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Space–Time Power Schedule for Distributed
MIMO Links Without Instantaneous Channel State

Information at the Transmitting Nodes
Yue Rong, Member, IEEE, Yingbo Hua, Fellow, IEEE, Ananthram Swami, Fellow, IEEE, and

A. Lee Swindlehurst, Fellow, IEEE

Abstract—A space–time optimal power schedule for multiple
distributed multiple-input multiple-output (MIMO) links without
the knowledge of the instantaneous channel state information
(CSI) at the transmitting nodes is proposed. A readily computable
expression for the ergodic sum capacity of the MIMO links is
derived. Based on this expression, which is a non-convex function
of power allocation vectors, a projected gradient algorithm is
developed to optimize the power allocation. For a symmetric set
of MIMO links with independent identically distributed channels,
it is observed that the space–time optimal power schedule reduces
to a uniform isotropic power schedule when nominal interference
is low, or to an orthogonal isotropic power schedule when nominal
interference is high. Furthermore, the transition region between
the latter two schedules is seen to be very sharp in terms of
nominal interference-to-noise ratio (INR). For MIMO links with
correlated channels, the corresponding space–time optimal power
schedule is developed based on the knowledge of the channel
correlation matrices. It is shown that the channel correlation
has a great impact on the ergodic capacity and the optimality of
different power scheduling approaches.

Index Terms—Multiple-input multiple-output (MIMO) systems,
space–time power schedule, wireless mesh networks.

I. INTRODUCTION

I N a large wireless mesh network of many multiple-input
multiple-output (MIMO) nodes, multiple MIMO links must

share a common frequency band concurrently to ensure a high
spectral efficiency of the whole network [1]–[3]. Developing op-
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timal power schedules for a set of co-channel, concurrent and
neighboring MIMO links is therefore important.

Power scheduling for multiple MIMO links has been studied
in [4]–[7]. In [4], a space-only (i.e., time-invariant) power
schedule is presented, and an iterative algorithm leading to the
Nash equilibrium [8] is developed. In [5], the same space-only
criterion is used, but a projected gradient algorithm is devel-
oped that yields a better result. In [6], the space-only approach
is considered without channel state information (CSI) at the
transmitting nodes. In [7], a space–time power schedule is
proposed that generalizes the approaches used in [4] and [5].

In this paper, we focus on networks with symmetric topology,
and assume that the network topology is known to a scheduler,
and each receiving node knows the instantaneous CSI of the
link-of-interest. For a given set of transmitting–receiving pairs,
we present a space–time optimal power schedule without instan-
taneous CSI at the transmitting nodes. This work goes beyond
that in [7], which assumes instantaneous CSI at the transmit-
ting nodes and also beyond [6] which assumes a time-invariant
transmitting covariance matrix at each link.

In the absence of instantaneous CSI at the transmitting nodes,
the knowledge of some statistical properties of the CSI is nec-
essary for designing optimal power schedules. We will aim to
optimize an ergodic network capacity with respect to the statis-
tical distributions of the CSI. In other words, we consider a “fast
fading” scenario where the CSI changes rapidly with respect to
the delay requirement, or equivalently, the effective data rate
that we are interested in is for a time interval during which the
CSI changes many times.

We will consider two cases of the statistical properties of the
CSI. In the first, the channel matrix between every two nodes
consists of independent and identically distributed (i.i.d.) com-
plex Gaussian entries. In the second, each channel matrix con-
sists of correlated entries. The first case will be referred to as the
case of i.i.d. channels. The second case will be referred to as the
case of correlated channels.

An important result in this paper is a “closed form” expres-
sion for the ergodic sum capacity of multiple MIMO links. This
result, following from the quadratic forms of Gaussian random
matrices [9] and [10], is expressed in terms of finite sums and a
simple one-dimensional integral. It is readily computable. An-
other important result in this paper is the development of a pro-
jected gradient algorithm that allows one to maximize the er-
godic sum capacity and hence to compute the corresponding op-
timal power schedule.

1053-587X/$25.00 © 2008 IEEE
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To illustrate the potential of the space–time optimal power
schedule, we will compare it with the following schemes.

• Uniform isotropic power schedule: All links conduct trans-
missions at the same time and the same frequency, and the
source covariance matrix used by all links is proportional
to the identity matrix.

• Orthogonal isotropic power schedule: All links conduct
transmissions in orthogonal channels (such as different
times and/or different frequencies), and the source covari-
ance matrix used by all links is proportional to the identity
matrix.

• Low-rank power schedule: Each link uses a low rank
source covariance matrix.

For a network of symmetric MIMO links with i.i.d. chan-
nels, we will show that the space–time optimal power schedule
consistently outperforms the low rank power schedule. Inter-
estingly, the space–time optimal power schedule reduces to a
uniform isotropic power schedule when nominal interference
level is low, or to an orthogonal isotropic power schedule when
nominal interference level is high. Furthermore, the transition
between the latter two schedules is very sharp along a nom-
inal interference-to-noise ratio (INR) axis. All space-only power
schedules, including those in [6], are shown to be suboptimal
compared to ours.

It is important to note that by INR, we refer to a nominal
INR unless specified otherwise. The nominal INR can be kept
constant while the actual INR changes, which will be further
explained.

We will also show that the channel correlation reduces the
network capacity when nominal interference level is low, but
increases the network capacity when nominal interference level
is high. When the channel correlation is known, we will show
that the eigenspace of the optimal source covariance matrices
of each transmitting node is equal to that of the corresponding
channel covariance matrix. In other words, the channel should
be “whitened” by the source covariance matrices.

