’deleteToken’ rule removes individual tokens. If a place has a token, that
token can be removed. If the place is associated to a task definition, an appropriate
task state will be removed as well.

The last two runtime patching rules, ’modifyTaskDefinition’ and ’modifyTaskState’,
deal with modifying the contents of the task definitions and task states. While these
details are not modeled in the network-level controller, the human operator will pos-
sibly want to update the details of the task definitions or task states. For instance,
it may be useful to modify a task definition “visit point A” to more precisely locate
“A”. These commands do not add or remove task definitions and task states. They
also do not affect any of the other functions in the network-level controller.

5.3 Conclusions

The runtime patching language allows a human operator to apply an incremental
change to the network-level controller. These changes extend beyond modifying the
tokens and task states to include the entire network-level controller. This extended
state is represented as (P, T, F,W,K,M, def, TD, TS) = (NLC) = σ. This allows
the runtime patches to modify all parts of the network-level controller, as specified by
the structural operational semantics: < rp, σ >→ σ′. An alternative way to express
this transition system would be: < rp, σ >→ σ′ if and only if σ

rp
−→ σ′ , where the

state σ still evolves to σ′ under the application of the specific runtime patch rp.
Any runtime patch is very simple containing only 1 single command from a choice

of 16. This was initially developed to mimic the interaction of a human operator
with a graphical user interface. The human operator would likely click a button ’add
transition’ to cause an addTransition() runtime patch to be applied. Similarly, the
human operator would likely right-click on a place and hit ’modify capacity’ to cause
a modifyCapacity(pm, q) runtime patch to be applied.

There is no reason that the runtime patching language could not also be extended
with sequential, conditional, and recursion constructs similar to IMP to add additional
expressiveness [185]. These constructs would allow more complex programs of runtime
patching commands to be formed. These programs would make several modifications
at one time. While this would add expressiveness, the details of an if-statement are
standard and not necessary to explain the concepts within runtime patching.

103

Chapter 6

Network-Level Controllers
Modified By Runtime Patching

In chapter 3 the network-level controller’s state (M,TS) evolved through UAVs
completing tasks and transitions firing to add and remove both tokens and task
states. Chapter 5 provided a simple runtime patching language that allowed any
network-level controller to be modified by the human operator. These modifications
can adjust what was the network-level controller’s structure. This extended state
now includes all parts of the network-level controller, (P, T, F,W,K,M, def, TD, TS),
written shorthand as (NLC). This network-level controller will evolve from a proper
initial condition, (P0, T0, F0,W0, K0,M0, def0, TD0, TS0) = (NLC)0, by the inter-
leaved completion of tasks, transitions firing, and runtime patches being applied.

6.1 Syntax

Definition 56 A network-level controller (capable of being modified by the runtime
patching language) can be modeled as a tuple
NLC = (P0, T0, F0,W0, K0,M0, def0, TD0, TS0) where:

• P0 is the initial set of places,

• T0 is the initial set of transitions,

• F0 ⊆ (P0 × T0)∪ (T0 × P0) is the initial flow relation (arcs connecting places to
transitions),

• W0 : F0 → N is the initial weight of each arc in F0,

• K0: P0 → N+ is the initial capacity constraint for each place,

• M0: P0 → N is the initial marking of tokens for each place in P0,

6.1. SYNTAX 104

• def0: P0 → TD0∪{null} is the initial association of each place to a single task
definition or a special indicator null of no task definition,

• TD0 is the initial set of task definitions in the network,

• TS0 is the initial set of task states in the network.

A network-level controller should always be well formed. In section 3.3 this was a
property of the network-level controller’s structure. Here, since that structure is now
part of the state, being well formed will be a property of a network-level controller’s
state.

Definition 57 A network-level controller state
(NLC)k = (Pk, Tk, Fk,Wk, Kk,Mk, defk, TDk, TSk) is well formed if:

• Fk ⊆ (Pk × Tk) ∪ (Tk × Pk) all of the currently existing arcs go from currently
existing places to currently existing transitions or from currently existing tran-
sitions to currently existing places,

• Wk : Fk → N each currently existing arc has a non-negative integer weight,

• Kk: Pk → N+ each currently existing place has a positive integer capacity
constraint,

• Mk: Pk → N each currently existing place has a non-negative integer number
of tokens,

• defk: Pk → TDk ∪ {null} each currently existing place is associated to a single
currently existing task definition or a special indicator null of no task definition.

A state being well formed guarantees: there are no dangling arcs connected to
something that no longer exists, there are no arcs with incorrectly defined weights,
there are no places with incorrectly defined capacity constraints, there are no places
with incorrectly defined markings, and that there are no places with incorrectly de-
fined task definition associations. As the NLC evolves through transitions firing, tasks
becoming completed, or runtime patches being applied; each resultant state should
be well formed. The invariance of being well formed will be proven in section 6.4.

Well formed asserts the ’correctness’ of the Petri net portion of the network-level
controller’s state. Fully representative does the same for the set of task definitions,
TDk. Every NLC state should be fully representative, meaning every task definition
should always be represented by exactly one place.

Definition 58 A network-level controller state
(NLC)k = (Pk, Tk, Fk,Wk, Kk,Mk, defk, TDk, TSk) is fully representative if:

6.2. SEMANTICS 105

∀td ∈ TDk.(∃!p ∈ Pk.defk(p) = td).

The final form of ’correctness’ is that a NLC’s tokens and tasks ’match’. A NLC
state is task-token consistent if: for each place that has a task definition, the number
of tokens in that place matches the number of task states of that definition.

Definition 59 A NLC state (Pk, Tk, Fk,Wk, Kk,Mk, defk, TDk, TSk) is task-token
consistent if the following holds:

∀p ∈ Pk.[defk(p) 6= null] ⇒ [Mk(p) = cardinality(TSk|defk(p))].

After the semantics of network-level controllers (capable of being modified by the
runtime patching language) is presented, the invariance of being well formed, fully
representative, and task-token consist will be proven. These properties could have
been lumped into one larger property, but they are easier to express, explain, and
prove individually.

6.2 Semantics

Network-level controllers evolve from a state
(Pk, Tk, Fk,Wk, Kk,Mk, defk, TDk, TSk) to a state
(Pk+1, Tk+1, Fk+1,Wk+1, Kk+1,Mk+1, defk+1, TDk+1, TSk+1) based on either a task be-
ing completed, a transition being fired, or a runtime patch being applied.

The environment (the UAVs) can complete the tasks just as in section 3.4. From
the perspective of the network-level controller the environment only causes an instan-
taneous change in TSk. Since the state was expanded, the new semantics for a task
being completed are listed, despite being essentially the same.

Definition 60 The environment completing a task tsi ∈ TSk causes a state change

(Pk, Tk, Fk,Wk, Kk,Mk, defk, TDk, TSk)
complete(tsi)
−−−−−−−→

(Pk+1, Tk+1, Fk+1,Wk+1, Kk+1,Mk+1, defk+1, TDk+1, TSk+1) where:

• Pk+1 = Pk,

• Tk+1 = Tk,

• Fk+1 = Fk,

• Wk+1 = Wk,

• Kk+1 = Kk,

• Mk+1 = Mk,

6.2. SEMANTICS 106

• defk+1 = defk,

• TDk+1 = TDk,

• TSk+1 = TSk − tsik + tsik+1 only the task state tsi is updated,
this update satisfies done(tsik) = false ∧ done(tsik+1) = true.

Obviously there are many components of the network-level controller’s state that
remain unaffected.

For a NLC transition to be enabled in state (Pk, Tk, Fk,Wk, Kk,Mk, defk, TDk, TSk),
it must be token enabled and completion enabled. Token enabled is the standard Petri
net condition applied to the current sub-Petri net.

Definition 61 At time k a NLC transition t ∈ Tk is token enabled if:

∀p ∈ (•t) | Mk(p) ≥ Wk(p, t)

Completion enabled is also very similar to before.

Definition 62 At time k a NLC transition t ∈ Tk is completion enabled if:
∀p ∈ (•t).[defk(p) 6= null] ⇒ [∃!ts1k, ...ts

Wk(p,t)
k ∈ TSk.taskDef(ts1k) = defk(p) ∧

done(ts1k) ∧ ... ∧ taskDef(ts
Wk(p,t)
k) = defk(p) ∧ done(ts

Wk(p,t)
k)].

Completion enabled requires that at the current moment, each place with an arc
going to t and an associated task definition have a sufficient number of tasks of the
correct definition that are also currently finished. When checking for a completion
enabled transition, the task states bound are recorded in the set TS−. If the transition
ends up being both token and completion enabled it can be fired and the set of tasks
TS− will be removed from the network along with the correct tokens.

Again, a set of new tasks, TS+, must be created when a NLC transition t fires.

Definition 63 The set of tasks to be created after a transition t ∈ Tk fires is:
TS+ =

⋃

p∈(t•)

TSt,p

• if defk(p) = null then TSt,p = {},

• if defk(p) 6= null then TSt,p = {ts1k, ...ts
Wk(t,p)
k }

where taskDef(tsmk) = defk(p) and done(tsmk) = false for each new task state.

When a NLC transition is token and completion enabled it can fire causing the
tokens and the set of task states to change just as in chapter 3. No other part of the
NLC state is affected.

6.2. SEMANTICS 107

Definition 64 A transition t ∈ Tk firing at time k causes a state change

(Pk, Tk, Fk,Wk, Kk,Mk, defk, TDk, TSk)
firing(t)
−−−−−→

(Pk+1, Tk+1, Fk+1,Wk+1, Kk+1,Mk+1, defk+1, TDk+1, TSk+1) where:

• Pk+1 = Pk,

• Tk+1 = Tk,

• Fk+1 = Fk,

• Wk+1 = Wk,

• Kk+1 = Kk,

• Mk+1(p) = Mk(p)−Wk(p, t) +Wk(t, p),

• defk+1 = defk,

• TDk+1 = TDk,

• TSk+1 = TSk − TS− + TS+.

Tasks being completed and transitions firing can evolve the Mk and TSk portions
of the state just as in section 3.4. If the human operator chooses not to apply runtime
patches this will be the emergent behavior as the rest of the state will remain constant
while the network-level controller fires transitions and the UAVs complete tasks.

Alternatively, a runtime patch rp can be applied by the human operator to dras-
tically alter the network-level controller’s state and consequently its future behavior.
Chapter 5 gave a BNF syntax and structural operational semantics that describe
how a runtime patch rp affects the state (NLC)k. Those semantic rules show how
< rp, (NLC)k >→ (NLC)k+1.

The representations for the structural operational semantics of runtime patches
and the set-theoretic semantics of transitions firing and tasks being completed do not
match. To consistently represent a behavior involving both, a runtime patch rp being
applied can also be represented as (NLC)k

rp
−→ (NLC)k+1, but this is understood to

occur if and only if < rp, (NLC)k >→ (NLC)k+1.
Any behavior of a network-level controller is an interleaving of tasks being com-

pleted, transitions firing, and runtime patches being applied.

Definition 65 A string of states, (NLC)0, (NLC)1, (NLC)2... , is a behavior of a
network-level controller if:

• (P0, T0, F0,W0, K0,M0, def0, TD0, TS0) matches the initial state in the defini-
tion of the NLC,

6.3. EXAMPLE 108

• ∀k.[(NLC)k
complete(ts)
−−−−−−−→ (NLC)k+1] ∨ [(NLC)k

firing(t)
−−−−−→ (NLC)k+1]

∨ [< rp, (NLC)k >−→ (NLC)k+1],
the successor state is caused by a task being completed, a transition being fired,
or a runtime patch being applied.

Definition 66 The language of the network-level controller, L(NLC), is the set of
all potential behaviors.

6.3 Example

Figure 6.1 shows an example behavior with runtime patching. The network-level
controller initializes at k = 0 to the empty controller and then is modified through a
sequence of runtime patches by the human operator until a token (and a task state
ts1 based on td1) is added at k = 9. At this point the transition t0 is token enabled,
but the new task is not completed. The UAVs execute and complete the task moving
the controller to k = 10 where t0 is token and completion enabled. The network-level
controller then automatically fires transition t0, creating and removing tokens and
task states appropriately.

The behavior shown in figure 6.1 is:

(NLC)0
addP lace(td1)
−−−−−−−−→ (NLC)1

addP lace(td2)
−−−−−−−−→ (NLC)2

addTransition()
−−−−−−−−−−→ (NLC)3

addTransition()
−−−−−−−−−−→

(NLC)4
addArc(p0,t0)
−−−−−−−−→ (NLC)5

addArc(t0,p1)
−−−−−−−−→ (NLC)6

addArc(p1,t1)
−−−−−−−−→ (NLC)7

addArc(t1,p0)
−−−−−−−−→

(NLC)8
addToken(p0)
−−−−−−−−→ (NLC)9

completion(ts1)
−−−−−−−−−−→ (NLC)10

firing(t0)
−−−−−−→ (NLC)11

completion(ts2)
−−−−−−−−−−→

(NLC)12
firing(t1)
−−−−−−→ (NLC)13.

A total of 3 different tokens/tasks are created in the figure. The first one is
manually inserted by using runtime patching at k = 9, the next two are automati-
cally generated by the NLC. The network-level controller would experience this cyclic
behavior until another runtime patch is applied.

It again seems appropriate to point out that the graphical representation in figure
6.1 does not show all of the details of the network’s state. The simplified represen-
tation hides the details of the task definitions and task states. All of the existing
task definitions are represented by the places, assuming the state is fully representa-
tive. Also all of the existing task states are represented by the tokens, assuming the
state is task-token consistent. At any moment k, viewing the Petri net portion of the
network-level controller’s state tells the human operator what tasks currently exist
based on what definitions.

6.3. EXAMPLE 109

Figure 6.1: Example of runtime patching to modify a network-level controller.

6.4. INVARIANCE THEOREMS 110

6.4 Invariance Theorems

In order for the network-level controller to correctly operate, the state must remain
well formed, fully representative, and task-token consistent. These are conditions on
the state of the network level controller (Pk, Tk, Fk,Wk, Kk,Mk, defk, TDk, TSk), but
the invariance of these properties is a result of the semantics.

6.4.1 Well Formed

Lemma 6 will show that any single step from a well formed state will result in a
well formed state. Theorem 7 will extend this to show that all states reachable from
a well formed initial state are guaranteed to be well formed.

Lemma 6 If a network-level controller is in a well formed state
(Pk, Tk, Fk,Wk, Kk,Mk, defk, TDk, TSk), then every state immediately reachable,
(Pk+1, Tk+1, Fk+1,Wk+1, Kk+1,Mk+1, defk+1, TDk+1, TSk+1), is also well formed.

Proof: There are several ways that (Pk, Tk, Fk,Wk, Kk,Mk, defk, TDk, TSk) can tran-
sition to become (Pk+1, Tk+1, Fk+1,Wk+1, Kk+1,Mk+1, defk+1, TDk+1, TSk+1), this proof
will show that well formedness is preserved for all possible cases: a task being com-
pleted, a transition firing, and any runtime patch being applied.

Due to the numerous cases, the proof is included in appendix A. �

Theorem 7 If a network-level controller starts in a well formed initial state
(P0, T0, F0,W0, K0,M0, def0, TD0, TS0), then it will remain well formed through all
reachable states (Pk, Tk, Fk,Wk, Kk,Mk, defk, TDk, TSk).

Proof: The proof will proceed by an inductive argument on the length of the firing se-
quence required to reach the reachable state, (Pk, Tk, Fk,Wk, Kk,Mk, defk, TDk, TSk),
where k is the length of the firing sequence.

Base Case (k = 0): If the reachable state is the initial state
(P0, T0, F0,W0, K0,M0, def0, TD0, TS0), it is well formed by assumption.

Inductive Step (k 6= 0): Every reachable state can be reached through a firing sequence
of some finite length k. The state (NLC)k−1 in the behavioral sequence prior to
(NLC)k is also reachable, but with a firing sequence of length k− 1. By the inductive
hypothesis (NLC)k−1 must be well formed. This with lemma 6 proves that (NLC)k
is also well formed. �

6.4. INVARIANCE THEOREMS 111

Theorem 7 proves the invariance of being well formed. Proposition 3 gives the
most trivial well formed state. The empty state trivially satisfies all conditions of
definition 57.

Proposition 3 An empty state, one with no places, transitions, arcs, arc weights,
capacity constraints, tokens, task definitions, or task states, is well formed.

Corollary 4 A NLC that starts in an empty state stays well formed indefinitely.

Proof: By proposition 3 the empty state is well formed. By theorem 7 the NLC
will stay well formed in all states reachable from this well formed initial state, which
happens to be empty. �

Corollary 4 proves that if the network-level controller is initialized to the empty
state, then it is guaranteed to remain well formed.

6.4.2 Fully Representative

Lemma 7 will show that any single step from a fully representative state will
result in a fully representative state. Theorem 8 will extend this to show that all
states reachable from a fully representative initial state are guaranteed to be fully
representative.

Lemma 7 If a network-level controller is in a fully representative state
(Pk, Tk, Fk,Wk, Kk,Mk, defk, TDk, TSk), then every state immediately reachable,
(Pk+1, Tk+1, Fk+1,Wk+1, Kk+1,Mk+1, defk+1, TDk+1, TSk+1), is also fully representa-
tive.

Proof: There are several ways that (Pk, Tk, Fk,Wk, Kk,Mk, defk, TDk, TSk) can tran-
sition to become (Pk+1, Tk+1, Fk+1,Wk+1, Kk+1,Mk+1, defk+1, TDk+1, TSk+1), this proof
will show that being fully representative is preserved for all possible cases: a task being
completed, a transition firing, and any runtime patch being applied.

Due to the numerous cases, the proof is included in appendix B. �

Theorem 8 If a network-level controller starts in a fully representative initial state
(P0, T0, F0,W0, K0,M0, def0, TD0, TS0), then it will remain fully representative through
all reachable states (Pk, Tk, Fk,Wk, Kk,Mk, defk, TDk, TSk).

Proof: The proof will proceed by an inductive argument on the length of the firing se-
quence required to reach the reachable state, (Pk, Tk, Fk,Wk, Kk,Mk, defk, TDk, TSk),
where k is the length of the firing sequence.

6.4. INVARIANCE THEOREMS 112

Base Case (k = 0): If the reachable state is the initial state
(P0, T0, F0,W0, K0,M0, def0, TD0, TS0), it is fully representative by assumption.

Inductive Step (k 6= 0): Every reachable state can be reached through a firing sequence
of some finite length k. The state (NLC)k−1 in the behavioral sequence prior to
(NLC)k is also reachable, but with a firing sequence of length k− 1. By the inductive
hypothesis (NLC)k−1 must be fully representative. This with lemma 7 proves that
(NLC)k is also fully representative. �

Proposition 4 gives the most trivial fully representative state. The empty state
trivially satisfies all conditions of definition 58.

Proposition 4 An empty state, one with no places, transitions, arcs, arc weights,
capacity constraints, tokens, task definitions, or task states, is fully representative.

Corollary 5 A NLC that starts in an empty state stays fully representative indefi-
nitely.

Proof: By proposition 4 the empty state is fully representative. By theorem 8 the
NLC will stay fully representative in all states reachable from this fully representative
initial state, which happens to be empty. �

Corollary 5 proves that if the network-level controller is initialized to the empty
state, then it is guaranteed to remain fully representative.

6.4.3 Task-Token Consistent

Lemma 8 will show that any single step from a task-token consistent state will
result in a task-token consistent state. Theorem 9 will extend this to show that
all states reachable from a task-token consistent initial state are guaranteed to be
task-token consistent.

Lemma 8 If a network-level controller is in a task-token consistent state
(Pk, Tk, Fk,Wk, Kk,Mk, defk, TDk, TSk), then every state immediately reachable,
(Pk+1, Tk+1, Fk+1,Wk+1, Kk+1,Mk+1, defk+1, TDk+1, TSk+1), is also task-token consis-
tent.

Proof: There are several ways that (Pk, Tk, Fk,Wk, Kk,Mk, defk, TDk, TSk) can tran-
sition to become (Pk+1, Tk+1, Fk+1,Wk+1, Kk+1,Mk+1, defk+1, TDk+1, TSk+1), this proof
will show that being task-token consistent is preserved for all possible cases: a task
being completed, a transition firing, and any runtime patch being applied.

Due to the numerous cases, the proof is included in appendix C. �

6.4. INVARIANCE THEOREMS 113

Theorem 9 If a network-level controller starts in a task-token consistent initial state
(P0, T0, F0,W0, K0,M0, def0, TD0, TS0), then it will remain task-token consistent
through all reachable states (Pk, Tk, Fk,Wk, Kk,Mk, defk, TDk, TSk).

