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Abstract of the Dissertation

High Sampling Rate Dynamic Inversion - Digital Signal
Processing, Filter Realizations and Applications in

Digital Control

by

Herrick Lin Chang

Doctor of Philosophy in Mechanical Engineering

University of California, Los Angeles, 2012

Professor Tsu-Chin Tsao, Chair

In the past few decades, computational power and speed has made it such that the Con-

trols literature has moved away from addressing issues of finite-word-length (FWL) is-

sues, quantization, and limited computational resources.On the other hand, the signal

processing community has studied this issue extensively [Mit04,PB87]. In recent years,

the introduction of Nano and Microelectromechanical systems (MEMS) with large

bandwidth systems requires the use of high-sampling rate controllers. To satisfy such

high sampling-rates, fixed-point based platforms such as Field Programmable Gate Ar-

rays (FPGAs) and fixed-point micro-controllers are needed.This trend results in a need

for high-sampling rate controllers that are more sophisticated than simple loop shaping

while addressing the issues of FWL effects and limited computational resources. The

aim of this dissertation is to introduce novel controllers that incorporate signal process-

ing techniques and address these issues with controller design/realizations to control

high bandwidth electro-mechanical systems.
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CHAPTER 1

Introduction

The investigation of advanced digital controllers for improving performance in high-

bandwidth systems has gained much attention for performance critical applications

such as precision non-circular machining [TCR87,HT98,RTH94,TT94,TSH08], scan-

ning probe microscopy [PBA07, LD07, KL12], computer data storage [KT10, LKC10,

LDW11, WWC11], and power electronics [CKK08, MZE04, WPX10,EML07]. These

advanced controllers improve performance through improved trajectory planning, refer-

ence tracking, and disturbance rejection. However, the computational power necessary

for these controllers tends to constrain the sampling rate of the digital control algorithm

and in turn limits the control performance. Platforms capable of such computational

power include digital signal processors (DSPs), micro-controllers, and personal com-

puters. On one extreme, systems that require high servo rates could be implemented

with analog circuits or hybrid platforms such as field programmable analog arrays

(FPAAs) [SP08,YBR12] but with far less sophisticated control structures, which limits

the control performance. On the other hand, the use of traditional micro-controllers,

DSPs, and personal computers may not provide sufficient parallel processing threads

to complete control computations in a small number of processor clock cycles for high

order control algorithms that require fast sampling rates.

In recent years there has been a rise in popularity of controller implementations on

Field Programmable Gate Arrays (FPGAs), a computational device with programmable

logic gates, have a limited number of adders and multipliersfor arithmetic opera-

tions [HRE09, MD11, MC07, JPK08]. Its popularity stems fromits parallel processing
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ability, low level interface to sensor and actuator electronics, and inherent configura-

bility which allows for the customization and optimizationfor specific applications.

Furthermore, the algorithms on FPGAs can be ported to application-specific integrated

circuits (ASICs). The amount of resources used on an FPGA correlate to size and cost

of the layout of an ASIC.

FPGAs can be configured to emulate DSP cores where the FPGA reuses compu-

tational resources repeatedly in many clock cycles to complete computation but with

substantially reduced servo rates. However the attractiveness of a FPGA for control

applications, from a computational standpoint, stems fromits parallel processing capa-

bilities. Examples of these applications are those that require high sampling rates, such

as in scanning probe microscopy, and multiple parallel loops, such as large channel

count micro actuator array control loops.

Since FPGAs have limited computational resources, realization of the controllers as

filters must take these constraints into account. This is particularly a challenge to high

performance controllers, which often involve high-order filters. Thus, special filter

structures and realizations that use computation resources very efficiently can enable

the use of FPGAs for high performance control at high sampling rates. To reach such

high processing speeds and to maintain the parallel processing properties, computations

are typically restricted to fixed-point computations.

With high-speed fixed-point controllers, the issues of quantization errors and the

of number of multipliers become significant factors on the feasibility of implement-

ing and even stability of certain controllers. Finite-word-length (FWL) effects con-

tribute to quantization noise, and inaccurate pole/zero locations of your desired con-

trollers/filters [FPW97]. In digital control, large sampling rates with respect to a sys-

tem’s bandwidth will cause its discrete-time transfer function to have poles/zeros that

“migrate” towards the unit circle. This “migration” effect coupled with the FWL ef-

fects, only exacerbates the inaccuracy of the pole/zero locations and provides wildly

different frequency responses.
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In this dissertation, we consider accurate inversion of non-minimum phase dynam-

ics with high order filters and their efficient realization. We use this for inversion based

feedforward tracking (FF) and repetitive controllers (RC)and realize them on a FPGA.

As a demonstrative example, we implemented these controllers to control a multi-input

multi-output (MIMO) system at a high sampling rate.

The proposed stable inversion compensator is based on linear phase real-time infi-

nite impulse response (IIR) filters first introduced by Powell & Chau [PC91]. Powell

& Chau’s realization involvesL-length localized time reversals, overlap-add sectioned-

convolutions, and another time reversal. The result is a linear phase IIR filter with phase

equal to that ofz−4L. The “Reset”, from [PC91], used to truncate the impulse response

introduces parasitic sinusoidal phase disturbances resulting in only anapproximately

linear phase IIR filter. To solve the nonlinearity issue, Kurosu [KMT03] exploits the

fact that any finite impulse response (FIR) filter can be represented as the difference

of two IIR filters. He replaces the “Reset” with the difference of two IIR filters which

results in a perfectly linear phase FIR filter, using IIR realizations, without phase distor-

tions. For a long impulse response, a FIR filter realizing thesame input-output relation

would require more multipliers and adders, up to one or two orders of magnitude, than

that of Kurosu’s modified Powell-Chau filter. In other words,our proposed filter struc-

ture is most efficient when impulse responses are long and/or when sampling rates are

high. In this dissertation, we show that with some modifications, Kurosu’s filter can

be used to efficiently invert non-minimum phase zeros (NMPZs). This filteris useful

for feedforward tracking control where a finite length of thedesired output can be pre-

viewed [Tsa94, AT95]. Furthermore, it is also useful for inversion based discrete-time

repetitive control, where both linear phase and inversion filters have been employed in

the repetitive control loop to achieve asymptotic trackingand regulation subject to pe-

riodic disturbances [TT94, TQN00]. In Iterative Learning Control (ILC), similar time

reversal techniques for discrete and continuous time off-line inversion of nonlinear non-

minimum phase plants have been presented [MHN01, GP01]. This off-line technique

3



for ILC which was previously not applicable to real-time RC algorithms. Using tech-

niques from Kurosu’s filter, this dissertation will illustrate a real-time reversal technique

for RC.

Repetitive Control has been found to be useful in applications such as power elec-

tronics [ZW01] due to the periodic nature of the error signals. A version of RC uses

the Zero Phase Error Tracking Controller (ZPETC) [Tom87] toapproximate a plant in-

version. ZPETC performs stable pole-zero cancelation and conjugates of the NMPZs.

Depending on the location of the NMPZs, ZPETC which may result in a large dynamic

range and become numerically unstable. In this dissertation we give a complete formu-

lation of a numerically stable and efficient linear phase inversion filtering based on our

preliminary work in [CT10a, CT10b]. We use the proposed inversion in feedforward

and repetitive control for electromechanical systems at high sampling rate, in which the

ZPETC based approach cannot be effective.

The remainder of this dissertation is structured as follows: Chapter 2 describes a

basic understanding of the Powell-Chau linear phase IIR filter and modified structure

known as the Kurosu filter. The chapter also shows that Kurosu’s filter can be even

more efficient, in terms of number of multipliers and equivalent delay, through multi-

rate techniques. Chapter 3 illustrates the proposed inversion of NMPZs through a mod-

ification of Kurosu’s filter. In addition, it describes how the proposed inversion can be

extended into a new RC structure appropriate for high sampling rate fixed-point con-

trollers. ILC, under the correct conditions, is introducedto serve as a double-precision

equivalent of RC. Chapter 4 provides experimental results showing how the proposed

inversion and new RC can be used in the controller design for amagnetically levitated

shaft. Note that even though 100 kHz sampling rate in this dissertation is merely a

limitation of the ADCs and DACs used. In actuality, the proposed compensators were

designed to operate at or near the clock-rate of the FPGA. Chapter 5 contains experi-

mental results of the proposed fixed-point controllers on a piezoelectric actuator. This

experimental example highlights finite word length effects and demonstrates how the

4



Delta Operator [MG86] can be used to ameliorate these effects with minor increase in

computational cost. Lastly, Chapter 6 contains experimental results of double-precision

ILC on the same piezoelectric actuator. In addition to seeing the performance of ILC,

it also serves as a equivalent of double-precision RC in which we can compare the

performance of the fixed-point results of Chapter 5.
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CHAPTER 2

Enhancement of Powell-Chau/Kurosu Filters

For many current applications, the computational speed andcapability provided by

modern electronics exceeds real-time application requirements. A popular platform,

the field programmable gate array (FPGA), which has the ability to emulate digital

circuits yet remain programmable, can be in this position. One FPGA drawback is

its limited number of general purpose multipliers. Fortunately, multirate processing

can serve as a vehicle to permit more efficient (higher data rate) use of these limited

resources. We shall show how such multirate techniques can improve systems that

employ approximately-linear-phase infinite impulse response (IIR) Powell-Chau filters

and their variants. Using multirate processing, a few such modified Powell-Chau filter

examples demonstrate how to reduce the demand for excessively numerous general

purpose FPGA multipliers. In addition, it is shown that one of these structures can also

reduce the long real-time delay typically associated with Powell-Chau filters and their

variants.

Linear-phase filters have the valuable property that all frequencies pass through

the filter with equal time delays. Traditionally, linear-phase filters are created using

finite impulse response (FIR) filters whose filter-tap coefficent sequences exhibit special

symmetry [Vai93]. Usually, to obtain high quality FIR filters, a large number of taps

are required, which dictates many simultaneous multiplications. By contrast, IIR filters

can provide transfer functionsH(z) with high quality magnitude characteristics while

using significantly fewer tap multipliers. They do not, however, possess the linear-

phase property. The Powell & Chau real-time linear-phase IIR filters [PC91] employ an

6



approach long known to be useful in “off-line” (non-real-time) digital filtering, wherein

data sequences are processed by a nonlinear-phase filter, multiple times, in a way that

results in overall linear-phase behavior. Often such off-line systems process a data

sequence, in both a forward and in a reverse direction–hencethe traditional non-real-

time restriction.

The Powell & Chau linear-phase IIR realization employs length-L localized time

reversals, overlap-add sectioned-convolutions, and another set of time reversals, where

L is the length of the crucial last-in first-out (LIFO) elements. A typical choice ofL

is the approximate length of the first part of the filter’s (infinite) impulse responseh(n)

up to a point where the impulse response sample magnitudes reduce to signal quan-

tization levels. The combination produces a linear-phase IIR filter with phase (delay)

equal to that ofz−4L. The “Reset” used to truncate the IIR impulse response results in

certain unwanted parasitic sinusoidal phase distortions;thus, yielding only an approxi-

mate linear-phase IIR filter. Others [WO94,DPL98,KMT03] have modified the transfer

function and/or the structure to obtain improved frequency responses. Kurosu [KMT03]

modifies and improves on Powell-Chau’s original structure such that the phase imper-

fections of Powell-Chau’s structure are eliminated. The modified filter is proven to have

nophase disturbances. Kurosu exploits the fact that any FIR filter can be represented as

a subtraction of two IIR filters. By combining that feature with the Powell-Chau filter, a

perfectly linear-phase filter can be obtained. The resulting filter has an FIR input-output

relation, but it requires three IIR filters, which could represent a reasonably high multi-

plier/adder hardware penalty when the impulse response is not verylong. For feedback

control applications, Chang and Tsao [CT10a, CT10b] have observed that Kurosu’s

modified Powell-Chau filter could be used to approximate the frequency response of

unstable filters. They then use Kurosu’s filter to approximately invert non-minimum

phase zeros, thereby providing an improvement upon Kurosu’s exact linear-phase struc-

ture. The present chapter uses P/I multirate theory from [JW97, YW99] to reduce the

number of multipliers required to achieve the same input-output characteristics. Also,

7



using multirate theory, a structure is exhibited that can reduce the (long) 4L real-time

delay typically associated with the Powell-Chau filter. Such reductions in both the de-

lays and the number of multipliers are beneficial to real-time applications running on

platforms having limited resources such as filters implemented as ASICs or those using

FPGAs.

