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Abstract of the Dissertation

Physics and Modeling of Tunneling in Low Power

Transistors

by

Andrew Samuel Pan

Doctor of Philosophy in Electrical Engineering

University of California, Los Angeles, 2015

Professor Chi On Chui, Chair

As CMOS electronics grow ever more ubiquitous and essential to modern life, managing

and reducing power dissipation becomes essential. At the device level, this requires new

transistors with reduced leakage currents and operating voltages. Opportunities and chal-

lenges in this regard arise from quantum transport effects. For instance, novel tunneling

field-effect transistors (TFETs) can potentially operate at substantially lower voltages

than MOSFETs by utilizing interband tunneling as the conduction process. Conversely,

the Moore’s law-driven scaling of MOSFETs down to the nanometer regime increases

source-drain intraband tunneling, which may limit leakage power in future CMOS. Con-

ventional device models and simulations based on semiclassical concepts are inadequate

for describing such effects. In this dissertation, we develop new theoretical models to

study tunneling and apply the resulting insights to MOSFET and TFET device design.

To this end, we develop a complete device simulator that uses non-equilibrium Green’s

functions (NEGF) to rigorously model quantum transport. We utilize a combination of

NEGF, full band structure calculations, and analytical derivations to study the physics of

interband tunneling in semiconductors. We clarify and improve the accuracy of commonly

used analytical tunneling models and extend them to quantum confined structures, which

include present and future scaled devices like ultra-thin body (UTB) transistors, FinFETs,

and nanowire devices. We merge our findings with electrostatic analyses to derive the first
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general quasi-analytical current model for TFETs that provides device insight and is easily

used for compact modeling. We show that existing TFETs are performance limited by the

chemical source doping profiles, a particularly profound problem for III-V p-type TFETs.

To overcome these limitations, we propose a new device design, the gate-induced source

tunneling FET (GISTFET), which utilizes electrostatic doping to define the tunneling

junction and allow for high performing complementary TFET systems. Finally, we derive

the first model of source-drain tunneling in MOSFETs and study the effect of contact

doping on leakage in scaled devices.
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CHAPTER 1

Introduction

It’s all right, Colin. Sit down. We’re

going to tunnel.

The Great Escape

The enormous unprecedented scope of modern semiconductor devices enables a wide scale

of technologies such as the vast data centers powering the Internet, ubiquitous personal

electronic devices like smartphones, and the continuously expanding range of “smart”

appliances and sensors used in personal, healthcare, and industrial settings. The remark-

able capabilities of electronics, however, are accompanied by an equally remarkable level

of energy consumption, leading to major environmental and economic costs. There is

an urgent need to develop “green” technologies to sustain the existing (and expanding)

technological infrastructure while reducing energy consumption. At the most basic level

this requires electronic devices, and in particular transistors, which consume less power by

minimizing operating voltages and leakage currents. Conventional devices like the metal-

oxide-semiconductor field-effect transistor (MOSFET) face fundamental limitations on

their ability to reduce these quantities, so new device physics and engineering designs are

necessary to overcome this challenge. As a result, much recent activity has been devoted

to devices not limited by thermal processes, among which the tunneling FET (TFET)

has emerged as particularly promising. While experimental progress has occurred for

this concept, many theoretical aspects of the device operation and design remain under

investigation.
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Figure 1.1: Scaling trends of active and passive power density with gate length in modern

CMOS technologies. Data points taken from Ref. [1].

1.1 Power Consumption with Scaling

The technological trend for power dissipation in modern CMOS systems is shown in Fig.

1.1 and can be basically understood from the simple formula

Pdiss = αCeffV
2
ddf + IleakVdd (1.1)

where α is the activity factor, Ceff is the load capacitance, Vdd is the supply voltage,

f is the operating frequency, and Ileak is the leakage current in the off-state[1]. For

circuits dominated by active dissipation during switching, the quadratic dependence of

power on Vdd promises significant power savings via voltage scaling. In fact, because the

system frequency and capacitance also have some voltage dependence, the power-voltage

relationship may be cubic or greater in practice[2]. In low activity circuits such as ultralow

power or remote systems, passive Joule heating represented by the second term of Eq.

1.1 may play a more significant role; here again, reducing Vdd and Ileak (which also scales

with voltage) is key.

In traditional Dennard scaling, supply voltages and device dimensions (among other
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Figure 1.2: Operating voltage dependence on gate length in modern CMOS technologies.

Data points taken from Ref. [2].

parameters) are each reduced in tandem by a factor κ, allowing the electric field magni-

tudes to remain constant inside the device[13]. In the ideal case, this leads to a reduction

of power dissipation per circuit by κ2 and hence maintains constant power density across

the chip, independent of technology generation. Unfortunately, as Fig. 1.1 shows, this

is not the case in real systems, where both active and passive power are increasing at

an unsustainable rate as device dimensions shrink. This is because threshold voltages

and subthreshold currents do not scale linearly in accord with other device parameters,

constraining voltage scaling; in fact, operating voltages has scarcely decreased in high per-

formance CMOS since technology nodes reached 100 nm, as illustrated in Fig. 1.2[1, 2].

This basic bottleneck in MOSFET-based technologies is due to the non-scalability of the

subthreshold swing (SS). SS is equal to the change in gate voltage required to increase

the subthreshold current by an order of magnitude; in traditional MOSFETs it is fun-

damentally limited to be ln(10)kT/q = 60 mV/decade or greater[14]. This is because

the subthreshold diffusion current is driven by the “Boltzmann tail” of the source carrier

population ∼ exp(E/kT ) with energies greater than the top of the barrier in the channel.

The end result is that SS =
dVgs

d log10 Id
ln(10)mkT/q = 60m mV/dec at room tempera-
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ture, where m = 1 +
Cdep

Cox

describes the effective voltage drop across the channel. This

basic limitation on the SS prevents the operating voltage of MOSFETs from being scaled

in tandem with other device properties without either drastically increasing off-state cur-

rent or reducing on-state current. In combination with other device factors, including

increased variability in scaled devices due to random dopant fluctuations, this inhibits

voltage scaling as devices shrink[2].

To overcome this fundamental limitation, new transport mechanisms must be em-

ployed besides carrier drift and diffusion. This has led to much research in so-called

“steep swing” transistors which can have SS below 60 mV/decade and hence achieve good

Ion/Ioff ratios at lower voltages. Many such device candidates have been proposed, includ-

ing the I-MOS (impact ionization MOS)[15], NEMS (nanoelectromechanical) switches[16],

and negative capacitance FETs[17], which use avalanche breakdown, mechanical contact,

and ferroelectric free energy instabilities, respectively, to achieve steep swings. Among

a plethora of such candidates, interband tunneling field-effect transistors (TFETs) have

emerged as especially promising because of their potential for low voltage operation and

compatibility with common semiconductor technologies[18].

1.2 The Promise and Status of Tunneling FETs as a Low Power

Device Alternative

In its most common incarnation, the TFET operates as a gated p-i-n diode where carrier

transport occurs by interband tunneling between the source and channel. As illustrated in

Fig. 1.3, the channel potential is controlled by the gate and forms an effective p-n junction

with the source. For an n-type device in the off-state, the channel conduction band is

higher than the valence band in the source, preventing tunneling from occurring. With

increased gate bias, the channel conduction band is pulled below the source valence band

edge, such that interband tunneling occurs and the device turns on. P-type operation

can be realized by reversing the polarity of the device doping. Because the tunneling
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Figure 1.3: Schematic device structure and representative band diagrams in the off and

on states for MOSFETs (top) and TFETs (bottom).

probability is a sharp function of electric field and the high-energy Boltzmann tail of the

source distribution does not contribute to the tunneling current at low bias, it is possible

for TFETs to attain subthreshold swings significantly below ln 10kT/q mV/decade[19].

The concept of tunneling transistors has a long history, dating back to early efforts to

create tunable Esaki triodes using the field effect[20]. The idea of modulating interband

tunneling using a gate seems to have been proposed and rediscovered several times, usually

as a curiosity or with the goal of realizing negative differential conductance (NDC)[21,

22, 23, 24]. Perhaps the first indication of the true potential of TFETs came in 2004,

with the experimental observation of steep SS in carbon nanotube (CNT) FETs biased to

induce interband tunneling[25]. Around the same time, simulation studies reported the

possibility of sub-60 mV/dec swing in silicon TFETs[26]. These findings generated intense

excitement and extensive research into TFETs, leading to a number of experimental

reports of steep SS in silicon- and germanium-based devices[27, 28, 29, 30, 31, 32, 33].

Unfortunately, thus far the steep SS in such devices has invariably been accompanied by

low currents. Amusingly (and disappointingly), to the author’s knowledge the highest
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experimental on-current in a steep SS group IV TFET to date was reported in the first

demonstration of such a device[27]. In group IV semiconductors, the relatively large

indirect band gaps and effective masses in these materials are likely to reduce the tunneling

probability and hence limit the achievable current drive, obviating any obvious technology

advantages in terms of CMOS compatibility.

To overcome these limitations, TFETs based on III-V materials and/or heterojunctions

have become more widely explored owing to their smaller and adjustable direct band

gaps and effective masses, which should substantially increase the tunneling probability.

Theoretical predictions of improved performance in such devices abound. Experimentally,

many studies have shown larger on-currents in all-III-V TFETs compared to silicon, but

most have failed to observe notably steep SS [34, 35, 36, 37]. Possibly the most promising

experimental reports have come in InGaAs-based TFETs which have achieved minimum

subthreshold swing of 60 mV/dec[6] and 64 mV/dec[5], the latter in a planar CMOS-like

process. Several InGaAs/Si or InAs/Si heterojunction TFETs with steep SS (as low as 30

mV/decade at very low currents) have also appeared, though invariably with minuscule

on-currents[38, 39]. A InP-GaAs heterostructure nanowire TFET has also been measured

to have SS below 50 mV/dec, though the strong temperature dependence of SS in the

device suggests that the subthreshold current may be due to something other than direct

interband tunneling[40].

The underwhelming results of experimental TFET studies thus far has been attributed

to a variety of complications, such as large leakage currents stemming from material

quality issues, band tails due to random dopant fluctuations in the heavily doped source, or

insufficiently optimized tunnel junction electrostatics due to dopant profile and oxide and

channel geometric scaling limitations. Experimental evidence for interface trap-associated

limitations has come via pulsed biasing I − V measurements of silicon[41] and III-V

devices[37] where subthreshold swings steeper than the DC values have been measured,

presumably because the measuring frequency is faster than the response time of the trap

states. By contrast, a study of silicon nanowire TFETs found that leakage currents scale

with the device cross-sectional area rather than circumference, suggesting that bulk traps
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dominate the parasitics[42]. The actual mechanisms limiting each experimental device

are likely to be heavily dependent on design and processing. In principle, it should be

possible to minimize these effects and realize the full potential of TFETs, yet it is clear

that substantial progress remains to be made experimentally before the promise of these

devices can be fulfilled.

It is also important to note that whereas n- and p-type devices have been demonstrated

in silicon and germanium, in III-V materials only n-type TFETs have been experimen-

tally demonstrated. This is likely due to the requirement for heavily n-doped regions in

the source of p-type devices, which is difficult to realize due to the limited donor solid

solubilities in common III-V semiconductors[43]. In addition to different materials, a

variety of structural designs have been explored for TFETs beyond the lateral tunnel-

ing structure illustrated in Fig. 1.3. For instance, to boost current, vertical TFETs

have been proposed wherein tunneling occurs perpendicular to the oxide-semiconductor

interface[44, 45, 46, 47]; in such devices, the effective tunneling area is enlarged, increasing

the drive current. Although some experimental devices have adopted this configuration,

surface field-induced quantization and fabrication complexity pose possible significant

challenges[48].

At present, experimental TFETs are still heavily constrained by performance com-

pared to conventional devices. We have shown this in our collaborative work with Prof.

Puneet Gupta, where we developed a device-circuit evaluation methodology, Pareto-

Optimization-Based Circuit-Level Evaluator of Emerging Devices (PROCEED), which

can cross-compare the performance of systems constructed using alternative device tech-

nologies [3]. For TFETs this draws on the analytical device modeling work discussed

later in this thesis. In Fig. 1.4, when we compare the microprocessor-level performance

of current state-of-the-art silicon TFET data[32] with commercial conventional SOI tech-

nology. It is evident that current TFETs can only outperform conventional devices in

low performance (high delay) settings. This may be adequate for applications in certain

ultralow power systems, such as remote sensors. If the challenges outlined above can be

addressed, however, much greater advances in performance and a concomitantly wider
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Figure 1.4: Optimized power-delay Pareto curves for MIPS and CortexM0 microprocessor

designs implemented using current silicon experimental TFET and SOI characteristics,

respectively, computed using PROCEED[3].

range of applications can be expected. Indeed, at present TFETs are still considered the

most likely alternative device paradigm to conventional CMOS in the near future[49].

1.3 Outline of Work in this Dissertation

Despite the outpouring of experimental and simulation work in the field, many important

questions remain about the fundamental operation of TFETs and the tunneling process. A

solid theoretical understanding of these issues is critical for the development of optimized

tunneling-based devices for low power and is the focus of this dissertation. Many simple

models of tunneling currents are semiclassical in origin; however, the phenomenon is

fundamentally quantum mechanical, and therefore we must adopt a formalism that reflects

this fact. This would provide us with a rigorous basis for evaluating tunneling phenomena,

as well as a standard by which simpler, approximate methods may be judged. The method

of non-equilibrium Green’s functions (NEGF) provides a natural starting point since it

is the most general nonequilibrium quantum theory available. NEGF has also emerged

as an increasingly popular method for studying device physics as quantum effects have

8



become more apparent in the latter. In Chapter 2, we discuss the basic theory of NEGF

and the approximations and algorithms which are used to make it suitable for device

simulations. Based on this methodology, we create a self-consistent quantum transport

simulator program with which we will study various tunneling problems.

In Chapter 3 we analyze and validate traditional direct interband tunneling theories,

which were derived via perturbation or semiclassical Wentzel-Kramers-Brillouin (WKB)

arguments, by comparing their predictions with those given by NEGF calculations. The

effects of material band structure and quantum size confinement (for tunneling in quantum

wells and wires) are considered in detail. We clarify confusion in the literature regarding

the range of validity of the semiclassical theory (which is widely used in device modeling

and commercial simulation tools), and show that the main sources of error in the model

lies in neglect of spin-orbit coupling and the nonparabolicity of transverse states. We

derive simple new analytical formulas which incorporate these effects and yield good

quantitative agreement with NEGF calculations for different materials and a wide range of

electric fields. We also present a simple procedure, band gap scaling (BGS), which enables

simple, quantitatively accurate evaluation of tunneling in confined structures. The BGS

scheme is conceptually buttressed by arguments regarding the nature of the wave functions

and complex band structure of confined materials. Taken together, these results provide

a set of physically justified and quantitatively accurate analytical models for interband

tunneling in direct gap materials. These results enable predictive calculations of tunneling

currents in analytical models and widely-used device simulation tools. The work in this

chapter is adapted from our prior journal publications[10, 9].

As TFET devices evolve, physically motivated design insights as well as sophisticated

circuit-level understanding of the potential role of TFETs in real systems will be important

in making them commercially useful technologies. Developing simple and accurate TFET

current models is critical for both purposes, and our work in this area is documented in

Chapter 4. We use analytical approximations to develop a general bias-dependent model

of the electrostatic potential in lateral TFETs. The general formalism applies equally to

ultrathin body, double-gate, and nanowire TFETs, among other structures, and can be

9



extended to consider various effects like graded doping junctions. We verify the accuracy

of the model via extensive comparisons with numerical simulations and use it to derive the

first quantitatively accurate analytical TFET I−V model, showing the dependence of the

electrical characteristics on device geometry, doping, and band structure. The resulting

model elucidates the device physics and provides a foundation for compact models used

in SPICE circuit-level simulations. Much of the work in this chapter is adapted from our

prior journal publications[9, 7, 8].

Our device analysis helps demonstrate the critical importance of the TFET source

doping concentration and abruptness for high device performance. Unfortunately, such

chemical doping profiles are difficult to achieve repeatedly, particularly for high donor

concentrations needed in p-type TFETs made of III-V materials. This helps account for

the near-total absence of the latter in experimental TFET demonstrations to date. In

Chapter 5, we propose a possible solution to this problem by introducing a new device

concept, the gate-induced source TFET (GISTFET). Rather than relying on a chemical

doping profile to achieve short tunneling distances, the GISTFET utilizes electrostatic

doping from a metal gate heterojunction to form abrupt tunnel junctions. We explain

the basic principle of the device and demonstrate its performance advantages for p-type

TFETs using NEGF simulations. Our findings show that the GISTFET is a promising

new direction for low power complementary logic devices.

The methods of analysis we have developed are not constrained to interband tunnel-

ing devices, and in Chapter 6 we apply our models and insights to study source-drain

tunneling currents in MOSFETs, which is expected to become the limiting leakage source

in sub-10 nm transistors. Using multiband NEGF simulations of III-V double gate FETs,

we demonstrate that band nonparabolicity is quantitatively important even in intraband

tunneling. We generalize the BGS procedure to describe this effect and present the first

analytical model for source-drain tunneling, including nonparabolic corrections. We vali-

date our model using NEGF simulations and show that the source/drain doping concen-

tration in future MOSFETs must be carefully optimized to control parasitic tunneling

leakage currents. Our results are important for analytical design and modeling of sub-10

10



nm MOSFETs.

Finally, in Chapter 7 we summarize the main findings of this dissertation and comment

on some possible directions for future exploration.
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CHAPTER 2

Quantum Transport Modeling using

Non-Equilibrium Green’s Functions

I do not care for dirty greens

By any means.

Gilbert and Sullivan, Patience

Traditionally, electronic transport in semiconductors has been explored within a semiclas-

sical framework based on the Boltzmann transport equation (BTE), where a local distri-

bution function in real and momentum space is assumed and the electron dynamics and

scattering rates reflect the material band structure. Depending on the problem, the BTE

can be solved exactly using Monte Carlo methods or approximately in the form of drift-

diffusion or hydrodynamic equations[50]. In this scheme, quantum effects are negligible

(beyond specifying the single-particle band structure) when relevant length scales exceed

the mean free path of carriers and intraband transport dominates. This method has had

great success qualitatively and quantitatively explaining a variety of semiconductor-based

devices. However, as device dimensions scale down and phenomena like quantum tunnel-

ing or size confinement become important, the assumptions underlying the semiclassical

approach begin to break down, and a fundamentally quantum mechanical approach to

transport is desirable.

Quantum mechanics provides the foundation for our microscopic understanding of

the electronic properties of semiconductors. The development of effective Hamiltonians

that accurately describe the electronic band structure of different materials have enabled

analysis of the relevant ground state and linear response properties using the well-known

12



methods of quantum mechanics for closed systems[51]. However, active semiconductor

devices like transistors are generally operated in highly nonequilibrium conditions and

coupled to external “reservoirs” or contacts which are in equilibrium. Treatment of such

systems requires a quantum kinetic theory of open systems. A variety of methods like the

Pauli master equation, the Lindblad formalism, or the Wigner function have been used

to applied to this problem[52]. Of these, the non-equilibrium Green’s function (NEGF)

formalism is particularly attractive because it is the most general known theory of non-

equilibrium in interacting systems and therefore an excellent starting point for rigorous

analysis. Practically, the formalism provides a well-defined way to include various kinds

of interactions, including those with external contacts, within the system. Therefore we

will construct a complete semiconductor device simulation program using NEGF which

will be subsequently used throughout our work on quantum tunneling in devices.

The formalism of non-equilibrium Green’s functions (NEGF) initially developed out of

work on equilibrium statistical quantum mechanics and many-body theory. The nonequi-

librium extension of these techniques was pioneered in the 1960s by Kadanoff and Baym[53]

and Keldysh[54], building on Schwinger’s work on real-time Green’s functions[55]. A for-

mulation suitable for finite spatially nonuniform systems was developed by Caroli and

coworkers in the early 1970s[56, 57], motivated by the desire to provide a rigorous basis

for the theory of tunneling in metal-insulator-metal (MIM) structures. Initial applica-

tion of the technique to semiconductors focused on formalism-heavy attempts to derive

corrections to the BTE in the case of high, uniform electric fields[58]. In the 1990s, the

experimental development of mesoscopic physics, nanoscale semiconductor devices (par-

ticularly resonant tunneling diodes), and increase in computational capabilities led to the

practical use of NEGF in simulating realistic structures[59, 60]. As a result, in recent

years NEGF has become an increasingly popular methodology for studying a variety of

electronic and photonic devices[61, 62]. In this chapter, we provide a brief introduction

to the NEGF equations for steady state transport and explain the calculation framework

for evaluating the transport quantities of interest.
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2.1 Steady State NEGF Kinetic Equations

At the formal level, NEGF is the nonequilibrium generalization of the powerful techniques

of equilibrium Green’s function theory; a detailed account of the latter is beyond the

scope of this work but can be found in many excellent references, such as [63, 64, 65].

The method is important in quantum many-body and field theories because it allows

for a systematic approach to dealing with interacting systems which cannot otherwise

be solved exactly. In general, the Hamiltonian H for such a system can be written in

the form H = H0 +Hint, where H0 is the non-interacting Hamiltonian (which is exactly

solvable analytically or numerically) and Hint contains the interacting terms whose effects

are not easily diagonalized. The power of the Green’s function formalism lies in its ability

to systematically approximate the effects of Hint. For electrons, the key quantity is the

Green’s function in the Heisenberg representation

G(r1, r2, t1, t2) = −i〈T (ψ(r1, t1)ψ†(r2, t2))〉 (2.1)

where T is the time-ordering operator, r1 and r2 are position coordinates, t1 and t2 are time

coordinates, and ψ† and ψ are the creation and annihilation operators, respectively. The

solution of G leads to integration over real time at zero temperature, carefully accounting

for the time-ordering operator. At finite temperature T , an ensemble average of the

Green’s function is required; formally this leads to an integration over imaginary time

with respect to the density matrix ρ(H) =
exp(−βH)

Tr[exp(−βH)]
where β = 1/kBT defines the

temperature.

In non-equilibrium conditions, by contrast, temperature is undefined and the density

matrix is in general unknown, making the conventional Green’s function theory unten-

able. Kadanoff and Baym[53] and Keldysh[54] analyzed the problem by assuming that

before some time t0 the system was in equilibrium with inverse temperature β, and that

subsequently the interaction is turned on and the system is non-equilibrium. This leads

to an integral in time for the evaluation of the Green’s function which is defined over a

contour that runs from iβ at t0 to the subsequent real times t1 and t2 at which observables

are evaluated. The resulting Green’s functions are structurally equivalent to their equilib-
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rium counterparts, allowing the diagrammatic techniques of field theory to be used. (For

steady state transport problems, correlations due to the initial state β can be neglected

(i.e., t0 → −∞) and we need only worry about proper ordering of the operators along the

contour.) This leads to the Green’s function

G(r1, r2, t1, t2) = −i〈Tc(ψ(r1, t1)ψ†(r2, t2))〉 (2.2)

where Tc is the contour-ordering operator and ψ† and ψ are the creation and annihila-

tion operators, respectively, in the Heisenberg representation. The different possibilities

for operator ordering on the time contour lead to six Green’s functions (which are not

all independent, but each of which have distinct advantages and meanings), which are

called retarded (Gr), advanced (Ga), time-ordered (Gt), anti-time-ordered (Gt̄), “lesser-

than” (G<), and “greater-than” (G<) and are defined (analogously to their equilibrium

counterparts)

G<(r1, r2, t1, t2) = i〈ψ†(r2, t2)ψ(r1, t1)〉 (2.3)

G>(r1, r2, t1, t2) = −i〈ψ(r1, t1)ψ†(r2, t2)〉 (2.4)

Gt(r1, r2, t1, t2) = θ(t1 − t2)G
>(r1, r2, t1, t2) + θ(t2 − t1)G

<(r1, r2, t1, t2) (2.5)

Gt̄(r1, r2, t1, t2) = θ(t2 − t1)G
>(r1, r2, t1, t2) + θ(t1 − t2)G

<(r1, r2, t1, t2) (2.6)

Gr(r1, r2, t1, t2) = −iΘ(t1 − t2)〈{ψ(r1, t1), ψ†(r2, t2)}〉 (2.7)

Ga(r1, r2, t1, t2) = iΘ(t2 − t1)〈{ψ(r1, t1), ψ†(r2, t2)}〉 (2.8)

It can be verified that these Green’s functions (and the corresponding self-energies) obey

various relations with each other, such as Gt+Gt̄ = G<+G> and Gr−Ga = G>−G<[65].