Proof: The proof will proceed by an inductive argument on the length of the firing se-
quence required to reach the reachable state, (Pk, Tk, Fk,Wk, Kk,Mk, defk, TDk, TSk),
where k is the length of the firing sequence.

Base Case (k = 0): If the reachable state is the initial state
(P0, T0, F0,W0, K0,M0, def0, TD0, TS0), it is task-token consistent by assumption.

Inductive Step (k 6= 0): Every reachable state can be reached through a firing sequence
of some finite length k. The state (NLC)k−1 in the behavioral sequence prior to
(NLC)k is also reachable, but with a firing sequence of length k− 1. By the inductive
hypothesis (NLC)k−1 must be task-token consistent. This with lemma 8 proves that
(NLC)k is also task-token consistent. �

Proposition 5 gives the most trivial fully representative state. The empty state
trivially satisfies all conditions of definition 59.

Proposition 5 An empty state, one with no places, transitions, arcs, arc weights,
capacity constraints, tokens, task definitions, or task states, is task-token consistent.

Corollary 6 A NLC that starts in an empty state stays task-token consistent indef-
initely.

Proof: By proposition 5 the empty state is task-token consistent. By theorem 9 the
NLC will stay task-token consistent in all states reachable from this task-token con-
sistent initial state, which happens to be empty. �

Corollary 6 proves that if the network-level controller is initialized to the empty
state, then it is guaranteed to remain task-token consistent.

If the network-level controller is started in a well formed, fully representative,
and task-token consistent initial state; then theorems 7, 8, and 9 guarantee that all
reachable states are also well formed, fully representative, and task-token consistent.
By encapsulating the manipulations of the network-level controller’s structure with
runtime patching, the invariance of these properties can be guaranteed. This allows
human operators to only create correct-by-construction network-level controllers.

Corollaries 4, 5, and 6 suggest that the network-level controller can begin at the
trivially empty initial state and be guaranteed well formed, fully representative, and
task-token consistent. The human operator can then create the desired network-level
controller through runtime patches.

6.5. ANALYZABLE PROPERTIES 114

6.5 Analyzable Properties

If a network-level controller state (Pk, Tk, Fk,Wk, Kk,Mk, defk, TDk, TSk) is con-
structed through runtime patching, the sub-Petri net at this state can be evaluated
as in section 4.2 under the assumption that this structure will remain fixed. If the
NLC evolves only through tasks being completed and transitions firing, this assump-
tion is valid and the network-level controller with runtime patching will behave like
a network-level controller without runtime patching. If a runtime patch is applied,
the new network-level controller state will be structurally different than the preceding
state and any properties that were evaluated should be re-evaluated.

Figure 6.2: Simple example of a network-level controller that will automatically ex-
perience a cyclic behavior until a runtime patch occurs.

Figure 6.2 shows the simple network-level controller that was constructed in figure
6.1. If left alone, meaning no more runtime patches are applied by the human oper-
ator, it will experience the cyclic creation and completion of tasks based on td1 and
td2. All of the transitions are live, the bounds on all places are 1, it cannot deadlock,
and it currently is not deadlocked.

Figure 6.3: The network-level controller from figure 6.2 after a simple runtime patch
modifying an arc weight, modifyWeight(t0, p1, 2).

A simple runtime patch, modifyWeight(t0, p1, 2), would result in figure 6.3. This
state has drastically different potential behaviors than those in figure 6.2. If the
network-level controller where left alone after this state, meaning no more runtime
patches: all of the transitions would still be live, the bounds on the places would
increase to their capacity constrained values, and it still would not be deadlocked.

6.6. CONCLUSIONS 115

Figure 6.4: The network-level controller from figure 6.2 after a simple arc deletion,
deleteArc(p0, t0).

If instead a runtime patch deleteArc(p0, t0) were applied to figure 6.2, figure 6.4
would result. Again, the potential behaviors of the network-level controller, if left
alone, would drastically change. Neither of the transitions are live because the state
is currently deadlocked.

6.6 Conclusions

Network-level controllers modified by the runtime patching language provide a
novel method of controlling and automating the insertion and removal of tasks in
a collaborative system. The NLC operates at a high level of abstraction and has
a simple graphical depiction that illustrates the existence of tasks as well as the
ordering constraints currently imposed on future tasks. The model has a simple
graphical depiction, a network focus, handles a varying number of tasks, and can be
affected by the human operator on-line. It satisfies all of the criteria sought by this
dissertation.

However, the developments presented in this dissertation assumed a synchronous
network. It was implicitly assumed that at any moment there was one consistent
set of task definitions, TDk, and one consistent set of task states, TSk. It was also
assumed that a transition firing could instantaneously remove or add task states to
the network. Similarly, it was assumed that a runtime patch could instantaneously
add, delete, or modify task definitions and task states. The synchronous network
assumption simplifies the expected behavior of the network. Using a synchronous
network allows this dissertation to develop and present the concepts of network-
level control independent of the complicating issues that arise in any asynchronous
distributed network, such as UAVs.

Developments for an asynchronous network would require assuming a specific
method of propagating information among the many distributed network members.
The specifics of this method would affect how quickly and with what guarantees the
task definition and task state changes could occur. The network-level controller can
make changes to its local copy, but the details of this asynchronous communication

6.6. CONCLUSIONS 116

scheme would determine how and if those changes are fully propagated.
Future work includes selecting a specific asynchronous communication method

and showing that network-level controllers operating in this environment, under the
assumption that their local state estimate is the actual state, still execute ’correctly’.
Several additional assumptions on the behavior of the asynchronous communication
scheme will likely be necessary.

117

Chapter 7

The Collaborative Sensing
Language

The Collaborative Sensing Language (CSL) is an XML-based language that en-
ables interaction with a network-level controller, called the ’Publisher’, at the Center
for Collaborative Control of Unmanned Vehicles (C3UV) [120]. CSL can be used to re-
trieve the network’s state from this network-level controller or to send runtime patches
that modify the network-level controller. This Publisher performs the high-level con-
trol of C3UV’s task-based collaborative UAV network for Intelligence, Surveillance,
and Reconnaissance (ISR) tasks.

CSL provides the network’s state from the perspective of the Publisher. Meaning,
that when the state is requested it is formed from the Publisher’s local estimate. The
Petri net information only exists in the Publisher; however, the task definitions, task
states, UAV definitions, UAV states are distributed throughout the network. The
local Publisher estimate of these values is what is provided by CSL.

The other form of CSL interactions are the runtime patches that modify the
behavior of the Publisher (network-level controller). In this manner, the intended
network behavior can be drastically modified and controlled on-line through CSL.

The concepts presented in previous chapters are formalizations of ideas originally
developed for CSL and the Publisher. The Publisher is a specific implementation
of a network-level controller. CSL is a specific format to output the network-level
controller’s state as well as to input runtime patches. Network-level control was
created to both formalize the model of computation and generalize the ideas behind
CSL and the Publisher, so that they could potentially apply to other applications.
This may cause some confusion with inconsistent terminology such as: Publisher =
network-level controller. Where appropriate, these relationships will be identified and
clarified.

7.1. IMPLEMENTATION 118

7.1 Implementation

The Publisher component is an implementation of network-level control that uses
CSL as a ’language independent’ data exchange format to communicate with GUIs
or web servers. The publisher is written in C++ and uses the Xerces-2.7.0 library for
XML support. Xerces is an Apache XML Project product that contains a DOMparser,
DOMwriter, and a DOMvalidator (for checking against the CSL schema). This allows
the Publisher to read, write, and verify that the XML is correctly defined CSL.

Internally, the Publisher interacts with C3UV’s Collaborative Sensing Middleware
(CSM) and Collaborative Control System (CCS). CSM’s purpose is to transparently
communicate and synchronize all of the information within the UAV network. When
the Publisher fires a transition, it may create/remove tasks in a local estimate of the
network state. It is the CSM sub-system that disseminates and synchronizes this
new information with the UAVs throughout the network. The details of the CSM
implementation determine how far from reality the synchronous network assumption
is. If CSM was developed poorly, information would never or only very slowly syn-
chronize. Luckily, in simulations and demonstrations the current ad-hoc CSM has
worked rather well. The future work listed in section 6.6 will involve incorporating a
model, such as one for CSM, directly into the semantics of network-level control. The
expanded semantics will give a more complete view of the network-level controller’s
interaction with the entire network.

As new tasks (e.g. tsa) are added by the Publisher and distributed by CSM,
the Collaborative Control System (CCS) determines which UAVs will be assigned
to which tasks and then executes those tasks. This is done in a decentralized sub-
optimal manner that can be executed on-line [75]. CCS causes these tasks to become
’done’. This information is sent from the UAVs back to the Publisher by CSM. When
the Publisher’s local estimate is updated to contain the completed tasks, a transition
may become enabled and fire, creating more tasks to be disseminated by CSM and
then completed by CCS.

The Publisher executes as a network-level controller, but it assumes that its local
state estimate is the ’real’ state of the network. The Publisher periodically (10 Hz)
performs a loop that: checks for and applies up to 1 runtime patch, checks for and
fires up to 1 enabled transition, waits and synchronizes information with the rest of
the network. When it checks for any runtime patches, if one is waiting, it is applied
and the response is issued. Next, the list of transitions is searched for any enabled
transition. If one is found, it is fired. Only one transition is fired in any cycle. The
list of transitions is cycled through in a deterministic top-to-bottom manner so the
implementation may give preference to transitions listed higher. Lastly, the Publisher
sits and waits while CSM synchronizes its state with the network. This should dis-
seminate out any new tasks that were created while pulling in any information about
old tasks that have been completed. So during any individual cycle it is possible that

7.1. IMPLEMENTATION 119

no events occur, causing the internal Publisher state to remain unaffected. It is also
possible that a runtime patch, a transition firing, and task states being completed all
occur causing several state transitions.

Figure 7.1: Screenshot of the Google Maps based graphical user interface (GUI).

The Publisher is connected to either web services or a graphical user interface
(called the ’Commander GUI’). The Commander GUI displays the CSL information
in a graphical manner. It is a Qt 4.0 GUI that uses an embedded Google Map
display to show geographic data, figure 7.1. The GUI was developed to interact with
a touchscreen monitor. All of the task definitions are drawn on the map and can be
’dragged’ to modify their points. Once the task definition is modified, it can be ‘sent’
to the CSM and distributed throughout the network.

The web server implementation exchanged the XML-based CSL, but a web ser-
vices based GUI has not yet been created. An iPhone/web server demonstration
was performed in the Spring of 2008, but the iPhone textually specified the CSL
instead of having a well developed GUI. This was much more of a proof-of-concept
demonstration than a fully developed product.

In the different demonstrations imagery, such as figure 7.2, is collected and stored
by the UAVs when executing tasks. These images can then be pulled down and

7.1. IMPLEMENTATION 120

Figure 7.2: Real image collected from Camp Roberts, CA.

viewed. Alternatively, video streams are often recorded and streamed over RTP to
human operators on the ground using the Video Lan Client software (VLC).

Figure 7.3: Simulated camera imagery using Google Earth.

7.2. C3UV PLATFORMS 121

Since it is not always possible to go out and physically fly, hardware-in-the-loop
(HIL) simulations also allow experiments to be performed. HIL simulations use all
of the real hardware, but fake the sensor inputs (GPS, gyros, etc.) to allow the UAV
to believe it is flying and respond appropriately. A Google Earth based camera view
simulator was created to fake the video stream as well, figure 7.3. This software took
in the position and orientation of the UAV as well as relative location of the camera
to appropriately position the Google Earth simulated camera. This allowed a 10 Hz
fake video to be produced as if it was real video being generated by the UAV. This
was used in an extensive simulation at Quantico, VA when a real demonstration was
not possible due to security concerns.

7.2 C3UV Platforms

The Publisher and CSL were developed to help control the UAV fleet at C3UV.
This fleet contains MLB Bat IVs, figure 7.4, and Sig Rascal 110s, figure 7.5.

Figure 7.4: MLB Bat IV UAV

The Bat IV is the larger of the two UAV platforms. It has a 13 foot wingspan and
a payload of approximately 50 pounds. Its normal cruising speed is around 60 mph.
It has the potential for an integrated on-board generator to charge the batteries which
power the electronics. With the generator functioning, a flight time of up to 8 hours
could be achieved. Issues with the generator have lead to most experiments being
performed without it, limiting the battery life and flight time to around 2 hours. The
Bat’s servos are controlled by the commercial Cloud Cap Piccolo II autopilot, figure
7.6. The Piccolo II performs all of the low-level autopilot control and estimation.
The Bat also has 2 PC-104 stacks performing the CCS and CSM functions. The

7.2. C3UV PLATFORMS 122

main benefit of the Bat IV during experiments has been its additional payload which
can carry an extra PC-104 stack as well as a heavier gimbaled camera.

Figure 7.5: Sig Rascal 110 UAV and a single PC-104 stack

The Sig Rascal is the smaller, but more frequently used UAV platform. It is based
on a hobbyist kit, making replacement parts cheaper and easier to acquire. It also
requires significantly less preparation than the Bat IV as well as being easier to fly. Its
9 foot wingspan, 12 pound payload, 50 mph cruise speed, and 90 minute flight time
are more than sufficient for most experiments. It also utilizes a Piccolo II autopilot
that is integrated with a PC-104 stack. The Rascal is typically flown with either
a fixed camera or a side-mounted gimbaled camera which has a restricted range of
motion.

Figure 7.6: Cloud Cap Piccolo II autopilot

7.3. XML-BASED SYNTAX 123

The PC-104 stack, shown in figure 7.5, is a computer of a special form factor that
is easy to embed in the UAVs. Each PC-104 stack has a dual-core processor, most of
which are 2.0 GHz Pentium processors. They also feature solid state flash memory
hard drives (typically 4 GB or 8 GB) and a 802.11 b/g wireless connection boosted
by a 1 watt amplifier. The 802.11 wireless connection is used by C3UV to transmit
all data, but the Piccolo II also has a 900 MHz link that allows for manual control of
the UAV to be regained for take-off and landing.

7.3 XML-based Syntax

XML was chosen for specifying CSL based on it being ’language independent’.
XML is itself a markup language, a language that is formed from standard ASCII
text and used to create a rooted tree of nested tags. Most programming languages
(C, C++, Java) can understand standard ASCII text and this allows XML parsers
to be developed for use by these programming languages. This makes an XML rep-
resentation usable by almost every programming language, thus XML is a ’language
independent’ information exchange format.

The CSL XML grammar can be specified using either an XML DTD or an XML
schema. Both DTDs and schemas can specify the same XML, they are just different
methods for doing so. Since DTDs are allegedly being deprecated, and since schemas
allow for values to be typed, a schema will be used to specify CSL (example benefit
of schema’s typing: an altitude can be forced to be a positive number with a schema,
but with a DTD it could have a value ’John’). The schema will be presented in
chunks interleaved with a few CSL XML examples. The schema and the examples
are both XML, so the schema will be presented with ’figures’ and the examples with
’examples’. The typefaces should be distinctive enough to easily distinguish between
the two.

The two fundamental parts of CSL are reading the network’s state from the
network-level controller and sending runtime patches to the network-level controller.

Figure 7.7 shows that the base CSL message can contain exactly one of: a
“get state” message, the corresponding “state results” message, a
“send runtime patch” message, or the corresponding “runtime patch results” mes-
sage. Every CSL message is also given a timestamp to record when it was created.

A “get state” message can be sent to the Publisher, which then reads the internal
network-level controller’s state and transforms it into a CSL “state results” reply.
This does not affect the Publisher’s state, it simply transforms and outputs the net-
work’s current state. However, this state can be quite complex and lengthy. Example
8 shows a “get state” CSL message. The first tag indicates that the message is XML.
The second tag indicates that the message is CSL; it also has several attributes which
are standard for all CSL messages noting which schema to use for validation. The
attributes of the CSL tag lastly contain the timestamp for when the message was

7.3. XML-BASED SYNTAX 124

<xs:element name="CSL">

<xs:complexType>

<xs:choice>

<xs:element name="get_state"/>

<xs:element name="state_results"

type="state_results_type"/>

<xs:element name="send_runtime_patch"

type="send_runtime_patch_type"/>

<xs:element name="runtime_patch_results"

type="runtime_patch_results_type"/>

</xs:choice>

<xs:attribute name="timestamp" type="xs:dateTime"/>

</xs:complexType>

</xs:element>

Figure 7.7: The root CSL element.

created. The content of the CSL message is the extremely simple “get state” tag.
Example 9 shows a portion of the response. The “...” would be filled in with sev-
eral additional tags describing the current state. Figure 7.8 shows the content that
replaces the “...”. The XML and CSL tags take up a good deal of space and will
be omitted from future examples, however all CSL messages do have these enclosing
tags.

Example 8 Get State Message Example.

<?xml version="1.0" encoding="utf-8"?>

<CSL xmlns="http://www.c3uv.berkeley.edu"

xsi:schemaLocation="http://www.c3uv.berkeley.edu

file:///J:/Files/Thoughts/Thesis/XML%20Schema/CSL_schema.xsd"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

timestamp="2011-11-07T10:10:10">

<get_state/>

</CSL>

Example 9 State Results Message Example.

<?xml version="1.0" encoding="utf-8"?>

<CSL xmlns="http://www.c3uv.berkeley.edu"

xsi:schemaLocation="http://www.c3uv.berkeley.edu

7.3. XML-BASED SYNTAX 125

file:///J:/Files/Thoughts/Thesis/XML%20Schema/CSL_schema.xsd"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

timestamp="2011-11-07T10:10:10">

<state_results>

...

</state_results>

</CSL>

Continuing with figure 7.7, if a “send runtime patch” message is sent to the Pub-
lisher, the Publisher responds with a “runtime patch results” message. The runtime
patches are applied and do update the internal network-level controller state. The
CSL syntax for specifying runtime patches will be discussed in section 7.3.2; first the
CSL state representation will be presented.

7.3.1 CSL’s State Representation

<xs:complexType name="state_results_type">

<xs:sequence>

<xs:element name="petri_net" type="petri_net_type"/>

<xs:element name="task_definitions" type="task_definitions_type"/>

<xs:element name="task_states" type="task_states_type"/>

<xs:element name="uav_definitions" type="uav_definitions_type"/>

<xs:element name="uav_states" type="uav_states_type"/>

</xs:sequence>

</xs:complexType>

Figure 7.8: The state output.

Figure 7.8 shows that the state results always include information about the Petri
net, task definitions, task states, UAV definitions, and UAV states. The next subsec-
tions will discuss these elements in that order.

Petri net Representation

Figure 7.9 shows that the Petri net element contains only a timestamp for when the
last runtime patch was applied, a list of places, a list of transitions, and a list of arcs.
From definition 56 it is apparent that the arc weights, capacity constraints, associated
task definitions, and markings are missing. They are not actually missing, but are
embedded within the individual places and arcs. Every arc is supposed to be assigned
a weight, and figure 7.12 shows that every arc does indeed have a weight assigned.

7.3. XML-BASED SYNTAX 126

<xs:complexType name="petri_net_type">

<xs:sequence>

<xs:element name="last_update" type="xs:dateTime"/>

<xs:element name="places" type="places_type"/>

<xs:element name="transitions" type="transitions_type"/>

<xs:element name="arcs" type="arcs_type"/>

</xs:sequence>

</xs:complexType>

Figure 7.9: The Petri net representation.

Likewise, every place is supposed to have a capacity constraint, an associated task
definition, and a marking. These are shown to be present in figure 7.10.

<xs:complexType name="places_type">

<xs:sequence minOccurs="0" maxOccurs="unbounded">

<xs:element name="place" type="place_type"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="place_type">

<xs:sequence>

<xs:element name="place_id" type="xs:string"/>

<xs:element name="capacity" type="xs:positiveInteger"/>

<xs:element name="associated_task_definition_id" type="xs:string"/>

<xs:element name="marking" type="xs:nonNegativeInteger"/>

</xs:sequence>

</xs:complexType>

Figure 7.10: The places representation.

The top of figure 7.10 shows that the set of places in the Petri net can contain
zero or more individual places. This construct will appear often to show that a list
of several individuals can occur.

The benefit of using a schema over a DTD can be seen by forcing the capacity
constraint element in figure 7.10 to have a positive integer value. A DTD would only
state that there must be a capacity element with some value, it could not type that
value. An unfortunate drawback of this additional typing feature is that the grammar
becomes even lengthier.

