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The Final Frontier: Embedding Networked Sensors in the
Soil

Nithya Ramanathan, Tom Schoellhammer, Deborah Estrin, Mark Hansen,
Tom Harmon, Eddie Kohler, and Mani Srivastava

Center for Embedded Networked Sensing, UCLA

Abstract
This paper presents the first systematic design of a robust sensing
system suited for the challenges presented by soil environments.
We describe three soil deployments we have undertaken: in
Bangladesh, and in California at the James Reserve and in
the San Joaquin River basin. We discuss our experiences and
lessons learned in deploying soil sensors. We present data from
each deployment and evaluate our techniques for improving the
information yield from these systems. Our most notable results
include the following: in-situ calibration techniques to postpone
labor-intensive and soil disruptive calibration events developed
at the James Reserve; achieving a 91% network yield from a
Mica2 wireless sensing system without end-to-end reliability in
Bangladesh; and thejavelin, a new platform that facilitates the
deployment, replacement and in-situ calibration of soil sensors,
deployed in the San Joaquin River basin. Our techniques to increase
information yield have already led to scientifically promising
results, including previously unexpected diurnal cycles in various
soil chemistry parameters across several deployments.

1 Introduction
Soil ecosystems are complex, elusive, and still largely
misunderstood:Science has called them the “final frontier” [10].
This paper presents the first systematic design of a robust sensing
system for soils. We discuss three deployments we have undertaken
over the past year, from a rice paddy in Bangladesh to the San
Joaquin River basin in California. In these deployments, we
experienced first hand the unique challenges that arise in working
with soil systems. Soil processes are difficult to observe because
i) long-lived, dependable sensors do not exist for many important
modalities, and ii) below-ground soil characteristics (unobserved)
introduce significant latent spatial variability in sensordata that can
be difficult or impossible to adequately resolve. Thus, collecting
every data point and ensuring it is usable is important because there
is less data to be collected even in the best case.

In this paper we focus on techniques we have used to improve
this quantity of scientifically usable data, which we call the
information yield. We present experiences, lessons learned and
data from each deployment, and evaluate techniques we designed
to improve information yield in the context of each particular
deployment. These techniques address:

• Maximizing sensor yield.We evaluate techniques to improve
thesensor yield, the percent of data received from the network
that is usable for scientific purposes.

For example,in-situ calibration techniques can be used in
the field to identify only those sensors that need to be
removed and calibrated, avoiding premature calibration to
minimize soil disturbance and identifying sensors that require
immediate calibration to increase the amount of usable data
delivered from the system.

• Maximizing network yield. We evaluate techniques to

improve the network yield, the percent of expected data
that is collected at the basestation. Our wireless deployment
in Bangladesh incorporated a disruption-tolerant networking
layer to maximize network yield. This deployment achieved
a 91% delivery ratio without relying on latency- and power-
consuming end-to-end reliability.

• Maximizing interactivity. We evaluate the impact of
interactivity, or taking actions as soon as possible, on
information yield. For example, collecting physical samples
from the field for lab testing when sensors recorded
questionable data enabled us to validate potentially faulty
nitrate and chloride data and increase our sensor yield by 51%
from these sensors.

Based on our experience, we have designed thejavelin,
a platform for very wet soils or shallow groundwater that
enables sensor interactivity by minimizing soil disturbance
during deployment, and facilitating the deployment,
replacement and in-situ calibration of sensors.

Due to the success of our techniques to increase information
yield, the sensing systems we have deployed have collected
measurements interesting for scientists. Previously unexpected
diurnal cycles in various soil chemistry parameters acrossseveral
deployments have led to further studies and investigation.Much
work remains, but this paper presents the beginning in what we
hope is a new direction for sensor system deployments.

The paper is organized as follows. Sections 2 and 3 discuss
soil environments and our three case study deployments. Section 4
describes how we calculate the information yield and presents
numbers for each deployment. The remainder of the paper focuses
on the evaluation of novel techniques we have employed in oursoil
deployments to improve information yield. We discuss maximizing
sensor yield in Section 5, network yield in Section 6, and real-time
interactivity in Section 7.

Related Work Several recent papers have described other
experiences with sensor network deployments. Tolle et al.
describe a deployment measuring microclimate in a coastal
redwood in Sonoma County, California [4], focusing primarily
on multidimensional data analysis. The authors observe that
their sensors—temperature, humidity, and photosynthetically active
radiation (PAR)—required little calibration beyond that performed
by the manufacturers, and that real-time monitoring of network
quality could have helped to improve their network yield, which
was 49%.

Werner-Allen et al. describe a seismic deployment on a
volcano in Ecuador [5]. Their network yield, 51%, was similar
to the redwood deployment’s, although in the absence of certain
systematic failures it might have been higher. Some of theirsensor
network data is compared to data collected in more conventional
ways, allowing them to evaluate data fidelity. The authors evaluate
event detection accuracy, finding that their sensing systemdetected
5% of the volcanic eruptions that took place. Low detection

1



Figure 1: San Joaquin River Deployment: The three curves in the
top and bottom panel on the left correspond to observations at one,
two and three feet below the San Joaquin riverbed (right). The two
sensor “stacks” were positioned within feet of each other.
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Figure 2: Temperature at James Reserve, CA: Difference between
temperature readings from sensors that are i) 1 meter apart at the
same depth, and ii) 6 cm apart, at 2 cm and 8 cm depths, at the
same surface location.

accuracy is attributed to parameter settings. They also evaluate
data fidelity, finding that selected acoustic and seismic signals are
consistent with ground truth and expected readings.

Both of these deployments utilize sensors that are fundamentally
more reliable and require less maintenance than the sensorsused
in soil deployments. The unique challenges that arise in working
with soil systems have driven the design of our system and our
deployment experiences in different directions.

Musaloiu-E et al. report on an end-to-end soil deployment
undertaken in Baltimore involving soil temperature and moisture
sensors. The authors describe a sensor calibration process
undertaken before deployment, but only briefly mention datafaults
and do not focus on issues relating to information yield. Instead,
they focus their analysis on energy consumption, database design
and post-deployment analysis infrastructure.