One of the most useful relations in Green’s function theory is Dyson’s equation, which

links the bare (non-interacting) and dressed (interacting) Green’s functions. Keldysh

presented a convenient general matrix form of this equation which is valid both in and

out of equilibrium:

G̃(r1, r2, t1, t2) = G̃0(r1, r2, t1, t2)+∫
dr3dt3

∫
dr4dt4G̃0(r1, r3, t1, t3)Σ̃(r3, r4, t3, t4)G̃(r4, r2, t4, t2)

(2.9)
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where

G̃ =

⎡
⎣Gt −G<

G> −Gt̄

⎤
⎦ (2.10)

and the corresponding self-energies (which contain the interactions) are organized via

Σ̃ =

⎡
⎣Σt −Σ<

Σ> −Σt̄

⎤
⎦ (2.11)

We use the convention that every G represents a dressed Green’s function and G0 its

bare counterpart. For convenience, and also because such notation will lead naturally

to the type of matrix equations that we seek to solve numerically, we will suppress the

arguments and integrals of the various functions with the understanding that any product

of two functions (G or Σ) involves integration over shared interior coordinates r and t. In

this form, Eq. 2.9 becomes

G̃ = G̃0 + G̃0Σ̃G̃ (2.12)

Keldysh also pointed out that the interdependence of the Green’s functions allows a

canonical transformation of G̃ (the so-called Keldysh rotation[66]) into a form involving

only three independent quantities, Gr, Ga, and the Keldysh Green’s function F ≡ G<+G>

(with an analogous transform for Σ̃)[54]. The Keldysh rotation is more convenient in

certain situations, but is of course fundamentally equivalent to using G̃ and Σ̃[66]. We

will retain the current form of G̃ but individually transform Gt and Gt̄ as necessary.

The equations of motion of the Green’s functions describe the dynamics and kinetics

of the system, so we examine their time evolution by operating on the Green’s functions

with [i�∂/∂t1 −H0][67]. Recalling that t1 only appears in G̃0, we obtain[
i�

∂

∂t1
−H0(r1)

]
G̃0 = Ĩ[

i�
∂

∂t1
−H0(r1)

]
G̃ = Ĩ + Σ̃G̃

(2.13)

where Ĩ is the 2 × 2 identity operator which also operates like a delta function δ(r1 −
r2)δ(t1 − t2). Let us concentrate on the time evolution of the retarded and lesser-than

Green’s functions. Eq. 2.13 for G< becomes[
i�

∂

∂t1
−H0(r1)

]
G< = ΣtG< − Σ<Gt̄. (2.14)
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Substituting the known relations Σt = Σr +Σ< and Gt̄ = −Ga +G<, we can rewrite this

as [
i�

∂

∂t1
−H0(r1)

]
G< = ΣrG< − Σ<Ga. (2.15)

The time evolution of the retarded Green’s function can be obtained from that of Gt

[
i�

∂

∂t1
−H0(r1)

]
Gt = I + ΣtGt + Σ<G>. (2.16)

We use the identity Gr = Gt −G< and Eq. 2.15 to find[
i�

∂

∂t1
−H0(r1)− Σr

]
Gr = I. (2.17)

We recall that the various Gs and Σs are functions of two time coordinates t1 and t2. If

we restrict ourselves to steady-state problems, these functions depend only on the relative

time interval t1 − t2, not the absolute times. Therefore we can Fourier transform such

functions f to the energy domain (equivalent to frequency via E = �ω) to obtain

f(x, x′, E) =
∫
d(t1 − t2)

�
e

iE
�
(t1−t2)f(x, x′, t1 − t2). (2.18)

Integrals that involve the convolution of two functions in time become products of the

corresponding Fourier transforms in energy. Since semiconductor devices are spatially

inhomogeneous, transforming to momentum space offers no further advantages and we

will remain in real space. Substituting the time evolution of the bare retarded Green’s

function Gr
0 obtained from Eq. 2.13 in Eq. 2.17 and Fourier transforming, we obtain

Dyson’s equation of the retarded Green’s function in a form familiar from equilibrium

many-body theory

Gr = Gr
0 +Gr

0Σ
rGr (2.19)

with

Gr
0 = (E + iδ −H0)

−1 (2.20)

where δ is an infinitesimal quantity whose sign reflects the temporal retarded response of

Gr. (The advanced Green’s function Ga
0 is given by the same equation with a negative

sign in front of iδ. In practice, it can be directly obtained from the retarded Green’s
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function via Ga = Gr†.) For the lesser-than function, if we move ΣrG
< to the left-hand

side of Eq. 2.15 and Fourier transform, we obtain

G< = GrΣ<Ga. (2.21)

The Dyson equation for the greater-than function can be similarly analyzed to find

G> = GrΣ>Ga. (2.22)

Eqs. 2.19 and 2.21 lie at the heart of the NEGF method. We can obtain a rough

physical picture of their significance by considering the meaning of the various functions.

If we refer to the definition of Gr in Eq. 2.3, we see that it describes the response of

the system at (r1, t1) to an excitation at (r2, t2). Meanwhile, when t1 → t2, G
< and G>

become the expectation values of the electron and hole density operators, respectively. In

some sense, therefore, the retarded and advanced Green’s functions encode the dynamics

of the system while the lesser-than and greater-than functions describe the electron and

hole distributions[54]. This partitioning should not be taken too literally, since the vari-

ous Green’s functions are implicitly coupled by the self-energies, but it can be useful in

providing intuition. The self-energies then represent external interactions, such as with

phonons or spatial electrodes, which inject or remove particles (physically in the case of

contacts and between specific energies and momenta in the case of phonons). Eq. 2.21

indicates that changes in the distribution occur via excitations (Σ<) which propagate

through the system as determined by Gr and Ga. In this sense, Eq. 2.21 is a kinetic

equation. Indeed, under certain approximations it may be used to derive the Boltzmann

transport equation[53].

2.2 Evaluating the NEGF Equations for Semiconductor Devices

To apply Eqs. 2.19 and 2.21 to realistic semiconductor devices, we must first decide how to

partition the system into bare and interacting sections[61]. This breakdown is illustrated

in Fig. 2.1. At the simplest level, we may separate any device into an active region, where

non-equilibrium electronic effects are important, and reservoirs or contacts to which the
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Current-Carrying Contact Semiconductor Active 
Region Current-Carrying Contact

Contact in equilibrium:
f1(E)

Contact in equilibrium:
f2(E)

Transport free device region 
(i.e., oxide, gate, etc)

Isolated active region (H0)Semi-infinite contact 1… Semi-infinite contact 2 …
Contact coupling

Σ1
r, Σ1

<,>
Contact coupling

Σ2
r, Σ2

<,>

Interactions inside device 
(phonons, impurities, etc)

Σs
r, Σs

<,>

Self-consistent field V

Figure 2.1: Conceptual division of a semiconductor device into constituent bare and

interacting sections for NEGF analysis.
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Device Type Real space meshing Discretization

Bulk

1-D real space; 
transverse 

momenta = ky, 
kz

2-D (quantum
well)

2-D real space; 
transverse 

momenta = kz

1-D (quantum 
wire)

3-D real space; 
no momentum 

coordinates

x
…… q q+1q-1

x

……
q q+1q-1y

……

q q+1q-1
y

x
z

Figure 2.2: Schematic of real space gridding and layer partitioning definition for bulk,

2-D, and 1-D devices.

device is connected and through which carriers and applied biases are supplied. In the

absence of dissipation or coupling to the contacts, the active region is treated as a closed

system which can be modeled using a suitable Hamiltonian such as an effective mass,

k·p, or tight-binding (TB) model, along with a self-consistent potential V . Such a model

can be solved exactly numerically and is thus treated as the non-interacting Hamiltonian

H0 from which the bare Green’s function can be calculated. In this scheme, the coupling

to the contacts (via hopping terms between the active and contact regions) is treated

as an interaction which can be incorporated into the system via an appropriate self-

energy[56]. Conceptually the contact may be regarded as a semi-infinite homogeneous

strip of semiconductor with a well-defined distribution function (typically a fixed Fermi

energy and temperature). If the contacts are assumed to be non-interacting, the coupling

to the device can be included exactly using the surface Green’s function of the semi-

infinite contact. Any other interactions within the active region, via electron-phonon

coupling, etc., can also be included perturbatively to various orders as additional self-

energies[57, 60].

In practical situations, we will discretize the Hamiltonian in real space in the active
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region and divide it into layers which are coupled with each other. Note that each layer

may be a single discretized point or plane depending on the dimensions of the device; this

is illustrated in Fig. 2.2. For instance, for a 2-D device structure, each layer spans the

discretized region in the x axis and corresponds to a successive point along the y axis. In

general, if the resulting device Hamiltonian couples only nearest neighbor layers, it will

take the block tridiagonal matrix form⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

. . .

· · · Hq−1,q−1 Hq−1,q 0 · · ·
· · · Hq,q−1 Hq,q Hq,q+1 · · ·
· · · 0 Hq+1,q Hq+1,q+1 · · ·

. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where q denotes the layer index, Hq,q is the “on-site” term for each layer (which may

be a single element or a matrix block, depending on the dimensionality of the device

and the band Hamiltonian), Hq,q±1 and Hq±1,q are the coupling terms between adjacent

layers, and all other terms are zero. Note that the general form of this matrix may be

extended to n-nearest neighbor Hamiltonians by expanding the size of each Hamiltonian

block Hq,q′ to span n mesh points. The size of each block depends on the number of basis

states for each layer, as determined by the device dimension as well as the choice of band

structure model. In the example of the 2-D system in Fig. 2.2, for Nx mesh points in

the x direction, Ny mesh points in the y direction, and Nb basis states per lattice site in

the chosen Hamiltonian, Hq,q′ will be of size NxNb ×NxNb for q, q
′ = 1, ...Ny. An obvious

numerical advantage of a block tridiagonal Hamiltonian is that the number of nonzero

matrix elements which must be stored is reduced from N2
bN

2
xN

2
y to 3N2

bN
2
xNy.

Given such a form for the device Hamiltonian, the Green’s functions of interest are

determined via the matrix equations derived in the previous section

((E + iδ)I −H0 − Σr)Gr = I (2.23)

G< = GrΣ<Gr† (2.24)

where I is the identity matrix. In general a block tridiagonal form for the Hamiltonian
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does not lead to a corresponding structure for the Green’s functions and the solution of

Eq. 2.23, for example, requires matrix inversion of the term in parentheses (including

the full H0), a computationally costly task. If we impose the condition that the self-

energy matrices Σ be block diagonal, however, we will find that most of the practically

relevant quantities (DOS, current, electron density, etc.) can be extracted using only the

block tridiagonal elements of the various Green’s functions. In fact, these elements can

be computed recursively using only matrices of the size of each block, which can lead

to significant savings in computational processing and memory requirements. We will

therefore use the so-called recursive Green’s function algorithm and explain it in more

detail below.

2.2.1 Defining the Contact Self-Energies

At the spatial boundaries of the active region (i.e., for layer index q = 1, N for the left-

most and right-most layers in the geometries of Fig. 2.2), we include the effects of carrier

contacts by self-energies. To show this we follow the argument in Ref. [68]. This can

be seen by considering the retarded Green’s function for the infinite system including the

contacts

((E+ iδ)I−H0−Σr)Gr = I →

⎡
⎢⎢⎢⎣
ALL ALD O

ADL ADD ADR

O ARD ARR

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣
Gr

LL Gr
LD Gr

LR

Gr
DL Gr

DD Gr
DR

Gr
RL Gr

RD Gr
RR

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
I O O

O I O

O O I

⎤
⎥⎥⎥⎦

(2.25)

where the subscripts L, D, R represent the semi-infinite left contact, active device region,

and semi-infinite right contact regions, respectively, and the matrix blocks A represent the

real-space discretized form of (E + iδ)I −H0 −Σr. The only assumption here is that the

finite range of A leads to no direct coupling between the left and right regions. Writing
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out the Green’s function blocks directly we obtain

Gr
LD = −A−1

LLALDG
r
DD (2.26)

Gr
RD = −A−1

RRARDG
r
DD (2.27)

ADLG
r
LD + ADDG

r
DD + ADRG

r
RD = I (2.28)

from which the Green’s function in the active region, which is the quantity we are inter-

ested in, becomes

[ADD − ADLA
−1
LLALD − ADRA

−1
RRARD]G

r
DD = I (2.29)

We note that A−1
LL = Gr

LL,0 and A−1
RR = Gr

RR,0, the Green’s functions of the semi-infinite

left and right contact regions in the absence of coupling to the device. Furthermore, if

we assume that the self-energies are local and the Hamiltonian in A only couples nearest

neighbors, the only nonzero terms in ADL, ALD, and their counterparts at the right side

will be between the adjacent layers on the edge of the contacts and device, respectively.

Hence, we only need to know Gr
LL,0 and Gr

RR,0 at the boundary of the contacts, i.e., the

surface Green’s functions Gr
s,L/R for the isolated left and right contacts L and R. Once

these are obtained, we can rewrite the second and third terms in the bracket in Eq. 2.29

as self-energies

Σr
surf,L = A10G

r
s,LA01 (2.30)

Σr
surf,R = AN,N+1G

r
s,RAN,N+1 (2.31)

where Aq,q′ = −Hq,q′ are the off-diagonal coupling blocks of the leftmost and rightmost

layers of the device Hamiltonian. Σr
surf only couple to the edge layers of the device, i.e.,

are nonzero only for q = 1, N .

This demonstrates that the interaction between the reservoir and active region can be

calculated exactly assuming a nearest neighbor Hamiltonian describes the contact region.

The isolated surface Green’s function for each contact can be calculated exactly using

the Sancho Lopez decimation scheme[69], which will now be described. Assume that the

contact region is described by a Hamiltonian with nearest-neighbor interactions such that
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H00 is the on-site Hamiltonian term and H10 and H01 are the couplings to adjacent layers

on the left and right, respectively (note that the mathematical structure is unchanged

if H00 includes a local self-energy). For specificity, let us calculate the surface Green’s

function for an semi-infinite slab in the right direction that is terminated on the left at

n = 0; this corresponds to a right-side contact in the geometry of Fig. 2.2. We may then

write

(E + iδ −H00)G
r
00 = I +H01G

r
10

(E + iδ −H00)G
r
10 = H10G

r
00 +H01G

r
20

...

(E + iδ −H00)G
r
n0 = H10G

r
n−1,0 +H01G

r
n+1,0

(2.32)

for the retarded Green’s function Gr of the isolated contact region. Rewriting the last

line as

Gr
n0 = (E + iδ −H00)

−1(H10G
r
n−1,0 +H01G

r
n+1,0), n ≥ 1 (2.33)

and substituting recursively for Gr
n+1,0 and Gr

n−1,0 we find

[
E + iδ −H00 −H01(E + iδ −H00)

−1H10 −H10(E + iδ −H00)
−1H01

]
Gr

n0 =

H10(E + iδ −H00)
−1H10G

r
n−2,0 +H01(E + iδ −H00)

−1H01G
r
n+2,0

(2.34)

for n ≥ 2. We observe that the coupling is now only between next nearest sites (n± 2).

If we define the parameters

α1 = H01(E + iδ −H00)
−1H01 (2.35)

β1 = H10(E + iδ −H00)
−1H10 (2.36)

ε1s = H00 +H01(E + iδ −H00)
−1H10 (2.37)

ε1 = H00 +H01(E + iδ −H00)
−1H10 +H10(E + iδ −H00)

−1H01 (2.38)

we can now rewrite the relationship between evenly separated Green’s functions as

(E − ε1s)G
r
00 = I + α1G

r
20

(E − ε1)G
r
n0 = β1G

r
n−2,0 + α1G

r
n+2,0

(E − ε1)G
r
nn = I + β1G

r
n−2,n + α1G

r
n+2,n

(2.39)
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If we consider only even values of n, we can further rewrite the chain coupling equations

as

(E − ε1s)G
r
00 = I + α1G

r
20

(E − ε1)G
r
2n,0 = β1G

r
2(n−1),0 + α1G

r
2(n+1),0

(E − ε1)G
r
2n,2n = I + β1G

r
2(n−1),2n + α1G

r
2)(n+1),2n

(2.40)

Formally, these equations are identical to Eqs. 2.32 with on-site and coupling Hamiltonian

matrix elements renormalized via Eqs. 2.35; since only next nearest neighbors are coupled,

the effective lattice spacing of the Hamiltonian has doubled. We can iterate this procedure

to obtain after the ith renormalization

αi = αi−1(E − εi−1)
−1αi−1 (2.41)

βi = βi−1(E − εi−1)
−1βi−1 (2.42)

εis = εi−1,s + αi−1(E − εi−1)
−1βi−1 (2.43)

εi = εi−1 + αi−1(E − εi−1)
−1βi−1 + βi−1(E − εi−1)

−1αi−1 (2.44)

where ε0 = H00 − iδ, α0 = H01, and β0 − H10. These coupling coefficients solve the

equations

(E − εi,s)G
r
00 = I + αiG

r
2in,0

(E − εi)G
r
2in,0 = βiG

r
2i(n−1),0 + αiG

r
2i(n+1),0

(E − εi)G
r
2in,2in = I + βiG

r
2i(n−1),2n + αiG

r
2i(n+1),2n

(2.45)

In the limit of large i, αi and βi approach zero and the final solutions for the on-site

surface and bulk Green’s functions Gr
s and G

r
b become

Gr
00 = (E − εi,s)

−1 = Gr
s (2.46)

Gr
2in,2in = (E − εi)

−1 = Gr
b (2.47)

For the opposite case of a slab terminated on the left at n = 0, the corresponding surface

Green’s function is simply shown to be obtained using the identical procedure with the

substitution

εis = εi−1,s + βi(E − εi)
−1αi. (2.48)
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In general we take H00, H01, and H10 from the left-most and right-most blocks of

the device Hamiltonian and compute Eqs. 2.41 until the Euclidean norms of αi and βi

fall below a convergence criteria (for example, 10 neV), whereupon the surface Green’s

functions are computed using Eq. 2.46. The surface retarded self-energies are then found

via

Σr
surf = (−H01)G

r
s(−H10) left-facing surface on right contact (2.49)

= (−H10)G
r
s(−H01) right-facing surface on left contact (2.50)

The lesser-than and greater-than self-energies can be formulated in terms of the retarded

self-energy if we assume that the region is in equilibrium with a distribution function

f(E) to obtain

Σ<
surf (E) = −(Σr

surf (E)− Σa
surf (E))f(E) = −(Σr

surf (E)− Σr†
surf (E))f(E) (2.51)

Σ>
surf (E) = (Σr

surf (E)− Σa
surf (E))(1− f(E)) = (Σr

surf (E)− Σr†
surf (E))(1− f(E)).

(2.52)

The Lopez-Sancho decimation scheme is analogous to the renormalization group tech-

nique [66], where an effective Lagrangian or Hamiltonian is repeatedly rescaled by inte-

grating over short-distance/high-momenta degrees of freedom and the scaling behavior of

the coupling coefficients in the self-similar system is studied for insight into critical phe-

nomena. In this case we repeatedly subsume nearest-neighbor couplings into a rescaled

Hamiltonian with a greater lattice constant and asymptotically obtain the decoupled bulk

and surface properties. With the contact self-energy defined and the active region Hamil-

tonian chosen, we can then exactly solve for the various Green’s functions in the device

and obtain physical observables of interest.

2.2.2 Computing the Green’s Functions Recursively

We will follow the discussion in [70] to illustrate the recursive Green’s function algorithm.

We again take advantage of the matrix representation to rewrite Eq. 2.23 for the device
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retarded Green’s function Gr as⎡
⎣AZ,Z AZ,Z′

AZ′,Z AZ′,Z′

⎤
⎦Gr =

⎡
⎣ I O

O I

⎤
⎦ (2.53)

where A = (E+ iδ)I−H0−Σr and we divide the full matrices in two sections spanned by

Z and Z ′ (which do not have to be the same size). The solution to this matrix equation

is given by the Dyson equation

Gr = Gr0 +Gr0UGr = Gr0 +GrUGr0 (2.54)

where

Gr =

⎡
⎣Gr

Z,Z Gr
Z,Z′

Gr
Z′,Z Gr

Z′,Z′

⎤
⎦ , (2.55)

G0 =

⎡
⎣Gr0

Z,Z Gr0
Z,Z′

Gr0
Z′,Z Gr0

Z′,Z′

⎤
⎦ =

⎡
⎣A−1

Z,Z O

O A−1
Z′,Z′

⎤
⎦ , (2.56)

and

U =

⎡
⎣ O −AZ,Z′

−AZ′,Z O

⎤
⎦ . (2.57)

We effectively treat the isolated Hamiltonians in Z and Z ′ as “bare” systems which are

coupled by a perturbation U which is solved exactly via Dyson’s equation. Now let q be

the index of a given block. Then we define the left-connected retarded Green’s function

grLq

A1:q,1:qg
rLq = I1:q,1:q (2.58)

Dyson’s equation gives us

grLq+1
q+1,q+1 = (Aq+1,q+1 − Aq+1,qg

rLq
q,q Aq,q+1)

−1 (2.59)

Using this relation, the diagonal component of the full retarded Green’s function can be

written as

Gr
q,q = grLqq,q − grLqq,q Aq,q+1G

r
q+1,q (2.60)
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and the off-diagonal components are found from the Dyson equation to be

Gr
q+1,q = −Gr

q+1,q+1Aq+1,qg
rLq
q,q (2.61)

Gr
q,q+1 = −grLqq,q Aq,q+1G

r
q+1,q+1 (2.62)

Putting these relationships together, we see that we can calculate the tridiagonal blocks

of the retarded Green’s function in increasing order from q = 1 to Ny starting from the

initial left-connected Green’s function grL111 = A−1
1,1. The advanced Green’s function can

be directly obtained via the relation Ga = Gr†.

Similar arguments can be applied to the steady-state Keldysh equation for the lesser-

than Green’s function onceGr is known. In particular, a left-connected lesser-than Green’s

function g<Lq can be defined which obeys

g<Lq+1
q+1,q+1 = grLq+1

q+1,q+1[Σ
<
q+1,q+1+Aq+1,qg

<Lq
q,q A†

q,q+1−Σ<
q+1,qg

aLq
q,q A

†
q,q+1−Aq+1,qg

rLq
q,q Σ

<
q,q+1]g

aLq+1
q+1,q+1

(2.63)

from which the relevant blocks of G< are obtained

G<
q,q =g

<Lq
q,q + grLqq,q Aq,q+1G

<
q+1,q+1A

†
q+1,qg

aLq
q,q − g<Lq

q,q A†
q,q+1G

a
q+1,q−

Gr
q,q+1Aq+1,qg

<Lq
q,q − g<0

q,q+1A
†
q+1,qG

a
q,q −Gr

q,qAq,q+1g
<0
q+1,q

(2.64)

G<
q+1,q =g

r0
q+1,q+1Σ

<
q+1,qg

a0
q,q −Gr

q+1,qAq,q+1g
<0
q+1,q −Gr

q+1,q+1Aq+1,qg
<Lq
q,q −

G<
q+1,q+1A

†
q+1,qg

aLq
q,q

(2.65)

2.2.3 Scattering Self-Energies

Interactions not included in the structure Hamiltonian (which can be solved exactly) may

be incorporated via appropriate self-energies constructed from the diagrams of various in-

teraction processes. This may include scattering off phonons, impurities, or imperfections

like alloy disorder or surface roughness, as well as electron-electron interactions beyond

the mean field (Hartree) solution of the electrostatic potential in H0. Typically it is im-

possible to include these interactions to infinite order and some approximation must be

made; frequently only first-order proper self-energies are included, which amounts to the

Born approximation. The exact form of each self-energy is determined by the nature
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of the interaction; in general, it will involve convolution over the electron Green’s func-

tions. It can be shown that current conservation requires that the Green’s functions and

self-energies must be solved self-consistently with each other, i.e., any Green’s function

lines appearing in the interior of self-energy diagrams must be dressed; this leads to the

so-called self-consistent Born approximation[60]. As an example, the first-order retarded

self-energy for electron-phonon scattering is[71]

Σr
e−ph(

�k, E) = i

∫
dω

2π

∑
�q

|M�q|2[G<(�k − �q, E − ω)Dr(�q, ω)

+Gr(�k − �q, E − ω)D<(�q, ω) +Gr(�k − �q, E − ω)Dr(�q, ω)]

(2.66)

where M�q is the �q-dependent first-order electron-phonon matrix element and Dr,< are

the retarded and lesser-than phonon Green’s functions, respectively. A similar equation

can be written for the lesser-than and greater-than self-energies, and if we assume that

the phonon system stays in equilibrium D reduces to the bare phonon Green’s functions

with a Bose-Einstein distribution. The point we emphasize here is that Σr
e,ph and its

counterparts depend on the dressed Gr and G<, so that the solution to this equation

must be performed iteratively. In practice this means we first solve for the bare Green’s

functions and use them to obtain the Born approximation Σe,ph, which are then fed back

to obtain the perturbed Gs, etc., until the whole process converges.

We note that in general the self-energy may be spatially nonlocal; for instance, if we

Fourier transform Eq. 2.66 into real space we will find in general that the self-energy at

a lattice site r involves a convolution over Green’s functions spanning the entire device

domain. Locality is maintained only ifM�q is �q-independent, i.e., the interaction is spatially

localized (this is evident if we recall that the Fourier transform of a delta function in real

space is a constant in momentum space). As noted before, the solution of off-diagonal

elements inG beyond nearest neighbors leads to substantially greater computational costs.