Since no information was associated to transitions, definition 56, it should not be

7.3. XML-BASED SYNTAX 127

<xs:complexType name="transitions_type">

<xs:sequence minOccurs="0" maxOccurs="unbounded">

<xs:element name="transition" type="transition_type"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="transition_type">

<xs:sequence>

<xs:element name="transition_id" type="xs:string"/>

</xs:sequence>

</xs:complexType>

Figure 7.11: The transitions representation.

surprising that CSL has no information other than an identifier for each transition.

<xs:complexType name="arcs_type">

<xs:choice minOccurs="0" maxOccurs="unbounded">

<xs:element name="arc" type="arc_type"/>

</xs:choice>

</xs:complexType>

<xs:simpleType name="arc_direction_type">

<xs:restriction base="xs:string">

<xs:enumeration value="incoming"/>

<xs:enumeration value="outgoing"/>

</xs:restriction>

</xs:simpleType>

<xs:complexType name="arc_type">

<xs:sequence>

<xs:element name="arc_id" type="xs:string"/>

<xs:element name="direction" type="arc_direction_type"/>

<xs:element name="from_id" type="xs:string"/>

<xs:element name="to_id" type="xs:string"/>

<xs:element name="weight" type="xs:positiveInteger"/>

</xs:sequence>

</xs:complexType>

Figure 7.12: The arcs representation.

7.3. XML-BASED SYNTAX 128

Arcs contain both the direction they are pointing (incoming to a transition, or
outgoing from a transition), a weight, and which elements they are connected to.

The CSL Petri net description for figure 6.4 would look like:

Example 10 Petri net Example from figure 6.4.

<petri_net>

<last_update>2011-11-07T06:24:15</last_update>

<places>

<place>

<place_id>P0</place_id>

<capacity>10</capacity>

<associated_task_definition_id>TD1

</associated_task_definition_id>

<marking>1</marking>

</place>

<place>

<place_id>P1</place_id>

<capacity>10</capacity>

<associated_task_definition_id>TD2

</associated_task_definition_id>

<marking>0</marking>

</place>

</places>

<transitions>

<transition>

<transition_id>T0</transition_id>

</transition>

<transition>

<transition_id>T1</transition_id>

</transition>

</transitions>

<arcs>

<arc>

<arc_id>A1</arc_id>

<direction>outgoing</direction>

<from_id>T0</from_id>

<to_id>P1</to_id>

<weight>1</weight>

7.3. XML-BASED SYNTAX 129

</arc>

<arc>

<arc_id>A2</arc_id>

<direction>incoming</direction>

<from_id>P1</from_id>

<to_id>T1</to_id>

<weight>1</weight>

</arc>

<arc>

<arc_id>A3</arc_id>

<direction>outgoing</direction>

<from_id>T1</from_id>

<to_id>P0</to_id>

<weight>1</weight>

</arc>

</arcs>

</petri_net>

As is evident, the CSL description for even a simple Petri net becomes rather
lengthy. This example Petri net has lists of 2 places, 2 transitions, and 3 arcs. It also
contains the details for the places, transitions, and arcs.

Frequently Occurring Types

There are several types of values that will be used by CSL’s task definitions, task
states, UAV definitions, and UAV states. Creation of the types allows them to be
specified once and used repeatedly.

Figure 7.13 shows three types that will be used for representing longitude, latitude,
and altitude, respectively. Again, a benefit of schemas over DTDs is the ability to
restrict the ranges to acceptable values.

Figure 7.14 uses the types from figure 7.13 to create common types for points and
rotations. Any point will contain a latitude from -90.00 through 90.00, a longitude
from -180.00 through 180.00, and an altitude that is positive. Since Euler angles are
used by C3UV (partially due to their use by the Cloudcap Piccolo autopilot) the yaw,
pitch, and roll of the UAV are all expressed from -180.00 through 180.00.

Finally, figure 7.15 shows the representation of the probability grid that had to
be integrated for the Summer 2009 and 2010 demonstrations to include distributed
data fusion (DDF). A probability grid is made up of a list of individual cells. Each
cell has a (x, y) grid coordinate as well as a probability value.

7.3. XML-BASED SYNTAX 130

<xs:simpleType name="symmetric180_double">

<xs:restriction base="xs:double">

<xs:maxInclusive value="180.0000000"/>

<xs:minInclusive value="-180.000000"/>

</xs:restriction>

</xs:simpleType>

<xs:simpleType name="symmetric90_double">

<xs:restriction base="xs:double">

<xs:maxInclusive value="90.0000000"/>

<xs:minInclusive value="-90.000000"/>

</xs:restriction>

</xs:simpleType>

<xs:simpleType name="positive_double">

<xs:restriction base="xs:double">

<xs:minInclusive value="0.000000"/>

</xs:restriction>

</xs:simpleType>

Figure 7.13: Common number types used by C3UV.

<xs:complexType name="point">

<xs:sequence>

<xs:element name="latitude" type="symmetric90_double"/>

<xs:element name="longitude" type="symmetric180_double"/>

<xs:element name="altitude" type="positive_double"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="rotation">

<xs:sequence>

<xs:element name="yaw" type="symmetric180_double"/>

<xs:element name="pitch" type="symmetric180_double"/>

<xs:element name="roll" type="symmetric180_double"/>

</xs:sequence>

</xs:complexType>

Figure 7.14: Common GPS points and rotations.

Task Definition Representation

The chapter 3 presentation of network-level control abstracted away most details
about task types, task definitions, task states, UAV types, UAV definitions, and

7.3. XML-BASED SYNTAX 131

<xs:complexType name="probability_grid_type">

<xs:sequence>

<xs:element name="cell" type="cell_type" maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="cell_type">

<xs:sequence>

<xs:element name="x" type="xs:integer"/>

<xs:element name="y" type="xs:integer"/>

<xs:element name="probability" type="positive_double"/>

</xs:sequence>

</xs:complexType>

Figure 7.15: Probability grid representation used for Distributed Data Fusion.

UAV states. CSL must contain all of this detail. This information is vital to and
specifically tailored for C3UV’s ISR application. The task and UAV types determine
the grammar for the task definitions, task states, UAV definitions, and UAV states. If
CSL were to be altered for a different application, this content would need be modified
appropriately.

<xs:simpleType name="task_types">

<xs:restriction base="xs:string">

<xs:enumeration value="visit_point"/>

<xs:enumeration value="visit_line"/>

<xs:enumeration value="visit_area"/>

<xs:enumeration value="watch_point"/>

<xs:enumeration value="watch_line"/>

<xs:enumeration value="watch_area"/>

</xs:restriction>

</xs:simpleType>

Figure 7.16: The list of task types.

Two fundamental types of tasks were identified early at C3UV: visit and watch.
They have also been called travel and track, respectively. The visit types of tasks
are done once and completed automatically by the UAVs. The watch types of tasks
are done indefinitely until the human operator determines that the task is complete.
Both have come in 0, 1, and 2 dimensional variations, figure 7.16.

A visit point type of task results in a UAV simply flying over the point. This

7.3. XML-BASED SYNTAX 132

is the most commonly used task type in demonstrations. A visit line type of task
causes a UAV to fly along a line segment once. A visit area type of task results in a
lawn-mower pattern being flown to cover the area once.

A watch point type of task results in a UAV circling the point indefinitely. A
watch line type of task causes a UAV to patrol a line segment repeatedly. A watch
area type of task is connected to the recent distributed data fusion (DDF) devel-
opments. It was only recently integrated into the Summer 2009 and Summer 2010
demonstrations. The task is given an initial probability grid distribution (prior). The
UAVs are flown based on an optimization algorithm that is seeking to minimize the
entropy of the current probability grid distribution. As the UAVs observe the area,
the probability grid evolves, changing the optimal trajectory for the UAV. The opti-
mal trajectories are not always intuitively obvious. Again, the task is completed by
the human operator, if left alone the UAVs would continue to re-localize the target.

Figure 7.17 shows the list of zero or more task definitions that is a part of the
CSL state results from figure 7.8.

<xs:complexType name="task_definitions_type">

<xs:choice minOccurs="0" maxOccurs="unbounded">

<xs:group ref="task_definition_group"/>

</xs:choice>

</xs:complexType>

<xs:group name="task_definition_group">

<xs:choice>

<xs:element name="visit_point_definition"

type="visit_point_definition_type"/>

<xs:element name="visit_line_definition"

type="visit_line_definition_type"/>

<xs:element name="visit_area_definition"

type="visit_area_definition_type"/>

<xs:element name="watch_point_definition"

type="watch_point_definition_type"/>

<xs:element name="watch_line_definition"

type="watch_line_definition_type"/>

<xs:element name="watch_area_definition"

type="watch_area_definition_type"/>

</xs:choice>

</xs:group>

Figure 7.17: The task definitions.

7.3. XML-BASED SYNTAX 133

Figure 7.18 shows the details of the visit task definitions. A visit point requires a
single point while a visit line requires two points. A visit area task requires the upper
left and lower right corners of the rectangular area to be swept.

All of the task definitions have identifiers, descriptions, priorities, and timestamps
for when they were last modified. They also have which task type they were based
upon (providing the information represented by taskType(td1) = tt2 in chapter 3).

Figure 7.19 shows that the content for watch tasks is mostly the same as for visit
tasks. However, since the watch area task is the CSL integration of DDF, it requires
the number of cells in the grid as well as an initial prior. During demonstrations
these probability grids were been kept small to reduce the amount of computation
and communication required to keep them synchronized and optimized over.

Example 11 Task Definition Example.

<task_definitions>

<visit_point_definition>

<task_definition_id>TD1</task_definition_id>

<task_type>visit_point</task_type>

<description>Fly over the tree near the road.</description>

<point>

<latitude>35.734374</latitude>

<longitude>-122.715324</longitude>

<altitude>60.0</altitude>

</point>

<completion_radius>40.0</completion_radius>

<priority>3</priority>

<last_update>2010-01-04T06:13:44</last_update>

</visit_point_definition>

</task_definitions>

Example 11 shows a simple task definitions state that contains only one task
definition, a visit point task definition. The definition has all of the content required
in figure 7.18.

Task State Representation

Similarly to how the CSL “state results” contains a list of currently existing task
definitions (TD from chapter 3), figure 7.20 shows that there can be zero or more
currently existing task states as part of the overall CSL state (TSk from chapter 3).

Figure 7.21 shows the visit task states corresponding to the definitions in figure
7.18. The visit task states contain an identifier, which UAVs are executing the task,

7.3. XML-BASED SYNTAX 134

<xs:complexType name="visit_point_definition_type">

<xs:sequence>

<xs:element name="task_definition_id" type="xs:string"/>

<xs:element name="task_type" type="task_types"

fixed="visit_point"/>

<xs:element name="description" type="xs:string"/>

<xs:element name="point" type="point"/>

<xs:element name="completion_radius" type="xs:positiveInteger"/>

<xs:element name="priority" type="xs:positiveInteger"/>

<xs:element name="last_update" type="xs:dateTime"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="visit_line_definition_type">

<xs:sequence>

<xs:element name="task_definition_id" type="xs:string"/>

<xs:element name="task_type" type="task_types"

fixed="visit_line"/>

<xs:element name="description" type="xs:string"/>

<xs:element name="point_a" type="point"/>

<xs:element name="point_b" type="point"/>

<xs:element name="priority" type="xs:positiveInteger"/>

<xs:element name="last_update" type="xs:dateTime"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="visit_area_definition_type">

<xs:sequence>

<xs:element name="task_definition_id" type="xs:string"/>

<xs:element name="task_type" type="task_types"

fixed="visit_area"/>

<xs:element name="description" type="xs:string"/>

<xs:element name="upper_left_point" type="point"/>

<xs:element name="bottom_right_point" type="point"/>

<xs:element name="priority" type="xs:positiveInteger"/>

<xs:element name="last_update" type="xs:dateTime"/>

</xs:sequence>

</xs:complexType>

Figure 7.18: The visit tasks definitions.

7.3. XML-BASED SYNTAX 135

<xs:complexType name="watch_point_definition_type">

<xs:sequence>

<xs:element name="task_definition_id" type="xs:string"/>

<xs:element name="task_type" type="task_types"

fixed="watch_point"/>

<xs:element name="description" type="xs:string"/>

<xs:element name="point" type="point"/>

<xs:element name="priority" type="xs:positiveInteger"/>

<xs:element name="last_update" type="xs:dateTime"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="watch_line_definition_type">

<xs:sequence>

<xs:element name="task_definition_id" type="xs:string"/>

<xs:element name="task_type" type="task_types"

fixed="watch_line"/>

<xs:element name="description" type="xs:string"/>

<xs:element name="point_a" type="point"/>

<xs:element name="point_b" type="point"/>

<xs:element name="priority" type="xs:positiveInteger"/>

<xs:element name="last_update" type="xs:dateTime"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="watch_area_definition_type">

<xs:sequence>

<xs:element name="task_definition_id" type="xs:string"/>

<xs:element name="task_type" type="task_types"

fixed="watch_area"/>

<xs:element name="description" type="xs:string"/>

<xs:element name="upper_left_point" type="point"/>

<xs:element name="lower_right_point" type="point"/>

<xs:element name="number_horizontal_cells"

type="xs:positiveInteger"/>

<xs:element name="number_veritcal_cells"

type="xs:positiveInteger"/>

<xs:element name="initial_prior_distribution"

type="probability_grid_type"/>

<xs:element name="priority" type="xs:positiveInteger"/>

<xs:element name="last_update" type="xs:dateTime"/>

</xs:sequence>

</xs:complexType>

Figure 7.19: The watch tasks definitions.

7.3. XML-BASED SYNTAX 136

<xs:complexType name="task_states_type">

<xs:choice minOccurs="0" maxOccurs="unbounded">

<xs:group ref="task_state_group"/>

</xs:choice>

</xs:complexType>

<xs:group name="task_state_group">

<xs:choice>

<xs:element name="visit_point_state"

type="visit_point_state_type"/>

<xs:element name="visit_line_state"

type="visit_line_state_type"/>

<xs:element name="visit_area_state"

type="visit_area_state_type"/>

<xs:element name="watch_point_state"

type="watch_point_state_type"/>

<xs:element name="watch_line_state"

type="watch_line_state_type"/>

<xs:element name="watch_area_state"

type="watch_area_state_type"/>

</xs:choice>

</xs:group>

Figure 7.20: The task states.

its current status (mode that should eventually become ’done’), and a timestamp for
the last update. All task states also record the task definition the task state is based
upon (providing the information represented by taskDef(ts1) = td3 in chapter 3).

Figure 7.22 shows the content of the watch task states. They contain information
similar to the visit task states, except the watch area state also contains a current
probability distribution. If this distribution contains a large number of cells it will
take up a very significant portion of the CSL message. For example a 20x20 gird will
produce 400 cells resulting in a long, long list like:

Example 12 Probability Distribution Cells.

...

<cell>

<x>14</x>

<y>5</y>

<probability>0.025</probability>

</cell>

...

7.3. XML-BASED SYNTAX 137

<xs:complexType name="visit_point_state_type">

<xs:sequence>

<xs:element name="task_state_id" type="xs:string"/>

<xs:element name="task_definition_id" type="xs:string"/>

<xs:element name="assigned_uav_state_id" type="xs:string"

minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="current_status" type="xs:string"/>

<xs:element name="last_update" type="xs:dateTime"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="visit_line_state_type">

<xs:sequence>

<xs:element name="task_state_id" type="xs:string"/>

<xs:element name="task_definition_id" type="xs:string"/>

<xs:element name="assigned_uav_state_id" type="xs:string"

minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="current_status" type="xs:string"/>

<xs:element name="last_update" type="xs:dateTime"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="visit_area_state_type">

<xs:sequence>

<xs:element name="task_state_id" type="xs:string"/>

<xs:element name="task_definition_id" type="xs:string"/>

<xs:element name="assigned_uav_state_id" type="xs:string"

minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="current_status" type="xs:string"/>

<xs:element name="last_update" type="xs:dateTime"/>

</xs:sequence>

</xs:complexType>

Figure 7.21: The visit tasks states.

7.3. XML-BASED SYNTAX 138

<xs:complexType name="watch_point_state_type">

<xs:sequence>

<xs:element name="task_state_id" type="xs:string"/>

<xs:element name="task_definition_id" type="xs:string"/>

<xs:element name="assigned_uav_state_id" type="xs:string"

minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="current_status" type="xs:string"/>

<xs:element name="last_update" type="xs:dateTime"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="watch_line_state_type">

<xs:sequence>

<xs:element name="task_state_id" type="xs:string"/>

<xs:element name="task_definition_id" type="xs:string"/>

<xs:element name="assigned_uav_state_id" type="xs:string"

minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="current_status" type="xs:string"/>

<xs:element name="last_update" type="xs:dateTime"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="watch_area_state_type">

<xs:sequence>

<xs:element name="task_state_id" type="xs:string"/>

<xs:element name="task_definition_id" type="xs:string"/>

<xs:element name="assigned_uav_state_id" type="xs:string"

minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="current_probability_distribution"

type="probability_grid_type"/>

<xs:element name="current_status" type="xs:string"/>

<xs:element name="last_update" type="xs:dateTime"/>

</xs:sequence>

</xs:complexType>

Figure 7.22: The watch tasks states.

7.3. XML-BASED SYNTAX 139

UAV Definition Representation

The UAV definitions and UAV states are not directly used in the Publisher (UD
and US were not part of (NLC)k in chapter 3). Although the UAV information is not
needed to fire transitions, it is included in the CSL state. The human operator will
generally want this information to better understand the behavior of the network.

<xs:simpleType name="uav_types">

<xs:restriction base="xs:string">

<xs:enumeration value="bat"/>

<xs:enumeration value="rascal"/>

</xs:restriction>

</xs:simpleType>

Figure 7.23: The list of UAV types.

Figure 7.23 lists the two types of integrated C3UVUAVs: the MLB Bat IV, and the
Sig Rascal. A Zagi delta-wing has been in development for a few years, but has never
been integrated into the larger C3UV system. The Zagi has not yet demonstrated
a fully functioning autopilot and integrated on-board computing. Eventually these
requirements may be fulfilled and CSL may need to be extended to include the Zagi
platform.

<xs:complexType name="uav_definitions_type">

<xs:choice minOccurs="0" maxOccurs="unbounded">

<xs:group ref="uav_definition_group"/>

</xs:choice>

</xs:complexType>

<xs:group name="uav_definition_group">

<xs:choice>

<xs:element name="bat_definition" type="bat_definition_type"/>

<xs:element name="rascal_definition"type="rascal_definition_type"/>

</xs:choice>

</xs:group>

Figure 7.24: The list of UAV definitions.

Figure 7.24 again shows that there can be zero or more UAV definitions as part
of the overall CSL state.

The Sig Rascal and Bat IV aircraft have been used interchangably with the main
benefit of the Bat IV being the additional computing power on-board and longer

7.3. XML-BASED SYNTAX 140

<xs:complexType name="bat_definition_type">

<xs:sequence>

<xs:element name="uav_definition_id" type="xs:string"/>

<xs:element name="uav_type" type="uav_types" fixed="bat"/>

<xs:element name="callsign" type="xs:string"/>

<xs:element name="color" type="xs:string" minOccurs="0"/>

<xs:element name="ip_address" type="xs:string"

minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="video_port" type="xs:string" minOccurs="0"/>

<xs:element name="lost_communication_waypoint" type="point"

minOccurs="0"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="rascal_definition_type">

<xs:sequence>

<xs:element name="uav_definition_id" type="xs:string"/>

<xs:element name="uav_type" type="uav_types" fixed="rascal"/>

<xs:element name="callsign" type="xs:string"/>

<xs:element name="color" type="xs:string" minOccurs="0"/>

<xs:element name="ip_address" type="xs:string"

minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="video_port" type="xs:string" minOccurs="0"/>

<xs:element name="lost_communication_waypoint" type="point"

minOccurs="0"/>

</xs:sequence>

</xs:complexType>

Figure 7.25: The UAV definitions for a bat and a rascal.

duration. Their definitions contain identifiers, callsigns, the color of the platform
(optional), the IP addresses (optional), the port for video streaming (optional), and
potentially a lost communication waypoint if one was set. Additionally they list their
UAV type (providing the information represented by uavType(ud3) = ut1 in chapter
3).

UAV State Representation

As was mentioned, the CSL state may include a list of several currently existing
UAV states (USk from chapter 3). These are the states for zero or more Bat IV and
Sig Rascal UAVs, figure 7.26.