2 Difficulty with Soil Deployments
Soils are fundamentally different from most environments,
impacting the design of a sensing system deployed in this
environment.

Soils exhibit spatial heterogeneity of physical and chemical
properties even at small scales. Thus, measurements taken from
proximal locations in soil are often not redundant, and can even
differ significantly in structure and amplitude. In Figure 1, for
example, we present data from a series of nitrate sensors; the top
panel contains two days of data, and the bottom panel contains only
data for the first day. The three curves in each panel correspond
to observations at one, two and three feet below the San Joaquin
riverbed. While the two sensor “stacks” were positioned within feet
of each other, we notice very different diurnal patterns in the data.
The full deployment consisted of 6 such triples, with roughly half
exhibiting each pattern.

In part, this behavior is to be expected. While mathematical
models can be formulated to describe, for example, the diffusion

Figure 3: Output of a Kriging model based on data collected from
one of our soil deployments in Palmdale, CA. The left panel shows
the monitored locations in the field, and the right two panelsare
two possible views of the soil output from the model based on two
different settings of a parameter controlling uncertaintythresholds.

of chemicals through “ideal” soils, measurements of real soils
to determine the parameters necessary for these models reveal
unpredictable variation even across short distances. Figure 3
demonstrates how the resulting uncertainy in parameter choice can
change a scientist’s view of the soil. This argument appliesto a
variety of other sensing modalities. Figure 2 shows heterogeneity
of temperature measurements, this time from stacks spaced 1meter
apart in a 3× 2 grid with temperature sensors at 2 cm and 8 cm
below the surface. The measurements are taken from this patch on a
typical day in October. The figure is a scatter plot of the differences
between temperatures in neighboring locations: circles correspond
to differences between temperature sensors at the same depth but
1 meter apart in the grid, and crosses correspond to differences
between temperature sensors at the same location but separated by
6 cm in depth. Temperature differences up to 14◦C can be seen
between sensors separated by 6 cm.

In many environments, this kind of spatial variability can be
addressed with some form of dense sampling. We might literally
deploy a large collection of fixed sensors, or instead, move a
small number around with a robotic system. A class of so-called
Networked Infomechanical Systems [2] has proved successful in
lakes and streams, for example. In soils, however, dense sampling
is too invasive, disrupting the very systems we would like to
observe. The uncertainty associated with modeling heterogeneous
physical processes using point measurements poses a distributed
signal processing challenge that is as interesting but quite different
from the more common acoustic and seismic applications thatare
perhaps more familiar to the sensor network community.

To further complicate matters, many of the sensors used in
contaminant tracking are short-lived, prone to faults and require
frequent calibration. For example, the sensors mentioned in
connection with the data in Figure 1 employ ion-selective electrodes
(ISEs), a class of so-called active sensing elements. In this case, an
electrical potential is generated when there is a difference in ion
concentrations between an internal reference sample and the soil
being tested. A chemically treated membrane acts as a filter for
the specific ion being measured. These membranes, however, are
not field robust and are the major source of reliability problems for
ISEs, resulting in short, error-rich deployments.

One standard approach to measurement reliability problems
involves deploying redundant (dense) systems. As mentioned
above, however, this strategy is not feasible for soils. This is not
to say that techniques do not exist to increase a user’s confidence
in the data; for example, physical soil samples can be extracted
and analyzed in a lab to perform point checks of sensor readings;
but such techniques are also not fool proof. In addition, sensor
maintenance involves removing sensors from the ground. This
process is disruptive to data collection as soils require anywhere
from a day to several months to settle once disturbed, duringwhich
time the data from the sensors are not always usable.

To summarize, soils present a challenging new frontier for
embedded sensing. The phenomena under study exhibit complex
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spatial variability, and the sensors can be noisy and unreliable,
forcing relatively short-term deployments.

3 Soil Deployment Case Studies
In this section we describe three soil deployments studied
throughout this paper: the initial James Reserve deployment, and
follow-on deployments in Bangladesh and the San Joaquin River
basin. Each deployment improved upon the previous either inrobust
design or functionality.

James Reserve The purpose of the transect at the James Reserve
is to explore the spatial and temporal scales at which sub-surface
measurements should be taken, and to study the relationship
between soil CO2 fluxes and moisture and temperature conditions
in the soil. The network has collected over 7 million points since
October 2005.

This transect spans approximately 80 meters. At each of 10
sites, 13 above and below ground measurements are taken. Above
ground, air temperature, relative humidity, barometric pressure, and
photosynthetic active radiation (PAR) are measured. Belowground,
temperature, moisture, and CO2 concentration measurements are
taken at depths of 2 cm, 8 cm, and 16 cm in the soil.
Sensors are connected to Campbell scientific dataloggers, and
powered using deep cycle marine batteries that can last several
months before requiring replacement. More recently, we augmented
this deployment with temperature and moisture sensors that
communicate over a wireless Mica2 network in order to test sensor
placement and experimental methodology in soil environments.
One of the primary reasons that this deployment has been ableto
collect data for over a year is that it does not include ISEs.

The dataloggers in this transect are not equipped with wireless
radios, and store data locally. Thus, problems can persist for long
periods of time before they are fixed.

Bangladesh In January 2006, we deployed a wireless sensing
system in a rice paddy in Bangladesh (Figure 4) to help
scientists evaluate the relationship between irrigation and arsenic
contamination in the groundwater [11]. Tens of millions of people
in the Ganges Delta drink well water impacted by arsenic, a massive
environmental poisoning projected to cause approximately3,000
deaths per year [13]. The experiment was designed and deployed
with scientists and civil engineers from the Bangladesh University
of Engineering and Technology and MIT. We deployed 42 ISEs to
monitor ammonium, calcium, carbonate, chloride, pH, oxidation-
reduction potential, and nitrate, and 8 soil temperature, moisture
and pressure sensors at 3 different depths in 3 locations. The
network collected 26,000 measurements over a period of 12 days.
This deployment was short-lived because it primarily relied on
ISEs.