For this reason, in practice NEGF-based simulations often enforce locality by ignoring the

nonlocal terms in self-energies, even though the physical validity of this approximation is

uncertain and depends on the interaction in question[62].

In our device simulator, (local) scattering self-energies can be specified and calculated
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self-consistently to include decoherence and dissipation effects. These have been used, for

instance, to study transport limitations in silicon and junctionless transistors. Scattering

also cannot be neglected for incoherent tunneling processes such as interband transitions

in indirect band gap semiconductors where a phonon or impurity interaction is required

to supply the momentum difference between the initial and final states. However, the

tunneling problems we will focus on in this thesis are coherent in nature and depend

only on the band coupling of the structure Hamiltonian; therefore we will mostly neglect

scattering and the construction of appropriate self-energies in what follows.

2.2.4 Computing Observables from the Green’s functions

We obtain the local density of states (LDOS) from the retarded Green’s function via

LDOS(E,�r) =
∑
�k

− ig

2πV
Tr(Im(Gr(E,�r,�k))) (2.67)

The electron density within a band is similarly obtained by

n(�r) = − ig

2πV

∫ Emax

Emin

dE
∑
�k

Tr(Im(G<(E,�r,�k))) (2.68)

and the hole density is obtained by substituting −G> for G< in the equation above. Here

Emin and Emax denote the energy bounds of the band in question, V is the generalized

volume of the mesh point at position �r, and g is the band degeneracy.

Assuming nearest-neighbor coupling in the device Hamiltonian, we can obtain the

device current flowing between adjacent layers q and q+1. By enforcing current continuity

and integrating over energy, transverse momenta, and degeneracies[56, 60], it can be shown

that the current flowing between layers q and q + 1 is given by

Jq,q+1 =
2eg

h

∫
dE
∑
k

Tr[Hq,q+1(k)G
<
q+1,q(k, E)−Hq+1,q(k)G

<
q,q+1(k,E)] (2.69)

We thus observe that the carrier and current densities depend only on the tridiagonal

blocks of the various Green’s functions, validating the use of the recursive algorithm.
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2.2.5 Boundary Conditions

The boundary conditions at the edges of the defined structure are important when com-

puting the solution to the Hamiltonian. In regions connecting the active region to the

electrodes, the inclusion of contact self-energies allows current to flow and acts as a kind

of boundary condition for particle-exchanging reservoirs. In 2-D or 3-D structures, there

are also regions where the active region terminates in an interface with an insulator, for

instance, along the channel/oxide interface of a FET. In general, such interfaces form

a finite potential barrier which serves to confine the electron wave functions within the

device, although there may still be some finite tail of the wave function penetrating into

the barrier (and potentially through it to form a tunneling current, if the insulator is thin

enough). In principle this effect can be included by extending the device Hamiltonian

with an appropriate form for the insulating regions (effectively forming a heterojunction

and extending the active region of the device). This is possible in our program, though

it increases the size of the system and slows computational runtime. In addition, in some

cases physically appropriate Hamiltonians for the barrier material may not be as well

developed as those for the device semiconductor(s). Hence, for simplicity and unless oth-

erwise noted, the spatial edges of device structures (at oxide interfaces or the boundaries of

standalone quantum wells or wires) are approximated as infinitely high potential barriers.

In practice this means that the off-diagonal components of the Hamiltonian which couple

to the barrier region are simply dropped. Phenomena that depend on this coupling, like

gate tunneling currents in FETs, for instance, will not be included in this approximation.

Boundary conditions are also of paramount importance when solving the Poisson equa-

tion. In this case, structure edges which do not terminate in contacts are treated using

Neumann boundary conditions where the normal electric field is zero. Voltage contacts

(for instance the gates of FETs) are treated as Dirichlet boundaries constraining the

local potential to be equal to the applied bias. In semiclassical transport calculations,

current-carrying voltage contacts (such as the source and drain in transistors) are typi-

cally also treated using Dirichlet boundary conditions with voltages fixed by the applied
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bias. However, what is fixed by the contact is actually the electrochemical potential. The

mismatch between quasi-equilibrium contacts (described by a Fermi-Dirac distribution

function) and the strongly non-equilibrium distribution in the device means that the pre-

cise electrostatic potential along the boundary must float to a value that satisfies charge

conservation in the device[72, 73]. Therefore, at the contacts we fix the quasi-Fermi po-

tential using the bias and local doping and we apply Neumann boundary conditions in

the Poisson equation, which allow the electrostatic potential to adjust itself to satisfy this

condition. These approximations are expected to become exact for low current densities.

We note that the choice of proper boundary conditions in quantum simulations continues

to be debated in the literature and that much work remains to be done in this area[52, 62].

2.3 Discretizing Semiconductor Band Structure Models

The choice of Hamiltonian for the device active region is critical for the accuracy and

level of detail for the simulation, encompassing the electronic properties of the device

material(s). The calculations in this dissertation are typically performed using one of

three methods: the effective mass approximation (EMA), k·p theory, and empirical tight-

binding (TB). In this section we discuss the basic implementation of these models in nu-

merical calculations. The underlying microscopic justification and theory of these methods

can be found in any number of treatises on solid state or semiconductor physics, such as

[51]. The resulting real-space Hamiltonian Hband is then combined with the self-consistent

electrostatic potential V calculated from the Poisson equation and the electron and hole

densities taken from G< and G> to obtain the total device Hamiltonian, H0 = Hband+V .

2.3.1 Effective Mass Approximation

In the effective mass approximation (EMA), only a single band is relevant and is described

by effective masses mx, my, and mz. The resulting Hamiltonian in terms of momentum
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k takes the form

Hem =
�
2

2mx

k2x +
�
2

2my

k2y +
�
2

2mz

k2z . (2.70)

In effective mass or k·p type Hamiltonians, the transformation to real space is performed

by drawing on the relationship between the momentum and position operators

px = −i� ∂
∂x

(2.71)

and we can use p = �k to obtain kx = −i ∂
∂x

. We can then discretize the resulting

spatial or spatial gradient operators using conventional central difference schemes. As an

example, if we work on a lattice with spacing Δx and use a discrete basis where the wave

function at lattice site i is denoted Ψi, we can transform

kxΨ → −i ∂
∂x

Ψ(x) → − i

2Δx
[Ψi+1 −Ψi−1] . (2.72)

Similarly

k2xΨ → − ∂2

∂x2
Ψ(x) → − 1

Δx2
[Ψi+1 +Ψi−1 − 2Ψi] . (2.73)

The detailed justification of this procedure is found in envelope function theory[74].

In a 1-D simulation, only the x direction may be discretized in real space and trans-

lational invariance is maintained in the y and z directions. The effective mass equation

then becomes

Hem = − �
2

2mx

∂2

∂x2
+

�
2

2my

k2y +
�
2

2mz

k2z . (2.74)

The on-site and off-diagonal terms in the real space Hamiltonian are

Hii =
�
2

2mx

2

Δx2
+

�
2

2my

k2y +
�
2

2mz

k2z (2.75)

Hi,i+1 = Hi,i−1 = − �
2

2mx

1

Δx2
. (2.76)

The generalization to 2-D and 3-D systems is straightforward.

2.3.2 Multiband k·p

The effective mass approximation is useful for studying low energy excitations at the edge

of an isolated band, for example electrons in the Γ conduction band valley in direct-gap III-

V semiconductors. However, at higher energies or when coupling between bands becomes
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relevant, the EMA inevitably breaks down. In these situations k·p theory provides a

powerful tool for more quantitatively and qualitatively accurate study. This approach,

whose rigorous foundations were largely laid during work in the 1950s by Luttinger and

Kohn[75] and Kane[76, 77], starts from the microscopic Bloch Hamiltonian and assumes

that the wave functions and energies at a specific high-symmetry k value, usually the

k = 0 Γ point, are known. The band structure and wave functions around this point

are then constructed perturbatively to varying orders in k. The matrix elements between

basis states are treated as fitting parameters which are adjusted against experimental

data. Spin-orbit coupling can also be incorporated by including spin-dependent basis

states. The accuracy of the method is limited primarily by the number of basis states and

the necessity for sufficient data to independently fix the adjustable parameters. In this

sense the EMA is the single-band limit of the k·p method. Particularly useful choices

for diamond and zincblende semiconductors, which are the main materials of interest in

this thesis, include 6-band methods for describing the valence band extrema (including

the light hole, heavy hole, and split-off bands with spin), 8-band models including the

conduction band, and 15- or 30-band models (without or with spin) which tend to yield

good agreement throughout the entire Brillouin zone for the low lying conduction and

valence bands of a material.

Many of the numerical k·p calculations in this dissertation will be performed using

the 8-band Hamiltonian since it includes the coupling between conduction and valence

bands critical for interband phenomena. The corresponding Hamiltonian H8 is given as

H8 =

⎡
⎣H4 0

0 H4

⎤
⎦+Hso (2.77)

where H4 is the 4-band matrix⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Eg + Ack
2 iPkx iPky iPkz

−iPkx −Δ

3
+ L′k2x +M(k2y + k2z) N ′kxky N ′kxkz

−iPky N ′kykx −Δ

3
+ L′k2y +M(k2x + k2z) N ′kykz

−iPkz N ′kzkx N ′kzky −Δ

3
+ L′k2z +M(k2x + k2y)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(2.78)

34



and Hso is the spin-orbit coupling matrix given by

Hso =
Δ

3

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0

0 0 −i 0 0 0 0 1

0 i 0 0 0 0 0 −i
0 0 0 0 0 −1 i 0

0 0 0 0 0 0 0 0

0 0 0 −1 0 0 i 0

0 0 0 −i 0 −i 0 0

0 1 i 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2.79)

In these equations, Δ is the spin-orbit splitting, the assorted P are the interband momen-

tum matrix elements, and L′, M , and N ′ are the valence band Kane parameters[77], all

of which depend on the choice of material.

The discretization of the k-dependent Hamiltonian Eq. 2.77 proceeds similarly to

the EMA case. A complication in the 8-band model is provided by the presence of

terms like kxky which couple orthogonal directions. The ordering of the operator during

discretization is non-obvious and should be derived from the microscopic underpinnings

of the Hamiltonian[78]; such an analysis shows that terms like

N ′kxky (2.80)

should be more properly split into

kxN
′
+ky + kyN−kx (2.81)

where N ′
+ and N− represent the contributions to the matrix element N ′ from Γ1, Γ12 and

Γ15, Γ25 bands, respectively. These constants can be approximated as N− =M − �
2/2m0

and N ′
+ = N ′ − N−[78]. If we assume a homogeneous material, we obtain in real space

(assuming wave functions discretized as Ψi,j where i and j represent the x and y direction

indices, respectively)

N ′kxkyΨ → N ′ 1

4ΔxΔy
[Ψi−1,j+1 +Ψi+1,j−1 −Ψi−1,j−1 −Ψi+1,j+1] . (2.82)
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Table 2.1: Eight-band k·p parameters for materials in this study. Except where otherwise

indicated, values are in units of �2/2m0.

In0.53Ga0.47As InAs InSb

Eg (eV) 0.74 0.37 0.237

Δ (eV) 0.329 0.393 0.81

Ac 1.43 3.6 1.74

EP (eV) 18 17.4 23.1

L̃′ -3.406 -5.193 -0.172

M̃ -2.65 -2.84 -3.8

Ñ ′ -4.716 -6.613 -3.99

The corresponding discretization for kxkz and kykz terms are obtained by cyclic permu-

tation.

Most of our calculations will be done using three technologically important semicon-

ductors: In0.53Ga0.47As, InAs, and InSb. We follow the guidelines in Ref. [79] for adjusting

experimentally fitted k·p parameters[80, 81] to eliminate spurious gap states caused by

discretization[78, 82]. Our final parameter sets are given in Table 2.1 and are free of

spurious states while correctly reproducing the bulk band gaps and effective masses.

2.3.3 Empirical Tight-Binding

If very small dimensions or very high energies are relevant, atomistic Hamiltonians which

accurately describe the band structure over the entire bulk Brillouin zone are preferable.

This can be generated using ab initio methods such as density functional theory (DFT)

calculations or semi-empirical Hamiltonians based on tight-binding (TB) or pseudopoten-

tial concepts. The use of the TB basis for empirical fitting of the band structure was

first proposed by Slater and Koster[83] and subsequently became an important method

for understanding semiconductor properties. The method consists in choosing a suitable

number of atomic orbital basis states within the unit cell and constructing the form of
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the Bloch Hamiltonian coupling these states in agreement with the symmetry properties

of the material. As with k·p theory, the matrix elements are treated as fitting parameters

adjusted to reach agreement with experimental energy gaps, effective masses, etc.

The overall accuracy and range of the resulting Hamiltonian is dictated by the basis

size. Many TB parameterizations exist in the literature. Early work focused on sp3

models to describe the conduction and valence band extrema, with limited success unless

longer-range couplings were considered. For nearest neighbor coupling schemes, which are

computationally favorable for the reasons discussed above, good success has been found

using spds∗ Hamiltonians, which have forty states per unit cell (1 s, 3 p, 5 d, and one

“excited” s∗ orbital per spin per atom) in diamond and zincblende semiconductors[84].

Each layer in the device structure then corresponds to a cation or anion plane in the device,

where the on-site energy levels of each orbital comprise the diagonal on-site Hamiltonian.

Coupling between adjacent layers is given by the hopping parameters between different

orbitals on neighboring cations and anions. We use the spds∗ model with parameters in

Ref. [84] for InSb and Ref. [81] for InAs. For In0.53Ga0.47As we obtain the TB matrix

elements by interpolating InAs and GaAs parameters[81], accounting for alloy bowing

effects[85]. In quantum confined structures, surface layers of the TB Hamiltonian are

passivated to remove spurious gap states by shifting the dangling bond energies[86].

The use of TB provides atomistic detail in the device and is hence more accurate at

small length scales or high energies. However, the large number of basis states, as well as

the requirement that the mesh spacing between layers must be equal to the actual atomic

spacing, renders TB calculations very computationally expensive, particularly in self-

consistent NEGF evaluation. For this reason, in the work presented here, TB calculations

are only used to examine the equilibrium band structure of quantum confined materials

and to validate the use of simpler k·p models in actual NEGF transport calculations.
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Input device structure, bias

Repeat for energies E, transverse momenta kt

Set up structure Hamiltonian Hband for active 
region

Recursively compute
Gr = [E + H0 – Σc

r – Σs
r]-1

If scattering included:
compute scattering Σs from stored Gr, G<,>

Compute contact Σc from surface GF (obtained 
via decimation)

Sum and compute LDOS, j, n, p from Gr, G<, 
G>

Self-consistent 
Born 

approximation

Guess V from DD or prior NEGF simulation

Device Hamiltonian H0
= Hband + V

Recursively compute
G<,> = Gr[Σc

<,> + Σs
<,>]Ga

If scattering included:
does current converge?

Solve Poisson equation for V from n and p

Does V converge?

Save solution, step to next bias

No

Yes

Yes

No

Self-consistent 
field

Figure 2.3: Computational methodology for self-consistent NEGF device simulations. The

evaluation of the Poisson equation can be skipped if a self-consistent field calculation is

not required.
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2.4 Putting it All Together

The final program we develop allows for self-consistent simulation of 1-D, 2-D, or 3-D

devices with arbitrary structure. The algorithmic structure is illustrated in Fig. 2.3. The

input to the program (which is written entirely in MATLAB) is a script specifying the

physical structure of the device, which is discretized using a finite difference scheme. The

active region of the device (including all semiconductor regions contiguously connected to

a current-carrying contact) is identified and the structure Hamiltonian is constructed from

the mesh and material properties. Bias steps are specified and are solved sequentially.

The device electrostatic profile at each step can either be fixed analytically (for non-

self-consistent calculations where a fixed potential profile is assumed) or through a self-

consistent computation of the Poisson equation, where the solution for the prior step

serves as the initial guess for each new calculation. We implement Anderson mixing in

our Poisson solver[87], though in practice the mixing parameters have had little impact on

convergence in most of the structures simulated here. To provide an reasonable first guess

for the electrostatic potential, we also created an auxiliary drift-diffusion simulator which

solves the electron and hole continuity equations on the device grid assuming semiclassical

mobilities and carrier concentrations[50].

Once the structure Hamiltonian and electrostatic potential are specified, we calculate

the contact self-energies by applying the Lopez-Sancho decimation scheme to the left-

most and right-most blocks of the device Hamiltonian. If scattering is enabled and a

previous Green’s function solution is available, the appropriate scattering self-energies

are also computed. We then compute the tridiagonal blocks of the electron Green’s

functions using the recursive form of the Dyson and Keldysh equations. For 1-D or 2-D

devices, spatial uniformity is assumed in the perpendicular, un-discretized dimension(s)

and Green’s functions are therefore solved and stored as a function of kt, the transverse

momenta. The energy interval over which the Green’s functions are calculated is an initial

input, but can change during the calculation if the program detects that a relevant energy

band edge in the structure falls below or above the interval.
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Having computed the Green’s functions, we calculate the relevant quantities (LDOS,

electron and hole densities, current density) as a function of space. The quantum carrier

densities in the active region are used as an input to solve the Poisson equation via New-

ton’s method, using a semiclassical Fermi-Dirac or Boltzmann form for the charge density

Jacobian[50, 88]. For simulations without scattering, current conservation is guaranteed

for each Green’s function evaluation and convergence is assessed by comparing the change

in electrostatic potential within each iteration. If scattering is included, we also check if

the device current converges to a fixed value after each iteration, sufficiently satisfying

the self-consistent Born approximation. If the error in the potential or current exceeds

a specified value, we iterate the procedure, using the obtained solution to the Poisson

equation (and Green’s functions in the case of scattering) as the new initial condition.

2.5 Conclusion

In this chapter we introduce the basic structure of quantum device simulation using NEGF

and outline the computational algorithms needed to calculate the device Hamiltonian,

Green’s functions, self-energies, and important observables. The computational frame-

work we develop here provides a physically rigorous and numerically robust foundation

for our investigation into the physics and design of quantum transport. Our program’s

modular structure makes it flexible and easy to use as a general simulator for semicon-

ductor devices, not only transistors.
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CHAPTER 3

Band Structure and Quantum Confinement in Direct

Interband Tunneling

Never calculate unless you already

know the answer.

John Wheeler

Direct interband or band-to-band tunneling has been heavily researched for decades be-

cause of its wide practical ramifications, for instance in enabling Zener and Esaki tunnel

diodes[89], contributing unwanted gate-induced drain leakage (GIDL) to transistors[90] or

parasitic dark currents in photodetectors[91], contacting multijunction solar cells[92], and

potentially facilitating low power electronics using tunnel field-effect transistors (TFETs)[18].

Most early theoretical work[93, 94] used simple two-band Hamiltonian, constant field, and

Wentzel-Kramers-Brillouin (WKB) or perturbation approximations to derive analytical

semiclassical models such as the widely used Kane formula[95, 96]. As quantum transport

theory and computational capabilities have evolved, these limitations have been relaxed

in numerical studies of tunneling using more realistic k·p[75, 77, 74] or tight-binding

(TB)[83] band structures and quantum kinetic formalisms like scattering matrices[97],

Wigner functions[98], or non-equilibrium Green’s functions (NEGF)[60, 99]. However,

the more convenient semiclassical formulas remain popular for providing physical under-

standing and developing device compact modeling or technology computer-aided design

(TCAD) simulations. Therefore, it is of both theoretical and practical importance to

determine, and if possible improve, their reliability.

While comparison to experiment would be ideal, and the Kane formula is sometimes
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“calibrated” by fitting to tunnel junction measurements, the quantitative value of such ex-

ercises is often limited by uncertainties in the fabricated doping profiles and hence electro-

statics, as well as concomitant disorder and many-body effects such as band gap narrowing

(though p-i-n diodes can provide better controlled conditions[100, 101]). Alternatively,

semiclassical predictions may be benchmarked against quantum calculations. Only a few

such comparisons have been reported, with seemingly inconsistent conclusions. Di Carlo

et al.[97] found that the Kane formula substantially underestimates scattering matrix

calculations for GaAs but gives better agreement for InSb. Vandenberghe et al.[102] ana-

lyzed the two-band model for InSb using the envelope function approximation and found

the Kane formula overestimates tunneling for small bias or very high fields. Schenk et

al.[103] claimed good agreement between semiclassical and NEGF simulations for heavily

doped InAs p-n junctions (i.e., high fields), though the former underestimates current

at lower fields. By contrast, Ganapathi et al.[104] reported that semiclassical methods

overestimate current at low fields but underestimate high field currents by orders of mag-

nitude in their NEGF InAs p-n junction calculations. The disparity in these reports may

be due to a number of factors, including the different materials, band structure models,

and operating conditions considered.

Furthermore, the interplay of interband tunneling with quantum confinement (QC)

are of increasing importance as semiconductor devices approach the nanometer scale. For

instance, tunneling can be a limiting leakage pathway in modern transistors[105] or the

operating principle in emerging devices like tunnel field-effect transistors (TFETs)[18],

which in turn are being realized in multigate QC configurations like double-gate (DG) or

nanowire (NW) structures. Inherently 2-D and 1-D materials such as graphene, MoS2,

and carbon nanotubes are gaining attention for a variety of electronic devices, including

TFETs[106, 107]. Bulk concepts and models are still often used to study these and other

devices, even though dimensional reduction can significantly modify physical properties.

It is therefore important to establish whether and how such models can be extended to

describe lower-dimensional devices.

The usefulness of the Kane formula and similar semiclassical tunneling models remains
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an important question because of their continued popularity. To clarify this situation, we

perform a detailed comparison of the semiclassical and quantum approaches to interband

tunneling, identifying and correcting shortcomings in the former where possible. We

extend our analysis to study how they should be modified when applied to QC devices. For

bulk materials, we demonstrate that the primary corrections come from nonparabolicity

and spin-orbit coupling effects. In QC structures we show that a simple band gap scaling

(BGS) modification of the bulk Kane formula and its lower-dimensional counterparts

allows the model to extended to QC devices. The work in this chapter has been published

in Refs. [10, 9].

3.1 Semiclassical Bulk Tunneling Models

3.1.1 Two-Band Approach

Analytical studies of tunneling has been mostly based on the two-band Hamiltonian be-

cause of its simplicity. In this subsection, we briefly review some of the key prior work in

the literature in this area. This provides background for understanding the new models we

derive below and also calls attention to some useful previous results which perhaps have

not been fully appreciated. Our focus throughout will be on homojunction direct tun-

neling; we do not discuss indirect tunneling as it requires consideration of the scattering

(e.g., electron-phonon) matrix elements and involves transitions between band extrema

at different k for which the two-band k·p model is not directly applicable, though related

arguments are expected to apply[96]. The two-band k·p Hamiltonian can be derived from

the eight-band theory in the limit of large spin-orbit coupling strength Δ and describes

coupling between the conduction (CB) and light hole (LH) bands[76, 77]

H =

⎡
⎢⎣Eg +

�
2k2

2m
P2k

P2k
�
2k2

2m

⎤
⎥⎦ (3.1)

where Eg is the band gap, P2 is the two-band momentum matrix element, and m is a

parameter equal to the free electron mass m0 in the original theory, though its exact value
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does not impact tunneling to lowest order as shown below. We therefore adjust it and P2

to fit the experimental CB and LH effective masses, which are given by

mCB,LH =

(
± 1

m
+

2P 2
2

�2Eg

)−1

. (3.2)

Note that interband coupling in the two-band model occurs along a set k orientation which

is taken to be the direction of the electric field for tunneling. We will assume throughout

that the basis is chosen such that all matrix elements, including P2, are real[77].

Kane applied perturbation theory to this model under a constant electric field F to

find the tunneling transmission coefficient[95]

T (E, k⊥) =
π2

9
exp

(
−B
F

)
exp

(
−2E⊥
Ē⊥

)
(3.3)

where E⊥ is the energy associated with the transverse momentum k⊥ perpendicular to

the field and B and Ē⊥ are constants equal to

B =
πm

1/2
r E

3/2
g

2q�
(3.4a)

Ē⊥ =
2q�F

πm
1/2
r E

1/2
g

. (3.4b)

The reduced mass mr is related to the CB and LH effective masses through

mr =
(
m−1

CB +m−1
LH

)−1
=

�
2Eg

4P 2
2

. (3.5)

We see that while the CB and LH effective masses are in terms of m, Eg, and P2, the

reduced mass (and hence tunneling probability) does not depend on m. For arbitrary

dimension d and a tunnel junction like that in Fig. 3.1, the current density is obtained by

integrating over energy E and k⊥[96]

J =
q

π�

∫
dkd−1

⊥
(2π)d−1

∫
dE T (E, k⊥) [fL(E)− fR(E)]

= A(F )

∫ ΔE

0

dE exp

(
−B
F

)
[fL(E)− fR(E)]

(3.6)

where fL,R are the Fermi distribution functions on the left and right sides of the tunnel

junction. In bulk structures (d = 3) and assuming parabolic bands in the perpendicular
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ΔE = qV - Eg
Eic

w

x
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Figure 3.1: Definitions for tunnel junction with total potential difference V . A tunneling

electron’s energy relative to the conduction and valence band edges on either side of the

junction is Eic and Eiv, respectively, for which w is the tunneling distance between the

classical turning points x1 and x2.

directions so E⊥ = �
2k2⊥/2mr, the integration over k⊥ gives[95]

AKane =
q3m

1/2
r F

18π�2E
1/2
g

=
q2BF

9π2�E2
g

. (3.7)

In Kane’s work, the unperturbed basis was chosen to be the (localized) stationary

states of individual bands under an unbounded linear potential, which leads to ambiguities

in the boundary conditions. Fredkin and Wannier performed an alternative analysis of

the problem using scattering theory and a finite bounded potential[108], with only minor

differences in their result that are mostly due to the use of a different band model[109].