7.3. XML-BASED SYNTAX 141

<xs:complexType name="uav_states_type">

<xs:choice minOccurs="0" maxOccurs="unbounded">

<xs:group ref="uav_state_group"/>

</xs:choice>

</xs:complexType>

<xs:group name="uav_state_group">

<xs:choice>

<xs:element name="bat_state" type="bat_state_type"/>

<xs:element name="rascal_state" type="rascal_state_type"/>

</xs:choice>

</xs:group>

Figure 7.26: The list of UAV states.

The individual UAV states contain an identifier, the associated UAV definition
(to represent uavDef(us1) = ud6 from chapter 3), the position of the UAV, the
orientation of the UAV, the airspeed, the task currently assigned, and a timestamp
recording how fresh the data is, figure 7.27.

Looking back at figure 7.8, all of the information presented so far is a part of
the CSL “state results”. A single “get state” request will result in the entire net-
work’s state being returned. The CSL “state results” message provides a ’language
independent’ translation of the network-level controller’s internal state.

7.3.2 CSL’s Runtime Patches

The previous CSL content was used to communicate the internal state of the
Publisher (network-level controller). The CSL “send runtime patch” message is used
to apply patches which do modify the Publisher’s internal state according to chapter
5.

Figure 7.28 shows all of the runtime patches defined in chapter 5. Only 12 are
listed, while there were 16 in chapter 5. The difference is that adding places, adding
arcs, deleting arcs, and modifying arc weights came in two varieties in 6.2. Here the
added place can optionally have a task definition inside, the add arc patch works
for both types of arcs (incoming and outgoing), the delete arc patch works for both
types of arcs (incoming and outgoing), and the modify weights patch works for both
types of arcs (incoming and outgoing). Including these ’dual’ options, all 16 runtime
patches are accounted for.

Figure 7.29 shows that the “add place” patch can be optionally given a new task
definition to add. To delete a place, only the place id is required. Adding a new

7.3. XML-BASED SYNTAX 142

<xs:complexType name="bat_state_type">

<xs:sequence>

<xs:element name="uav_state_id" type="xs:string"/>

<xs:element name="uav_definition_id" type="xs:string"/>

<xs:element name="position" type="point"/>

<xs:element name="orientation" type="rotation"/>

<xs:element name="air_speed" type="positive_double"/>

<xs:element name="assigned_task_state_id" type="xs:string"

minOccurs="0"/>

<xs:element name="last_update" type="xs:dateTime"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="rascal_state_type">

<xs:sequence>

<xs:element name="uav_state_id" type="xs:string"/>

<xs:element name="uav_definition_id" type="xs:string"/>

<xs:element name="position" type="point"/>

<xs:element name="orientation" type="rotation"/>

<xs:element name="air_speed" type="positive_double"/>

<xs:element name="assigned_task_state_id" type="xs:string"

minOccurs="0"/>

<xs:element name="last_update" type="xs:dateTime"/>

</xs:sequence>

</xs:complexType>

Figure 7.27: The states for the Bat IV and Sig Rascal.

transition requires no information. While deleting a transition on requires a transition
identifier.

Figure 7.30 illustrates that to add an arc the direction must be specified along
with the identifiers for which place and transition the arc is connecting. To delete
the arc only an arc identifier is required. To modify the arc weight an identifier and
a desired weight are necessary.

Figure 7.31 shows the CSL for modifying a capacity constraint, adding a token,
and deleting a token. All are very straightforward.

The “modify task definition” patch allows a task definition, specified by its iden-
tifier, to have its content manually replaced. This is what happens when a human
operator ’moves’ a visit point task definition. Figure 7.32 also shows how task states
are similarly manually updated.

7.3. XML-BASED SYNTAX 143

<xs:complexType name="send_runtime_patch_type">

<xs:choice>

<xs:element name="add_place" type="add_place_type"/>

<xs:element name="delete_place" type="delete_place_type"/>

<xs:element name="add_transition" type="add_transition_type"/>

<xs:element name="delete_transition"

type="delete_transition_type"/>

<xs:element name="add_arc" type="add_arc_type"/>

<xs:element name="delete_arc" type="delete_arc_type"/>

<xs:element name="modify_weight" type="xs:positiveInteger"/>

<xs:element name="modify_capacity" type="xs:positiveInteger"/>

<xs:element name="add_token" type="add_token_type"/>

<xs:element name="delete_token" type="delete_token_type"/>

<xs:element name="modify_task_definition"

type="modify_task_definition_type"/>

<xs:element name="modify_task_state"

type="modify_task_state_type"/>

</xs:choice>

</xs:complexType>

Figure 7.28: The runtime patches to send.

7.3. XML-BASED SYNTAX 144

<xs:complexType name="add_place_type">

<xs:sequence minOccurs="0" maxOccurs="1">

<xs:group ref="task_definition_group"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="delete_place_type">

<xs:sequence>

<xs:element name="place_id" type="xs:string"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="add_transition_type">

</xs:complexType>

<xs:complexType name="delete_transition_type">

<xs:sequence>

<xs:element name="transition_id" type="xs:string"/>

</xs:sequence>

</xs:complexType>

Figure 7.29: The runtime patches for adding/deleting places and transitions.

<xs:complexType name="add_arc_type">

<xs:sequence>

<xs:element name="direction" type="arc_direction_type"/>

<xs:element name="from_id" type="xs:string"/>

<xs:element name="to_id" type="xs:string"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="delete_arc_type">

<xs:sequence>

<xs:element name="arc_id" type="xs:string"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="modify_weight_type">

<xs:sequence>

<xs:element name="arc_id" type="xs:string"/>

<xs:element name="desired_weight" type="xs:positiveInteger"/>

</xs:sequence>

</xs:complexType>

Figure 7.30: The runtime patches for adding/deleting/modifying arcs.

7.3. XML-BASED SYNTAX 145

<xs:complexType name="modify_capacity_type">

<xs:sequence>

<xs:element name="place_id" type="xs:string"/>

<xs:element name="desired_capacity" type="xs:positiveInteger"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="add_token_type">

<xs:sequence>

<xs:element name="place_id" type="xs:string"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="delete_token_type">

<xs:sequence>

<xs:element name="place_id" type="xs:string"/>

</xs:sequence>

</xs:complexType>

Figure 7.31: The runtime patches for modifying capacity constraints and
adding/deleting tokens.

<xs:complexType name="modify_task_definition_type">

<xs:sequence>

<xs:element name="task_definition_id" type="xs:string"/>

<xs:group ref="task_definition_group"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="modify_task_state_type">

<xs:sequence>

<xs:element name="task_state_id" type="xs:string"/>

<xs:group ref="task_state_group"/>

</xs:sequence>

</xs:complexType>

Figure 7.32: The runtime patches for modifying task definitions and task states.

7.3. XML-BASED SYNTAX 146

When a runtime patch is applied, a response is issued to indicate that the patch
has been successfully processed. Figure 7.33 shows what that response could entail.
When a new place is added, the place id is the response. Similarly for transitions,
arcs, task definitions, and task states being added. When an arc weight or capacity
constraint is updated, the new value is the response. There is also a default “error”
message, which currently contains no content, but indicates that something went
wrong.

Compared to the CSL state, runtime patches are rather small and simple messages.
Example 13 shows the entirety of CSL message to add a transition. Example 14 shows
the simple result returning the transition identifier for the new transition.

Example 13 A CSL add transition runtime patch.

<?xml version="1.0" encoding="utf-8"?>

<CSL xmlns="http://www.c3uv.berkeley.edu"

xsi:schemaLocation="http://www.c3uv.berkeley.edu

file:///J:/Files/Thoughts/Thesis/XML%20Schema/CSL_schema.xsd"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

timestamp="2011-11-07T10:10:10">

<send_runtime_patch>

<add_transition/>

</send_runtime_patch>

</CSL>

Example 14 Results of adding a transition.

<?xml version="1.0" encoding="utf-8"?>

<CSL xmlns="http://www.c3uv.berkeley.edu"

xsi:schemaLocation="http://www.c3uv.berkeley.edu

file:///J:/Files/Thoughts/Thesis/XML%20Schema/CSL_schema.xsd"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

timestamp="2011-11-07T10:10:10">

<runtime_patch_results>

<transition_id>T3</transition_id>

</runtime_patch_results>

</CSL>

7.3. XML-BASED SYNTAX 147

<xs:complexType name="runtime_patch_results_type">

<xs:sequence>

<xs:choice minOccurs="0" maxOccurs="unbounded">

<xs:element name="place_id" type="xs:string"/>

<xs:element name="transition_id" type="xs:string"/>

<xs:element name="arc_id" type="xs:string"/>

<xs:element name="updated_weight" type="xs:positiveInteger"/>

<xs:element name="updated_capacity" type="xs:positiveInteger"/>

<xs:element name="task_definition_id" type="xs:string"/>

<xs:element name="task_state_id" type="xs:string"/>

<xs:element name="error" type="xs:string"/>

</xs:choice>

</xs:sequence>

</xs:complexType>

Figure 7.33: The confirmation for a runtime patch.

148

Chapter 8

Conclusions

This dissertation has developed the concept of network-level controllers. Network-
level controllers are intended to interact with a task-based collaborative control system
at a very high level of abstraction. The network-level controller monitors the tasks
in the system. It also orders and automates the insertion and removal of tasks.
When tasks are completed they may be automatically removed and new tasks may
be automatically created. The network-level controller allows a human operator to
specify the desired network behavior, thus the name ’network-level control’.

The network-level controller model of computation is an extension of Petri nets.
Petri nets provide a concise and network-focused representation. This allows an
intuitive graphical representation of the network’s state. This representation shows
which tasks currently exist, which task definitions they are based upon, and what
ordering constraints apply for all current and future tasks.

As a human operator observes the network’s behavior, he/she might decide to
modify the intended network behavior. Runtime patching allows modifications to be
made to the network-level controller in a manner that guarantees that the resulting
network-level controller is well formed, fully representative, and task-token consistent.

The Collaborative Sensing Language (CSL) is an XML-based implementation of
network-level control for Intelligence Surveillance and Reconnaissance (ISR) applica-
tions by UAVs. It enabled network-level controllers for the Center for Collaborative
Control of Unmanned Vehicles (C3UV).

8.1 Contributions

The syntax and semantics for network-level controllers were presented and are
themselves novel contributions. Petri nets have had extremely limited use in mobile
robotics and their application to the high-level control of multiple UAVs is entirely
original.

8.2. CRITIQUES 149

Additionally, several invariant properties of network-level controllers were iden-
tified and proven. These invariant properties only depend upon the semantics of
network-level control. They are true for all network-level controllers. Other provable
properties like boundedness, liveness, and deadlock were identified. These properties
depend upon the specifics of any given network-level controller.

The syntax and semantics for runtime patching are also contributions. The run-
time patching language allows a human operator to manipulate the network-level
controller during execution.

Several invariant properties for network-level controllers with runtime patching
were also proven. These guarantee that the network-level controller always remains
correctly defined after all possible runtime patches.

The Collaborative Sensing Language (CSL) and its implementation are also con-
tributions. CSL was developed as an XML-based specification of network-level con-
trollers for Intelligence Surveillance and Reconnaissance (ISR) applications by UAVs.

8.2 Critiques

One of the most obvious assumptions made in this dissertation is the existence
of an underlying task-based collaborative control system. Tasks are not the only
method for collaboration. The concept of network-level control does not apply to
networks with other methods of collaboration. Swarm-based or emergent behaviors
are common examples of collaborative networks that are not based upon tasks and a
network-level controller would have no well defined method for interacting with these
networks.

In section 6.6 the synchronous network assumption was mentioned. In this disser-
tation it was assumed that there was a set of task definitions TD and task states TS
that could be read from and written to instantaneously. In a ’real’ UAV network this
assumption is unrealistic. The system is inherently asynchronous and distributed.
Every physical element of the system may have a local estimate for what these sets
and their values are, but it takes a well developed method of communication and syn-
chronization to guarantee that any changes made by the network-level controller will
be fully propagated to all elements of the network. Assuming a synchronous network
prevented this dissertation from having to address these additional complicating fac-
tors that are themselves areas of on-going research. In this way, network-level control
could be the focus of the discussion.

8.3 Directions for Future Work

Network-level controllers could be created for non-ISR applications or for non-
UAV applications. This would not involve drastic modifications to the concepts of

8.3. DIRECTIONS FOR FUTURE WORK 150

network-level control, but merely the investigation into which applications it may be
appropriate for. As a specific example that diverges greatly from UAVs, the use of
network-level control could be useful within traditional workflow management. This
would allow a business manager to create, monitor, and modify the workflow process
in an on-line manner. As the work force changed or new important orders were placed,
the network-level controller could be modified to ’adjust’ the company’s behavior to
deal with a changing business environment.

More importantly, the synchronous network assumption should be further inves-
tigated. A specific asynchronous communication mechanism and scheme could be
assumed. These assumptions’ impacts on the guarantees and operation of a network-
level controller could then be investigated. It is likely that additional assumptions
must be made on the behavior of the asynchronous network in order for the network-
level controller to operate correctly. For instance, if the network-level controller cre-
ates a new task state, but the communication infrastructure never disseminates the
information, there is no possibility for a UAV to ever execute it. This direction
of research would seek to clarify the additional assumptions necessary so that any
asynchronous communication schemes satisfying these assumptions could be used in
conjunction with a network-level controller.

151

Bibliography

[1] PATH Website. http://www.path.berkeley.edu/, October 2010.

[2] SHIFT Website. http://path.berkeley.edu/SHIFT/, October 2010.

[3] DESUMA Website. http://www.eecs.umich.edu/umdes/toolboxes.html, May
2011.

[4] The Edinburgh Concurrency Workbench - Website.
http://homepages.inf.ed.ac.uk/perdita/cwb/, January 2011.

[5] Formal Systems - Website. http://www.fsel.com/index.html, January 2011.

[6] Integrated Net Analyzer, September 2011.

[7] LoLA - A Low Level Petri Net Analyser, September 2011.

[8] mCRL2: Analyzing System Behaviour, April 2011.

[9] Model Checking @CMU, June 2011.

[10] ON-THE-FLY, LTL MODEL CHECKING with SPIN, June 2011.

[11] The Place for Communicating Processes. http://www.wotug.org/occam/,
February 2011.

[12] Platform Independent Petri net Editor 2, September 2011.

[13] A Spatial Logic Model Checker for Concurrency, Distribution and Mobility.
http://ctp.di.fct.unl.pt/SLMC/, January 2011.

[14] Supremica- A Tool for Verification and Synthesis of Discrete Event Supervi-
sors. http://academic.research.microsoft.com/Publication/5501279/supremica-
a-tool-for-verification-and-synthesis-of-discrete-event-supervisors, May 2011.

[15] TIme petri Net Analyzer, September 2011.

BIBLIOGRAPHY 152

[16] UMDES Website. http://www.eecs.umich.edu/umdes/toolboxes.html, May
2011.

[17] UPPAAL Home, August 2011.

[18] U.S. Military Unmanned Aerial Vehicles (UAVs) Market Forecast 2010-2015.
Website, March 2011.

[19] Knut Akesson, Martin Fabian, and Hugo Flordal. Supremica in a Nutshell.
October 2007.

[20] Robert Alexander, Martin Hall-May, and Tim Kelly. Certification of Au-
tonomous Systems. In 2nd SEAS DTC Technical Conference, 2007.

[21] R. Alur, T.A. Henzinger, and Pei-Hsin Ho. Automatic symbolic verification
of embedded systems. IEEE Transactions on Software Engineering, 22(3):181
–201, mar 1996.

[22] R. Alur, T.A. Henzinger, G. Lafferriere, and G.J. Pappas. Discrete abstractions
of hybrid systems. Proceedings of the IEEE, 88(7):971 –984, jul 2000.

[23] Rajeev Alur, T. Dang, Joel Esposito, Rafael Fierro, Yerang Hur, Franjo Ivancic,
Vijay Kumar, Insup Lee, P. Mishra, George Pappas, and Oleg Sokolsky. Hier-
archical Hybrid Modeling of Embedded Systems. In Lecture Notes in Computer
Science. Springer-Verlap, 2001.

[24] Rajeev Alur, Radu Grosu, Yerang Hur, Vijay Kumar, and Insup Lee. Modular
Specification of Hybrid Systems in Charon. In Hybrid Systems: Computation
and Control, volume 1790 of Lecture Notes in Computer Science, pages 6–19.
Springer Berlin / Heidelberg, 2000.

[25] Rajeev Alur, Franjo Ivancic, Jesung Kim, Insup Lee, and Oleg Sokolsky. Gen-
erating Embedded Software from Hierarchical Hybrid Models. In LCTES ’03.
ACM, June 2003.

[26] Paul C. Attie and Nancy A. Lynch. Dynamic Input/Output Automata: A
Formal Model for Dynamic Systems. In Kim Larsen and Mogens Nielsen, ed-
itors, CONCUR 2001 Concurrency Theory, volume 2154 of Lecture Notes in
Computer Science, pages 137–151. Springer Berlin / Heidelberg, 2001.

[27] Andrea Balluchi, Antonio Bicchi, and Philippe Soueres. Path-Following with a
Bounded-Curvature Vehicle: a Hybrid Control Approach. International Journal
of Control, 78:1228–1247, 2005.

BIBLIOGRAPHY 153

[28] Andrea Balluchi, Philippe Soures, and Antonio Bicchi. Hybrid Feedback Control
for Path Tracking by a BoundedCurbature Vehicle. In Maria Di Benedetto and
Alberto Sangiovanni-Vincentelli, editors, Hybrid Systems: Computation and
Control, volume 2034 of Lecture Notes in Computer Science, pages 133–146.
Springer Berlin / Heidelberg, 2001.

[29] Samary Baranov. Synthesis of Control Units for Mobile Robots. In Proceedings.,
Second EUROMICRO workshop on Advanced Mobile Robots, pages 80 –86, oct
1997.

[30] Magali Barbier and Elodie Chanthery. Autonomous mission management for
unmanned aerial vehicles. Aerospace Science and Technology, 8(4):359 – 368,
2004.

[31] John Bastian, Arvind Savargaonkar, S. Venkateswaren, K.Ramoji Rao,
T.V.V.S. Nagesh, and K.S. Raghunthan. State Machine Design-An Interactive
Approach. In Proceedings of the Fourth CSI/IEEE International Symposium
on VLSI Design, pages 41 –44, January 1991.

[32] S. Bayraktar, G.E. Fainekos, and G.J. Pappas. Experimental cooperative con-
trol of fixed-wing unmanned aerial vehicles. In Decision and Control, 2004.
CDC. 43rd IEEE Conference on, volume 4, pages 4292 – 4298 Vol.4, dec. 2004.

[33] Gerd Behrmann, Alexandre David, and Kim Larsen. A Tutorial on Uppaal.
Department of Computer Science Aalborg University, Denmark, 2011.

[34] Calin Belta, Antonio Bicchi, Magnus Egerstedt, Emilio Frazzoli, Eric Klavins,
and George Pappas. Symbolic planning and control of robot motion [Grand
Challenges of Robotics]. Robotics Automation Magazine, IEEE, 14(1):61 –70,
March 2007.

[35] J. A. Bergstra and J. W. Klop. Algebra of communicating processes with
abstraction. Theoretical Computer Science, 37:77 – 121, 1985.

[36] J. A. Bergstra and C. A. Middelburg. Process algebra for hybrid systems.
Theoretical Computer Science, 335(2-3):215 – 280, 2005. Process Algebra.

[37] J.A. Bergstra and J.W. Klop. Process Algebra for Synchronous Communication.
Information and Control, 60(1-3):109 – 137, 1984.

[38] Christopher Bolkcom. Homeland Security: Unmanned Aerial Ve-
hicles and Border Surveillance. Technical Report ADA477712, Li-
brary of Congress, Washington DC Congressional Research Service,
http://handle.dtic.mil/100.2/ADA477712, June 2004.

BIBLIOGRAPHY 154

[39] Joao Borges de Sousa and G. Goncalves. Mixed Initiative Control of Un-
manned Air and Ocean Going Vehicles: Models, Tools and Experimenta-
tion. Ada478701, UNIVERSIDADE FACULDADE DE ENGENHARIA DO
PORTO (PORTUGAL) DEPARTAMENTO DE ENGENHARIA MECANICA
E GESTAO INDUSTRIAL, http://handle.dtic.mil/100.2/ADA478701, Novem-
ber 2007.

[40] Joao Borges de Sousa, G. Goncalves, A. Costa, and J. Morgado. Mixed-initiative
Control of Unmanned Air Vehicle Systems: the PITVANT R&D UAV Program.