Influenced by the problems at the James Reserve, in Bangladesh
we employed a wireless network of sensors that provided real-
time access to data and network parameters. In order to improve
the amount of usable data collected by this wireless networkwe
incorporated a delay-tolerant networking (DTN) layer intoour
network stack for reliable data delivery. This DTN layer was
quickly put to use when after the first day in the field, the landowner
informed us that our basestation ran the risk of being stolenif we
left it in the field over night. Without a networking layer tolerant
to basestation absences our network would not have capturedmuch
as most of the diurnal activity took place in the early hours of the
morning. In Section 6 we discuss how our DTN layer enabled a
91% network yield even though the basestation was absent more
than half the time.

The most surprising discovery from this deployment was the
diurnal variations observed in ammonium, chloride, and carbonate
(graphs in Figure 4). While data flattened around day 7 as a result

of a scheduled irrigation event, the diurnal trends (also seen in
hydraulic parameters) indicate that diurnal, possibly plant-induced,
processes may be important in the mobilization of arsenic. The
scientists are returning to the field in December 2006 to further
study this phenomenon. We will join them in 2007 to deploy a more
extensive and robust wireless sensing system.

While the wireless connectivity enabled real-time interaction
with the network, allowing us to find and fix problems when they
occurred, other problems remained. A pylon in this deployment had
up to 24 sensors, so deploying a single pylon took all day, and
replacing a faulty sensor or moving a pylon was nearly impossible
once deployed.

San Joaquin The purpose of the deployment in the San Joaquin
River was to characterize the transport and mixing phenomena at
the confluence of two distinctly different rivers: the Merced River
(relatively low salinity) and the agricultural drainage-impacted
San Joaquin River (relatively high salinity). Soil measurements
were supplemented with measurements in the river taken by an
autonomous robotic node [2]. Six sets of 3 nitrate ISEs connected
to Hobo dataloggers (Onset computers) were deployed at one foot
increments below ground, alongside soil temperature and salinity
sensors, in the first week of August, 2006. 48,000 measurements
were collected from the nitrate sensors over this 5 day deployment.
The key to this short-term deployment’s success was thejavelin
(Figure 1), a sampling platform designed to ease the type of
deployment effort we experienced in Bangladesh. Javelins enabled
each set of sensors to be easily deployed at multiple depths,and
redeployed in multiple locations over the short deployment. This
spatial coverage enabled by the javelins was especially useful
in that region because several kilometers of homogeneous soil
was separated with random patches of heterogeneity. Section 7
discusses the javelin further.

Interestingly, the most surprising discovery in this deployment
was again diurnal trends, though this time in nitrate data (graphs
in Figure 1). The scientists are unsure about what could be causing
these trends when a second array of sensors just a few meters away
showed no such fluctuations. Others have noticed similar patterns
in river nitrate and suggested that this may have been causedby
photosynthetic activity [3]. However, the diurnal behavior here is
in the sediments beneath the river and the peaks are synchronized,
suggesting that a sudden fluctuation in river water concentrations is
not the cause.

4 Calculating Information Yield
Given these experiences, we will spend the remainder of the paper
discussing techniques we employed to improve the information
yield in each of these deployments. In this section we describe how
we calculateinformation yield, which is the percent of received
data which are usable for scientific purposes. Information yield is
made up of thenetwork yield, the percent of expected readings
received, and thesensor yield, the percent of received readings that
are usable.

Data are classified asusable if they fall within the operational
range of a sensor, or the concentration range where the sensor is
most capable of distinguishing between concentrations. Itis worth
mentioning that while data in this range are usable for analysis,
they are not equivalent to verified, quality measurements; bias or
other faults could still impact the readings. The operational range
is defined throughcalibration, the process of mapping a sensor’s
measured output to an estimate of the property being sensed.The
calibration for many sensors does not change over time, and in these
cases we can use the manufacturing supplied calibration equation to
obtain this operational range.

For example, CO2 concentration is reported in parts-per-million
(ppm) and obtained using(625S − 2500)/CPT , where S is the
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Figure 4: Bangladesh Deployment Image of soil pylons deployed in February of 2006 in a rice field in Bangladesh. Diurnal variations in
ammonium, calcium, and carbonate at a depth of 2 feet (left graphs), and in ammonium 1, 3, and 5 feet (right graphs) are apparent Figure by
Jason Fischer, UC Merced. Left photograph is of a soil pylon,and right photograph is of the sensor deployment process.

Figure 5: Idealized calibration curve. Linear and Non-linear
detection ranges are labelled.

sensor output,C is a constant,P is pressure andT is the
temperature. It is impossible for CO2 concentration to be negative,
so in order to find the lower bound for the sensor’s operational range
we set the equation to 0 and solve the equation forS. Scientists
discard all data that occur below this threshold. A similar process
was used for most of the sensors in our deployments.

The process for identifying the operational range for ISEs was
different. This process is based on the physical limitations, or
sensitivity, of the sensor, instead of the physical limitations of the
phenomenon being measured. In addition, we could not use the
factory calibration for ISEs because their calibration changes over
time and must be updated.

As with most sensors, ISEs are calibrated by exposing the
sensor to a range of standard concentrations to identify thefunction
that relates the electrical potential output of the sensor to the
observed phenomena. For ISEs, the sensor output is plotted against
the logarithm of the concentrations used in the calibration. The
resulting calibration curve takes the form of a stretched out S
(Figure 5). This curve contains alinear detection range, which
covers the range of concentrations where the sensor responds
linearly. The calibration equation used to translate sensor output
voltages to concentrations is defined by the slope and intercept of
the line in the linear-detection range. The linear detection range
is bounded above and below by anon-linear detection ranges
(NLDR), characterized by the range of concentrations wherethe
sensor responds non-linearly to changing concentrations so the
slope decreases. Error associated with readings increase as the slope
decreases [12], thus readings in the NLDR have lower associated
confidence. The sensor is not sensitive to concentrations above
and below the NLDR, and so the slope for the calibration curve
approaches zero in these regions.