Shuey carefully analyzed the boundary conditions using this approach[110] and showed

that tunneling is reduced for states with incident energy Eic,iv close to a band edge as

defined in Fig. 3.1; this is related to the breakdown of the WKB approximation at small

wavevectors. Some of the discrepancies observed in the Kane formula for small ΔE[102]

may be attributed to this correction. The connection of these approaches to the WKB

approximation and the parametrization of the two-band model are discussed next.
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3.1.2 WKB Approach to Interband Tunneling

In the WKB approach to tunneling[94], the normal incident transmission probability is

given by the action integral in the forbidden region between the classical turning points

x1 and x2 in Fig. 3.1

TWKB = exp

(
−2

∫ x2

x1

κ(x)dx

)

= exp

(
−2

∫ Eg

0

κ(E)

qF
dE

)
,

(3.8)

where the second line holds for constant field F . κ is the magnitude of the imaginary

wavevector for energies E in the band gap and for the two-band Hamiltonian becomes

κ(E) =

√
2m

�2

√
−�2E

m
+ β +

√
2�2P 2

2E

m
+ β2 (3.9)

with β = (Eg�
2/2m) − P 2

2 . The action integral can be performed using this result and

gives TWKB = exp(−B/F ), demonstrating the basic equivalence of the WKB and Kane

models. This can be traced to Kane’s use of a semiclassical phase and hence WKB-like

wave functions as the unperturbed basis in his calculations. Similarly, while the Fredkin-

Wannier scattering approach to tunneling is quite general, the two-band Green’s function

and WKB wave functions are used in the forbidden regions when obtaining analytical

results[108, 109].

We observe again that while m affects the shape of the complex dispersion in Eq. 3.9

(which is why we use it to fit the experimental effective masses in Section 3.2), it disap-

pears from the (constant field) integrated action, as can be seen most clearly in Kane’s

formulation where constant energy differences drop out[95]. Physically, this is because

interband tunneling is concerned with the coupling between the conduction and valence

band states, which is described entirely by P in the two-band model of Eq. 3.1. Under a

nonuniform field, m does impact the transmission since κ will be weighted asymmetrically

within the forbidden region, though we find numerically that these effects are negligible

unless m � m0, which is generally not the case for realistic material parameters. Simi-

larly, we note that if the k dependence of the diagonal terms in the two-band Hamiltonian
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is made asymmetric by imposing different masses for the upper (CB) and lower (LH) di-

agonals, then the asymmetry of the masses will enter the action integral. This is because

the different masses, though they do not directly couple the CB-LH branches, change the

curvature of the imaginary bands. Physically, different renormalized masses correspond

to asymmetric corrections from remote bands; in eight-band k·p theory, for instance, this

is reflected in the differing parameters Ac, L̃
′, and M̃ . These effects are neglected in the

simple two-band Hamiltonian Eq. 3.1, which assumes a single mass m, but are partly

recovered when we set P2 using the experimental CB and LH effective masses through

Eq. 3.2. This approximation is ultimately vindicated by the good agreement with full

band structure and transport calculations documented in Sections 3.2-3.3.

3.1.3 Multiband Corrections

While the two-band Hamiltonian is easy to use and physically transparent, it neglects

coupling with other bands, particularly the heavy hole (HH) and split-off (SO) valence

bands. For instance, the use of the effective mass approximation in the transverse di-

rections underestimates tunneling because k·p terms tend to flatten the dispersion and

reduce the effective energy gap Eg +E⊥. Using the eight-band Hamiltonian accounts for

this but leads to difficult integrations over k⊥ for Eq. 3.6. To obtain a tractable result,

we assume the CB and LH dispersions along k⊥ are also of the two-band form in Eq. 3.1,

i.e.,

ECB,LH(k⊥) =
Eg

2
+

�
2k2⊥
2m

±
√
E2

g

4
+ P 2

2 k
2
⊥ (3.10)

and hence the transverse energy difference

E⊥,NP = ECB − ELH = Eg

(√
1 +

4P 2
2 k

2
⊥

E2
g

− 1

)
. (3.11)

This expression should be fairly accurate in capturing the nonparabolicity of the CB

branch, though it neglects the warping of the LH band and cannot describe effects of

anisotropic band mixing on tunneling. Additionally, for large k⊥ the CB and LH bands

may not be simply connected in imaginary space, such that the two-band WKB picture

fails altogether[99]; we will assume such contributions are negligible at experimentally
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accessible fields. Integrating Eq. 3.11 over k⊥, we obtain a new nonparabolic counterpart

to AKane

ANP =
q2BF

9π2�E2
g

+
q3F 2

18π2�E2
g

, (3.12)

where the new term quadratic in F shows that these effects are more important at high

fields.

The inclusion of additional bands also impacts the normal incident tunneling prob-

ability. Krieger studied these effects using a four-band Hamiltonian[111]; despite some

theoretical[97] and experimental[100] evidence of his model’s success for GaAs, it is rarely

used in the literature, perhaps because of its seeming complexity. We adapt his method

to derive a new value of B for use within the exponential and prefactor A of the Kane

and nonparabolic tunneling formulas

B4band =
π
√
mrE

3/2
g

2q�

√
(5 + 4α)(1 + 2α)

(2 + 2α)(3 + 4α)
, (3.13)

where α = Δ/Eg and mr is still in terms of the CB and LH effective masses. The

derivation of this equation is outlined below. We see this new B4band equals the two-band

Kane version Eq. 3.4a in the limit of large α but is smaller by a factor of
√
5/6 for

α = 0, leading to an enhancement in tunneling current. The HH band does not enter

this expression because it does not mix with the other bands to first order in the k·p
interaction[76].

3.1.4 Derivation of Four-Band Tunneling Probability

Using spin degeneracy and neglecting remote band interactions, the eight-band k·p Hamil-

tonian can be transformed via a basis rotation into two copies of a four-band model with

the eigenvalues[76]

E ′ = 0

E ′(E ′ − Eg)(E
′ +Δ)− k2P 2(E ′ + 2Δ/3) = 0

(3.14)

where E ′ = E − (�2k2/2m0). The lone band in the first line gives the uncoupled HH

branch, so we focus on the three solutions in the second expression corresponding to the
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CB, LH, and SO branches which enter the tunneling problem. Dropping the bare mass

terms ∼ k2/m0 for the same reasons as before, we can write the imaginary wavevector

κ4band(E, k⊥) =
1

P

√
E(E − Eg)(E +Δ)

E + 2Δ/3
− k2⊥P 2. (3.15)

The WKB transmission can be evaluated using the action integral Eq. 3.8 of κ4band

generalized for arbitrary k⊥. For α = Δ/Eg ≥ 0, Krieger carried out this integration

approximately using Taylor series expansions, leading to[111]

T4band =
π2

9
exp

[
− πE2

g

4qFP

√
3 + 6α

3 + 4α

(
1 +

4P 2k2⊥
E2

g

)]
. (3.16)

We have verified numerically that this approximation is accurate to within 1% error.

Krieger then used perturbation theory to include remote bands, leading to a final form

of the transmission coefficient summarized in Eqs. 5.39, 5.46-5.48, and 5.52 of Ref. [111]

and which is in terms of Eg, Δ, and the effective masses of all four conduction and valence

bands (as the remote bands reintroduce coupling to the HH branch)1.

Instead, we choose to ignore the remote band effects and work with Eq. 3.16 directly.

We express it in more familiar form using the CB and LH effective masses, which can be

found from Eq. 3.14 to be

mCB =

[
1

m0

+
2P 2

3�2

(
2

Eg

+
1

Eg +Δ

)]−1

mLH =

(
− 1

m0

+
4P 2

3�2Eg

)−1

,

(3.17)

from whence

P = �

√√√√ 3Eg

2mr

(
4 + Eg

Eg+Δ

) . (3.18)

With this identity, the integration over transverse modes in Eq. 3.6 yields a result iden-

tical in form to the Kane formula, but with the altered coefficient B given in Eq. 3.13.

Interestingly, we have found for a wide range of realistic material parameters that this

model is nearly indistinguishable numerically from the more complicated expressions in

1Note that while Eq. 5.16 in Ref. [111] is correct, there is an error of
√
2 in the coefficients of the

remote-band-corrected transmission in Eq. 5.52 of that work.
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Ref. [111]. This is because we use the experimental CB and LH masses when evaluating

mr, which is equivalent to lumping all remote band corrections into P (as is also the case

when using mr to define P2 in the two-band model).

Eqs. 3.12 and 3.13 are our primary original analytical results for bulk tunneling;

we will refer to them as the “multiband model” to distinguish them from the two-band

Kane formula. Substituting them in Eq. 3.6 we observe that transverse nonparabolicity

enhances the tunneling current at high fields, while the inclusion of the SO band leads to

larger relative increases in tunneling at low fields because of the exponential dependence

on B.

3.2 Complex Band Structure in Bulk Semiconductors

3.2.1 Band Structure Calculation Methods

To determine if the semiclassical Kane or multiband models are truly accurate, comparison

with exact quantum calculations is necessary. It is also of interest to examine the complex

band structure features relevant for tunneling; in particular, the two-band dispersion is im-

portant when modeling either bulk or quantum confined tunneling. Therefore we compare

the two-band Hamiltonian with the more complete band structures predicted by eight-

band k·p[77] and spds∗ empirical TB[83, 84] including spin-orbit coupling. To ensure that

our results are not skewed by any accidental peculiarities of band structure for a partic-

ular material, we study three technologically important semiconductors: In0.53Ga0.47As,

InAs, and InSb, corresponding to α < 1, α ∼ 1, and α > 1, respectively. We follow

the guidelines in Ref. [79] for adjusting experimentally fitted k·p parameters[80, 81] to

eliminate spurious gap states caused by discretization[78, 82]. Our final parameter sets

are given in Table 2.1 and are free of spurious states while correctly reproducing the bulk

band gaps and effective masses. For TB calculations, we use the parameters in Ref. [84]

for InSb and Ref. [81] for InAs and obtain the TB matrix elements for In0.53Ga0.47As by

interpolating InAs and GaAs parameters[81], accounting for alloy bowing effects[85].

50



3.2.2 Bulk Band Modeling

In Fig. 3.2, we show the band structures of InGaAs, InAs, and InSb for real and imaginary

k along the [100] direction calculated using the different Hamiltonians. In the two-band

model of Eq. 3.1, m and P2 are chosen such that Eq. 3.2 reproduces the bulk [100]

LH and CB effective masses for each material. We see that the imaginary dispersion

connecting the conduction and valence bands in the two-band model is close to those

predicted by the other, more complete methods, showing it is indeed a useful starting

point for analyzing bulk interband tunneling. The slight deviations can be attributed to

the neglect of spin-orbit coupling and perturbations from remote bands in the two-band

model. The eight-band and TB band structures are also quite similar, with the latter

generally having slightly less area under the k-E curve, i.e., reduced action. This may be

due to corrections from higher bands/additional orbitals included in the spds∗ basis, as

well as the fact that the literature TB parametrizations yield effective masses somewhat

smaller than the experimental values to which the k·p parameters in Table 2.1 are fitted.

Since there is still good agreement overall between the TB and eight-band Hamiltonians,

we will focus on the latter in our subsequent calculations and analysis due to its lighter

computational load.

For intuitive understanding, we examine the relative contributions of the k·p basis

states to the complex dispersion. Summing over spins for clarity and ignoring relative

phases (as we will deal exclusively with the real projected weight of each state), the basis

states of the eight-band model are |S〉, |X〉, |Y 〉, and |Z〉, where the notation indicates

the orbital-like symmetries of the wave functions[76]. In Fig. 3.3 we show the projections

of the wave functions of the real and imaginary InAs conduction and valence bands (CB

and LH) onto the eight-band basis states (similar results hold for InGaAs and InSb). The

CB wave functions in Fig. 3.3a consist mainly of |S〉 as expected, with the increasing

admixture of |X〉 leading to nonparabolic effects at larger k. For the LH band along the

[100] direction, the zone center wave function weights[77] are 2/3 for |X〉 and 1/6 for |Y 〉
and |Z〉, as seen in Fig. 3.3b. Interestingly, the “transverse” states |Y 〉 and |Z〉 make
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Figure 3.2: Bulk band structures for (a) InGaAs, (b) InAs, and (c) InSb calculated

using two-band and eight-band k·p and spds∗ TB. The left side of each plot (negative k)

corresponds to real k and the right side to imaginary k.
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Figure 3.3: Weighted contributions of the spin-summed eight-band k·p basis states to the

(a) conduction band and (b) valence band wave functions in InAs as the wavevector kx is

varied, corresponding to the dispersion in Fig. 3.2a.

increasing contributions to the real dispersion with k, reflecting the effects of band mixing.

By contrast, the large ratio of |X〉 relative to |Y 〉 and |Z〉 is roughly maintained for the

imaginary k valence wave functions, while interband coupling comes from the increasing

admixture of |S〉. This indicates that the CB and LH zone center states dominate the

imaginary branch point. Therefore, in general the two-band model should be more useful

for describing the complex CB-LH branch point than the real band dispersion. This

is to be expected for bulk bands from k·p theory, but also has particular relevance for

lower-dimensional quantum confined subbands.

The results in Figs. 3.2-3.3 are for states with no momentum k⊥ perpendicular to

the [100] orientation. While these make the largest contribution to the tunneling current
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Figure 3.4: Complex dispersions for InSb with ky = 0.097 nm−1 (black solid lines for

eight-band and squares for two-band) and 0.194 nm−1 (red dashed lines for eight-band

and triangles for two-band). Hollow symbols correspond to the use of the effective mass

transverse gap E⊥ and filled symbols to the nonparabolic E⊥ in Eq. 3.11.

in that direction since k⊥ increases the size of the energy gap to be surmounted, it is

still important to examine the complex dispersion of wavevectors with lower symmetry

for signs of band mixing effects. Since nonparabolicity generally increases for smaller

gaps[77], we expect such effects to be large for InSb. In Fig. 3.4, we show the two-

band and eight-band E-k in InSb for nonzero transverse momenta. It is evident that

as k⊥ increases, the transverse effective mass approximation overestimates the energy

gap, indicating it will underestimate tunneling for these states. Using the nonparabolic

correction Eq. 3.11 gives better agreement, particularly for the size of the energy gap.

3.3 Comparison of Interband Tunneling Models

3.3.1 NEGF Transport Modeling

Having examined the bulk band structure, we proceed to study the tunneling current. To

do this, we perform numerical quantum transport simulations using the NEGF technique

and the eight-band k·p Hamiltonian as discussed in Chapter 2. Since we study only direct
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Table 3.1: Bulk reduced masses and tunneling coefficients. B and B4band correspond to

Eqs. 3.4a and 3.13, respectively. The coefficient A can be computed directly from B and

Eg.

In0.53Ga0.47As InAs InSb

mr 0.0235m0 0.0128m0 0.007m0

B (V/cm) 5.54× 106 1.45× 106 5.54× 105

B4band (V/cm) 5.34× 106 1.42× 106 5.52× 105

(i.e., elastic) tunneling, no scattering mechanisms are included in our calculations.

3.3.2 Constant Field Tunneling

For direct comparison of the analytical models with NEGF simulations, we first examine

tunneling under constant electric field. The analytical currents are calculated using Eq.

3.6 with coefficients in Eqs. 3.4a and 3.7 for the Kane formula and Eqs. 3.12-3.13 for the

multiband model. The model parameters are shown in Table 3.1 and are “uncalibrated”

in the sense that they are based on material properties, not adjusted for best fit with

quantum calculations. The NEGF simulations are performed using a linear potential drop

V over a finite junction width, assuming nondegenerate statistics; to facilitate comparison

and remove effects of the finite bias, we divide all current densities by the tunneling energy

window ΔE defined in Fig. 3.1. In Fig. 3.5a, we observe good qualitative agreement

between the normalized analytical and numerical current densities for InGaAs, InAs, and

InSb over several orders of magnitude, with the multiband model being more accurate

than the Kane formula.

To quantify our comparison and approximately normalize for differences in the materi-

als, we plot the percentage difference between the NEGF and analytical model currents in

Fig. 3.5b as a function of the tunneling transmission T = exp(−B/F ). We observe that

the underestimation of current by the Kane formula (open symbols) is largest for weak

tunneling (low fields) and most significant for InGaAs. A similar, though weaker, trend
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Figure 3.5: (a) Normalized current densities (J/ΔE) versus applied field for InGaAs, InAs,

and InSb using eight-band k·p NEGF (symbols), Kane formula (solid lines), and multi-

band model (dashed lines) calculations. (b) Percentage difference between the NEGF and

semiclassical model currents (JNEGF/Jmodel)− 1 for InGaAs, InAs, and InSb as a function

of transmission T = exp(−B/F ). Hollow and filled symbols represent the NEGF-Kane

and NEGF-multiband comparisons, respectively.
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squares) fields are considered in each case; for visibility, the transmissions for the smaller

fields are multiplied by 3× 103 for InSb and 4× 106 for InGaAs. The Kane (solid lines)

and multiband (dashed lines) model transmissions are calculated using Eq. 3.3 with

corresponding choices of B and E⊥.

is present in InAs. By contrast, the error increases with field for InSb. The multiband

tunneling model (solid symbols) reduces the magnitude of the current deviation for all

cases, with maximum errors of less than 10% for InSb and InAs and less than 20% for

InGaAs over almost eight orders of magnitude in the transmission and total current.

To explain these trends, we directly inspect the dependence of the transmission co-

efficient on F and k⊥ for InSb and InGaAs in Fig. 3.6. It is clear that in InSb, the

Kane model (solid lines) is accurate at normal incidence (k⊥ = 0) but underestimates

the transmission at large k⊥, explaining why the error increases at higher fields. The

impact of the 4-band correction is negligible at k⊥ = 0 (as seen by the near identical

transmissions for the Kane and multiband models), but the nonparabolic correction leads

to better agreement with the NEGF results for large k⊥. Conversely, in InGaAs at low

fields the normal incidence Kane transmission is about 60% smaller than the numerical

result but converges towards the latter at high fields, while the multiband formula slightly
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overestimates but is much closer to the NEGF values. These findings can be understood

by recalling that InSb has large α = Δ/Eg, so we expect the two-band approximation to

be good for low fields. However, nonparabolicity is more pronounced in small gap materi-

als, leading to increased transverse momentum effects at high fields. Therefore the error

in the Kane formula current increases with field for small gap materials. By contrast, α is

small for InGaAs, implying that contributions from the SO band are important, especially

at low fields where small changes in B lead to large differences in transmission. InAs falls

in between these cases (α ∼ 1), such that the competing effects partly cancel and the

relative error of the Kane model is flatter as a function of field, as seen in Fig. 3.5b.

These results demonstrate that the Kane formula is qualitatively useful but prone

to underestimation of tunneling current, with the magnitude of the error dependent on

the material α and applied field, while better quantitative results are provided by the

multiband tunneling formula. The overall success of the semiclassical formulas in Fig. 3.5

might seem surprising since the WKB approximation (and first order perturbation theory)

is expected to be applicable only for small fields. Some support for this may be found

by recalling that in intraband (effective mass) tunneling, the solutions of the Schrodinger

equation for exactly solvable cases such as a parabolic or exponential barrier are equal to

the WKB result for large incident wavevectors[112]. Similarly, direct analysis of the two-

band model shows that the Kane formula essentially holds for arbitrary field strength, at

least in the limit of large bias [102]. However, the WKB approximation will break down

in materials or nanostructures where an unambiguous path of least action connecting the

conduction and valence branches cannot be identified[4].

Comparing our findings with other quantum transport studies, our results are con-

sistent with those in Ref. [103] as well as Ref. [97], where the Kane model gave large

errors for GaAs (large Eg, small α), but was better for InSb; the latter work also found

that Krieger’s 4-band model was more accurate in GaAs, though it overestimated the

magnitude of the tunneling current, similar to our InGaAs results. Additionally, the

theoretically calculated coefficients in Table 3.1 are within the range of experimentally

extracted values for In0.53Ga0.47As p-i-n diodes[101]. However, our qualitative and quan-
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titative trends are different from those reported in Ref. [104] using NEGF for InAs, which

may perhaps be partly attributed to that work’s use of nonuniform fields as discussed in

Section 3.3.3.

In Figs. 3.5-3.6, the tunneling currents are evaluated over energy windows ΔE on the

order of 0.2-4 V (corresponding to the large bias condition in Ref. [102]), averaging out

any energy dependent effects of quantum oscillations and junction edges. To illustrate how

these effects impact tunneling at low bias, in Fig. 3.7 we show the energy dependent InAs

transmission coefficient for ΔE = 0.02, 0.05, and 0.3 eV. For energies near the junction

edges, i.e., small Eic,iv, the transmission is strongly reduced because of the breakdown of

the WKB approximation[110, 94]. This reduction is not due to the vanishing transverse

density of states (DOS), since we examine the transmission for k⊥ = 0. The energy

range over which these corrections are significant depends on the shape of the barrier

and the value of ΔE[94], but is generally on the order of several to tens of millivolts.

Hence, at small band overlap (ΔE = 0.02 eV), this effect is especially noticeable and

attenuates the average transmission below the Kane value. This, along with the reduced

transverse DOS, explains the tendency of analytical models to overestimate current near

the onset of tunneling, for instance around the peak voltage in forward biased Esaki

diodes[102, 103], and can impact quantitative arguments on the possible steepness of

ideal tunnel junctions[113]. In experimental situations, these effects might be partially

obscured by leakage currents.

3.3.3 Tunneling in Nonuniform Fields

Since the electric fields in realistic structures are often nonuniform, we also investigate

the tunneling current under these conditions. For direct comparison we examine abrupt

p-n junctions using the depletion approximation with Fermi-Dirac statistics; in real de-

vices the self-consistent electrostatic potential can be modified by quantum effects and

band structure details, which might lead to additional quantitative differences between

semiclassical and quantum calculations[104]. In the WKB approach (see Section 3.1.2)
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Figure 3.7: NEGF transmission coefficients T (k⊥ = 0) for ΔE = 0.02, 0.05, and 0.3 eV in

InAs at F = 5×105 V/cm. The Kane transmission coefficient exp(−B/F ) is independent
of ΔE.

the transmission for an arbitrary potential may be evaluated numerically by integrating

the action, as is done in some nonlocal TCAD tunneling models[114]; however, for con-

venience the Kane formula is often empirically extended to spatially varying fields by

replacing the uniform field F with some energy-dependent Feff. Different choices of Feff

have been suggested[115, 116], including the maximum field in the junction (which should

overestimate current), the field at the midpoint (x1 + x2)/2 between the classical turning

points (band edges) at a given energy illustrated in Fig. 3.1, or the average field Eg/w,

where w = x2 − x1 is the tunneling distance.

In Fig. 3.8a we compare the p-n junction tunneling currents computed by integrating

Eq. 3.6 using the various effective fields with two-band WKB action integration using

Eq. 3.9 and NEGF calculations. The maximum field method is unsurprisingly inaccurate

while the midpoint field curve exceeds the NEGF current at low bias and falls below it at

high bias, similar to what was observed in Ref. [104]. The latter work took this trend to

be a feature of the Kane model, but Fig. 3.8a demonstrates it is actually an artifact of the

authors’ choice of the midpoint effective field and the particular junction potential. Using

the average field Feff = Eg/w gives better overall agreement with both the WKB and
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Figure 3.8: (a) Reverse bias tunneling current for InAs abrupt p-n junction calculated

from NEGF, the integrated Kane formula using maximum junction field, midpoint field,

and average field approximations, the two-band WKB action integral Eq. 3.8, and the

multiband model using the average field approximation. (b) NEGF and average field

Kane and multiband model current densities versus reverse bias for different InAs p-n

junctions. Na and Nd are the p- and n-doping levels in the junctions, respectively.

NEGF calculations, though the tunneling current is still quantitatively underestimated.

Evaluating the multiband model with the average field leads to the best agreement with

quantum simulations. While the use of the average field is heuristic, it relates the tunneling

probability directly to the semiclassical tunneling distance w, lending it some physical

credence; therefore, it is the best choice for analytically estimating tunneling when the

WKB action integral cannot be performed. Finally in Fig. 3.8b we show the tunneling

current for other junction profiles as computed from NEGF and the Kane and multiband
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models with the average field approximation. In general we find that the Kane formula

is qualitatively useful but tends to underestimate the current, especially at smaller bias,

while the multiband model is the most accurate in general, similar to the uniform field

results.