Even though both the Powell & Chau and the Kurosu filter use fewer multipliers

than an equivalent FIR filter, there are still opportunitiesto further reduce the number

of multipliers. From an implementation standpoint, the Kurosu filter has slightly more

multipliers, which is due to the presence of theHL(z) filter. Furthermore, the largest

hinderance for both structures is the 4L delay. This delay, can be undesirable in certain

applications such as control system designs or time-sensitive filtering [CT10a, CT10b]

while it may be acceptable in some other applications such aswireless communications

and image processing.

Fig. 2.4 shows that the same filterH(z) is employed three times, which may ap-

pear to be excessive. In principle, the multipliers can be reused through some data

management techniques thereby saving on the number of multipliers. However, the

implementation will vary from one case to another and the analysis of the intermediate

signals can be awkward and complicated.

Concerning the delay problem, if the impulse response ofH(z) is long, the 4L delay

can pose serious problems for time sensitive signal processing such as that in feedback

controls [CT10a, CT10b]. We will now address both of these issues: systematically

reducing multiplier hardware and reducing real-time delay.

2.1 Linear Phase Filtering Background

Definition 2.1.1. Let FIR filters be denoted with a lower-case letter (e.g. d(z)) and IIR

filters with a upper-case letter (e.g. D(z)).
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Definition 2.1.2. Let d⋆(z) and D⋆(z) be defined as the time-reversal filter

d⋆(z) = d(z)|z=z−1 (2.1)

D⋆(z) = D(z)|z=z−1 . (2.2)

Notice that this is also the definition for the complex conjugate of the frequency re-

sponse when evaluated along the unit circle.

Linear phase filters are typically finite impulse response (FIR) filters with symmet-

ric taps (coefficients) [Mit04]. Given some FIR filterd(z), denotee(z) = d(z) × d⋆(z)

whered⋆(z) is the time reversal filter ofd(z). The resultinge(z) will have linear phase

with magnitude response of|D(z)|2 [Tom87].

Definition 2.1.3. | · | is the magnitude of the transfer function evaluated along the unit

circle (i.e., the magnitude of filter frequency response).

e(z) is noncausal but can be made causal by cascading it with the delay elementz−1.

Notice thatd⋆(z)’s zeros are mirrored images ofd(z)’s zeros. Thus, stable linear phase

filters have mirrored pairs for both their poles and zeros. “Mirrored” in this context

is with respect to the unit circle. ZPETC uses this method of conjugating the NMPZ

along with inverting the stable portions of the plant. As forlinear phase IIR filters, it

would mean their poles and zeros would have to come in mirrored pairs. Linear phase

IIR filters are typically not realizable since their conjugate poles are unstable (i.e. the

stable pole’s mirror image is an unstable pole outside the unit circle).

For finite-length sequences (and/or offline calculations) there are linear phase filter-

ing techniques known as forward-backward filtering [KJ74,Gus96]. Simply put:

• A finite-length input is passed through an IIR or FIR filter.

• The output sequence is time-reversed and fed through the filter once again.

• Output of offline filter has linear phase.
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The phase lag/lead introduced by the filter are canceled out when the time-reversed se-

quence is passed through the filter once again. Such applications of forward-backward

filtering have been seen in Iterative Learning Control [MHN01], which use time-reversals

to cancel out the phase but are not applicable in real-time RC.

2.2 Powell-Chau Filter

Powell & Chau [PC91] took the forward-backward filtering concept and produced an

approximately linear phase IIR filter in real-time. To keep the filter stable and to imple-

ment a finite-length time reversal, the impulse response of the desired filter is truncated

by a “Reset” seen in Fig. 2.1. Linear phase is achieved through the time reversals

of the L-length localized time reversals through the use of Last-In-First-Out (LIFO)

structures.L is the approximately the length of impulse response at whichthe impulse

response enters the quantization region. Let us denote the filter within the dotted line in

Fig. 2.1 as the time-reversal filter. The “time-reversal filter” performs a batchL-length

time reversal. Like the forward-backward filter, the“time-reversal filter” will cancel

out any phase lags/leads introduced byH(z). To truncate the impulse response of an

IIR filter, a “Reset” is used to clear the filter states of the previousL-length batch but

also introduces phase non-linearities. This makes the entire filter to be onlyapprox-

imately linear phase. Fig. 2.2 shows a variant which is limit-cycle free [PC91]. The

input-output relation of both Fig. 2.1 and Fig. 2.2 can be approximated by

Y(z)
R(z)

≈ |H(z)|2 · z−4L. (2.3)

Notice that theH1(z) andH2(z) can be different to produce different frequency response

characteristics [DPL98, WO94]. For this dissertation, however, we assume thatH1(z)

andH2(z) are equal (e.g.H1(z) = H2(z) = H(z)) and that they are causal filters.
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Figure 2.1: Powell-Chau approximately-linear-phase filter.

+ +LIFO

H1(z)

H1(z)

z−2L

LIFO

H2(z)

H2(z)

L
L

x r L
L

L
L

yReset 2L

Reset 2L

Reset 2L

Reset 2L

L L

Figure 2.2: Powell-Chau limit-cycle free linear-phase filter

2.3 Kurosu Filter

Fig. 2.4 illustrates Kurosu’s modified Powell-Chau filter. We also require thatH(z) =

H1(z) = H2(z) and are causal. Kurosu [KMT03] replaces the “Reset” in the time-

reversal filter with a difference betweenH(z) andHL(z). Kurosu utilizes the fact that

that any FIR filter can be represented as the subtraction of two IIR filters. H(z) and

HL(z) are both IIR filters of same order, whereHL(z) or [·]L is the truncated or unwanted

portion of the impulse response.H(z) can be described as

H(z) =
b0 + b1z−1 + . . . + bK−1z−(K−1) + bKz−K

1+ a1z−1 + . . . + aK−1z−(K−1) + aKz−K
. (2.4)

in its filter form. Alsoq ≥ r, bi, ai ∈ R. From [KMT03],

HL(z) =
−[c0 + c1z−1 + . . . + cK−1z−(K−1)]

1+ a1z−1 + . . . + aK−1z−(K−1) + aKz−K
(2.5)
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where

c0 = a1h(L − 1)+ a2h(L − 2)+ . . . + aKh(L − K))

c1 = a2h(L − 1)+ a3h(L − 2)+ . . . + aKh(L − K + 1)

c2 = a3h(L − 1)+ a4h(L − 2)+ . . . + aKh(L − K + 2)

...

cK−2 = aK−1h(L − 1)+ aKh(L − 2)

cK−1 = aKh(L − 1).

An alternative way to viewHL(z) is

HL(z) = z−L ·
(

H(z) · zL
)

+
(2.6)

where (·)+ is only thecausalportion of the impulse response.

Definition 2.3.1. Let thetruncated (FIR) filterbe

hT(z) = H(z) − HL(z) (2.7)

= z−L ·
(

H(z) · zL
)

−
(2.8)

where(·)− is only thenoncausalportion of the impulse response.

Definition 2.3.2. Let f−(z) be the“time-reversal filter”

f −(z) = h⋆T(z) · z−4L. (2.9)

From Fig. 2.4, it follows that

Y(z)
R(z)

= h⋆T(z) · hT(z)z−4L (2.10)

= |hT(z)|2z−4L. (2.11)
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( )H z
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L

H z

( )
T
h z

Figure 2.3: Truncation of infinite impulse response at lengthL.

Although this implementation is actually an FIR filter, it istermed as aperfectly lin-

ear phaseIIR filter since it uses IIR realizations and also to remain consistent with

[KMT03]. It is perfectly linear phase because it solves the phase non-linearity problem

introduced by the “Reset” in Fig. 2.1. Fig. 2.3 shows thatL is typically chosen such

that the truncated portion of the impulse response sits nearquantization level. Notice

that asL → ∞, thenhT(z) → H(z) and (2.11)→ (2.3). The length ofL will change

the magnitude characteristics of the frequency response.HL(z) · zL is on the order of

H(z) (i.e. an increase in multipliers). To reduce the number of multipliers,HL(z) can be

represented using a lower-order model approximation usingsome system identification

methods such as Prony’s method [PB87]. Throughout this dissertation f −(z) will also

be referred to as the “time-reversal filter”, and when appropriate it will be mentioned

as the “inversion filter” in Section 3.1.
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Figure 2.4: Kurosu’s exact linear-phase filter.

1
4



2.4 Multiplier Reduction

To reduce the number of copies ofH(z) that are required by Kurosu’s filter, a pipelin-

ing/interleaving (P/I) multirate technique [JW97,YW99], illustrated in Fig. 2.5, can be

employed. In Fig. 2.5 thex1(n) andx2(n) signals are two independent inputs intoH(z)

while y1(n) andy2(n) are the outputs ofH(z)z−1 with x1(n) andx2(n), respectively, as

inputs.

The Fig. 2.5 technique requires operatingH(z) at twice the clock rate, using twice

as many delays (registers or memory), but using just one set of filter-tap multipliers, not

two. For VLSI and FPGA applications, the operation of these multipliers at a higher

frequency is typically not a challenge. The maximum sampling frequency that the

digital filter experiences is usually dictated by the analog-to-digital or digital-to-analog

converters and not by the maximum clock rate for the digital logic.

+ H(z2)↑ 2

↑ 2 z−1

↓ 2 z−1

↓ 2z−1

H(z)

H(z)

z−1

z−1

x1

x2

y1

y2

x1 y1

x2 y2⇐⇒

Figure 2.5: P/I technique to reuse multipliers.

2.4.1 Multirate Solution for Kurosu

Kurosu’s Filter of Fig. 2.4 requires multiple copies ofH(z) andHL(z). Applying the

P/I technique of Fig. 2.5 to the top and bottomH(z) andHL(z) of Fig. 2.4 produces

the dotted box in Fig. 2.6. The two instances ofH(z) andHL(z) of f −(z) result in an

upsampling by two.

Notice however there are actually three instances ofH(z) andHL(z) in Fig. 2.4, all

three of which can be handled by the P/I technique if we employ an upsampling by

three. (See, e.g., Fig. 4 of [JW97].) Fig. 2.7 shows a way to dothis.
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Table 2.1: Number of Multipliers Comparison

Linear-Phase Filter Type No. of Mult No. of Mult

H(z) HL(z)

Powell-Chau (Fig. 2.1) 3m 0

Limit Cycle-Free Powell-Chau (Fig. 2.2) 4m 0

Kurosu (Fig. 2.4) 3m 2m

multirate Kurosu (Fig. 2.6) 2m 2m

multirate Kurosu (Fig. 2.6) - w/o HL 2m 0

multirate Kurosu (Fig. 2.7) - w/o HL 1m 0

If L is chosen sufficiently large,HL(z) ≈ 0 due to quantization noise. The number of

general purpose multipliers can be reduced by excludingHL(z) provided that a longer

delay is acceptable. Table 2.1 reflects both the inclusion and exclusion ofHL(z). We

introduce the parameterm in Table 2.1 to represent the number of coefficients in the

filter. By using Fig. 2.7, a savings of up to 66% is possible.

The P/I multirate technique is useful for reducing multipliers for systems imple-

mented on platforms in which multipliers are used in parallel or used independently,

such as VLSI and FPGA implementations. This multirate structure serializes the gen-

eral purpose multipliers of the filters and reuses them at a rate higher than the analog-

to-digital and digital-to-analog sampling rate. Clearly,however, for applications on

serial processors such as Digital Signal Processors (DSP) and single-core computers,

the proposed technique brings no multiplier savings.
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2.5 Real-time Delay Reduction

As mentioned earlier, one of the largest drawbacks of the Powell-Chau Filter or the

Kurosu filter is the large delay associated with the filter. This problem has been ad-

dressed by Miyase [MTT00]. However, the Miyase approach adds additional filters

(hence, more multipliers) to achieve the smaller delay. Typically, most filter designers

are not willing to pay such a price; general-purpose multipliers are expensive and/or

limited. By combining Miyase’s solution with the P/I technique, we will be able to

reduce the delay while using fewer multipliers.