Scientists define usable data from an ISE as data that occur
inside the linear-detection range, and data in the NLDR thatcan

be validated [12].
ISEs are currently the primary method of obtaining time-series

concentrations of contaminants in water and soil environments.
Nevertheless, they are fragile and require extensive care.Given
the tedium associated with these sensors, the question arises: Why
use such unreliable sensors? Some of the issues inherent to these
sensors will be overcome over time, but the sensors are not likely to
significantly improve in the next five to ten years. Moreover,there
will always be new and less reliable sensors that require careful
monitoring. Many of the techniques suggested in this paper can
be applied to a general class of sensors. Finally, as the number
of sensors in standard deployments increase, the manual labor
required to make highly reliable deployments could become the
limiting factor in deployment size. Systems solutions to these
problems that can scale with the size of the deployment may allow
deployments to scale up without sacrificing data quality.

Yields Using the operational ranges defined for each sensor, we
calculated the overall information, network and sensor yields for
each deployment (shown in Figure 6). The deployment at James
Reserve had the highest information yield at 87%, compared to
52% at San Joaquin, and 59% at Bangladesh (first set of bars
in the figure). The network yields (second set of bars) were all
close to 100%, so the information yield is primarily dictated by
a deployment’s sensor yield. The sensor yield (3rd set of bars) was
primarily dictated by the ISE yields. This is easy to see if welook
at the sensor yield separately for different sets of sensors: moisture
and temperature sensors (4th set of bars in the figure) had a yield
of almost 100%, while the ISEs (last set of bars in the figure) had
yields closer to 55%. Thus, it is not surprising that the deployment
at James Reserve, which did not use ISEs, has a much higher sensor
yield, and as a result a much higher information yield, than the other
deployments.

Best Practices We highlight several best practices. First, sensor
bias varies with hardware, and each data acquisition board has
its own bias factor. Thus, sensors should be calibrated withthe
entire data acquisition system (e.g. the mote and sensor board) that
will be deployed in the field, not just the sensor. Second, ISEs
must be calibrated before, after, and even during a deployment,
depending on the duration, because their calibration parameters
change over time. Third, we designed an end-to-end check during
the deployment to ensure that nothing had significantly changed
during the rough deployment process. After digging the hole, we
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Figure 7: Nitrate data taken from three different locations in
Bangladesh. Vertical lines cover the linear detection range, and
horizontal lines delineate the extent of the NLDR. Most of the data
occur within the NLDR. Nitrate data from remaining three sensors
not shown because a majority of them were not usable.

stick the sensor in the water that pools at the bottom and take
a measurement, and then take another measurement immediately
after the sensor is buried. We expect all sensors of the same type to
report the same concentration because they are all measuring the
surface water that has pooled in the hole at that point. We also
expect the measurements taken before and immediately afterthe
sensor is buried to remain relatively constant.

5 Improving Sensor Yield
The first dimension to improving information yield is to maximize
sensor yield. Broadly speaking, there are three classes of problems
we observed to reduce sensor yield. In the first instance, data occurs
in a sensor’s non-linear detection range (NLDR) and may or may
not be usable, requiring further validation. In the second instance,
sensors produce readings that do not reflect reality (e.g. a wire
breaks). In this case, the faulty hardware should be fixed. Inthe third
instance, a sensor slowly transitions from producing usable data
to producing readings that are difficult to interpret (i.e. calibration
drift). In this case, the sensor should be calibrated. In thefollowing
three subsections we discuss these three classes of problems that
occurred in the field, and the actions we took in the field to either
fix or validate them.

5.1 Validating Questionable Data

Data that occur in a sensor’s NLDR are typically discarded, as they
can indicate a problem with the sensor. However, it is also possible
that the sensor is not faulty and that the ion concentration is truly
outside of the sensor’s linear detection range. Much of the data we
collected from chloride and nitrate sensors in Bangladesh occurred
in the NLDR of the sensor and fell into this second category.
Figure 7 is a graph of data from three nitrate sensors; the vertical
lines indicate the linear detection range, and the horizontal lines
delineate the NLDR. In order to determine if the data were usable,

the scientists we were working with in Bangladesh extractedseveral
physical soil samples for lab analysis. We used the results from this
analysis in conjunction with a computer model of the soil chemistry
for that region to confirm that the levels for nitrate and chloride
were expected to be in the NLDR of the sensor. As a result of
this lab analysis, the scientists were able to use this data.This
conclusion is validated by the data we collected. Of the 3400data
points recorded in the NLDR of a sensor, 2850 of these points
are from either nitrate or chloride sensors; i.e. most of thedata
in the NLDR are from sensors measuring concentrations that we
expect to fall in this range. In addition, most of the points recorded
from a nitrate or chloride sensor in the NLDR (2000 of the 2850
points) were corroborated by at least one other sensor of thesame
type also reporting data in the NLDR. This is further validation
that the sensors were not faulty and in fact representative of the
environment.

5.2 Sensor and Hardware Faults

Large Time Gradients Large timegradients in the data, or large
changes in sensor output with respect to time, are usually not
representative of the environment because: i) physical phenomena
are limited by natural laws, so we can place an expectation onhow
rapidly they are able to change, and ii) the sensor is not capable
of measuring large magnitudes of change over a short time period.
Thus, time gradients usually indicate a problem in the sensor or
hardware.

We have observed large gradients in data from all of our
deployments. In most cases, a gradient only spans several points
and the data is simply discarded. In data collected in Bangladesh,
large gradients persisted for up to several days in some instances,
and often indicated a problem. In one instance, we found an
exposed sensor connector from one of the sensors reporting high
time gradient data sitting in a muddy pool in the field. Moving
the cable and connector to a dry enclosure addressed the problem.
However, a wet connector was not the cause of all of our high time
gradient data. The top panel in Figure 8 is a graph of data froman
ammonium sensor with high gradient data for 2 days starting on
February 2.

In order to better understand this phenomenon, after returning
from Bangladesh we redeployed part of the system we had deployed
there, including the sensor in Figure 8. In one of these deployments,
a little after hour 2 (bottom panel in Figure 8) we noticed large
gradients in the data from the ammonium sensor. We disconnected
the sensor from the sensor board (captured in the data streamas
the sharp peak immediately after the dip in readings around hour
2.5) and connected it to a pH meter, an independent meter used
in the field to measure the sensor output. The meter verified the
large gradients reported by the mote, and led us to discover that
the output was caused by an electrical short in the internal sensor
wiring. By contorting the sensor cable we were able to temporarily
fix the short. The problem recurred several times during thisday
long deployment (a little after hour 3, just before hour 6, and just
before hour 7 in the graph), and each time was temporarily fixed
by adjusting the sensor cable. Several of the sensors that reported
data with high gradients have been sent back to the manufacturing
company for investigation.

Stuck-At Value The stuck-at fault represents a sensor getting
stuck at a particular value. Often this is a value at the high or low
end of the sensor’s operational range. These faults are dangerous
because the measurement can tell you nothing about the underlying
phenomenon. Yet, when they are in-range, simple out-of-range
detection does not help [1]. In our James Reserve transect, at least
some of the stuck-at faults were easy to identify, as the values
occurred outside of the sensor’s operational range. For example,
a soil temperature sensor connected to node 7 reported 27,000
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Figure 8: Top panel is a plot of data collected from an ammonium
sensor in Bangladesh. Faults in the form of excessive time gradients
beginning around Feb. 2 for two days are easily identified visually.
Bottom panel is a plot of ammonium data that captures a similar
time gradient fault observed during a deployment in our backyard.
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Figure 9: All data from this calcium sensor are outside of the
NLDR, indicated by the horizontal line, and thus not usable.

continuous measurements of either−91.9 or −89.4◦C from April
to August, 2006. This sensor should have been replaced.

Broken Sensor Deployments are a chaotic and rough process,
and sensors are not always as field-robust as we would like.
One example is a calcium ISE deployed in Bangladesh which
had reported several consecutive days of data well outside of its
operational range (Figure 9). In order to identify the causeof the
problem, we connected the sensor to a pH meter. The readings
from the pH meter corroborated the data returned by the mote,
isolating the problem to the sensor. Ideally we could have replaced
this calcium sensor with another one. However, given our pylon
design, it was too difficult to replace just one sensor (or the
whole pylon for that matter); moreover, deploying and redeploying
sensors was so labor intensive and destructive that insteadwe
decided to leave the sensor in place and hope that it improved
(which it never did). Further evidence that the sensor should have
been replaced came during the post-deployment calibrationof this
calcium sensor, where the sensor displayed little to no reaction to
changing concentrations; i.e. the slope of the calibrationcurve was
essentially 0, evidence of a faulty sensor. While some sensors failed
the check we did immediately after placing them in the ground(e.g.
two chloride sensors that were wired in reverse), this calcium sensor
was not in this group. We believe that the membrane for this sensor
was damaged during or immediately after the somewhat rough
deployment process. This sensor is currently being investigated by
the manufacturing company to isolate the problem.

We should have replaced this sensor after receiving a 0% sensor
yield for several days. This conclusion is supported by our data as
well. 11 of the 42 ISEs reported a sensor yield of less than 25%,
and all of these sensors reported data outside of their operational
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Figure 10: Data from an oxidation-reduction potential (redox)
sensor is 0 millivolts until the morning of Jan 30, when the
connector breaks, and the board reports noise sampled from the
disconnected port.

range for at least 2.5 consecutive days. Thus, replacing a sensor
that was not working for 2.5 days would have targeted sensorsthat
ultimately did not collect very much usable data.

Disconnected Sensor Often sensor connections are not secure,
and sensors can become intermittently or persistently disconnected.
This disconnection manifests differently on different data
acquisition hardware. In Bangladesh we used MDA300 sensor
boards, which report all data from a port, regardless of the status
of sensor connection. In one instance, we noticed that data from
an oxidation-reduction potential sensor was suddenly extremely
noisy (Figure 10). Upon checking the sensor with our pH meter
we discovered that the sensor’s BNC connector was broken.
Unfortunately, both fixing the connector and replacing the sensor
were too difficult given our platform design, so we left the sensor
in place.

In the James Reserve deployment, sensors are connected to
Campbell dataloggers. In most instances, the datalogger will report
a null value if the sensor is disconnected, making it easy to detect
such problems. 211,545 data points, or most of the 362,000 faulty
data points collected at James Reserve, were caused by such a
disconnected sensor. In the case of a CO2 sensor, if the sensor is not
properly powered, the datalogger reports a default value of.0025,
which occurred 93,000 times in this deployment, accountingfor
25% of the faulty data collected in this deployment.

In most cases, if a sensor appears disconnected for over a day, the
data, power, and ground wire connections should all be checked.

Low Battery The hardware component that translates analog
sensor signals to digital values (the ADC) requires a minimum
battery voltage of 2.7 V for correct operation. Battery voltages
below this level have been observed to impact data quality [4, 7].
On Mica2 based systems, this requires monitoring the battery level
directly, since the CC1000 radio can continue to transmit data even
when the battery voltage is at 2.2 V. Thus, the Mica2 may continue
to transmit data, but it may not be usable.

We encountered this problem in Bangladesh, where 40 minutes
after being deployed, the battery for mote 11 plummeted from3.2 V
to 2.4 V over a period of 20 minutes. Unfortunately, replacing the
battery did not improve the rate of faulty data recorded fromthis
mote. With an overall sensor yield of only 35%, this mote reported
352 faulty data points a day (as compared to the median value of
205 faulty data points per day from all motes), the highest rate of
all motes in that deployment. In addition, almost half of alldata
with high time gradients was collected from this mote. We believe
that an electrical problem on the board caused the sudden drain in
battery voltage in addition to the low sensor yield.

Lightning Dataloggers are vulnerable to lightning strikes when
they are connected to sensors buried in the soil, which serveas a
direct path to ground, enabling current flow. Electrical problems
such as this one usually manifest as faulty readings from allsensors
connected to that datalogger. For example, all sensors connected to
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node 7 in our James Reserve deployment reported readings outside
of their operational range for an hour starting on August 11,2006 at
1:30AM. If the datalogger does not recover, it should be replaced.

Elusive Problems There were several problems that we could not
track down. For example, all PAR sensors connected to every node
reported a faulty reading of−888.88 from July 22–26, and again
on August 10, 2006. We do not know what caused this behavior.

Not all unusable data collected from our deployments can be
explained by the criteria above. We suspect that some of this
unusable data can be explained by drift in the sensor calibration.
In the next section, we describe how calibration issues impacted
the sensor yield in our deployments, and describe two techniques
being developed to address this problem.

5.3 Calibration Drift

In this subsection we discuss the third class of problems that
impact sensor yield, instances where sensors slowly transition from
producing usable data to producing readings that do not seemto
reflect reality as a result of calibration drift.

Calibration parameters (i.e. the slope and intercept) for most
sensorsdrift, or change over time. Many soil sensors, such as the
ISEs, are especially prone to drift [12] and are thus calibrated
before, after, and often during a deployment. In a particularly
bad example, sensors connected to mote 11 in our Bangladesh
deployment averaged a change in the calibration offset of 100 mV
when comparing calibration equations obtained before and after the
deployment. Given the average operational range for a sensor of
300 mV, an offset change of 100 mV is a significant change.

Drift impacts a sensor’s perceived operational range, and thus the
amount of data usable for scientific purposes. The top and bottom
panels in Figure 11 are each plots of three CO2 sensors buried at
2, 8, and 16 cm. The CO2 sensor’s operational range is defined as
concentrations above 0 ppm (indicated by the horizontal line on the
graph). The top panel is representative of readings taken from 9 of
the 10 locations where CO2 sensors were deployed, which remain
above this threshold. The bottom panel contains data collected from
one node in the deployment where the sensors at 2 and 8 cm
were good, but the readings from the sensor at 16 cm slowly dip
below this line between December 2005 and March of the following
year. This steady trend is not characteristic of a faulty sensor, and
likely indicates that the calibration for the sensor was gradually
drifting. Recall from the previous section that the millivolt output
from the CO2 sensor is converted to concentration (ppm) using
a calibration equation. If the parameters of this equation change
over time, the translation from millivolts to concentration will be
incorrect. In this instance, resulting in negative concentrations.
Without further measurements taken during the time of drift, it is
nearly impossible to identify the change in calibration parameters.
Instead, the scientists discarded these 9,000 points collected during
this three month period from the CO2 sensor.

Accurately capturing drift is necessary to correctly identify
usable data. But this is not a simple problem because there are
competing interests influencing the decision of how best to capture
drift. One approach to capture sensor drift is to re-calibrate a
sensor occasionally, and model the drift between calibration events.
In a one week lab experiment we calibrated a set of sensors
daily and found that calibration does not change linearly with
time, nor does it change in a constant direction. This experiment
argues for calibrating sensors asfrequently as possible in order to
capture calibration parameters. However, calibration itself is labor-
intensive. This problem is exacerbated for soil deployments where
sensors are buried underground and inaccessible. Every time a
sensor needs to be taken out of the ground, calibrated, and put
back in, the soil needs time to settle back into a compacted state.
This period can extend from a day to several months, depending on
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Figure 11: Drift of CO2 Sensor in James Reserve Plots of three CO2
sensors buried at 2, 8, and 16 cm. Horizontal line at 0 indicates the
lower threshold for usable data from these sensors. Top panel is
representative of the 8 other monitoring locations. Bottompanel
contains data from one outlier sensor that gradually dips below this
line beginning in December.

the soil structure and moisture content. This argues for performing
calibration asinfrequently as possible, especially for short-lived
deployments (similar to that in the San Joaquin River) whichcan be
severely impacted by several days of sensor down-time. We discuss
two techniques to either calibrate a sensor or determine when a
sensor must be calibrated, while the sensor is in-situ in order to
minimize unnecessary soil impact.

The first technique is to use a known relationship between a
sensor in the soil and a phenomenon that is easier to measure.The
challenge in using this technique is to define a model betweenthese
two. For example, at James Reserve, because the amount of CO2
in the air (which is easy to measure) is tightly correlated with the
amount of CO2 that is in the soil, these two measurements can be
compared. Using a recently factory-calibrated sensor to measure
CO2 concentration in the air, scientists have found that soil sensors
that differ by more than 10% from this reading are candidates
for calibration. This threshold is based on over a year of field
experience with the James Reserve transect.

In-Situ Calibration We could not apply this above technique to
the ISEs in Bangladesh and the San Joaquin River valley because
there is no known relationship between ions in muddy water and
some more easily measured phenomenon. To address such cases
we are experimenting within-situ calibration in order to capture
changing calibration parameters while the sensor is buriedin the
soil, and avoid premature calibration. A Teflon tube is attached
to a sensor, with one opening of the tube positioned just above
the sensor membrane and the other end exposed above ground.
Periodically, the sensor is spiked through this tube with several
milliliters of a standard solution. The solution concentration is
chosen to be higher than that of the environment so that a pulse
can be seen in the sensor data as the solution is delivered andthen
absorbed into the environment. Significant changes in the amplitude
or slope of this resulting pulse across spikes could be used as an
indication that the sensor is drifting and should be re-calibrated.

Preliminary results are encouraging. Figure 12 contains results
from one experiment we performed on newly installed nitrate
sensors at James Reserve. The solid arrow corresponds to a 5 mL
nitrate injection, and the dashed arrow corresponds to a 5 mL
water injection used to flush the nitrate solution. The sharpdip in
voltage indicates the nitrate spikes (voltage is inverselyrelated to
concentration for nitrate ISEs), and the curve decays as thenitrate
slowly absorbs into the soil. The graph shows that the slope and
response time for spikes administered to the sensor over thecourse
of a day are relatively consistent. This idea is still relatively new.
Next steps to validate this approach include administeringspikes
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Figure 12: In-Situ Calibration of Nitrate Sensor at James Reserve
Data from nitrate (solid line) and moisture (dashed line) sensors
when spiked with 5 mL of nitrate solution (solid arrow) and 5
mL of water (dashed arrow). Nitrate concentration varies inversely
with voltage, so nitrate data pulses down upon injection of nitrate
solution.

regularly over the course of a week and then pulling the sensor
out to re-calibrate when the response changes, and quantifying the
impact that the small injections of solution do not significantly alter
the environment.

Lessons Learned We learned two main lessons.
First, through the actions we took and their results we foundthat

in-field actions enabled us to improve the amount of usable data
we collected from our sensors. We were able to isolate problems
by validating data that would have been otherwise discardedby
extracting and analyzing physical soil samples as in the case of the
nitrate and chloride sensors, measuring sensors in the fieldas in the
case of the broken calcium sensor, and calibrating sensors in-situ.
Even when we were not able to fix problems in the field, such as
replacing a sensor we knew to be broken, in-field actions enabled
us to isolate problems and take validating measurements that we
could only have suspected at after the deployment. In Section 7 we
quantify the impacts of immediate actions on sensor yield.

Second, through the actions we werenot able to take, we
discovered the importance of designing a robust platform. The
platform should facilitate sensor replacement when sensors are
faulty, and in-situ calibration. It should also be easy to deploy
and re-deploy, especially important for short-term deployments. In
Section 7 we describe thejavelin, a platform designed to address
these issues and successfully deployed in the San Joaquin River
deployment.

6 Improving Network Yield
The second dimension to improving the information yield is
to maximize thenetwork yield. In this section, we discuss the
techniques employed in each soil deployment in order to obtain
high network yields ranging from 91%–100%. Our wireless
network also achieved a network yield of 91%. This is higher than
previous wireless deployments which averaged around 50% [4, 5].

Nodes in the transect at James Reserve achieved an average
network yield of 91% from each of the 10 wired dataloggers.
77% of the 960,000 missing measurements occurred as a result
of the battery running out (determined because measurements
are missing from every sensor). The remaining 23% occur as
a result of a disconnected sensor (dataloggers do not report
measurements from disconnected sensors). Both of these problems
are simple to detect and fix, but they were not immediately
addressed because the nodes were not equipped with wireless
connectivity. A tradeoff exists: Wireless communication enables
realtime interaction but traditionally introduces lower network yield
and increased complexity.

Nodes in the San Joaquin deployment achieved a 100% network
yield. While significantly higher than the James Reserve yield, a
100% yield is not completely unexpected as the dataloggers were

continually attended, data was downloaded every day over a wired
channel, there were fewer nodes and sensors, and the deployment
was much shorter than the James Reserve deployment.

We expected our wireless sensing system in Bangladesh to
achieve the lowest network yield of all of the deployments
because it relied on an unreliable wireless channel insteadof a
wired medium for data communication. However, this deployment
achieved an average network yield of 91% per node. Most
surprising is that the network achieved this high yield without
using an end-to-end reliability layer. The reliability wasattained
in two ways. First, we used Sympathy [6], a system designed to
systematize data management by monitoring data flow from each
node, and identifying actions a user can take in the field when
the network yield falls below a user specified threshold. Second,
we incorporated a delay-tolerant networking [8] (DTN) layer on
the mote and basestation [9]. This layer sits directly on topof the
distance-vector routing layer. If a node does not have a valid route
to the basestation the node stores all packets to the local EEPROM
until a route becomes available.

We analyzed our data in order to understand the 9% packet loss.
Since packet storage and transmission is persistent acrossnode
reboots, we believe the loss was not caused by nodes rebooting.
Instead, we suspect a bug in the DTN layer. It took approximately
20 minutes for a route to time out on nodes once the basestation
disappeared. Until then, nodes operate under the assumption that a
route still exists, and continue to attempt packet transmission to the
basestation. After exceeding MAC-layer retransmissions,packets
not acknowledged by the basestation are dropped at the final hop
instead of being stored in local storage. This bug has since been
fixed.

Time stamps While the DTN layer was extremely effective at
improving network yield, an unfortunate result of nodes storing
packets locally was that packets were received out-of-order at the
basestation. Since we could not rely on time of reception at the
basestation to order packets, nodes needed to be able to accurately
time stamp data packets. No node in our network, including our
basestation, had access to the Internet or GPS. Network nodes
obtained the time from the basestation which flooded the time
every 20 minutes. The clock on the basestation needed to be
manually set every morning when it was booted up. Problems with
this centralized protocol occurred when a node re/booted and the
basestation was not available to initialize the clock. Thus, to order
the data we used mote time stamps by default, but when the time
stamp was incorrect, we used a combination of sequence numbers
to order the data with linear regression based on manually chosen
time stamps.

Lessons Learned For wireless networks, a DTN layer that
enables nodes to store packets when a valid route to the basestation
is not available can be extremely effective at protecting against
unexpected basestation outages in addition to unreliable wireless
links.

In order to address the issues introduced by out-of-order data
and networks subject to disruptions and loss of connectivity with
a basestation, we need a new time-synchronization protocol. This
protocol should be fast converging, to initialize nodes’ clocks soon
after start-up, and because delay-tolerant networking enables nodes
to store data in the absence of a basestation, this protocol should
be distributed so that nodes can obtain the correct time, even in the
absence of a basestation.

7 Interactivity
In Sections 5 and 6 we discussed the sensor and network failures
we have observed. Left unchecked, such problems can cause severe
data loss. Identifying the presence of a problem and fixing itas
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quickly as possible can significantly improve information yield.
The wireless connectivity in our Bangladesh deployment provided
us the opportunity to interact with the hardware while the data
was gathered. We begin this section by discussing and quantifying
the impact of real-time interaction on the information yield from
sensors deployed in Bangladesh, and present several representative
examples from other deployments where interactivity couldhave
greatly improved information yield. Based on these experiences,
we discuss thejavelin, a platform for soil monitoring that enables
real-time interactivity.