3.4 Complex Band Structure in QC Materials

Since tunneling depends sensitively on the imaginary band structure, it is important to

examine the complex dispersion of QC materials like 2-D quantum wells and 1-D quantum

wires. The subbands in these configurations can be quite complicated and require nu-

merical evaluation because of band mixing effects. By contrast, most analytical tunneling

models use a simple two-band Hamiltonian to describe interband coupling between the

conduction (CB) and light hole (LH) valence bands, i.e., Eq. 3.3. It is unclear a priori

whether or how the two-band model can be adapted to describe the lowest conduction

and valence subbands (which should dominate tunneling in direct gap materials when

confinement is significant[4]). To address this problem, we use eight-band k·p[77] and
spds∗ empirical tight-binding (TB)[84] calculations to evaluate QC structures made of

In0.53Ga0.47As, InAs, and InSb, similar to our study of bulk materials.

In Fig. 3.9, we show the material- and thickness-dependent quantum well band gaps

extracted from our k·p and TB calculations; we see that deviations between the two

methods occur in very thin structures, though they agree well for thicker wells. It is well

known that under strong confinement, k·p and full-band calculations using methods like

TB, empirical pseudopotentials, or density functional theory (DFT) can give different

subband structures, with the full-band approaches expected to be more accurate due to

their larger basis sets and reproduction of atomistic symmetries[117]. For computational

efficiency we will still perform much of our analysis and transport calculations using eight-

band k·p, keeping in mind these limitations. Since our primary goal is to demonstrate

the dependence of tunneling on the QC band gap, we expect and show where possible

that our arguments can be extended to more precise theoretical or experimental data by
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Figure 3.9: Eight-band k·p and spds∗ TB energy gaps between the lowest conduction and

valence subbands for quantum wells with varying thickness and material.

using the corresponding value of the band gap.

In the two-band Hamiltonian, there are essentially three parameters we can adjust

to match the QC dispersion: the band gap Eg, the momentum matrix element P2, and

the mass m. In bulk materials, the latter two can be fitted to the experimental effective

masses mCB and mLH through

P2 = �

√
Eg

4

[
m−1

CB +m−1
LH

]
(3.19a)

m =
2

m−1
CB −m−1

LH

. (3.19b)

Under confinement the gap between the lowest conduction and valence subbands becomes

Eg,QC . The simplest approach to extend the bulk two-band Hamiltonian is to substitute

Eg,QC for the bulk Eg directly while keeping the bulk values of P2 and m; we will call this

the band gap scaling (BGS) method. Alternatively, since the lowest subband effective

masses mCB,QC and mLH,QC also change from their bulk values, we can attempt to use

them in Eq. 3.19 to adjust P2 and m (which we will refer to as “subband scaling”). In Fig.

3.10, we compare the complex dispersion of a 9 nm InAs quantum well calculated using

eight-band k·p and TB with the BGS and subband scaled two-band Hamiltonians (with

all scaling being performed to the eight-band results). We observe that BGS provides
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Figure 3.10: Band structure along the [010] direction of a 9 nm thick InAs quantum well

calculated using eight-band k·p, TB spds∗, and the two-band Hamiltonian with BGS or

subband scaling (both fitted to the eight-band results). The left side of the plot (negative

k) corresponds to real k and the right side to imaginary k.

better agreement for the eight-band imaginary dispersion; this is further borne out for

the tunneling current, as shown in Section 3.5.

To better understand this finding, we decompose the wave functions of the lowest

conduction and valence subbands in Fig. 3.11 in terms of the spin-degenerate eight-band

basis states |S〉, |X〉, |Y 〉, and |Z〉[77]. The effects of confinement can be best understood

by comparison with the wave functions for bulk InAs shown in Fig. 3.3; note that the

well is confined in the x direction and we examine the dispersion for ky, so the dominant

p-like state here is |Y 〉 rather than |X〉. For real k and especially the valence subband,

band mixing effects are larger and more complicated for the well states compared to bulk.

For instance, the perpendicular (|X〉 and |Z〉) basis states are very unevenly weighted

in Fig. 3.11b in contrast to their exact equality in the bulk case, signifying significant

mixing of the SO and HH bands in the valence subband. The change of the subband

effective masses from the bulk values is a product of this band mixing. By contrast, as

the magnitude of imaginary k increases, the subband wave functions tend to converge

towards their bulk counterparts; the increased ratio of |Y 〉 to |X〉 and |Z〉, which in
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Figure 3.11: Projections onto the spin-summed eight-band basis states of the lowest (a)

conduction and (b) valence subband wave functions for the quantum well in Fig. 3.10 as

the wavevector ky is varied for real and imaginary values.

turn become approximately equal, is in agreement with the form of the bulk LH wave

functions[77]. This indicates that the imaginary dispersion is dominated by CB- and LH-

like components, justifying the two-band Hamiltonian. Since P2 describes the interaction

between the CB and LH bands in this model, fitting it to the subband effective masses

incorporates HH and SO contributions that are less relevant for the imaginary band

structure. Retaining the bulk P2 in the BGS method implies that the interband matrix

element is basically unaltered by confinement.

Similar results hold for narrower quantum wells and different materials, as shown in

Figs. 3.12a-b. In Fig. 3.12c, we also compare BGS with the subband structure for a

cylindrical NW using TB[4] and a rectangular NW using eight-band k·p. In all cases

65



-0.8 0.0 0.8
-0.2

0.2

0.6

1.0

1.4
4 nm InSb [100]
Quantum Well

En
er

gy
(e

V)

ky (nm-1)

8-band k-p
BGS (8b)
spds* TB
BGS (TB)

Re(k) Im(k)

-1 0 1
-0.2

0.2

0.6

1.0

1.4

1.8

InAs Quantum Wire

En
er

gy
(e

V)

kz (nm-1)

4x4 nm k-p
BGS (8b)
d=3.35 nm TB
BGS (TB)

Re(k) Im(k)

-0.9 0.0 0.9
-0.2
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

4 nm InGaAs [100]
Quantum Well

En
er

gy
(e

V)
ky (nm-1)

8-band k-p
BGS (8b)
spds* TB
BGS (TB)

Re(k) Im(k)

a)

b)

c)

Figure 3.12: Real and imaginary dispersions for 4 nm (a) InGaAs quantum well (b) and

InSb quantum well calculated using the eight-band k·p and spds∗ methods as well as

two-band predictions using BGS for the eight-band (8b) and TB gaps. (c) Dispersions for

InAs quantum wires with 4x4 nm rectangular cross section (using eight-band k·p) and

3.35 nm diameter cylindrical cross section (using TB); the latter is taken from Ref. [4].
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we see that the BGS two-band model is more accurate at describing the imaginary than

the real dispersions, and hence is suitable for approximating interband tunneling in QC

devices. Since the k·p and TB calculations give different Eg,QC under strong confinement,

we perform BGS to the extracted gaps for both methods and find good agreement in

every case, demonstrating that our argument is not restricted to eight-band k·p and

hence not substantially affected by the presence of other bands. Nonetheless, BGS is

still an approximation; even more exact fits to the full-band complex dispersions could be

obtained by freely adjusting m and P2, for instance[118, 119]. If detailed knowledge of the

complex band structure is available through calculations like the ones shown here, such

fitting should give the most accurate results. However, a huge variety of nanostructures

can be realized in practice by modifying physical geometry, materials and alloying, strain,

etc.; while theoretical and experimental studies of such structures frequently quote the

associated energy gaps and sometimes the subband masses, comparatively few report the

imaginary dispersion (which cannot be easily probed experimentally). Therefore, when

the latter information is not available, BGS provides an alternative starting point for

studying tunneling or other phenomena dependent on the complex dispersion.

3.5 Interband Tunneling in Confined Materials

3.5.1 Applying Semiclassical Tunneling Models using BGS

The Kane formula[96] gives the interband tunneling current under constant electric field

F

J = A(F )

∫ ΔE

0

dE exp

(
−B
F

)
[fL(E)− fR(E)] (3.20)

with fL,R being the Fermi distribution functions on either side of the tunnel junction and

ΔE equal to the energy interval over which tunneling is possible. For bulk materials the
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parameters A and B are

Abulk =
q2BbulkF

9π2�E2
g

(3.21a)

Bbulk =
πm

1/2
r E

3/2
g

2q�
, (3.21b)

where the reduced mass mr is defined as

mr =
(
m−1

CB +m−1
LH

)−1
=

�
2Eg

4P 2
2

, (3.22)

the last expression following from Eq. 3.19. Based on our complex band structure results,

we use BGS to modify the Kane model for QC structures by replacing the bulk Eg with

Eg,QC , assuming that only the lowest conduction and valence subbands are important for

tunneling. Since P in Eq. 3.22 remains constant, the reduced mass increases from its

bulk value via

mr,BGS = mr
Eg,QC

Eg

=
1

m−1
CB +m−1

LH

Eg,QC

Eg

. (3.23)

Substituting Eg,QC and mr,BGS into Eq. 3.21b leads to

BBGS = Bbulk

(
Eg,QC

Eg

)2

, (3.24)

whereas the Eg,QC dependence cancels for A and it retains its bulk form. Eq. 3.24

is equivalent to computing the WKB action integral for the BGS two-band model. This

provides a satisfyingly simple way to adapt the Kane formula for QC using only knowledge

of the bulk band structure and Eg,QC .

In Section 3.3, we demonstrate that the accuracy of the Kane formula can be improved

for bulk materials using corrections for the split-off (SO) band and transverse nonparabol-

icity. Band mixing in QC devices means that a distinct “SO subband” cannot be defined

and there is no simple way to develop an analytical three- or four-band model, so we

will stick to the two-band BBGS. However, the Kane formula should be adjusted for the

different joint density of states (DOS) in lower dimensions.
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3.5.2 Lower-Dimensional Tunneling Coefficients

The parameter A in the Kane tunneling formula for dimension d can be found using

A =
qπ

9�

∫ ∞

0

dkd−1
⊥

(2π)d−1
exp

(
−2E⊥
Ē⊥

)
, (3.25)

where k⊥ is the transverse momentum, Ē⊥ = 2q�F/(πm1/2
r E1/2

g ), and E⊥ for nonparabolic

bands is

E⊥ = Eg

(√
1 +

�2k2⊥
mrEg

− 1

)
, (3.26)

which reduces to the parabolic result E⊥ = �
2k2⊥/2mr for small k⊥. In quantum wells

d = 2, so substituting Eq. 3.26 in Eq. 3.25 and changing variables we obtain

A2-D =
q
√
mrEg

18�2

∫ ∞

0

dx exp
(
−β

√
1 + x2 − 1

)
, (3.27)

such that β = 2Eg/Ē⊥ = 2B/qF . No exact solution exists for this integral; however, using

the lowest order Taylor expansion of the square root in the exponential (the parabolic or

effective mass approximation) gives precisely
√
π/2β. We therefore take∫ ∞

0

dx exp
(
−β

√
1 + x2 − 1

)
≈
√

π

2β
+

a

βc
, (3.28)

where a and c are fitted to the numerical integration results. We find that a = 0.425

and c = 1.2 give less than 4% error for all β > 0.1, which is nearly always the case for

realistically achievable electric fields in devices (at such high fields, real device perfor-

mance might in any case be limited by series resistance or other mechanisms like impact

ionization). Using this expression leads to Eq. 3.29. In 1-D, the integration in Eq. 3.25

disappears entirely, leaving Eq. 3.30.

In general, the prefactor A is found from integration over transverse modes; for 2-D

quantum wells this approximately leads to

A2-D =
q
√
mrEg,QC

18�2

[√
qπF

4BBGS

+ 0.185

(
qF

BBGS

)1.2
]
. (3.29)

In 1-D, there are no transverse modes and

A1-D =
2qπ2

9h
, (3.30)
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which is equal to the quantum conductance times a factor of π2/9 from the Kane trans-

mission coefficient[96]. Similar expressions have been derived assuming parabolic bands

for graphene and 2-D semiconductors[120, 121]. Aside from constant prefactors, the key

change to the bulk Kane formula in lower dimensions is the reduction of the power of F

in A. Eqs. 3.29-3.30 are more appropriate for lower-dimensional devices, though many

existing compact and TCAD models are based on the 3-D Eq. 3.21a.

Since tunneling depends sensitively on potential, we also need to consider the effects

of QC on the electrostatics. For TFETs, the quasi-Fermi levels Ef change in confined

structures due to DOS, altering the built-in voltage Vbi between source and drain (which

also increases due to a larger Eg,QC). In quantum wells, for instance, Ef can be evaluated

assuming nonparabolic subbands[122]. In TCAD simulations, the electron effective DOS

can then be adjusted to give the same Fermi level. For holes, 3-D formulas for Ef give

relatively minor errors because heavy holes dominate the DOS. The elevation of the lowest

conduction subband above the bulk CB edge also reduces the electron affinity, which leads

to a “threshold voltage” shift when matching semiclassical and quantum I-V curves but

does not otherwise affect the results.

To summarize, when applying the Kane model to quantum confined devices like

TFETs, the bulk value of B in the Kane formula should be replaced by Eq. 3.24.

When possible the dimensionally appropriate A should also be used. Despite its neglect

of other quantum effects, BGS matches NEGF simulations very well as shown below,

demonstrating its practical value. The BGS model focuses on tunneling along the un-

confined direction(s) in nanostructures. In structures which transport occurs along the

confined direction, i.e., “line tunneling” perpendicular to the gate in TFETs, electric

field-dependent confinement may work to increase the effective band gap. In this case,

using BGS alone will provide an “upper limit” on the tunneling since it neglects the field-

induced gap increase, and additional field-dependent corrections will be needed to model

these effects[48, 123].
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Figure 3.13: Normalized current densities J/ΔE versus applied field for (a) 4 and 9 nm

thick InAs quantum wells and (b) 4 nm InGaAs and InSb quantum wells using eight-band

NEGF and the 3-D and 2-D Kane formulas.

3.5.3 Tunneling in Constant Fields

To validate these analytical semiclassical models, we compare them with eight-band k·p
NEGF calculations. Since the semiclassical formulas are derived assuming constant elec-

tric field, we first simulate quantum wells and wires with linear voltage drops. Hard wall

boundary conditions are imposed, i.e., the wave functions vanish at the boundaries of the

confined directions.

The NEGF and analytical tunneling currents (normalized by the tunneling energy

window ΔE) for two different InAs quantum wells are shown in Fig. 3.13a. The 3-D

Kane curves correspond to the use of Abulk with BBGS in Eq. 3.20, while the 2-D Kane
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quantum wires using eight-band NEGF and the 3-D and 1-D Kane formula calculations.

curves utilize the DOS-corrected A2-D; for the latter we compare BBGS with the subband

scaling approximation, where the subband effective masses are used to evaluate mr. In

both cases we find that bulk Kane model tends to underestimate the current density

with the discrepancy increasing for stronger confinement, whereas the 2-D BGS model

gives good quantitative agreement. Using the subband effective masses also leads to

underestimation of current, as expected and explained from the complex band structure

in Section 3.4. The same trends hold for the In0.53Ga0.47As and InSb quantum wells we

simulated, as shown in Fig. 3.13b.

In Fig. 3.14 we calculate several quantum wires with NEGF and compare the 3-D and

1-D Kane models using BGS and subband scaling. Again, the 1-D BGS model gives the

best agreement with the NEGF simulations, though it slightly overestimates the current

for InAs and InGaAs. Quantum confinement and band mixing effects are very strong in

these wires, so that the tunneling current may be particularly sensitive to details of the

band structure in these cases and the BGS approximation leads to larger errors.

On the whole, these results show that the Kane formula, properly adjusted for di-

mensionality and QC through BGS, is still qualitatively and often quantitatively useful

for modeling tunneling in lower-dimensional structures. However, the bulk Kane model,

72



which is sometimes the only available option for modeling interband tunneling in TCAD

device simulators, tends to underestimate current even after applying BGS.

3.6 Conclusion

The primary physical limitations of the Kane formula, namely the neglect of multiband

corrections to the transverse gap and the tunneling probability, can be mostly overcome

using simple parameter-free adjustments of the standard tunneling equations. These

corrections can be easily implemented in analytical device models and simulation software.

Of course, NEGF or equivalent quantum transport calculations are always preferable if

exact results are required or new physical effects need to be considered. However, in

many practical applications they may be infeasible or unnecessary; in these cases our

results indicate that semiclassical models, properly used, provide good qualitative and

even quantitative accuracy for bulk tunneling.

We find from the complex band structure evaluated using k·p and TB calculations

that the main correction to the two-band Hamiltonian in lower-dimensional nanostruc-

tures is the scaling of the QC band gap. This leads to a BGS adjustment of the Kane

formula that allows the tunneling current to be approximated using only the bulk prop-

erties and the QC gap, which is especially useful for rapid device design studies or when

limited information is available about the band structure. Through comparisons with

constant field simulations for different materials and dimensions, we demonstrate that

the BGS scheme leads to good agreement with NEGF simulations and therefore enables

semiclassical modeling of direct tunneling.
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CHAPTER 4

Electrostatic and Current Models for TFETs

The world is charged with the grandeur of God.

G. M. Hopkins, “God’s Grandeur”

Because TFETs operate according to fundamentally different principles compared to tra-

ditional MOSFETs, their device characteristics are qualitatively as well as quantitatively

different. Most of the research on TFETs has been on the device level, attempting to

realize the full potential of the tunneling process. However, the unique advantages and

disadvantages of a new device like the TFET mean that it cannot be simply substituted

for MOSFETs everywhere but rather deployed intelligently to derive the maximum bene-

fit. To evaluate viability of TFET adoption in future applications, circuit-scale modeling

and design will be crucial. Despite the extensive experimental and simulation work done

on TFETs, there remains a need for simple, predictive models that provide design insight

and facilitate circuit and system-level modeling.

There is increasing interest in TFET analytical modeling to provide physical insight

and facilitate compact modeling for circuit-level studies. As with MOSFETs, both elec-

trostatics and transport need to be considered for proper modeling. Because interband

tunneling is highly sensitive to the band bending, the full 2-D channel potential might be

expected to play an important role in understanding TFET characteristics. However, in

an arbitrary device structure the 2-D Poisson equation may be analytically intractable,

particularly for lateral TFET structures where the current flow is roughly parallel to

the gate. Some researchers use series expansions[124, 125, 126] to compute the channel

potential in ideal lateral TFETs and integrate the tunneling current over the device vol-
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ume. These provide rigorous and exact solutions for the cases under study, but require

numerical evaluation and are not easily generalizable to more complicated conditions.

Attempts have also been made to model the 2-D effects by assuming geometric tunneling

paths[127, 128], which do not however necessarily correspond to the actual electric field

lines (or paths of least action) in realistic TFET structures. Still others use analytical

approximations[129, 130, 131], i.e. a pseudo-2-D approach, to model the potential at

the channel surface or center, effectively assuming tunneling is dominated by 1-D effects.

Many of these works only analyze certain idealized structures and do not account for im-

portant device variables like source and drain doping. Additionally, analytical solutions

of the Poisson equation preclude inclusion of the nonlinear mobile charge, though a few

works use approximations to capture some key effects of channel carriers [131, 132].

In this chapter we present our work in this area. We use the pseudo-2-D approach[133]

as the basis for our analytical models, striving to unify the analysis of different device

structures, including double gate (DG), nanowire (NW), and SOI TFETs, and investigate

nonidealities. While approximations and limitations are inevitable in any analytical ap-

proach, it is of great practical interest to explore how far this framework can be stretched.

We focus on the device electrostatics, using standard approximations to describe tun-

neling; our detailed study of the potential yields new general device insights and clarifies

common modeling assumptions. Our approach is semiclassical, neglecting quantum effects

like channel subband formation, which we expect will introduce quantitative changes but

preserve the relevant device trends we identify. We demonstrate the accuracy of the model

through comparison with numerical simulations and experiments and use it to explain why

2-D tunneling may be neglected in well-scaled devices. We carefully study the impact of

degeneracy on TFETs, providing a simple analytical model to explain its influence and

showing how it alters both the device transport and electrostatics. By examining the

modeling and simulation results, we discover that Thomas-Fermi electrostatic screening

has a major impact on the tunneling current in TFETs made with low density-of-states

materials. Much of the work in this chapter has been published in various forms in Refs.

[7, 8, 9].
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Figure 4.1: a) Structures and coordinate systems under consideration. b) Potential and

variables along the channel at arbitrary x or ρ in device.

4.1 TFET Model Development

We use the pseudo-2-D approach to calculate the electrostatic potential of lateral TFETs.

By assuming a polynomial form for the potential perpendicular to the gate, the 2-D

Poisson equation reduces to an analytically solvable 1-D equation. This procedure, also

known as the polynomial potential model, has been used to analyze MOSFET short-

channel effects (SCE) in subthreshold[134, 135, 136]. We will see that the method allows

easy generalization to different structures and that it is valid over the design space for

future multigate TFETs.

4.1.1 2-D Electrostatic Potential Model

The basic TFET structure we study is a gated lateral p-i-n diode. We consider three

device configurations: the silicon-on-insulator (SOI) thin body, double-gate (DG), and

gate-all-around nanowire (NW), as illustrated in Fig. 4.1(a). These multigate devices,

besides being straightforward to model, are also the basic structures most likely to be used

in future technology nodes. For simplicity we first review the DG derivation. Our sign
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conventions are for n-type TFETs, but the model is equally applicable to p-type devices

by reversing the polarities of the voltages. We consider the operating regime when the

mobile charge in the channel can be neglected (corresponding to ψch < Vds + Vbi in Fig.

4.1(b)) and hence the Poisson equation in the channel is(
∂2

∂x2
+

∂2

∂y2

)
V (x, y) =

qNc

εch
, (4.1)

where Nc is the channel doping concentration and εch is the channel dielectric constant.

In most TFETs the channel is lightly doped and Nc can be neglected since it does not

significantly affect the potential; it is included here for generality. We make three standard

approximations in our derivation: 1) the potential in the x-direction (perpendicular to

the gate) is parabolic with the form V (x, y) = a(y) + b(y)x + c(y)x2, 2) the electric

field lines in the oxide region are perpendicular, and 3) the potential in the source and

drain is described by the depletion approximation. For the DG, b(y) = −c(y)tch from

the symmetry requirement that the vertical electric field at the center must be zero.

Approximation 2 corresponds to neglect of lateral fringing fields in the gate oxide and

gives

−∂V
∂x

∣∣∣∣
x=0

=
εox
εchtox

(V ′
gs − a(y)) = −b(y). (4.2)

Here V ′
gs = Vgs − qΦms is the gate bias relative to the source Fermi level, εox is the oxide

permittivity, tox is the oxide thickness, and Φms is the difference between the gate work

function and the source Fermi level. Substituting the parabolic potential into the Poisson

equation to remove the partial derivative in x, and re-arranging terms, we find

d2V (x, y)

dy2
− V (x, y)− ψch(x)

λ2DG(x)
= 0, (4.3)

where

λDG(x) =

√
εchtoxtch
2εox

(
1 +

εox(tchx− x2)

εchtchtox

)
(4.4)

and

ψch(x) = V ′
gs +

qNcλ
2(x)

εch
. (4.5)
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It is easy to verify that Eq. 4.4 reduces to the well-known forms for the surface and center

potential in a DG structure[135]

λDG,surf =

√
εchtchtox
2εox

(4.6)

λDG,cent =

√
εchtchtox
2εox

(
1 +

εoxtch
4εchtox

)
. (4.7)

All information about the structure (i.e. SOI, DG, NW) is contained in λ and ψch

and hence the subsequent expressions hold equally true for any geometry, provided the

parabolic potential is a good approximation. The boundary conditions for Eq. 4.3 are

continuity of potential and electric field in the depletion region of the source, assuming

constant doping Ns:

V (x, 0) = Vs,dep(x), (4.8a)

∂V (x, 0)

∂y
=
qNsys,dep(x)

εch
=

√
2qNsVs,dep(x)

εch
, (4.8b)

where Vs,dep and ys,dep are the source depletion potential and width, respectively. Similar

conditions hold for the drain side depletion potential Vd,dep and depletion width yd,dep at

the boundary y = Lg, where Lg is the gate length. These can be solved to yield the

depletion potentials (suppressing x dependences for clarity):

Vs,dep = ψch + Vs0 −
√
2ψchVs0 + V 2

s0, (4.9)

Vd,dep = Vds + Vbi − ψch + Vd0

−
√
2(Vds + Vbi − ψch)Vs0 + V 2

d0, (4.10)

Vs0 =
qNsλ

2

εch coth
2(Lg

λ
)
, (4.11)

Vd0 =
qNdλ

2

εch coth
2(Lg

λ
)
. (4.12)

Here Vds is the applied drain bias, Vbi is the built-in voltage between the source and drain,

and Nd is the drain doping. The relevant potentials are illustrated in Fig. 4.1(b). The
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general 2-D solution for the channel potential is then

V (y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

qNs

2εch
(y + ys(x))

2 ys(x) ≤ y < 0

ψch(x) +
(Vs,dep − ψch(x))

sinh( Lg

λ(x)
)

sinh

(
Lg − y

λ(x)

)

+
(Vbi + Vds − ψch(x)− Vd,dep)

sinh( Lg

λ(x)
)

sinh

(
y

λ(x)

)
0 ≤ y < Lg

Vbi + Vds − qNd

2εch
(y − Lg − yd(x))

2 Lg ≤ y ≤ Lg + yd(x)

(4.13)

which gives the potential at arbitrary channel depth x, in contrast to previous works

which only derived the surface (x = 0) or center (x =
Lg

2
) potential. The source and

drain depletion widths are given by

ys(x) =

√
2εchVs,dep(x)

qNs

(4.14)

yd(x) =

√
2εchVd,dep(x)

qNd

. (4.15)

These results can be easily generalized to heterojunctions by considering the band

offsets and continuity of displacement (rather than electric field) at the source/channel

interface. The model shares some features with Ref. [137], but by placing all the x-

dependence in the characteristic length λ and effective channel potential ψch, the results

are more easily manipulated and can be trivially generalized to the SOI or NW by using

the appropriate λ and ψch, as we will now show.