[41] Joo Borges de Sousa, Karl H. Johansson, Jorge Silva, and Alberto Speranzon. A
Verified Hierarchical Control Architecture for Co-ordinated Multi-vehicle Oper-
ations. International Journal of Adaptive Control and Signal Processing, 21(2-
3):159–188, 2007.

[42] Julian Bradfield and Colin Stirling. Modal Logics and mu-Calculi: An Intro-
duction. Technical report, Laboratory for Foundations of Computer Science,
University of Edinburgh, 2001.

[43] S. D. Brookes, C. A. R. Hoare, and A. W. Roscoe. A Theory of Communicating
Sequential Processes. J. ACM, 31:560–599, June 1984.

[44] Lus Caires. Behavioral and Spatial Observations in a Logic for the pi-Calculus.
In Igor Walukiewicz, editor, Foundations of Software Science and Computation
Structures, volume 2987 of Lecture Notes in Computer Science, pages 72–89.
Springer Berlin / Heidelberg, 2004.

[45] Lus Caires and Luca Cardelli. A Spatial Logic for Concurrency (Part II). In
Lubo Brim, Mojmr Kretnsk, Antonn Kucera, and Petr Jancar, editors, CON-
CUR 2002 Concurrency Theory, volume 2421 of Lecture Notes in Computer
Science, pages 163–199. Springer Berlin / Heidelberg, 2002.

[46] Lus Caires and Luca Cardelli. A spatial logic for concurrency (part I). In-
formation and Computation, 186(2):194 – 235, 2003. Theoretical Aspects of
Computer Software (TACS 2001).

[47] Christos Cassandras and Stephane Lafortune. Introduction to Discrete Event
Systems. Springer, second edition, 2008.

[48] Walid Chainbi, Chihab Hanachi, and Christophe Sibertin-Blanc. The Multi-
agent Prey/Predator problem: A Petri net solution. In IMACS Multiconference
Computational Engineering in Systems Applications (CESA), 1996.

BIBLIOGRAPHY 155

[49] Randy Cieslak, C. Desclaux, A.S. Fawaz, and Pravin Varaiya. Supervisory Con-
trol of Discrete-Event Processes with Partial Observations. IEEE Transactions
on Automatic Control, 33(3):249 –260, mar 1988.

[50] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic Verification of Finite-
State Concurrent Systems using Temporal Logic Specifications. ACM Trans.
Program. Lang. Syst., 8:244–263, April 1986.

[51] David T. Cole, Salah Sukkarieh, and Ali Haydar Gktogan. System development
and demonstration of a UAV control architecture for information gathering
missions. Journal of Field Robotics, 23(6-7):417–440, 2006.

[52] K.L.B. Cook. The Silent Force Multiplier: The History and Role of UAVs in
Warfare. In 2007 IEEE Aerospace Conference, pages 1 –7, March 2007.

[53] Petru Corts, Luis Alejandro andEles and Zebo Peng. Modeling and formal
verification of embedded systems based on a Petri net representation. Journal
of Systems Architecture, 49(12-15):571 – 598, 2003. Synthesis and Verification.

[54] M.A Cuijpers, P.J.L. and.Reniers. Hybrid process algebra. Journal of Logic
and Algebraic Programming, 62(2):191 – 245, 2005.

[55] Akash Deshpande. AHS Components in SHIFT. Technical report, California
Partners for Automated Transit and Highways, 1997.

[56] Akash Deshpande, Aleks Gollu, and Luigi Semenzato. The SHIFT Program-
ming Language and Run-Time System for Dynamic Networks of Hybrid Au-
tomata. Technical report, California PATH Program, 1997.

[57] Akash Deshpande, Aleks Gollu, and Luigi Semenzato. Shift Reference Manual.
California PATH Program, January 1997.

[58] Akash Deshpande, Aleks Gollu, and Luigi Semenzato. The SHIFT Program-
ming Langauge for Dynamic Networks of Hybrid Automata. In IEEE Transac-
tions on Automatic Control, volume 43. April 1998.

[59] Akash Deshpande, Aleks Gollu, and Pravin Varaiya. SHIFT: A Formalism
and a Programming Language for Dynamic Networks of Hybrid Automata. In
Hybrid Systems IV, volume 1273 of Lecture Notes in Computer Science, pages
113–133. Springer-Verlag, 1997.

[60] Srinivas Devadas. Approaches to Multi-Level Sequential Logic Synthesis. In
Proceedings of the 26th ACM/IEEE Design Automation Conference, DAC ’89,
pages 270–276, New York, NY, USA, 1989. ACM.

BIBLIOGRAPHY 156

[61] Ekaterina Dolginova and Nancy Lynch. Safety verification for automated pla-
toon maneuvers: A case study. In Oded Maler, editor, Hybrid and Real-Time
Systems, volume 1201 of Lecture Notes in Computer Science, pages 154–170.
Springer Berlin / Heidelberg, 1997. 10.1007/BFb0014723.

[62] Haiqiang Dun, Haiying Xu, and Lifu Wang. Transformation of BPEL Processes
to Petri Nets. Theoretical Aspects of Software Engineering, Joint IEEE/IFIP
Symposium on, 0:166–173, 2008.

[63] Abdulla Eid. Finite ω-Automata and Buchi Automata. University of Illinois,
CS475 Project, May 2009.

[64] Yoichiro Endo, Douglas C. MacKenzie, and Ronald C. Arkin. Usability Eval-
uation of High-Level User Assistance for Robot Mission Specification. IEEE
Transactions on Systems, Man, and Cybernetics, Part C: Applications and Re-
views, 34(2):168 –180, may 2004.

[65] Joaquin Ezpeleta, Jose Manuel Colom, and Javier Martinez. A Petri net based
deadlock prevention policy for flexible manufacturing systems. Robotics and
Automation, IEEE Transactions on, 11(2):173 –184, apr 1995.

[66] xianwen Fang, zhicai Xu, and zhixiang Yin. Distributed Processing Based on
Timed Petri Nets. In Third International Conference on Natural Computation,
volume 5, pages 287 –291, aug. 2007.

[67] Rafael Fierro, Aveek Das, John Spletzer, Joel Esposito, Vijay Kumar, James
Ostrowski, Georgre Pappas, Camillo Taylor, Yerang Hur, Rajeev Alur, Insup
Lee, Greg Grudic, and Ben Southall. A Framework and Architecture for Multi-
Robot Coordination. The International Journal of Robotics Research, 21(10-
11):977–995, 2002.

[68] Formal Systems (Europe) Ltd. and Oxford University Computing Laboratory.
Failures-Divergence Refinement: FDR2 User Manual, October 2010.

[69] Gene Franklin, J. David Powell, and Abbas Emami-Naeini. Feedback Control
of Dynamic Systems. Pearson Prentice Hall, fifth edition, 2006.

[70] Emilio Frazzoli, Munther A. Dahleh, and Eric Feron. Maneuver-Based Mo-
tion Planning for Nonlinear Systems With Symmetries. IEEE Transactions on
Robotics, 21(6):1077 – 1091, dec. 2005.

[71] A. R. Girard, J. Borges de Sousa, and J. K. Herdrick. A selection of recent
advances in networked multivehicle systems. Proceedings of the Institution of
Mechanical Engineers, Part I: Journal of Systems and Control Engineering,
219:1–14, 2005.

BIBLIOGRAPHY 157

[72] Anouck Girard, Karl Hedrick, and Joo Tasso de Figueiredo Borges de Sousa. A
hierarchical control architecture for mobile offshore bases. Marine Structures,
13(4-5):459 – 476, 2000.

[73] Anouck R. Girard and J. Karl Hedrick. Formation control of multiple vehicles
using dynamic surface control and hybrid systems. International Journal of
Control, 76:913–923(11), 1 June 2003.

[74] Alain Girault, Bilung Lee, and Edward A. Lee. Hierarchical Finite State Ma-
chines with Multiple Concurrency Models. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 18(6):742 –760, jun 1999.

[75] M.F. Godwin, S. Spry, and J.K. Hedrick. Distributed collaboration with limited
communication using mission state estimates. In American Control Conference,
2006, page 7 pp., june 2006.

[76] C. H. Golaszewski and P. J. Ramadge. Control of Discrete Event Processes with
Forced Events. In 26th IEEE Conference on Decision and Control, volume 26,
pages 247 –251, dec. 1987.

[77] Aleks Gollu and Mikhail Kourjanski. Object-oriented design of automated high-
way simulations using the SHIFT programming language. In Proc. IEEE Conf.
Intelligent Transportation System ITSC ’97, pages 141–146, 1997.

[78] B. Grocholsky, J. Keller, V. Kumar, and G. Pappas. Cooperative air and ground
surveillance. Robotics Automation Magazine, IEEE, 13(3):16 –25, sept. 2006.

[79] Ben Grocholsky, Alexei Makarenko, Tobias Kaupp, and Hugh Durrant-Whyte.
Scalable Control of Decentralised Sensor Platforms. In Feng Zhao and Leonidas
Guibas, editors, Information Processing in Sensor Networks, volume 2634 of
Lecture Notes in Computer Science, pages 551–551. Springer Berlin / Heidel-
berg, 2003.

[80] David Harel. Statecharts: A Visual Formalism for Complex Systems. Science
of Computer Programming, 8(3):231 – 274, 1987.

[81] David Harel and Amnon Naamad. The STATEMATE Semantics of Statecharts.
ACM Transactions on Software Engineering Methodology, 5:293–333, October
1996.

[82] Thomas Henzinger, Pei-Hsin Ho, and Howard Wong-Toi. A User Guide to
HyTech, October 1996.

[83] Tom Henzinger. HyTech: The HYbrid TECHnology tool, August 2011.

BIBLIOGRAPHY 158

[84] Katrina Herrick. Development of the unmanned aerial vehicle market: forecasts
and trends. Air & Space Europe, 2(2):25–27, 2000.

[85] M. G. Hinchey, C. A. Rouff, J. L. Rash, and W. F. Truszkowski. Requirements
of an integrated formal method for intelligent swarms. In Proceedings of the
10th international workshop on Formal methods for industrial critical systems,
FMICS ’05, pages 125–133, New York, NY, USA, 2005. ACM.

[86] Sebastian Hinz, Karsten Schmidt, and Christian Stahl. Transforming BPEL to
Petri Nets. In Business Process Management, volume 3649 of Lecture Notes in
Computer Science, pages 220–235. Springer Berlin / Heidelberg, 2005.

[87] Kunihiko Hiraishi. A Petri-net-based model for the mathematical analysis of
multi-agent systems. In Systems, Man, and Cybernetics, 2000 IEEE Interna-
tional Conference on, volume 4, pages 3009 –3014 vol.4, 2000.

[88] Kunihiko Hiraishi. A formalism for decentralized control of discrete event sys-
tems. In SICE 2002. Proceedings of the 41st SICE Annual Conference, volume 1,
pages 272 – 277 vol.1, aug. 2002.

[89] C. A. R. Hoare. Communicating Sequential Processes. Communications of the
ACM, 21(8):666–677, August 1978.

[90] C.A.R. Hoare. Communicating Sequential Processes. International Series in
Computer Science. Prentice Hall International, 1985.

[91] L. E. Holloway, B. H. Krogh, and A. Giua. A Survey of Petri Net Methods for
Controlled Discrete Event Systems. Discrete Event Dynamic Systems, 7:151–
190, 1997. 10.1023/A:1008271916548.

[92] M. Ani Hsieh, Anthony Cowley, James F. Keller, Luiz Chaimowicz, Ben Gro-
cholsky, Vijay Kumar, Camillo J. Taylor, Yoichiro Endo, Ronald C. Arkin,
Boyoon Jung, Denis F. Wolf, Gaurav S. Sukhatme, and Douglas C. MacKen-
zie. Adaptive teams of autonomous aerial and ground robots for situational
awareness. Journal of Field Robotics, 24(11-12):991–1014, 2007.

[93] Yerang Hur, Rafael Fierro, and Insup Lee. Modeling distributed autonomous
robots using CHARON: formation control case study. In Proc. Sixth IEEE Int
Object-Oriented Real-Time Distributed Computing Symp, pages 93–96, 2003.

[94] M. Iordache and P. Antsaklis. Supervision Based on Place Invariants: A Survey.
Discrete Event Dynamic Systems, 16:451–492, 2006. 10.1007/s10626-006-0021-
9.

BIBLIOGRAPHY 159

[95] M.V. Iordache and P.J. Antsaklis. Decentralized supervision of Petri nets. Au-
tomatic Control, IEEE Transactions on, 51(2):376 – 381, feb. 2006.

[96] Kurt Jensen. Coloured petri nets and the invariant-method. Theoretical Com-
puter Science, 14(3):317 – 336, 1981.

[97] Kurt Jensen. Coloured Petri nets. In W. Brauer, W. Reisig, and G. Rozenberg,
editors, Petri Nets: Central Models and Their Properties, volume 254 of Lecture
Notes in Computer Science, pages 248–299. Springer Berlin / Heidelberg, 1987.
10.1007/BFb0046842.

[98] Kurt Jensen. A brief introduction to coloured Petri Nets. In Ed Brinksma,
editor, Tools and Algorithms for the Construction and Analysis of Systems,
volume 1217 of Lecture Notes in Computer Science, pages 203–208. Springer
Berlin / Heidelberg, 1997. 10.1007/BFb0035389.

[99] Kurt Jensen, Lars Kristensen, and Lisa Wells. Coloured Petri Nets and
CPN Tools for modelling and validation of concurrent systems. International
Journal on Software Tools for Technology Transfer (STTT), 9:213–254, 2007.
10.1007/s10009-007-0038-x.

[100] Yan Jin, Ali A. Minai, and Marios M. Polycarpou. Cooperative Real-Time
Search and Task Allocation in UAV Teams. In Proceedings of 42nd IEEE Con-
ference on Decision and Control, volume 1, pages 7 – 12 Vol.1, dec. 2003.

[101] K.H. Johansson, J. Lygeros, S. Sastry, and M. Egerstedt. Simulation of Zeno
hybrid automata. In Proceedings of the 38th IEEE Conference on Decision and
Control, volume 4, pages 3538 –3543 vol.4, 1999.

[102] Daniel Karlsson, Petru Eles, and Zebo Peng. Formal verification of systemc
designs using a petri-net based representation. In Proceedings of the conference
on Design, automation and test in Europe: Proceedings, DATE ’06, pages 1228–
1233, 3001 Leuven, Belgium, Belgium, 2006. European Design and Automation
Association.

[103] Yonit Kestin, Amir Pnueli, and Li-on Raviv. Algorithmic Verification of Lin-
ear Temporal Logic Specifications. In Kim Larsen, Sven Skyum, and Glynn
Winskel, editors, Automata, Languages and Programming, volume 1443 of Lec-
ture Notes in Computer Science, pages –. Springer Berlin / Heidelberg, 1998.

[104] YoungWoo Kim, Tatsuya Kato, Shigeru Okuma, and Tatsuo Narikiyo. Traffic
Network Control Based on Hybrid Dynamical System Modeling and Mixed
Integer Nonlinear Programming With Convexity Analysis. IEEE Transactions
on Systems, Man and Cybernetics, Part A: Systems and Humans, 38(2):346
–357, march 2008.

BIBLIOGRAPHY 160

[105] Eric Klavins, Robert Ghrist, and David Lipsky. A grammatical approach to
self-organizing robotic systems. IEEE Transactions on Automatic Control,
51(6):949 – 962, june 2006.

[106] Michael Kohler, Daniel Moldt, and Heiko Rolke. Modelling the Structure and
Behaviour of Petri Net Agents. In Jos-Manuel Colom and Maciej Koutny,
editors, Applications and Theory of Petri Nets 2001, volume 2075 of Lecture
Notes in Computer Science, pages 224–241. Springer Berlin / Heidelberg, 2001.

[107] Konstantinos Koutroumpas and John Lygeros. Modeling and verification of
stochastic hybrid systems using HIOA: a case study on DNA replication. In
Proceedings of the 13th ACM international conference on Hybrid systems: com-
putation and control, HSCC ’10, pages 263–272, New York, NY, USA, 2010.
ACM.

[108] M.A. Kovacina, D. Palmer, Guang Yang, and R. Vaidyanathan. Multi-agent
control algorithms for chemical cloud detection and mapping using unmanned
air vehicles. In Intelligent Robots and Systems, 2002. IEEE/RSJ International
Conference on, volume 3, pages 2782 – 2788 vol.3, 2002.

[109] Fabian Kratz, Oleg Sokolsky, George Pappas, and Insup Lee. R-Charon, a
Modeling Language for Reconfigurable Hybrid Systems. In Lecture Notes in
Computer Science, pages 392–406. Springer-Verlag, 2006.

[110] Hadas Kress-Gazit, Georgios E. Fainekos, and George J. Pappas. Temporal-
Logic-Based Reactive Mission and Motion Planning. IEEE Transactions on
Robotics, 25(6):1370 –1381, dec. 2009.

[111] Stephane Lafortune and Demosthenis Teneketzis. UMDES-LIB: Library of
Commands for Discrete Event Systems Modeled by Finite State Machines. DES
Group, University of Michigan, August 2000.

[112] Timo Latvala. Model Checking LTL Properties of High-Level Petri Nets with
Fairness Constraints. In Josa-Manuel Colom and Maciej Koutny, editors, Ap-
plications and Theory of Petri Nets 2001, volume 2075 of Lecture Notes in
Computer Science, pages 242–262. Springer Berlin / Heidelberg, 2001.

[113] Bilung Lee and Edward A. Lee. Interaction of Finite State Machines and Con-
currency Models. In Signals, Systems Computers, 1998. Conference Record of
the Thirty-Second Asilomar Conference on, volume 2, pages 1715 –1719 vol.2,
nov 1998.

[114] David Lee and Mihalis Yannakakis. Principles and Methods of Testing Finite
State Machines-A Survey. Proceedings of the IEEE, 84(8):1090 –1123, aug 1996.

BIBLIOGRAPHY 161

[115] Edward A. Lee. What’s ahead for embedded software? Computer, 33(9):18
–26, sep 2000.

[116] Jing Liu and Houshang Darabi. Ramadge-Wonham Supervisory Control of
Mobile Robots: Lessons from Practice. In IEEE International Conference on
Robotics and Automation (ICRA), volume 1, pages 670 – 675 vol.1, 2002.

[117] Lennart Ljung. System Identification: Theory for the User. Prentice Hall,
second edition, 99.

[118] Niels Lohmann. A Feature-Complete Petri Net Semantics for WS-BPEL2.0. In
Marlon Dumas and Reiko Heckel, editors, Web Services and Formal Methods,
volume 4937 of Lecture Notes in Computer Science, pages 77–91. Springer Berlin
/ Heidelberg, 2008.

[119] Panagiotis Louridas. Orchestrating Web Services with BPEL. Software, IEEE,
25(2):85 –87, march-april 2008.

[120] Joshua Love, Jerry Jariyasunant, Eloi Pereira, Marco Zennaro, Karl Hedrick,
Christoph Kirsch, and Raja Sengupta. CSL: A Language to Specify and Re-
specify Mobile Sensor Network Behaviors. Real-Time and Embedded Technology
and Applications Symposium, IEEE, 0:67–76, 2009.

[121] Martin Lundell, Jingpeng Tang, and Kendall Nygard. Fuzzy Petri net for UAV
decision making. In Proceedings of the 2005 International Symposium on Col-
laborative Technologies and Systems, pages 347 –352, may 2005.

[122] John Lygeros and Nancy Lynch. Conditions for Safe Deceleration of Strings of
Vehicles. Institute of transportation studies, research reports, working papers,
proceedings, Institute of Transportation Studies, UC Berkeley, 2000.

[123] John Lygeros, Claire Tomlin, and Shankar Sastry. Hytbrid Systems: Modeling,
Analysis and Control. 2008.

[124] Nancy Lynch, Roberto Segala, and Frits Vaandrager. Hybrid I/O Automata
Revisited. In Maria Di Benedetto and Alberto Sangiovanni-Vincentelli, editors,
Hybrid Systems: Computation and Control, volume 2034 of Lecture Notes in
Computer Science, pages 403–417. Springer Berlin / Heidelberg, 2001.

[125] Nancy Lynch, Roberto Segala, Frits Vaandrager, and H. Weinberg. Hybrid I/O
automata. In Rajeev Alur, Thomas Henzinger, and Eduardo Sontag, editors,
Hybrid Systems III, volume 1066 of Lecture Notes in Computer Science, pages
496–510. Springer Berlin / Heidelberg, 1996. 10.1007/BFb0020971.

