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ABSTRACT OF THE DISSERTATION 
 
 

Image/Time Series Mining Algorithms: Applications to Developmental Biology,  
Document Processing and Data Streams 

 
 

by 
 
 

Oben Moses Tataw 
 

Doctor of Philosophy, Graduate Program in Computer Science 
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Dr. Amit K. Roy-Chowdhury and Dr. Eamonn J. Keogh, Co-Chairpersons 
 
 
 
 

Interdisciplinary research in computer science requires the development of computational 

techniques for practical application in different domains.  This usually requires careful 

integration of different areas of technical expertise.  This dissertation presents image and 

time series analysis algorithms, with practical interdisciplinary applications to develop-

mental biology, historical manuscript processing, and data stream processing.  Inspired by 

the NSF IGERT program, this dissertation presents algorithms for analysis of growth dy-

namics at the shoot apex of Arabidopsis thaliana. A robust understanding of the causal 

relationship between gene expression, cell behaviors, and organ growth requires the de-

velopment of computational techniques for quantitative analysis of real-time, live-cell 

meristem growth data.  This requires the development/application of image analysis tools 

and novel time series alignment algorithms.  Image analysis is necessary for the computa-

tion of growth features, but this leads to a time series of unsynchronized growth data, 

which requires a robust alignment method.  Towards this end, we present two time series 

alignment algorithms. This dissertation further considers image mining in historical doc-
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ument processing.  An application of the Minimum Description Length principle (MDL) 

to develop a symbols clustering algorithm is presented.  The developed algorithm pro-

duced one of the first practical applications of MDL to real-world, real-valued data such 

as images. Moreover, we introduce a novel premise that a clustering algorithm should 

have the freedom to ignore some data. Extensive empirical results show that the MDL-

based algorithm outperforms the popular K-Means clustering algorithm, given the same 

input data, distance measure, and the correct value of K in K-means. The new algorithm 

could have significant impact, as clustering is a critical subroutine in almost all historical 

document processing systems. Finally, we present an algorithm for detecting rare and ap-

proximately repeating sequences in unbounded real-valued data streams, given limited 

space. This algorithm employs the novel integration of SAX time series representation 

with a Bloom filter to develop a robust cache maintenance policy that allows us to over-

come known challenges to a previously unsolved frequent pattern mining problem. Our 

contribution lies in the fact that we solve this problem for real-valued data, whereas only 

the discrete-valued case has been considered in the literature.  
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CHAPTER  1 

INTRODUCTION 

Interdisciplinary research in computer science requires computer scientists to apply their 

knowledge towards creating practical solutions in other domains, including the promotion 

of basic scientific research. Flagship programs such as Integrative Graduate Education 

and Research Traineeship (IGERT), a United States National Science Foundation (NSF) 

program, have played a critical role in promoting and funding such interdisciplinary re-

search.  This research often requires the development of computational techniques to 

solve practical problems in other domains, usually demanding the application of many 

different areas of computational expertise. For example, to develop tools for analysis of 

live-cell growth at the shoot apex of Arabidopsis, both image processing and time series 

processing skills are required and must be integrated.    

This dissertation focuses on the development of image and time series analysis algo-

rithms with significant interdisciplinary implications.  Application domains examined 

range from developmental biology to  data stream processing and historical manuscript 

mining.  The dissertation path was motivated by involvement in the chemical genomics 

IGERT (ChemGen IGERT) program at UCR (Fig. 1.1). The IGERT project involved re-

search of the dynamics of growth at the shoot apex of Arabidopsis.  The need for image 

and time series analysis techniques inspired our desire to further explore independent 

problems in the areas of image analysis (MDL clustering) and time series analysis 

(streaming data processing). 
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Fig. 1.1: Overview of Dissertation. The dissertation develops image and time series 

analysis algorithms with application to a diversity of scientific domains.  The pro-

jects were motivated by involvement in NSF ChemGen IGERT program in the de-

partment of Botany and Plant Sciences. 

 

This dissertation begins by presenting time series alignment algorithms developed as 

part of research on growth dynamics at the shoot apex of model plant Arabidopsis thali-

ana Fig. 1.1.top.  To study the molecular control of organ growth, the causal relationship 

between gene expression, cell division, and organ growth needs to be established. Doing 

this requires the development of computational techniques to process and analyze time 

series of live-imaging data. Live imaging captures real-time, organ primordial and gene 

expression dynamics at cellular resolution.  Understanding spatial relationships from live 

imaging data requires the spatial mapping and temporal alignment of different functional 

domains into a single template.  A temporal alignment is a necessary step for any proper 

ChemGen - IGERT

Image Analysis Time Series Analysis

Analysis of real-time live-cell growth at the shoot apex of 
Arabidopsis thaliana

 Pre-processing and Feature Extraction
 Organ Reconstruction
 Growth Measurement

 Growth Time-series Alignment
Multi-Feature LAM Alignment
 Parameter free Alignment

MDL Image 
Clustering

Streaming 
Sequence 

Maintenance
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gene expression analysis that is invariant to spatiotemporal changes. For this reason, two 

growth time series alignment algorithms are proposed: the first one is based on an exist-

ing landscape matching algorithm [2] and the second is a more robust parameter free al-

ternative to the first.  Both methods are relatively simple, but as we shall show, this sim-

plicity is a great strength. In particular, the methods are essentially parameter free and are 

thus easier to use and less likely to be made to overfit on small datasets, especially by an 

overzealous practitioner. This work also required the application of image analysis tech-

niques for basic volumetric image processing, organ reconstruction and growth measure-

ment from reconstructed surfaces. The need for image and time series analysis skills re-

quired in this study motivated us to explore other image and time series mining problems 

as part of this dissertation.  

Next, this dissertation addresses a purely image analysis problem with implications in 

historical document processing (Fig. 1.1.bottom.left). Specifically, we consider a practical 

application of the well-known Minimum Description Length (MDL) principle to cluster-

ing glyphs (i.e. letters, symbols, etc.). Based on this principle and the premise that clus-

tering algorithms should be allowed the freedom to ignore some data, an MDL-Clustering 

algorithm is presented and shown to be more robust than the ubiquitous K-Means alterna-

tive, even when both use the same distance measure and when K-Means is given the (un-

realistic in the real world) advantage of knowing the correct value of K.  The algorithm 

presented in this work has a practical impact in historical document mining and optical 

character recognition systems. It is a significant contribution because individual character 

clustering is often the first and most critical tasks in any higher-level document pro-
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cessing system. This demonstrates a practical application of MDL on real world data such 

as images, and uses MDL directly in the clustering algorithm, as opposed to using MDL 

simply as a model selection criterion [41]. The key limitation that has kept MDL from 

being applied to such real-world data is that it is only defined for discrete data such as 

natural language strings or DNA strings; however, most images are intrinsically real-

valued data matrices. As we shall show, we can address this issue to produce a practical 

algorithm.   

Finally, this dissertation considers a challenging time series problem with potential 

impact beyond time series streams (Fig. 1.1.bottom.right).  Given an unbounded stream 

of time sequences (think heartbeats in an ECG stream) and bounded space, a novel algo-

rithm for detecting ‘rare’, but approximately repeating, real-valued sequences is present-

ed. This problem is a variant of the challenging frequent items mining problem, which is 

still more or less an open problem. We present an algorithm that integrates the SAX time 

series representation [63] and a Bloom filter [59] to implement an efficient cache mainte-

nance policy that is more robust than a randomized alternative, the only obvious straw 

man.  The novelty of our contribution lies in the integration of the SAX transformation 

with a Bloom filter in the implementation of a cache replacement policy. Moreover, as far 

as we know, this is one of the first frequent items mining algorithms designed to deal 

with real-valued time series.  

Motivated by involvement in interdisciplinary research supported by the NSF 

IGERT program, we have developed algorithms with impact in plant biology, 

streaming data processing, as well as historical document processing. In chapter 2, 
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we present details on the IGERT-supported work in this dissertation, including a full 

background on the biological motivation, novel application of existing image 

processing techniques, and the development of novel alignment algorithms for 

proper temporal synchronization of growth data. Chapter 3 will present details on 

our MDL clustering algorithm. Finally, in Chapter 4, our cache maintenance 

algorithm for streaming data is presented.  
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CHAPTER 2 

QUANTITATIVE ANALYSIS OF LIVE-CELL GROWTH AT THE SHOOT APEX OF 

ARABIDOPSIS THALIANA: ALGORITHMS FOR FEATURE MEASUREMENT AND 

TEMPORAL ALIGNMENT. 

 

Study of the molecular control of organ growth requires establishment of the causal rela-

tionship between gene expression and cell behaviors. We seek to understand this relation-

ship at the shoot apical meristem (SAM) of model plant Arabidopsis thaliana. This re-

quires the spatial mapping and temporal alignment of different functional domains into a 

single template. Live cell imaging techniques allow us to observe real time organ primor-

dia growth and gene expression dynamics at cellular resolution. In this paper, we propose 

a framework for measurement of growth features at the 3D reconstructed surface of organ 

primordia, as well as algorithms for robust time alignment of primordia. We computed 

areas and deformation values from reconstructed 3D surfaces of individual primordia, 

from live cell imaging data. Based on these growth measurements, we applied a multiple 

features landscape matching algorithm (LAM-M), to ensure a reliable temporal alignment 

of multiple primordia. Although the original landscape matching algorithm (LAM) moti-

vated our alignment approach, it sometimes fails to properly align growth curves in the 

presence of high noise/distortion. To overcome this shortcoming, we modified the cost 

function to consider the landscape of the corresponding growth features. We also present 

an alternate parameter free growth alignment algorithm which performs as well as LAM-

M for high quality data, but is more robust to the presence of outliers or noise. Results on 

primordia and guppy evolutionary growth data show that the proposed alignment frame-



 
 
 

7 
 

work performs at least as well as the LAM algorithm in the general case, and significant-

ly better in the case of increased noise. 

2.1 Introduction 
 

Advances in live cell imaging techniques such as those developed in [20], present oppor-

tunities to tackle important plant development questions. Live imaging allows us to in-

vestigate the causal relationship between cell behavior, organ growth and genes that work 

in networks. This is possible because with live imaging, we are able to observe in real 

time, organ primordia growth and gene expression dynamics at cellular resolution. In this 

paper, we present a framework for quantitative study of primordia growth at the shoot 

apical meristem of Arabidopsis, (shown in Fig.  2.1 ), based on live imaging data.  

 

 

Fig.  2.1. Location of the Shoot Apical Meristem in model plant Arabidopsis thali-

ana. (A) Location of SAM. (B) Detailed view of SAM showing multiple primordia 

(P1-P5) at different developmental stages. (C) Illustrative sample of 3 out of 23 slices 

from an imaging session. White circles indicate location primordia per slice. 
 

In doing so, we present algorithms for temporal alignment of primordia growth data 

and any other developmental growth data for that matter. Time synchronization is often a 

necessary step in any meaningful analysis of time lapse data. Time lapse data generated 

Stem Cell Niche

Arabidopsis 
Plant

A) B) C)

Image Stack
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from live imaging experiments is very noisy and often requires robust time synchroniza-

tion for reliable deduction of these relationships. In addition to plant biology, a similar 

problem is faced in other areas of science including biological and medical sciences, 

where experimental data is often very large and usually unsynchronized. 

Quantitative time series data generated from these experiments is sometimes collected 

through the measurement of interesting variables over varying timeframes.  Such meas-

urements and subsequent analysis are essential in efforts to gain greater insight into bio-

logical systems.  

In the medical community, the study of multiple characteristics of human respiration 

can lead to the discovery of important dynamics in patient outcome studies [9],[28]. In 

order to achieve an acceptable level of reliability, such data needs to be properly time 

synchronized across multiple patients. In proteomics studies, there is a need for quantita-

tive comparison of multi-class Liquid chromatography-Mass spectrometry (LC-MS) data 

[3]. The very nature of data generation in LC-MS studies is itself a source of large varia-

bility. Given the degree of noise and variation, a robust alignment of generated time se-

ries is often a necessary step towards reliable multi-class comparison.  

One common and necessary requirement in these different domains and many others is 

the need to collect a large amount of unsynchronized data, properly align them and then 

perform further analysis.  

Although there has been a fair amount of progress in this problem domain, to the best 

of our knowledge, no one has looked at the applicability of similar techniques in the 

study of plant development. Specifically, we do not know of any similar study applied to 
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primordia growth dynamics at the shoot apex of Arabidopsis thaliana. Given high resolu-

tion data, many existing techniques have proven to be reliable and robust. However our 

problem presents many challenges in the form of low resolution time series, with high 

variability. Specifically we are challenged by the fact that we have about 5 to 13 time 

points per observed event. With such low resolution, the effect of noise and variability 

can be greatly magnified. 

2.2 Main Contribution 
 

This paper makes four specific contributions in the study of biological growth at the level 

of the organ (e.g. primordia): 

 We show how to measure growth features from reconstructed 3D structures of or-

gan primordia, based on live imaging data. (Section 2.6.1). 

 We show the application of deformation field morphometry (DBM) for quantifi-

cation of deformation at the surface of organs.  (Section 2.6.1.2). 

 We present a modified landscape matching algorithm for the alignment of low 

resolution, noisy time series using multiple features.  (Section 2.6.2.1.1). 

 We present a parameter free growth alignment algorithm. (Section 2.6.2.2). 

2.3 Background 
 

Although a full biological description of the primary system under study is beyond the 

scope of this paper, we present a brief description and motivation for our work.   The  

Shoot  Apical Meristem (SAM)  is made  up  of stem-cells  that provide cells for the de-

velopment of all  above  ground  plant  structures.   The  organ  primordia are  regions  of  

the  SAM  that develop  into  different  plant organs.  At each point in time, the SAM con-
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tains multiple primordia at different developmental stages, as shown in Fig.  2.1.B. The 

SAM is subdivided into different functional domains, with unique and overlapping gene 

expression patterns.   Differential expression analyses have led to some understanding of 

the expression p a t t e r n s  of many SAM genes.   In [26], analysis o f  just 3 cell types 

revealed more than 2000 genes with distinct and overlapping expression patterns. 