2.5.1 Miyase’s Filter Structure

It is shown in [MTT00] that by exploiting the overlap-add technique of the time-

reversed filter,f −(z) can be expanded to more than just the two copies ofH(z) that

Powell-Chau and Kurosu both used. Miyase observed that by using N + 1 filters the

delay can be reduced. The relation between equivalent delayand the numberN + 1 of

filters is

Equiv. Delay= 2L/N + 2L. (2.12)

Fig. 2.8 showsf −(z) with N = 2 (i.e., threeH(z) filters). In the Powell-Chau and

Kurosu case where there are twoH(z) filters (N = 1), we find that (2.12) yields the

expected 4L delay. For large enoughN, the delay can be reduced to approximately 2L.

Let M = L/N, whereL andN must be chosen such thatM is an integer.L is still the

approximate length of the impulse response andN + 1 is the number of filters used in

the overlap technique in the time-reversed filterf −(z). As shown in Fig. 2.9, the result

of Fig. 2.8 can easily be extended to Kurosu’s Filter.

Accepting an increase in multipliers to reduce the delay canbe an unattractive com-

promise. As shown in Table 2.2, while the delay can be reducedto 2L, the required
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Figure 2.8: Miyase’s time-reversed filterf −(z) with reduced delay (N = 2).
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Figure 2.9: Miyase’s time-reversed filterf −(z) with reduced delay on Kurosu’s filter

(N = 2).

number of multipliers now comprisesN+1 filters worth of computations. In Table 2.2,

m denotes the number of multipliers used for the filterH(z) or HL(z).

2.5.2 Multirate Structure for Delay Reduction of Time-Reversed Filter

Notice that Miyase’s technique requiresN + 1 copies of the same filter. The P/I mul-

tirate technique shown in Fig. 2.5 can reduce the redundant multipliers introduced by

Miyase’s delay reducing technique. This gives rise to a new technique, one that reduces

both the delayand the number of multipliers of Kurosu’s filter, assuming that the mul-

tipliers are able to perform at the higher sampling rate. ThethreeH(z) and threeHL(z)
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Table 2.2: Delay and Multiplier Costs using Miyase’s Delay Reduction

Case Delay No. of Multipliers

N = 1 4L 2m

N = 2 3L 3m

N = 3 2
3L + 2L 4m

...
...

...

N = n 2
nL + 2L (n+ 1)m

...
...

...

N = large ≈ 2L (N + 1)m

of just the time-reversed filter in Fig. 2.9 can be converted into H(z3) andHL(z3), re-

spectively, using the P/I technique. The resulting filter is seen in Fig. 2.10 whereN = 2,

and where an upsampling of 3 is now employed.

If N is chosen large enough, the delay can be reduced to approximately 2L without

increasing the number of multipliers. Of course, the choiceof N is limited from above

by the maximum sampling rate of the platform’s (e.g., the FPGA’s) general purpose

multipliers. The advantage of adding the P/I technique to Miyase’s method is made

clear by comparing Table 2.3 with Table 2.2. The size ofN is determined by the phys-

ical limitations on how fast the multipliers can operate. Unlike the multirate multiplier

reduction structure, the multirate delay reduction structure can be beneficial in both

serial and parallel processing platforms.

2.5.3 Combining Delay Reduction and Multiplier Reduction

The P/I Miyase technique of this section can easily be combined with the P/I multiplier

savings technique of Section 2.4. Given that the multipliers used are fast enough, delays

and multipliers can be reduced simultaneously. For example, combining the multiplier-

reduced Fig. 2.7 system and the delay-reduced Fig. 2.10 system, we obtain the Fig. 2.11
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Table 2.3: Delay and multiplier costs using P/I technique with Miyase’s delay reduc-

tion

Case Delay No. of Multipliers

N = 1 4L 1m

N = 2 3L 1m

N = 3 2
3L + 2L 1m

...
...

...

N = n 2
nL + 2L 1m

...
...

...

N = large ≈ 2L 1m

system. ThreeH(z) and threeHL(z) filters are introduced by Miyase’s technique in

Fig. 2.9. A fourthH(z) andHL(z) comes from the rightmost dotted box of Fig. 2.4. The

four requiredH(z) andHL(z) blocks are obtained by the use of the singleH(z4) block

in Fig. 2.11.

2.6 Example with Reduced Multipliers and Reduced Delays

Applying the proposed multirate multiplier and delay reduction technique to a lowpass

filter example used by Powell & Chau and Kurosu will illustrate the benefits of the

proposed structure. The following example was implementedon, a Xilinx Virtex-5

LX50 FPGA, accessed via the National Instruments PCIe-7852R board and LabVIEW

graphical development tool. For this filter, the impulse response length is chosen to be

L = 500, where the sampling frequency is chosen to be 100kHz.

The lowpass filter is constructed using a combination of manyall-pass functions.

This structure is advantageous in that it facilitates yet another reduction in the number

of multipliers through use of special all-pass function structures [SL98, VMN86]. The
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Figure 2.11: Multirate reduction of multipliers and delays (N = 2).

2
4



filter transfer functionF(z) is given [PC91,KMT03] as

F(z) =
1
2

[

a0 + z−1

1+ a0z−1
·

b0 + b1z−1 + z−2

1+ b1z−1 + b0z−2

+
c0 + c1z−1 + z−2

1+ c1z−1 + c0z−2
·

d0 + d1z−1 + z−2

1+ d1z−1 + d0z−2

]

where

a0 = 0.1404000

b0 = 0.6832507

b1 = 0.6008522

c0 = 0.2868453

c1 = 0.4101568

d0 = 0.9175521

d1 = 0.7085589.

Table 2.4: Example illustrating comparison of Kurosu Filter with P/I multiplier and

delay reduced Kurosu Filter.

Linear-Phase Filter Type Delay No. of

Multipliers

Kurosu w/o HL(z)(Fig. 2.4) 4000 21

P/I Mult. Reduction w/o HL(z)(Fig. 2.7) 4000 7

P/I Delay Reduction w/o HL(z)(Fig. 2.10) 3000 21

P/I Delay and Mult. Reduction w/o HL(z) 3000 7

(Fig. 2.11)

Clearly, this all-pass implementation ofF(z) requires just seven multipliers. To

illustrate the potential multiplier and delay savings Table 2.4 shows how the original

Kurosu filter (Fig. 2.4) compares with the P/I multiplier reduced structure (Fig. 2.7),

the P/I delay reduced structure (Fig. 2.10), and the P/I combined (multiplier and delay)
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reduction structure (Fig. 2.11). The numbers in Table 2.4 were also confirmed in the

HDL Synthesis Compile report provided by the Xilinx Compiler during FPGA compi-

lation. Notice that P/I techniques for reducing the multipliers and delays do not affect

the magnitude response. Fig. 2.12 shows, usingH(z) = F(z), how, when using differ-

ent upsampled Kurosu filters,f −(z) has the same magnitude response asHT(z). The

nonlinear portions of the phase off −(z) cancel the nonlinear-phase portions ofHT(z)

which makesf −(z)×HT(z) exactly linear-phase. As mentioned previously, ifL is suffi-

ciently long, thenHL(z) can be left out makingf −(z)×H(z) approximately-linear-phase.

Fig. 2.13 illustrates how even upsampling at five times the sampling period (N = 4),

can produce significant delay reduction.
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2.7 Conclusion

Both the Powell-Chau filter and the Kurosu filter bring about the advantages of linear-

phase IIR filtering. Although they are already computationally efficient, we have shown

how a reduction in multipliers can be achieved since many copies of the same filter are

employed in these structures. Using the proposed P/I multirate techniques, Kurosu’s

modified Powell-Chau filter can potentially reduce the number of required multipliers

to one-third the original amount. A single FPGA can benefit from a significant savings

of valuable computation resources which could then be used for additional filters or

other processes. In addition to multiplier savings, additional P/I techniques applied

to Miyase’s delay reduction structure helps to reduce the long (4L) delay that plagues

the Powell-Chau filter. Assuming sufficiently fast multipliers, the delay can be further

reduced down to virtually 2L by use of our new computationally efficient linear-phase

IIR filter with a delay less than that of Kurosu’s filter.
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CHAPTER 3

Efficient Feedforward, Repetitive Control, and Iterative

Learning Control of Nonminimum Phase Systems

3.1 Inversion of Non-Minimum Phase Zeros

For minimum phase systems, direct pole-zero cancelation iseasiest. However for non-

minimum phase systems, the direct cancelation of NMPZs would result in an unstable

controller. The approximate inverse of NMPZs can be performed through a high-order

FIR filter through deconvolution or equalization. Long FIR filters are costly in terms

of number of multipliers and additions when compared to IIR filters [Mit04]. Reusing

FIR filters would significantly reduce the maximum servo rate. IIR filters can reduce the

number of multipliers/additions enabling faster sampling/servo frequencies but stability

becomes an issue. Our proposed inversion has the stability of an FIR filter with the

computational complexity of an IIR filter.

Given some stable (or closed-loop stabilized) linear time-invariant (LTI) system,

G(z) = z−d ·
b+(z)b−(z)

a(z)
(3.1)

wherea(z), b+(z), b−(z), andd are the stable poles, stable zeroes, unstable zeros, and

relative order, respectively. Let the proposed inversion filter beF(z) = f −(z) · F+(z) as

illustrated in Fig. 3.1. Table 3.1 summarizes the different designs of the filterH(z) and

F+(z) for their corresponding overall transfer functionF(z)G(z). To better understand

Table 3.1, some definitions are introduced.
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Definition 3.1.1. Define deg(·) as the degree or order of the polynomial (i.e. number of

roots).

Definition 3.1.2. Define the constantsρ

ρ = deg(b−(z)). (3.2)

3.1.1 Novel Inversion Filter Structure

For this case, letF+(z) is the inversion of stable poles/zeros where

F+(z) =
a(z)
b+(z)

M (3.3)

By letting H(z) inside f −(z) be

H(z) =
1

b−⋆(z)
M (3.4)

approximate inversions of non-minimum phase zeros is possible. Since most physical

systems are bandlimited,M(z) can be chosen to be the reference model, which limit the

bandwidth of the inversion to avoid large gains at the high frequency regions. Similarly,

M⋆(z) needed such that the reference model is linear phase. For simplicity, we will

assumeM(z) = M⋆(z) = 1. Ideally, a stable inversion is desired such that| f −(z)| ≈
∣
∣
∣
∣

1
b−(z)

∣
∣
∣
∣. Using Fig. 2.4, Eqn. (2.8) and the above choice ofH(z) results in

hT(z) =
1

b−⋆(z)
−

[

1
b−⋆(z)

]

L

. (3.5)

Notice if L long enough, then

f −(z) = h⋆T(z)z−4L ≈ H⋆(z)z−4L (3.6)

If H(z) = 1
b−⋆(z)

H⋆(z)z−4L =

(

1
b−⋆(z)

)⋆

z−4L (3.7)

=
1

b−(z)
z−4L. (3.8)
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Table 3.1: Choices ofH(z) inside f −(z) filter andF+(z).

Filter H(z) = F+(z) = F(z)G(z)

Approx. Inv. 1
b−⋆(z)

a(z)
b+(z) ≈ z−(4L+d)

IIR-ZPETC b+(z)b−(z)
a(z) 1 ≈ |G(z)|2z−(4L+d)

ZPETC b−(z)
b−(1)2

a(z)
b+(z) =

|b−(z)|2

b−(1)2 z−(4L+d)

f −(z) F+(z) G(z)
r y

F(z)

Figure 3.1: Realization of approximate NMPZ inversion.