BIBLIOGRAPHY 162

[126] Nancy A. Lynch and Mark R. Tuttle. An Introduction to Input/Output Au-
tomata. Technical Report MIT/LCS/TM-373, Massachusetts Institute of Tech-
nology, September 1988.

[127] Douglas C. MacKenzie, Ronald Arkin, and Jonathan M. Cameron. Multia-
gent Mission Specification and Execution. Autonomous Robots, 4:29–52, 1997.
10.1023/A:1008807102993.

[128] Ernst W. Mayr. An algorithm for the general Petri net reachability problem. In
Proceedings of the thirteenth annual ACM symposium on Theory of computing,
STOC ’81, pages 238–246, New York, NY, USA, 1981. ACM.

[129] John-Michael McNew and Eric Klavins. Locally Interacting Hybrid Systems
with Embedded Graph Grammars. In 45th IEEE Conference on Decision and
Control, pages 6080 –6087, dec. 2006.

[130] John-Michael McNew and Eric Klavins. A Grammatical Approach to Coop-
erative Control. In Don Grundel, Robert Murphey, Panos Pardalos, and Oleg
Prokopyev, editors, Cooperative Systems, volume 588 of Lecture Notes in Eco-
nomics and Mathematical Systems, pages 117–138. Springer Berlin Heidelberg,
2007.

[131] Robin Milner. A Calculus of Communicating Systems. Lecture Notes in Com-
puter Science, 92, 1980.

[132] Robin Milner. Calculi for synchrony and asynchrony. Theoretical Computer
Science, 25(3):267 – 310, 1983.

[133] Robin Milner. Communicating and Mobile Systems: the pi-Calculus. Cambridge
University Press, 1999.

[134] Robin Milner, Joachim Parrow, and David Walker. A Calculus of Mobile Pro-
cesses, Part II. Technical report, University of Edinburgh, 1990.

[135] Robin Milner, Joachim Parrow, and David Walker. A Calculus of Mobile Pro-
cesses, I. Information and Computation, 100(1):1 – 40, 1992.

[136] Ian Mitchell, August 2011.

[137] Tadao Murata. Petri nets: Properties, analysis and applications. Proceedings
of the IEEE, 77(4):541 –580, apr 1989.

[138] Nicholas G. Odrey and Gonzalo Meja. A re-configurable multi-agent system
architecture for error recovery in production systems. Robotics and Computer-
Integrated Manufacturing, 19(1-2):35 – 43, 2003.

BIBLIOGRAPHY 163

[139] Katsuhiko Ogata. Discrete-Time Control Systems. Prentice Hall, second edi-
tion, 1995.

[140] Katsuhiko Ogata. System Dynamics. Pearson Prentice Hall, fourth edition,
2004.

[141] P. Oliveira, A. Pascoal, V. Silva, and C. Silvestre. Design, development, and
testing at sea of the mission control system for the MARIUS autonomous un-
derwater vehicle. In Conference Proceedings OCEANS MTS/IEEE. ’Prospects
for the 21st Century’., volume 1, pages 401 –406 vol.1, sep 1996.

[142] P. Oliverira, C. Silvestre, P. Aguiar, and A. Pascoal. Guidance and control
of the SIRENE underwater vehicle: from system design to tests at sea. In
OCEANS ’98 Conference Proceedings, volume 2, pages 1043 –1048 vol.2, sep-1
oct 1998.

[143] Chun Ouyang, Eric Verbeek, Wil van der Aalst, Stephan Breutel, Marlon Du-
mas, and Arthur ter Hofstede. WofBPEL: A Tool for Automated Analysis of
BPEL Processes. In Service-Oriented Computing - ICSOC 2005, volume 3826
of Lecture Notes in Computer Science, pages 484–489. Springer Berlin / Hei-
delberg, 2005.

[144] Pier Palamara, Vittorio Ziparo, Luca Iocchi, Daniele Nardi, and Pedro Lima.
Teamwork Design Based on Petri Net Plans. In Luca Iocchi, Hitoshi Matsubara,
Alfredo Weitzenfeld, and Changjiu Zhou, editors, RoboCup 2008: Robot Soccer
World Cup XII, volume 5399 of Lecture Notes in Computer Science, pages 200–
211. Springer Berlin / Heidelberg, 2009.

[145] Narcis Palomeras, Marc Carreras, Pere Ridao, and Emili Hernandez. Mission
control system for dam inspection with an AUV. In IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 2551 –2556, oct. 2006.

[146] Joachim Parrow. Handbook of Process Algebra, chapter 8: An Introduction to
the pi-Calculus, pages 479 – 544. Elsevier Science, 2001.

[147] James Pasley. How BPEL and SOA are changing Web services development.
Internet Computing, IEEE, 9(3):60 – 67, may-june 2005.

[148] M. C. L. Patterson, A. Mulligan, J. Douglas, J. Robinson, and J. S. Pallister.
Volcano Surveillance by ACR Silver Fox. In AIAA infotech@aerospace. AIAA,
Sept 2005.

[149] Carl Petri. Communication with Automata. Technical Report 1, Griffiss Air
Force Base, September 1966.

BIBLIOGRAPHY 164

[150] Orjan Pettersen. A configuration tool for process oriented UAV programming.
Master’s thesis, University of Tromso, Department of Computer Science, June
2010.

[151] Amir Pnueli. The Temporal Logic of Programs. Annual IEEE Symposium on
Foundations of Computer Science, 0:46–57, 1977.

[152] Wendy Pyper. Population survey pilots an unmanned aircraft. Australian
Antarctic Magazine, 2008.

[153] P. J. Ramadge and W. M. Wonham. Supervisory Control of a Class of Discrete
Event Processes. In A. Bensoussan and J. Lions, editors, Analysis and Optimiza-
tion of Systems, volume 63 of Lecture Notes in Control and Information Sci-
ences, pages 475–498. Springer Berlin / Heidelberg, 1984. 10.1007/BFb0006306.

[154] Peter J. Ramadge. Observability of discrete event systems. In 25th IEEE
Conference on Decision and Control, volume 25, pages 1108 –1112, dec. 1986.

[155] P.J.G. Ramadge and W.M. Wonham. The Control of Discrete Event Systems.
Proceedings of the IEEE, 77(1):81 –98, jan 1989.

[156] A. Ramirez-Serrano, S.C. Zhu, and B. Benhabib. Moore Automata for the
Supervisory Control of Robotic Manufacturing Workcells. Autonomous Robots,
9:59–69, 2000. 10.1023/A:1008976319182.

[157] A. Rango, A. Laliberte, C. Steele, J. E. Herrick, B. Bestelmeyer, T. Schmugge,
A. Roanhorse, and V. Jenkins. Using Unmanned Aerial Vehicles for Rangelands:
Current Applications and Future Proposals. Environmental Practice, 8:159–168,
2006.

[158] L. Ricker, S. Lafortune, and S. Gene. DESUMA: A Tool Integrating GIDDES
and UMDES. In Discrete Event Systems, 2006 8th International Workshop on,
pages 392 –393, july 2006.

[159] William Rounds and Hosung Song. The -Calculus: A Language for Distributed
Control of Reconfigurable Embedded Systems. In Oded Maler and Amir Pnueli,
editors, Hybrid Systems: Computation and Control, volume 2623 of Lecture
Notes in Computer Science, pages 435–449. Springer Berlin / Heidelberg, 2003.

[160] I. Rubin, A. Behzad, Huei-Jiun Ju, R. Zhang, X. Huang, Y. Liu, and R. Khalaf.
Ad Hoc Wireless Networks with Mobile Backbones. In 15th IEEE International
Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC),
2004., volume 1, pages 566 – 573 Vol.1, 2004.

BIBLIOGRAPHY 165

[161] Karen Rudie and W.M. Wonham. Think Globally, Act Locally: Decentralized
Supervisory Control. IEEE Transactions on Automatic Control, 37(11):1692
–1708, nov 1992.

[162] A. Ryan, J. Tisdale, M. Godwin, D. Coatta, D. Nguyen, S. Spry, R. Sengupta,
and J.K. Hedrick. Decentralized Control of Unmanned Aerial Vehicle Collab-
orative Sensing Missions. In American Control Conference, 2007. ACC ’07,
pages 4672 –4677, july 2007.

[163] Allison Ryan, David Nguyen, and Karl Hedrick. Hybrid Control for UAV-
Assisted Search and Rescue. In ASME 2005 International Mechanical Engi-
neering Congress and Exposition. ASME, November 2005.

[164] Khodakaram Salimifard and Mike Wright. Petri net-based modelling of
workflow systems: An overview. European Journal of Operational Research,
134(3):664 – 676, 2001.

[165] Rupa Sampath, Houshang Darabi, Ugo Buy, and Liu Jing. Control Reconfig-
uration of Discrete Event Systems With Dynamic Control Specifications. Au-
tomation Science and Engineering, IEEE Transactions on, 5(1):84 –100, jan.
2008.

[166] Alan C. Shaw. Communicating Real-Time State Machines. IEEE Transactions
on Software Engineering, 18(9):805 –816, sep 1992.

[167] Michael Sipser. Introduction to the Theory of Computation. Course Technology,
2nd edition, 2006.

[168] Oleg Sokolsky and George Pappas. Platform-Independent Autonomy Modeling.
Technical report, Department of Computer and Information Science, University
of Pennsylvania, 2004.

[169] Joao Sousa, Tunc Simsek, and Pravin Varaiya. Task Planning and Execution
for UAV Teams. In 43rd IEEE Conference on Decision and Control (CDC),
volume 4, pages 3804 – 3810 Vol.4, dec. 2004.

[170] Suman Srinivasan, Haniph Latchman, John Shea, Tan Wong, and Janice Mc-
Nair. Airborne traffic surveillance systems: video surveillance of highway traffic.
In Proceedings of the ACM 2nd international workshop on Video surveillance &
sensor networks, VSSN ’04, pages 131–135, New York, NY, USA, 2004. ACM.

[171] Perdita Stevens and Faron Moller. The Edinburgh Concurrency Workbench
user manual (Version 7.1). Laboratory for Foundations of Computer Science,
University of Edinburgh, 07 1999.

BIBLIOGRAPHY 166

[172] Colin Stirling and David Walker. Local model checking in the modal mu-
calculus. In Josep Daz and Fernando Orejas, editors, TAPSOFT ’89, volume
351 of Lecture Notes in Computer Science, pages 369–383. Springer Berlin Hei-
delberg, 1989.

[173] Technische Universiteit Eindhoven. mCRL2 User Manual, July 2010.

[174] Dave Thomas and Andy Hunt. State Machines. IEEE Software, 19(6):10 – 12,
nov/dec 2002.

[175] Bernardo Toninho and Lus Caires. A Spatial-Epistemic Logic and Tool for
Reasoning about Security Protocols. Technical report, CITI and Faculdade de
Ciencias e Tecnologia, Universidade Nova de Lisboa, 2010.

[176] W. van der Aalst. Workflow Verification: Finding Control-Flow Errors Using
Petri-Net-Based Techniques. In Wil van der Aalst, Jarg Desel, and Andreas
Oberweis, editors, Business Process Management, volume 1806 of Lecture Notes
in Computer Science, pages 19–128. Springer Berlin / Heidelberg, 2000.

[177] Hans Vangheluwe and Juan de Lara. Computer automated multi-paradigm
modelling for analysis and design of traffic networks. In Proceedings of the 36th
conference on Winter simulation, WSC ’04, pages 249–258. Winter Simulation
Conference, 2004.

[178] H. M. W. Verbeek and W. M. P. van der Aalst. Analyzing BPEL processes
using Petri nets. In Florida International University, pages 59–78, 2005.

[179] Hugo Vieira and Luis Caires. Spatial Logic Model Checker User’s Guide version
1.15. Departamento de Informatica, FCT/UNL, June 2009.

[180] N. Viswanadham and Y. Narahari. Coloured Petri net models for automated
manufacturing systems. In Robotics and Automation. Proceedings. 1987 IEEE
International Conference on, volume 4, pages 1985 – 1990, mar 1987.

[181] V. Volovoi. Modeling of system reliability Petri nets with aging tokens. Relia-
bility Engineering & System Safety, 84(2):149 – 161, 2004.

[182] Adam Watts, Scott Bowman, Amr Abd-Elrahman, Ahmed Mohamed, Ben-
jamin Wilkinson, John Perry, Youssef Kaddoura, and Kyuho Lee. Unmanned
Aircraft Systems (UASs) for Ecological Research and Natural-Resource Moni-
toring. Ecological Restoration, 26:13–14, 2008.

[183] Johannes Weidl, Rene Klosch, Georg Trausmuth, and Harald Gall. Facilitating
Program Comprehension via Generic Components for State Machines. In Pro-
ceedings of the 5th International Workshop on Program Comprehension (WPC
’97), pages 118–, Washington, DC, USA, 1997. IEEE Computer Society.

BIBLIOGRAPHY 167

[184] Gera Weiss and Rajeev Alur. Automata Based Interfaces for Control and
Scheduling. In Alberto Bemporad, Antonio Bicchi, and Giorgio Buttazzo, edi-
tors, Hybrid Systems: Computation and Control, volume 4416 of Lecture Notes
in Computer Science, pages 601–613. Springer Berlin / Heidelberg, 2007.

[185] Glynn Winskel. The Formal Semantics of Programming Languages: An Intro-
duction. Foundations of Computing. The MIT Press, 1993.

[186] W. Wonham and P. Ramadge. Modular Supervisory Control of Discrete-Event
Systems. Mathematics of Control, Signals, and Systems (MCSS), 1:13–30, 1988.
10.1007/BF02551233.

[187] W. M. Wonham and P. J. Ramadge. On the Supremal Controllable Sublanguage
of a Given Language. SIAM Journal of Control and Optimization, 25(3):637–
659, 1987.

[188] Naiqi Wu. Necessary and sufficient conditions for deadlock-free operation in
flexible manufacturing systems using a colored Petri net model. Systems, Man,
and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on,
29(2):192 –204, may 1999.

[189] Yali Wu, Weimin Wu, Jianchao Zeng, Guoji Sun, Hongye Su, and Jian Chu.
Modeling and simulation of hybrid dynamical systems with generalized differ-
ential Petri nets. In Intelligent Control, 2002. Proceedings of the 2002 IEEE
International Symposium on, pages 789 – 794, 2002.

[190] V. Ziparo, L. Iocchi, Pedro Lima, D. Nardi, and P. Palamara. Petri Net
Plans. Autonomous Agents and Multi-Agent Systems, 23:344–383, 2011.
10.1007/s10458-010-9146-1.

168

Appendix A

Proof of Lemma 6

If a network-level controller is in a well formed state
(NLC)k = (Pk, Tk, Fk,Wk, Kk,Mk, defk, TDk, TSk), then every state immediately
reachable, (NLC)k+1 = (Pk+1, Tk+1, Fk+1,Wk+1, Kk+1,Mk+1, defk+1, TDk+1, TSk+1),
is also well formed.

Proof: There are several ways that (Pk, Tk, Fk,Wk, Kk,Mk, defk, TDk, TSk) can
transition to become (Pk+1, Tk+1, Fk+1,Wk+1, Kk+1,Mk+1, defk+1, TDk+1, TSk+1), this
proof will show that well formedness is preserved for all possible cases: a task being
completed, a transition firing, or any runtime patch being applied. In all there are
18 different cases.

According to definition 57, for a state (NLC)k to be well formed the following
five criteria must be met:

1. Fk ⊆ (Pk × Tk) ∪ (Tk × Pk),

2. Wk : Fk → N ,

3. Kk: Pk → N+,

4. Mk: Pk → N ,

5. defk: Pk → TDk ∪ {null}.

For each case below, it is assumed that (NLC)k meets these five criteria. Then,
(NLC)k+1 is shown to meet the same five criteria. This proves that the case preserves
being well formed.

For several of the cases, some of the criteria will be trivially true because all of
the portions of the state that they potentially depend upon where not modified and
are identical at k and k + 1. These trivial criteria will be marked with a

⊗

.

169

• complete(tsi): When a UAV completes a task tsi ∈ TSk, the task states TSk

changes. All other parts of the NLC state remain the same: Pk+1 = Pk, Tk+1 =
Tk, Fk+1 = Fk, Wk+1 = Wk, Kk+1 = Kk, Mk+1 = Mk, defk+1 = defk, TDk+1 =
TDk.

1. Show that Fk+1 ⊆ (Pk+1 × Tk+1) ∪ (Tk+1 × Pk+1).
⊗

2. Show that Wk+1 : Fk+1 → N .
⊗

3. Show that Kk+1: Pk+1 → N+.
⊗

4. Show that Mk+1: Pk+1 → N .
⊗

5. Show that defk+1: Pk+1 → TDk+1 ∪ {null}.
⊗

All five criteria are met and this case preserves being well formed.

• firing(t): When a network-level controller transition t ∈ Tk is fired, the marking
Mk and the task states TSk change. All other parts of the NLC state remain
the same: Pk+1 = Pk, Tk+1 = Tk, Fk+1 = Fk, Wk+1 = Wk, Kk+1 = Kk,
defk+1 = defk, TDk+1 = TDk.

1. Show that Fk+1 ⊆ (Pk+1 × Tk+1) ∪ (Tk+1 × Pk+1).
⊗

2. Show that Wk+1 : Fk+1 → N .
⊗

3. Show that Kk+1: Pk+1 → N+.
⊗

4. Show that Mk+1: Pk+1 → N .
By assumption, Mk: Pk → N , or every place at time k has a non-
negative integer marking. The set of places does not change, but the
marking’s values do. The semantics of a NLC transition firing show that
Mk+1(p) = Mk(p) − Wk(p, t) + Wk(t, p). Since t can only fire if token
enabled, definition 61 guarantees that Mk(p) ≥ Wk(p, t). This shows
that Mk(p) − Wk(p, t) ≥ 0. Since weights are all non-negative integers,
Mk+1(p) = Mk(p) − Wk(p, t) + Wk(t, p) ≥ Mk(p) − Wk(p, t) ≥ 0. This
shows that Mk+1 is a non-negative integer for all places.

5. Show that defk+1: Pk+1 → TDk+1 ∪ {null}.
⊗

All five criteria are met and this case preserves being well formed.

• addP lace(): When a null place is added, the structural operational semantics
of table 5.3 show that Pk, Kk, Mk, and defk change. All other parts of the NLC
state remain the same: Tk+1 = Tk, Fk+1 = Fk, Wk+1 = Wk, TDk+1 = TDk,
TSk+1 = TSk.

170

1. Show that Fk+1 ⊆ (Pk+1 × Tk+1) ∪ (Tk+1 × Pk+1).
By assumption, Fk ⊆ (Pk×Tk)∪ (Tk×Pk), or every arc that exists at time
k is connected to a place and transition that exist at time k. The addition
of the new place pm to Pk to form Pk+1 does not automatically create any
new arcs. The set of arcs and transitions did not change. Every arc in
Fk+1 was in Fk and all of the places and transitions that existed at k still
exist at k+1. This guarantees that Fk+1 ⊆ (Pk+1× Tk+1)∪ (Tk+1×Pk+1).

2. Show that Wk+1 : Fk+1 → N .
⊗

3. Show that Kk+1: Pk+1 → N+.
By assumption, Kk: Pk → N+, or every place that exists at time k has a
positive integer capacity constraint. The capacity constraints for all places
existing at time k are not changed. The new place pm is given a default
positive integer capacity constraint by definition. This guarantees that all
places in Pk+1 still have positive integer capacity constraints.

4. Show that Mk+1: Pk+1 → N .
By assumption, Mk: Pk → N , or every place that exists at time k has a
non-negative integer marking. The marking for all places existing at time
k is not changed. The new place pm is given 0 tokens by definition. This
guarantees that all places in Pk+1 have a natural number marking.

5. Show that defk+1: Pk+1 → TDk+1 ∪ {null}.
By assumption, defk: Pk → TDk ∪ {null}, or all places existing at time
k have either an associated task definition or a value of null associated.
The associated task definitions for all places existing at time k are not
changed. The new place pm is given an associated task definition null.
This guarantees that all places in Pk+1 have either an associated task
definition or null.

All five criteria are met and this case preserves being well formed.

• addP lace(tdm): When a place with an associated task definition is added, the
structural operational semantics of table 5.3 show that Pk, Kk, Mk, defk, and
TDk change. All other parts of the NLC state remain the same: Tk+1 = Tk,
Fk+1 = Fk, Wk+1 = Wk, TSk+1 = TSk.