The SOI structure can be analyzed similarly to the DG device. The primary differ-

ence is the presence of different front and back gate biases V ′
gf and V ′

gb, as well as oxide

permittivities and thicknesses εox,f , εox,b, tox,f , and tox,b. Hence the boundary condition

Eq. 4.2 is altered for the front and back gates. The corresponding channel potential and
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characteristic length as a function of x are

ψch,SOI = (1 + kfx)
kfV

′
gf + kbV

′
gb + kfkbtchV

′
gf

kf + kb + kfkbtch

− kfxV
′
gf , (4.16)

λSOI =

√√√√tch(2 + kbtch)(1 + kfx− (kf+kb+kfkbtch)x2

tch(2+kbtch)
)

2(kf + kb + kfkbtch)
, (4.17)

where kf =
εox,f
εchtox,f

and kb =
εox,b
εchtox,b

. Setting the front and back voltages and oxides

equal reduces the results to ψch,DG and λDG as expected.

For NWs, the Poisson equation is solved for the cylindrical system, so the radial

coordinate ρ is substituted for x (see Fig. 4.1) and Eq. 4.1 for the DG is replaced by

1

ρ

[
∂

∂ρ

(
ρ
∂V

∂ρ

)
+ ρ

∂2V

∂y2

]
= 0. (4.18)

Similarly, the oxide field (previously Eq. 4.2) in cylindrical coordinates is equal to

− ∂V

∂ρ

∣∣∣∣
ρ=rs

= −εox
εch

V ′
g,eff − V (rs)

rs ln
(
1 + tox

rs

) , (4.19)

where rs is the radius of the nanowire. The channel potential ψch,NW = ψch,DG is un-

changed from the DG case due to symmetry, but the characteristic length for the channel

potential is

λNW =

√√√√2εchr2s ln
(
1 + tox

rs

)
+ εoxr2s

4εox
− ρ2

4
. (4.20)

It is easily shown by substitution that this generalized λ reduces to the corresponding

SOI and NW scaling lengths previously given in the literature[134, 136].

4.1.1.1 Inclusion of Mobile Channel Charge

Next we examine the case when the mobile charge is large and Eq. 4.1 is not valid. When

the channel potential approaches that of the drain, it is well known that an inversion layer

is formed near the drain, leading to two effects: ψch is almost pinned near the drain poten-

tial Vds+Vbi and only changes slowly with gate bias, while the channel charge pinches the
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potential near the source and reduces the tunneling distance[132]. These effects account

for the nonlinear behavior of Id − Vds at low Vds. Exact solutions require numerical cal-

culation, but variational treatments of the nonlinear Poisson equation show these effects

may be approximated with a variable λ. Here we adopt the depth-independent form

1

λ2
=

1

λ20
− αNinv

εchtchψch

, (4.21)

where λ0 is the previously given characteristic length for the structure and α is a free

parameter, which can be set to 8 according to [132]. Pinning occurs near Vth = Vds + Vbi,

so we set ψch to V ′
g when it is less than Vth and equal to Vth otherwise. The inversion

charge is approximated by Ninv = 2Cox(V
′
gs = Vth). This is reasonable far above threshold,

but the results for V ′
gs ≈ Vth are improved by using a smoothing function, such as α =

α0

[
1− c exp

(
−
(
V ′
gs − Vth − η

σ

)2
)]

, which will be seen when we compare the model

results with simulations for low Vds.

4.1.1.2 Extension to Nonabrupt Doping Profiles

The pseudo-2-D approach can also help us to analytically study nonidealities in the device

structure. For instance, junction abruptness is an important factor in determining TFET

performance. A lateral doping profile near the source or drain can be straightforwardly

incorporated in our model. For specificity we consider a Gaussian junction overlap un-

derneath the gate, as illustrated in Fig. 4.2(a). Then in the channel (0 < y < Lg), Eq.

4.3 is extended by including a Gaussian doping profile with decay length σ:

d2V (x, y)

dy2
− V (x, y)− ψch(x)

λDG(x)
=
qNs

εch
exp(− y2

2σ2
). (4.22)

In contrast to the ideal p-i-n structure, we find that the presence of significant mobile

charge near the overlap edge (y = 0) strongly screens the source depletion, so that the

source potential may be well approximated as a constant value (zero for convenience) and
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electric field continuity at y = 0 may be neglected. The solution of Eq. 4.22 is then

V1(y) = A exp
(y
λ

)
+B exp

(
−y
λ

)
+

√
παλσ

4
exp

(
σ2

4λ2

)
(
exp
(y
λ

)
erf
(y
σ
+

σ

2λ

)
− exp

(−y
λ

)
erf
(y
σ
− σ

2λ

))
, (4.23)

where

A =
1

2 sinh
(

Lg

λ

) (ψch exp

(
−Lg

λ

)
−

√
παλσ

4
exp

(
σ2

4λ2

)

×
{
exp

(
Lg

λ

)
erf

(
Lg

σ
+

σ

2λ

)
− exp

(
−Lg

λ

)
×
[
erf

(
Lg

σ
− σ

2λ

)
+ 2erf

( σ
2λ

)]})
,

(4.24a)

B =
1

2 sinh
(

Lg

λ

) (−ψch exp

(
Lg

λ

)
+

√
παλσ

4
exp

(
σ2

4λ2

)

×
{
exp

(
Lg

λ

)[
erf

(
Lg

σ
+

σ

2λ

)
− 2erf

( σ
2λ

)]
− exp

(
−Lg

λ

)
erf

(
Lg

σ
− σ

2λ

)})
,

(4.24b)

and α =
qNs

εch
. Eq. 4.23 can be substituted for the second term in Eq. 4.13 as the source-

side contribution to the channel potential. Expressions for other doping profiles, includ-

ing constant or linearly graded profiles in the overlap region, can be similarly derived.

Underlap effects can also be incorporated using the appropriate depletion approximation

in the source and/or drain.

The primary limitation of this model is its neglect of carriers in the overlap region

which reduce the band bending. However, we can find the model’s region of validity by

noting that under normal operating conditions, the overlap potential should always be

higher than the source, whereas Eq. 4.23 allows an unphysical “hump” to occur when

the overlap is too long or heavily doped. Fig. 4.2(b) contrasts a well-behaved solution

(Gaussian 1) with one for large σ (Gaussian 2) where the neglect of mobile charge creates

an accumulation region near the source. Hence if Eq. 4.23 has a minimum in the channel

(y > 0), we expect the model to be inaccurate. Finding the minimum via differentiation,
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in the potential.

we obtain the validity condition

ψch >

√
παλσ

2
exp

(
σ2

4λ2

)(
1− erf

( σ
2λ

))
. (4.25)

In the absence of direct source-to-drain leakage the threshold for tunneling occurs when

the channel potential crosses the bandgap Eg, so ψch = Eg/q can be used in Eq. 4.25 to

determine the operating regime of the model.

4.2 Developing TFET I − V Models

Using the electrostatic model we have developed, we can now find the tunneling distances

by inverting the potential. Equation 4.13 gives the potential explicitly as a function of y.

We can invert these equations to obtain y as a function of potential. Whereas inversion

of V (y) in the source and drain is straightforward, the presence of multiple sinh functions

in the channel presents a greater challenge. However, by rewriting the hyperbolic sine

functions in terms of exponentials, we obtain

V (y) = ψch + A exp
(y
λ

)
+B exp

(
−y
λ

)
(4.26)
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where

A =
Vds + Vbi − Vd,dep − ψch

(
1− exp−

(
Lg

λ

))
− Vs,dep exp

(
−Lg

λ

)
2 sinh

(
Lg

λ

) (4.27)

B =
Vd,dep − Vds − Vbi + ψch

(
1− exp

(
Lg

λ

))
+ Vs,dep exp

(
Lg

λ

)
2 sinh

(
Lg

λ

) . (4.28)

This equation can be inverted to find

y = λ ln

[
V − ψch +

√
(V − ψch)2 − 4AB

2A

]
. (4.29)

The tunneling distance from the source to channel occurs at

yt(V ) = λ ln

[
V + (Eg/q)− ψch +

√
(V + (Eg/q)− ψch)2 − 4AB

2A

]
+ ys,dep −

√
2εchV

qNs

(4.30)

while from the channel to the drain it is

yt(V ) = Lg+yd,dep−
√

2εch
qNd

(Vbi + Vds − V − (Eg/q))−λ ln
[
V − ψch +

√
(V − ψch)2 − 4AB

2A

]
.

(4.31)

The largest contribution to current comes at the energy at which the tunneling distance

is minimum. By straightforward manipulation, this energy for source-side tunneling can

be found

Vmin = ψch + Vs,eff −
√
(ψch + Vs,eff )2 + 4AB − (ψch − (Eg/q))2. (4.32)

On the drain side,

Vmin = ψch−Vd,eff+
√

(ψch − Vd,eff )2 + 4AB − ψ2
ch + 2Vd,eff (Vbi + Vds − (Eg/q)). (4.33)

Here Vs,eff =
qNsλ

2

εch
and Vd,eff =

qNdλ
2

εch
.

We note the importance of the source and drain doping in deriving the tunneling path:

because the source depletion causes the electric field to reach its maximum at y = 0, the

minimum tunneling path will occur somewhere between y = −ys and y = 0 (V = 0 and
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V = Vs,dep). This is in contrast to the usual models[124, 127, 129] which do not account

for the source doping and assume tunneling paths beginning at the source edge (y = 0).

Once the energy-dependent and minimum tunneling distances have been determined

from the appropriate electrostatic model, the tunneling current can be computed using

the analytical tunneling models discussed in Chapter 3. We adapt the Kane formula for

nonuniform fields by defining the effective field F = Eg/qytunn at a given energy. For

greatest accuracy, the current should be calculated by integrating the contributions of all

energies and along the channel thickness x via

I = Atunn

∫
dE

∫
dx

(
Eg

qytunn(x,E)

)n

exp

(
−qBtunnytunn(x,E)

Eg

)
[fs(E)− fd(E)] .

(4.34)

where fs,d(E) are the Fermi-Dirac equations for the source and drain respectively. For a

fully analytic model, we can approximate that the tunneling is dominated by contributions

at x in the channel surface or center and at the minimum tunneling distance ytunn(E =

qVmin,s). The current then reduces to

I = Atunntch

(
Eg

qytunn,minn

)n

min(qΨch − Eg, qVds) exp

(
qBtunnytunn,min

Eg

)
. (4.35)

4.3 Results and Discussion

4.3.1 Validation of Electrostatic Model

To test the usefulness of our model, we compare it with potential profiles from numerical

TCAD simulations[114]. We will work at the level of the Poisson equation and WKB

approximation in both our model and simulations, which at least ensures consistency in

our comparisons. Comparisons with NEGF simulations including BGS will be presented

at the end of this chapter. For brevity, we will focus on results from silicon DG and

In0.53Ga0.47As NW p-i-n TFETs simulated using Fermi-Dirac statistics and the nonlocal

tunneling model[114]; the TCAD model parameters are calibrated using experimental tun-

nel diode data. Although we sweep a wide range of parameters, our baseline devices have

Lg = 45 nm, tch or 2rs = 8 nm, 1 nm tox SiO2 oxide, and abrupt source/drain junctions
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Figure 4.3: Comparison of simulations (symbols) and model (lines) for a) Si DG center

potential (x =
tch
2
), b) InGaAs NW surface potential (ρ = rs), c)-d) largest extracted

error in surface and center potentials, and comparison of shortest tunneling distance at

channel surface, respectively, of 17 devices at Vgs = 0.4 V and Vds = 1 V for Si DG

and Vgs = 0.52 V and Vds = 0.8 V for InGaAs NW TFETs. Light- and dark-hatched

regions indicate λ less than ITRS multigate projections for 21 and 15 nm technology

nodes, respectively.
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with Ns = 1020 cm−3 and Nd = 1018 cm−3. Variations from these values for specific cases

are indicated in the figures. In Fig. 4.3(a)-(b) we show the channel potential for sample

structures, illustrating the excellent agreement between the model and simulations. No

fitting parameters are used; to evaluate the Fermi levels and built-in voltages for heavily

degenerate regions, we use Nilsson’s analytical approximation[138].

To quantify the model’s degree of accuracy, we simulate TFETs with different geo-

metric and doping parameters and find the largest difference between the analytical and

simulated potentials across the entire body of the device. In Fig. 4.3(c), we aggregate

results from a large number of DG and NW simulations to show the maximum potential

error along the channel surface and center. The largest error is generally found at the

source/channel interface, which is expected given our neglect of fringing fields and use of

the polynomial approximation; ignoring source depletion would greatly increase the error.

The error is strongly localized at the interface and is further reduced when we consider

the average electric field or tunneling distance, which is the main quantity of interest

for TFETs and is shown in Fig. 4.3(d), where we plot the extracted shortest tunneling

distance at the channel surface for simulated and modeled TFETs. ITRS projections[139]

for multigate devices yield surface λDG = 5.2 nm and 4.2 nm for 21 nm and 15 nm node

technologies, respectively, as indicated by the shaded regions in Fig. 4.3(c)-(d). We see

the modeled tunneling distance is reasonably accurate within the dimensions of interest.

As λ decreases with scaling, the improved electrostatics more closely coincide with the

parabolic ansatz and errors further reduce.

We calculate current by adapting the Kane tunneling formula[96] and numerically

integrating over the analytical 1-D tunneling lengths using Eq. 4.34. Again, no fitting

parameters are employed in this semiclassical approach as the matrix elements used in

the simulator and model are identical. We note that most results obtained in this way

agree up to a constant prefactor with those calculated using the analytical expression

Eq. 4.35. In Fig. 4.4 we present comparisons for InGaAs devices with varying nanowire

radius and oxide thickness. We observe excellent agreement, further validating the model’s

usefulness.
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We also simulate silicon DG TFETs and compare with fully analytical calculations

with Eq. 4.35, using the center potential as the reference point. As seen in Figs. 4.5-4.6,

good agreement is observed for a variety of material thicknesses and doping levels.

To examine the impact of graded junctions, we also simulate DG TFETs with different

Gaussian overlap decay lengths σ. When comparing model and simulated I − V curves,

the presence of the error functions in Eq. 4.23 prevents analytical inversion of the channel

potential. Therefore the tunneling distance must be calculated numerically. In Fig. 4.7,

we see that reasonable agreement is achieved up to σ = 6 nm, beyond which the model

error increases due to neglect of the mobile charge as mentioned earlier. For the tested

device, the condition Eq. 4.25 yields σ = 5 nm as the upper limit of validity in agreement

with the plotted results. The model makes clear that the reduced performance with

increasing overlap is due to the lower electric field near the source, as the dopant ions

terminate field lines within the channel.
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4.3.2 2-D Effects on Tunneling

With an accurate electrostatic model in hand, we can examine the effects of the 2-D

potential on transport. Within the WKB approximation, the tunneling probability is

dominated by the least action path; however, the rigorous analytical evaluation of this

quantity is difficult[128, 140]. Here we make a simple electrostatic argument, making

the common assumption that tunneling is determined by the shortest distance between

available conduction and valence band states. Our model allows us to evaluate this

length and compare it with the more analytically convenient 1-D tunneling distance. As

illustrated in Fig. 4.8(a), for abrupt source/channel junctions the shortest tunneling

length must take place near the largest electric fields, hence one endpoint must lie on

the surface at (0, y2) and the other must be located in the source depletion region at

(x1, y1) since the lateral electric field is maximized at the source/channel junction. We

can analytically define the endpoints and the total tunneling distance td as

y2 = Lg − λs sinh
−1

(
ψch − V − (Eg/q)

ψch − Vs,dep
sinh

(
Lg

λs

))
, (4.36)

y1 = −ys,dep(x) +
√

2εchV

qNs

, (4.37)

td =
√
x21 + (y2 − y1)2. (4.38)
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Here we simplify slightly by assuming that Lg is long enough such that the drain side

potential does not significantly affect the tunneling distance. Our goal is to find the

energy or potential V at which td is minimized. Setting the derivative of td to zero, we

obtain an implicit equation for x1 to minimize td

x1,min =
Ctch(y2 − y1(x1,min))

2C(y2 − y1(x1,min))− 1
, (4.39)

where

C =

√
qNs

8εchVs,dep coth
4(Lg/λ)

(
1− Lg coth(Lg/λ)

λ sinh2(Lg/λ)

) ⎡⎣1− ψch + Vs,0λ
2√

2ψchVs,0 + V 2
s,0

⎤
⎦
∣∣∣∣∣∣
x=x1,m

.

(4.40)

For a given structure, we can solve this equation numerically and compare it with the

shortest 1-D tunneling distance, which also takes place along the surface (x = 0). Fig.

4.8(b) plots these distances as a function of gate voltage and surface λ; we observe that

over the range of validity of our model, the correction introduced by the 2-D tunneling

distance is negligible. This can be understood by observing that in the polynomial model,

the potential varies exponentially in the lateral (y) direction near the source while it only
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changes quadratically in the vertical (x) direction. This result makes the 1-D assumption

in semiclassical tunneling models of TFETs more plausible and is further supported by

the excellent agreement already presented between simulated I − V curves and currents

calculated using 1-D tunneling distances. For larger structures, as the parabolic potential

approximation breaks down and the vertical field increases, the 2-D effects may become

more pronounced. We reiterate that this argument rests on the assumption that the

shortest geometric length is a good proxy for the tunneling probability; in real situations,

channel subband formation and corrections to the semiclassical tunneling model may

impact the results.

4.3.3 Contact Doping and Tunneling Modeling

Source and drain doping have a major effect on TFET operation, making the use of the

depletion approximation of great importance. Our electrostatics-based analysis neglects

quantum effects like bandgap narrowing and impurity scattering which may play a role

at heavy doping; a rigorous analysis of these effects is in progress but beyond the scope of

this work, though we note that TCAD simulations including bandgap narrowing show the

same trends discussed below. Fig. 4.9(a) illustrates how our model accurately predicts

the ambipolar tunneling leakage which appears in TFETs with heavily doped drains, a

calculation which would be impossible if the drain doping were neglected. As expected,

lowering the drain dopant concentration widens the depletion region and reduces electric

field, dramatically reducing leakage. Fig. 4.9(b) shows the effect of the source doping level

on TFET characteristics. Interestingly we observe that raising the doping concentration

initially boosts device performance, but past a certain level (about 2 × 1020 cm−3 in Si)

further increases degrade the subthreshold swing and saturate the on-current. Similar

effects have been discussed in Refs. [19, 141, 142].

To explain this effect, we argue that the tunneling current for strongly degenerate

sources has two kinds of contributions, as depicted in Fig. 4.9(c): occupied states at the

energy Es,min where the tunneling distance yt,min is shortest (“gate-controlled tunneling”
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doping. The discrepancy at the depletion region edge is circled.

in the terminology of Ref. [142]), and states near the source Fermi energy EFs (“cold

carriers”) with tunneling distance yt,Fermi. Gate-controlled states have a large tunneling

probability, but if Es,min, which occurs near the source band edge, lies far above EFs, then

these states are sparsely occupied. In contrast, cold carriers face long yt,Fermi but have

near unity occupation. As gate bias increases, the gate-controlled tunneling states become

available first but yt,min does not change strongly with bias, so the subthreshold swing

becomes limited by the Fermi factor. The cold carrier states dominate the on-current due

to their high occupancy, but their relatively long tunneling distances limit its magnitude.

These contributions can be modeled using the equation

Itunn = Attch(qψch − Eg)

⎡
⎣( Eg

qyt,min
)n exp(− qByt,min

Eg
)

1 + exp(
Es,min−EFs

kT
)

+
( Eg

qyt,Fermi
)n exp(− qByt,Fermi

Eg
)

2

⎤
⎦ ,
(4.41)

where At, n, and Bt are tunneling coefficients[96]. The first term in the brackets of

Eq. 4.41 approximates gate-controlled tunneling and the second cold carrier tunneling.

Fig. 4.9(b) and (d) demonstrate that this analytical approximation qualitatively and

even semi-quantitatively explains the simulations, whereas neglect of degeneracy leads to

overestimation of the device characteristics.

For low density of states (DOS) materials like In0.53Ga0.47As, we expect the effects of
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degeneracy to become visible at lower doping levels. In Fig. 4.10(a), we plot simulated

and modeled I−V curves for both n- and p-type InGaAs TFETs. We use Fermi statistics

with a parabolic band 3-D DOS in the simulations; since band nonparabolicity increases

the DOS at higher energies and reduces degeneracy, we also resimulated the structures

using nonparabolic statistics and confirmed that though the built-in voltages are altered,

the channel potential is simply shifted and current nearly unchanged by a nonparabolic

DOS. For InGaAs TFETs, we find that saturation of on-current takes place around Ns =

5 × 1019 cm−3, lower than in silicon as expected. The degradation in InGaAs n-TFETs

can be attributed to the effects of “cold carrier” tunneling and is accurately predicted by

our model.

4.3.4 Degenerate Electrostatic Screening in TFETs

The most interesting and unexpected feature in Fig. 4.10(a), however, is the model’s

overestimation of current for p-TFETs, especially for Ns around 5×1018 to 2×1019 cm−3,

in contrast with the good agreement for n-type and silicon TFETs. This discrepancy must

arise from a different physical effect from that discussed above, since the impact of DOS

on tunneling has already been accounted for through the choice of tunneling prefactor

and integration over the Fermi distribution. Therefore, this result must be understood

as a new DOS-related electrostatic effect as follows. In p-TFETs the source is n-doped

and the conduction band density of states for In0.53Ga0.47As is very low (2.5×1017 cm−3).

The resulting heavy degeneracy, besides affecting the occupancy factors in Eq. 4.41,

also modifies the electrostatics directly through screening. Our model uses the depletion

approximation, ignoring mobile carriers that perturb the potential on the scale of the

screening length (usually given by the Debye length λDebye =

√
εkT

q2N
). For heavily doped

semiconductors (N > 1020 cm−3), the screening length is very small (∼Å) and has no

visible impact. However, in low DOS materials, screening is reduced: while classical

carriers respond equally to perturbations, in a degenerate system only electrons near the

Fermi level screen effectively because of the Pauli exclusion principle[143]. Hence the
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quantum mechanical (Thomas-Fermi) screening length becomes longer than the classical

value:
1

λ2TF

=
q2

ε

∫
−∂f(E)

∂E
g(E)dE =

q2N

εkT

(
F−1/2(

EF

kT
)

F1/2(
EF

kT
)

)
. (4.42)

Here f(E) and g(E) are the Fermi distribution function and the DOS, respectively, and

Fi is the i
th-order normalized Fermi-Dirac integral. The term in parentheses in Eq. 4.42

is less than one for degenerate materials, increasing the screening length. (For lower-

dimensional DOS in quantum wells or wires, the form is altered but the physical result

of reduced screening still occurs.) For instance, for N = 1019 cm−3 in In0.53Ga0.47As, the

Debye length λDebye = 1.4 nm while the Thomas-Fermi length λTF = 4.2 nm. Reduced

screening widens the depletion region and lowers the source electric field, decreasing the

tunneling current relative to n-TFETs. This quantum effect is captured in the simulator

through the use of Fermi-Dirac statistics and the material-dependent effective DOS when

solving the Poisson equation. We verify this by comparing the simulated and calculated

potential in the source of a p-TFET shown in Fig. 4.10(b). We observe a reduced

electric field and extended depletion region compared to the prediction of the depletion

approximation; this error is not due to the neglect of fringing fields, since no similar

discrepancy is found in Si or n-type InGaAs TFETs (because of their higher DOS). At

Vgs = −1.3 V, screening increases the p-TFET tunneling distance at the Fermi level by

about 0.7 nm compared to the model prediction, compared to discrepancies smaller than

0.1 nm for the analogous n-TFET. Such a large change substantially reduces the tunneling

probability and explains the results of Fig. 8. It is interesting to note that this effect

occurs in any low DOS material p-n junction, but the extreme sensitivity of tunneling to

band bending makes it noticeably important for TFETs.