Thus

f −(z) =

(

1
b−(z)

)

T

z−4L
≈

1
b−(z)

z−4L. (3.9)

Recall f −(z) uses the Kurosu filter (Fig. 2.4) to realize an approximate inverse since

in a standard filter form it is unstable. LettingH(z) be the inverse of the mirrored

NMPZs will produce an approximate inversion. This means that asL → ∞, f −(z) ·

F+(z) → H−1(z) · z−4L. In summary, Kurosu’s filter allows us to implement aLth-

order FIR inversion filter for the NMPZs using only a few IIR filters. This results in

F(z)G(z) ≈ z−(4L+d).

3.1.2 IIR-ZPETC

If H(z) = b+(z)b−(z)
a(z) andF+(z) = 1, this would result inf −(z) ≈ b+⋆(z)b−⋆(z)

a⋆(z) · z−4L. We

will denote this choice ofH(z) andF+(z) as the IIR-ZPETC whereF(z)G(z) is approx-

imately linear phase (i.e.F(z)G(z) = |G(eiω)|2z−(4L+d)).
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3.1.3 ZPETC

If H(z) = b−(z)
b−(1)2 and F+(z) = a(z)

b+(z) , the resulting compensator is a delayed ZPETC

[Tom87]. Sinceb−(z) is a FIR filter,L = ρ then f −(z) = b−⋆(z) · z−4L. Using Kurosu’s

filter to implement ZPETC results inF(z)G(z) = |b
−(z)|2

b−(1)2 z−(4L+d). From a practical stand-

point, implementing the standard ZPETC would probably use less resources on an

FPGA andF(z)G(z) = |b−(z)|2

b−(1)2 z−(ρ+d). In principle, one could realize ZPETC with a

Powell-Chau/Kurosu filter. This implies that wherever ZPETC can be applied, that

IIR-ZPETC and the proposed inversion filter may be possible alternatives.

Comparing the proposed inversion filter against ZPETC and IIR-ZPETC, the pro-

posed filter has more control over the design of the referencemodel usingM(z) and

M⋆(z). We expect in the inversion filter to perform better sincef −(z) is the equivalent

of a Lth order FIR filter whereas thef −(z) in ZPETC is only of orderb−(z).

3.2 Repetitive Control and FPGA Implementation

3.2.1 Novel Repetitive Control Structure

Fig. 3.2 illustrates a simple RC structure whereF(z) is a type of FF inversion of the

stabilized plantG(z). F(z) can be the proposed inversion, IIR-ZPETC, Kurosu im-

plementation ZPETC, or the classic ZPETC [Tom87, TTC89].F(z) inverts the stable

poles/zeros cascaded with a linear phase complement of the NMPZs.N1 is adjusted

such that the non-causality, introduced byb−⋆(z), is absorbed. LettingF(z) be the pro-

posed inversion, thenFG ≈ z−N2. To ensure stability, RC must satisfy

|(z−N2 − FG)q| < 1 (3.10)

Notice that| · | is an abuse of notation and (3.10) is meant that the magnitudes are

less than one across all frequencies. AssumingF(z) is a nearly perfect inversion, the
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nominal sensitivity function for RC for the lead-stabilized system is

SRC =
1− qz−(N1+N2)

1− qz−(N1+N2) + FGqz−N1
(3.11)

AssumingFG ≈ z−N2 and (4.15), then

SRC ≈ 1− qz−(N1+N2) = 1− (qzNq)z−N (3.12)

whereqzNq is approximately zero phase. To ensure performance of RC using any of the

FF inversion techniques from Section 3.1,N2 andN1 must satisfy

N2 = 4L + d (3.13)

N1 = N − N2 − Nq (3.14)

N =
fs

f
. (3.15)

where fs is the sampling frequency andf is the reference or disturbance frequency.

q(z) is typically a linear phase low-pass filter (LPF) to maintain robust stability against

model uncertainties and to maintain the zero-phase property [TT94]. Let the actual

plant be denoted asGa(z). Then the stability condition in (3.10) suggests that

∣
∣
∣z−N2 − FGa

∣
∣
∣ =

∣
∣
∣z−N2 − FG+ FG− FGa

∣
∣
∣ . (3.16)

Since
∣
∣
∣z−N2 − FG

∣
∣
∣ ≈ 0, (i.e. |FG| ≈ 1), then

∣
∣
∣z−N2 − FG

∣
∣
∣ ≈

∣
∣
∣
∣
∣
FG

(G−Ga

G

)∣∣
∣
∣
∣
=

∣
∣
∣
∣
∣

G−Ga

G

∣
∣
∣
∣
∣
. (3.17)

Using (3.10) and (3.17), a sufficient condition for stability with respect toq(z) is

|q| <
∣
∣
∣
∣
∣

G
G−Ga

∣
∣
∣
∣
∣

(3.18)

The choice ofq(z) then becomes a filter design problem with the constraint of the filter

being a linear phase FIR filter.Nq is the equivalent linear phase time delay produced by

q(z) (i.e. ∠q(z) = ∠z−Nq). To obtain a linear phase LPF, a high order may be necessary.
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For platforms such as a FPGA, this requires either more general purpose-multipliers or

reduction of the maximum sampling rate if these multipliersare reused. Fortunately,

the Kurosu filter implementation can resolve these issues. An example of this will be

shown in the next section.

Remark 3.2.1. Notice if F(z) = b−⋆(z)a(z)
b−(1)2b+(z) , a ZPETC from [TTC89], then N2 = ρ + d.

Remark 3.2.2. FPGA based digital repetitive control has recently been employed at

100KHz sampling rate for high-speed scanning of atomic force microscopes, where

only plant delay was compensated for realization, i.e. F(z) = 1, q(z) = a/z+ b [KL12].

We are arguably the first to perform accurate inversion compensation by the very ef-

ficient filter realization, which substantially increases the stability margin and perfor-

mance in repetitive control.

qz−N1

z−N2

F G

d
+r + y

−

Figure 3.2: RC with feed-forward inversion and lead controller.

3.2.2 FPGA Implementation

In order to make full use of the FPGA’s parallel architecturewe will be using com-

mon filter structures such as the Direct Form II Transposed (Fig. 3.3), [Mit04]. For

fixed-point FPGA implementations, it is advantageous to break up a filter into cascaded

second-order sections (SOS)X(z) such that

F(z) =
k−1∏

i=0

Xi(z) (3.19)
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where

Xi(z) =
b0,i + b1,iz−1 + b2,iz−2

1+ a1,iz−1 + a2,iz−2
(3.20)

andk is the number of second-order sections. Reduction to SOS is useful for minimiz-

ing quantization noise [Mit04].

Remark 3.2.3. These second-order sectioned filters are also known asbiquadraticfil-

ters.

z−1

z−1

b0,i

b1,i

b2,i

−a1,i

−a2,i

r

+

+

+

y

Figure 3.3: Direct form II transposed SOS filter structure.

3.3 Iterative Learning Control

Iterative Learning Control (ILC) has been extremely popular among roboticists as a

form of control due to their nature of having repetitive movements. As such, ILC is

a control algorithm that learns from iteration to iterationof each completed path or

movement. In this context, an iteration is defined as the system be actuated given some

precalculated control signal. Since, the learning happensfrom iteration to iteration, the

feedforward control signal can be calculated offline using double precision computa-

tion. ILC is useful in that it is robust against model uncertainties and repeating distur-
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bances. The goal of ILC is not to learn a inversion model but rather to find the correct

control input to obtain the desired output. [BTA06, ACM07] provide an extensive sur-

vey of the Iterative Learning Control literature. RC and ILChave some similarities.

RC can be considered the online version of ILC, as such, many robust stability crite-

rion derived in RC can be used in ILC as well. [WGI09] providesa broad framework

that links the relationship between ILC, RC, and Run-to-Run(R2R) control. Long-

man [Lon00] showed that if good transient conditions are satisfied, stability conditions

between linear ILC and linear RC are equivalent.

3.3.1 Iterative Learning Control Formulation

The system description and ILC formulation is based off of [BTA06]. Consider a stable,

discrete-time, single-input single-output, system

G(q) = g(0)q−1 + g(1)q−2 + · · · , (3.21)

where the sequenceg(0), g(1), . . . , is the impulse response andq−1 is the time-domain

shift operator in this context. Furthermore, its input-output time domain relationship

can be described as

y j(k) = G(q)u j(k) + d(k). (3.22)

Explicitly written, it is




yj(0)

yj(1)
...

yj(N − 1)





︸       ︷︷       ︸

yj

=





g(0) 0 · · · 0

g(1) g(0) · · · 0
...

...
. . .

...

g(N − 1) g(N − 2) · · · g(0)





︸                                     ︷︷                                     ︸

G





u j(0)

u j(1)
...

u j(N − 1)





︸       ︷︷       ︸

uj

+





d j(0)

d j(1)
...

d j(N − 1)





︸       ︷︷       ︸

dj

(3.23)

wherek is the time index,j is the iteration index,d is a repeating external disturbance.

y j is the output of the systemG given some control inputu j at iterationj. Additionally,

y j, u j , d areN × 1 vectors andG is a N × N matrix. Assuming thatG(q) is a proper

rational function with relative order of 0. Notice that if the system is strictly proper
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then it is possible to time-advance the system by its relative order to match this formu-

lation. It follows thatG can be seen as a convolution matrix, or alternatively known

as the “lifted-system” framework in the ILC literature. ForILC, a common control

law [BTA06], is

u j+1 = Q(u j + Le j). (3.24)

In its explicit form, it is





u j+1(0)

u j+1(1)
...

u j+1(N − 1)





︸          ︷︷          ︸

uj+1

=





q(0) q(−1) · · · q(−(N − 1))

q(1) q(0) · · · q(−(N − 2))
...

...
. . .

...

q(N − 1) q(N − 2) · · · q(0)





︸                                               ︷︷                                               ︸

Q









u j(0)

u j(1)
...

u j(N − 1)





︸       ︷︷       ︸

u j

+





l(0) l(−1) · · · l(−(N − 1))

l(1) l(0) · · · l(−(N − 2))
...

...
. . .

...

l(N − 1) l(N − 2) · · · l(0)





︸                                             ︷︷                                             ︸

L





ej(0)

ej(1)
...

ej(N − 1)





︸       ︷︷       ︸

ej





.

(3.25)

where,u, L , Q, and j are the control signal, inversion filter (in matrix form), zero-phase

low-pass-filter (in matrix form), and iteration number, respectively. Also, the learning

is based off learning from past errors

ej = r − y j





ej(0)

ej(1)
...

ej(N − 1)





︸       ︷︷       ︸

ej

=





r(0)

r(1)
...

r(N − 1)





︸      ︷︷      ︸

r

−





yj(0)

yj(1)
...

yj(N − 1)





︸       ︷︷       ︸

y j

(3.26)

wherer , an× 1 vector, is the desired output.
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Remark 3.3.1. Notice that since the time signals are finite in time and will be repre-

sented through bold fonts to denote a vector (e.g.,r = [r(0) . . . r(n − 1)]T). Capital

letters denote matrices, and lower case denote vectors.

Remark 3.3.2.Notice thatG is lower triangular, indicating causality. However,Q and

L are not lower triangular, meaning that noncausal solutionsare allowed since ILC is

an offline controller.

3.3.2 ILC for Nonminimum Phase System

The problem of inverting nonminimum phase systems in the ILCliterature have been

tackled through numerous techniques [AO94, CFR07, FLR05, MHN01, GP99, GP01,

Sog02]. In many of these techniques they involve noncausal solutions and allowing

the use of preactuation. One method by [MHN01] is closely related to the proposed

real-time inversion from Section 3.1. Recall, that Kurosu’s filter was used to provide

the forward-backward filtering [Gus96] for a real-time environment. Assuming thatL ,

also known as the “learning function” is an approximate inversion ofG, similar to f −(z)

from Section 3.1.1, then it can be described as

L = IRF−IRF+ (3.27)
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In its expanded form,




l(0) l(−1) · · · l(−(N − 1))

l(1) l(0) · · · l(−(N − 2))
...

...
. . .

...

l(N − 1) l(N − 2) · · · l(0)





︸                                             ︷︷                                             ︸

L

=





0 · · · 0 1
... . .

.
1 0

0 . .
.
. .
. ...

1 0 · · · 0





︸              ︷︷              ︸

IR





f −(0) 0 · · · 0

f −(1) f −(0)
. . .