1. Show that Fk+1 ⊆ (Pk+1 × Tk+1) ∪ (Tk+1 × Pk+1).
By assumption, Fk ⊆ (Pk×Tk)∪ (Tk×Pk), or every arc that exists at time
k is connected to a place and transition that exist at time k. The addition
of the new place pm to Pk to form Pk+1 does not automatically create any
new arcs. The set of arcs and transitions did not change. Every arc in
Fk+1 was in Fk and all of the places and transitions that existed at k still
exist at k+1. This guarantees that Fk+1 ⊆ (Pk+1× Tk+1)∪ (Tk+1×Pk+1).

171

2. Show that Wk+1 : Fk+1 → N .
⊗

3. Show that Kk+1: Pk+1 → N+.
By assumption, Kk: Pk → N+, or every place that exists at time k has a
positive integer capacity constraint. The capacity constraints for all places
existing at time k are not changed. The new place pm is given a default
positive integer capacity constraint by definition. This guarantees that all
places in Pk+1 still have positive integer capacity constraints.

4. Show that Mk+1: Pk+1 → N .
By assumption, Mk: Pk → N , or every place that exists at time k has a
non-negative integer marking. The marking for all places existing at time
k is not changed. The new place pm is given 0 tokens by definition. This
guarantees that all places in Pk+1 have a natural number marking.

5. Show that defk+1: Pk+1 → TDk+1 ∪ {null}.
By assumption, defk: Pk → TDk ∪ {null}, or all places existing at time
k have either an associated task definition or a value of null associated.
The associated task definitions for all places existing at time k are not
changed. The new place pm is given an associated task definition tdm. This
guarantees that all places in Pk+1 have either an associated task definition
or null.

All five criteria are met and this case preserves being well formed.

• deleteP lace(pm): When a place is deleted, Pk, Fk, TDk, and TSk change. All
other parts of the NLC state remain the same: Tk+1 = Tk, Wk+1 = Wk, Kk+1 =
Kk, Mk+1 = Mk, defk+1 = defk.

1. Show that Fk+1 ⊆ (Pk+1 × Tk+1) ∪ (Tk+1 × Pk+1).
By assumption, Fk ⊆ (Pk × Tk) ∪ (Tk × Pk), or all of the existing arcs at
time k go from places to transitions or transitions to places. No new arcs
are added. The set of transitions does not change. The set of places only
shrinks by the removal of pm, Pk+1 = Pk − pm. By definition, every arc
in (pm × Tk) ∪ (Tk × pm) is removed from Fk to form Fk+1. So every arc
left in Fk+1 does not go to or come from pm. So for all remaining arcs,
Fk+1 ⊆ (Pk+1 × Tk+1) ∪ (Tk+1 × Pk+1).

2. Show that Wk+1 : Fk+1 → N .
By assumption, Wk : Fk → N , or every arc has a non-negative integer
weight. The weight values do not change, Wk+1 = Wk. All arcs connected
to pm are removed, shrinking the domain of Wk+1, but not changing any
values. All arcs that still exist have the same weights as before, showing
Wk+1 : Fk+1 → N .

172

3. Show that Kk+1: Pk+1 → N+.
By assumption, Kk: Pk → N+, or every place existing at time k has
a positive integer capacity constraint. The capacity constraints do not
change value, Kk+1 = Kk. Only the place pm is removed, shrinking the
domain of Kk+1, but not changing any values. All places that still exist
have the same capacity constraints as before, showing Kk+1: Pk+1 → N+.

4. Show that Mk+1: Pk+1 → N .
By assumption, Mk: Pk → N , or that every place at time k has a non-
negative integer marking. The marking’s values do not change, Mk+1 =
Mk, but its domain is shrunk by the removal of place pm. All places that
still exist have the same marking as before, showing Mk+1: Pk+1 → N .

5. Show that defk+1: Pk+1 → TDk+1 ∪ {null}.
By assumption, defk: Pk → TDk ∪ {null}, or that every place at time
k is associated to either null or a task definition. The associated task
definitions function has its domain shrunk by the removal of place pm. All
other places and task definitions still exist and have not changed value,
showing defk+1: Pk+1 → TDk+1 ∪ {null}.

All five criteria are met and this case preserves being well formed.

• addTransition(): When a transition is added, Tk changes. All other parts of the
NLC state remain the same: Pk+1 = Pk, Fk+1 = Fk, Wk+1 = Wk, Kk+1 = Kk,
Mk+1 = Mk, defk+1 = defk, TDk+1 = TDk, TSk+1 = TSk.

1. Show that Fk+1 ⊆ (Pk+1 × Tk+1) ∪ (Tk+1 × Pk+1).
By assumption, Fk ⊆ (Pk × Tk) ∪ (Tk × Pk), or that all arcs existing at
time k go from a place to a transition or a transition to a place at time
k. The sets of arcs and places do not change. The set of transitions is
augmented with a single new transition tm, (Tk+1 = Tk ∪ tm). Every arc
that had existed, still exists. No new arcs were added. Every place and
transition that the existing arcs connected also still exist. Consequently,
Fk+1 ⊆ (Pk+1 × Tk+1) ∪ (Tk+1 × Pk+1).

2. Show that Wk+1 : Fk+1 → N .
⊗

3. Show that Kk+1: Pk+1 → N+.
⊗

4. Show that Mk+1: Pk+1 → N .
⊗

5. Show that defk+1: Pk+1 → TDk+1 ∪ {null}.
⊗

All five criteria are met and this case preserves being well formed.

173

• deleteTransition(tm): When a transition tm ∈ Tk is deleted, Tk and Fk change.
All other parts of the NLC state remain the same: Pk+1 = Pk, Wk+1 = Wk,
Kk+1 = Kk, Mk+1 = Mk, defk+1 = defk, TDk+1 = TDk, TSk+1 = TSk.

1. Show that Fk+1 ⊆ (Pk+1 × Tk+1) ∪ (Tk+1 × Pk+1).
By assumption, Fk ⊆ (Pk × Tk) ∪ (Tk × Pk), or that all arcs existing
at time k go from a place to a transition or a transition to a place at
time k. The set of places does not change. No new arcs are added. A
single transition tm is removed. By definition, all arcs connected to tm

are removed. All of the remaining arcs connect places in Pk+1 = Pk to
transitions in Tk+1 = Tk − {tm}.

2. Show that Wk+1 : Fk+1 → N .
By assumption, Wk : Fk → N , or that all arcs existing at time k have
a non-negative integer weight. The weights do not change. All arcs con-
nected to tm are removed, shrinking the domain of Wk+1, but not changing
any values. All arcs that still exist have the same weights as before, show-
ing Wk+1 : Fk+1 → N .

3. Show that Kk+1: Pk+1 → N+.
⊗

4. Show that Mk+1: Pk+1 → N .
⊗

5. Show that defk+1: Pk+1 → TDk+1 ∪ {null}.
⊗

All five criteria are met and this case preserves being well formed.

• addArc(pm, tn): When an arc between pm ∈ Pk and tn ∈ Tk is added, Fk and
Wk change. All other parts of the NLC state remain the same: Pk+1 = Pk,
Tk+1 = Tk, Kk+1 = Kk, Mk+1 = Mk, defk+1 = defk, TDk+1 = TDk, TSk+1 =
TSk.

1. Show that Fk+1 ⊆ (Pk+1 × Tk+1) ∪ (Tk+1 × Pk+1). By assumption, Fk ⊆
(Pk × Tk) ∪ (Tk × Pk), or that all arcs existing at time k go from a place
to a transition or a transition to a place at time k. The sets of places
and transitions do not change. Only one new arc is added. This arc is
added between a place and a transition that existed at k and still exist at
k+1. All of the arcs in Fk+1 connect places in Pk+1 = Pk to transitions in
Tk+1 = Tk.

2. Show that Wk+1 : Fk+1 → N . By assumption, Wk : Fk → N , or that all
arcs existing at time k have a non-negative integer weight. The weights on
these previously existing arcs do not change. The single new arc is given
a default non-negative integer weight value by definition. All arcs, those
existing at k and the one new at k+ 1, have non-negative integer weights,
showing Wk+1 : Fk+1 → N .

174

3. Show that Kk+1: Pk+1 → N+.
⊗

4. Show that Mk+1: Pk+1 → N .
⊗

5. Show that defk+1: Pk+1 → TDk+1 ∪ {null}.
⊗

All five criteria are met and this case preserves being well formed.

• addArc(tm, pn): When an arc between tm ∈ Tk and pn ∈ Pk is added, Fk and
Wk change. All other parts of the NLC state remain the same: Pk+1 = Pk,
Tk+1 = Tk, Kk+1 = Kk, Mk+1 = Mk, defk+1 = defk, TDk+1 = TDk, TSk+1 =
TSk.

1. Show that Fk+1 ⊆ (Pk+1 × Tk+1) ∪ (Tk+1 × Pk+1). By assumption, Fk ⊆
(Pk × Tk) ∪ (Tk × Pk), or that all arcs existing at time k go from a place
to a transition or a transition to a place at time k. The sets of places
and transitions do not change. Only one new arc is added. This arc is
added between a transition and a place that existed at k and still exist at
k+1. All of the arcs in Fk+1 connect places in Pk+1 = Pk to transitions in
Tk+1 = Tk.

2. Show that Wk+1 : Fk+1 → N . By assumption, Wk : Fk → N , or that all
arcs existing at time k have a non-negative integer weight. The weights on
these previously existing arcs do not change. The single new arc is given
a default non-negative integer weight value by definition. All arcs, those
existing at k and the one new at k+ 1, have non-negative integer weights,
showing Wk+1 : Fk+1 → N .

3. Show that Kk+1: Pk+1 → N+.
⊗

4. Show that Mk+1: Pk+1 → N .
⊗

5. Show that defk+1: Pk+1 → TDk+1 ∪ {null}.
⊗

All five criteria are met and this case preserves being well formed.

• deleteArc(pm, tn): When an arc (pm, tn) ∈ Fk is removed, Fk changes. All other
parts of the NLC state remain the same: Pk+1 = Pk, Tk+1 = Tk, Wk+1 = Wk,
Kk+1 = Kk, Mk+1 = Mk, defk+1 = defk, TDk+1 = TDk, TSk+1 = TSk.

1. Show that Fk+1 ⊆ (Pk+1 × Tk+1) ∪ (Tk+1 × Pk+1). By assumption, Fk ⊆
(Pk × Tk) ∪ (Tk × Pk), or that all arcs existing at time k go from a place
to a transition or a transition to a place at time k. The sets of places and
transitions do not change. Only one existing arc is removed, (pm, tn). All of
the remaining arcs in Fk+1 still connect places in Pk+1 = Pk to transitions
in Tk+1 = Tk.

175

2. Show that Wk+1 : Fk+1 → N . By assumption, Wk : Fk → N , or that all
arcs existing at time k have a non-negative integer weight. The weights
do not change. Only the arc (pm, tn) is removed, shrinking the domain of
Wk+1, but not changing any values. All arcs that still exist have the same
weights as before, showing Wk+1 : Fk+1 → N .

3. Show that Kk+1: Pk+1 → N+.
⊗

4. Show that Mk+1: Pk+1 → N .
⊗

5. Show that defk+1: Pk+1 → TDk+1 ∪ {null}.
⊗

All five criteria are met and this case preserves being well formed.

• deleteArc(tm, pn): When an arc (tm, pn) ∈ Fk is removed, Fk changes. All other
parts of the NLC state remain the same: Pk+1 = Pk, Tk+1 = Tk, Wk+1 = Wk,
Kk+1 = Kk, Mk+1 = Mk, defk+1 = defk, TDk+1 = TDk, TSk+1 = TSk.

1. Show that Fk+1 ⊆ (Pk+1 × Tk+1) ∪ (Tk+1 × Pk+1). By assumption, Fk ⊆
(Pk × Tk) ∪ (Tk × Pk), or that all arcs existing at time k go from a place
to a transition or a transition to a place at time k. The sets of places and
transitions do not change. Only one existing arc is removed, (tm, pn). All of
the remaining arcs in Fk+1 still connect places in Pk+1 = Pk to transitions
in Tk+1 = Tk.

2. Show that Wk+1 : Fk+1 → N . By assumption, Wk : Fk → N , or that all
arcs existing at time k have a non-negative integer weight. The weights
do not change. Only the arc (tm, pn) is removed, shrinking the domain of
Wk+1, but not changing any values. All arcs that still exist have the same
weights as before, showing Wk+1 : Fk+1 → N .

3. Show that Kk+1: Pk+1 → N+.
⊗

4. Show that Mk+1: Pk+1 → N .
⊗

5. Show that defk+1: Pk+1 → TDk+1 ∪ {null}.
⊗

All five criteria are met and this case preserves being well formed.

• modifyWeight(pm, tn, q): When the weight of the arc (pm, tn) ∈ Fk is modified
to q, Wk changes. All other parts of the NLC state remain the same: Pk+1 = Pk,
Tk+1 = Tk, Fk+1 = Fk, Kk+1 = Kk, Mk+1 = Mk, defk+1 = defk, TDk+1 = TDk,
TSk+1 = TSk.

1. Show that Fk+1 ⊆ (Pk+1 × Tk+1) ∪ (Tk+1 × Pk+1).
⊗

176

2. Show that Wk+1 : Fk+1 → N . By assumption, Wk : Fk → N , or that all
arcs existing at time k have a non-negative integer weight at k. Only the
weight for arc (pm, tn) is changed. It is changed to the value q which is also
a non-negative integer value by definition. All arcs still have non-negative
integer weights, showing Wk+1 : Fk+1 → N .

3. Show that Kk+1: Pk+1 → N+.
⊗

4. Show that Mk+1: Pk+1 → N .
⊗

5. Show that defk+1: Pk+1 → TDk+1 ∪ {null}.
⊗

All five criteria are met and this case preserves being well formed.

• modifyWeight(tm, pn, q): When the weight of the arc (tm, pn) ∈ Fk is modified
to q, Wk changes. All other parts of the NLC state remain the same: Pk+1 = Pk,
Tk+1 = Tk, Fk+1 = Fk, Kk+1 = Kk, Mk+1 = Mk, defk+1 = defk, TDk+1 = TDk,
TSk+1 = TSk.

1. Show that Fk+1 ⊆ (Pk+1 × Tk+1) ∪ (Tk+1 × Pk+1).
⊗

2. Show that Wk+1 : Fk+1 → N . By assumption, Wk : Fk → N , or that all
arcs existing at time k have a non-negative integer weight at k. Only the
weight for arc (tm, pn) is changed. It is changed to the value q which is also
a non-negative integer value by definition. All arcs still have non-negative
integer weights, showing Wk+1 : Fk+1 → N .

3. Show that Kk+1: Pk+1 → N+.
⊗

4. Show that Mk+1: Pk+1 → N .
⊗

5. Show that defk+1: Pk+1 → TDk+1 ∪ {null}.
⊗

All five criteria are met and this case preserves being well formed.

• modifyCapacity(pm, q): When the capacity constraint on pm ∈ Pk is modified
to q, Kk changes. All other parts of the NLC state remain the same: Pk+1 = Pk,
Tk+1 = Tk, Fk+1 = Fk, Wk+1 = Wk, Mk+1 = Mk, defk+1 = defk, TDk+1 = TDk,
TSk+1 = TSk.

1. Show that Fk+1 ⊆ (Pk+1 × Tk+1) ∪ (Tk+1 × Pk+1).
⊗

2. Show that Wk+1 : Fk+1 → N .
⊗

3. Show that Kk+1: Pk+1 → N+. By assumption, Kk : Pk → N+, or that all
places existing at time k have a positive integer capacity constraint at k.
Only the capacity constraint for pm is changed. It is changed to the value
q which is also a positive integer value by definition. All places still have
positive integer capacity constraints, showing Kk+1 : Pk+1 → N+.

177

4. Show that Mk+1: Pk+1 → N .
⊗

5. Show that defk+1: Pk+1 → TDk+1 ∪ {null}.
⊗

All five criteria are met and this case preserves being well formed.

• addToken(pm): When a token is added to pm ∈ Pk, Mk and TSk change.
All other parts of the NLC state remain the same: Pk+1 = Pk, Tk+1 = Tk,
Fk+1 = Fk, Wk+1 = Wk, Kk+1 = Kk, defk+1 = defk, TDk+1 = TDk.

1. Show that Fk+1 ⊆ (Pk+1 × Tk+1) ∪ (Tk+1 × Pk+1).
⊗

2. Show that Wk+1 : Fk+1 → N .
⊗

3. Show that Kk+1: Pk+1 → N+.
⊗

4. Show that Mk+1: Pk+1 → N . By assumption, Mk: Pk → N , or every place
at time k has a non-negative integer marking. The set of places does not
change. Adding a token to pm increases the non-negative integer marking
of pm by 1, resulting in a guaranteed positive integer marking. All other
places’ markings are not affected. Every place in Pk+1 has a non-negative
integer marking.

5. Show that defk+1: Pk+1 → TDk+1 ∪ {null}.
⊗

All five criteria are met and this case preserves being well formed.

• deleteToken(pm): When a token is deleted from pm ∈ Pk, Mk and TSk change.
All other parts of the NLC state remain the same: Pk+1 = Pk, Tk+1 = Tk,
Fk+1 = Fk, Wk+1 = Wk, Kk+1 = Kk, defk+1 = defk, TDk+1 = TDk.

1. Show that Fk+1 ⊆ (Pk+1 × Tk+1) ∪ (Tk+1 × Pk+1).
⊗

2. Show that Wk+1 : Fk+1 → N .
⊗

3. Show that Kk+1: Pk+1 → N+.
⊗

4. Show that Mk+1: Pk+1 → N . By assumption, Mk: Pk → N , or every place
at time k has a non-negative integer marking. All places that are not pm

retain the same marking. By rule ’deleteToken’ in table 5.5, changes are
only made if there is at least 1 token in Mk(p

m). If this is the case, there
is a single token that can be removed from pm resulting in a new marking
that is also at least 0. Every place in Pk+1 has a non-negative integer
marking.

5. Show that defk+1: Pk+1 → TDk+1 ∪ {null}.
⊗

All five criteria are met and this case preserves being well formed.

178

• modifyTaskDefinition(tdp, tdq): When task definition tdp at time k has its
content replaced with tdq for time k + 1, only details of TDk change. All other
parts of the NLC state remain the same: Pk+1 = Pk, Tk+1 = Tk, Fk+1 = Fk,
Wk+1 = Wk, Kk+1 = Kk, Mk+1 = Mk, defk+1 = defk, TSk+1 = TSk.

1. Show that Fk+1 ⊆ (Pk+1 × Tk+1) ∪ (Tk+1 × Pk+1).
⊗

2. Show that Wk+1 : Fk+1 → N .
⊗

3. Show that Kk+1: Pk+1 → N+.
⊗

4. Show that Mk+1: Pk+1 → N .
⊗

5. Show that defk+1: Pk+1 → TDk+1 ∪ {null}. The set of task definitions
TDk does not change. The contents of the specific task definition tdp at
time k are updated so that details(tdpk+1) = details(tdq). The places and
associated task definitions also do not change.

All five criteria are met and this case preserves being well formed.

• modifyTaskState(tsp, tsq): When task state tsp at time k has its content re-
placed with tsq for time k+1, only details of TSk change. All other parts of the
NLC state remain the same: Pk+1 = Pk, Tk+1 = Tk, Fk+1 = Fk, Wk+1 = Wk,
Kk+1 = Kk, Mk+1 = Mk, defk+1 = defk, TDk+1 = TDk.

1. Show that Fk+1 ⊆ (Pk+1 × Tk+1) ∪ (Tk+1 × Pk+1).
⊗

2. Show that Wk+1 : Fk+1 → N .
⊗

3. Show that Kk+1: Pk+1 → N+.
⊗

4. Show that Mk+1: Pk+1 → N .
⊗

5. Show that defk+1: Pk+1 → TDk+1 ∪ {null}.
⊗

All five criteria are met and this case preserves being well formed.

�

179

Appendix B

Proof of Lemma 7

If a network-level controller is in a fully representative state
(NLC)k = (Pk, Tk, Fk,Wk, Kk,Mk, defk, TDk, TSk), then every state immediately
reachable, (NLC)k+1 = (Pk+1, Tk+1, Fk+1,Wk+1, Kk+1,Mk+1, defk+1, TDk+1, TSk+1),
is also fully representative.

Proof: There are several ways that (Pk, Tk, Fk,Wk, Kk,Mk, defk, TDk, TSk) can
transition to become (Pk+1, Tk+1, Fk+1,Wk+1, Kk+1,Mk+1, defk+1, TDk+1, TSk+1), this
proof will show that being fully representative is preserved for all possible cases: a
task being completed, a transition firing, or any runtime patch being applied. In all
there are 18 different cases.