In some instances, in-field interaction improved the sensoryield.
For example, data that falls in a sensor’s NLDR should be validated.
By extracting physical soil samples in Bangladesh and analyzing
chloride and nitrate levels, we were able to use 2850 of 3400 data
points that occurred in the non-linear detection range of sensors.
This action improved our sensor yield by 10% overall, and by 51%
for those sensors. However, there were 550 data points recorded
from sensors other than chloride and nitrate of the 3400 total points
in the NLDR that we had to discard. Systematic interactivitycould
have enabled us to extract physical samples for these sensors as
well.

In several instances, while in-field interactivity did not aid us in
improving the sensor yield, we were at least able to definitively
isolate the problem. Broken sensors accounted for 58% of the
faulty data points collected in Bangladesh; while we could not
replace them, similar to the calcium sensor described in Section 5,
we were able to validate that they were broken during the
deployment by checking the sensor with a pH meter during the
deployment. Disconnected sensors accounted for 2% of faulty data
in Bangladesh, and 58% of faulty data in our transect at James
Reserve; in Bangladesh by checking the connector in the fieldwe
were able to validate the problem. High gradient data accounted
for 60% of faulty data collected in Bangladesh; while we did not
isolate all of the problems, we were able to fix one of the instances
by moving a connector to a dry area, and isolate another instance
by checking the sensor with a pH meter.

In several instances, all in the James Reserve transect, we did not
interact with the sensors because the nodes did not have wireless
connectivity. Thus, even faults that were easy to identify and
fix were not addressed. Stuck-at faults at one temperature sensor
during a 5 month period accounted for 7% of faulty data; and a
failed battery resulted in 3 months of lost data from one node,
resulting in a network yield of 69% from that datalogger.

7.1 Javelin

As we have learned through our deployments and discussed, a
platform for soil monitoring must enable interactivity with the
deployment in several ways. First, because many soil monitoring
sensors require frequent calibration and are unreliable, testing
and replacing individual sensors should be easy. In addition,
the platform should support in-situ calibration. Second, because
dense sampling is often next to impossible in heterogeneoussoil
environments, the platform should be quick to (re)deploy, and
minimize the impact on the soil to keep soil settling times ata
minimum. Third, the platform should facilitate the extraction of
physical samples near sensors as soil sensors are often faulty and
data from these sensors require validation.

Thejavelin pylon depicted in the top of Figure 1 and deployed at
the San Joaquin River was designed to address these issues. Sensors
are housed inside of a 1.25 inch PVC tube. Slits are cut around
the circumference of the tube to allow moisture in, but keep out
soils and other particles that may damage the sensor membranes.
Communication hardware resides in a PVC enclosure attachedto
the top of the tube. A javelin is not designed to handle more than 5
sensors, addressing a mistake we made in the design of the pylon we

used in Bangladesh which became extremely difficult to maneuver
when holding its maximum of 24 sensors. The end of the tube ends
in a point. In contrast to the up to 5 holes required to deploy the
pylon in Bangladesh, the javelin can be driven into the ground in a
single hole, minimizing environmental impact and making iteasier
to replace bad sensors.

The javelin is also designed to support Teflon tubes attachedto
each sensor for in-situ calibration. This tube can also be used to
extract water near the tip of the sensor, or physical samples, useful
in validating questionable data.

Not all soil systems can utilize the same platform. The javelin
does not perform well in environments that are not moisture
saturated as the sensors are shielded by the column and do notcome
into contact with sufficient moisture. However, in wet soilslike in
Bangladesh or the San Joaquin River, the javelin performs well.
Figure 1 is a graph of diurnal nitrate trends detected by 3 nitrate
sensors deployed at 1 foot intervals inside of a javelin.

Lessons Learned In-field interactivity is key to improving both
network and sensor yield, and is enabled in two ways. First, nodes
should be equipped with wireless communication to enable real-
time data analysis. Real-time communication is required tonotify
users immediately when problems arise; wireless communication
could have notified users in the James Reserve deployment
immediately when a node went down, instead of having to wait
for several months to discover it during regular maintenance.
Second, it is impossible to manually monitor data from all sensors
in a deployment. Like Sympathy does for network quality, we
need a tool to systematize the monitoring and management of the
data quality. The basestation should be equipped with software to
systematically monitor data and notify users of actions they can
take in the field to fix faults, validate questionable data, oraddress
mis-calibrated sensors. The node should be equipped with software
to enable immediate feedback, so that once an action is taken, a user
can request subsequent samples to ensure that the problem has been
fixed, instead of having to wait for the next sampling period.We are
working to develop such a system based on the data we collected in
Bangladesh.

8 Conclusions and Future Work
Soils are challenging environments for sensing systems dueto
their short duration, the measurement uncertainty, and thesensing
uncertainty. We discuss the techniques we employed to improve
information yield in three deployments undertaken in Bangladesh
and in California. Through these deployments we have learned
three lessons.

First, in-field interactivity significantly improves sensor and
network yield. Actions such as in-situ calibration, validating
potentially faulty data, and fixing broken hardware can improve
the quantity and quality of usable data collected from a network.
Such interactivity is enabled in two ways: 1) Nodes should have
wireless connectivity to enable real-time communication;and 2)
software should be installed on the motes and the basestation to
enable systematic and timely monitoring of the data quality. We are
working to design such a system to monitor data quality, and plan
to deploy it with our soil monitoring system in various locations in
Palmdale, and in Bangladesh in December, 2008.

Second, network yield for wireless networks is significantly
improved using delay-tolerant networking techniques, butrequires
a robust time-synchronization protocol to handle the resulting out-
of-order packet delivery.

Third, based on our experience, we have designed thejavelin,
a platform for very wet soils or shallow groundwater that
enables sensor interactivity by minimizing soil disturbance during
deployment, and facilitating the deployment, replacementand in-
situ calibration of sensors.
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Finally we wish to acknowledge our collaborators. Deployments
such as these are not possible without collaboration with partnering
institutions in the host country. Our deployment in Bangladesh was
made possible through collaborations with engineering students in
Bangladesh and scientists in the US who had been travelling yearly
to Bangladesh over the past 5 years.
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