...

...
...

. . . 0

f −(N − 1) f −(N − 2) · · · f −(0)





︸                                          ︷︷                                          ︸

F−

×





0 · · · · · · 0 1
... . .

.
1 0

... . .
.
. .
.
. .
. ...

0 . .
.
. .
. ...

1 0 · · · 0





︸                    ︷︷                    ︸

IR





f +(0) f +(−1) · · · · · · 0

f +(1) f +(0)
. . .

...

...
...

. . .
. . .

...

...
...

. . . f +(−1)

f +(N − 1) f +(N − 2) · · · f +(0)





︸                                                      ︷︷                                                      ︸

F+

(3.28)

whereIR, a N × N matrix, be the time-reversal operation in matrix form.F−, a N × N

matrix, represents the conjugate inverse of the nonminimumphase zero.f −(i) is the

impulse response of 1
b−⋆(z) . Caution not to confusef −(i) by the filter f −(z). F+, aN × N

Toeplitz matrix, is the inversion of the stable poles and zeros wheref +(i) is the impulse

response ofa(z)
b+(z)z

ρ+d. Notice that a(z)
b+(z)z

ρ+d could possibly be noncausal andF+ will have

ρ + d super diagonals.

3.3.3 A Robust Stability Condition for ILC

[Lon00] has established an equivalence between ILC and RC, then the following ro-

bustness from RC can also be used for ILC. TheQ is a zero-phase LPF meant to ensure

robust stability from iteration to iteration. In the ILC framework, stability means that
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the error converges from iteration to iteration.Q, is based off of the sameQ(z) from

Section 3.2. In both ILC and RC,Q(z) andQ are commonly referred to as the “Q-

Filter” and will be used interchangeably withQ. Q, an× n Toeplitz matrix, represents

a zero-phase LPF described as





q(0) q(−1) · · · q(−(N − 1))

q(1) q(0) · · · q(−(N − 2))
...

...
. . .

...

q(N − 1) q(N − 2) · · · q(0)





︸                                               ︷︷                                               ︸

Q

=





0 · · · 0 1
... . .

.
1 0

0 . .
.
. .
. ...

1 0 · · · 0





︸              ︷︷              ︸

IR

·





q0 0 · · · 0

q1 q0
. . .

...

...
...
. . . 0

qN−1 qN−2 · · · q0





·





0 · · · 0 1
... . .

.
1 0

0 . .
.
. .
. ...

1 0 · · · 0





︸              ︷︷              ︸

IR

·





q0 0 · · · 0

q1 q0
. . .

...

...
...
. . . 0

qN−1 qN−2 · · · q0





(3.29)

where the sequenceq0, q1, q2, . . . , qN−1 is the impulse response of a desired IIR low-pass

filter Q(z) for n time steps. Process of being filtered throughQ is the same as using the

forward-backward filtering throughQ(z), giving the filter zero-phase with magnitude

of |Q2(z)|. Although there the one-sidedz-transform is meant for signals of length

N = ∞, it has been shown that if (Q), and (L ) are causal, frequency domain analysis

usingQ(z) andL(z) for stability is valid for fixed-length ILC [NG02, AOR96, BTA06].

If Q and L are noncausal, time-delays can be added to compensate for the delays.

Impulse response truncation and lengthening of the reference are techniques previously

mentioned in the RC case (Section 3.2).

Remark 3.3.3. Matlab has a built-in function,filtfilt(·), for forward-backward

zero-phase filtering.

Remark 3.3.4. Notice for the j= 0 case, assumingQ = I andu0 = y0 = [0 . . .0]T ,
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then (3.24) reduces to

u1 = Lr (3.30)

which is the feedforward control case.
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CHAPTER 4

Fixed-Point Control Example of a Levitated Shaft using

a FPGA

4.1 Experimental System Description

For the purpose of demonstrating the proposed approach withthe FPGA implementa-

tion, a Magnetic Moment MBC 500 levitated shaft system [40] was used as the plant for

a control experiment. The FPGA used is the National Instruments PXI-7833R FPGA

board, which carries a Virtex II 3M gate chip having 96 general purpose 18× 18 mul-

tipliers. A 16-bit word length was used to represent both filter coefficients and signals

because this would produce the most efficient use of resources. Bit-shifting techniques

were used to avoid overflow/saturation. Through system identification and dynamic de-

coupling/transformations, the four-input four-output MIMO system is decoupled into

4 separate single-input single-output (SISO) systems [CWW10]. For simplicity, we

observe only theY-axis translational and rotational systems since theX-axis is very

similar. The resulting transfer functions are

P1(s) =
−681.1214(s− 1651)(s+ 1381)
(s+ 4045)(s+ 417.3)(s− 387.3)

(4.1)

P2(s) =
−589.6263(s− 2582)(s+ 1612)
(s+ 4070)(s+ 428)(s− 441.6)

(4.2)

where the subscript 1 and 2 represents the translational androtational axes, respectively.
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Figure 4.1: Curve fit of translational model data.
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Figure 4.2: Curve fit of rotational model data.

Fig. 4.1 and 4.2 shows the fit of the model compared to actual frequency response
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data collected. Both rotational and translational plants exhibit similar pole/zero loca-

tions with an unstable pole and a non-minimum phase zero. TheY-axis andX-axis

have very little effect one another [CWW10], which justifies our analysis of onlythe

Y-axis. TheY-axis is kinematically decoupled intotranslationalandrotationalmodels

which are good for simple controllers. For the design of morecomplicated controllers

such as RC, coupling effects may still play a role in performance.

Equation (4.1) shows that the decoupled systems are unstable. A simple lead con-

troller with negative feedback is necessary to stabilize the closed-loop system. The

controller was designed to reduce low frequency sensitivity. Since both the rotational

and translational plants are similar, the stabilizing leadcontroller can be used for both

axes. The continuous-time controller designed is

K(s) =
3.0281(s+ 430.7)

(s+ 1628)
(4.3)

Digital controllers can be designed in the discrete-time domain directly or by ap-

proximating analog filters designed in the continuous-timedomain. In the latter ap-

proach the sampling frequency must be sufficiently high to render desired approxi-

mation. Here, the discrete-approximation of the continuous-time lead compensator in

(4.3) is approximated by a digital filter at an appropriate sampling rate. By applying

the Tustin (Trapezoidal) Transformation to the lead compensator and zero-order-hold

to the plant model, Fig. 4.3 illustrates the discrete sensitivity functions with different

sampling frequencies and shows that a sampling frequency of10kHzand above would

be sufficient for approximating the analog filter. Nonetheless, to demonstrate a FPGA

realization of the proposed Kurosu inversion filters at a sampling frequency beyond

typical of a real-time target system, the stabilizing lead compensator and subsequent

feedforward and repetitive controller will be designed andimplemented at 100 KHz.
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Figure 4.3: Sensitivity function with different sampling rates.

The resulting discrete controller and closed-loop plants are

K(z) =
3.0281(1− 0.9957z−1)

(1− 0.9839z−1)
(4.4)

G1(z) =
−0.020062z−1(1− 1.017z−1)
(1− 1.989z−1 + 0.9892z−2))

·
(1− 0.9957z−1)(1− 0.9863z−1)

(1− 1.975z−1 + 0.9751z−2)

(4.5)

G2(z) =
−0.017307z−1(1− 1.026z−1)

(1− 0.9957z−1)(1− 0.9843z−1)

·
(1− 0.9957z−1)(1− 0.984z−1)

(1− 1.981z−1 + 0.9817z−2)

(4.6)

G1(z) andG2(z) represents the discrete-time closed-loop translationalplant and rota-

tional plant, respectively. From here we will assume that translational plant and rota-

tional plant are completely decoupled. For brevity, we willaddress only the transla-

tional plant since control design and issues for the rotational plant will be similar.
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4.2 Repetitive Control with ZPETC

We first consider realizing the RC using ZPETC for plant inversion in the structure

from Fig. 3.2. ZPETC [Tom87] produces the following compensator

FZPETC(z) =

[

1
b−(1)2

]

b−⋆(z)a(z)z−2

b+(z)

= 1.83× 105 ·
(1− 0.9836z−1)z−2a(z)

b+(z)

. (4.7)

The Kurosu’s filter realization of the ZPETC introduces additional three sample delays.

Representing the gain of the ZPETC in (4.7) requires at least18-bits. Additional bits

will be needed for the representation of the input signal. Fig. 4.4 gives an indication

of signal dynamic range, where ZPETC is about 120dB while the proposed inversion

is only about 40dB. Thus, ZPETC implementation would require significantly larger

word length than the 18-bits already required for the filter gain. The ZPETC can be

cascaded with a linear phase low-pass filter to lower the large gain at high frequencies

but would require too many multipliers and too much computation time to fit within the

desired sampling interval. As a result, ZPETC for this system cannot be implemented

under the 16-bit constraint.
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Figure 4.4: Magnitude comparison of ZPETC and proposed inversion filter.

4.3 Repetitive Control with Approximate Inversion

A FF controller using the inversion filter from (3.3) and (3.4) was created to track a

delayed reference by inverting the closed-loop stabilizedplantG(z). In fact, the numer-

ator of (3.3) need not bea(z) and can be distributed into the numerator of (3.4) while

retaining the sameF(z)G(z). More specifically, some of the poles ofG(z), a(z), are

moved to mirrored zeros ofH(z) to change the individual dynamic range ofH(z) and

F+(z) in order to prevent internal overflow/saturation.H1(z), H2(z), F+1 (z) andF+2 (z)

were chosen to minimizeL and adjust the dynamic range and coefficient range to fit

within a 16-bit framework.H1(z) andH2(z) are the transfer function inside off −1 (z) and

f −2 (z), respectively. The 4L delay introduced by the inversion filter is absorbed into the

delay of the repetitive control loop. For the levitated shaft system, the designed filters

are
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H1(z) =
6.9641(1− 2.011z−1 + 1.011z−2)

(1− 0.9836z−1)
(4.8)

H2(z) =
7.4348(1− 2.018z−1 + 1.019z−2)

(1− 0.9745z−1)
(4.9)

H1,L(z) =
1.8521× 10−6

(1− 0.9836z−1)
(4.10)

H2,L(z) =
2.7084× 10−8

(1− 0.9745z−1)
(4.11)

F+1 (z) =
6.9641(1− 1.975z−1 + 0.9751z−2)
(1− 0.9957z−1)(1− 0.9863z−1)

(4.12)

F+2 (z) =
7.4348(1− 0.9957z−1)(1− 0.9843z−1)

(1− 0.9957z−1)(1− 0.984z−1)
(4.13)

From Fig. 4.5, we choseL1 = 500 for H1 since it ensures that the impulse response

after 500 samples are well below a 16-bit quantization level. Notice that the first few

steps are large due to the NMPZs and the slow decay is associated with the pole. Since,

the translational and rotational plants are similar,H1 andH2 have similar impulse re-

sponses. Thus,L1 = L2 = 500 forH1 andH2. When the gains in (4.10) and (4.11) are

realized, they are effectively zero since they are below the 16-bit fixed-point quantiza-

tion level. The inversion filter dynamic range indicated by Fig. 4.4 and the Kurosu filter

gains and coefficients in (4.8) to (4.13) suggest that it is feasible to realize it with the

FPGA 16-bit fixed-point arithmetics.

The RC was designed for a fundamental frequency of 25 Hz andfs = 100kHz with

N = 4000,N1 = 2001, andN2 = 1999. Notice thatN2 , 2000 since a one-step delay

was used to makeH1(z) andH2(z) causal. Having a delay inH1(z) andH2(z) acts as a

preview when placed in Kurosu’s filter which makesN2 = 1999. The RC should track

periodic reference signals and reject periodic disturbances of 25 Hz and its harmonics.
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Figure 4.5: Absolute value of impulse response ofH1(z): |h1(k)| overlaid with 16-bit

and 32-bit quantization levels.

To ensure stability and robustness of the RC, a linear phase low-pass filter is often

chosen. A sharp gain drop-off enables the closed-loop system to achieve robustness

without sacrificing the closed loop bandwidth. Kurosu’s linear phase IIR filter (Fig. 2.4)

is the compromise between the two. It uses the computationalcomplexity of an IIR

filter while retaining the linear phase of an FIR filter. This implementation is ideal for

the low-passq-filter in RC.