However, such an analysis is static and does  not provide the  dynamic context of ob-

served p a t t e r n s .  It also does not provide t h e  relationship between observed ex-

pression pattern, cell-cell communications, cell expansion/growth rates and 

organ growth. 

 

 

Fig.  2.2. Live imaging data of clavata-3 gene expression showing expression rates at 

0hr, 24hrs and 40hrs. Live-imaging techniques allow for real time observation of 

growing SAMs. Proper alignment allows for dynamic gene expression analysis that 

is invariant to spatiotemporal changes. Data from [19] 

 

Data for our project was collected using the live imaging technique developed i n  

[20].   Live imaging allows for real time observation of primordia growth at the res-

olution of the cell.  It also allows for real time observation of gene expression and 

cell division over a period of time, while the plant is alive and growing. These tech-

niques use laser scanning confocal microscopy to obtain 3D volumes of SAM struc-
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ture at different time instances throughout an observation period (usually several  

days),  without  damaging the growing  plant.   With live-imaging, we are  able  to 

capture  the  dynamic context of discovered  genes,  as  illustrated  in  the images  

in  Fig.  2.2, which  were  published in  [19].  Live imaging a l so  allows for computa-

tional tracking of cell division patterns as in [13]. We are proposing a framework 

that will lead to the possibility of performing dynamic analysis of live imaging 

and other growth data. Such an analysis will be invariant to spatiotemporal 

changes in plant structure over time.  

Data collected at each time instance of live imaging is in the form of a 3D stack of 

slices representing the view of the SAM at different focal planes from top to bot-

tom. Analyzing primordia morphogenesis based on measurable growth features is 

an important problem t o  plant biologists.  It is important precisely because gen es  

drive primordia growth. As a result of this, biologists need to understand the spa-

tiotemporal dynamics of the interaction between gene expression and p r i m o r d i a  

growth. We seek to deduce t h e  principles underlying the relationship between gene 

expression, cell division, cell-cell communication and overall primordia growth.   Such 

an understanding will move us a step closer towards developing a dynamic gene expres-

sion atlas for the SAM of model plant Arabidopsis thaliana. Working towards this goal 

(see big picture in Fig.  2.3), we solve two important problems: 

 Measurement of growth features at the surface of primordia 

 Alignment of time series of growth features 
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Fig.  2.3. Motivation for our study of growth at the SAM of Arabidopsis thaliana.  

Proper temporal alignment of growth data will allow for reliable development of 

dynamic models that integrate gene expression and quantitative data, both at the 

global (SAM) level and at the resolution of the cell. 

 

Given  the advantages of live imaging,  one might imagine that we could  just  label  

all discovered genes  in a  single  plant and perform  our  analysis  using  live-

imaging.   We are however  limited in live imaging, because technical limitations mean 

we can only use 2 to 4 gene markers at a time.  As a direct result of this re-

striction, we cannot study more than a few genes at a time using a single plant. Given  

that there  are  thousands  of genes,  and  there is variation in SAM size and  

shape,  we must  perform  analysis  of different genes in different plants, and then 

integrate the results into a common template.  Given that the SAM consists of 

multiple primordia at different developmental stages, time lapse data for a set of 

primordia have varying start and end times.  Such data needs to be time synchro-

nized in order to properly perform r e l i ab l e  analys i s . This also  requires  complex  

alignments  and  comparisons  across plants which  calls for computational tools 
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for SAM growth  analysis. For this reason, our study of automatic growth alignment 

is a necessary first step in this process. 

2.4 Relation To Previous Work 
 

The nature of the problem i n  our work is such that we are analyzing multiple 

agents per subject.  These agents are undergoing similar biological processes 

(growth), but at any given moment, they are at different stages of  that process. The 

challenge does not only come from the variability across SAMs, there is also great 

variability within the same subject (SAM).   

In terms of measuring growth fea tu res , there has been some work within the 

past decade [5],[7],[11]. Our work differs from these studies in many ways.  First 

of all our goal is to study th e  spatiotemporal dynamics of growth a nd  use the out-

put of our studies i n  the development of a dynamic model.  Secondly, our dataset 

is significantly different. In [5], they used replicas taken from the surface of individual 

apex as input into their shape tracking system. In contrast, we use  live imaging  data 

that allows us to track gene expression at the resolution  of the cell,  while  they  

used  replicas  taken  from the surface  of each  individual apex  to track shape  

changes.  In [7], similar imaging equipment was used fo r  data collection.  However 

they used a  different technique in their live imaging experiment. Their  technique  

differed  in the  sense  that they  employed a multi-angle  image  acquisition  ap-

proach, and  then applied  an  image  reconstruction technique  that integrated  

these  images  into  a single  image with  better resolution.   They had a  24 hour 

t i m e  interval between observations, a constraint that was imposed by their approach. Such 
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a long time window can present the risk of missing s i gn i f i c a n t  growth dynamics.   

In our case, we allowed 6 hour intervals between observations and took images from 

a single angle (horizontal).  With a 6 hour interval, attempting the imaging ap-

proach employed in [7] will be very traumatic to the plant, which will most likely 

not survive  the adverse  effect of laser intensity. 

Our proposed system t a k e s  3D surface po in t s  as input. These points repre-

sent the reconstructed 3D shape of primordia.  Since we are focused on the  study  

of global  patterns in primordia growth,  any contour based 3D reconstruction 

scheme is suitable to use with the proposed framework. Many  image  reconstruc-

tion  techniques  have  been  proposed in  the  past decades [1],[6],[14].   Methods 

like the classical Marching Cubes approach [14] or the more recent technique based 

on the Multi-level Partition of Unity (MPU) models [ 1 ]  are examples of tech-

niques that have been shown to produce acceptable results in many application 

domains. 

In this work, we further show how to compute local surface deformation from 3D re-

constructed live imaging data. Our approach to computing deformation was inspired 

by the phenomenon of deformation based morphometry (DBM). Although DBM 

originated  from  solid  mechanics, it  has  been  widely  embraced  in  the medical  

imaging  community to study  a variety m e d i c a l  conditions.   For  example  

DBM  has  been  applied  to study  the effects of alcoholism  in [21] , changes  in hu-

man  brain [17],[22] , as  well as  analysis  of gray  matter deformation  in  [4]. The 

validity of many var i a t ions  of DBM has also been the focus of previous s t u d i e s  
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[8][23].  Although the adoption of DBM  in the bio-medical imaging  community 

has seen wide success,  the  approach has  never  before  been  used  to study pri-

mordia development in  the way  we are  proposing here. 

Another major problem w e  address in this paper is that of time series alignment.  In 

fact, we present two solutions for the temporal alignment of growth data, a task that is at 

the heart of this paper.  Time series alignment is a problem that has attracted signifi-

cant interest in the past. A widely adopted solution to this problem is  dynamic 

time  warping  (DTW), an algorithm that has attracted interest from the data 

mining community [10],[27], although it came about as a result of work in the 

speech recognition community.  Over the years, many variants of the DTW algo-

ri thm have been developed [16]. However, the key  to most  of these is  the  utili-

zation  of a robust cost  function,  in  cases  of  high  variability  in  amplitude and 

time.   In addition to DTW, there are other approaches that have yielded reasonable re-

sults [2],[12].  In  [2], a landscape  based  cost  function  was  applied   to develop  

what  is referred to as  the Landscape matching  algorithm  (LAM). This method  

was used to align data from respiration patterns of multiple patients.  A statistics 

based  approach was employed  in [12], where multiple time series are  simultaneously 

aligned and eventually a latent trace was inferred  from the aligned  set.  This approach is 

very robust.   However, because our plant growth data has very low temporal resolution, 

we cannot guarantee the correctness of such an approach. Our approach to align varying 

length and noisy sequences is detailed in Section 2.6.2. 
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2.5 Detailed Methodology 

In this section, we give a detailed presentation of the entire proposed framework, from 

growth measurement, to eventual growth alignment of time lapse data. Although the pri-

mary goal of this paper is to present solutions for aligning growth data, we think for 

completion, it is important to give details on how we measure some of the features being 

aligned. 

2.6 Overview of Proposed Framework 
 

At any  moment in  time, the SAM  is made  up  of  multi- ple  growing  primordia at dif-

ferent  stages  of  growth.    The proposed framework   is designed to handle the analysis 

of primordia from different plants.   As shown in Fig.  2.4, the system  is made up of two 

distinct modules:  the growth  computation module  (GCM) and  the growth  alignment 

module (GAM). The GCM includes sub-modules to measure growth. For example in the 

study of primordia growth, the GCM sub-modules will play the role of measuring growth 

features at the surface of reconstructed primordia.  The output of this module is a time 

series  of  primordia growth  measurement, for all plants under study. Once we have a 

collection of time series, the growth alignment module performs  a multiple series align-

ment on all the primordia.  Deformation values  computed  by  the GCM  are  used  to 

improve  alignment results. 
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Fig.  2.4. The proposed system is made up of the growth computation module 

(GCM), and the growth alignment module (GAM). 

 

The next sections  will give details  on the methodology used for growth computation, 

and the alignment of measured features. 

2.6.1 Growth Measurement 
 

2.6.1.1 Surface Area Calculation 
 

Given a stack of boundary points representing a primordia, we use existing tools to gen-

erate a smooth surface as shown in Fig.  2.5. The surface area of our reconstructed pri-

mordia surface is computed by performing a Delaunay triangulation, and then taking a 

summation on the areas of the triangles. Summation of the areas of all these surface tri-

angles gives us an accurate estimate of the surface area of the primordia. Although there 

are many ways of computing the area of a triangle, we chose to use Heron’s formula for 

computing the area of our triangle. 
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Fig.  2.5. Sample input  into the system (left) is in the form of slice contours which 

are then used to reconstruct a smooth surface. Here we show a Matlab™ visualiza-

tion of the reconstructed surface. 

 

2.6.1.2 Deformation Computation 
 

One of the fundamental patterns biologists seek to understand is the variational nature 

of deformation on the surface of the organ over time.  We cannot begin to deduce the dy-

namic nature of organ deformation without first of all deriving a quantitative representa-

tion of such activity. In  order  to solve  this, we used  deformation  based  morphometry 

(DBM), an approach that has been widely adopted in the medical image analysis  com-

munity [4],[8],[17],[21],[22].  Our DBM approach is composed of three major steps: 

 Establish Point Correspondence between target surface T and source surface S, 

where T is the primordia surface at time t+1 and S is the same primordia surface 

at time t. 

 Compute deformation field based on point correspondences. 

 Quantify deformation by looking at the Jacobian at each point on the surface. 

 

 

 

Outlines of slices on stack Reconstructed Surface
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2.6.1.3 Finding Correspondences 
 

Optimal correspondence can be achieved by solving the registration problem be-

tween surfaces S and T.  This is done by addressing it as an  optimization  prob-

lem, where  the goal is to minimize some error functional. Once we have 

our two point clouds properly registered, we chose as optimal, the corr e-

spondence that  led to convergence in our optimization. The  approach  we  

employed  is based  on  the well known  Iterative  Closest  Point (ICP) algorithm  

for rigid  registration  of point sets [ 1 5 ] . Given the system we use for primordia 

growth data collection, surfaces generated from our data set are almost r eg i s -

t e red . This observation makes our data suited for use of the ICP algorithm, given its 

tendency to get stuck in local minima. Leveraging off the formalisms i n  [15], we 

now give a simple description of the basic IC P  a l g o r i t h m .    

 Given  an  initial state, our task is to minimize  the sum of squared differences be-

tween  the transformed target points and  their correspondences  on  the  source  

surface.   This i s  done by minimizing the error function 𝐸𝑀, through an iterative pro-

cess of computing correspondences and then optimizing the transformation pa-

rameters based  on these correspondences. 

 

𝐸𝑀 = 𝑚𝑖𝑛∑[‖𝑀(𝑇𝑖) − 𝑆𝑖‖
2  ]

𝑛

𝑖=1
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where 𝐸𝑀, is the error  due to transformation M, and n is the number of correspond-

ences and 𝑖 is the current correspondence from a point in 𝑇 to a point in 𝑆. Note that each 

point on the target has a correspondence to a point on the source surface.   

The first step in the process of finding the optimal correspondence is to com-

pute the initial transformation parameters between the two 3D point clouds repre-

senting our surfaces.  Let the rotation parameter be  𝑟𝑐  and the translation pa-

rameter be  𝑡𝑐.  Given these initial or current state parameters, the next step is using the 

current state to find new correspondences  C(S ,T ). 

 

𝐶(𝑆 ,𝑇 )
= argmin[‖(𝑟𝑐𝑇𝑖 + 𝑡𝑐) − 𝑠𝑖‖

2] 

 

where   𝐶(𝑆 ,𝑇 )  is the i
th

  correspondence between T and S. Based on these new corre-

spondences, update 𝑟𝑐 and 𝑡𝑐, using the following equation 

 

[𝑟, 𝑡] = 𝑎𝑟𝑔𝑚𝑖𝑛[‖(𝑟𝑐𝑇𝑖 + 𝑡𝑐) − 𝑆𝐶(  ,  )
‖] 

where [𝑟, 𝑡], is the updated rotation and tranlation parameters, based on previous state 

and correspondences computed from those previous values.  

If the transformation error due to the updated transformation parameters is not less than a 

pre-set threshold, repeat the process over  by  computing new  correspondences based on 

current  transformation.   The correspondence that leads to convergence  is selected as the 

optimal correspondence. 
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2.6.1.4 Quantifying Deformation 
 

Once correspondence between points  on surfaces at time t and t + 1 have been estab-

lished, we use these correspondences to derive a displacement field. Displace-

ment fields are represented in the form of displacement vectors. The structural 

difference between t h e  two surfaces i s  encoded in this displacement field and this fact 

gives us a way to directly quantify deformation.   

  

 

Fig.  2.6. Sample plots of total deformation computed from four different primordia. 

Total deformation is calculated by taking the sum of deformation values at points on 

the surface. 

 

Given a displacement field from point correspondences, we quantify deformation by 

evaluating the local change at the resolution of each point on the surface. This is 

done by taking the determinant of the Jacobian matrix 𝐷 at each surface point.  