We can estimate the relative importance of the electrostatic and “gate-controlled tun-

neling” and/or “cold carrier” effects arising from the low source DOS by comparing the

simulated and modeled characteristics for the InGaAs TFETs in Fig. 4.10. We extract

the subthreshold swing and on-current as a function of source doping. For a consistent

comparison, we define on-current at |Vgs − Vth| = |Vds|, where Vth is the gate voltage at

which the source tunneling current exceeds the leakage due to diode current and drain-
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Table 4.1: Minimum subthreshold swing (mV/dec) for simulated and modeled InGaAs n-

and p-TFETs from Fig. 4.10(a)

Doping

(cm−3)
n-TFET (sim)

n-TFET

(mod)
p-TFET (sim)

p-TFET

(mod)

1019 26.92 26.51 46.70 48.93

2× 1019 25.18 25.81 54.26 56.68

5× 1019 22.96 23.80 58.84 59.92

1020 37.04 39.81 59.52 59.55

Table 4.2: On-current (in μA) for simulated and modeled InGaAs NW n- and p-TFETs

from Fig. 4.10(a) at |Vgs − Vth| = |Vds| = 0.8 V

Doping

(cm−3)
n-TFET (sim)

n-TFET

(mod)
p-TFET (sim)

p-TFET

(mod)

1019 0.236 0.277 0.181 0.392

2× 1019 0.918 1.05 0.771 1.49

5× 1019 2.97 3.35 2.26 3.12

1020 4.91 5.43 2.91 3.21

side tunneling in the simulated device (defined as the point when total current is at a

minimum in Fig. 4.10(a)). The results for subthreshold swing are shown in Table 4.3.4;

we observe that both simulations and the model capture the degradation in swing for

InGaAs p-TFETs due to reduced DOS. We have confirmed that the relative change be-

tween model and simulation results in Tables 4.3.4 and 4.3.4 are basically independent of

the choice of bias or threshold voltage, as would be expected by visual inspection of Fig.

4.10.

For the on-current displayed in Table 4.3.4, we observe the n-TFET model and sim-

ulations agree on the magnitude to about 10%. However, the discrepancy between the

model (which accurately includes the effects of DOS on tunneling via “cold carriers”) and
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simulations (which also include degenerate screening) is much greater for p-TFETs (>50%

at 1019 cm−3 doping). This indicates that degenerate screening (the only new effect not

captured by the model) is in fact a major effect at lower source doping. Finally and most

surprisingly, we find that the model predicts larger on-current for p-TFETs compared to

n-TFETs at low source doping. This counterintuitive result is due to the normalization of

the gate overdrive through Vth. Because the source is extremely degenerate for p-TFETs,

the built-in voltage between source and drain is significantly larger (Vbi = 0.89 V versus

1.23 V for n- and p-TFETs, respectively, at 2 × 1019 source and 1018 drain doping). If

we ignore all degeneracy effects, we would expect tunneling to occur when the channel

conduction band overlaps the source valence band edge (at qψch = Eg). However, when

the source is heavily doped, the gate voltage must pull the channel down to near the

source Fermi energy before interband tunneling from the source can overcome the de-

vice leakage current. Therefore, for the same |Vgs − Vth|, the p-TFET has a considerably

larger voltage drop across the source and hence higher tunneling probability. At lower

source doping, this would lead to a larger overall current at the same gate overdrive if

degenerate screening effects were absent. (If instead, the n- and p-TFET operate with

the same voltage drop across the source, i.e. same |ψch|, then the current for the p-

TFET would be lower as expected.) We note in passing that our model predicts that the

p-TFET source tunneling current before ψch approaches the source Fermi energy, when

Vgs < Vth, has a Boltzmann-limited subthreshold swing of 59.5 mV/decade in agreement

with theory[19, 144].

Our analytical treatment allows us to separate the impact of degeneracy on transport

and electrostatics, clarifying the device physics. The penalties on both fronts arising

from low DOS make the design of p-TFETs potentially problematic, since low bandgap

materials generally have low electron DOS. Furthermore, the low solid solubilities of

donors in many bulk and nanoscale III-V materials[145] may limit the dopant levels to

the range where these problems are most pronounced (Ns ∼ 1019 cm−3 for In0.53Ga0.47As)

and have an impact on complementary TFET architectures.
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tch and material are varied in our simulations.
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4.3.5 Comparison with NEGF Simulations and Experiment

We next test the utility of BGS-adjusted tunneling parameters for reproducing quantum

TFET simulations. For these scenarios, we perform NEGF simulations of 2-D homojunc-

tion double-gate (DG) TFETs where the real-space discretized eight-band k·p Hamilto-

nian is solved self-consistently with the Poisson equation, except where otherwise noted.

Scattering is neglected since only direct tunneling is considered. The schematic TFET

structure is illustrated in Fig. 4.11. Since such devices are frequently studied using

semiclassical device simulators, we also perform TCAD simulations using the nonlocal

tunneling model[114] with parameters adjusted according to the 3-D Kane BGS scheme.

No additional quantum models like MLDA (modified local density approximation) or
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density gradient are used[114].

In Fig. 4.12, we compare the I-V curves for a 4 nm-thick InAs device using the

analytical TFET model with (i) bulk and (ii) BGS parameters, versus NEGF simulations

using either (iii) the same electrostatic potential as the analytical model or (iv) a self-

consistently evaluated potential. Using all bulk values (i) gives unrealistic results due to

the small bulk gap. This illustrates that calibrating the Kane model to bulk material

data is totally inadequate for QC devices. However, for identical electrostatic potentials,

the BGS Kane model (ii) provides a much better match with the NEGF results (iii).

Compared to (i), the current decreases and threshold voltage shifts due to the increased

Eg,QC . The self-consistent NEGF simulation (iv) is similar to the fixed potential result

at large bias but has higher off-current; this is because the self-consistent potential has a

larger Vbi than the 3-D value assumed by the fixed potential. This leads to higher electric

fields and hence increased tunneling in the off-state, illustrating the importance of QC

electrostatics. If we also change Vbi to its quantized value in the analytical TFET model,

shown by case (v) in Fig. 4.12, the model yields similar results to self-consistent NEGF

throughout the whole bias range. Case (vi) is a BGS TCAD simulation which agrees

quite well with the analytical results, as expected from our semiclassical based study,

though both still somewhat underestimate the NEGF current. Finally, (vii) using the

2-D Kane model with the analytical TCAD potential gives good quantitative agreement

with NEGF.

Fig. 4.13a shows the congruence of BGS and NEGF simulations still holds when the

channel thickness (and hence Eg,QC) is varied, demonstrating the key role of band gap

scaling. From these results we see a tradeoff in TFET scaling between the on-current,

which is reduced by increasing Eg,QC , and the on-off ratio and subthreshold swing, which

are improved by larger Eg,QC as well as better electrostatic control. In Fig. 4.13b, we see

that BGS remains valid for different channel materials like InGaAs and InSb. In Figs.

4.12 and 4.13, using the bulk Kane tunneling formula with BGS leads to reduced currents;

however, we found that an lateral voltage shift (corresponding to a 20-50 meV difference

in gate work function or threshold voltage) of the corresponding simulated and analytical
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InGaAs (Vds = 0.8 V) DG, InSb (Vds = 0.4 V) DG, and a 3.35 nm diameter (Eg,QC =

1.175 eV) InAs NW TFET (Vds = 0.5 V). The NW NEGF simulations are from Ref. [4]

and have been horizontally shifted by 0.4 V for clarity.

I-V curves brings them into close agreement to the NEGF results. This is because at

small and moderate fields the magnitude of the current is determined by the exponential

dependence of transmission on BBGS/F , which is the same for all dimensions. The power

law dependence of the prefactor A only dominates at very high fields, where the voltage

dependence is weaker. The net effect is that while the 3-D Kane formula underestimates

current, its percentage error changes slowly as a function of field (as seen in Figs. 3.13

and 3.14) and can thus be roughly compensated by a voltage shift.

Though we do not perform TB or 1-D TFET quantum transport calculations due to
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computational constraints, we do compare BGS predictions with TB NEGF simulations

for an InAs nanowire from the literature[4] as shown in Fig. 4.13b. The gate work

function was not reported for this device, so we shifted our model and TCAD I-V curves

to fit the extracted data points. We observe qualitative agreement although the 3-D

BGS underestimates the current and 1-D BGS overestimates it, similar to our constant

field NW simulations. The disagreement between the analytical and NEGF curves in the

off-state (when tunneling occurs directly between source and drain) is due to the TFET

model’s use of the depletion approximation; TCAD gives somewhat more representative

results here due to its self-consistent potential.

We emphasize that no arbitrary fitting parameters or extraneous simulation models

are used to achieve the results in Figs. 4.12-4.13, except for the gate work function shifting

of the NW TFET; scaling is performed directly using the known bulk masses and band

gap and the calculated Eg,QC . Using BGS and the dimensionally appropriate Kane model

gives the best match to quantum transport calculations without further adjustment. The

3-D Kane formula tends to underestimate the current, though heuristically this error

can be partly masked by a small threshold voltage shift. This implies that semiclassical

TCAD simulations, properly adjusted using BGS, can still be valuable for qualitative

studies, though incorporation of dimensionality should improve their accuracy. Our results

also incidentally demonstrate that analytical TFET electrostatic models are capable of

describing quantum devices, though modeling of drain depletion needs to be improved to

quantitatively reproduce the off-state current.

While full quantum calculations remain irreplaceable for maximum accuracy or explo-

ration of novel nanostructure device physics, their complexity makes them inaccessible

for many practical engineering studies, as is also the case for many bulk devices. There

is clear value in a simple method like the BGS scheme that allows widely used semiclas-

sical models and simulators to be applied with good qualitative and often quantitative

accuracy. Alternatively, if calibrated parameters are available for a particular device[146],

BGS can be performed to extrapolate them to different dimensions.

Finally, we compare our analytical models with measured data for high performing
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Figure 4.14: (a) Comparison of analytical model fit with experimental data for planar

InGaAs device reported in Ref. [5]. (b) Comparison of analytical model fit with experi-

mental data for vertical InGaAs device reported in Ref. [6].

III-V TFETs[6, 5]. Because of the large sizes and complexity of the structures realized

experimentally, a fitting-free comparison is no longer possible. To reduce the arbitrariness

of the fitting procedure, we assume that the bulk tunneling coefficients for different device

materials derived in Chapter 3 are fixed; this is reasonable since the large dimensions of

the experimental devices should make quantum confinement effects negligible. We use λ

as an adjustable parameter to approximate the electrostatics of the complicated device

geometries. In Fig. 4.14, we show the results of our comparison. We see good qualitative

and even quantitative agreement in the subthreshold and above threshold regions, though

the model does not incorporate the leakage currents observed at small Vgs. We note that

the vertical TFET reported in [6] and fitted in Fig. 4.14(b) has a small heterojunction near

the source/channel interface which complicates the tunneling process; for this exercise we

neglect the difference, which may lead to quantitative corrections in the current.

4.4 Conclusion

We present general equations to describe the 2-D potential in lateral TFETs. The model

can be seamlessly converted to describe different structures, including nonabrupt doping
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profiles. We verify via simulations that the model is applicable for well-scaled multigate

devices and demonstrate that 2-D tunneling effects are minor. We use our framework

to present new analytical treatments of Gaussian source/channel junctions, ambipolar

leakage, and the tunneling current under degenerate doping. Comparison of the model

with simulation reveals the major, formerly unappreciated role of degenerate screening on

TFET electrostatics and transport characteristics. Validation with the BGS correction

via comparison with NEGF TFET simulations show that effects of lower-dimensional

DOS generally lead to higher currents, though they can sometimes be approximated by

a threshold voltage shift. Because of its flexibility and the device insight it offers, our

model provides an attractive foundation for TFET analysis and compact modeling.
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CHAPTER 5

Designing Doping-Independent Tunneling

Transistors: the GISTFET

They put arsenic in his meat

And stared aghast to watch him eat

A. E. Housman, “Terence, this is stupid stuff”

Tunneling field-effect transistors (TFETs) are alluring because in theory their use of gate

modulated interband tunneling allows for extremely low leakage currents and steep sub-

threshold swings (SS), enabling new kinds of ultralow power electronics[147]. In practice,

however, major engineering challenges still impede the progress of such devices, includ-

ing low on-currents, n- and p-device asymmetry, large-scale reproducibility and variabil-

ity challenges, and parasitic leakage. Most of these problems are due to the material-

and doping profile-related difficulties in realizing high quality tunneling junctions at the

source-channel interface.

For example, TFETs using small band gap III-V materials are highly desirable for

increasing drive current and reducing supply voltage. However, p-type TFETs, which

require n-doped sources, face two significant obstacles: 1) low active donor concentrations

(on the order of 1019 cm−3 for many III-V bulk materials[148, 149] and even lower for

nanostructures[145]) due to solid solubility, incomplete ionization, or defect compensa-

tion limits, and 2) low conduction band (CB) DOS. Low doping lengthens the tunneling

length and strongly reduces drive current, while strong carrier degeneracy due to low

DOS degrades the SS by increasing the contribution of “thermal tail” states in the source

distribution function as shown in Chapter 4 as well as other works[19, 150]. As a result,
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Figure 5.1: GISTFET in a double gate design. M1 and M2 are shorted and biased together

by the gate voltage, but their WF difference sets up a tunneling junction between the

lightly doped channel sections C1 and C2.

virtually all experimental III-V TFETs in the literature are n-type[147]. Since p-type de-

vices are essential for complementary circuits, their unavailability would doom TFETs for

conventional logic applications. Furthermore, in both n- and p-type TFETs the current is

highly sensitive to the position and abruptness of the doping profile[151, 152], which are

difficult to control precisely. This leads to poor nominal performance and increased vari-

ability due to random dopant fluctuations (RDF)[153, 154]. Disorder induced by heavy

doping also creates band tails[155] which may significantly worsen the SS[156, 157].

To circumvent these difficulties, we present a new device structure, the gate-induced

source tunneling FET (GISTFET), which relies on gated electrostatic doping to decouple

the tunneling process from the chemical dopant junction. We introduce this concept and

discuss its merits compared to other novel TFET proposals in Section II, demonstrate its

primary features and advantages using quantum simulations in Section III, and summarize

our conclusions in Section IV. The work in this chapter has been published in Ref. [12].

5.1 Defining Tunneling Junctions Electrostatically

5.1.1 Operating Mechanism of the GISTFET

The proposed GISTFET is shown in Fig. 5.1. We will use double gate (DG) p-type

TFETs to illustrate the concept throughout this paper without losing generality, since
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the same principle clearly applies to n-type transistors and other device architectures.

The GISTFET resembles the usual lateral TFET structure, but with a gate electrode

comprised of two metals M1 and M2 with work functions (WFs) φ1 and φ2 such that

qΔφ = qφ2 − qφ1 > Eg,QC + qVdd (5.1)

where Eg,QC is the quantum confined band gap of the channel material, i.e., the gap

between the lowest subbands of the conduction band (CB) and valence band (VB), and

Vdd is the maximum operating voltage. M1 and M2 are electrically shorted together and

share the same external gate bias. We will refer to the channel sections “under” M1

and M2 as C1 and C2, respectively; the (bias-dependent) potential difference between

them defines the relevant tunneling junction and is denoted by qΔψc. For each individual

channel C1 or C2, the gate bias can strongly modulate the potential when the channel

is in depletion (i.e., the electron and hole quasi-Fermi levels lie deeply in the band gap),

but weakly if the channel is in accumulation or strong inversion (such that one quasi-

Fermi level is degenerate, leading to “electrostatic doping”). Modulation of Δψc arises

because the different metal WFs offset the gate voltage thresholds for which C1 and C2

pass between accumulation, depletion, and inversion.

The resulting bias stages of device operation are schematically indicated by the band

diagrams in Fig. 5.2. We assume in the following discussion that scattering is strong

and quantization weak enough such that local equilibrium holds and semiclassical carrier

distributions can be described by local quasi-Fermi levels throughout the device. (In the

subsequent section we will see that ballistic and quantum effects can lead to quantitative

changes, though the basic operating principle remains the same.) In the off-state a), C1 is

pulled by M1 into electron accumulation, partially pinning the channel potential, and C2

is in depletion but qΔψc < Eg, suppressing tunneling. As Vg becomes more negative b),

the C2 energy bands are pulled up and interband tunneling occurs once qΔψc exceeds Eg.

With further gate bias c), C1 passes from accumulation to depletion and qΔψc reaches

a maximum value close to qΔφ. Eventually d), the valence band edge of C2 crosses the

drain Fermi level and undergoes hole accumulation, causing Δψc to decrease; this leads
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Figure 5.2: Band diagrams along the p-type GISTFET channel as Vg decreases assuming

local equilibrium. The energy interval indicated by the red vertical arrows and dashed

lines is qΔψc; the horizontal orange solid arrows indicate the tunneling lengths. The

dashed green arrows indicate the source and drain quasi-Fermi levels, respectively. The

insets indicate the corresponding bias points on the device Id − Vgs curve.
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to a drop in current and hence negative differential conductance (NDC). However, if Eq.

5.1 is fulfilled this occurs at biases well outside the operating range of the system and the

NDC will have no practical impact.

Because the junction is electrostatically induced in the lightly doped channel region

and controlled by qΔφ, the tunneling length is decoupled from the placement and magni-

tude of the source doping. This eliminates the previously described challenges in creating

heavily doped abrupt junctions. Furthermore, because the source doping is no longer crit-

ical and can be kept relatively low, the adverse effects of degeneracy and low DOS on the

SS may be alleviated. While lower source doping may increase series resistance, the latter

should not be a limiting factor for the low power applications in which tunneling devices

are likely to be used. Therefore the use of electrostatic doping, as implemented in the

GISTFET, may be particularly suitable for realizing high performance III-V p-TFETs.

Qualitatively, we can explain the advantage of the GISTFET over the conventional

TFET by comparing their electrostatic properties. The potential drop near the junction

of a gated TFET channel occurs over a distance set by the characteristic length λ, which

is determined by structural parameters of the device and defines its electrostatic integrity.

For instance, for the surface potential in DG devices,

λ =

√
εchtchtox
2εox

(5.2)

where εch and εox are the channel and oxide permittivities and tch and tox are the channel

and oxide thicknesses, respectively. In a conventional TFET, the potential drop across

the source-side tunneling junction is divided between the gated channel and the depletion

region in the source, so it extends over a distance on the order of λ+ws, where ws is the

source depletion width set by the doping profile. By contrast, both sides of the tunnel

junction in the GISTFET are gated, so the potential drop qΔψc occurs over a distance

equal to about twice the characteristic electrostatic length 2λ. Roughly speaking, when

λ < ws, the potential barrier will become narrower in the GISTFET and its tunneling

current can then exceed that of a TFET. Referring to Eq. 5.2, this implies that the

GISTFET becomes comparatively more attractive as the channel thickness or gate oxide
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thickness and permittivity are scaled. λ can also be reduced by using tri-gate or nanowire

structures with stronger gate electrostatic control, as illustrated in Chapter 4. These are

of course also the general directions in which most transistor geometries are moving. By

contrast, electrically active doping concentrations are not easily scalable and may even

be reduced from their bulk values in nanostructures[145], making doping-centric concepts

for improving tunneling performance more difficult to implement[158]. We note that in

isolation, body thickness scaling in TFETs and GISTFETs may be counterproductive

past a certain point because size quantization effects will increase the band gap Eg,QCD

and reduce tunneling[159].

5.1.2 Comparison with Alternative Schemes

The GISTFET operating principle and requirements are distinct from the multiple WF

designs previously explored for TFETs[160, 161], as the latter primarily employ different

metals to reduce drain leakage and the device operation still relies on a heavily doped

source. The doping-less device proposed in [162] bears greater resemblance to the GIST-

FET but requires narrowly spaced and separately gated accumulation and inversion layers,

which increase the tunneling length and raise the possibility of unwanted contact shorting.

In the GISTFET, the tunnel junction width is ultimately modulated by the (potentially

atomically) abrupt M1/M2 interface rather than the lithographically defined gate and

source separation.

Another design with similar objectives is the electron-hole bilayer (EHB) TFET, which

utilizes “vertical” tunneling between accumulation and inversion layers on opposite sides

of the undoped channel body[163]. However, since EHB tunneling occurs perpendicular to

the gate, field-induced quantum confinement (FIQC) effects are large[123] and the lowest

FIQC valence subband is heavy hole-like[164], reducing the gate efficiency and current.

By contrast, transport in the GISTFET occurs along the unconfined direction parallel

to the gate where FIQC is negligible and the lowest valence states are light hole-like,

increasing the tunneling probability as demonstrated in Chapter 3. We emphasize that

110



a major conceptual difference between the GISFET and the doping-less or EHB TFETs

arises because the former relies on the difference between the M1/M2 WFs (instead of

asymmetric applied voltages) to directly define the tunnel junction, not just to shift the

threshold voltage.

By minimizing the role of chemical dopants, the GISTFET greatly simplifies the asso-

ciated design and processing considerations. However, the oxide quality and abruptness

of the M1-M2 interface will in turn become key factors for GISTFET performance; in

particular, metal intermixing and effects of WF pinning or variability must be minimized,

which heavily depend on details of material system and processing conditions. CMOS-

compatible metal combinations are also needed with work function differences fulfilling

Eq. 5.1, which will be on the order of 1 eV in practice[159]; combinations of Ti or Al

(with work functions around 4 eV), with Pt, Ni, or W (with work functions greater than

5 eV) may be promising in this regard[165, 166, 167]. It is also encouraging to note that

theoretical[168] and experimental[167] studies of such as-deposited bilayer metal stacks

indicate that the change in WF occurs within just a few atomic monolayers (<1 nm)

across the heterointerface.

5.2 Simulation and Validation of the GISTFET Concept

To demonstrate the proposed device concept, we perform ballistic non-equilibrium Green’s

function (NEGF) simulations of InAs TFETs and GISTFETs with varying levels of source

doping. We use the program we developed which is explicated in detail in Chapter 2. For

computational efficiency we use a four-band k·p Hamiltonian to describe InAs, neglecting

spin-orbit effects; this may underestimate the current by giving a larger effective band

gap compared to full band tight-binding predictions, as indicated by the band structure

analysis in Chapter 3, but suffices for qualitative comparisons[169, 170]. The simulated

devices are DG structures like the one shown in Fig. 5.1.

We simulate GISTFETs using qφ1 = 4 eV and qφ2 = 5.4 eV, which can be achieved

experimentally using Al and Pt, for instance[166]. The results are shown in Fig. 5.3
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Figure 5.3: Simulated Id−Vgs for InAs DG GISTFETs (solid) and TFETs (dashed) with

different abrupt source doping concentrations Ns. The gate oxide is 3 nm thick HfO2 and

channel thickness is 4 nm for all devices. LM1 = 5 nm and LM2 = 25 nm for GISTFETs

while TFETs have gate length of 30 nm and metal WF of 5.4 eV. The increasing current

at positive Vgs is due to drain-side tunneling as no drain underlap is employed.
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Figure 5.4: Minimum source-side tunneling lengths as a function of gate bias for GISTFET

and TFET devices with different source doping.

and demonstrate several important characteristics. First, while the TFET Ion varies by

almost two orders of magnitude with a 4X change in source doping, the GISTFET Ion

is independent of source doping and about equal to that of the Ns = 2 × 1019 cm−3

TFET (which we note is a doping level that may already exceed the solid solubility limit

of donors in InAs[149]). Secondly, both the TFET and GISTFET SS tend to degrade

somewhat with increased Ns because of the low DOS of InAs[19]. Therefore, low n-type

source doping levels are ideal for p-GISTFETs to combine steep SS with high current.

As an example, the Ns = 5× 1018 cm−3 GISTFET offers an on-off ratio of 107, minimum

SS = 33 mV/dec, and Ion = 13 μA/μm over a 0.5 V bias range (between 0.1 to -0.4 V),

comparable in performance to that of the 2 × 1019 cm−3 TFET. Finally, the sensitivity

of threshold voltage to Ns is significantly less for GISTFETs compared to TFETs due to

the greater influence of the source doping-dependent built-in voltage on the latter; this

implies RDF-induced variability will be smaller for GISTFETs.

To understand these characteristics in more depth, in Fig. 5.4 we extract the doping-

and bias-dependent minimum tunneling lengths for our simulated TFETs and GISTFETs,

defined as the shortest distance between CB and VB subband edges for energies above
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the lowest conduction subband energy in the source. We observe that as the devices turn

on (Vgs <-0.1 V), the tunneling lengths are virtually identical for the different GISTFETs

since the C1/C2 junction electrostatics are basically independent of doping, whereas the

longer depletion regions at lower source doping lengthen the TFET tunneling distances.

At low gate bias, however, the tunneling length is significantly shorter for highly doped

GISTFETs. This is because the higher degeneracy of heavily doped GISTFETs increases

the source Fermi level and leads to an effective threshold voltage shift, such that overlap

of the source CB and channel VB edges still occurs up to Vgs = 0.2 V. We can see this

most clearly by examining the band diagrams and spectral currents within the lowest and

highest doped GISTFETs in the off-state in Fig. 5.5. Whereas all the current in the

Ns = 5× 1018 cm−3 device flows via tunneling at the C2/drain interface (and can thus be

suppressed using lower drain doping, underlaps, etc), a separate current path also occurs

near the source in the 2× 1019 cm−3 GISTFET due to energetic overlap of band states in

C2 and the source.