According to definition 58, for a state (NLC)k to be fully representative:

∀td ∈ TDk.(∃!p ∈ Pk.defk(p) = td).

For each case below, it is assumed that (NLC)k is fully representative. Then,
(NLC)k+1 is shown to also be fully representative. This proves that the case preserves
being fully representative.

In several of the cases below the places, associated task definitions, and set of task
definitions will not change from k to k + 1. Since (NLC)k is fully representative by
assumption, and since the parts of the state that being fully representative depend
upon are not modified, (NLC)k+1 is also guaranteed to be fully representative. These
trivial cases will be marked with a

⊗

.

• complete(tsi): When a UAV completes a task tsi ∈ TSk, the task states TSk

changes. All other parts of the NLC state remain the same: Pk+1 = Pk, Tk+1 =
Tk, Fk+1 = Fk, Wk+1 = Wk, Kk+1 = Kk, Mk+1 = Mk, defk+1 = defk, TDk+1 =
TDk.
⊗

180

• firing(t): When a network-level controller transition t ∈ Tk is fired, the marking
Mk and the task states TSk change. All other parts of the NLC state remain
the same: Pk+1 = Pk, Tk+1 = Tk, Fk+1 = Fk, Wk+1 = Wk, Kk+1 = Kk,
defk+1 = defk, TDk+1 = TDk.
⊗

• addP lace(): When a null place is added, the structural operational semantics
of table 5.3 show that Pk, Kk, Mk, and defk change. All other parts of the NLC
state remain the same: Tk+1 = Tk, Fk+1 = Fk, Wk+1 = Wk, TDk+1 = TDk,
TSk+1 = TSk.

By assumption every task definition td ∈ TDk is connected to a unique place
p ∈ Pk by defk. Adding a null place does not create any new task definitions.
The function defk only has its domain expanded by the new place pm which
points to null, defk+1(p

m) = null. Every task definition that exists at k + 1
existed at k and is still connected to the same unique place p by defk+1, which
has the same values at k + 1 as k except for place pm.

• addP lace(tdm): When a place with an associated task definition is added, the
structural operational semantics of table 5.3 show that Pk, Kk, Mk, defk, and
TDk change. All other parts of the NLC state remain the same: Tk+1 = Tk,
Fk+1 = Fk, Wk+1 = Wk, TSk+1 = TSk.

By assumption every task definition td ∈ TDk is connected to a unique place
p ∈ Pk by defk. The set of task definitions expanded by the one new element
tdm, TDk+1 = TDk ∪ {tdm}. The set of places expanded by the one new
element pm, Pk+1 = Pk ∪ {pm}. By definition, defk+1(p

m) = tdm and all other
defk+1 values stay the same as defk. All previously existing task definitions
stay connected to the same unique previously existing places by defk+1. The
single new task definition tdm is connected to a new place pm by defk+1. Since
pm is new it is guaranteed that this association is unique. All task definitions
in TDk+1, the previously existing and the new tdm, have a unique place in Pk+1

that they are associated with through defk+1.

• deleteP lace(pm): When a place is deleted, the structural operational semantics
of table 5.3 show that Pk, Fk, TDk, and TSk change. All other parts of the
NLC state remain the same: Tk+1 = Tk, Wk+1 = Wk, Kk+1 = Kk, Mk+1 = Mk,
defk+1 = defk.

By assumption every task definition td ∈ TDk is connected to a unique place
p ∈ Pk by defk. When a place pm is deleted, if there is and associated task
definition, defk(p

m) = tdm, it is also removed. The function defk has its domain
shrunk by the removal of pm to become defk+1, but all other values remain the

181

same. All of the remaining task definitions are still connected to the same
unique places by defk+1.

• addTransition(): When a transition is added, Tk changes. All other parts of the
NLC state remain the same: Pk+1 = Pk, Fk+1 = Fk, Wk+1 = Wk, Kk+1 = Kk,
Mk+1 = Mk, defk+1 = defk, TDk+1 = TDk, TSk+1 = TSk.
⊗

• deleteTransition(tm): When a transition tm ∈ Tk is deleted, Tk and Fk change.
All other parts of the NLC state remain the same: Pk+1 = Pk, Wk+1 = Wk,
Kk+1 = Kk, Mk+1 = Mk, defk+1 = defk, TDk+1 = TDk, TSk+1 = TSk.
⊗

• addArc(pm, tn): When an arc between pm ∈ Pk and tn ∈ Tk is added, Fk and
Wk change. All other parts of the NLC state remain the same: Pk+1 = Pk,
Tk+1 = Tk, Kk+1 = Kk, Mk+1 = Mk, defk+1 = defk, TDk+1 = TDk, TSk+1 =
TSk.
⊗

• addArc(tm, pn): When an arc between tm ∈ Tk and pn ∈ Pk is added, Fk and
Wk change. All other parts of the NLC state remain the same: Pk+1 = Pk,
Tk+1 = Tk, Kk+1 = Kk, Mk+1 = Mk, defk+1 = defk, TDk+1 = TDk, TSk+1 =
TSk.
⊗

• deleteArc(pm, tn): When an arc (pm, tn) ∈ Fk is removed, Fk changes. All other
parts of the NLC state remain the same: Pk+1 = Pk, Tk+1 = Tk, Wk+1 = Wk,
Kk+1 = Kk, Mk+1 = Mk, defk+1 = defk, TDk+1 = TDk, TSk+1 = TSk.
⊗

• deleteArc(tm, pn): When an arc (tm, pn) ∈ Fk is removed, Fk changes. All other
parts of the NLC state remain the same: Pk+1 = Pk, Tk+1 = Tk, Wk+1 = Wk,
Kk+1 = Kk, Mk+1 = Mk, defk+1 = defk, TDk+1 = TDk, TSk+1 = TSk.
⊗

• modifyWeight(pm, tn, q): When the weight of the arc (pm, tn) ∈ Fk is modified
to q, Wk changes. All other parts of the NLC state remain the same: Pk+1 = Pk,
Tk+1 = Tk, Fk+1 = Fk, Kk+1 = Kk, Mk+1 = Mk, defk+1 = defk, TDk+1 = TDk,
TSk+1 = TSk.
⊗

182

• modifyWeight(tm, pn, q): When the weight of the arc (tm, pn) ∈ Fk is modified
to q, Wk changes. All other parts of the NLC state remain the same: Pk+1 = Pk,
Tk+1 = Tk, Fk+1 = Fk, Kk+1 = Kk, Mk+1 = Mk, defk+1 = defk, TDk+1 = TDk,
TSk+1 = TSk.
⊗

• modifyCapacity(pm, q): When the capacity constraint on pm ∈ Pk is modified
to q, Kk changes. All other parts of the NLC state remain the same: Pk+1 = Pk,
Tk+1 = Tk, Fk+1 = Fk, Wk+1 = Wk, Mk+1 = Mk, defk+1 = defk, TDk+1 = TDk,
TSk+1 = TSk.
⊗

• addToken(pm): When a token is added to pm ∈ Pk, Mk and TSk change.
All other parts of the NLC state remain the same: Pk+1 = Pk, Tk+1 = Tk,
Fk+1 = Fk, Wk+1 = Wk, Kk+1 = Kk, defk+1 = defk, TDk+1 = TDk.
⊗

• deleteToken(pm): When a token is deleted from pm ∈ Pk, Mk and TSk change.
All other parts of the NLC state remain the same: Pk+1 = Pk, Tk+1 = Tk,
Fk+1 = Fk, Wk+1 = Wk, Kk+1 = Kk, defk+1 = defk, TDk+1 = TDk.
⊗

• modifyTaskDefinition(tdp, tdq): When task definition tdp at time k has its
content replaced with tdq for time k + 1, only details of TDk change. All other
parts of the NLC state remain the same: Pk+1 = Pk, Tk+1 = Tk, Fk+1 = Fk,
Wk+1 = Wk, Kk+1 = Kk, Mk+1 = Mk, defk+1 = defk, TSk+1 = TSk.

Only the content of the task definition is changed. The set of task definitions,
the set of places, and the function defk are not modified.

• modifyTaskInstance(tsp, tsq): When task state tsp at time k has its content
replaced with tsq for time k + 1, only details of TSk change. All other parts of
the NLC state remain the same: Pk+1 = Pk, Tk+1 = Tk, Fk+1 = Fk, Wk+1 = Wk,
Kk+1 = Kk, Mk+1 = Mk, defk+1 = defk, TDk+1 = TDk.
⊗

�

183

Appendix C

Proof of Lemma 8

If a network-level controller is in a task-token consistent state
(NLC)k = (Pk, Tk, Fk,Wk, Kk,Mk, defk, TDk, TSk), then states immediately reach-
able, (NLC)k+1 = (Pk+1, Tk+1, Fk+1,Wk+1, Kk+1,Mk+1, defk+1, TDk+1, TSk+1), are
also task-token consistent.

Proof: There are several ways that (Pk, Tk, Fk,Wk, Kk,Mk, defk, TDk, TSk) can tran-
sition to become (Pk+1, Tk+1, Fk+1,Wk+1, Kk+1,Mk+1, defk+1, TDk+1, TSk+1), this proof
will show that being task-token consistent is preserved for all possible cases: a task
being completed, a transition firing, or any runtime patch being applied. In all there
are 18 different cases.

According to definition 59, for a state (NLC)k to be task-token consistent:

∀p ∈ Pk.[defk(p) 6= null] ⇒ [Mk(p) = cardinality(TSk|defk(p))].

For each case below, it is assumed that (NLC)k is task-token consistent. Then,
(NLC)k+1 is shown to also be task-token consistent. This proves that the case pre-
serves being task-token consistent.

In several of the cases below the places, markings, associated task definitions,
task definitions, and task states will not change from k to k + 1. Since (NLC)k
is task-token consistent by assumption, and since the parts of the state that being
task-token consistent depend upon are not modified, (NLC)k+1 is also guaranteed to
be task-token consistent. These trivial cases will be marked with a

⊗

.

• complete(tsi): When a UAV completes a task tsi ∈ TSk, the task states TSk

changes. All other parts of the NLC state remain the same: Pk+1 = Pk, Tk+1 =
Tk, Fk+1 = Fk, Wk+1 = Wk, Kk+1 = Kk, Mk+1 = Mk, defk+1 = defk, TDk+1 =
TDk.

Changing tsi from not done to done affects neither the number of task states
nor the marking, thus this event cannot affect task-token consistency.

184

• firing(ti): When a network-level controller transition ti ∈ Tk is fired, the mark-
ing Mk and the task states TSk change. All other parts of the NLC state re-
main the same: Pk+1 = Pk, Tk+1 = Tk, Fk+1 = Fk, Wk+1 = Wk, Kk+1 = Kk,
defk+1 = defk, TDk+1 = TDk.

For this case to be true, all places pj that do have an associated task definition
(def(pj) 6= null) must satisfy: Mk+1(p

j) = cardinality(TSk+1|def(pj)).

Before the firing, Mk(p
j) = cardinality(TSk|defk(pj)) = x by the task-token

consistency assumption at k.

When ti is fired, according to definition 64, Wk(p
j , ti) = m tokens will be

removed from place pj. Also Wk(t
i, pj) = n tokens will be added. This means

Mk+1(p
j) = x−m+ n.

According to definition 62, there must be exactly Wk(p
j , ti) = m task states

matching defk(p
j) in the set of task states to be removed, TS−. Definition 63

shows that there are exactly Wk(t
i, pj) = n task states matching defk(p

j) to be
added in set TS+.

The original number of task states matching defk(p
j) was x, then m were re-

moved and n added. This produces cardinality(TSk+1|defk+1(pj)) = x−m+ n.

Therefore, Mk+1(p
j) = x − m + n = cardinality(TSk+1|defk+1(pj)) and the re-

sulting state is task-token consistent.

• addP lace(): When a null place is added, the structural operational semantics
of table 5.3 show that Pk, Kk, Mk, and defk change. All other parts of the NLC
state remain the same: Tk+1 = Tk, Fk+1 = Fk, Wk+1 = Wk, TDk+1 = TDk,
TSk+1 = TSk.

By assumption, at time k all places p ∈ Pk are either associated to null or have
a marking that is equal to the number of task states based on the associated
task definition.

The set of places is expanded by the single new place pm, Pk+1 = Pk + {pm}.
By definition this place is given a default capacity constraint, zero tokens, and
is associated to null. Since defk+1(p

m) = null, this new place trivially satisfies
the criteria.

All other places p ∈ Pk+1 existed at k and retain the same capacity constraint,
marking, and task definition association. Since these values satisfied the criteria
at k by assumption, and since they are the same at k + 1, they also satisfy the
criteria at k + 1.

• addP lace(tdm): When a place with an associated task definition is added, the
structural operational semantics of table 5.3 show that Pk, Kk, Mk, defk, and

185

TDk change. All other parts of the NLC state remain the same: Tk+1 = Tk,
Fk+1 = Fk, Wk+1 = Wk, TSk+1 = TSk.

By assumption, at time k all places p ∈ Pk are either associated to null or have
a marking that is equal to the number of task states based on the associated
task definition.

The set of task definitions is expanded by tdm, TDk+1 = TDk + {tdm}. The
set of places is expanded by the single new place pm, Pk+1 = Pk + {pm}. By
definition this place is given a default capacity constraint, zero tokens, and is
associated to tdm.

Since defk+1(p
m) = tdm, and since no task states were created based on this

new task definition, cardinality(TSk+1|defk+1(pm)) = 0. Since the marking for
pm is zero by definition, Mk+1(p

m) = 0. The marking and number of task states
based on the associated definition match, both being 0, and the new place pm

satisfies the criteria.

All other places p ∈ Pk+1 existed at k and retain the same capacity constraint,
marking, and task definition association. Since these values satisfied the criteria
at k by assumption, and since they are the same at k + 1, they also satisfy the
criteria at k + 1.

• deleteP lace(pm): When a place is deleted, Pk, Fk, TDk, and TSk change. All
other parts of the NLC state remain the same: Tk+1 = Tk, Wk+1 = Wk, Kk+1 =
Kk, Mk+1 = Mk, defk+1 = defk.

When pm is removed, any connected arcs, the associated task definition tdm =
defk(p

m), and any task states based upon it, TSk|defk(pm), are also removed.

All of the other places that existed at k still exist at k + 1, and still have the
same markings, the same task definition associations, and the same task states.
All of these remaining places were unaffected and still satisfy the criteria.

• addTransition(): When a transition is added, Tk changes. All other parts of the
NLC state remain the same: Pk+1 = Pk, Fk+1 = Fk, Wk+1 = Wk, Kk+1 = Kk,
Mk+1 = Mk, defk+1 = defk, TDk+1 = TDk, TSk+1 = TSk.
⊗

• deleteTransition(tm): When a transition tm ∈ Tk is deleted, Tk and Fk change.
All other parts of the NLC state remain the same: Pk+1 = Pk, Wk+1 = Wk,
Kk+1 = Kk, Mk+1 = Mk, defk+1 = defk, TDk+1 = TDk, TSk+1 = TSk.
⊗

• addArc(pm, tn): When an arc between pm ∈ Pk and tn ∈ Tk is added, Fk and
Wk change. All other parts of the NLC state remain the same: Pk+1 = Pk,

186

Tk+1 = Tk, Kk+1 = Kk, Mk+1 = Mk, defk+1 = defk, TDk+1 = TDk, TSk+1 =
TSk.
⊗

• addArc(tm, pn): When an arc between tm ∈ Tk and pn ∈ Pk is added, Fk and
Wk change. All other parts of the NLC state remain the same: Pk+1 = Pk,
Tk+1 = Tk, Kk+1 = Kk, Mk+1 = Mk, defk+1 = defk, TDk+1 = TDk, TSk+1 =
TSk.
⊗

• deleteArc(pm, tn): When an arc (pm, tn) ∈ Fk is removed, Fk changes. All other
parts of the NLC state remain the same: Pk+1 = Pk, Tk+1 = Tk, Wk+1 = Wk,
Kk+1 = Kk, Mk+1 = Mk, defk+1 = defk, TDk+1 = TDk, TSk+1 = TSk.
⊗

• deleteArc(tm, pn): When an arc (tm, pn) ∈ Fk is removed, Fk changes. All other
parts of the NLC state remain the same: Pk+1 = Pk, Tk+1 = Tk, Wk+1 = Wk,
Kk+1 = Kk, Mk+1 = Mk, defk+1 = defk, TDk+1 = TDk, TSk+1 = TSk.
⊗

• modifyWeight(pm, tn, q): When the weight of the arc (pm, tn) ∈ Fk is modified
to q, Wk changes. All other parts of the NLC state remain the same: Pk+1 = Pk,
Tk+1 = Tk, Fk+1 = Fk, Kk+1 = Kk, Mk+1 = Mk, defk+1 = defk, TDk+1 = TDk,
TSk+1 = TSk.
⊗

• modifyWeight(tm, pn, q): When the weight of the arc (tm, pn) ∈ Fk is modified
to q, Wk changes. All other parts of the NLC state remain the same: Pk+1 = Pk,
Tk+1 = Tk, Fk+1 = Fk, Kk+1 = Kk, Mk+1 = Mk, defk+1 = defk, TDk+1 = TDk,
TSk+1 = TSk.
⊗

• modifyCapacity(pm, q): When the capacity constraint on pm ∈ Pk is modified
to q, Kk changes. All other parts of the NLC state remain the same: Pk+1 = Pk,
Tk+1 = Tk, Fk+1 = Fk, Wk+1 = Wk, Mk+1 = Mk, defk+1 = defk, TDk+1 = TDk,
TSk+1 = TSk.
⊗

• addToken(pm): When a token is added to pm ∈ Pk, Mk and TSk change.
All other parts of the NLC state remain the same: Pk+1 = Pk, Tk+1 = Tk,
Fk+1 = Fk, Wk+1 = Wk, Kk+1 = Kk, defk+1 = defk, TDk+1 = TDk.

187

By assumption, at time k all places p ∈ Pk are either associated to null or have
a marking that is equal to the number of task states based on the associated
task definition.

If pm is associated to null, [defk+1(p
m) 6= null] ⇒

[Mk+1(p
m) = cardinality(TSk+1|defk+1(pm))] is trivially true and pm’s change in

tokens has no affect on task-token consistency.

If pm is associated to tdm by defk(p
m) = tdm, and if a token is added, it increases

the marking of pm by 1, Mk+1(p
m) = Mk(p

m) + 1. By definition one new task
state is also created. Since the marking and the number of task states both
increase by exactly 1, if they were equal to x at time k, they are both equal to
x+ 1 at k + 1, and task-token consistency is also preserved.

• deleteToken(pm): When a token is deleted from pm ∈ Pk, Mk and TSk change.
All other parts of the NLC state remain the same: Pk+1 = Pk, Tk+1 = Tk,
Fk+1 = Fk, Wk+1 = Wk, Kk+1 = Kk, defk+1 = defk, TDk+1 = TDk.

By assumption, at time k all places p ∈ Pk are either associated to null or have
a marking that is equal to the number of task states based on the associated
task definition.

If the marking was zero, Mk(p
m) = 0, the deletion has no affect on the state

and the state at k + 1 is identical to k, thus preserving task-token consistency.

If there is at least 1 token and defk(p
m) = null, the token can be removed with

no affect on task-token consistency because [defk+1(p
m) 6= null] ⇒

[Mk+1(p
m) = cardinality(TSk+1|defk+1(pm))] will be trivially true.

If there is at least 1 token and defk(p
m) = tdm, the token and a task state

based on tdm will be removed by definition. The task state is guaranteed to
exist because of the task-token consistency assumption at k. Since the marking
and the number of task states both decrease by exactly 1, if they were equal to
x at time k, they are both equal to x− 1 at k + 1, and task-token consistency
is again preserved.

• modifyTaskDefinition(tdp, tdq): When task definition tdp at time k has its
content replaced with tdq for time k + 1, only details of TDk change. All other
parts of the NLC state remain the same: Pk+1 = Pk, Tk+1 = Tk, Fk+1 = Fk,
Wk+1 = Wk, Kk+1 = Kk, Mk+1 = Mk, defk+1 = defk, TSk+1 = TSk.
⊗

• modifyTaskInstance(tsp, tsq): When task state tsp at time k has its content
replaced with tsq for time k + 1, only details of TSk change. All other parts of
the NLC state remain the same: Pk+1 = Pk, Tk+1 = Tk, Fk+1 = Fk, Wk+1 = Wk,
Kk+1 = Kk, Mk+1 = Mk, defk+1 = defk, TDk+1 = TDk.

188

⊗

�

