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High Sampling Rate Dynamic Inversion - Digital Signal
Processing, Filter Realizations and Applications in
Digital Control

by

Herrick Lin Chang
Doctor of Philosophy in Mechanical Engineering
University of California, Los Angeles, 2012

Professor Tsu-Chin Tsao, Chair

In the past few decades, computational power and speed ltesinsaich that the Con-
trols literature has moved away from addressing issuesitéfivord-length (FWL) is-
sues, quantization, and limited computational resourGesthe other hand, the signal
processing community has studied this issue extensivelppyPB87]. In recent years,
the introduction of Nano and Microelectromechanical syst§ MEMS) with large
bandwidth systems requires the use of high-sampling rataters. To satisfy such
high sampling-rates, fixed-point based platforms such alsl Frogrammable Gate Ar-
rays (FPGASs) and fixed-point micro-controllers are needdks trend results in a need
for high-sampling rate controllers that are more sophastid than simple loop shaping
while addressing the issues of FWHexts and limited computational resources. The
aim of this dissertation is to introduce novel controlldrattincorporate signal process-
ing techniques and address these issues with controllegrdeslizations to control

high bandwidth electro-mechanical systems.
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CHAPTER 1

Introduction

The investigation of advanced digital controllers for imygng performance in high-
bandwidth systems has gained much attention for perforenanitical applications
such as precision non-circular machining [TCR87,HT98,BA4H T94, TSHO08], scan-
ning probe microscopy [PBAQ07,LD07,KL12], computer datarage [KT10, LKC10,
LDW11, WWC11], and power electronics [CKK08, MZEO4, WPXEMLO7]. These
advanced controllers improve performance through impdragectory planning, refer-
ence tracking, and disturbance rejection. However, thepedational power necessary
for these controllers tends to constrain the sampling rifeeadigital control algorithm
and in turn limits the control performance. Platforms cdpaif such computational
power include digital signal processors (DSPs), microtadlers, and personal com-
puters. On one extreme, systems that require high serve catdd be implemented
with analog circuits or hybrid platforms such as field pragnaable analog arrays
(FPAASs) [SP08, YBR12] but with far less sophisticated cohstructures, which limits
the control performance. On the other hand, the use of padit micro-controllers,
DSPs, and personal computers may not providacsent parallel processing threads
to complete control computations in a small number of pregeslock cycles for high

order control algorithms that require fast sampling rates.

In recent years there has been a rise in popularity of cdetrohplementations on
Field Programmable Gate Arrays (FPGASs), a computationatdavith programmable
logic gates, have a limited number of adders and multipliersarithmetic opera-

tions [HREO09, MD11, MCO07,JPKO08]. Its popularity stems frasparallel processing



ability, low level interface to sensor and actuator eleatts, and inherent configura-
bility which allows for the customization and optimizatiéor specific applications.
Furthermore, the algorithms on FPGAs can be ported to agipit-specific integrated
circuits (ASICs). The amount of resources used on an FPGrelede to size and cost

of the layout of an ASIC.

FPGAs can be configured to emulate DSP cores where the FPGaseompu-
tational resources repeatedly in many clock cycles to cetaptomputation but with
substantially reduced servo rates. However the attrasts® of a FPGA for control
applications, from a computational standpoint, stems fitsrparallel processing capa-
bilities. Examples of these applications are those thatiredpigh sampling rates, such
as in scanning probe microscopy, and multiple parallel $oguch as large channel

count micro actuator array control loops.

Since FPGAs have limited computational resources, raalizaf the controllers as
filters must take these constraints into account. This isquéarly a challenge to high
performance controllers, which often involve high-ordéefs. Thus, special filter
structures and realizations that use computation respwesy dficiently can enable
the use of FPGAs for high performance control at high sargpiates. To reach such
high processing speeds and to maintain the parallel prionggsoperties, computations

are typically restricted to fixed-point computations.

With high-speed fixed-point controllers, the issues of quation errors and the
of number of multipliers become significant factors on thasfbility of implement-
ing and even stability of certain controllers. Finite-wéetgth (FWL) dfects con-
tribute to quantization noise, and inaccurate frdeo locations of your desired con-
trollergfilters [FPW97]. In digital control, large sampling ratesthwrespect to a sys-
tem’s bandwidth will cause its discrete-time transfer fimtto have polegeros that
“migrate” towards the unit circle. This “migration’fiect coupled with the FWL ef-
fects, only exacerbates the inaccuracy of the fzel® locations and provides wildly

different frequency responses.



In this dissertation, we consider accurate inversion ofmammum phase dynam-
ics with high order filters and theifffecient realization. We use this for inversion based
feedforward tracking (FF) and repetitive controllers (R@Y realize them on a FPGA.
As a demonstrative example, we implemented these consdtiecontrol a multi-input

multi-output (MIMO) system at a high sampling rate.

The proposed stable inversion compensator is based om pphase real-time infi-
nite impulse response (lIR) filters first introduced by PdweChau [PC91]. Powell
& Chau'’s realization involvek-length localized time reversals, overlap-add sectioned-
convolutions, and another time reversal. The result iseliphase IIR filter with phase
equal to that o *. The “Reset”, from [PC91], used to truncate the impulseasasp
introduces parasitic sinusoidal phase disturbancestigguih only anapproximately
linear phase IIR filter. To solve the nonlinearity issue, ¢&u [KMTO03] exploits the
fact that any finite impulse response (FIR) filter can be regméed as the fierence
of two IIR filters. He replaces the “Reset” with thefdrence of two IIR filters which
results in a perfectly linear phase FIR filter, using lIR izations, without phase distor-
tions. For a long impulse response, a FIR filter realizingsdu®e input-output relation
would require more multipliers and adders, up to one or tvaes of magnitude, than
that of Kurosu’s modified Powell-Chau filter. In other wordsy proposed filter struc-
ture is most ficient when impulse responses are long/andhen sampling rates are
high. In this dissertation, we show that with some modifmad, Kurosu’s filter can
be used to &iciently invert non-minimum phase zeros (NMPZs). This fileeuseful
for feedforward tracking control where a finite length of tesired output can be pre-
viewed [Tsa94, AT95]. Furthermore, it is also useful forarsion based discrete-time
repetitive control, where both linear phase and inversiteré have been employed in
the repetitive control loop to achieve asymptotic trackamgl regulation subject to pe-
riodic disturbances [TT94, TQNOO]. In Iterative Learningr@rol (ILC), similar time
reversal techniques for discrete and continuous tiffiéree inversion of nonlinear non-

minimum phase plants have been presented [MHNO1, GPO1}k dihline technique

3



for ILC which was previously not applicable to real-time RI@aithms. Using tech-
niques from Kurosu’s filter, this dissertation will illuate a real-time reversal technique

for RC.

Repetitive Control has been found to be useful in applicatisuch as power elec-
tronics [ZWO01] due to the periodic nature of the error signa version of RC uses
the Zero Phase Error Tracking Controller (ZPETC) [Tom873pproximate a plant in-
version. ZPETC performs stable pole-zero cancelation angugates of the NMPZs.
Depending on the location of the NMPZs, ZPETC which may taawd large dynamic
range and become numerically unstable. In this dissentat@give a complete formu-
lation of a numerically stable andfeient linear phase inversion filtering based on our
preliminary work in [CT10a, CT10b]. We use the proposed iisian in feedforward
and repetitive control for electromechanical systemsgtt ampling rate, in which the

ZPETC based approach cannot Ifieetive.

The remainder of this dissertation is structured as follo@kapter 2 describes a
basic understanding of the Powell-Chau linear phase IIB fdhd modified structure
known as the Kurosu filter. The chapter also shows that Kigddter can be even
more dficient, in terms of number of multipliers and equivalent gietarough multi-
rate techniques. Chapter 3 illustrates the proposed ilorees NMPZs through a mod-
ification of Kurosu'’s filter. In addition, it describes howetproposed inversion can be
extended into a new RC structure appropriate for high sargphte fixed-point con-
trollers. ILC, under the correct conditions, is introdu¢ederve as a double-precision
equivalent of RC. Chapter 4 provides experimental restiésvgng how the proposed
inversion and new RC can be used in the controller design floagnetically levitated
shaft. Note that even though 100 kHz sampling rate in thisedtation is merely a
limitation of the ADCs and DACs used. In actuality, the prepd compensators were
designed to operate at or near the clock-rate of the FPGApt€h& contains experi-
mental results of the proposed fixed-point controllers oreaqelectric actuator. This

experimental example highlights finite word lengtfeets and demonstrates how the

4



Delta Operator [MG86] can be used to ameliorate thé&zes with minor increase in
computational cost. Lastly, Chapter 6 contains experialeasults of double-precision
ILC on the same piezoelectric actuator. In addition to spée performance of ILC,
it also serves as a equivalent of double-precision RC in ke can compare the

performance of the fixed-point results of Chapter 5.



CHAPTER 2

Enhancement of Powell-ChayKurosu Filters

For many current applications, the computational speedcapability provided by
modern electronics exceeds real-time application remerdgs. A popular platform,
the field programmable gate array (FPGA), which has thetghih emulate digital
circuits yet remain programmable, can be in this positiome BPGA drawback is
its limited number of general purpose multipliers. Fortigha multirate processing
can serve as a vehicle to permit morf@aent (higher data rate) use of these limited
resources. We shall show how such multirate techniquesrognove systems that
employ approximately-linear-phase infinite impulse res@o(IIR) Powell-Chau filters
and their variants. Using multirate processing, a few suolified Powell-Chau filter
examples demonstrate how to reduce the demand for exdgssivmerous general
purpose FPGA multipliers. In addition, it is shown that ohéese structures can also
reduce the long real-time delay typically associated wiatv@&Il-Chau filters and their

variants.

Linear-phase filters have the valuable property that atidemcies pass through
the filter with equal time delays. Traditionally, lineargde filters are created using
finite impulse response (FIR) filters whose filter-tapfGoent sequences exhibit special
symmetry [Vai93]. Usually, to obtain high quality FIR filsgra large number of taps
are required, which dictates many simultaneous multipbos. By contrast, IR filters
can provide transfer functiort$(z) with high quality magnitude characteristics while
using significantly fewer tap multipliers. They do not, hawe possess the linear-

phase property. The Powell & Chau real-time linear-phaRdiliers [PC91] employ an



approach long known to be useful inffdine” (non-real-time) digital filtering, wherein
data sequences are processed by a nonlinear-phase filtéplenimes, in a way that
results in overall linear-phase behavior. Often su@kline systems process a data
sequence, in both a forward and in a reverse direction—hinectaditional non-real-

time restriction.

The Powell & Chau linear-phase IIR realization employs targlocalized time
reversals, overlap-add sectioned-convolutions, anch@nset of time reversals, where
L is the length of the crucial last-in first-out (LIFO) elem&nfA typical choice ofL
is the approximate length of the first part of the filter’s (i) impulse respondgn)
up to a point where the impulse response sample magnitudaseado signal quan-
tization levels. The combination produces a linear-ph&Rdilter with phase (delay)
equal to that ofz*. The “Reset” used to truncate the IIR impulse response tesul
certain unwanted parasitic sinusoidal phase distortithnss, yielding only an approxi-
mate linear-phase IIR filter. Others [WO94,DPL98,KMT03yaanodified the transfer
function andor the structure to obtain improved frequency responsesd3WKMTO03]
modifies and improves on Powell-Chau’s original structwehsthat the phase imper-
fections of Powell-Chau'’s structure are eliminated. Theliiied filter is proven to have
no phase disturbances. Kurosu exploits the fact that any RER Gln be represented as
a subtraction of two IIR filters. By combining that featuremthe Powell-Chau filter, a
perfectly linear-phase filter can be obtained. The requftiter has an FIR input-output
relation, but it requires three IIR filters, which could repent a reasonably high multi-
plier/adder hardware penalty when the impulse response is notaregy For feedback
control applications, Chang and Tsao [CT10a, CT10b] hawended that Kurosu’s
modified Powell-Chau filter could be used to approximate tegufency response of
unstable filters. They then use Kurosu'’s filter to approxetyainvert non-minimum
phase zeros, thereby providing an improvement upon Kus@x#ct linear-phase struc-
ture. The present chapter usgtmultirate theory from [JW97, YW99] to reduce the

number of multipliers required to achieve the same inpupwiucharacteristics. Also,

7



using multirate theory, a structure is exhibited that catuce the (long) 4 real-time

delay typically associated with the Powell-Chau filter. Sveductions in both the de-
lays and the number of multipliers are beneficial to reaktmpplications running on
platforms having limited resources such as filters impleteas ASICs or those using

FPGAs.

Even though both the Powell & Chau and the Kurosu filter usesfawultipliers
than an equivalent FIR filter, there are still opportunit@$urther reduce the number
of multipliers. From an implementation standpoint, the &&ur filter has slightly more
multipliers, which is due to the presence of tHg(z) filter. Furthermore, the largest
hinderance for both structures is the delay. This delay, can be undesirable in certain
applications such as control system designs or time-sem§itering [CT10a, CT10b]
while it may be acceptable in some other applications sugfiragess communications

and image processing.

Fig. 2.4 shows that the same filtel(z) is employed three times, which may ap-
pear to be excessive. In principle, the multipliers can hesed through some data
management techniques thereby saving on the number ofphieréi. However, the
implementation will vary from one case to another and thdyaisaof the intermediate

signals can be awkward and complicated.

Concerning the delay problem, if the impulse responge(a@f is long, the 4 delay
can pose serious problems for time sensitive signal prowpssch as that in feedback
controls [CT10a, CT10b]. We will now address both of theseiés: systematically

reducing multiplier hardware and reducing real-time delay

2.1 Linear Phase Filtering Background

Definition 2.1.1. Let FIR filters be denoted with a lower-case letter (e.@)dand IIR

filters with a upper-case letter (e.g.(B).



Definition 2.1.2. Let d*(2) and D*(2) be defined as the time-reversal filter
d*(2) = d(2)lp2 (2.1)

D*(2 = D@zt (2.2)

Notice that this is also the definition for the complex coapegof the frequency re-

sponse when evaluated along the unit circle.

Linear phase filters are typically finite impulse respond®])Hilters with symmet-
ric taps (coéicients) [Mit04]. Given some FIR filted(z), denotee(z) = d(2) x d*(2)
whered*(2) is the time reversal filter adl(z). The resultinge(2) will have linear phase

with magnitude response {(z)|> [Tom87].

Definition 2.1.3. | - | is the magnitude of the transfer function evaluated alomguthit

circle (i.e., the magnitude of filter frequency response).

&(2) is noncausal but can be made causal by cascading it witretag dlemengz .
Notice thatd*(2)’s zeros are mirrored images dfz2)’s zeros. Thus, stable linear phase
filters have mirrored pairs for both their poles and zeros.irfdfled” in this context
is with respect to the unit circle. ZPETC uses this methodoofjugating the NMPZ
along with inverting the stable portions of the plant. Asliaear phase IIR filters, it
would mean their poles and zeros would have to come in mulrpadérs. Linear phase
lIR filters are typically not realizable since their conjtg@oles are unstable (i.e. the

stable pole’s mirror image is an unstable pole outside tlitecirale).

For finite-length sequences (dodoffline calculations) there are linear phase filter-

ing techniques known as forward-backward filtering [KJ7ds@6]. Simply put:

¢ A finite-length input is passed through an IIR or FIR filter.
e The output sequence is time-reversed and fed through teeditice again.

e Output of diline filter has linear phase.
9



The phase latpad introduced by the filter are canceled out when the tieversed se-
guence is passed through the filter once again. Such applisaif forward-backward
filtering have been seen in Iterative Learning Control [MHINQvhich use time-reversals

to cancel out the phase but are not applicable in real-time RC

2.2 Powell-Chau Filter

Powell & Chau [PC91] took the forward-backward filtering cept and produced an
approximately linear phase IIR filter in real-time. To kebg filter stable and to imple-
ment a finite-length time reversal, the impulse responskeofiesired filter is truncated
by a “Reset” seen in Fig. 2.1. Linear phase is achieved thrdbg time reversals
of the L-length localized time reversals through the use of Lad#tat-Out (LIFO)
structuresL is the approximately the length of impulse response at wiiehimpulse
response enters the quantization region. Let us denotdttrenfithin the dotted line in
Fig. 2.1 as the time-reversal filter. The “time-reversagfiliperforms a batch-length
time reversal. Like the forward-backward filter, thiene-reversal filter” will cancel
out any phase lageads introduced by (z). To truncate the impulse response of an
lIR filter, a “Reset” is used to clear the filter states of theyiousL-length batch but
also introduces phase non-linearities. This makes theeefilter to be onlyapprox-
imatelylinear phase. Fig. 2.2 shows a variant which is limit-cyckef[PC91]. The
input-output relation of both Fig. 2.1 and Fig. 2.2 can beragimnated by

Y(2)

RD IH@)P? - . (2.3)

Notice that theH;(2) andH,(2) can be diferent to produce éierent frequency response
characteristics [DPL98, WO94]. For this dissertation, beer, we assume thét;(2)

andH,(2) are equal (e.gH1(2) = H»(2) = H(2)) and that they are causal filters.

10
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Reset 2

Reset 2

Figure 2.2: Powell-Chau limit-cycle free linear-phase filter

2.3 Kurosu Filter

Fig. 2.4 illustrates Kurosu’s modified Powell-Chau filtere\Also require that(2) =
H1(2 = H.(2 and are causal. Kurosu [KMTO03] replaces the “Reset” in theet
reversal filter with a dierence betweehl(z) andH, (z). Kurosu utilizes the fact that
that any FIR filter can be represented as the subtraction @fil# filters. H(z) and
H(2) are both IIR filters of same order, whdte(2) or [-], is the truncated or unwanted

portion of the impulse responsi(z) can be described as

b0+b12_1+ ...+bK_1Z_(K_l)+bKZ_K

H(2) = . 2.4
@ l+a1zl+... +ag 1z KD 4 gz K (2.4)
in its filter form. Alsoq >r, b;, & € R. From [KMTO03],
-~ Z1+ .+ ez KD

l+azt+... +ag1zK-D 4 gz K

11



where

Co=ah(L-1)+ah(L-2)+...+axh(L - K))
Cl:azh(L—1)+a3h(L—2)+...+aKh(L—K+1)

c=ah(L-1)+ah(L-2)+...+akh(L - K +2)

Ck_2 = aK_lh(L - 1) + aKh(L - 2)

Ck-1 = aKh(L - 1)

An alternative way to view, (2) is

H@=7"-(H@ 2), (2.6)

where (), is only thecausalportion of the impulse response.

Definition 2.3.1. Let thetruncated (FIR) filtebe

ht(29 =H(@ -H.(2 (2.7)
=z (H@-Z) (2.8)

where(-)_ is only thenoncausaportion of the impulse response.
Definition 2.3.2. Let f~(2) be the“time-reversal filter”
f-@=ht@2-z*. (2.9)
From Fig. 2.4, it follows that

Y@

ol N2 - hr (@™ (2.10)

= |hr (2122, (2.11)

12
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Figure 2.3: Truncation of infinite impulse response at length

Although this implementation is actually an FIR filter, itteymed as gerfectly lin-
ear phasdIR filter since it uses IIR realizations and also to remaimsistent with
[KMTO3]. Itis perfectly linear phase because it solves thage non-linearity problem
introduced by the “Reset” in Fig. 2.1. Fig. 2.3 shows thas typically chosen such
that the truncated portion of the impulse response sits apgantization level. Notice
that asL — oo, thenhy(2) — H(2) and (2.11)— (2.3). The length ot will change
the magnitude characteristics of the frequency respoHs€z) - z- is on the order of
H(2) (i.e. an increase in multipliers). To reduce the number oltipliers,H, (2) can be
represented using a lower-order model approximation usinge system identification
methods such as Prony’s method [PB87]. Throughout thigdatson f~(2) will also
be referred to as the “time-reversal filter”, and when appabg it will be mentioned

as the “inversion filter” in Section 3.1.

13
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f‘(z)=hT(Z)T4L§

3 5 HHL(z)T ; |

ek IRLCIEE

R s Thcen e P [ L

4|_||:o_>5€)h LIFO ——H@) O~
L S T hr (2)



2.4 Multiplier Reduction

To reduce the number of copies ld{z) that are required by Kurosu's filter, a pipelin-
ing/interleaving () multirate technique [JW97, YW99], illustrated in Fig52can be
employed. In Fig. 2.5 the; (n) andx,(n) signals are two independent inputs ii¢z)
while y;(n) andy,(n) are the outputs ofi(2)z* with x;(n) and x,(n), respectively, as
inputs.

The Fig. 2.5 technique requires operatii(g) at twice the clock rate, using twice
as many delays (registers or memory), but using just ond siteo-tap multipliers, not
two. For VLSI and FPGA applications, the operation of thesatipliers at a higher
frequency is typically not a challenge. The maximum sangpfirequency that the
digital filter experiences is usually dictated by the andlogligital or digital-to-analog

converters and not by the maximum clock rate for the digdgid.

X X
U2l H@ L2l RAN Y o
Y m—~
ﬁTz_,z—lj Z1Hl2jz ﬁ»H(z) -1 Y2

Figure 2.5: P/l technique to reuse multipliers.

2.4.1 Multirate Solution for Kurosu

Kurosu’s Filter of Fig. 2.4 requires multiple copiesldfz) andH,(2). Applying the
P/I technique of Fig. 2.5 to the top and bottdd{z) andH_(2) of Fig. 2.4 produces
the dotted box in Fig. 2.6. The two instancesHz) andH,(2) of f~(2) result in an
upsampling by two.

Notice however there are actually three instanced(@ andH,(2) in Fig. 2.4, all
three of which can be handled by thd Echnique if we employ an upsampling by
three. (See, e.g., Fig. 4 of [JW97].) Fig. 2.7 shows a way tthdo
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Table 2.1: Number of Multipliers Comparison

Linear-Phase Filter Type No. of Mult | No. of Mult
H(2) HL(2)

Powell-Chau (Fig. 2.1) 3m 0
Limit Cycle-Free Powell-Chau (Fig. 2.2 4m 0
Kurosu (Fig. 2.4) 3m 2m
multirate Kurosu (Fig. 2.6) 2m 2m
multirate Kurosu (Fig. 2.6) - yo H_ 2m 0
multirate Kurosu (Fig. 2.7) - yo H_ 1m 0

If Lis chosen sfiiciently largeH, (2) ~ 0 due to quantization noise. The number of
general purpose multipliers can be reduced by excluin@) provided that a longer
delay is acceptable. Table 2.1 reflects both the inclusiahexiclusion ofH (2). We
introduce the parameten in Table 2.1 to represent the number of fiméents in the

filter. By using Fig. 2.7, a savings of up to 66% is possible.

The RI multirate technique is useful for reducing multipliers f&ystems imple-
mented on platforms in which multipliers are used in palalleused independently,
such as VLSI and FPGA implementations. This multirate stmgcserializes the gen-
eral purpose multipliers of the filters and reuses them atealvigher than the analog-
to-digital and digital-to-analog sampling rate. Cleattgwever, for applications on
serial processors such as Digital Signal Processors (DSP) ankksioge computers,

the proposed technique brings no multiplier savings.
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2.5 Real-time Delay Reduction

As mentioned earlier, one of the largest drawbacks of theeRa@hau Filter or the
Kurosu filter is the large delay associated with the filterisTproblem has been ad-
dressed by Miyase [MTTO00]. However, the Miyase approactsatttitional filters
(hence, more multipliers) to achieve the smaller delay.id8lfy, most filter designers
are not willing to pay such a price; general-purpose mudiplare expensive ajat
limited. By combining Miyase’s solution with the/IRechnique, we will be able to

reduce the delay while using fewer multipliers.

2.5.1 Miyase’s Filter Structure

It is shown in [MTTOOQ] that by exploiting the overlap-add eique of the time-
reversed filter,f ~(2) can be expanded to more than just the two copiebsl(@ that
Powell-Chau and Kurosu both used. Miyase observed that iog 06+ 1 filters the
delay can be reduced. The relation between equivalent deldyhe numbeN + 1 of

filters is

Equiv. Delay= 2L/N + 2L. (2.12)

Fig. 2.8 showsf ~(2) with N = 2 (i.e., threeH(2) filters). In the Powell-Chau and
Kurosu case where there are twgz) filters (N = 1), we find that (2.12) yields the
expected & delay. For large enougN, the delay can be reduced to approximately 2
Let M = L/N, whereL andN must be chosen such thisk is an integer.L is still the
approximate length of the impulse response Bind 1 is the number of filters used in
the overlap technique in the time-reversed filte(z). As shown in Fig. 2.9, the result

of Fig. 2.8 can easily be extended to Kurosu’s Filter.

Accepting an increase in multipliers to reduce the delaybmaan unattractive com-

promise. As shown in Table 2.2, while the delay can be redtcélt, the required
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Figure 2.8: Miyase’s time-reversed filtef~(2) with reduced delayN = 2).
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Figure 2.9: Miyase’s time-reversed filtef~(2) with reduced delay on Kurosu's filter

(N =2).

number of multipliers now compris@é+ 1 filters worth of computations. In Table 2.2,

m denotes the number of multipliers used for the filtée) or H_(2).

2.5.2 Multirate Structure for Delay Reduction of Time-Reveased Filter

Notice that Miyase’s technique requirlis+ 1 copies of the same filter. ThelPnul-
tirate technique shown in Fig. 2.5 can reduce the redundaittplers introduced by
Miyase’s delay reducing technique. This gives rise to a mahrtique, one that reduces
both the delayand the number of multipliers of Kurosu’s filter, assuming thas mul-

tipliers are able to perform at the higher sampling rate. fhineeH(2) and threeH_(2)
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Table 2.2: Delay and Multiplier Costs using Miyase’s Delay Reduction

Case Delay | No. of Multipliers

N=1 4L 2m

N=2 3L 3m

N=3 |iL+2L 4m

N=n |2L+2L (n+1)m
N=large| =~2L (N +1)m

of just the time-reversed filter in Fig. 2.9 can be converted H(Z) andH_(2), re-
spectively, using the/Ptechnique. The resulting filter is seen in Fig. 2.10 whdre 2,

and where an upsampling of 3 is now employed.

If N is chosen large enough, the delay can be reduced to apprekyrh without
increasing the number of multipliers. Of course, the choicH is limited from above
by the maximum sampling rate of the platform’s (e.g., the BBY>general purpose
multipliers. The advantage of adding thd Echnique to Miyase’s method is made
clear by comparing Table 2.3 with Table 2.2. The siz&la$ determined by the phys-
ical limitations on how fast the multipliers can operate.likenthe multirate multiplier
reduction structure, the multirate delay reduction strteetcan be beneficial in both

serial and parallel processing platforms.

2.5.3 Combining Delay Reduction and Multiplier Reduction

The RI Miyase technique of this section can easily be combined thi¢ PI multiplier
savings technique of Section 2.4. Given that the multiplieed are fast enough, delays
and multipliers can be reduced simultaneously. For exanaplabining the multiplier-

reduced Fig. 2.7 system and the delay-reduced Fig. 2.18rayste obtain the Fig. 2.11
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Table 2.3: Delay and multiplier costs usingIRechnique with Miyase’s delay reduc-

tion
Case Delay | No. of Multipliers
N = 4L Im
N=2 3L Im
N=3 SL+2L im
N=n 2 +2L im
N=large| =~2L 1m

system. ThredH(z) and threeH (2) filters are introduced by Miyase’s technique in
Fig. 2.9. A fourthH(2) andH_ (2) comes from the rightmost dotted box of Fig. 2.4. The
four requiredH(z) andH,(2) blocks are obtained by the use of the singig@*) block

in Fig. 2.11.

2.6 Example with Reduced Multipliers and Reduced Delays

Applying the proposed multirate multiplier and delay retilue technique to a lowpass
filter example used by Powell & Chau and Kurosu will illus&rdhe benefits of the
proposed structure. The following example was implemepigda Xilinx Virtex-5
LX50 FPGA, accessed via the National Instruments PCle-R8%2ard and LabVIEW
graphical development tool. For this filter, the impulsepm@sse length is chosen to be

L = 500, where the sampling frequency is chosen to bekH

The lowpass filter is constructed using a combination of malhpass functions.
This structure is advantageous in that it facilitates yetl@r reduction in the number

of multipliers through use of special all-pass functiomustures [SL98, VMN86]. The
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filter transfer functiorf(2) is given [PC91,KMTO03] as

ag+z! by+bizt+z?
1+apzt . 1+ bzt +byz2
C+CZzr+7z?%2 dy+dizt+272
l+cizt+cyz2 . 1+diz1+dyz?

F(2 :%

where

ap = 0.1404000
bo = 0.6832507
b, =0.6008522
Co =0.2868453
¢ =0.4101568
dp =0.9175521

d; =0.7085589

Table 2.4: Example illustrating comparison of Kurosu Filter withl Bnhultiplier and

delay reduced Kurosu Filter.

Linear-Phase Filter Type Delay | No. of
Multipliers
Kurosu wo H, (2)(Fig. 2.4) 4000 21
P/I Mult. Reduction wo H_(2)(Fig. 2.7) 4000 7
P/I Delay Reduction o H, (2)(Fig. 2.10) 3000 21
P/I Delay and Mult. Reduction yo H,(2) 3000 7
(Fig. 2.11)

Clearly, this all-pass implementation &1z requires just seven multipliers. To
illustrate the potential multiplier and delay savings EaBl4 shows how the original
Kurosu filter (Fig. 2.4) compares with thelPnultiplier reduced structure (Fig. 2.7),

the Rl delay reduced structure (Fig. 2.10), and thiiled®@mbined (multiplier and delay)
25



reduction structure (Fig. 2.11). The numbers in Table 2.4evadso confirmed in the
HDL Synthesis Compile report provided by the Xilinx Compitkiring FPGA compi-
lation. Notice that R techniques for reducing the multipliers and delays do tich
the magnitude response. Fig. 2.12 shows, usl(@ = F(2), how, when using dier-
ent upsampled Kurosu filter$, (z) has the same magnitude responséia&). The
nonlinear portions of the phase 6f(2) cancel the nonlinear-phase portionstf(2)
which makesf ~(2) x Hy(2) exactly linear-phase. As mentioned previously, i§ sufi-
ciently long, therH, (z) can be left out makind~(2) x H(z) approximately-linear-phase.
Fig. 2.13 illustrates how even upsampling at five times thepimg period N = 4),

can produce significant delay reduction.

0
o
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3
_,E f_(Z)Z+3999 , (N 1)
S ool
‘2“ 100 —_— f_(Z)Z+1009 , (N 100)
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Figure 2.12: Frequency = Response  Comparison  of ff&ent Upsam-

pling/Downsampling Rates
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Figure 2.13: Equivalent Filter Delay vs. Upsampl2ownsample Factor (IN1)

2.7 Conclusion

Both the Powell-Chau filter and the Kurosu filter bring abdw# &dvantages of linear-
phase IIR filtering. Although they are already computatityrefticient, we have shown
how a reduction in multipliers can be achieved since manyesogf the same filter are
employed in these structures. Using the proposédnRltirate techniques, Kurosu’s
modified Powell-Chau filter can potentially reduce the nundieequired multipliers
to one-third the original amount. A single FPGA can beneditrfra significant savings
of valuable computation resources which could then be useddditional filters or
other processes. In addition to multiplier savings, addai Rl techniques applied
to Miyase’s delay reduction structure helps to reduce thg [@dL) delay that plagues
the Powell-Chau filter. Assuming Siciently fast multipliers, the delay can be further
reduced down to virtually 2 by use of our new computationallyfieient linear-phase

lIR filter with a delay less than that of Kurosu’s filter.
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CHAPTER 3

Efficient Feedforward, Repetitive Control, and lterative

Learning Control of Nonminimum Phase Systems

3.1 Inversion of Non-Minimum Phase Zeros

For minimum phase systems, direct pole-zero cancelatieasgest. However for non-
minimum phase systems, the direct cancelation of NMPZs dvaegult in an unstable
controller. The approximate inverse of NMPZs can be perémrtinrough a high-order
FIR filter through deconvolution or equalization. Long FIReiis are costly in terms
of number of multipliers and additions when compared to Ilrfs [Mit04]. Reusing

FIR filters would significantly reduce the maximum servo r#ite filters can reduce the
number of multipliergadditions enabling faster sampljisgrvo frequencies but stability
becomes an issue. Our proposed inversion has the stalilag &IR filter with the

computational complexity of an IIR filter.
Given some stable (or closed-loop stabilized) linear tinvariant (LTI) system,

a. 0°@b (2

G@@=2 Q)

(3.1)

wherea(z), b*(2), b (2), andd are the stable poles, stable zeroes, unstable zeros, and
relative order, respectively. Let the proposed inversiberfbeF(z) = f~(2) - F*(2) as
illustrated in Fig. 3.1. Table 3.1 summarizes thffetient designs of the filtéd (z) and

F*(2) for their corresponding overall transfer functibiiz)G(z). To better understand

Table 3.1, some definitions are introduced.
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Definition 3.1.1. Define de@) as the degree or order of the polynomial (i.e. number of

roots).

Definition 3.1.2. Define the constanjs

o = degb™(2)). (3.2)

3.1.1 Novel Inversion Filter Structure

For this case, leE*(2) is the inversion of stable pol&ggros where

F'(2 = ;((Z;)M (3.3)
By letting H(2) inside f ~(2) be
H(2) = b—iL(z) M (3.4)

approximate inversions of non-minimum phase zeros is plessince most physical
systems are bandlimitet¥](z) can be chosen to be the reference model, which limit the
bandwidth of the inversion to avoid large gains at the higlq@iency regions. Similarly,
M*(2) needed such that the reference model is linear phase. fRplicity, we will
assumeM(z) = M*(2) = 1. ldeally, a stable inversion is desired such tHafz)| ~

'L . Using Fig. 2.4, Egn. (2.8) and the above choicéi@d) results in

b
1 1
ht(2) = @) [b—*(z)]L’ (3.5)
Notice if L long enough, then
f~(2 = (@z* ~ H*(9z* (3.6)
If H(2) = ﬁ
H*(9z%* = (b—}(z))* 4 (3.7)
1
= b‘—(Z)Z 4L (3.8)



Table 3.1: Choices ofH(2) inside f ~(2) filter andF*(2).

Filter HZ=| F'(2-= F(2G(2

1 a2 ~ 7—(4L+d

Approx. Inv. | g = ~ 739
IR-ZPETC | 2@ | 1 | ~ |Gz
b @) a2 | _ I@F @+
ZPETC | vup | va | = varz

L@ - e [ oer -

Figure 3.1: Realization of approximate NMPZ inversion.

Thus

L) yal Lo
f(z)_(b_(z))Tz Nb—(z)z . (3.9)

Recall f~(2) uses the Kurosu filter (Fig. 2.4) to realize an approximatelse since
in a standard filter form it is unstable. Lettirkg(z) be the inverse of the mirrored
NMPZs will produce an approximate inversion. This means #8sd. — oo, f7(2) -
F'(2 —» H%2) - z*. In summary, Kurosu’s filter allows us to implement_&-
order FIR inversion filter for the NMPZs using only a few IIRtdits. This results in
F(2G(2) ~ z“+9,

3.1.2 IIR-ZPETC

If Hiz) = 2252 andF*(2) = 1, this would result inf~(2) ~ 2@ . 74 we

will denote this choice oH(z) andF*(2) as the IIR-ZPETC wher€ (2)G(2) is approx-
imately linear phase (.6 (2)G(2) = |G(€*)[?z “-+D),
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3.1.3 ZPETC

If H?) = & andF*(2) = £%, the resulting compensator is a delayed ZPETC
[Tom87]. Sinceb(2) is a FIR filter,L = p thenf~(2) = b™*(2) - z*. Using Kurosu’s
filter to implement ZPETC results iR(2)G(2) = %T(“L“’). From a practical stand-
point, implementing the standard ZPETC would probably &ss Iresources on an
FPGA andF(2G(2) = %rwd’. In principle, one could realize ZPETC with a
Powell-ChayKurosu filter. This implies that wherever ZPETC can be aphlithat

lIR-ZPETC and the proposed inversion filter may be possiligraatives.

Comparing the proposed inversion filter against ZPETC aReZIPETC, the pro-
posed filter has more control over the design of the referemogel usingM(2) and
M*(2). We expect in the inversion filter to perform better sirfc€z) is the equivalent

of aL™ order FIR filter whereas th& (2) in ZPETC is only of ordeb™(2).

3.2 Repetitive Control and FPGA Implementation

3.2.1 Novel Repetitive Control Structure

Fig. 3.2 illustrates a simple RC structure whérg) is a type of FF inversion of the
stabilized plantG(z). F(2) can be the proposed inversion, IIR-ZPETC, Kurosu im-
plementation ZPETC, or the classic ZPETC [Tom87, TTC892) inverts the stable
polegzeros cascaded with a linear phase complement of the NMRZs$s adjusted
such that the non-causality, introducedloy (2), is absorbed. Letting (2) be the pro-

posed inversion, theRG ~ z ™2, To ensure stability, RC must satisfy
(z™ -FG)q <1 (3.10)

Notice that| - | is an abuse of notation and (3.10) is meant that the magstace

less than one across all frequencies. Assunki(g) is a nearly perfect inversion, the
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nominal sensitivity function for RC for the lead-stabilizgystem is

1— qz (N+ND)
Sre = 7 T T Faa (3.11)
AssumingFG ~ z™ and (4.15), then
Src~ 1-qz M = 1 _ (ga)zN (3.12)

whereqZz\% is approximately zero phase. To ensure performance of R asiy of the

FF inversion techniques from Section 3\, andN; must satisfy

N, = 4L+d (3.13)
Ny = N—Np—Ng (3.14)
N = fTS (3.15)

where fs is the sampling frequency antdis the reference or disturbance frequency.
g(2) is typically a linear phase low-pass filter (LPF) to maintesbust stability against
model uncertainties and to maintain the zero-phase pypEM94]. Let the actual

plant be denoted &S,(z). Then the stability condition in (3.10) suggests that
|z - FGy| = |z - FG + FG - FG,|. (3.16)

Since|z™ - FG| ~ 0, (i.e.[FG| ~ 1), then

7™ — FG| ~ ’FG (G _ Ga)

G

_’G_Ga
| G

. (3.17)

Using (3.10) and (3.17), a ficient condition for stability with respect t(2) is

lal < (3.18)

G - Ga
The choice ofj(2) then becomes a filter design problem with the constrairhefitter
being a linear phase FIR filtel, is the equivalent linear phase time delay produced by

q(2 (i.e. 2zq(2) = £z ™). To obtain a linear phase LPF, a high order may be necessary.
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For platforms such as a FPGA, this requires either more géparpose-multipliers or
reduction of the maximum sampling rate if these multipliars reused. Fortunately,
the Kurosu filter implementation can resolve these issuesexample of this will be

shown in the next section.

Remark 3.2.1. Notice if F(z) = % a ZPETC from [TTC89], then N= p + d.

Remark 3.2.2. FPGA based digital repetitive control has recently been leygd at
100KHz sampling rate for high-speed scanning of atomic forcerosicopes, where
only plant delay was compensated for realization, i.&) = 1, g(z2) = a/z+ b [KL12].
We are arguably the first to perform accurate inversion congpéion by the very ef-
ficient filter realization, which substantially increasée tstability margin and perfor-

mance in repetitive control.

z N2
+g dy

+
qz ™ F G -

r

0\_

Figure 3.2: RC with feed-forward inversion and lead controller.

3.2.2 FPGA Implementation

In order to make full use of the FPGA's parallel architecture will be using com-
mon filter structures such as the Direct Form Il Transposégl 3), [Mit04]. For
fixed-point FPGA implementations, it is advantageous takre a filter into cascaded

second-order sections (SO&z) such that

k-1
F@ = [%@ (3.19)
i=0
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where
bO,i + bl,irl + bz,iZ_2
l+ayjzt+ayz?

Xi(2 = (3.20)

andk is the number of second-order sections. Reduction to SO&:ifsilfor minimiz-

ing quantization noise [Mit04].

Remark 3.2.3. These second-order sectioned filters are also knowmigsadratidil-

ters.

1
+
/
I\

NlH

D

b2,i —ady;

Figure 3.3: Direct form Il transposed SOS filter structure.

3.3 lterative Learning Control

Iterative Learning Control (ILC) has been extremely popamong roboticists as a
form of control due to their nature of having repetitive mments. As such, ILC is
a control algorithm that learns from iteration to iteratioheach completed path or
movement. In this context, an iteration is defined as theegy$te actuated given some
precalculated control signal. Since, the learning hapfrens iteration to iteration, the
feedforward control signal can be calculateflioe using double precision computa-

tion. ILC is useful in that it is robust against model unciati@s and repeating distur-
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bances. The goal of ILC is not to learn a inversion model bihierato find the correct
control input to obtain the desired output. [BTA06, ACMOTdpide an extensive sur-
vey of the Iterative Learning Control literature. RC and Ib@ve some similarities.
RC can be considered the online version of ILC, as such, maimyst stability crite-

rion derived in RC can be used in ILC as well. [WGI09] providelBroad framework
that links the relationship between ILC, RC, and Run-to-RRAR) control. Long-

man [Lon00] showed that if good transient conditions aresBatl, stability conditions

between linear ILC and linear RC are equivalent.

3.3.1 Iterative Learning Control Formulation

The system description and ILC formulation is basgab[BTA06]. Consider a stable,

discrete-time, single-input single-output, system

G(a) =90)g ™ +9(1)g?+ -+, (3.21)

where the sequenaf0), g(1), ..., is the impulse response agd is the time-domain
shift operator in this context. Furthermore, its inputpuittime domain relationship

can be described as

yj(K) = G(a)u;(k) + d(k). (3.22)
Explicitly written, it is
yi©0 | | 90 o - ofl wo || 40
yi(1) (1) g0 -~ 0 u;(1) d;(1)

Yi(N-1)| [og(N-1) g(N-2) --- g(0)]|uj(N~-1)| [dj(N-1)]

Y G U q;

wherek is the time indexj is the iteration indexd is a repeating external disturbance.
y; is the output of the systef@ given some control input; at iterationj. Additionally,
yj,uj,d areN x 1 vectors ands is aN x N matrix. Assuming thaG(q) is a proper

rational function with relative order of 0. Notice that ifelsystem is strictly proper
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then it is possible to time-advance the system by its redairder to match this formu-
lation. It follows thatG can be seen as a convolution matrix, or alternatively known
as the "lifted-system” framework in the ILC literature. A&C, a common control

law [BTAO6], is

Ujy1 = Q(Uj + Lej). (324)
In its explicit form, it is
ua© | | a0 a1 - a=N-)||] uio)
Uj,1(1) _ q(1) aqo) -+ g(-=(N-2)) u;(1)
Uj.a(N-1)] Ja(N-1) agN-2) --- q©)  |[|uj(N-1)
° 5 (3.25)
0)  1-1) - I=(N-D)|| e0)
. 1(1) 10) - I(=(N-2))|| e(1)
IN-1) IN=2) -~ 10) ||lgN-1)
L €j

where u, L, Q, andj are the control signal, inversion filter (in matrix form)ragphase
low-pass-filter (in matrix form), and iteration number, pestively. Also, the learning

is based & learning from past errors

€ =r-yj
g0 | | r@ | | 0

e(1) @ | | @ (3.26)

e(N-1)] [r(N=-1)] [y;(N-1)]

ej r yj
wherer, an x 1 vector, is the desired output.
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Remark 3.3.1. Notice that since the time signals are finite in time and wéllrbpre-
sented through bold fonts to denote a vector (e.gs [r(0)...r(n - 1)]"). Capital

letters denote matrices, and lower case denote vectors.

Remark 3.3.2. Notice thatG is lower triangular, indicating causality. Howevép and
L are not lower triangular, meaning that noncausal soluti@mes allowed since ILC is

an gfline controller.

3.3.2 ILC for Nonminimum Phase System

The problem of inverting nonminimum phase systems in the liteCature have been
tackled through numerous techniques [AO94, CFR07, FLRG3NBIL, GP99, GPO1,
So0g02]. In many of these techniques they involve noncausdatisns and allowing
the use of preactuation. One method by [MHNOL1] is closelgtesl to the proposed
real-time inversion from Section 3.1. Recall, that Kurasiilter was used to provide
the forward-backward filtering [Gus96] for a real-time eoviment. Assuming that,

also known as theléarning functioriis an approximate inversion @&, similar tof~(2)

from Section 3.1.1, then it can be described as

L = IgF IsF* (3.27)
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In its expanded form,

I0)  I(=1) - I(=(N-1))
1) 1) - I(=(N-2)
IN-1) IN-2) ---  1(0)
L
0 ... 0 1l| (0 o ... 0|

1 o| @ £-(0)

o .= .7 : : .0 (3.28)
1 0 - 0||[f(N-1) F(N-2) - (0

Ir F-
o ... ... 0 1| 0 fr(-1) - -0

1 0ol ) £+(0)

0 .. . : : : L fr(-1)
1 0 - O[|f*(N-1) f*(N-2) SR MO}

IR F*
wherelg, aN x N matrix, be the time-reversal operation in matrix forRt,, aN x N

matrix, represents the conjugate inverse of the nonminimpbase zero.f (i) is the
impulse response q;t% Caution not to confusé(i) by the filterf~(2). F*,aN x N

Toeplitz matrix, is the inversion of the stable poles andgevheref * (i) is the impulse

response ot . Notice that= could possi e noncausal akRd will have
P %24, Notice thatz?2*? could possibly b | aRd will h

p + d super diagonals.

3.3.3 A Robust Stability Condition for ILC

[Lon00] has established an equivalence between ILC and IR, the following ro-
bustness from RC can also be used for ILC. This a zero-phase LPF meant to ensure

robust stability from iteration to iteration. In the ILC freework, stability means that
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the error converges from iteration to iteratio@, is based i of the sameQ(2) from
Section 3.2. In both ILC and RGQ(2) andQ are commonly referred to as the “Q-
Filter” and will be used interchangeably wi. Q, an x n Toeplitz matrix, represents

a zero-phase LPF described as

q(0) q-1) -+ a(-=(N-1))

q(1) q0) -+ a(-(N-2))
gN-1) g(N-2) --- q(0)

Q
0 - 0 1| q 0 - 0|0 - 0 1| q O --- 0
_ 1 0' G G - .E S| 0. G Qo
0o .7 . ] c o0 oo ] : .0
1 0 -+ O] [On-1 On-2 -+- Qo] [T O -+ O] |[On-1 On-2 -+ O]
— —
Ir Ir

(3.29)

where the sequencg, g;, O, . . . , On-1 IS the impulse response of a desired IIR low-pass
filter Q(2) for n time steps. Process of being filtered thro@Qis the same as using the
forward-backward filtering througl(2), giving the filter zero-phase with magnitude
of |Q?(2)|. Although there the one-sidegtransform is meant for signals of length
N = oo, it has been shown that if)), and () are causal, frequency domain analysis
usingQ(2) andL(2) for stability is valid for fixed-length ILC [NG02, AOR96, BYN06].

If Q andL are noncausal, time-delays can be added to compensateefatetays.
Impulse response truncation and lengthening of the rederare techniques previously

mentioned in the RC case (Section 3.2).

Remark 3.3.3. Matlab has a built-in functionfiltfilt(-), for forward-backward

zero-phase filtering.

Remark 3.3.4. Notice for the j= 0 case, assumin@ = | andug = yp = [0...0]",

39



then (3.24) reduces to
up =Lr (3.30)

which is the feedforward control case.
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CHAPTER 4

Fixed-Point Control Example of a Levitated Shaft using

a FPGA

4.1 Experimental System Description

For the purpose of demonstrating the proposed approachh@tRPGA implementa-
tion, a Magnetic Moment MBC 500 levitated shaft system [48$wsed as the plant for

a control experiment. The FPGA used is the National InstniBXI-7833R FPGA
board, which carries a Virtex 1l 3M gate chip having 96 gehprapose 18< 18 mul-
tipliers. A 16-bit word length was used to represent botbkirfitiodticients and signals
because this would produce the moicgent use of resources. Bit-shifting techniques
were used to avoid overflgeaturation. Through system identification and dynamic de-
couplingtransformations, the four-input four-output MIMO systesndiecoupled into

4 separate single-input single-output (SISO) systems [CM\W For simplicity, we
observe only ther-axis translational and rotational systems since Xkaxis is very

similar. The resulting transfer functions are

~68112146 - 1651)6+ 1381)

(s+ 4045)G + 417.3)(s— 387.3)
~58962636 - 2582)G+ 1612)

(s+ 4070)6 + 428)(s— 4416)

P1(s) = (4.1)

Pa(s) =

(4.2)

where the subscript 1 and 2 represents the translationab&attbnal axes, respectively.
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Figure 4.1: Curve fit of translational model data.
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Figure 4.2: Curve fit of rotational model data.

Fig. 4.1 and 4.2 shows the fit of the model compared to actaguincy response
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data collected. Both rotational and translational plamtshet similar polgzero loca-
tions with an unstable pole and a non-minimum phase zero. YFagis andX-axis
have very little &ect one another [CWW10], which justifies our analysis of cthky
Y-axis. TheY-axis is kinematically decoupled inteanslationalandrotationalmodels
which are good for simple controllers. For the design of namaplicated controllers

such as RC, couplinglects may still play a role in performance.

Equation (4.1) shows that the decoupled systems are uastaldimple lead con-
troller with negative feedback is necessary to stabilize dlosed-loop system. The
controller was designed to reduce low frequency sensiti8ince both the rotational
and translational plants are similar, the stabilizing leadtroller can be used for both

axes. The continuous-time controller designed is

3.02816+ 4307)
(s+ 1628)

K(s) = (4.3)

Digital controllers can be designed in the discrete-timmdim directly or by ap-
proximating analog filters designed in the continuous-tadoenain. In the latter ap-
proach the sampling frequency must bdfisiently high to render desired approxi-
mation. Here, the discrete-approximation of the contirsdtiione lead compensator in
(4.3) is approximated by a digital filter at an appropriatenging rate. By applying
the Tustin (Trapezoidal) Transformation to the lead consp&ar and zero-order-hold
to the plant model, Fig. 4.3 illustrates the discrete se#sittunctions with diferent
sampling frequencies and shows that a sampling frequentdkdtz and above would
be suticient for approximating the analog filter. Nonetheless,gmdnstrate a FPGA
realization of the proposed Kurosu inversion filters at a@arg frequency beyond
typical of a real-time target system, the stabilizing leathpensator and subsequent

feedforward and repetitive controller will be designed angdlemented at 100 KHz.
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Figure 4.3: Sensitivity function with diferent sampling rates.

The resulting discrete controller and closed-loop plargs a

3.0281(1- 0.99577Y)
(1-0.983% 1)

~0.020062° (1 - 1.0172°%)

(1-1.98% + 0.98922))
(1-0.995771)(1 - 0.9863 1)

T (1-197521+0.975122)
~0.01730Z (1 - 1.0262°Y)

(1-0.9957z1)(1 - 0.9843 1)
(1-0.995771)(1 - 0.9847°Y)

" (1-1.981z1+0.981722)

K(2) =

(4.4)

Gi(2) =
(4.5)

Ga(2) =
(4.6)

G1(2) and G,(2) represents the discrete-time closed-loop translatiplzait and rota-

tional plant, respectively. From here we will assume thagtational plant and rota-

tional plant are completely decoupled. For brevity, we adidress only the transla-

tional plant since control design and issues for the ratafiplant will be similar.
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4.2 Repetitive Control with ZPETC

We first consider realizing the RC using ZPETC for plant isi@n in the structure

from Fig. 3.2. ZPETC [Tom87] produces the following compeeos

— % 2
FZPETC(Z):[ ! ]b @z

b-(1)* b*(2)
_ g3y 1. (109836 )77a@)
b*(2)

4.7)

The Kurosu's filter realization of the ZPETC introduces diddial three sample delays.
Representing the gain of the ZPETC in (4.7) requires at l&&diits. Additional bits
will be needed for the representation of the input signa). Bi4 gives an indication
of signal dynamic range, where ZPETC is aboutdB@hile the proposed inversion
is only about 4@B. Thus, ZPETC implementation would require significantisg&x
word length than the 18-bits already required for the filtaing The ZPETC can be
cascaded with a linear phase low-pass filter to lower theslgegn at high frequencies
but would require too many multipliers and too much compatetime to fit within the
desired sampling interval. As a result, ZPETC for this systannot be implemented

under the 16-bit constraint.
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Figure 4.4: Magnitude comparison of ZPETC and proposed inversion. filter

4.3 Repetitive Control with Approximate Inversion

A FF controller using the inversion filter from (3.3) and (Bwlas created to track a
delayed reference by inverting the closed-loop stabilpgedtG(z). In fact, the numer-
ator of (3.3) need not ba(z) and can be distributed into the numerator of (3.4) while
retaining the samé&(2)G(2). More specifically, some of the poles Gf{(2), a(z), are
moved to mirrored zeros dfi(2) to change the individual dynamic rangetéfz) and
F*(2) in order to prevent internal overflggaturation.Hi(2), Hx(2), F{ (2 andF;(2)
were chosen to minimize and adjust the dynamic range and fm#&ent range to fit
within a 16-bit frameworkH;(z) andH,(2) are the transfer function inside 6f(2) and
f;(2), respectively. Theddelay introduced by the inversion filter is absorbed into the
delay of the repetitive control loop. For the levitated $tsgstem, the designed filters

are

46



6.9641(1- 2.011z1 + 1.011z°?)

Hi(2) = (1-00983& 1) (4.8)
) = 7.4348(%1— _2.8;5732;1)1.019{2) o)
Hu(2) = (1'?502.;;33;; (4.10)
H21(2) = (i.iogg;4gf) (4.11)
B
iy - 143480109957 (1 - 09843 @13)

(1- 0.99577 (1 - 0.9847Y)

From Fig. 4.5, we chosk; = 500 for H; since it ensures that the impulse response
after 500 samples are well below a 16-bit quantization leMaltice that the first few
steps are large due to the NMPZs and the slow decay is assbevéh the pole. Since,
the translational and rotational plants are simildy,andH, have similar impulse re-
sponses. Thug,; = L, = 500 forH; andH,. When the gains in (4.10) and (4.11) are
realized, they areftectively zero since they are below the 16-bit fixed-pointrgiza-
tion level. The inversion filter dynamic range indicated ly.B.4 and the Kurosu filter
gains and ca@écients in (4.8) to (4.13) suggest that it is feasible to malt with the

FPGA 16-bit fixed-point arithmetics.

The RC was designed for a fundamental frequency of 25 HzfardlO0OkHz with
N = 4000,N; = 2001, and\, = 1999. Notice thalN, # 2000 since a one-step delay
was used to makke(2) andH,(2) causal. Having a delay iH,(2) andH,(2) acts as a
preview when placed in Kurosu’s filter which malds = 1999. The RC should track

periodic reference signals and reject periodic disturbarmd 25 Hz and its harmonics.
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Figure 4.5: Absolute value of impulse responseltef(2): |hi(k)| overlaid with 16-bit

and 32-bit quantization levels.

To ensure stability and robustness of the RC, a linear ploag@ass filter is often
chosen. A sharp gain drogfeenables the closed-loop system to achieve robustness
without sacrificing the closed loop bandwidth. Kurosu'etnphase IIR filter (Fig. 2.4)
is the compromise between the two. It uses the computatmomaplexity of an IIR
filter while retaining the linear phase of an FIR filter. Thagglementation is ideal for

the low-pasg-filter in RC.

Recall, that (3.18) is a $ficient condition for the RC to be robustly stable is by de-
signing aq(2) such that it is lower than the inverse of the multiplicatmedeling error.
To realize the linear phase low-pagfilter, an IIR filter Qpasd2) can be designed using
any traditional filter design techniques [Mit04] to obtdietdesired magnitude charac-
teristic. After placing this filter in the Kurosu’s Filterdm Section 2.3, the resulting
filter will becomeq(2) ~ Q},.(2)Qrasd?) - z*-+. More specifically, uséi(2) = Qpasd2)

inside Kurosu’s filter.
An 1R filter with corner frequency 1508z was designed to satisfy robustness as
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shown in Fig. 4.6 where,

0.00041651% + 1)?
(Z - 1.941z + 0.9431)

4@ ~ Qasd?) Qasd2)Z . (4.15)

Qbasd2) = (4.14)

In Fig. 4.6, the actual closed loop discrete-time pl@gtin (3.18) is calculated from
the zero order hold equivalence of the open loop contindioos-plant data (Fig. 4.1
and 4.2) and the discrete-time lead compendgiétay. It should noted that besides the
fitting error of the model with respect to the frequency rews®) inaccuracies orig-
inate from the decoupling and linearization of the inhdgenbnlinear coupled sys-
tems. Consequently, the g-filter was designed witfigent margins above.2kHz
(Fig. 4.6). Approximate impulse response length was chésée L, = 200. This
means the equivalent FIR filter would require 200 multiptiegps. This also means
Nq = 4L, = 800. Typically,

t121(2) = 0.25+ 0.5zt + 0.252°2 (4.16)

is a popular choice [TT94, HT98, RTH94, TSHO08] since it isshn phase and can be
realized by shift registers instead of multipliers. A ladrawback is its fixed roll-fi
frequency. For systems requiring lower rot-requency, cascading multiple instances
of g121(2) is possible. To obtain similar rollfbcharacteristics afpasd2)?, it requires
close to 80 cascaday],; filters. Another option is using MATLAB’$datool to gen-
erate linear phase filter using the least-squares meth@®@7PBne result is 100order
FIR filter qs(2). Fig. 4.7 compares the magnitude responses fééréint possible FIR
robustness filters. Observe that our Kuragfilter is realized by two 2 order IIR
filters, that uses only 6 multipliers, which is a significa@tuction in resources when

compared to high-order linear phase FIR filters.
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4.4 Experimental Results - Levitated Shaft Example

The control experiment was performed using only 56 of the@tegal purpose 1818
multipliers in parallel. Had we used the FIR implementafianf ~(z2), approximately a
500" order filter, we would have been forced to reuse multipliews @duce the maxi-
mum servo rate to accommodate for the computation time.dReptative experimental

results shown in Fig. 4.8, 4.9, 4.10, 4.11, 4.12 and 4.13 iardsed below.

Figs. 4.8, 4.9, 4.10 show tracking and error power spectiasitly (PSD) of a 5Az
244um peak-to-peak triangular wave, respectively. The leadrotiat for the transla-
tional axis attempts to track a periodic reference. Howelerpresence of the periodic
waveform on the rotational axis, which is only under regolatinfers that the lead
controller is unable to compensate for the coupling betwkenranslational and rota-
tional axis. Furthermore, the “parabolic” shape seen inttheslational output under
lead control can be attributed to magnetic nonlinearity amglifier saturation. The
addition of our feedforward inversion provides better perfance against the coupling
disturbances and nonlinearities than just only the leadroler. RCs were designed
for both translational and rotational systems. The trdimglal RC is used for refer-
ence tracking and the rotational RC is meant for disturbaefaction. Capable of
compensating for Fourier harmonics, the two R€eaively reduce the tracking errors
caused by linear dynamics and nonlinearities. The RMS eatues for the lead-only
feedforward tracking control and RC are listed in Table 4.better illustrate the per-
formance. Since the rotational movement is under reguiatith RC, the error value

is also indicative of the noise level introduced by fixedrgjuantization.
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Comparison of lead, FF and proposed RC.
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Figure 4.11: Experimental Results - Tracking performance of 200Hz siaeenunder

RC.
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Figure 4.12: Experimental Results - Disturbance Rejection of 1kHz siagenon ro-

tation axis. Comparison of lead and proposed RC.
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Figure 4.13: Error PSD - Disturbance Rejection of 1kHz sine wave on tedrsial

and rotation axis. Comparison of lead and proposed RC.

The significant errors in regulating the rotational axishe tead control suggest
significant coupling between the two axes. The FF controkawes the performance
somewhat even though Fig. 4.2 suggests that the modeliagigemall below 1008z
This is due to the axis coupling. RC is able to achieve sulisthnsmaller error even
under the unmodeled couplinfect. Note, that ZPETC Repetitive Control is not com-
pared here because it is not implementable due to the haedwastraints of working
in a 16-bit framework. Fig. 4.11 shows the performance afkireg a 20Hz sine wave
in the translational axis and regulation in the rotationa$aln Figs. 4.12 and 4.13, a
1kHzsine wave disturbance is injected at the control input oftitational axis, while
both the rotation and translation axes were under reguldtalemonstrate disturbance

rejection performance.

56



Table 4.1: Error RMS values, translation reference 244 micron pegbetak triangle

wave and with rotational regulation.

Controller Translation Error] Rotation Error

(um RMS) (urad RMS)

Lead 123.42 250.50
Feedforward 89.64 115.98
Repetitive Control 3.47 19.97
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CHAPTER 5

Improved Fixed-Point Controller Performance using the

Delta Operator

5.1 Background on the Delta Operator

A typical issue that plagues fixed-point realization of cohers is the issue of FWL
effects. Given some cfiicient truncation, phase and magnitude characteristichean
affected. The obvious fix of increasing the word length is oftevhbitive in terms

of both limited resources ayat timing restrictions. Given these constraints, the typ-
ical solution is to use dierent filter realizations, such as Direct Form Il transposed
(DFIIt), to ameliorate quantization noise and FWiteets [Mit04]. Quantization noise
becomes a lower bound to which an error control signal careaeh With high sam-
pling rate, high performance, FWL controllers, the levelgjoantization noise can
be substantial [CT10a]. The Delta Operator is a filter redilin specifically used for
high sampling rates and to mitigate these FWieets. Middleton and Goodwin first
introduced the Delta Operator and studied FWL with and withtbe Delta Opera-
tor [MG86]. The advances with the Delta Operator have broadpout methods in
which the Delta Operator uses slightly more computatioesburces while providing
substantial robustness against FWteets [KLH98, CC07]. This dissertation investi-
gates the performance benefit of using the Delta Operater fotm versus the DFIIt

filter form for the repetitive control of a piezo-electrictaator.
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The Delta Operator is defined as

51 = Agqt
1-gt

(5.1)

whereq ! is the shift operator in the time-domain. The equivalengtiency domain

representation is
1
a_ ATT
1-zV

whereA is the sampling period [MG86]. The block-diagram filter reafion for the

v (5.2)

Delta Operator is shown in Fig. 5.1.

+

Figure 5.1: Implementation of Delta Operatory="1

Fig. 3.3 showed that a controller can be broken into serisgodnd order transfer

functiongfilters defined as

bO,k + bl,krl + bz’kz_z

Hi(2) = :
2) 1+ a1zt +apuz? (5-3)
wherek denotes th&™" second-order section (SOS).
A mapping ofHy(2) into Hy(y), exists as
Hk(2) = He(). (5.4)
z=1+Ay
The resulting Delta Operator SOS would be
-1 -2
He(y) = Bok + B1ky” + Baky (5.5)

1+ iyt + agiy?

Figure 5.2 shows how the DFIIt structure is similar where shét operator,z?, is
replaced by the Delta Operator,t. There exists a relationship betweedomain co-
efficients andy-domain coéficients shown in Table 5.1 and 5&.does not necessarily
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have to be the sampling period since thealues iny~! and codicientsgy, ax cancel
each other out [KLH98]. To save on multipliers,can be chosen to be a power of 2

which can be fficiently realized as simple bit shifts.

r —~ y
| )
Bok
-1
Y
% ) ‘7
)
Bk —@1k
-1
Y
N ‘4
— O
B2k —@2K

Figure 5.2: Direct Form Il Tranposed Implementation - Delta Operator

Table 5.1:

Table 5.2: Delta Operator Cdécient Mapping of Second Order Transfer Function

Bo| Bo=bo |ao| ap=1
bo+b 1l+a
Br|Br=22 | a1 |ar =2

Delta Operator Cdécient M

apping of First Order Transfer Function

Bo| PBo=Dho ap| ao=1
2bp+b 2+a

Br| fr1="2 || o=
bo+b1+b 1l+ai+a

B2 |B2= 252 | az | a1 = =52

60




The Delta Operator can be viewed as the forwaftedence mapping of the unit cir-
cle, in the z-domain, and mapping it into a pseudo s-domaint{iguous time) domain.
Results from [MG86] show that with fliciently high-sampling rate, 12-bit Delta Op-
erator representation is capable of significantly lowemg@ation noise than a 12-bit
shift operator realization. In addition, for every delaytie DFIIt form, the Delta Op-
erator form uses one extra addition which is inexpensivepared to a multiplier. The
Delta Operator is attractive due to its potentially subséhulecrease of quantization
noise comes at a slight increase in computational comglgxRW97]. The use of the
Delta Operator seems to be a very useful in the cases of kigiplgég rate control on

a FPGA as in Section 5.2.

5.2 A Fixed-Point Delta Operator Repetitive Control Example on

a Piezoelectric Device

5.2.1 System Identification

The experimental example used for this dissertation is zoglectric cutting tool ac-
tuator designed for dynamic variable depth of cut machirnirig08]. In addition to
being mechanically preloaded to reduce hysteresis, aatiestme PI controllerC(2),
was added to prevent position drift of the open loop systz), during regulation and

to reduce the magnitude of the resonant peak of the openslgipm.

The identified closed-loop system in Fig. 5z = CP/(1+CP), was excited with
a pseudo random binary sequence (PRBS) akBH@&ampling rate.. The following
input-output relationship was obtained through Predictwror Method (PEM) type

system identification techniques
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~0.00020352¢ - 7.577)@ — 0.8446)

G(2) =
@ (z— 0.9707)¢? — 1.84% + 0.8812) (5.6)
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Figure 5.3: Plant Data vs. Model

5.2.2 Repetitive Control of Piezoelectric Actuator

Figure 5.4 illustrates a simple RC plug-in structure whie(@ andF(y) is a type of
feedforward inversion of the closed-loop plabtz) [WWZ05, TTC89]. Other varia-
tions of RC include the ZPETC repetitive control structufern87, TTC89]. F(2) is
constructed through the methods of Section 3.1.1 Witk 50. The corresponding
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controllers are

~49135972(1- 0.97072°Y)

(1-0.8446&Y)
. (1-18497" +0.88127%)(1 -~ 18857 + 0.9820r%)(1 - 1.2147" + 0.81767?)
(1- 172421+ 0923722

F'(2 =

(5.7)
HE) = 1 (5.8)
© 26971-2797z1+108z2- 73 '
~7.518 - 016+ 7.878 - 01621 — 9.08% - 01772
H.(2) = (5.9)

1-1.037z1 + 0.40052 - 0.0370&3

ForF(y), techniques from [KLH98] were used to choose appropriategr-of-2 values

for A for every SOS.

(0.3756+ 0.1878/~%)(+0.113851526151328 0.1138/~* + 0.0284y?)

F*(y) =
™) (1+ 0.4340,1)(1 + 0.54731 + 0.09392)
(5.10)
Hy) = Z20676(60212+ 0.0881y1)(4.2894+ 0.3240y1 + 0.0346/2)
7= (1+0.077% (L +y L+ 0.25002)2
. (0:3008+ 011831 + 0.0454/ (1 + 00574/ + 0.02445%) 5.1

(1+0.1378/ 1 + 0.0498?)

N; andN; are chosen such thil + N, + Ny = N andN = f/fs. fsis the sampling
frequency,f is the fundamental frequency of the periodic reference studbance, and
N, is the equivalent linear phase delay introduced by the losg filterq(z). RC will
track and reject the fundamental frequency and all of itelmaics of the reference and
disturbance, respectively. For our application, the samggtequency was chosen such
that fs = 100kHz The high sampling rate is necessary to trackEAtriangular wave.
A base frequency of 238z, N = 400, to accommodate the long delay frdéi(e) or

F(y) and since 250 is common factor of 1000.

q(2) was chosen to be 25+ 0.5z 1 + 0.25z2 with an equivalent phase delay of%
with Ngq = 1. q(2) is a linear phase low pass filter where thefio&nts are represented

as dficient bit shifts instead of multipliers. Thaz) in the repetitive controller serves
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to help stabilize the system and can be seen as a frequenepndkay learning gain
[TT94]. Given the choice ofi(z) andL, thenN, = 4L + p + d = 200+ 3+ 1 = 204 and
N; = N—N; — Ng = 400—- 204- 1 = 195.

z N2
=
(O—qz™ F Hu g
roe( W +1Y

-

O
@
U
|

Y
|

Figure 5.4: Add-on RC with feed-forward inversion and PI controller.

5.2.3 Experimental Results

A Xilinx Virtex 5 based National Instruments FPGA PCle-78bas used to imple-
ment both, the DFIIt and Delta Operator, forms of a repeditontroller. All filter
(controller) codicients were implemented using a 16-bit representationendignals
were represented with 32-bit to ameliorate overfkaturation &ects. A sampling rate
of 100kHzwas used to track high frequency periodic references fdr that DFIIt and

Delta Operator implementation.

Figures 5.5 and 5.6 compares the experimental results waekirig a kHztrian-
gular reference. The reference tracking plotin Fig. 5.:&hadequate performance for
both the DFIIt and Delta Operator realization. The erronalg in Fig. 5.5 show that
both filter forms approach their respective quantizatiosetioor. As seen in [CT10a],
guantization noise floor prevents the error from reachirgphlte zero. As predicted,
the Delta Operator error is much lower than the DFIIt reaidres error. The control
signal,u, of Fig. 5.5 refers to only the contribution of the repettisontroller portion
(output ofF(2)). We can see in the “control signal” that the signal is nagbuperiodic

but laced with quantization noise. Figure 5.6 shows the p@pectral density (PSD)
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of the error signal of the DFIIt and Delta operator reali@ati Quantization noise can
be seen in in both the DFIIt and Delta Operator across aluiagies bands but the

Delta Operator has much less.

Quantization noise is typically a function of both the fil{eontroller) and the ref-
erence signal. Table 5.3 lists the max erf@fsd, and RMS errorerus, for reference
signals with varying magnitudes and frequencies. In theeD@perator realization, the
errors grow linearly with respect to the magnitude of therefice. However, this is
not the case in the DFIIt realization where the errors haeeine much larger than ex-
pected from the linear growth as the reference magnitudeases beyond some level.
At small magnitudes, such as regulation phtreference, therys of Delta and DFIIt
are comparable buena., of DFIIt is significantly larger. Overall, the general trend
shows that the erronena anderys is almost always smaller in the Delta Operator

form than the DFIIt for this experiment.
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Reference Tracking — 1kHz Triangle Wave
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Figure 5.5: Reference tracking, error, and control signal for refeeenic1kHz trian-

gular wave.
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Error PSD - 1kHz Triangle Wave — DFIIt
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Figure 5.6: Error PSD for reference tracking of 1kHz triangular wave.

Table 5.3: Repetitive Control Performance with Delta Operator andIDFI

€rms (M) |€max (um)

Triangular
Reference| Delta | DFIIt Delta DFIIt
Oum 0.0247| 0.0251| 0.1158| 1.0675

+0.50um | 0.0288| 0.0799| 0.1460| 2.0847
| #1.0lum | 0.0367| 0.0989| 0.2014| 22609
é +2.0lum | 0.0589| 0.3259| 0.3172| 3.2025
+4.03um | 0.1087 | 2.4832| 0.5338| 7.6437
+8.06um | 0.2190 | 45914 | 0.9869| 11.0728
+0.52um | 0.0596 | 0.0869| 0.1964| 2.1350
~ | *104m | 0.1105| 0.2235) 0.2870| 31068
&N | £2.09um | 0.2164| 1.7736| 0.4985| 6.4806
+4.19um | 0.4260 | 3.0222| 0.8812| 8.7616
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The dficient NMPZ inversion and RC structure haved been improvealtih the
Delta Operator on a FPGA and established a dfiicient repetitive control structure.
The experimental results for controlling a piezoelectatuator show that the improve-
ment of Delta Operator over the DFIIt is significant. Since BEGA realization does
not reuse the computation resources to serialize the bsjggaal processing during the
controller update, the sampling rate of the controller cambreased to near the FPGA
clock speed, 4BIHz in our case, if it is called for in other applications. At sudigh
rate, it would be unlikely to realize high-order controiesuch as the inversion based
repetitive control, without exploiting theffecient digital signal processing techniques

discussed in this dissertation.

5.2.4 Tradedf between Accurate Inversion versus Quantization Noise Redtion

Inherently, there are techniques to reduce quantizatiosenig&LH98], however it
comes at the cost of inaccurate inversibiiz) from this chapter will serve as a demon-

strative example to show the benefits of the Delta Opera®otiar the DFIIt.

Fig. 5.7 demonstrateshen the quantization noise ignored, the Delta Operator
SOS ,F(y), and DFIIt filter realizationF(2), are pretty much the same. One thing to
note that with 16-bits there is warping of the frequency oexse at higher frequencies
of F(2).
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Figure 5.7: Bode plots ofF*(2) with codficient quantization and fierent filter real-

izations wherd-(2) is designed for an accurate filter inversion.

Fig. 5.8 shows the results when some bitsF¢z) andF(y) are used to accommo-
date scaling gains to help reduce theets of quantization noise. The DFIIt Realiza-
tion (F(2) and the Delta Operator SOE(fy)) had the same scaling gains applied but
their frequency responses varies drasticalfy) seems to mimic the double-precision

version ofF(2) the best.
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Figure 5.8: Bode plots ofF*(2) with codficient quantization and fierent filter real-

izations wherd-(2) is designed to also reduce quantization noise.

Knowing that even for the best case, a 16Hiiy) or F(2) cannot perfectly invert the
high frequencies accurately. Previous chapters havedgirestablished that with cur-
rent hardware, double-precision repetitive control f@& ¢onstraints of this experiment
is not possible. This begs the question of whether isfilime equivalent of repetitive
control that exists that can help serve as that performaaeehmark. The next chapter

will address this filine equivalence.
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CHAPTER 6

Floating Point Control Example on a Piezoelectric

Actuator using lterative Learning Control

The same piezoelectric actuator, as described by (5.6)inseection 5.2 is same the
one used for this chapter. The sampling rate still remaid®@kHz with a closed-loop
PI1 controller to ameliorate hysteresiexts. The ILC is performed on a Labview Re-
altime PC which transfers the desired profile to the Natidnsiruments PCle-7852
FPGA board to send the controller commands for every run efettperiment. The
control law used were basedtf @f (3.24), (3.26), (3.27), and (3.29). This section
mainly serves to serve as a bench mark for the results ofd@esi2. Since we are un-
able to perform double-precision linear repetitive cohthwe to hardware limitations,
double-precision linear ILC can serve as an equivalent oreaas long as initigiinal
conditions are well-behaved (as discussed in Section Bathis chapter experimental
results from the DFIIt RC (Section 5.2), Delta Operator REqtdn 5.2), ILC experi-

mental ILC results, and ILC simulation results are gathesdicompared.

To ensure that we are analyzing similar performance ooitelbetween double pre-
cision ILC and fixed-point RC, the time-domain data used toutate the error is im-
portant. In Fig. 6.1, illustrates what the RMS or max errams ldased fi of. The
reference signal contains approximately 50 periods of éfierence triangular wave.
The beginning is zero-padded to allow for noncausal andapteation solutions. The
end is also zero-padded to set the same initial and final tiondito ensure accurate
results if the forward-backward filtering technique is utedalculate these noncausal

solutions. The error is computed from the 1000 points latatehe middle of 50 tri-
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angular periods. We choose these points in order to produ€eetrors that can be

compared to the steady-state errors of the fixed-point R@itssfsom Section 5.2.

Output signal of piezo tracking a 2kHz Waveform
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Figure 6.1: Error based on the middle 1000 sample points to establisikagnt error

as RC.

6.1 Robust Stability Condition

The robust stability condition mentioned in (3.18), is #isient condition for stability.
This means that for certain frequencies, it is possible|@gj., | > 'G_LGJ and the ILC
converges. Fig. 6.4. Fig. 6.5 shows ti@t.q(2)| is only slightly greater thaiQparen(2)!,
the error of the ILC diverges. This also implies a degree efc@ssity” for this robust

stability condition for this specific example.
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Figure 6.3: Qparely slightly violates robustness condition, ILC still convesy

73



Magnitude (dB)

| |

-100- = 3
10 10 10 10
Frequency (Hz)

Figure 6.4: Plot of |G—LGa| vs. |Q2,4(2), where Q violates robustness condition and

then ILC error diverges.
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Figure 6.5: Qq slightly violates the sflicient stability condition and the ILC diverges.

Unlike the RC, where th€-Filter must be of minimal order to fit on the FPGA,
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ILC does not have that restriction due to if§-tne computation. Fig. 6.6 shows a 5th

order Butterworth low-pasQ-Filter, that satisfies (3.18), results in

4.2153x 106- (1 + 1)’
(2 = 1+z)

(1-0.676%1)(1-1.3921 + 0.497722)
1

X (1-150721+0.623232)(1 - 1714z 1 + 0.847z2)
Notice that|Q,(2)?> will dictate the frequency content the ILC will learn anddka As

(6.1)

a general rule of thumb, the ILC will not learn any frequesqgdast the bandwidth of

1Q:(2)1%.

Magnitude (dB)

G
Fremem

— G

-100
10

10° 10
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10

Figure 6.6: Plot of|G_LGa| vs. |Q3(2)l, where Q satisfies robustness condition.

6.2 Convergence of ILC

As long as asymptotic convergence is guaranteed in theéiderdomain through th&-
Filter, then rate of convergence can be discussed. Conweggate is highly dependent
on the learning functioh.. If L is chosen to be an accurate and stable plant inversion,
the error can converge in as little as 1 iteration [BTAO6]nc®i theL in this chapter

is chosen to be an approximate plant inversion, we can segir6 ¥ how accurate
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the model and its inversion are. The results show that the does not convergence
until the 3rd or 4th iteration, meaning that there are stithe unmodeled dynamics and
plant uncertainties that the ILC adjusts for. For the reshefpaper, we’ll use the 5th

iteration as the basis of our steady-state error calcuigtio

10’

—&8— £ 8.06 um 1kHz Triangle Wave
—A— + 4,19 um 2kHz Triangle Wave

RMS Error (um)

Iteration Number

Figure 6.7: RMS error convergence plot for ILC giventtiirent reference profiles.

6.3 Example of Iterative Learning Control - Simulation vs. Exper-

imental Results

The example in the previous section showed that ILC congengéess than 5 steps.
This quick convergence implies that both the inversion andehof the system is fairly
accurate. With a fairly accurate model of the system andr#wa, then it means that

simulation and experimental results should align fairtyselly.

Fig. 6.8 compares simulation and experimental results epigzoelectric actuator
example. The time domain plot shows nearly identical pemntorce for reference track-
ing performance after the YQteration of learning. The power spectral density (PSD)
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plot shows that harmonics are learning more or less equalyiw both the simula-
tion and experimental case. The majoffelience is the broadband quantization noise
present in the experimental case from the fixed-point Plrotlat, analog-to-digital

convertor, and digital-to-analog converter.
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Figure 6.8: Comparing 18 iteration of ILC simulation and experimental results.
Time domain and error PSD results used to highlight minfiedénces

in simulation and experimental results.