One may object via inspection of the band diagrams in Fig. 5.5 that source-side

tunneling should still occur in the low doped GISTFET at the selected voltage, since

we observe that the C2 VB in the off-state is below the CB edge of the source, but

not that of C1. The reason why no tunneling current flows at these energies is due to

quantization effects and the assumption of ballistic transport. This can be best understood

by examining the local density of states (LDOS) for the GISTFET in the off- and on-

states, shown in Fig. 5.6. In the off-state a), the narrow electrostatically induced potential

well causes spatially localized states appear at energies below the source CB edge as

indicated by the narrow lines in the LDOS; the effects of such states can only be properly

analyzed using intrinsically quantum mechanical simulations like NEGF. (In actuality

the well is an effective 1-D electrostatically gated quantum “wire” because of the spatial

confinement of the DG structure.) Ordinarily we would expect tunneling to occur between

energetically overlapping states within the C1 well and the C2 VB. However, the C1 states

are spatially localized and hence cannot support carrier flow unless they can couple to

continuum, current-carrying states on either side. Because these states lie in the band
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C1 C2

C1 C2

Figure 5.5: GISTFET band diagrams and spectral currents densities in the off-state at

Vgs = 0.2 V and Vds = −0.5 V for a) Ns = 5 × 1018 cm−3 and b) Ns = 2 × 1019 cm−3.

Green lines indicate the source and drain Fermi energies.
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Figure 5.6: Band diagram and LDOS along the channel of a GISTFET with Ns = 5×1018

cm−3, LM1 = 5 nm, LM2 = 25 nm, and Vds = −0.5 V for a) Vgs = 0.2 V b) Vgs = 0 V and

Vds = −0.5 V, c) Vgs = −0.5 V, and d) Vgs = −0.8 V, corresponding to the semiclassical

operating regions in Fig. 5.2. The green lines indicate the source and drain Fermi energies,

and white lines correspond to the lowest conduction and valence subbands. The separation

between C1 and C2 is also indicated by the vertical lines. LDOS is shown on a log scale.

gap of the source, no continuous elastic transport process connects them to the source

electrode, and therefore no current will flow. Therefore, in the ballistic limit, once the

VB edge of C2 falls below the source CB edge, source-side tunneling ceases. A similar

phenomenon has been observed in quantum simulations of accumulation layers in pocket-

doped TFETs[158].

If inelastic scattering processes occur, they can couple the C1 localized states to the

continuum CB and provide a continuous current path. Inclusion of inelastic scatter-

ing may therefore increase the off-state leakage current by allowing parasitic tunneling

through the localized states in C1. We do not considered these processes here owing
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to the substantially greater computational requirements of multiband NEGF simulations

with phonon scattering; further work is needed to quantify and assess these effects, which

will be relevant for GISTFETs as well as other types of TFETs where localized accumu-

lation regions appear[158]. Qualitatively, we expect these effects to be less important in

III-V GISTFETs with narrow C1 channel lengths and high mobilities because of weaker

electron-phonon coupling. In principle, provided proper metal work functions can be

found, the threshold of the device can always be shifted such that no C1/C2 overlap

occurs at all in the off-state.

The behavior of the off-state in the nanoscale GISTFET is therefore slightly compli-

cated by the presence of ballistic and quantum effects. In subthreshold and the on-state,

the band bending and device operation are as expected from semiclassical arguments, as

shown in Fig. 5.6b) and c), while the NDC region behaves as the obverse of the off state

as is clear from Fig. 5.6d). We note our ballistic simulations underestimate one potential

benefit of the GISTFET because they do not account for the self-energy effects of impurity

scattering[155], which if fully incorporated would create a DOS tail in the heavily doped

source and further degrade the SS of conventional TFETs. This effect should be negligi-

ble in the GISTFET since the doped regions are separated from the tunneling junction,

giving it another comparative advantage. Electron-electron effects are also neglected here

as they primarily narrow the band gap without producing substantial DOS distortion and

hence should not impact SS.

As an illustration of how device structure affects performance, we also simulate GIST-

FETs and TFETs with different channel and oxide thicknesses as shown in Fig. 5.7.

Interestingly, all else being equal, performance degrades for both device types if channel

thickness is reduced because the band gap increases rapidly for very thin InAs devices,

suppressing tunneling current. However, the GISTFET undergoes a significantly larger

performance boost than the TFET when oxide thickness is scaled down. This shows the

potential scaling benefits of the GISTFET. Overall, the use of gate-induced electrostatic

coupling offers greater benefits from better gate control, small Eg materials, and low Vdd

operation, which fortunately are also the primary development goals for TFETs. Device
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Figure 5.7: Simulated Id−Vgs for InAs DG GISTFETs (solid) and TFETs (dashed) with

different channel and oxide thicknesses tch and tox. The source doping Ns is 5 × 1018

cm−3 for the GISTFETs and 2×1019 cm−3 for the TFETs, respectively, with other device

characteristics are as in Fig. 5.3.

performance can be further improved if a heterojunction can be aligned in the channel

alongside the M1-M2 interface, which might be achievable using a vertical device layout

for instance[6, 34]. Finally, 2-D semiconductors such as graphene nanoribbons or tran-

sition metal dichalcogenides like MoS2 are also promising GISTFET channel candidates

due to their very small λ[106].

5.3 Conclusion

The GISTFET offers the possibility of high performance complementary tunneling transis-

tors by utilizing gate work function offsets rather than doping to induce tunneling. Quan-

tum transport simulations confirm the operating principle as well as subtleties related

to quantization effects near the C1/C2 junction, while crucially exhibiting substantially

improved p-type GISTFET characteristics over conventional TFETs.
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CHAPTER 6

Modeling Intraband Tunneling Leakage in

Ultrascaled MOSFETs

If you can mock a leek, you can eat a

leek.

Shakespeare, Henry V

III-V semiconductors are promising alternatives to silicon in nanoscale FET channels be-

cause of their high mobilities, but their small effective masses (EM) increase source-drain

tunneling (SDT) current. This is a crucial concern since off-state leakage is a major

and increasing cause of power consumption in state-of-the-art CMOS. SDT therefore

must be considered in device design and projection; indeed, its dominance in sub-10 nm

silicon[171, 172, 173] and III-V FETs[174, 175, 176, 177, 178, 179] has been established

by quantum mechanical studies using NEGF. However, the computational requirements

of quantum simulations limit their use and simple models are desirable for more effi-

cient device studies. Analytical treatments of intraband tunneling presently only offer

qualitative guidelines[119] or require iterative calculations and externally supplied band

structures[180]. The density gradient model attempts to mimic tunneling[181] in technol-

ogy computer-aided-design (TCAD) simulations but requires calibration and is generally

implemented in EM form, which is questionable for nanoscale devices. In this paper, we

use band structure and NEGF calculations to quantify conduction band (CB) nonparabol-

icity corrections in nanoscale III-V FETs, derive parameter-free analytical formulas for

SDT in bulk and quantum confined devices, and numerically validate these models us-

ing our simulations. Our results enable accurate and efficient calculations of intraband
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tunneling in FET models and TCAD simulations. The work in this chapter has been

published in Ref. [11].

6.1 NEGF Simulations of Intraband Tunneling

Accurate band structure models are critical when studying quantum transport, partic-

ularly for nanoscale devices where quantum confinement (QC) occurs. Ideally the elec-

tronic structure should be self-consistently calculated using large basis set approaches

like ab initio density functional theory (DFT) or semi-empirical tight-binding (TB), but

such methods are time-consuming. A common compromise is to use EM but to adjust

the mass(es) to the energy dispersion or density of states (DOS) computed using more

detailed models. Alternatively, since the primary correction to the CB EM in direct gap

III-V materials is nonparabolicity arising from mixing of the Γ valley valence band (VB)

states, a 4-band (neglecting spin-orbit coupling) or 8-band k·p Kane Hamiltonian[77] can

be used to include CB-VB coupling within a comparatively small basis. However, the

Kane model does not include more remote band extrema which may be important at high

energies or under strong confinement.

We compare these methods in Fig. 6.1 by computing the complex subband structure

of 8.5 nm and 3.7 nm thick In0.53Ga0.47As quantum wells using spds∗ TB, 4-band k·p,
and EM adjusted to fit the TB results. Parameters for the multiband Hamiltonians are

taken from Table 2.1 in Chapter 2 and spin-orbit coupling is neglected because its effects

are minor for low energy CB states. For the lowest conduction subbands of interest, the

TB and k·p calculations agree quite well, indicating that VB-induced nonparabolicity

dominates at these dimensions. The adjusted EM fits the lowest subband at real k but is

qualitatively inaccurate for imaginary k because it lacks CB-VB coupling.

To observe how these differences impact devices, we compare ballistic NEGF simula-

tions of InGaAs FETs using the adjusted EM and 4-band k·p Hamiltonians. We study

double gate (DG) structures conforming to ITRS projections for the 15 and 6 nm nodes,

as summarized in Table 6.1[139]. The resulting I−V and C−V curves are shown in Fig.
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Figure 6.1: Complex subband structure of (a) 8.5 nm and (b) 3.7 nm thick InGaAs ideal

quantum wells from TB, k-p, and EM assuming infinite potential boundary conditions.

The fitted EM m are (a) 0.072 and 0.06 and (b) 0.15 and 0.075 in the confined and

unconfined directions, respectively.

Table 6.1: Device geometrical parameters for simulated DG FETs.

Node 15 nm 6 nm

Lg (nm) 12.8 5.9

tox (nm) 0.68 0.45

tch (nm) 8.5 3.7

Vds (V) 0.73 0.57
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6.2. In the on-state, the currents computed using adjusted EM and k·p are in fair agree-

ment, whereas EM noticeably underestimates the capacitance for the 15 nm device. This

is because nonparabolicity and higher subbands both increase DOS and decrease carrier

velocity; these trends partly compensate each other in the current, but lead to increased

quantum capacitance since only DOS impacts the latter. The effect is less pronounced at

6 nm because the lower operating voltage and increased QC render the higher subbands

and nonparabolic region less significant.

By contrast, EM simulations dramatically underestimate subthreshold leakage, espe-

cially at 6 nm when SDT dominates the spectral current as seen in Fig. 6.3. This is

because the parabolic imaginary dispersion of the EM model, shown in Fig. 6.1, artifi-

cially suppresses the tunneling probability. Hence even intraband tunneling calculations

must include CB-VB coupling as well as QC effects. These effects have been accurately

described for interband tunneling using the band gap scaled (BGS) two-band model de-

veloped in Chapter 3, which we will therefore adapt to SDT.

6.2 Modeling Subthreshold Electrostatic Barriers

Before modeling the tunneling current, the potential barrier must be known from the

device electrostatics. Pseudo-2-D approximations are widely used to analytically describe

MOSFET subthreshold electrostatics[133], but most formulations do not account for the

source and drain depletion regions, which are significant at short gate lengths. We there-

fore present a pseudo-2-D channel formula which includes these depletion regions, adapt-

ing similar models previously derived for interband tunneling FETs (TFETs) in Chapter

4. Assuming abrupt symmetric source and drain doping ND and using the notation in

Fig. 6.4, the resulting electrostatic potential energy along the channel direction y is given
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Figure 6.2: (a) NEGF I − V simulations of InGaAs DG FETs with source and drain

doping ND = 1019 cm−3 on log (left axis) and linear (right axis) scales. (b) DC C − V

simulations of same devices. Inset: simulated DG structure.
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Figure 6.3: Energy-resolved current density and band diagram for 6 nm InGaAs device

(Vgs = 0, Vds = 0.73 V).

by

V (y) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

q2ND

2εch
(y + ys)

2 ys ≤ y < 0

ψch − A exp(
y

λ
)− B exp(−y

λ
) 0 ≤ y < Lg

−Vds + q2ND

2εch
(yd − y)2 Lg ≤ y ≤ yd

(6.1)

where εch is the channel permittivity, Lg is the gate length, λ is the characteristic length,

and ψch is related to the gate voltage via ψch = ΔV −Vgs, where ΔV is the flatband shift.

The coefficients A and B are

A =
ψch + Vds − Vd,dep + (Vs,dep − ψch) exp(−Lg

λ
)

2 sinh(Lg

λ
)

(6.2)

B =
Vd,dep − Vds − ψch + (ψch − Vs,dep) exp(

Lg

λ
)

2 sinh(Lg

λ
)

(6.3)

and the source and drain depletion widths ys and yd equal

ys = −
√

2εchVs,dep
qND

(6.4)

yd = Lg +

√
2εchVd,dep
qND

(6.5)
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Figure 6.4: Conventions for pseudo-2-D electrostatic model of FETs in subthreshold. At

a given energy E, the classical turning points y1, y2 define the tunneling width Δ.

where

Vs,dep = ψch + Vs0 −
√
2ψchVs0 + V 2

s0, (6.6)

Vd,dep = Vds + ψch + Vs0

−
√
2(Vds + ψch)Vs0 + V 2

s0, (6.7)

Vs0 =
q2NDλ

2

εch coth
2(Lg

λ
)
. (6.8)

From these equations the top of the potential barrier is found to be ETOB = q(ψch −
2
√
AB), and the location y for a given V between −qVds and ETOB is given by

y(V ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
−ys +

√
2εchV

q2ND

0 < V < Vs,dep

yd −
√

2εch
q2ND

(V + Vds) −Vds < V < Vd,dep − Vds

(6.9)

if V lies in the source or drain depletion regions and

y = λ ln

[
ψch − V

2A
∓
√

(V − ψch)2 − 4AB

2A

]
(6.10)

if it lies within the channel. These equations are valid in depletion (the absence of strong

inversion or accumulation) for a variety of device structures, including thin-film material-

on-insulator, DG, and nanowire geometries, differing only in the appropriate choice of

125



characteristic length λ. For the DG devices simulated here, we use the λ value derived

by Suzuki et al.[135]

λ =

√
εchtchtox
2εox

(
1 +

εoxtch
4εchtox

)
(6.11)

where εox and εch are the permittivities of the oxide and channel material and tox and tch

are the oxide and channel thicknesses.

6.3 Intraband Tunneling Modeling

Next we model the tunneling current. The elastic SDT current density is given by

Jintra =
2q

h

∫
d�k⊥

(2π)d−1

∫ ETOB

0

dE T (E(�k⊥))[fS(E)− fD(E)] (6.12)

and we will use the Wentzel-Kramers-Brillouin (WKB) approximation for the tunneling

probability

T (E(�k⊥)) = exp

(
−2

∫ y2

y1

κ(E(�k⊥), y)dy
)
. (6.13)

Here �k⊥ is the transverse momentum, d is the device dimensionality, fS(E) and fD(E) are

the Fermi-Dirac distribution functions for the source and drain respectively, κ(E(�k⊥), y)

is the imaginary part of the energy and position-dependent momentum, and y1 and y2 are

the classical turning points defining the width of the tunneling barrier at a given �k⊥ and

energy E. Once the form of κ is determined, the action integral inside the exponential

can be integrated to obtain the tunneling probability. Eq. 6.12 is easily generalized to

the case of multiple subbands though we will focus on the lowest subband, which usually

dominates leakage.

The EM approximation gives κ(E, y) =
√
2m(qV (y)− E + E⊥)/� where E⊥ is the

energy associated with the transverse momentum. To include nonparabolic CB-VB cou-

pling, we instead use a BGS 2-band model to obtain

κ(E, y) =
1

P

√
(Eg,QC + E − qV (y))(V (y)− E) (6.14)

where Eg,QC is the QC band gap obtained from band structure calculations or measure-

ments and the momentum matrix element P = �

√
Eg

4

[
m−1

CB +m−1
LH

]
in terms of the
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bulk band gap Eg and CB and light hole (LH) masses mCB and mLH . In a bulk device,

Eg,QC = Eg. Detailed justification of the BGS model and evidence of its agreement with

more sophisticated band structure and interband tunneling calculations has already been

given in Chapter 3.

The computation of current using Eq. 6.12 is onerous because it requires integrations

over the tunneling path, energy, and transverse momentum. In 1-D devices like nanowires,

the transverse term disappears, while in 2-D and 3-D devices like DG or bulk MOSFETs,

we can approximate the transverse integration by Taylor expanding Eq. 6.14 around

E⊥ = 0. However, the tunneling probability Eq. 6.13 still requires an integration over

the potential barrier, which is not analytically solvable in general. To obtain a tractable

result for the transverse integration, we use the EM approximation for the transverse

energy E⊥ = �
2k2⊥/2m and treat the potential as a E⊥ = 0 square barrier of height

ETOB − E and width Δ = y2(E)− y1(E). This immediately leads to

Jintra =
q

π�

∫ ETOB

0

dET (E)[fL(E)− fR(E)] (6.15)

with the transverse-integrated transmission coefficients for different dimensions given by

T1-D(E) = exp

(
− 2

P

∫ y2

y1

√
(Eg,QC + E − qV (y))(qV (y)− E)dy

)
(6.16)

T2-D(E) =

√
m

2π�2α(E)
erf
(√

Eα(E)
)
T1-D(E) (6.17)

T3-D(E) =
m

2π�2α(E)

[
1− exp

(√
Eα(E)

)]
T1-D(E) (6.18)

where

α(E) =
Δ
(√

Eg,QC − ETOB + E +
√
ETOB − E

)
P
√

(Eg,QC − ETOB + E)(ETOB − E)
. (6.19)

Eqs. 6.15-6.19 are the central results of this chapter and can be used to calculate the

intraband tunneling current given a channel potential V (y) from numerical simulations or

an analytical model like Eqs. 6.9-6.10. We find that energies around the source Fermi level

Efs usually dominate the tunneling current, such that Eq. 6.15 can often be approximated

by computing only T (Efs) and replacing the integral over E with min(2kT, qVds). The

limiting case of parabolic bands, relevant for indirect gap semiconductors like silicon, is
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obtained via the substitution of
√
2mCB/� for

√
Eg,QC + E − qV (x)/P in Eq. 6.16 and

αEM =
√
2m∗/(ETOB − E)Δ/� for Eq. 6.19.

The only inputs to the electrostatic and tunneling models we have derived are the

device geometry, source-drain doping and Fermi energies, and the QC band gap Eg,QC

and mass m. No adjustable parameters are needed. In Fig. 6.5(a) we compare the 2-D

tunneling current using Eq. 6.15 with our NEGF DG simulations and find excellent agree-

ment in the subthreshold regime. Because our electrostatic model Eq. 6.1 only applies

for subthreshold, we limit qψch ≥ EFs in our calculations. The high Vgs characteristics

are not captured by our model since they are dominated by current flow over the barrier

rather than tunneling; if we add the former via a ballistic virtual source model[182], for

instance, the total current is in good agreement over the entire bias range, as shown by

the dashed lines in Fig. 6.5(a).

To further demonstrate the model’s general applicability, we simulate InGaAs devices

with different source/drain doping and an InAs FET in Fig. 6.5(b) and again find good

agreement for our BGS model in subthreshold. The same model also applies to silicon de-

vices, where nonparabolicity effects are smaller and the EM approximation may hold. For

example, in Fig. 6.6 we observe that the tunneling current and source doping dependence

of 6 nm silicon DG FinFETs calculated via EMA NEGF dominate the leakage current

and are indeed correctly predicted by our analytical model. Overall, regardless of mate-

rial we observe an interesting trend where higher doping leads to improved on-currents by

mitigating source starvation issues[183] but also increases leakage by orders of magnitude

due to narrower tunneling barriers[178, 179]. In practical devices, the importance of high

source/drain doping for reducing series resistance (not considered in these scattering-free

ballistic simulations) will further complicate the picture. This suggests that careful con-

tact doping optimization will be necessary in sub-10 nm FETs to balance leakage power

and performance, making a SDT model like the one presented here particularly crucial

for evaluation and design purposes.
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Figure 6.5: (a) Analytical versus NEGF I − V for InGaAs DG FETs of Fig. 6.2. Solid

lines are for the BGS tunneling model only and dashed lines are the sum of BGS with a

virtual source (VS) model. (b) Simulated and modeled I − V for the 6 nm device with

different doping and channel material.
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6.4 Conclusion

Our results demonstrate that intraband tunneling can be modeled using simple, parameter-

free formulas which are easily applied to different device geometries and dimensions for

both III-V materials and silicon. The models presented here are also generalizable for

scaled transistors using novel materials like direct-gap 2-D semiconductors (including

transition metal dichalcogenides), or carbon nanotubes (CNTs). These models will be

crucial in the development of sub-10 nm technologies where SDT is expected to dominate

FET subthreshold characteristics.
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CHAPTER 7

Summary and Future Directions

In my end is my beginning.

T. S. Eliot, “East Coker”

7.1 New Results of this Work

In this dissertation, we have investigated the physics and design of tunneling in MOSFETs

and TFETs using a combination of quantum mechanical and semiclassical simulations and

analytical methods. We have designed and implemented a complete semiconductor device

simulator using the NEGF formalism with which we can study basic transport physics as

well as calculate device characteristics of realistic structures. Whenever possible we have

attempted to bridge the gap between the different levels of device analysis, using quan-

tum calculations to obtain rigorous results and providing physically motivated models

to accurately approximate tunneling effects within semiclassical numerical and analyti-

cal methods. We have developed an improved analytical theory of interband tunneling

in bulk semiconductors and validated its accuracy against NEGF calculations. We in-

troduced the band gap scaling (BGS) approximation to extend tunneling calculations to

quantum confined structures and shown the physical reasons for its success. Building on

our basic transport modeling, we derived the first physically well-defined, quantitatively

useful models of tunneling currents in TFETs and MOSFETs. Using the device engineer-

ing insights gained in our theoretical study, we proposed a new device, the GISTFET,

which offers the potential for ultralow voltage, high performance complementary tun-

neling III-V transistors for future low power applications. The work presented here thus
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spans the gamut of theoretical semiconductor device analysis, from fundamental transport

physics through device-level modeling to the development of new device concepts.

7.2 Future Directions

The theory of tunneling and tunneling devices we have developed in this dissertation can

be further extended to include other phenomena and emerging technologies.

7.2.1 Modeling Tunneling in Heterojunctions

The band offset in semiconductor heterostructures can lead to smaller tunneling barriers

and hence higher drive currents. For this reason, heterojunction TFETs with a type-II

or type-III material interface between the source and channel are becoming increasingly

popular in theoretical and experimental studies. Analytical models of such devices gen-

erally rely on WKB-based calculations without careful justification or comparison with

experiment. Generalization of the BGS model to heterojunctions can provide a physically

justifiable and more accurate approach to calculate tunneling currents in these structures.

7.2.2 Theory of Scattering-Assisted Tunneling

We have focused throughout this dissertation on coherent transport in semiconductors,

where tunneling occurs through band coupling introduced by the electric field. How-

ever, incoherent tunneling is an important process in many realistic scenarios. For in-

stance, in indirect gap semiconductors, interband tunneling is accompanied by scattering

off of phonons, impurities, or other excitations to conserve momentum[96]. Alternatively,

defect-assisted tunneling (which may involve multiphonon cascade processes[184]) often

limits the leakage of realistic devices and may obscure the steep SS behavior of experimen-

tal TFETs. The fundamental theory of these mechanisms remains unsatisfactory in many

cases, and its agreement with experimental data unclear. Detailed study of tunneling in

the presence of scattering in NEGF may provide a more rigorous theory and give insight
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into the mechanisms limiting performance in experimental tunneling devices.

7.2.3 Modeling and Understanding Limits of Experimental TFETs

In general, the exact causes of the performance limitations in experimental TFETs, par-

ticularly high leakage currents and SS, are not truly understood, though a plethora have

been explanations have been offered, including band tailing due to disorder, tunneling

through interface states, leakage via bulk traps, and poorly optimized electrostatics. A

device theory that can quantitatively explain experiments with minimal, physically well-

defined adjustable parameters will be critical in elucidating the performance bottlenecks

and designing devices which overcome these problems. Crucial to this effort will be the

development of a quantitatively accurate modeling of defect-assisted tunneling, as men-

tioned above.

A detailed understanding of leakage and other limitations in TFETs will also be impor-

tant in developing more realistic projections and assessments of TFET-based electronics.

Many circuit-level comparisons of tunneling technologies rely on models which are likely

to be too optimistic for practical TFETs; a satisfactory model should be used with an

equally realistic device-circuit methodology like PROCEED[3] to draw useful conclusions

about the place of TFETs in future electronic systems.

7.2.4 GISTFET Development

In this work, we introduced the GISTFET concept and provided preliminary evidence

using NEGF simulations that it can offer high performance complementary device op-

eration. However, many fundamental and practical questions remain. Theoretically, it

will be important to assess how scattering effects, particularly via optical phonons, may

smear out the electron distribution in the induced source and affect performance. It will

also be important to assess the impact of nonidealities like gate tunneling leakage and

gradients in work function between M1 and M2. Since improved device electrostatics is

especially critical for good GISTFET operation, the use of 2-D materials like transition
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dichalcogenides or 3-D structures like nanowires or FinFETs should also be explored.

It is clearly desirable to demonstrate the device concept experimentally. Assuming

such a demonstration, further experimental study of the choice of gate metals, structural

design, and leakage will be critical to develop the GISTFET into a commercially viable

device.
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