Recall, that (3.18) is a sufficient condition for the RC to be robustly stable is by de-

signing aq(z) such that it is lower than the inverse of the multiplicativemodeling error.

To realize the linear phase low-passq-filter, an IIR filterQbase(z) can be designed using

any traditional filter design techniques [Mit04] to obtain the desired magnitude charac-

teristic. After placing this filter in the Kurosu’s Filter from Section 2.3, the resulting

filter will becomeq(z) ≈ Q⋆base(z)Qbase(z) · z−4Lq. More specifically, useH(z) = Qbase(z)

inside Kurosu’s filter.

An IIR filter with corner frequency 1500Hz was designed to satisfy robustness as
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shown in Fig. 4.6 where,

Qbase(z) =
0.00041651(z+ 1)2

(z2 − 1.941z+ 0.9431)
(4.14)

q(z) ≈ Q⋆base(z)Qbase(z)z
−4Lq. (4.15)

In Fig. 4.6, the actual closed loop discrete-time plantGa in (3.18) is calculated from

the zero order hold equivalence of the open loop continuous-time plant data (Fig. 4.1

and 4.2) and the discrete-time lead compensatorK(z). It should noted that besides the

fitting error of the model with respect to the frequency response, inaccuracies orig-

inate from the decoupling and linearization of the inherently nonlinear coupled sys-

tems. Consequently, the q-filter was designed with sufficient margins above 2.5kHz

(Fig. 4.6). Approximate impulse response length was chosento be Lq = 200. This

means the equivalent FIR filter would require 200 multipliertaps. This also means

Nq = 4Lq = 800. Typically,

q121(z) = 0.25+ 0.5z−1 + 0.25z−2 (4.16)

is a popular choice [TT94, HT98, RTH94, TSH08] since it is linear phase and can be

realized by shift registers instead of multipliers. A largedrawback is its fixed roll-off

frequency. For systems requiring lower roll-off frequency, cascading multiple instances

of q121(z) is possible. To obtain similar roll-off characteristics as|Qbase(z)|2, it requires

close to 80 cascadedq121 filters. Another option is using MATLAB’sfdatool to gen-

erate linear phase filter using the least-squares method [PB87]. One result is 100th order

FIR filter qls(z). Fig. 4.7 compares the magnitude responses of different possible FIR

robustness filters. Observe that our Kurosuq-filter is realized by two 2nd order IIR

filters, that uses only 6 multipliers, which is a significant reduction in resources when

compared to high-order linear phase FIR filters.
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Figure 4.6: Magnitude of q-filter vs. inverse of multiplicative modeling error for ro-

bust stability of translational and rotational systems.
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4.4 Experimental Results - Levitated Shaft Example

The control experiment was performed using only 56 of the 96 general purpose 18×18

multipliers in parallel. Had we used the FIR implementationfor f −(z), approximately a

500th order filter, we would have been forced to reuse multipliers and reduce the maxi-

mum servo rate to accommodate for the computation time. Representative experimental

results shown in Fig. 4.8, 4.9, 4.10, 4.11, 4.12 and 4.13 are discussed below.

Figs. 4.8, 4.9, 4.10 show tracking and error power spectral density (PSD) of a 50Hz

244µm peak-to-peak triangular wave, respectively. The lead controller for the transla-

tional axis attempts to track a periodic reference. However, the presence of the periodic

waveform on the rotational axis, which is only under regulation, infers that the lead

controller is unable to compensate for the coupling betweenthe translational and rota-

tional axis. Furthermore, the “parabolic” shape seen in thetranslational output under

lead control can be attributed to magnetic nonlinearity andamplifier saturation. The

addition of our feedforward inversion provides better performance against the coupling

disturbances and nonlinearities than just only the lead controller. RCs were designed

for both translational and rotational systems. The translational RC is used for refer-

ence tracking and the rotational RC is meant for disturbancerejection. Capable of

compensating for Fourier harmonics, the two RCs effectively reduce the tracking errors

caused by linear dynamics and nonlinearities. The RMS errorvalues for the lead-only

feedforward tracking control and RC are listed in Table 4.1 to better illustrate the per-

formance. Since the rotational movement is under regulation with RC, the error value

is also indicative of the noise level introduced by fixed-point quantization.
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Figure 4.8: Experimental Results - Tracking performance of 50Hz triangular wave.

Comparison of lead, FF and proposed RC.
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Figure 4.9: Error Power Spectral Density (PSD) of Translational Axis - Tracking per-

formance of±122µm 50Hz triangular wave. Comparison of lead, FF and

proposed RC.
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Figure 4.10: Error Power Spectral Density (PSD) of Rotational Axis underregulation

at 0µrad. Comparison of lead, FF and proposed RC.
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Figure 4.11: Experimental Results - Tracking performance of 200Hz sine wave under

RC.
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tation axis. Comparison of lead and proposed RC.
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Figure 4.13: Error PSD - Disturbance Rejection of 1kHz sine wave on translational

and rotation axis. Comparison of lead and proposed RC.

The significant errors in regulating the rotational axis in the lead control suggest

significant coupling between the two axes. The FF control improves the performance

somewhat even though Fig. 4.2 suggests that the modeling error is small below 1000Hz.

This is due to the axis coupling. RC is able to achieve substantially smaller error even

under the unmodeled coupling effect. Note, that ZPETC Repetitive Control is not com-

pared here because it is not implementable due to the hardware constraints of working

in a 16-bit framework. Fig. 4.11 shows the performance of tracking a 200Hzsine wave

in the translational axis and regulation in the rotational axis. In Figs. 4.12 and 4.13, a

1kHzsine wave disturbance is injected at the control input of therotational axis, while

both the rotation and translation axes were under regulation, to demonstrate disturbance

rejection performance.
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Table 4.1: Error RMS values, translation reference 244 micron peak-to-peak triangle

wave and with rotational regulation.

Controller Translation Error Rotation Error

(µm RMS) (µrad RMS)

Lead 123.42 250.50

Feedforward 89.64 115.98

Repetitive Control 3.47 19.97
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CHAPTER 5

Improved Fixed-Point Controller Performance using the

Delta Operator

5.1 Background on the Delta Operator

A typical issue that plagues fixed-point realization of controllers is the issue of FWL

effects. Given some coefficient truncation, phase and magnitude characteristics canbe

affected. The obvious fix of increasing the word length is often prohibitive in terms

of both limited resources and/or timing restrictions. Given these constraints, the typ-

ical solution is to use different filter realizations, such as Direct Form II transposed

(DFIIt), to ameliorate quantization noise and FWL effects [Mit04]. Quantization noise

becomes a lower bound to which an error control signal can achieve. With high sam-

pling rate, high performance, FWL controllers, the levels of quantization noise can

be substantial [CT10a]. The Delta Operator is a filter realization specifically used for

high sampling rates and to mitigate these FWL effects. Middleton and Goodwin first

introduced the Delta Operator and studied FWL with and without the Delta Opera-

tor [MG86]. The advances with the Delta Operator have brought about methods in

which the Delta Operator uses slightly more computational resources while providing

substantial robustness against FWL effects [KLH98, CC07]. This dissertation investi-

gates the performance benefit of using the Delta Operator filter form versus the DFIIt

filter form for the repetitive control of a piezo-electric actuator.
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The Delta Operator is defined as

δ−1 =
∆q−1

1− q−1
(5.1)

whereq−1 is the shift operator in the time-domain. The equivalent frequency domain

representation is

γ−1 =
∆z−1

1− z−1
, (5.2)

where∆ is the sampling period [MG86]. The block-diagram filter realization for the

Delta Operator is shown in Fig. 5.1.

∆ z−1

+

Figure 5.1: Implementation of Delta Operator -γ−1

Fig. 3.3 showed that a controller can be broken into series ofsecond order transfer

functions/filters defined as

Hk(z) =
b0,k + b1,kz−1 + b2,kz−2

1+ a1,kz−1 + a2,kz−2
(5.3)

wherek denotes thekth second-order section (SOS).

A mapping ofHk(z) into Hk(γ), exists as

Hk(z)


z=1+∆γ
= Hk(γ). (5.4)

The resulting Delta Operator SOS would be

Hk(γ) =
β0,k + β1,kγ

−1 + β2,kγ
−2

1+ α1,kγ−1 + α2,kγ−2
(5.5)

Figure 5.2 shows how the DFIIt structure is similar where theshift operator,z−1, is

replaced by the Delta Operator,γ−1. There exists a relationship betweenz-domain co-

efficients andγ-domain coefficients shown in Table 5.1 and 5.2.∆ does not necessarily
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have to be the sampling period since the∆ values inγ−1 and coefficientsβk, αk cancel

each other out [KLH98]. To save on multipliers,∆ can be chosen to be a power of 2

which can be efficiently realized as simple bit shifts.

γ−1

γ−1

β0,k

β1,k

β2,k

−α1,k

−α2,k

r

+

+

+

y

Figure 5.2: Direct Form II Tranposed Implementation - Delta Operator

β0 β0 = b0 α0 α0 = 1

β1 β1 =
b0+b1
∆

α1 α1 =
1+a1
∆

Table 5.1: Delta Operator Coefficient Mapping of First Order Transfer Function

β0 β0 = b0 α0 α0 = 1

β1 β1 =
2b0+b1
∆

α1 α1 =
2+a1
∆

β2 β2 =
b0+b1+b2
∆2 α2 α1 =

1+a1+a2
∆2

Table 5.2: Delta Operator Coefficient Mapping of Second Order Transfer Function
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The Delta Operator can be viewed as the forward difference mapping of the unit cir-

cle, in the z-domain, and mapping it into a pseudo s-domain (continuous time) domain.

Results from [MG86] show that with sufficiently high-sampling rate, 12-bit Delta Op-

erator representation is capable of significantly lower quantization noise than a 12-bit

shift operator realization. In addition, for every delay inthe DFIIt form, the Delta Op-

erator form uses one extra addition which is inexpensive compared to a multiplier. The

Delta Operator is attractive due to its potentially substantial decrease of quantization

noise comes at a slight increase in computational complexity [FPW97]. The use of the

Delta Operator seems to be a very useful in the cases of high-sampling rate control on

a FPGA as in Section 5.2.

5.2 A Fixed-Point Delta Operator Repetitive Control Example on

a Piezoelectric Device

5.2.1 System Identification

The experimental example used for this dissertation is a piezoelectric cutting tool ac-

tuator designed for dynamic variable depth of cut machining[Lin08]. In addition to

being mechanically preloaded to reduce hysteresis, a discrete-time PI controller,C(z),

was added to prevent position drift of the open loop system,P(z), during regulation and

to reduce the magnitude of the resonant peak of the open-loopsystem.

The identified closed-loop system in Fig. 5.3,G(z) = CP/(1+CP), was excited with

a pseudo random binary sequence (PRBS) at 100kHz sampling rate.. The following

input-output relationship was obtained through Prediction Error Method (PEM) type

system identification techniques
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G(z) =
−0.00020352(z− 7.577)(z− 0.8446)
(z− 0.9707)(z2 − 1.849z+ 0.8812)

×
(z2 − 1.724z+ 0.9237)(z2 − 3.222z+ 3.559)
(z2 − 1.885z+ 0.9829)(z2 − 1.214z+ 0.8176)

.

(5.6)
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Figure 5.3: Plant Data vs. Model

5.2.2 Repetitive Control of Piezoelectric Actuator

Figure 5.4 illustrates a simple RC plug-in structure whereF(z) andF(γ) is a type of

feedforward inversion of the closed-loop plantG(z) [WWZ05, TTC89]. Other varia-

tions of RC include the ZPETC repetitive control structure [Tom87, TTC89]. F(z) is

constructed through the methods of Section 3.1.1 withL = 50. The corresponding
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controllers are

F+(z) =
−4913.5972(1− 0.9707z−1)

(1− 0.8446z−1)

×
(1− 1.849z−1 + 0.8812z−2)(1− 1.885z−1 + 0.9829z−2)(1− 1.214z−1 + 0.8176z−2)

(1− 1.724z−1 + 0.9237z−2)

(5.7)

H(z) =
−1

26.971− 27.97z−1 + 10.8z−2 − z−3
(5.8)

HL(z) =
−7.518e− 016+ 7.878e− 016z−1 − 9.089e− 017z−2

1− 1.037z−1 + 0.4005z−2 − 0.03708z−3
(5.9)

ForF(γ), techniques from [KLH98] were used to choose appropriate power-of-2 values

for ∆ for every SOS.

F+(γ) = −
(0.3756+ 0.1878γ−1)(+0.113851526151328+ 0.1138γ−1 + 0.0284γ−2)

(1+ 0.4340γ−1)(1+ 0.5473γ−1 + 0.0939γ−2)

(5.10)

H(γ) =
−4067.6(6.0212+ 0.0881γ−1)(4.2894+ 0.3240γ−1 + 0.0346γ−2)

(1+ 0.0777γ−1)(1+ γ−1 + 0.2500γ−2)2

×
(0.3008+ 0.1183γ−1 + 0.0454γ−2)(1+ 0.0574γ−1 + 0.02445γ−2)

(1+ 0.1378γ−1 + 0.0498γ−2)
(5.11)

N1 andN2 are chosen such thatN1 + N2 + Nq = N andN = f / fs. fs is the sampling

frequency,f is the fundamental frequency of the periodic reference or disturbance, and

Nq is the equivalent linear phase delay introduced by the low pass filterq(z). RC will

track and reject the fundamental frequency and all of its harmonics of the reference and

disturbance, respectively. For our application, the sampling frequency was chosen such

that fs = 100kHz. The high sampling rate is necessary to track a 1kHztriangular wave.

A base frequency of 250Hz, N = 400, to accommodate the long delay fromF(z) or

F(γ) and since 250 is common factor of 1000.

q(z) was chosen to be 0.25+0.5z−1+0.25z−2 with an equivalent phase delay ofz−Nq

with Nq = 1. q(z) is a linear phase low pass filter where the coefficients are represented

as efficient bit shifts instead of multipliers. Theq(z) in the repetitive controller serves
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to help stabilize the system and can be seen as a frequency dependent learning gain

[TT94]. Given the choice ofq(z) andL, thenN2 = 4L + ρ + d = 200+ 3+ 1 = 204 and

N1 = N − N2 − Nq = 400− 204− 1 = 195.

qz−N1

z−N2

F

C P

d
+r e

+
u

y

−

Figure 5.4: Add-on RC with feed-forward inversion and PI controller.

5.2.3 Experimental Results

A Xilinx Virtex 5 based National Instruments FPGA PCIe-7852was used to imple-

ment both, the DFIIt and Delta Operator, forms of a repetitive controller. All filter

(controller) coefficients were implemented using a 16-bit representation while signals

were represented with 32-bit to ameliorate overflow/saturation effects. A sampling rate

of 100kHzwas used to track high frequency periodic references for both the DFIIt and

Delta Operator implementation.

Figures 5.5 and 5.6 compares the experimental results when tracking a 1kHz trian-

gular reference. The reference tracking plot in Fig. 5.5 shows adequate performance for

both the DFIIt and Delta Operator realization. The error signals in Fig. 5.5 show that

both filter forms approach their respective quantization noise floor. As seen in [CT10a],

quantization noise floor prevents the error from reaching absolute zero. As predicted,

the Delta Operator error is much lower than the DFIIt realization’s error. The control

signal,u, of Fig. 5.5 refers to only the contribution of the repetitive controller portion

(output ofF(z)). We can see in the “control signal” that the signal is not purely periodic

but laced with quantization noise. Figure 5.6 shows the power spectral density (PSD)
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of the error signal of the DFIIt and Delta operator realization. Quantization noise can

be seen in in both the DFIIt and Delta Operator across all frequencies bands but the

Delta Operator has much less.

Quantization noise is typically a function of both the filter(controller) and the ref-

erence signal. Table 5.3 lists the max error,|emax|, and RMS error,eRMS, for reference

signals with varying magnitudes and frequencies. In the Delta Operator realization, the

errors grow linearly with respect to the magnitude of the reference. However, this is

not the case in the DFIIt realization where the errors have become much larger than ex-

pected from the linear growth as the reference magnitude increases beyond some level.

At small magnitudes, such as regulation of 0µm reference, theeRMS of Delta and DFIIt

are comparable but|emax| of DFIIt is significantly larger. Overall, the general trend

shows that the errors|emax| andeRMS is almost always smaller in the Delta Operator

form than the DFIIt for this experiment.
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Figure 5.5: Reference tracking, error, and control signal for reference of 1kHz trian-

gular wave.
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Figure 5.6: Error PSD for reference tracking of 1kHz triangular wave.

Table 5.3: Repetitive Control Performance with Delta Operator and DFIIt.

eRMS (µm) |emax| (µm)

Triangular

Reference Delta DFIIt Delta DFIIt

0µm 0.0247 0.0251 0.1158 1.0675

1k
H

z

±0.50µm 0.0288 0.0799 0.1460 2.0847

±1.01µm 0.0367 0.0989 0.2014 2.2609

±2.01µm 0.0589 0.3259 0.3172 3.2025

±4.03µm 0.1087 2.4832 0.5338 7.6437

±8.06µm 0.2190 4.5914 0.9869 11.0728

2k
H

z

±0.52µm 0.0596 0.0869 0.1964 2.1350

±1.04µm 0.1105 0.2235 0.2870 3.1068

±2.09µm 0.2164 1.7736 0.4985 6.4806

±4.19µm 0.4260 3.0222 0.8812 8.7616
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The efficient NMPZ inversion and RC structure haved been improved through the

Delta Operator on a FPGA and established a still efficient repetitive control structure.

The experimental results for controlling a piezoelectric actuator show that the improve-

ment of Delta Operator over the DFIIt is significant. Since our FPGA realization does

not reuse the computation resources to serialize the digital signal processing during the

controller update, the sampling rate of the controller can be increased to near the FPGA

clock speed, 40MHz in our case, if it is called for in other applications. At suchhigh

rate, it would be unlikely to realize high-order controllers, such as the inversion based

repetitive control, without exploiting the efficient digital signal processing techniques

discussed in this dissertation.

5.2.4 Tradeoff between Accurate Inversion versus Quantization Noise Reduction

Inherently, there are techniques to reduce quantization noise [KLH98], however it

comes at the cost of inaccurate inversion.F(z) from this chapter will serve as a demon-

strative example to show the benefits of the Delta Operator has over the DFIIt.

Fig. 5.7 demonstrateswhen the quantization noiseis ignored, the Delta Operator

SOS ,F(γ), and DFIIt filter realization,F(z), are pretty much the same. One thing to

note that with 16-bits there is warping of the frequency response at higher frequencies

of F(z).
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Figure 5.7: Bode plots ofF+(z) with coefficient quantization and different filter real-

izations whereF(z) is designed for an accurate filter inversion.

Fig. 5.8 shows the results when some bits forF(z) andF(γ) are used to accommo-

date scaling gains to help reduce the effects of quantization noise. The DFIIt Realiza-

tion (F(z)) and the Delta Operator SOS (F(γ)) had the same scaling gains applied but

their frequency responses varies drastically.F(γ) seems to mimic the double-precision

version ofF(z) the best.
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Figure 5.8: Bode plots ofF+(z) with coefficient quantization and different filter real-

izations whereF(z) is designed to also reduce quantization noise.

Knowing that even for the best case, a 16-bitF(γ) or F(z) cannot perfectly invert the

high frequencies accurately. Previous chapters have already established that with cur-

rent hardware, double-precision repetitive control for the constraints of this experiment

is not possible. This begs the question of whether is an offline equivalent of repetitive

control that exists that can help serve as that performance benchmark. The next chapter

will address this offline equivalence.

70



CHAPTER 6

Floating Point Control Example on a Piezoelectric

Actuator using Iterative Learning Control

The same piezoelectric actuator, as described by (5.6) usedin Section 5.2 is same the

one used for this chapter. The sampling rate still remains at100kHz with a closed-loop

PI controller to ameliorate hysteresis effects. The ILC is performed on a Labview Re-

altime PC which transfers the desired profile to the NationalInstruments PCIe-7852

FPGA board to send the controller commands for every run of the experiment. The

control law used were based off of (3.24), (3.26), (3.27), and (3.29). This section

mainly serves to serve as a bench mark for the results of Section 5.2. Since we are un-

able to perform double-precision linear repetitive control due to hardware limitations,

double-precision linear ILC can serve as an equivalent measure as long as initial/final

conditions are well-behaved (as discussed in Section 3.3).For this chapter experimental

results from the DFIIt RC (Section 5.2), Delta Operator RC (Section 5.2), ILC experi-

mental ILC results, and ILC simulation results are gatheredand compared.

To ensure that we are analyzing similar performance criterion between double pre-

cision ILC and fixed-point RC, the time-domain data used to calculate the error is im-

portant. In Fig. 6.1, illustrates what the RMS or max errors are based off of. The

reference signal contains approximately 50 periods of the reference triangular wave.

The beginning is zero-padded to allow for noncausal and pre-actuation solutions. The

end is also zero-padded to set the same initial and final conditions to ensure accurate

results if the forward-backward filtering technique is usedto calculate these noncausal

solutions. The error is computed from the 1000 points located in the middle of 50 tri-
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angular periods. We choose these points in order to produce ILC errors that can be

compared to the steady-state errors of the fixed-point RC results from Section 5.2.
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Figure 6.1: Error based on the middle 1000 sample points to establish equivalent error

as RC.

6.1 Robust Stability Condition

The robust stability condition mentioned in (3.18), is a sufficient condition for stability.

This means that for certain frequencies, it is possible that|Q2
barely| >

∣
∣
∣
∣

G
G−Ga

∣
∣
∣
∣ and the ILC

converges. Fig. 6.4. Fig. 6.5 shows that|Qbad(z)| is only slightly greater than|Qbarely(z)|,

the error of the ILC diverges. This also implies a degree of “necessity” for this robust

stability condition for this specific example.
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barely(z)|, where Q violates robustness condition, but

ILC error still converges.
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Figure 6.3: Qbarely slightly violates robustness condition, ILC still converges.
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then ILC error diverges.
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Figure 6.5: Q1 slightly violates the sufficient stability condition and the ILC diverges.

Unlike the RC, where theQ-Filter must be of minimal order to fit on the FPGA,
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ILC does not have that restriction due to its off-line computation. Fig. 6.6 shows a 5th

order Butterworth low-passQ-Filter, that satisfies (3.18), results in

Q1(z) =
4.2153× 10−6 · (1+ z−1)7

(1− 0.6763z−1)(1− 1.39z−1 + 0.4977z−2)

×
1

(1− 1.507z−1 + 0.6232z−2)(1− 1.714z−1 + 0.847z−2)
.

(6.1)

Notice that|Q1(z)|2 will dictate the frequency content the ILC will learn and track. As

a general rule of thumb, the ILC will not learn any frequencies past the bandwidth of

|Q1(z)|2.
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Figure 6.6: Plot of
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∣
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∣ vs. |Q2

1(z)|, where Q satisfies robustness condition.

6.2 Convergence of ILC

As long as asymptotic convergence is guaranteed in the iteration domain through theQ-

Filter, then rate of convergence can be discussed. Convergence rate is highly dependent

on the learning functionL . If L is chosen to be an accurate and stable plant inversion,

the error can converge in as little as 1 iteration [BTA06]. Since theL in this chapter

is chosen to be an approximate plant inversion, we can see in Fig. 6.7 how accurate
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the model and its inversion are. The results show that the error does not convergence

until the 3rd or 4th iteration, meaning that there are still some unmodeled dynamics and

plant uncertainties that the ILC adjusts for. For the rest ofthe paper, we’ll use the 5th

iteration as the basis of our steady-state error calculations.
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Figure 6.7: RMS error convergence plot for ILC given different reference profiles.

6.3 Example of Iterative Learning Control - Simulation vs. Exper-

imental Results

The example in the previous section showed that ILC converged in less than 5 steps.