6.4 Comparison Between @ine Double-Precision FF Control and

Double-Precision ILC

Recall that Remark 3.3.4 mentioned thaQf= | and iterationj = 1, that the ILC

reduces to theffline double-precision FF case. Table 6.1 compares perfaenbe-

tweenQ =1 andQ = Q; (Q: is based & Q.(2). Q.(2) will ignore high frequency
content of your desired reference signal. On the other h@n@) also serves to reject

model uncertainties at high frequencies.
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Table 6.1: Comparing of performance between double-precisifitine FF and first

iteration of the double-precision ILC.

erms (um) |€masl ()

Triangular
Magnitude| FF ILC FF ILC
Oum 0.0274| 0.0358| 0.1057 | 0.1410

+0.50um | 0.0298| 0.0370| 0.1199| 0.1505
~ | £1.0lum | 0.0395| 0.0375| 0.1156| 0.1540
é +2.01um | 0.0712| 0.0480| 0.1798| 0.1972
+4.03um | 0.4654| 0.0757| 1.1588| 0.3339
+8.06um | 1.5115| 0.1375| 3.5562 | 0.5923
+0.5Z2um | 0.0407 | 0.0395| 0.1307| 0.1373
N +1.04um | 0.0774| 0.0515| 0.2715| 0.1890
& | +209um | 0.1988| 0.0909 | 0.5078| 0.3527
+4.19um | 0.3831| 0.1702| 0.9078| 0.6550

6.5 Comparing of Fixed-Point Repetitive Control and DoublePrecision

ILC

It has been established in Section 3.3 that under certaiditiams, ILC and repetitive
control are equivalent. This equivalence is useful in aeieing what type of perfor-
mance double-precision real-time repetitive control celmeve if there were no hard-
ware limitations. By using the double-precision ILC resulive can determine how
close the Delta Operator RC and DFIIt RC can get to doubleigiom ILC results.
Fig. 6.9 and 6.10 serves as an illustrative example of ange¢hflermance dferences
between fixed-point controllers and double-precision iif@apoint controllers. It is

interesting to note the performance gains from the Deltar@perealization over the
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DFlit realization. Furthermore, it also illustrates hows¢ the fixed-point Delta Oper-

ator is to the floating-point double-precision ILC.

Table 6.2 lists the RMS errore{ys), maximum absolute errorgeax), and the
average of the ten largest absolute err{gs.(1olavg) for multiple controller implemen-
tation. [emaxiolavg IS USed to ensure thinay isn’t an outlier (e.g. spike from electronic
noise). The controllers being compared are the simulat€ double-precision exper-
imental ILC, fixed-point experimental Delta RC, and fixedr@xperimental DFIIt
RC. All three cases were setup for reference tracking obadguilar wave with various

amplitudes and frequencies.

10

DFIIt RC

8t A Delta RC |
\N ILC
61 — — ' Ref E

Position (um)

_10 L L L L L
0 0.1 02 03 04 05 06 07 08 09 1

Time (sec) 1072

Figure 6.9: Tracking Performance Comparisor=8.06um 1kHz Triangular Wave.
Results compare performance between double-precisionfik€tl-point

DFIIt RC, and fixed-point Delta-RC.
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Figure 6.10: Comparison of error PSD for double-precision ILC, fixedrmadDFIIt
RC, and fixed-point Delta-RC given-£8.06um 1 kHz triangular refer-

ence.
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Figure 6.11: Comparison of error PSD for ILC and Delta RC.
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Table 6.2: Comparing the simulated ILC (Sim. ILC), the Double-premsiLC (ILC), the fixed-point Delta Operator RC (Delta RC),

and the fixed-point DFIIt RC (DFIIt RC) steady-state perfamoe for tracking of a triangular profile.

erms (um)

|€ma| (L)

|E€max10lavg ()

Triangular

Magnitude

Sim.

ILC

ILC Delta

DFIIt

Sim.

ILC

ILC

Delta

DFIIt

Sim.

ILC

ILC

Delta

DFIIt

Oum

0.0000

0.0358| 0.0247

0.0251

0.0000

0.1410

0.1158

1.0675

0.0000

0.1021

0.1089

0.8647

1kHz

+0.50um

0.0005

0.0370| 0.0288

0.0799

0.0020

0.1505

0.1460

2.0847

0.0020

0.1108

0.1328

1.7780

+1.01um

0.0009

0.0375| 0.0367

0.0989

0.0040

0.1540

0.2014

2.2609

0.0040

0.1148

0.1872

2.1400

+2.01um

0.0018

0.0480(| 0.0589

0.3259

0.0081

0.1972

0.3172

3.2025

0.0081

0.1727

0.2980

3.1233

+4.03um

0.0037

0.0757| 0.1087

2.4832

0.0161

0.3339

0.5338

7.6437

0.0161

0.3105

0.5223

7.3192

+8.06um

0.0074

0.1375| 0.2190

45914

0.0323

0.5923

0.9869

110728

0.0323

0.5689

0.9723

106911

2kHz

+0.52um

0.0013

0.0395| 0.0596

0.0869

0.0044

0.1373

0.1964

2.1350

0.0044

0.1199

0.1872

2.0247

+1.04um

0.0026

0.0909| 0.1105

0.2235

0.0088

0.1890

0.2870

3.1068

0.0088

0.1720

0.2806

2.8102

+2.09um

0.0053

0.0515| 0.2164

1.7736

0.0176

0.3527

0.4985

6.4806

0.0176

0.3353

0.4820

6.2041

+4.19um

0.0106

0.1702| 0.4260

3.0222

0.0353

0.6550

0.8812

8.7616

0.0353

0.6092

0.8652

8.4407




Table 6.2 and Fig. 6.11 show that for small reference magdaguhat the ILC noise
floor is actually larger than the Delta Operator RC noise flbatice that three types of
errors are given to give a complete picture. The simulatiased ILC (Sim. ILC) rep-
resents the best case when the model is assumed perfectongttiernal disturbances
present (i.e. error stems only from the ILC). Under largegmtades, the experimen-
tal results of ILC have smaller error due to the smaller gaation noise of double-
precision computation. However, it appears under certamlitions, fixed-point filters
under the Delta Operator and DFIIt formulation of RC actuadiduce noise at high
frequencies. Recall, the LPF g-filter a@Qdused in RC and ILC, respectively. Since
the RC was implemented in fixed-point, at a certain magniattEnuation, any high
frequency content in the error signals will enter the quaatibn floor and will not be
amplified by inversion filterf ~(2). However for ILC, the quantization floor is signif-
icantly lower and thus high frequency content can still bgolifired by the inversion

filter (“learning function”)L.

6.6 ILC with Various High Order Q-Filter

Since, the Q-filter in ILC is implementedibne, filter order and the introduction of
phase distortion is not an issue since zero-phase teclmayaevailable (e.g. Chapter
2). We can freely design aggressive filter gains without m@rsg phase in order to
maximize performance. Instead of the typical LPF, we canaubdrary magnitudes

to get as close to the robustness criterion (3.18) withaniating it. Fig. 6.12 shows

an aggressive Q-filteiQ,(2), was designed as a Chebyshev 1 LPF cascaded with a

Chebyshev 2 notch filter resulting in
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0.1913- 0.02634 ! + 0.25267°2 - 0.02634 2 + 0.191%
QA7) = ( 1-1301z1+ 113222 034153 + 0.09317% )
. (0.7199— 3.7641 + 8720222 — 1134003 + 8.72022°* — 3.76412°5 + 0.719%6)
1.0000- 46715 1 1 9.663% 2 — 1122953 + 7.713Z % — 2.966& 5 1 0.5030 5

(6.2)

In addition to tracking the bandwidth @;(z), Q.(2) now has the added advantage
of tracking frequencies in the 10-11kHz range. Table 6.3vshoowQ,(2) and Q,(2)
affects the errors éerently given various frequencies and amplitudes. Fig3 6dm-
pares the performanceftérences whe®:(2) or Q»(2) is used. For triangular waves,
typically the B, 39 and 3" harmonics are the dominant frequency components. For a
1kHz triangular waveQ);(z) and Q,(2) pass the 1, 3 and 5 kHz harmonics which ex-
plains the minor improvement f@,(z). For the 2kHz triangular wav€), (z) passes the
2kHz and parts of the 6kHz frequency lip(z) passes the 2, 6, and 10kHz frequencies.
This explains the substantial error reduction for the 2kimngular wave. Similarly,

the 3.5kHz triangular wave also sees an error reductioresii€z) passes only the

3.5kHz frequency an@®,(z) passes the 3.5 and 10.5kHz frequency components.

Magnitude (dB)

G
Frememi

— |Q3(»)]

-100 v
10 10 10
Frequency (Hz)

10

Figure 6.12: Plot of | 55| vs. 1Q5(2)l, where Q satisfies robustness condition.
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Table 6.3: Sim. ILC, Q1(2) ILC, Q2(2) Delta-RC steady-state performance for tracking of a ¢niger profile.

Erms (um)

|€masl (L)

|emax10|avg (,Um)

Triangular

Magnitude

Sim.

ILC

Q2(2
ILC

Q1(2)
ILC

Sim.

ILC

Q(2)
ILC

Q:1(2
Delta

Sim.

ILC

Q2(2)
ILC

Q:(2
Delta

Oum

0.0000

0.0312

0.0358

0.0000

0.0957

0.1410

0.0000| 0.0838

0.1021

1kHz

+0.50um

0.0005

0.0320

0.0370

0.0020

0.1072

0.1505

0.0020| 0.0890

0.1108

+1.02um

0.0009

0.0360

0.0375

0.0040

0.1187

0.1540

0.0040| 0.1069

0.1148

+2.02um

0.0018

0.0456

0.0480

0.0081

0.2274

0.1972

0.0081| 0.1643

0.1727

+4.03um

0.0037

0.0701

0.0757

0.0161

0.3138

0.3339

0.0161| 0.2886

0.3105

+8.06um

0.0074

0.1302

0.1375

0.0323

0.5872

0.5923

0.0323| 0.5602

0.5689

2kHz

+0.52um

0.0013

0.0336

0.0395

0.0044

0.1222

0.1373

0.0044| 0.1027

0.1199

+1.04um

0.0026

0.0441

0.0909

0.0088

0.2091

0.1890

0.0088| 0.1663

0.1720

+2.09um

0.0053

0.0677

0.0515

0.0176

0.3024

0.3527

0.0176| 0.2749

0.3353

+4.19um

0.0106

0.1255

0.1702

0.0353

0.5342

0.6550

0.0353| 0.4976

0.6092
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Figure 6.13: Comparison of error convergence using ILC foifelient Q-filters.
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CHAPTER 7

Conclusion

This dissertation has brought together techniques fronsiteal processing commu-
nity and controls community to address the need for highgper&nce controllers at
high sampling rates. It has addressed practical concerlmnitéd computational re-
sources by introducing multi-rate signal processing tepkes to reduce the multipli-
ers and equivalent delay in the linear-phase Powell-@haosu filters. A modified
Kurosu filter produced anficient yet high performing real-time non-minimum phase
inversion feedforward controller. This Kurosu filter-bdseedforward inversion re-
sulted in a modified repetitive controller structure forhigampling rate fixed-point
applications. Experimental results for this new repetitentroller structure were per-
formed on a levitated shaft and piezoelectric actuator toatestrate the féectiveness
of these controllers and to also highlight the propertieBxafd-point controllers. Ex-
perimental results on the piezoelectric actuators sergeshaanalog for atomic force
microscope applications. Delta Operator realizationgwesorporated to reduce quan-
tization noise and to ameliorate filter ¢dbeient quantization féects on the frequency
response. Experimental results on a piezoelectric actshtawed how the Delta Op-
erator substantially improved performance with minor &ddal computational costs.
To complete the study, double-precision ILC was used toesasva practical equiva-
lent to high sampling rate double-precision repetitivetoanf and when the hardware
capabilities becomedfardably available. Given practical limitations on presday
hardware that controllers can be implemented on, this deggen has provided possi-

ble controller structures that are not onBi@ent but also high performing.
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