Let  𝑈 be the displacement vector at point  𝑃(𝑥, 𝑦, 𝑧) on the target surface. The de-

formation at P is defined as det (𝐷), where 𝐷 is defined as follows: 
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where  𝑈 is he displacement  vector  at the current  point. A sample plot of total 

deformation over time for multiple primordia is shown in Fig.  2.6. As expected, 

primordia initially exhibit little or no deformation, but that changes at later 

stages of growth.  

2.6.2 Growth Alignment 
 

In our proposed system, output from the GCM is a time series of surface areas (or another 

growth measurement), computed for each primordia considered.  Growth alignment as 

used in this paper refers to the temporal alignment of times series of growth measure-

ments for multiple primordia.  In all our experiments, we will be aligning growth data 

from multiple objects. However, the fundamental step in all these is the alignment of one 

growth time series against another. As such, our description of solutions for alignment of 

growth data will focus on alignment of two time series. After that, we will finally discuss 

how to apply these solutions as a sub-routine in the alignment of multiple time series. 

Now we give a high level presentation of the alignment problem addressed here.  
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Fig. 2.7. The alignment problem we seek to solve involves finding the shift St neces-

sary to bring G2 into an alignment with G1, such that some cost function is opti-

mized. 
 

Given two time series G1 and G2 , the growth alignment problem is defined as the task of 

finding the temporal shift St  , such that when applied to G2 , it leads to the best possible 

alignment of G2 to G1.  As shown in Fig. 2.7.B, there are points in the two time series that 

are most similar and thus can be used as a basis for finding the required shift. Fig. 2.7.C 

shows the expected output, at least in this toy example, that is should come out of a good 

alignment. In this case, series G2  has been shifted by a factor of two in the temporal di-

rection. Note that in Fig. 2.7.A and Fig. 2.7.B, G2 is plotted with a vertical shift of +5 to 

allow for easy display and illustration of the problem.  

This definition of our alignment problem requires that the most similar subsequences be-

tween the two time series fall within the overlapping region that resulted from applying 
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the shift St to G2. What we have left now is to present our solution to this problem, given 

the application domain in consideration.  We now present two solutions to the problem of 

aligning low temporal resolution time series, with a focus on the alignment of plant 

growth data. The first approach is built on the Landscape Matching algorithm (LAM), 

while the second is a new parameter free alternative. 

2.6.2.1 Landscape Based Alignment 
 

We now give a brief review of the Landscape Matching (LAM) algorithm presented in 

[2].  This algorithm utilizes a landscape vector 𝜆, calculated from the overlapping regions 

of the two series shown in Fig. 2.7.A, to calculate a matching score using  the following 

cost function from normalized values of 𝐺1 and 𝐺2 : 

 

𝑀(𝐺 ,𝐺 ) = 𝑎𝑟𝑔𝑚𝑎𝑥 
1

𝐿 
∑

(1+𝜆 
(  

 ,  ,  
 )(𝑛))

1+| 𝐺 
 (𝑛)−𝐺 ,  

 (𝑛) |
𝐿 

𝑛=1  , 

 

where 𝐿  is the length  of the overlapping region,  𝜆 is the landscape vector, 𝐿1 is the 

length of 𝐺1, 𝑠𝑡 is the temporal shift of the current iteration, and 𝐺1 
  and 𝐺2

  are the over-

lapping segments.  

This algorithm considers all possible temporal shifts, with the goal of maximizing the 

landscape function 𝑀(𝐺 ,𝐺 ).  As we shift G2 across G1 from left to right, starting with an 

initial overlap, we get different matching scores for resulting overlaps. The shift that 

leads to the highest matching score is selected as the required shift for the best possible 

alignment.  
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In Fig.  2.8, we show an example of calculating 𝜆 from the overlapping regions of two 

time series. Calculation of 𝜆 requires us to set a threshold parameter 𝜃, within which we 

consider two corresponding points from the time series to be a match. The matching loca-

tions are then sorted in ascending order by time.  

 

 

Fig.  2.8. Calculating the landscape vector. The threshold is set to 3 for this example. 

 

The first position in 𝜆 and any other index location that is not in the list of matching 

positions is set to 0. For the rest of the index locations in the overlapping regions, the 

values are set to the absolute difference between the value at the index position in G1, and 

the value of the prior matching index in G1.  

2.6.2.1.1 Multiple Features Landscape Based Alignment 
 

The LAM algorithm requires that the threshold parameter be meaningful, since the re-

sult of the landscape function is sensitive to this parameter, and as such the algorithm can 

sometimes be sensitive to noise and outliers. With this motivation in mind, we decided to 

generalize the LAM function so that it can be used for alignment based on multiple 
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growth features. The intuition of this generalization is that, provided other features have a 

property that significantly discriminates different developmental stages for example; we 

could leverage such property to improve the alignment due to the first feature.  Conse-

quently, a false positive due to noise from a single feature will be compensated by a 

strong match due to other features.  

 

 

Fig.  2.9. Plots showing an example where single feature LAM algorithm fails to find 

the proper shift. By incorporating a second feature, LAM-M computed the correct 

shift. 
 

For multiple features, we want to find the shift such that the cumulative landscape 

function of all features is maximized.  For a particular feature fi , we define the new land-

scape function for normalized values of the time series as follows: 

 

𝑚𝑓 
=

1

𝐿1
∑

(1 + 𝜆𝜃
𝑓 ,(𝐺 

 ,𝐺 ,  
 )(𝑛))

1 + | 𝐺1
 (𝑛) − 𝐺2,𝑠 

 (𝑛) |

𝐿 

𝑛=1
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  The new cost function for multiple features is then defined as: 

𝑀𝐹 = ∏𝑚𝑓 

𝑘

𝑖=1

  

 

This equation shows the new cost function for a multiple-feature LAM, which for ease of 

presentation, we refer to as LAM-M.  The landscape vector for each feature is still calcu-

lated in the same way, and the goal now is to maximize the joint landscape of all the fea-

tures.  

In Fig.  2.9, we show an example where the basic LAM algorithm fails to properly align 

two fairly similar time series. In Fig.  2.9.B, we also show raw plots for a second feature, 

in this case deformation curves. In Fig.  2.9.C, we show alignment due to the original 

LAM algorithm, while in Fig.  2.9.D, we show how incorporation of multiple features 

leads to a correct alignment of the two time series. 

2.6.2.2 Parameter Free Alignment 
 

Although the LAM algorithm works well, and our extension allows us to improve per-

formance in the rare cases were LAM fails, we recognize two issues that could be prob-

lematic in some cases: first of all our data could be such that, the landscape function is 

too sensitive to the threshold parameter lambda.  The second issue is that we might not 

have the luxury of a second meaningful corresponding feature.  For these reasons, we 

now present a parameter free simple alternative to the LAM algorithm.  
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Our proposed parameter free algorithm looks to minimize the mean of Euclidean dis-

tances between subsequences in two time series G1  and G2.  Unlike the LAM, it does not 

seek to analyze the entirety of the overlapping regions at any moment in time. It simply 

looks at the most similar subsequences by minimizing the mean of the Euclidean distanc-

es between corresponding points on the subsequences/motifs. Note that we use Euclidean 

distances here, but the distance metric could be substituted.   

 

 

Fig.  2.10. Calculating the similarity score between two subsequences. Subsequences 

are labeled with i and j indices 

 

Once we find the most similar subsequences, we calculate the shift necessary for the 

best possible alignment, based on the first matched indices of the subsequences. Because 

the most similar subsequences do not have to include the entirety of overlapping regions 

between two time series, this algorithm tends to be more robust to outliers that could 

throw off the landscape function in the LAM algorithm.   

G1

G2
i1

i2
i3

j1

j2

j3

L = length of subsequence
Sum of Distances = d(i1 , j1) + d(i1 , j1) + d(i1 , j1)
Score = (Sum of Distances)/L
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Given two time series G1 and G2, we find subsequences of all lengths from G2, such that 

the maximum subsequence length is at most the length of the shorter of the two time se-

ries. Within this space of subsequence lengths, we find the closest pairs between G2 and 

G1. Let the length of subsequence g2 be l2. We now define closeness score 𝑆(𝑔 ,𝑔 )
as fol-

lows: 

 

𝑆(𝑔 ,𝑔 )
=

1

𝐿
 ∑ 𝑑(𝑔1,𝑖, 𝑔2,𝑖)

𝐿
1 , 

 

where 𝑑(𝑔1,𝑖, 𝑔2,𝑖) is the distance between the corresponding points in the subsequence. 
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Fig.  2.11. In some cases, even the presence of a second feature might not be useful. 

As we see here, even LAM-M failed for this test data set. However, the new parame-

ter free algorithm correctly aligned both time series. 

 

In Fig.  2.10, we show an illustration of subsequence closeness scoring, for a subse-

quence of length 3. The process involves the summation of distances between corre-

sponding points in subsequences being considered. In order to penalize matches that re-

sult from short sequences, we divide this sum by the length of the subsequence. We 

acknowledge that this penalty is a somewhat naïve approach to favor longer subsequenc-

es. Others have presented intuitive approaches in the Minimal Description Length (MDL) 

space [18]. However, empirically our choice of simply taking the mean is extremely ro-

1 2 3 4 5 6 7 8 9
20

25

30

35

40

Original Growth Curves

1 2 3 4 5 6 7 8 9
0

5

10

Corresponding Feature Curves 

1 2 3 4 5 6 7 8 9
20

25

30

35

40

LAM Aligned 

1 2 3 4 5 6 7 8 9
20

25

30

35

40

LAM-M Aligned

-1 0 1 2 3 4 5 6 7
20

25

30

35

40

New Method

Closest Subsequence



 
 
 

31 
 

bust over many datasets. The matching pair that minizes the mean of the distances be-

tween corresponding points forms the basis for calculating the required shift St on G2. 

This parameter free algorithm sometimes outperforms LAM, even in the presence of 

multiple features. This is due to the fact that it relies on subsequences, as opposed to an 

entire overlapping region, and as such, it is less susceptible to outliers. Of course it is also 

true that there may exist a threshold at which LAM-M might do just as well. 

2.6.3 Multiple Growth Alignment 
 

Now that we have shown two alternatives to aligning two time series, we now show how 

we use them to align multiple time series.  In the algorithm shown in Table 2.1, we as-

sume the parameter free alignment algorithm. However, it can easily be changed to use 

the LAM-M optimization strategy instead.  

This algorithm iteratively aligns the best possible pairs of time series, until there is no 

more time series to add to the aligned set. In Table 2.1.line 19, we make a call to our 

choice of alignment algorithm, in this case our parameter free algorithm. Lines 14 to 19 

find the best match and shift between the current time series, and the rest of the time se-

ries that have yet to be aligned.   

Note that this algorithm does not traverse the list of time series L, in order. For simplicity, 

we set the starting point to be the first time series in our list.  This index location gets 

placed on the stack of touched time series in Table 2.1.line 7.  In Table 2.1.line 15, we 

check to make sure we only compare against untouched time series. The time series that 

is best matched to the current source series becomes the source series in the next iteration 

and this is set in Table 2.1.line 26. In Table 2.1.line32 we consider the global context as 
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we shift the current matches. The algorithm terminates once the list of touched indices is 

greater or equal to the length of input set of time series. 

 

Table 2.1. Main Multiple Alignment Algorithm 

Input:           L : list of time series 

Output:        S: list of required shifts for time series in L. 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

Scores = {}  // structure to hold similarity scores 

S = [ ] 

i = 1; 

S(i) = 0; 

C = [ ]; //empty set 

while len(C) < len(L) 

      g = L(i) 

      C(len(C) + 1) = i;  

       if (~isset(Scoresi.distance)) 

           Scoresi.distance = inf 

           Scoresi.shift = 0 

       bestScore = inf 

       bestInd = i 

       bestShift = 0 

      for j from 1 => len(L) 

           if  j 𝜖 C 

                continue 

           end if 

            h = L(j) 

            [shift  score] = alignSeries(g,h) 

            if(score < bestScore) 

                   bestScore = score 

                   bestShift = shift 

                   bestInd = j 

            end if 

       end for 

       i = bestInd 

       Scoresi.distance =bestScore 

       Scoresi.matchIndex = bestInd 

       ScoresbestInd.distance = Score 

       ScoresbestIndex.matchIndex = i 

       ScoresbestIndex.shift = Scoresi.shift + bestShift 

       S(i) = Scoresi.shift; 

end while 



 
 
 

33 
 

 

2.7 Results And Analysis 
 

We show alignment results on both synthetic and real data.  We generated synthetic data 

to test the limits of the multi-feature landscape alignment (LAM-M). Synthetic data al-

lows us to properly validate the alignment algorithm, since we are absolutely certain of 

the ground truth. In addition to aligning time series of primordial growth, we also show 

application of our algorithms on a longitudinal data set of individually marked guppies 

(Poecilia reticulata) in the wild. 

2.7.1 Multiple-Features Landscape Alignment with Synthetic Data. 
 

To generate synthetic data, we start with a single known time series, which we call the 

'Main' pattern. From this pattern, we then generate multiple sub-patterns of variable 

lengths by applying spatiotemporal random noise to different segments of the 'Main' pat-

tern. This allowed us to create noisy samples that were sure to test the limits of our multi-

ple features algorithm.  

A plot of the unsynchronized version of the data is shown in Fig.  2.12.  Note that the 

starting measurements of the generated growth curves are almost the same. This property 

can also be observed in the live imaging data. This is due in combination of the nature of 

primordia growth, as well as human error during imaging, as well as the plant trying to 

adjust from the trauma caused by initial exposure to laser light.  The fact that the generat-

ed data has this property makes it that more suitable for testing the multiple feature land-

scape alignment.   
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Fig.  2.12. Raw plot of the un-aligned synthetic data. This data has similar proper-

ties to those observed on real primordia growth data. 

 

In  Fig.  2.13, we show the results of aligning the raw time series using the LAM algo-

rithm. Here we see that one series is seriously misaligned due to noise and outlying data 

points that cannot be overcome by the basic landscape function. To overcome this prob-

lem, we applied the LAM-M, to take advantage of the corresponding deformation values 

from the 'Main' trace and the incorrectly aligned curve.  

As expected, the algorithm that incorporated the effects of multiple features was able to 

give a perfect alignment. Note that such results are only possible because this example 

shows the presence of a strong indicative second feature. As we showed before, there are 

cases where even the presence of a second feature is not helpful.  
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Fig.  2.13. Alignment of synthetic data using original LAM algorithm.  Although 

LAM does fairly well, it failed to properly align one growth curve. We know this be-

cause we know the ground truth. 

 

 

 

Fig.  2.14. Perfect alignment with LAM-M, using multiple features. (Left) Defor-

mation plot for main trace and wrongly aligned series. (Right) Properly aligned set,  

due to strong second feature. 
 

2.7.2 Results on Live Imaging Data.  
 

Data used in this project was collected from a live imaging experiment that lasted up to 

72 hours. Input into the system  is a set of surface points for each primordia in a single 

plant over time. We use these surface points to compute the time series of surface areas 

for each primordia.  For our experiment, we maintained a time interval of 6 hours be-

tween data points.  An example of a single primordia input at a single time instance is 



 
 
 

36 
 

shown in Fig.  2.5.right. Given a stack of images, primordia contours shown in  Fig.  

2.5.left can be automatically detected using available contour based feature detection 

techniques [24][25].  

 

 

Fig.  2.15. Sample growth pattern, showing single primordia growth time series. 

 

At the beginning of each live imaging experiment, developing primordia are at different 

developmental stages. At some point during the experiment, mature primordia that have 

been growing through out the observation period differentiate into other organs and exit 

the meristem. At that point we stop observing such primordia. Such exit is always ac-

companied by the emergence of new primordia. This behavior is the reason why in most 

of the results we show here, primordia will exhibit varying lengths of observation, a sit-

uation that begs for robust time alignment. The rest of this section will present results of 

temporal alignment of time series of surface areas from a single plant, and then from mul-
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tiple plants put together.  In Fig.  2.15, we show an example of surface area growth pat-

tern for one primordia. This figure shows the general pattern of primordia growth, which 

is multi-phasal. It is obvious from Fig.  2.15  that the sizes of the reconstructed surface 

area correlates with the calculated surface areas. 

The SAM exhibits a great deal of variation within and across plants. As such, we tested 

our alignment algorithm on primordia from a single plant, as well as primordia from dif-

ferent plants put together. This experiment will test the stability of both the landscape 

based alignment and the parameter free alignment, which we call Minimum Mean of Dis-

tances alignment (MMD).  
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Fig.  2.16. Alignment of multiple primordia from a single plant. Raw growth curves 

(top). Alignment with parameter free algorithm labeled Minimum Mean of Distanc-

es (middle). Landscape based alignment (bottom).  Even with a threshold parameter 

of 2, the landscape algorithm failed to find proper shifts. 

 

2.7.3 Multiple Primordia from a Single Plant 

The general nature of primordia growth and data collection introduces many opportuni-

ties for noise and outlier introduction. As such, the requirement for a threshold parameter 

is sometimes a limiting factor. As shown in Fig.  2.16.bottom, the alignment results from 

the landscape based alignment are no different from the original unsynchronized raw time 
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series. This sensitive exhibited by the LAM based alignment occurred in multiple other 

plants. We show another example in Fig.  2.17.  

 

 

Fig.  2.17. Another example of parameter free Minimum Mean of Distances align-

ment being more robust than alignment based on landscape matching. 

 

It is worth noting that LAM based alignment sometimes does yield reasonable results, 

especially in the presence of deformation. In Fig.  2.18, we show an example where both 

algorithms presented achieved reasonable alignments.  Note that these results were ob-
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tained after computing the corresponding deformation of the primordia in question and 

applying the multiple feature version of LAM. 

  

 

 

Fig.  2.18. Both algorithms yielding similar alignment results. 

 

All these examples suggest that in the absence of a very strong second feature, our pa-

rameter free Minimum Mean of Distances  (MMD) alignment algorithm is generally su-

perior to the landscape based alignment. It is true that without a reasonable minimum 

subsequence length, MMD alignment could also fail, because it might elect very short 
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sequences that give the minimum score, yet in the context of surrounding points, does not 

make for a good match. In this situation and in the presence of a strong second feature, 

the LAM-M multiple feature alignment will be the preferred option.   

2.7.4 Alignment of Multiple primordia from multiple plants 

In order to test the robustness of our algorithm, we show performance of our alignment 

algorithm when we mix primordia from different plants.  For this experiment, we aligned 

a total of 24 primordia, using both algorithms presented Fig.  2.19. Even with expected 

variation across plants, we show that a robust alignment routine can achieve an accepta-

ble alignment.  

These results are very significant, especially in the study of the principles that govern me-

ristem growth/maintenance. As mentioned earlier, live imaging limits the number of 

markers we can use at any given instance. As such it requires many plants to study a few 

genes. Proper alignment is the only way we can begin any accross plants analysis.  Based 

on these results, LAM based alignment schemes seem to be very sensitive to growth type 

data like the multi-phasal growth exhibited by primordia. LAM will work well for da-

tasets like respiration data, since the patterns sort of periodic and variability between sub-

jects is not as high as we see in meristem development. In such case it might be better to 

look at entire landscapes, rather than merely subsequences, even though one could argue 

that the space of overlapping landscapes is a subset of all possible subsequences.   
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Fig.  2.19. Alignment of primordia collected from  5 plants. Total number aligned is 

equal to 24. 

 

2.7.5 Results On Guppy Evolutionary Data. 
 

The guppy data comes from a long-term project on rapid life-history evolution for which 

guppies were introduced in four isolated sections of streams in The Northern Range of 

the island of Trinidad. All guppies are marked with a unique combination of visible im-

plant elastomer and are thus individually identifiable. The stream sections are censored 

monthly, when all individuals are caught, identified, and measured (standard length and 

weight), and new recruits are given a new unique mark. Only individuals above 14mm of 
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standard length are marked. Because birth is not observed, the age of individuals is un-

known. A robust temporal alignment algorithm is therefore required for proper analysis. 

Data for this experiment was extracted from the time lapse average length measurements 

taken over a period of fifteen months. To show applicability, we randomly selected indi-

viduals, but made sure they were from the same cohorts or from cohorts that were not 

introduced into the ecosystem more than two months apart.   

As we show in Fig.  2.20, the parameter free algorithm based on Minimum Mean of 

Distances achieved a very desirable alignment. Independent domain expert biologists 

who granted us the right to test on their data actually confirmed our alignment results as 

reasonable.  
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Fig.  2.20. Alignment of growth in length, of Trinidadian guppy. Each plot represents 

a single individual's growth pattern over time. The Y axis is the normalized lengths, 

while the x-axis represents time. 

 

These results on guppy evolutionary data are significant, and present a new opportunity 

for biologist trying to study the effects of ecosystem conditions on adaptive evolution.  

Biologists now explore the possibility of estimating the age of individuals,  or properly 

comparing individuals,  in a way that is invariant to seasonal variation.   

Given the variation in the data, it is no surprise that the parameter free MMD algorithm 

resulted in a more natural alignment. This is again another case where significant varia-

tion and noise poses a constraint on LAM based alignment.  
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2.8 Conclusion 
 

We have proposed a framework for measurement of growth features and alignment of 

unsynchronized primordia growth data from live imaging experiments.  To move closer 

to the big picture goal of developing a dynamic gene expression atlas, a necessary first 

step is the development of robust temporal growth alignment algorithms. We presented an 

extension to an already reliable alignment algorithm (LAM), as well as presented a pa-

rameter free alternative to growth alignment. The extension to the LAM algorithm to al-

low for multiple feature optimizations allowed us to overcome unique challenges pre-

sented in data with increased noise. However, this extension is sensitive to outliers and 

high variation. We have shown cases where LAM-M outperforms LAM basic, and also 

cases where even LAM-M fails, yet our parameter free algorithm succeeds.  To demon-

strate the diversity of our algorithm, we also showed results on guppy evolutionary 

growth data. This tells us that in the presence of high variation and increased noise, our 

parameter free MMD alignment algorithm is superior to LAM based alignment algo-

rithms. A robust alignment of time lapse data gives developmental biologist the ability to 

begin to deduce the causal relationship between gene expression, cell behaviors and or-

gan growth. Such an analysis would not be reliable without an alignment framework such 

as the one we proposed. 
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CHAPTER 3 

CLUSTERING OF SYMBOLS USING MINIMAL DESCRIPTION LENGTH   

 

The clustering of glyphs (individual letters/characters/symbols) is typically the first step 

in document processing algorithms and a critical enabling technology for most historical 

documents indexing techniques. Given the importance of the problem there has been sig-

nificant research effort in the last decade on clustering techniques for atomic symbols. 

However, much of this work has focused on proposing novel distance measures which 

are purported to be best for a given language or type of text. In this work, we take a step 

back to consider the problem from domain and language agnostic perspective. In particu-

lar, we claim that, independent of the distance measure used, any method that attempts to 

cluster all the data is almost certainly doomed to failure. We explain this observation, and 

introduce a clustering method based on Minimum Description Length that can overcome 

it. We demonstrate the utility of our technique on diverse historical manuscripts. 

3.1 Introduction 
 

The clustering of glyphs (atomic letters/characters/symbols/graphemes) is often the first 

step in document processing algorithms [35][48], and an enabling technology for many 

Optical Character Recognition (OCR) algorithms. Recent commercial and government 

initiatives such as the Million Book Project and Google Print Library Project have placed 

tens of millions of pages of historical documents online and created an escalating need 

for automatic character recognition techniques that can deal with inevitable degradations 

and distortions encountered in historical texts. Most use (sometimes human assisted [35]) 
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clustering as a preprocessing step in building a character (and hence, word) recognition 

system. 

Given the growing importance of the problem, there has been a huge research effort in 

the last decade on clustering techniques for atomic symbols [35][48]; however, much of 

this work has focused on proposing novel distance measures which are purported to be 

best for a given language or type of text. For example, Dynamic Time Warping [48], 

Generalized Hough Transform [49], Mahalanobis distance, Blurred Shape Models [36] 

etc., all have their advocates. In some cases the distance measures are specialized down 

to the language [35][48] or style of writing (Fig. 3.1).  

 

 

Fig. 3.1: Examples of early printed manuscripts. From left to right, lyrics and music 

of a Christian hymn, an early manuscript of uncertain provenience from the British 

library, a nearly illuminated New Testament. 

 

In this work, we take a step back to consider the problem from a completely domain and 

language agnostic perspective. In particular, we claim that independent of the distance 

measure used, any method that attempts to cluster all the data is almost certainly doomed 

to failure. In other words, we must design clustering algorithms that are able to ignore 
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some of the data, in particular Hapax legomenon/rare words or badly degraded charac-

ters.  This idea seems to open a “chicken-and-egg” paradox. When clustering, we need to 

ignore rare and unusual characters, yet we typically define rare and unusual characters 

with reference to some clustering. However, as we shall show, we can bypass this prob-

lem with a clustering method based on Minimum Description Length (MDL) [31][41]. 

The rest of this paper is organized as follows: Section 3.2 presents representation and 

clustering issues addressed in this work, Section 3.3 presents related work, Section 3.4 

introduces our algorithm, including details on representation and the intuition behind the 

choice of MDL. Finally, we present our experimental results in Section 3.5. 

3.2 Background 

Perhaps the most important decision made in any pattern recognition effort is the choice 

of a representation for a given data set. This choice of representation for the data informs 

the distance measures and algorithms available for clustering, classification and query-

by-content. In the next section, we explain why we opted to use a very simple representa-

tion.  

3.2.1 Representation Issues 
 

The last two decades have seen a plethora of proposed representations for glyphs, includ-

ing chain codes [53], upper/lower profiles [51], Zernike moments [44][55],and various 

feature vectors/graphs/trees[35][30]. However, while an MDL approach (cf. Section 2.2) 

does not strictly require a simple representation; simple representations do facilitate a 

concise explanation and simple implementation. Moreover, there is increasing evidence 
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that both simple representations and simple distance measures can be very competitive 

[33].  

Thus, in our research efforts we have adopted perhaps the simplest representation of 

glyphs, bitmaps. We do this with two caveats. First, as with most other glyph processing 

efforts, we first use an off-the-shelf binarization algorithm to produce black and white 

bitmaps. Second, as shown in Fig.  3.2, our algorithms will work directly with downsam-

pled images.  

 

Fig.  3.2: Two examples of the letter ã taken from a fifteenth century Flemish “Book 

of Hours”. In both cases, we see the original data, the binarized image, and the 

downsampled binary image we propose to work with. 

 

This step may seem counterintuitive. In many data mining and image processing algo-

rithms downsampling is only used to make algorithms efficient [33], presumably at some 

cost to effectiveness. However, most modern digital archives of historical manuscripts are 

highly oversampled, and this spurious resolution does not help accuracy, and may even 

hurt it. To see this we conducted a simple test. We performed a leave-one-out classifica-

tion experiment on a dataset of 52 symbols from 4 classes
1
.We used the total number of 

differing pixel as the distance measure (cf. Section 3.4.1). We repeated this test at differ-

ent sampling scales from the original resolution to a drastically undersampled 1/64 of the 

original resolution shown by inset images in Fig. 3.3.   
 

1We defer a detailed discussion of the dataset until our experimental section. However, we note in passing that all ex-
periments in this work are reproducible, and all code and data is available at [56]. 
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Fig. 3.3 : Nearest neighbor classification results at different sampling scales. The in-

set images show representative examples at four scales. 

  

The results may perhaps be a little surprising. They show that we can greatly reduce the 

amount of information given the classifier without reducing accuracy. In fact, reducing 

the dimensionality of the data gives a slight improvement, presumably as the downsam-

pling smoothes the data. Moreover, note that the accuracy reported is competitive with 

results published for this and similar datasets [45].   

In retrospect however, this result is not too surprising. There is a large gap between actu-

al versus intrinsic dimensionality of the data here. The actual dimensionality of the data 

depends on the photographic resolution, which, with modern cameras is essentially arbi-

trarily high. The intrinsic dimensionality of glyphs is more difficult to state, but is surer 

much lower. For example, industrial designers have long exploited the fact that all Eng-

lish alphanumeric characters can be represented with just a 57 grid [34]. Fig. 3.3 strong-

ly suggests that we can comfortably work in a dimensionality much lower than the origi-

nal. 
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We can cast more light on the results shown in Fig. 3.3. In Fig. 3.4.top, we show two 

symbols, A and B derived from highly stylized versions of the symbol ð (Latin small let-

ter Eth) from a historical manuscript.  

  

Fig. 3.4 : top row) Two examples of the same symbol. When compared (far right) 

they share only 54% of pixel locations. bottom row) The symbols can be compared at 

a lower resolution, where they have 80% of their pixels in common.  

 

While clearly the same symbol, if we attempt to see how many pixels in common their 

best alignment has, we discover it is only 18 pixels, out of a maximum 33 possible. This 

18/33 ratio would give us little confidence that they are the same underlying symbol, and 

make clustering such data difficult.  

In Fig. 3.4.bottom, symbol A and symbol B are down-sampled to one-quarter their area, 

to produce symbols A' and B'. If we now test to see how many pixels in common they 

have, we find it is 8 pixels, out of a maximum 10 possible. This 8/10 ratio is more sug-

gestive of the fact that the two symbols ultimately correspond to the same ground truth 

class label. 

Common PixelsPixels Unique to (B)Pixels Unique to  (A)

A B AB

18 pixels overlap33 dark pixels 37 dark pixels

9 pixels overlap10 dark pixels 11 dark pixels

A' B' A'B'
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To summarize this section, empirically it seems that little, if anything is lost by working 

with simple and low-dimensionality data representations. Moreover, as we hinted here 

and will show more forcefully in Section 4, a simple pixel-level distance measure can be 

surprisingly competitive.  

3.2.2 Clustering Issues 
 

Virtually all clustering research in this domain uses K-Means clustering [46][40]. K-

Means is attractive because it is simple, readily available and has certain performance 

guarantees (i.e., convergence). However, we believe that K-Means has two serious flaws 

for the task at hand. The first, which is very well known, is that it requires the user to 

predict the correct number of clusters. This is challenging in any domain, and particularly 

so in historical manuscript processing where we might expect 20 or more clusters. 

The second weakness of K-Means is not well appreciated in the literature, but is a critical 

insight that motivates our work. We can demonstrate this with a simple experiment. In 

Fig. 3.5, we show a small real dataset. The data falls into three classes, although some of 

the badly faded ‘e’’s resemble the letter ‘c’, etc. Here both our proposed MDL clustering 

method (which will be explained in Section 3.4) and K-Means can both correctly cluster 

the data, although the latter must be told the number of clusters.   

 

Fig. 3.5: A small dataset of faded letters, from three classes. Both our proposed MDL 

clustering method and K-Means can correctly cluster these, although the latter had 

to be told K = 3. 

MDL

Clustering

K-means

Clustering
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Suppose we repeat the experiment, but this time add a new letter, a ‘q’, to our dataset. 

Fig. 3.6 shows that the MDL clustering approach cannot fit the ‘q’ into any existing clus-

ter, and thus decides to ignore it. In contrast, K-Means does not have the ability to ignore 

data. What will it do?  

 

Fig. 3.6: top) Our MDL clustering algorithm can ignore data it cannot explain. In 

contrast, K-Means must explain all the data and for both K = 3 and K = 4 it does so 

badly.  

 

First consider the case where we tell K-Means to use three clusters. In that case, it joins 

‘q’, with the ‘b’’s to form the cluster {‘b’,‘b’,‘q’}. We would be disappointed to find 

such a diverse cluster, which clearly does not map to the objective truth. 

However, we had given K-Means the wrong value for K. What happens if we give it K = 

4? The answer is perhaps surprising. The output is much worse. Not only is ‘q’ not cor-

rectly placed in its own cluster, but it has caused other clusters to be incorrect. In particu-

lar, the two ‘b’s are split into two different clusters, and two ‘e’s are also fragmented into 

two clusters. 

This problem is explained by two facts: K-Means cannot ignore data, and because of its 

objective function, the sum of squared distances, it is quadratically sensitive to even a 

MDL

K-means
K = 3

Unclustered

K-means
K = 4
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single outlier. To give an example in a domain familiar to most readers, if we attempt to 

spatially cluster almost any type of business/sports-venues/places-of-worship, etc in the 

forty-eight contiguous United States, the clusters are almost always intuitive and inter-

pretable. However, if we add Hawaii to our dataset, the results are typically bizarre and 

unintuitive. While Hawaii is only a tiny fraction of the dataset, its great geographical dis-

tance from the rest of the data makes clustering with K-Means a challenge. 

As hinted by this demonstration, we believe that the key to clustering, especially in do-

mains characterized by highly skewed class sizes, is to allow the clustering algorithm the 

freedom to ignore some data. As we shall show, our algorithm has exactly this ability.  

3.3 Related Work 

Given the vast amount of literature on data clustering, we will not attempt a thorough 

overview of clustering. Instead we highlight some work that is closely related to our algo-

rithm. For a detailed review of clustering, we refer the reader to [29][32] and the refer-

ences therein.  

We have designed our algorithm to exploit the advantages of the Minimum Description 

Length (MDL) principle. As we shall show later, this principle allows us to ignore sym-

bols that do not belong in any cluster.  

An MDL framework for data clustering was introduced in [41]. Although the basic intui-

tion of MDL also motivates our algorithm, there is a fundamental difference. The algo-

rithm presented in [41] has a goal of finding a clustering that maximizes the joint proba-

bilities of the data, and involves initial clustering using parametric models. As such, 
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MDL is merely used as a model selection criterion. In contrast, in our proposed frame-

work we derive an algorithm that is based solely on the basic MDL principle in the con-

text of symbols clustering. Moreover, the representational power of our framework is 

much more expressive such that it does not have to account for all the data, but is willing 

to leave some data as “unexplained”. 

The MDL principle has also been applied in a variety of other related contexts, including 

as a step in a graphical symbol-learning algorithm [43], and as a model selection criterion 

in word clustering algorithms [42]. In the graph based symbol-learning algorithm, the 

MDL principle is applied as a tool for extraction of substructures from a constructed rela-

tional graph where each node is a grapheme [43]. However, this work is only defined for 

symbols captured with pen-stroke information (i.e., from a tablet device). Finally in [43], 

the use of MDL is a peripheral step in clustering, unlike our proposed algorithm which 

uses MDL directly to guide the clustering procedure.  

3.4 MDL For Clustering Glyphs 

In Section 4.2, we give a detailed visual intuition behind MDL for clustering glyphs, be-

fore formalizing our ideas in Section 4.3. First, we must consider some data representa-

tion issues. 

3.4.1 Representational Preliminaries  

To facilitate an intuitive description of our MDL method, we will use a toy data set S, 

made up of six characters as shown in Fig. 3.7. 
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51 Image Pixels

10x10 grid (8 bits per pixel)

Description Length 408 bits 

36 Image Pixels

10x10 grid (8 bits per pixel)

Description Length 288 bits 

 

Fig. 3.7: A toy example of a dataset that will allow exposition of the MDL principle 
for glyphs.  
 

 

Note that while this dataset is contrived for simplicity, it is at the approximate dimen-

sionality we plan to use for clustering real data.  

As noted above, our approach is based on the MDL principle [31][41][42]. MDL requires 

a data model that can encode the regularities within the data, such that the underlying cost 

of representation is minimized. 

For glyphs that have approximately equal numbers of dark/light pixels, a simple binary 

matrix representation may be the most efficient encoding of the data. However, if the ma-

trix is “sparse”, as is the case for most glyphs, then it may be more efficient to encode 

just the locations of the dark pixels. This is depicted in Fig. 3.8 where we represent two of 

our toy examples this way. To locate each dark pixel we must encode its x-location and 

its y-location. As both have ten possible values, this requires    ⌈  𝑔2(1 )⌉ = 8 bits. For 

the ‘T’ illustrated in Fig. 3.8, which has 36 dark pixels, this means it requires 288 bits to 

represent. 

 

Fig. 3.8: Two symbols encoded by a list of pointers to their dark pixels 
 

 

T1 T2 H1 H2 C1 C2
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3.4.2 The Intuition behind MDL 
 

Using the representational scheme discussed in the previous section it requires 2,120 bits 

to represent all six items in data set S (cf. Fig. 3.7). We can denote this as the Description 

Length (DL) of the data, using the notation DL(S) = 2,120 bits.  

The reader will appreciate that our toy dataset contains significant redundancies. We may 

be able to exploit these redundancies to produce a more compact representation of the 

data, i.e. we may be able to compress it. Note that compression itself is not the end goal, 

the intuition behind MDL is that the model that compresses the data the best, also reflects 

the underlying structure, the natural clustering of the data. 

For simplicity and ease of presentation, we have adopted the following encoding model: 

given two symbols, we encode the second one given the first one, simply by storing just 

the differences between the two symbols, together with a pointer to the location of the 

second.  

In the terminology of the MDL, one symbol is a hypothesis H about the data. For exam-

ple, the naive Description Length of the two symbols T1 and T2 (cf. Fig. 3.7) is 560 bits: 

DL({T1, T2}) = DL(T1) + DL(T2) = 288 + 272 = 560 

But we can ask if it is more efficient to treat T1 as hypothesis H1 and encode T2 given H1:  

DL({T1, T2}, H1) = DL(H1) +  DL(T2 | H1) 

We can write this last term in a more general form: 

DL(T2 | H1) =    +   , 
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where   is the number of different pixels between hypothesis H1 and symbol T2,   is the 

number of bits needed to encode a single location in our image grid, and   is the number 

of bits needed to encode a pointer to hypothesis H1.  

As shown in Fig.  3.9,  DL({T1, T2}, H1) = 288 + 2  8 + 3 = 307 

Hence, this encoding saves us 253 bits. Note that to encode the second symbol in this 

manner, we need to indicate which image was the source image (the hypothesis). As there 

are six symbols in our toy example it takes 3 bits to encode this. 

 

Fig.  3.9: An example of an encoding that leads to a savings of 253 bits 
 

 

Note that we labeled our hypothesis with a subscript ‘1’. This is because in general there 

are many possible hypotheses about the data. For example, we may have (incorrectly) 

suspected it might be fruitful to encode T1 with reference to another symbol C1, let us call 

this H2. As shown in Fig.  3.10, this is a bad idea. While DL({C1, T1}) = 696 bits, we find 

the description length using H2 is:  DL({C1, T1}, H2) =DL(H2) +  DL(T1 | H2) = 731. 

Thus, this unintuitive decision would have cost us 35 extra bits. 

T1 has 36 black pixels

 Need 36 x 8 = 288 bits

T2 has  34  black pixels.

 Need 34 x 8 = 272 bits

Total: 288  + 272 = 560 bits

T2
T1

Number of Difference Pixels: 2

 source + differences + source ptr.

 288 + 2 x 8 + 3

 288 + 16 + 3 

 307 bits encoded

Saves: 560 – 307 = 253 bits

Overlapping

Different
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Fig.  3.10: An example of an encoding that leads to a loss of 35 bits. That is, the 
number of bits necessary to encode the data increases by 35 bits 
 

 

These two simple examples contain the major intuition of MDL.  The description lengths 

of rival hypothesis is a cost function that can be used to differentiate between poor deci-

sions (combining C1 and T1 into the same cluster) and good decisions (combining T1 and 

T2 into the same cluster).   

As we shall show more formally in the next section, we can exploit this cost function to 

allow a bottom-up approach to clustering, similar to bottom-up hierarchical agglomera-

tive clustering algorithms [39]. 

3.4.3  Notation and description of the operators 

We need to make some generalizations to produce a workable clustering algorithm. First, 

as the reader may have suspected, we may have multiple hypotheses about the data. Thus 

our final hypothesis may be a set of hypotheses such as Hfinal = {H1 , H2 , H3}.  

Creating a single hypothesis is naturally performed with a ‘create’ operator. In our toy 

example, we had only pairs of symbols. However, we might have had say a dozen exam-

ples of the symbol ‘T’. In this case, we want to form a single hypothesis from one ‘T’, 

and encode all the remaining examples relative to it one at a time. We can achieve this 

with an ‘add’ operator. 

C1 T1

Overlapping

Different

C1 has 51  black pixels

 need 51 x 8 = 408 bits

T1 has 36  black pixels

 need 36 x 8 = 288 bits

Total: 288 + 408 = 696 bits 

Number of Difference Pixels: 55

 source + differences + source ptr.

 288 + 55 x 8 + 3

 288 + 440  + 3

 731 bits encoded

Saves: 696 – 731 = –35 bits
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Finally, we may find that at some point in the search process that it is fruitful to combine 

two hypotheses into one. For example, we may start our search with one hypothesis that 

represents the symbol ‘I’, and another that represents an italicized version of it ‘I’. Later 

in the search process, we may wish to overcome this greedy search decision with a 

‘merge’ operator. 

With three available operators (create, add, merge), we can search the space of possible 

clusterings, using the description length of the hypotheses to guide the search. Thus, all 

that remains is to formalize these intuitions, which we do in the next section. 

The input into the algorithm is a set of symbols (S) to be clustered, formally defined as: 

𝑆 = {𝑠1, 𝑠2,  , 𝑠𝑛}, 

where 𝑛 is the cardinality of S.  

The output from the algorithm is a cluster set C, defined as:   

 = { 1,  2,  ,  𝑘}, 

where k is the number of clusters in C.  

Note that both individual symbols and clusters are represented by lower-case italicized 

letters, because individual letters are a special case of clusters (i.e., clusters of size one). 

In fact, it is possible that our algorithm could find no exploitable structure in the data, 

giving us the pathological but legal case of C = S. 

The description length of our output cluster set C, is defined as:  

𝐷𝐿(𝐶) =  ∑𝐷𝐿( 𝑖)

𝑘

𝑖=1
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where   is the number of clusters in the set and each cluster  𝑖 is a non-overlapping sub-

set of S.  

The ability to measure the DL of a cluster set gives us a primitive we can use to measure 

the number of bits saved (bitSave) after applying the create, add, and merge operators. 

The bitSave from creating a new cluster from two atomic symbols 𝑠1 and 𝑠2 to form a 

new cluster c' is defined as follows: 

𝐷𝐿(𝑠1) + 𝐷𝐿(𝑠2) − 𝐷𝐿(  ) 

The bitSave resulting from adding a symbol 𝑠 to an existing cluster   to get a new cluster 

   is defined as follows: 

𝐷𝐿(𝑠) + 𝐷𝐿( ) − 𝐷𝐿(  ) 

The bitSave resulting from merging two clusters c1 and c2 into a new cluster    is defined 

as follows: 

𝐷𝐿( 1) + 𝐷𝐿( 2) − 𝐷𝐿(  ) 

The task of the merge operator can be cast as an optimization problem with the goal of 

finding the cluster set 𝐶  that has the minimum description length is defined as the fol-

lowing:  

𝐶 = 𝑎𝑟𝑔𝑚𝑖𝑛𝐶{𝐷𝐿(𝐶)}, 

In order to merge clusters  𝑖 and    into the same cluster, all of the following conditions 

must be true:  

𝐷𝐿( 𝑖,   )  𝐷𝐿( 𝑖) + 𝐷𝐿(  )    
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𝐷𝐿( 𝑖,   )  𝐷𝐿( 𝑖 ,  𝑥)             𝑥    

𝐷𝐿( 𝑖,   )  𝐷𝐿( 𝑥 ,   )             𝑥  𝑖 

The decision to merge is driven by the goal of minimizing the description length of the 

final cluster set. 

3.4.4 Algorithm in detail 
 

Given the set of operators (create, add, merge), and the objective function (bitSave) our 

clustering algorithm simply reduces to a search algorithm. Because finding the optimal 

bitSave can be mapped onto finding the Kolmogorov complexity of an object, it is in-

computable in general, thus we must be content with an approximation. Our proposed 

algorithm is a bottom-up search algorithm, which is very similar to hierarchical agglom-

erative clustering [54]. As shown in Table 3.1 the algorithm’s input is a set of symbols, 

and the output is a set of clusters. We do not know in advance (nor can we control) the 

number of clusters that will be generated by the algorithm. The algorithm simply termi-

nates when there are no more bits to be saved or in the pathological case that all objects 

are merged into a single cluster.  

 

Table 3.1: MDL Clustering Algorithm 

Input:  S : Set of signals/images 

Output:  Clusters : Final cluster set 

1 

2 

3 

4 

5 

6 

Cluster = {} 

// now iteratively merge until bitsave   0  

while bitsave > 0 

      Remove_symbol = {} 

  [rm C' max_save] =AddNCreate(Cluster,S) 

 Remove_symbol = rm 
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Savings in Bits

253 Bits Gained

301 Bits Gained

301 Bits Gained

Loss of 19 Bits

Loss of 21 Bits

End Gain

Step 0:

Step 1:

Step 2:

Step 3:

Step 4:

Step 5:

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

 // now see what we save from merge 

     // will chose best option between this and AddNCreate 

 [C''  max_save''] =MergeAll(Cluster) 

      if max_save > max_save'' 

          bitsave = max_save 

          Cluster = C' 

         S = S – S[Remove_symbol] 

      else 

          bitsave = max_save" 

          Cluster = C" 

      end if 

end while 

 

In describing our algorithm we will use a trace of the algorithm ran on our toy dataset. 

This step-by-step trace is shown in Fig.  3.11.  

 

 

Fig.  3.11: A trace of our algorithm using an illustrative set of six characters. After 
step 3, the algorithm terminates since further clustering leads to an increase of bits 
needed to represent the data. 
 

At the first iteration of the algorithm, we are only able to use the ‘create’ operator, since 

all we have at this stage are atomic symbols. The algorithm considers all possible clusters 

that can be created and chooses to cluster the two symbols that save the most bits shown 

in Fig.  3.11.Step1. In Step2, we could either be creating a new cluster with two atomic 
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symbols or adding an atomic symbol to the cluster created in Step1. However, since cre-

ating a new cluster saves more bits than adding a symbol to the cluster created, the algo-

rithm elects to create a new cluster in Fig.  3.11.Step2. As a result, although we have the 

‘add’ and ‘create’ operators at this stage, the algorithm elects to use the ‘create’ operator 

again because this operation leads to the most bits saved.  The ‘add’ or ‘create’ opera-

tions are handled in Table 3.1.line 5 of the algorithm by calling on the ‘AddNCreate’ 

function shown in Table 3.2. 

 

Table 3.2: AddNCreate Function 

Input:  Cluster : Cluster set 

            S : Set of symbols/images 

Output:  Remove_symbol : Index of symbols to remove  

 C' : Final  cluster 

             max_save : Maximum savings so far 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

max_save = 0 

C' = {} 

for s1  S   

 for s2  S  

  new_clust = {s1,s2} // create a new cluster 

  c_save = DL(s1) + DL(s2) – DL(new_clust) 

  if c_save>max_save 

   C' = new_clust 

   Remove_symbol = S([g h])    // g,h is indices on S. 

            max_save = c_save 

  end if 

 end for 

 Merged_index = length(Cluster) + 1 

 for cs  Cluster 

  t_clust = cs U {s1} 

  c_save = DL(cs) + DL(s1) – DL(t_clust) 

  if c_save > max_save 

   C' = t_clust 

   Remove_symbol = S([h]) 

   Merged_index = m               // m is current index 

            max_save = c_save 



 
 
 

65 
 

22 

23 

24 

25 

26 

  end if 

 end for 

end for 

Cluster(Merged_index) = C' 

C' = Cluster 

 

In Fig.  3.11.Step3, we have all three operators available. After a call to the ‘AddNCre-

ate’ function, we make a call to ‘MergeAll’ function in Table 3.1.line 8, passing in the 

current cluster set as an argument. The ‘MergeAll’ function shown in Table 3.3 merges 

two clusters that lead to the most savings in bits. After Fig.  3.11.Step3, we no longer 

have any atomic symbols present, and at this point, all we have is the merge operator. 

Note that in actuality, we could have more atomic symbols available. However, in this 

example, all atomic symbols are used up at Fig.  3.11. Step3. As shown in Fig.  3.11. 

Step4 and Fig.  3.11. Step5, further merging of clusters leads to a negative bitSave. The 

algorithm thus stops at Fig.  3.11. Step3 because at this stage, there is no gain in further 

clustering.  

Table 3.3: MergeAll Function 

Input:  Cluster : Cluster set  

Output: C' : Possible Final Cluster set 

               max_save: Maximum savings 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

C' = {}    

merge_indices = [ ] 

max_save = 0 

for c1Cluster 

 for c2Cluster and c1 ~=c2 

  new_clust = c1 ∪ c2 

  c_save = DL(c1) + DL(c2) – DL(new _clust) 

  if c_save > max_save 

    C' = new _cluster 

   merge_indices = [i j] // i is current index 

            max_save = c_save 
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12 

13 

14 

15 

16 

18 

19 

   end if  

 end for 

end for 

Merged_index = length(Cluster) + 1 

Cluster(Merged_index) = C' 

Cluster = Cluster – Cluster(merge_indices) 

C' = Cluster  
 

 

3.4.5 Scalability 

The time complexity of our algorithm presented in Table 3.1 is dominated by calls to the 

AddNCreate and MergeAll subroutines in Table 3.1.line 5 and Table 3.1.line 9. We thus 

focus our asymptotic overview on these two functions.  

The AddNCreate function consist of two main parts: creating a cluster from two atomic 

symbols and adding a symbol to a cluster. To create a cluster, we chose the pair of sym-

bols that lead to the most bits saved. This requires checking all pairs of symbols, leading 

to a time complexity of O(n
2
) where n is the number of symbols in S. Note that in subse-

quent iterations, this step could be optimized by looking up best pairs from cached val-

ues. In fact, it is ideal to pre-compute these pairwise MDL distances, such that this part of 

the algorithm just becomes a simple table lookup. Also, using a memoization technique, 

by keeping the calculated values and repacking of the second best pairs and so on, we can 

reduce the number of calculations to O(n). 

Adding a symbol to an existing cluster requires looking at all symbol/cluster pairs. With k 

as the number of clusters so far, this process leads to a time complexity of O(k*n), where 

k is never equal to n. The AddNCreate function has an order of O(n
2
) + O(k*n) = O(n

2
). 

However, with a memoization technique, only the new/updated clusters need to calcu-
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late/re-calculate their description lengths. Hence, the time complexity of AddNCreate re-

duces to order O(n).  

The MergeAll function selects the best pair of clusters to merge by looking at all pairs of 

clusters from the set of clusters so far, selecting the pair that leads to the most bits saved. 

This leads to an order O(k
2
) for the MergeAll operation, where k is the number of clusters 

so far. However, we need to calculate only pairs of the new/updated clusters to all others. 

Hence, the number of calculations of MergeAll is only O(k) = O(n). 

The complexity of the algorithm due to the AddNCreate and MergeAll operations  is thus 

O(n). Note that the most number of clustering operations that can be performed due to the 

while loop in Table 3.1.line 3 is at most order O(n). Consequently, the whole algorithm 

computes the description length at most O(n
2
) times, using memoization techniques. 

3.5 Experimental Evaluation 

As we noted in Section 3.2.1, all experiments presented in this work are completely re-

producible. To make this possible, we will make all code and data available at [56].  

Our two concrete goals are to show that our algorithm works on diverse datasets, and that 

it outperforms the K-Means algorithm, the most obvious choice of a strawman. To be fair 

to K-Means we give it the exact same input as our proposed algorithm, and we let it 

“cheat” by telling it the objectively correct value of K. We do not measure the speed of 

the algorithms, as the offline processing of historical manuscripts is not typically a time 

constrained problem. We note in passing that the time of our algorithm is not significant-

ly worse than to K-Means, especially since K-Means requires multiple random restarts to 

mitigate against an unlucky choice of random seeds.   
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Most of the data used in this project was collected by Dr. Partha Pratim Roy and his team 

at Ecole Polytechnique de l'Universitè de Tours [47][52]. We gratefully appreciate their 

willingness to share his data. In Fig.  3.12, we show representative examples of the data 

we are clustering.  The results of running our algorithm in comparison to using K-Means 

are shown in Table 3.4. 

 

 

Verard  

 

Garamont  

 

Gering  

 

Single Letters 

 

Fig.  3.12: Sample symbols from various datasets used to evaluate algorithm 
 

 

3.5.1 Clustered Data 
 

3.5.1.1 A complete trace on a small dataset 
 

In Section 3.4.2, we presented a trace of the proposed algorithm on a toy dataset. Here we 

show how the algorithm does on a real dataset. In Fig.  3.13 we present the trace of the 

algorithm on a small set of degraded characters. 
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Fig.  3.13: A trace of our algorithm on a set of letters 
 

 

As expected, the algorithm iteratively selects operations that lead to the most bits saved, 

and after the 8
th

 iteration, it stops. This happens to be an example that nicely clusters into 

four groups.  

3.5.1.2  Change in Description Length  
 

As the MDL clustering algorithm evolves, the DL of the dataset continues to decrease. 

Each time we execute the ‘Add’,‘Merge’ or ‘create’ operations, two things can happen: 

we either gain by needing fewer bits to encode the data, or lose by needing more bits to 

encode the data. Our use of the MDL principle requires us to opt for the choice where we 

gain through a decrease in DL. As a result, our algorithm terminates when further cluster-

Step 0 :

Step 4:

Step 5:

Step 6:

Step 7:

Step 8:

Step 1:

Step 2:

Step 3:
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ing does not lead to a savings in representation bits. When the DL of our dataset stops 

decreasing and begins to increase, we know we have reached a stoppage point.  

In order to observe the evolution of description over time, we let the algorithm run be-

yond the stoppage point. Tracing the change in the DL as the algorithm evolves, the natu-

ral stoppage point becomes obvious. After the stoppage point in the algorithm, any sym-

bol in the dataset that is not yet in a cluster at this point is simply just ignored. As shown 

in Fig.  3.14, this corresponds to the point where we have the best possible natural clus-

ters. Beyond this point, we see a continuous increase in the DL of the data due to further 

clustering. 

 

 

Fig.  3.14: Change in total description length of data in Fig.  3.13. Figure shows that 
after the 8

th
 iteration, further clustering is useless.  

 

 

Running the algorithm on the larger sample of this dataset made up of 142 letters 

achieved an ARI of 0.98. This is better than results we got from running K-Means on the 

same dataset, with the right k, which achieved an ARI of 0.784.  

 

 

Clustering terminates

2 3 4 5 6 7 8 9 10 111

0.9

1.0

1.1

1.2

iterations

bits
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3.5.2 Comparison with K-Means 
 

In this section, we show performance on old English characters and three font sets from 

[47]. A sample of the symbols in these datasets is shown in Fig.  3.12. 

3.5.2.1 Experimental Design 
 

In order to assure a fair comparison, we used the Adjusted Rand Index (ARI) as the met-

ric for comparison. We also ensured that the basis of the distance measures in both algo-

rithms is as similar as possible. Remember that DL in our algorithm is influenced the per-

centage of bits that differ between a symbol and its hypothesis. As such we ensured that 

the K-Means algorithm uses similar criteria in its distance comparison. For all experi-

ments, we ran K-Means with the hamming distance, which is fitting, given that we are 

working with binary data.  

As we stated in Section 3.2.2, K-Means has a weakness that requires to know the correct 

number of clusters, K. For a fair comparison, we eliminate this weakness by providing K-

Means with the objectively correct value of K. Although this is cheating in favor of K-

Means, we thought it will be the only fair way to truly test our algorithm. 

Another weakness in K-Means is the fact that it does not ignore data and its objective 

function is very sensitive even to a single outlier. Therefore, in all our experiments, in 

addition to providing the right K to K-Means, we computed the ARI with the dataset as is 

(ARI K-Means) and with the dataset minus those symbols that were ignored by our MDL 

algorithm (ARI K-Means – Ignored Removed).  
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3.5.2.2 Performance Results 
 

Table 3.4: Comparison of Clustering Performance 

Source 
Number of 

Objects 

MDL Ig-

nored 

ARI 

MDL 

ARI   K-Means 

(right K) 

ARI K-Means 

(Ignored Removed) 

Vérard 

[47] 
37 3 1.0 0.77  (K=8) 

0.84 

(K=8) 

Garamont 

[51] 
134 11 1.0 

0.79 

(K=18) 

0.836 

(K=18) 

Gering 

[47] 
121 14 1.0 

0.85 

(K=17) 

0.86 

(K=17) 

Single Letters 142 20 0.98 
0.784 

(K=12) 

0.873 

(K=12) 

 

In Table 3.4, we show the results from running the proposed MDL clustering algorithm, 

compared with running K-Means on the same data set. By cheating and giving K-means 

the right K, one would expect K-Means to give the best possible results. But as we show 

on the table, MDL Clustering outperforms K-Means in this data set. When we remove the 

MDL ignored symbols, K-Means had an improved performance, yet it still lacked behind 

MDL clustering.  

3.6 Conclusion And Future Work 

3.6.1 Conclusion 
 

Clustering of symbols/glyphs is a critical subroutine in almost all historical document 

processing systems. As far as we know, MDL has never before been used in a task such 

as clustering of images. The fact that MDL is only defined for discrete data such as natu-
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ral language or DNA strings is a major factor that has kept if from being applied to real-

world data such as images. This is a major limitation given the fact that most images are 

intrinsically real-valued. Based on a fundamental premise that clustering algorithm be 

allowed the freedom of ignoring some data, in addition to a data representation that al-

lowed us to exploit regularities in data, we have presented a practical application of MDL 

on real-world data like images. Our results compared to the popular K-Means algorithm 

show the MDL based algorithm is not only capable of ignoring outliers, it is also robust 

to outliers and produces much better clusterings, measured by the ARI of the clusters. 

This algorithm could have a significant impact in historical document processing sys-

tems.   

3.6.2  Future Work 

Although the results presented are impressive, we can even do better. The algorithm pre-

sented does not take advantage of image processing techniques that could significantly 

improve on the results. For example we use a simple center of mass spatial alignment be-

fore computing the DL between two images. However, such an alignment routine is not 

scale or rotation invariant. As such, the algorithm as presented does not deal with any in-

variance. The next logical step in this effort could be a generalization of the methods pre-

sented, including introduction of techniques to allow for both rotation and scale invari-

ance.  
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CHAPTER 4 

MINING STREAMING DATA FOR RARE AND   APPROXIMATELY REPEATING  

REAL-VALUED SEQUENCES, USING SAX AND BLOOM FILTER 
 

The frequent item mining problem continues to be an active area of research. The most 

common variant of this problem is that of finding discrete frequent items from an un-

known alphabet, given an unbounded stream and bounded space. This variant of the prob-

lem is still an open problem and various approximate solutions have been proposed. In 

this work, we consider a much more difficult problem with potential impact in time series 

data mining. We seek to find approximately repeating items that may be rare, given an 

unbounded stream and bounded space. This is a more challenging problem given that we 

are dealing with real-valued time series streams, making it impossible to check for equali-

ty.  To the best of our knowledge, all existing algorithms are designed only for discrete-

valued streams. We present a novel algorithm that integrates Symbolic Aggregate Ap-

proximation (SAX) with a Bloom filter to build a robust cache maintenance policy that 

allows us to address known challenges to this problem. This novel integration allows us 

to implement an algorithm that selectively keeps possible candidates in cache longer, 

therefore increasing the probability of cache hit on subsequent occurrences of the rare 

candidate sequence. Results show a significant improvement compared to the alternative 

of a randomized cache maintenance algorithm.   
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4.1 Introduction 

The frequent item mining problem is an area of research that continues to receive a lot of 

attention from the data mining community [61]. The problem comes with different varia-

tions and assumptions. However, it can be informally and intuitively stated as: Given a 

small amount of memory and an infinite stream, maintain a count of the most frequent 

items (or some other statistic) in that stream.   The most common variant, the problem of 

finding discrete frequent items from an unknown alphabet, given an unbounded stream in 

bounded space, is known to be unsolvable in general (based on a simple adversarial ar-

gument [61]). Thus, many approximation algorithms for this problem have been devel-

oped through the years [61].   

In this work, we consider a much more difficult problem in this research area.  Instead of 

simply looking for exactly repeating frequent items, we present an algorithm to find    

approximately repeating items that may be rare, given an unbounded stream and bounded 

space. In its simplest form, given a time series subsequence from a data stream, we want 

to answer the question of whether or not we have ever seen such a subsequence before. 

Note that this is an unsolved problem in the discrete space; thus our problem formulation 

is much more difficult because we strive to solve this in the context of real-valued 

streaming data.  We now give a formal description of the specific problem we seek to 

solve. 

Problem Statement: Given a continuous time series stream that possibly goes on forev-

er, we want to detect repeated subsequences in the stream. We assume the user will pro-

vide the target subsequence length n, and a threshold t is either given or can be learned 
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from the data. The value t is used to decide if two time subsequences can be considered 

similar and thus said to be repeated. Thus subsequences Si:i+n and Sj:j+n are said to be re-

peated if ED(Si:i+n , Sj:j+n) ≤ t.  In order to prevent trivial matches [65][66] where a subse-

quence is said to be similar to itself or where a subsequence overlaps with itself, we fur-

ther constrain |i-j| ≥ n. 

To visualize this problem a little more clearly, we can imagine an adversarial game 

played against a “demon.”  The demon watches an unending data stream go past. Every 

now and then he inserts a subsequence corresponding to a particular behavior into the 

stream. We are able to see the stream a little further downstream and our task is simply to 

locate the demon’s subsequence. We know nothing about this sequence, but are aware of 

the fact that it does exist, and if we are patient, more examples will be inserted into the 

stream. However, each time the demon inserts the subsequence of interest, he will add a 

little noise or distortions to it, making our task more difficult. For the sake of presenta-

tion, we refer to this subsequence of interest as a 'hopeful' sequence.  

Further complicating our task is the relative rarity of the target subsequence to the size of 

memory available to buffer the streaming data.  For example, for every 10,000 sequences, 

we may only expect to see a target subsequence once. We refer to the average frequency 

of insertion of a target sequence as f. The reader can appreciate that our “malicious de-

mon” model can model several interesting domains.    

Given that these are real-valued sequences, this task presents the following problems: 
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1. Two real-valued items are never expected to be exactly equal, resulting in a diffi-

culty of defining similarity. Thus, our algorithm needs to know the similarity 

thresholds within which two items are equal.  

2. We cannot directly take advantage of frequent pattern mining algorithms like 

those reviewed in [61], given that they are only applicable to discrete data.  

The first problem is not addressed in this paper.  To test our algorithms, we assume that 

the threshold can be set, perhaps by previous experience with a similar problem.  

For the second problem, we present a novel algorithm which incorporates SAX represen-

tation and Bloom Filter (BF) to provide a solution that is significantly better than a ran-

domized algorithm.  

4.2 Related Work 

Our proposed algorithm makes use of the Bloom filter [59] and SAX (Symbolic Aggre-

gate ApproXimation) time series representation [63]. SAX is needed to convert real-

valued time series to their discrete symbolic representation. SAX is by far the most fa-

mous method for discrete representation of time series. SAX conversion leads to reduc-

tion in both dimensionality and numerosity.  A Bloom filter is simply a space-efficient 

data structure (bit array), which uses a variable number of hash functions to hash ele-

ments into various index positions in the array. If an element hashes into an index posi-

tion, the bits at the position are set to 1. We know an item has been seen before if it hash-

es to a bloom location that is already set.  Bloom filters are widely used in the computer 

networks community [57]. In its general form, it has mostly been used to answer simple 

queries to determine membership in a class.  Although the use/application of the bloom 
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filter is more common in the computer networks community [57], it is beginning to gain 

attention in the frequent items research space [60][65][67]. Most of these use some coun-

ter based variant of the Bloom filter. For example in [65], a counting Bloom filter was 

used to implement a ‘top-k’ items search algorithm. The algorithm in [65] relies heavily 

on the Bloom filter data structure for bookkeeping and estimating the ‘top-k’ frequencies, 

often requiring a second pass to choose the ‘top-k’ item set. Although their use of the 

Bloom filter is intuitive, their algorithm is not suitable to solve the problem we are solv-

ing. First, the algorithm was designed for discrete data, while we address the much more 

difficult problem of real-valued streaming data. Secondly, the algorithm in [65] limits the 

number of active counters at a time, which may pose a problem for unbounded streams, 

especially if the input query is simply to tell whether or not a particular item in the stream 

has ever been seen before. Just like in [65], the methods in [60] & [67] were all designed 

for discrete data and solve a much simpler problem in general.  

4.3 Algorithm Details 

We begin by stating the intuition behind our algorithm. First we consider the most naive 

algorithm for the task at hand. We could simply cache as much of the data as memory 

allows and inspect the cache for a pair of subsequences that are within the threshold t. 

This idea would require us to have a policy to discard one item from the cache at each 

time step, just before we ingest the next subsequence from the stream. Two possibilities 

for implementing this idea are Random discarding and First In First Out (FIFO). The 

general flow of this process is shown in Fig.  4.1.  
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Fig.  4.1:  High level illustration of the cache maintenance process. Cache replace-

ment (red) is either done by random discarding or FIFO. We want to do better than 

randomized cache maintenance. 

 

The solution we seek is therefore a cache maintenance algorithm at its core.  Imagine our 

system as a ‘black box’ whose only task is determining whether or not an input sequence 

is in its cache.  For now, there is no need to care about the internal structure of the cache. 

All we care is that this ‘black box’ has a cache with bounded space. It is therefore not 

possible to store all sequences from the stream until we get a hit. As shown in Fig.  4.1, 

given an input sequence Si, the ‘black box’ initially checks to see if there is a cache hit. If 

the current query generates a hit, then the process stops and it returns the match. If there 

was no cache hit and there is space available in cache, it simply places Si in the available 

slot. In case of a cache miss and a full cache, the ‘black box’ randomly discards one of 

the existing items in the cache to make room to store Si.  Note that a cache hit for real-

valued sequences is not exact. It is merely approximate, or within some threshold.  
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As the reader will appreciate, the effectiveness of this algorithm depends critically on C, 

the size of the cache, relative to f. If C ≫ f then there is a high probability that the second 

time we see a target subsequence, we still have the first occurrence in the cache. Thus, as 

soon as we discover that they are within t of each other, we can report success. However, 

in the practical problems we hope to address, we expect that we have C ≪ f.  In such sit-

uations we can rarely expect to be so lucky as to have two examples of the target subse-

quence in memory at once.  

Our intuition to mitigating this problem is to attempt to produce a cache replacement pol-

icy that is less likely to throw out a target subsequence than either the random discarding 

or FIFO replacement policy. Our idea is to use the bloom filter with the discretized (by 

SAX) subsequences to check to see if a newly inserted subsequence has been seen before. 

Because the discretization process of SAX is necessarily lossy, the bloom filter can have 

both false positives and false negatives
2
; however all that we are asking of the Bloom fil-

ter based cache replacement policy is that it biases us to be less likely to discard target 

subsequences.   

In Fig.  4.2, we show a high level flow diagram of the proposed algorithm. The algorithm 

uses a bloom filter to determine whether or not a particular sequence is 'hopeful'.  A 

'hopeful'  sequence is one that is more likely to be the 'malicious' sequence introduced in 

our demon model. In other words, it is likely to be our target 'rare' sequence.  Our use of 

the Bloom filter is to let us determine whether or not to store a cache item with a 'valid' 

flag attached to it. A 'valid' flag of 1 indicates that this is a 'hopeful' sequence, preventing 

 

2 Note that if we were dealing with intrinsically discrete data, then a Bloom filter can only have false positives, not false nega-
tives.   
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us from replacing it in subsequent cache replacements.  Any cache item with a 'valid' flag 

is not replaced because the flag indicates that it is probably a 'hopeful' item.  In Fig.  4.2, 

we also show the integration of a SAX conversion module before the Bloom filter. Note 

that SAX representation is for the purposes of Bloom filter utilization.   

 

Fig.  4.2: High level flow diagram of the proposed algorithm. A) The input sequence 

is converted into a SAX representation and passed to the bloom module. B) The in-

put to the cache maintenance is now the sequence and a valid flag, indicating wheth-

er or not this sequence is 'hopeful'.  

 

Bloom filters work best with discrete data and are not very useful with real-valued data.   

Therefore, before we check a sequence for a bloom hit, we first of all discretize it using 

SAX.  However, in order to maintain accuracy, only the original real-valued sequences 

are stored in cache, and our check for a match is done on these original real-valued time 

series. This allows us to contain any unexpected error due to SAX limited to false posi-

tives on a Bloom check.  Our implementation of the Bloom filter uses two hash functions. 

Our choice to limit the number of hash functions to two was motivated by research re-
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sults reported in [58], where it was shown that two hash functions are sufficient to mini-

mize the false positive rates of bloom filter queries. 

4.4 Experimental Results 

Data Generator: In order to simulate a streaming data environment, we developed a data 

generator that continuously produces two types of real-valued sequences to model our 

demon model: a random walk and sequences from the UCR gun data set with random 

noise added to avoid exact matches.  As shown in Fig.  4.3, the data generator was set up 

such that the probability of generating a random walk sequence was 0.999, which means 

the probability of seeing a 'hopeful' sequence is therefore only 0.001. In order to test the 

performance of our algorithm on discrete data, the data generator was also configured to 

generate discrete 'hopeful' and random sequences. For all discrete experiments, the prob-

ability between ‘hopeful’ and random sequences/strings was the same as for real-valued 

data stream generation.  

 

Fig.  4.3: Data stream generation process. The stream used for all experiments is 

such that the probability of a 'hopeful' sequence is 0.001. This setup allows us to 

make sure the 'hopeful' sequences are truly rare. 
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In all the experiments, we ran our algorithm and the randomized algorithm, comparing 

the results to see how well a Bloom filter based algorithm could do.  We also tested both 

algorithms on discrete and real-valued sequences. Note, however, that with discrete data, 

we do not need to transform the sequences using SAX for Bloom integration.   

We measured performance in terms of the number of input sequences ingested from the 

stream, which we refer to as ‘Time Steps.’  We also measured performance in terms of 

the number of times we see a 'hopeful' sequence before we get a cache hit.  We ran the 

experiments on cache sizes of 100, 50, 25 and 10. The experiments were run 500 times 

per cache size, saving the number of misses and time steps per run. We then used this da-

ta to look at their behavior under different values of C.  

4.4.1 Experiment on Discrete Data 

Experiments on discrete data are meant to highlight the major improvement of the Bloom 

enabled cache maintenance approach, compared to the randomized cache replacement 

algorithm. In these experiments, we configured the data generator to generate discrete 

strings with a cardinality of 150 and a dimensionality of 4. Each element in a sequence 

can be any of the characters {0 1 2 3}.  Each generated string sequence from the stream 

has a  0.999 probability of being a random string generated from the character set  and a 

0.001 probability of a constant string constructed from repeating patterns of '0123' up to 

the cardinality of 150. Given that discrete data does yield an exact match, we set the 

threshold to 0. The size of the Bloom filter was set to 4^10. 
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4.4.1.1 Distribution of time steps before Cache Hit. 

This experiment was designed to get a clear picture on the average number of time steps 

needed before we get a cache hit. Understanding that the number of time steps is con-

straint by the probability of getting a 'hopeful' sequence, we ran the experiment 500 times 

and plotted the distributions as histograms for both the Bloom based algorithm and the 

randomized cache maintenance algorithm. As shown in Fig.  4.4, the average number of 

time steps for the Bloom based algorithm is consistently better and almost remains con-

stant regardless of C, compared to that of the randomized algorithm. This experiment 

suggests that the number of time steps takes on an exponential distribution. As seen in 

Fig.  4.4, the Bloom based algorithm maintains this property even when the cache size C 

is reduced to 10, while the randomized algorithm  slowly deviates from this property to a 

more even distribution. It seems like the general behavior is exponential, with a higher 

rate and consistent rate in the case of the Bloom filter based algorithm. 
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Fig.  4.4: Distribution of time steps required for cache hit over different cache sizes. 
 

 

4.4.1.2 Number of misses before a Cache Hit 

Since it is possible to argue that the results of time steps distribution can be affected by 

chance, given f, we decided to measure performance by looking at the number of times 

we see a true 'hopeful' sequence before a cache hit. This metric tells us how effective our 

cache replacement policy is. As shown in Table 4.1, a Bloom enabled cache replacement 

algorithm sees a 'hopeful' at most three times before a cache hit when dealing with dis-

crete data. This is significantly better than the random cache maintenance alternative. 
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Table 4.1:Cache miss rates between the bloom and randomized algorithms on dis-

crete data. The bloom cache maintenance shows almost a constant miss rate, irre-

spective of the cache size. 

Cache Size 
Random Cache  

Maintenance 

Bloom Cache  

Maintenance 

100 12 2.8 

50 23.2 3 

25 41.5 2.9 

10 66.5 3 

 

4.4.1.3 Empirical Cumulative Distribution 

This distribution allows us to measure the number of time steps we must wait in order to 

attain a high probability of finding a 'hopeful' sequence. As shown in Fig.  4.5, the bloom 

based algorithm does not vary much with decreasing cache sizes in the discrete data.  

 

Fig.  4.5: Number of time steps necessary for high cache hit probability. Different 

colors indicate different cache size, C. Thick plots represent randomized algorithm.  
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This can be explained with the fact that the Bloom filter allows us to selectively perform 

our cache replacement task. It kind of allows us to extend the memory of the system, 

making it possible to remember sequences that appear more than twice. Even with the 

extraordinary rareness of our 'hopeful' sequences, the behavior of the Bloom based cache 

maintenance algorithm is very consistent in the discrete case, even when we reduce cache 

size to 10. The only thing left to show now is how this cache maintenance policy behaves 

with real-valued data. 

4.4.2 Experiment on Real-Valued Data 

For this experiment, the data generator was configured to either produce a sequence from 

the UCR gun data set or a random walk.  Each sequence from this stream had a 0.999 

probability of being a random walk. The size of the Bloom filter for these experiments 

was kept the same as that for the experiment on discrete data.  The SAX conversion was 

done with an alphabet size of 6 and a cardinality of 12.  

4.4.2.1 Distribution of time steps before Cache Hit 

As shown in Fig.  4.6, the Bloom-SAX cache maintenance algorithm is a significant im-

provement compared to the randomized approach. The distribution of the number of time 

steps before a cache hit for the Bloom-SAX algorithm maintains its exponential property, 

even when C is reduced to 10. This is not true for the time steps distribution from the 

randomized algorithm (red histograms).  

In this experiment, we expected the SAX conversion to have a slightly negative effect on 

performance, given the generally lossy nature of SAX conversion. The effect of this con-
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version, as shown in Fig.  4.6 is such that although Bloom cache maintenance is consist-

ently better than randomized cache maintenance, the algorithm shows increased spread 

and general increase in mean time steps as cache C  reduces to 10. Besides maintaining a 

much lower mean number of time steps across different C’s, the Bloom-SAX cache main-

tainence generally maintains an exponential distribution. On the otherhand, the random-

ized cache maintenance algorithm quickly deviates from an exponential distribution as C 

goes down to 10. However, it is clear that Bloom-SAX integration for streaming se-

quence cache maintenance significantly improves performance even when C ≪ f. 

 

 

Fig.  4.6: Time steps distributions between bloom and random cache maintenance 

algorithms on real-valued sequenes. The distributions from Bloom-sax cache 

maintenance are shown in green. The average numbers of iterations (time steps) are 

also shown beneath each plot.  
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4.4.2.2 Number of misses before a Cache Hit 

We now present the number of misses before a cache hit both for the randomized algo-

rithm and the Bloom-SAX integrated algorithm. Despite the generally lossy nature of 

SAX conversion, the Bloom-SAX integration for cache maintenance of streaming real-

valued sequences significantly minimizes the number of misses (see  

Table 4.2). Note that cache hit comparisons are done with the real (original) time series. 

At C = 100, 50 or 25, the performance is comparable to that in the experiment on discrete 

data which is very impressive. At C = 10, the number of misses is slightly higher, but ac-

ceptable, given that it is significantly better than the number of misses due to running the 

randomized algorithm. 

Table 4.2:Number of misses before a cache hit for real-valued streams between 

Bloom based algorithm and randomized algorithm. 

Cache Size Random Cache 

Maintenance 

Bloom-SAX Cache  

Maintenance 

100 13.1 3.8 

50 23.2 5.2 

25 39.9 8. 2 

10 63.6 23.7 

 

4.4.2.3 Empirical Cumulative Distribution at Varying Cache Sizes 

In Fig.  4.7, we show the cumulative distribution curves of the time steps distributions 

between the Bloom-SAX algorithm and the randomized cache maintenance algorithm. As 

expected, the growth rate of the exponential cumulative distribution curves is much high-

er with the Bloom-SAX results (thin curves), while the results from the randomized alter-

native become less exponential as C goes from 100 to 10.   
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Even with C = 25, Bloom-SAX does better than random discarding with C = 100. This 

means even with four times less cache, the Bloom-SAX algorithm is still a significant 

improvement from the randomized alternative. 

 

Fig.  4.7: Empirical cumulative distribution from real-valued sequences illustrating 

the number of time steps required to have a high probability for a cache hit.  

 

4.5 Conclusion 

Detecting 'rare' and approximately repeating items from an unbounded stream with finite 

memory is a difficult problem that was previously unsolved. Most existing solutions are 

geared towards discrete sequences, where exact solutions are possible. However, most 

real-world data is real-valued and present a major challenge mostly due to the fact that an 
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exact solution does not exist. In this work, we have presented a novel integration of the 

famous SAX time series conversion technique, with the Bloom filter, to build a robust 

cache maintenance algorithm that overcomes known challenges. Results show a major 

improvement over the alternative random discarding cache maintenance algorithm. Our 

contribution also lies in the fact that we solve this problem on real-valued data, whereas 

only the discrete-valued case has been considered in the literature.  
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CHAPTER 5 

CONCLUSION 
 

Based on the methods/algorithms developed, this dissertation made contributions to in-

terdisciplinary research in developmental plant biology, historical document processing 

and data streams processing.  

This dissertation presented image and time series algorithms with practical implica-

tions in developmental plant biological research, historical document processing and min-

ing of unbounded data streams. The body of work presented embodies the spirit and goals 

of the NSF IGERT program and prepares me for a future in interdisciplinary and transla-

tional data mining. Methods for computation of growth features from real-time, live im-

aging data were presented, including an application of deformation field morphometry for 

the computation of surface deformation from reconstructed time lapse data. Two temporal 

multiple time series alignment algorithms for growth data were also presented. Next, a 

practical application of the MDL principle to the clustering of real world data, like imag-

es was also presented, including the basic premise that a clustering algorithm should NOT 

be forced to account for all the data it is given. It should be given the freedom to ignore 

some data. Finally, this dissertation presented an algorithm to solve a previously unsolved 

problem in frequent item mining research. It presented a novel algorithm for detecting 

‘rare’, but approximately repeating sequences in real-valued data streams.  The signifi-

cant performance improvement due to the integration of SAX and the Bloom filter is a 

significant contribution to frequent items mining research. 
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 Overall, the body of work presented here made significant contributions in interdisci-

plinary research and will continue to promote basic scientific research for years to come. 

The work also made contributions to and stands to have an impact in the specific disci-

pline of computational sciences. 

 

5.1 Summary of Contributions 
 

This dissertation presented methods and algorithms for the quantitative study of growth 

dynamics at the Shoot Apex of Arabidopsis thaliana. The study of molecular control at 

the Shoot Apical Meristem (SAM) of model plant Arabidopsis thaliana requires a strong 

understanding of the causal relationship between gene expression, cell division, cell-cell 

communications, and organ growth.  Live imaging has given scientists the ability to cap-

ture in real-time, the dynamic context of organ growth at the resolution of the cell. How-

ever, given the technical limitations of this technology, only a few genes (usually about 2) 

can be observed at a given time.  As a result of this limitation, studying molecular control 

requires the spatial mapping and temporal alignment of different functional domains into 

a single template, development of dynamic models, and eventually a dynamic gene ex-

pression atlas. These tasks are not possible without robust temporal alignment algorithms. 

For this reason, two growth alignment algorithms were presented. The first one extended 

a well-known Landscape Matching algorithm, giving it the ability to support multiple 

features. The second algorithm was essentially parameter free and proves to be more ro-

bust in the presence of high noise. Applicability to other data sets was tested through the 

alignment of growth data from the trinadadian guppy. Besides these temporal alignment 

algorithms, this dissertation also presented methods for measuring growth from time 
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lapse microscopy data collected using live imaging experiments. In this effort, we show 

(perhaps for the first time) how to apply deformation field morphometry for growth 

measurement in quantitative plant development studies.  

 Given the growing importance of algorithms for clustering symbols in almost all doc-

ument processing systems, this dissertation also presented an algorithm that tackles this 

problem totally from a domain and language agnostic perspective. In doing so, a practical 

application of MDL principle on real-world data, like images, is presented.  Not only is 

this clustering algorithm important because individual character clustering is the first and 

most critical task in any higher level document processing system, it is also important 

because it overcame a key limitation to the application of MDL to real-world data, like 

images. For this reason, and the basic premise that clustering algorithms should have the 

freedom to ignore some data, this algorithm has the possibility of having an impact be-

yond the task at hand. 

 Finally, the world is full of growing sources of streaming data. A majority of this 

streaming data is real-valued.  As with anthing else, things change over time, and the 

events that trigger specific behaviors are sometimes rare, yet repeating. When such events 

happen, we want to be able to notify an expert to make a decision or take a closer look. 

This could be in the medical space with patient respiratory data, in the financial space 

with continuous flow of financial data, etc. Rare, yet significant events could easily be 

thrown out as noise. Detecting such events is usually a difficult task (generally unsolved), 

given that most of this streaming data is real-valued and there is no way to accurately 

check for equality. Secondly, the amount of streaming data is overwhelming, relative to 
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the size of available memory. Because it is impossible to remember every piece of data 

point that has ever been seen in a stream, randomized cache management algorithms are 

the most feasible options.  This dissertation presents an algorithm that perhaps for the 

first time, proposes a solution to cleverly ‘extend the memory’ of any streaming data pro-

cessing system and improve the ability to detect these rare events ‘as they happen.’  For 

the first time, a novel integration of SAX time series representation and the Bloom filter 

in a robust cache management algorithm is presented.  Results show major improvement 

compared to the randomized alternative. 

5.2 Future Work 

The body of work presented is compelling and makes significant contributions to the 

body of knowledge. It also paves the way for many opportunities in future research.  

In Chapter 1, we presented two growth alignment algorithms, motivated by the big pic-

ture goal of developing a dynamic gene expression atlas for the SAM of Arabidopsis tha-

liana. To get even closer to that goal, a logical follow up to the alignment methods pro-

vided is the development of a growth model based on quantitative measures of growth 

features and temporal alignment.  Such a dynamic model could leverage the work in [13] 

to incorporate the effect of local cell division patterns on organ growth.  Development of 

this tool will give biologists a tool to explore the quantitative relationship between cell 

division patterns and organ growth. Such a model, even though it does not include gene 

expression, will be a major step towards the ultimate goal.   

In Chapter 4, we presented a powerful new approach to cache maintenance in frequent 

item mining. In all the experiments presented, we computed parameters for the Bloom 
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filter and SAX offline, including the threshold for similarity. This was sufficient to 

demonstrate the power of a new idea.  However, the general nature of the type of se-

quences we target is such that we do not know the characteristics ahead of time. There-

fore, a good open problem is that of dynamic parameter generation.  In relation to the 

threshold, this would include learning the possible threshold from the data.  SAX and 

Bloom parameter generation will require a modification of the algorithm to allow for 

adaptive parameter settings through multiple re-starts. A solution to these challenges will 

pave the way for translational researchers to incorporate this powerful idea into real-

world systems. 
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