This quick convergence implies that both the inversion and model of the system is fairly

accurate. With a fairly accurate model of the system and inversion, then it means that

simulation and experimental results should align fairly closely.

Fig. 6.8 compares simulation and experimental results on the piezoelectric actuator

example. The time domain plot shows nearly identical performance for reference track-

ing performance after the 10th iteration of learning. The power spectral density (PSD)
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plot shows that harmonics are learning more or less equally well in both the simula-

tion and experimental case. The major difference is the broadband quantization noise

present in the experimental case from the fixed-point PI controller, analog-to-digital

convertor, and digital-to-analog converter.
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Figure 6.8: Comparing 10th iteration of ILC simulation and experimental results.

Time domain and error PSD results used to highlight minor differences

in simulation and experimental results.

6.4 Comparison Between Offline Double-Precision FF Control and

Double-Precision ILC

Recall that Remark 3.3.4 mentioned that ifQ = I and iterationj = 1, that the ILC

reduces to the offline double-precision FF case. Table 6.1 compares performance be-

tweenQ = I andQ = Q1 (Q1 is based off Q1(z)). Q1(z) will ignore high frequency

content of your desired reference signal. On the other hand,Q1(z) also serves to reject

model uncertainties at high frequencies.
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Table 6.1: Comparing of performance between double-precision offline FF and first

iteration of the double-precision ILC.

eRMS (µm) |emax| (µm)

Triangular

Magnitude FF ILC FF ILC

0µm 0.0274 0.0358 0.1057 0.1410

1k
H

z

±0.50µm 0.0298 0.0370 0.1199 0.1505

±1.01µm 0.0395 0.0375 0.1156 0.1540

±2.01µm 0.0712 0.0480 0.1798 0.1972

±4.03µm 0.4654 0.0757 1.1588 0.3339

±8.06µm 1.5115 0.1375 3.5562 0.5923

2k
H

z

±0.52µm 0.0407 0.0395 0.1307 0.1373

±1.04µm 0.0774 0.0515 0.2715 0.1890

±2.09µm 0.1988 0.0909 0.5078 0.3527

±4.19µm 0.3831 0.1702 0.9078 0.6550

6.5 Comparing of Fixed-Point Repetitive Control and Double-Precision

ILC

It has been established in Section 3.3 that under certain conditions, ILC and repetitive

control are equivalent. This equivalence is useful in determining what type of perfor-

mance double-precision real-time repetitive control can achieve if there were no hard-

ware limitations. By using the double-precision ILC results, we can determine how

close the Delta Operator RC and DFIIt RC can get to double-precision ILC results.

Fig. 6.9 and 6.10 serves as an illustrative example of and theperformance differences

between fixed-point controllers and double-precision floating point controllers. It is

interesting to note the performance gains from the Delta Operator realization over the
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DFIIt realization. Furthermore, it also illustrates how close the fixed-point Delta Oper-

ator is to the floating-point double-precision ILC.

Table 6.2 lists the RMS errors (eRMS), maximum absolute errors (|emax|), and the

average of the ten largest absolute errors (|emax,10|avg) for multiple controller implemen-

tation. |emax,10|avg is used to ensure that|emax| isn’t an outlier (e.g. spike from electronic

noise). The controllers being compared are the simulated ILC, double-precision exper-

imental ILC, fixed-point experimental Delta RC, and fixed-point experimental DFIIt

RC. All three cases were setup for reference tracking of a triangular wave with various

amplitudes and frequencies.
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Figure 6.9: Tracking Performance Comparison -±8.06µm 1kHz Triangular Wave.

Results compare performance between double-precision ILC, fixed-point

DFIIt RC, and fixed-point Delta-RC.
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Table 6.2: Comparing the simulated ILC (Sim. ILC), the Double-precision ILC (ILC), the fixed-point Delta Operator RC (Delta RC),

and the fixed-point DFIIt RC (DFIIt RC) steady-state performance for tracking of a triangular profile.

eRMS (µm) |emax| (µm) |emax,10|avg (µm)

Triangular Sim. Sim. Sim.

Magnitude ILC ILC Delta DFIIt ILC ILC Delta DFIIt ILC ILC Delta DFIIt

0µm 0.0000 0.0358 0.0247 0.0251 0.0000 0.1410 0.1158 1.0675 0.0000 0.1021 0.1089 0.8647

1k
H

z

±0.50µm 0.0005 0.0370 0.0288 0.0799 0.0020 0.1505 0.1460 2.0847 0.0020 0.1108 0.1328 1.7780

±1.01µm 0.0009 0.0375 0.0367 0.0989 0.0040 0.1540 0.2014 2.2609 0.0040 0.1148 0.1872 2.1400

±2.01µm 0.0018 0.0480 0.0589 0.3259 0.0081 0.1972 0.3172 3.2025 0.0081 0.1727 0.2980 3.1233

±4.03µm 0.0037 0.0757 0.1087 2.4832 0.0161 0.3339 0.5338 7.6437 0.0161 0.3105 0.5223 7.3192

±8.06µm 0.0074 0.1375 0.2190 4.5914 0.0323 0.5923 0.9869 11.0728 0.0323 0.5689 0.9723 10.6911

2k
H

z

±0.52µm 0.0013 0.0395 0.0596 0.0869 0.0044 0.1373 0.1964 2.1350 0.0044 0.1199 0.1872 2.0247

±1.04µm 0.0026 0.0909 0.1105 0.2235 0.0088 0.1890 0.2870 3.1068 0.0088 0.1720 0.2806 2.8102

±2.09µm 0.0053 0.0515 0.2164 1.7736 0.0176 0.3527 0.4985 6.4806 0.0176 0.3353 0.4820 6.2041

±4.19µm 0.0106 0.1702 0.4260 3.0222 0.0353 0.6550 0.8812 8.7616 0.0353 0.6092 0.8652 8.4407

8
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Table 6.2 and Fig. 6.11 show that for small reference magnitudes that the ILC noise

floor is actually larger than the Delta Operator RC noise floor. Notice that three types of

errors are given to give a complete picture. The simulation-based ILC (Sim. ILC) rep-

resents the best case when the model is assumed perfect with no external disturbances

present (i.e. error stems only from the ILC). Under larger magnitudes, the experimen-

tal results of ILC have smaller error due to the smaller quantization noise of double-

precision computation. However, it appears under certain conditions, fixed-point filters

under the Delta Operator and DFIIt formulation of RC actually reduce noise at high

frequencies. Recall, the LPF q-filter andQ used in RC and ILC, respectively. Since

the RC was implemented in fixed-point, at a certain magnitudeattenuation, any high

frequency content in the error signals will enter the quantization floor and will not be

amplified by inversion filterf −(z). However for ILC, the quantization floor is signif-

icantly lower and thus high frequency content can still be amplified by the inversion

filter (“learning function”)L .

6.6 ILC with Various High Order Q-Filter

Since, the Q-filter in ILC is implemented offline, filter order and the introduction of

phase distortion is not an issue since zero-phase techniques are available (e.g. Chapter

2). We can freely design aggressive filter gains without considering phase in order to

maximize performance. Instead of the typical LPF, we can usearbitrary magnitudes

to get as close to the robustness criterion (3.18) without violating it. Fig. 6.12 shows

an aggressive Q-filter,Q2(z), was designed as a Chebyshev 1 LPF cascaded with a

Chebyshev 2 notch filter resulting in
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Q2(z) =

(

0.1913− 0.02634z−1 + 0.2526z−2 − 0.02634z−3 + 0.1913z−4

1− 1.301z−1 + 1.132z−2 − 0.3415z−3 + 0.09317z−4

)

×

(

0.7199− 3.7641z−1 + 8.7202z−2 − 11.3400z−3 + 8.7202z−4 − 3.7641z−5 + 0.7199z−6

1.0000− 4.6715z−1 + 9.6639z−2 − 11.2295z−3 + 7.7132z−4 − 2.9668z−5 + 0.5030z−6

)

(6.2)

In addition to tracking the bandwidth ofQ1(z), Q2(z) now has the added advantage

of tracking frequencies in the 10-11kHz range. Table 6.3 shows howQ1(z) andQ2(z)

affects the errors differently given various frequencies and amplitudes. Fig. 6.13 com-

pares the performance differences whenQ1(z) or Q2(z) is used. For triangular waves,

typically the 1st, 3rd and 5th harmonics are the dominant frequency components. For a

1kHz triangular wave,Q1(z) andQ2(z) pass the 1, 3 and 5 kHz harmonics which ex-

plains the minor improvement forQ2(z). For the 2kHz triangular wave,Q1(z) passes the

2kHz and parts of the 6kHz frequency butQ2(z) passes the 2, 6, and 10kHz frequencies.

This explains the substantial error reduction for the 2kHz triangular wave. Similarly,

the 3.5kHz triangular wave also sees an error reduction since Q1(z) passes only the

3.5kHz frequency andQ2(z) passes the 3.5 and 10.5kHz frequency components.
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Figure 6.12: Plot of | G
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2(z)|, where Q satisfies robustness condition.
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Table 6.3: Sim. ILC, Q1(z) ILC, Q2(z) Delta-RC steady-state performance for tracking of a triangular profile.

eRMS (µm) |emax| (µm) |emax,10|avg (µm)

Triangular Sim. Q2(z) Q1(z) Sim. Q2(z) Q1(z) Sim. Q2(z) Q1(z)

Magnitude ILC ILC ILC ILC ILC Delta ILC ILC Delta

0µm 0.0000 0.0312 0.0358 0.0000 0.0957 0.1410 0.0000 0.0838 0.1021

1k
H

z

±0.50µm 0.0005 0.0320 0.0370 0.0020 0.1072 0.1505 0.0020 0.0890 0.1108

±1.01µm 0.0009 0.0360 0.0375 0.0040 0.1187 0.1540 0.0040 0.1069 0.1148

±2.01µm 0.0018 0.0456 0.0480 0.0081 0.2274 0.1972 0.0081 0.1643 0.1727

±4.03µm 0.0037 0.0701 0.0757 0.0161 0.3138 0.3339 0.0161 0.2886 0.3105

±8.06µm 0.0074 0.1302 0.1375 0.0323 0.5872 0.5923 0.0323 0.5602 0.5689

2k
H

z

±0.52µm 0.0013 0.0336 0.0395 0.0044 0.1222 0.1373 0.0044 0.1027 0.1199

±1.04µm 0.0026 0.0441 0.0909 0.0088 0.2091 0.1890 0.0088 0.1663 0.1720

±2.09µm 0.0053 0.0677 0.0515 0.0176 0.3024 0.3527 0.0176 0.2749 0.3353

±4.19µm 0.0106 0.1255 0.1702 0.0353 0.5342 0.6550 0.0353 0.4976 0.6092

8
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CHAPTER 7

Conclusion

This dissertation has brought together techniques from thesignal processing commu-

nity and controls community to address the need for high performance controllers at

high sampling rates. It has addressed practical concerns oflimited computational re-

sources by introducing multi-rate signal processing techniques to reduce the multipli-

ers and equivalent delay in the linear-phase Powell-Chau/Kurosu filters. A modified

Kurosu filter produced an efficient yet high performing real-time non-minimum phase

inversion feedforward controller. This Kurosu filter-based feedforward inversion re-

sulted in a modified repetitive controller structure for high sampling rate fixed-point

applications. Experimental results for this new repetitive controller structure were per-

formed on a levitated shaft and piezoelectric actuator to demonstrate the effectiveness

of these controllers and to also highlight the properties offixed-point controllers. Ex-

perimental results on the piezoelectric actuators served as an analog for atomic force

microscope applications. Delta Operator realizations were incorporated to reduce quan-

tization noise and to ameliorate filter coefficient quantization effects on the frequency

response. Experimental results on a piezoelectric actuator showed how the Delta Op-

erator substantially improved performance with minor additional computational costs.

To complete the study, double-precision ILC was used to serve as a practical equiva-

lent to high sampling rate double-precision repetitive control if and when the hardware

capabilities becomes affordably available. Given practical limitations on presentday

hardware that controllers can be implemented on, this dissertation has provided possi-

ble controller structures that are not only efficient but also high performing.
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