The rest of this paper is organized as follows. In Section II, the
system model of distributed MIMO links is introduced, and the
problem formulation is given. A readily computable form of the
ergodic sum capacity of the MIMO links with i.i.d. channels is
derived in Section III. In Section IV, we present the space–time
optimal power scheduling scheme. In Section V, we investi-
gate the impact of the channel correlation on the network ca-
pacity and study the corresponding space–time optimal power
schedule. Numerical examples are shown in Section VI. Con-
clusions are drawn in Section VII.

II. PROBLEM FORMULATION

We consider data transmissions in a wireless mesh network
of MIMO nodes. We focus on a time window where a set of dis-
tinct pairs of transmitting and receiving nodes in a given neigh-
borhood need to accomplish their data transmissions. Typically,
a pair of transmitting and receiving nodes consists of two ad-
jacent nodes for power and bandwidth efficiency. We also con-
sider the spectral region where the channel frequency response
is “flat” (i.e., frequency-invariant). The key problem that we will
address in this paper is how to design the power allocation and

the source covariance matrix for each transmitting node so that
the network throughput during this time window is maximized.

There are two simple solutions. One is to force all transmit-
ting nodes to transmit at the same time and at all time, and the
source covariance matrices are optimized under this constraint.
We call this solution the space-only power schedule. The other
solution is to slice the time into multiple slots, and during each
time slot only one transmitting node is actually transmitting.
This is known as time-division multiplexing access (TDMA).
With TDMA, the power allocation for each link is either zero or
a full power during each time slot.

There is a more general solution where during an interval of
multiple time slots, the power allocations as well as the source
covariance matrices for all links are treated as functions of the
time slots. These functions can be optimized to maximize the
total network throughput. This is the approach that we will
follow in this paper. We call this approach space–time optimal
power schedule. Note that the time slots here can be replaced
by frequency bins or a combination of time slots and frequency
bins. Both time and frequency are temporal characteristics with
respect to space. But for a simple exposure of the concept of
our scheme, we will only refer to time slots.

For convenience, we will call the transmitting node and the
receiving node of the th link as the th transmitting node and
the th receiving node, respectively. Assuming that there are
links, it is sufficient to design the optimal power schedule over

time slots [7]. We will assume that the channel matrices re-
main constant over consecutive time slots but change ran-
domly over an interval of many multiples of time slots. We
will design the power schedule to maximize an ergodic network
capacity which is averaged over the statistical distribution of the
channel matrices. This capacity is achievable (approximately)
over the interval of many multiples of time slots. Therefore,
our theory is valid for “fast fading” channels, i.e., the time delay
due to encoding and decoding over many multiples of time
slots is tolerable.

We assume that each node has antennas. The vector of the
received signal at the th receiving node and in the th time
slot can be written as

(1)
Here, denotes the average gain of the th transmitting node
and the th receiving node, which is for a link-of-interest. ,

, is the average gain between the th transmitting node
and the th receiving node, which is for an interfering link.
is the instantaneous channel matrix (normalized by the
averaged channel gain) between the th transmitting node and
the th receiving node. , , denotes the
vector of the transmitted signal from the th transmitting node
within the slot . Within time slot , is a random function
of the continuous time which is omitted. , ,
is the vector of the i.i.d. additive (slot-invariant) white
Gaussian noise (AWGN) with zero mean and unit covariance
matrix . And denotes the identity matrix.
Fig. 1 shows an example of a circular network with three con-
currently communicating MIMO links. A list summarizing the
notations used for the system model is given in Appendix A.
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Fig. 1. Circular wireless network. Solid circles: source nodes; hollow circles:
destination nodes. Solid lines: signal streams; dashed lines: interference streams.

The first term in (1) is the signal of interest at the th receiving
node, and the second term is the sum of interfering signals from
all other transmitting nodes. We assume that all the trans-
mitted signals are Gaussian distributed with zero mean and their
covariance matrix is periodically time varying with the period
equal to time slots. We will write ,

, where stands for statistical expectation, and
denotes matrix Hermitian transpose. Moreover, we assume

that , , where is
the averaged transmit power from the th transmitting node, and

stands for the trace of a matrix. We will need further as-
sumptions as shown below.

• There is no coding cooperation between interfering trans-
mitting nodes. Namely, the source information is encoded
independently at different transmitting nodes. Cooperative
coding among interfering MIMO links would significantly
increase the networking complexity, which is undesirable.

• The entries of , , are complex Gaussian
distributed with zero mean and unit variance. (As men-
tioned before, remains constant over time slots but
varies randomly during an interval of many multiples of
time slots. For a stationary network, such random fading
can be induced by randomly changing the phase of each
transmitting antenna.) Thus, the averaged signal-to-noise
ratio (SNR) at each antenna of the th receiving node is
given by , while the nominal INR from the th
transmitting node to each antenna of the th receiving node
is defined as . We treat ,
as deterministic parameters both in the analysis and the
simulations.

• There is no instantaneous CSI knowledge at any transmit-
ting node, and the th receiving node only knows the CSI
of the link-of-interest, i.e., .

With a given set of transmit covariance matrices ,
, the averaged ergodic sum capacity of links over

time slots can be written as

(2)

where denotes the determinant of a matrix or the absolute
value of a scalar, stands for the statistical expectation
with respect to all channel matrices ,
and denotes the matrix transpose. In (2), is a matrix
stacking the source covariance matrices of all links:

and is the (actual) interference-plus-noise covariance ma-
trix at the th receiving node in the th time slot

In this paper, we aim at maximizing the ergodic capacity
(2) by choosing the transmit covariance matrices ,

. This problem can be compactly formulated as

(3)

(4)

(5)

where (4) represents the average transmit power constraint at
each transmitting node. Note that in this paper, we focus on net-
works with a symmetric topology. Therefore, no link suffers a
fairness problem under the ergodic sum capacity. When the net-
work is asymmetric, fairness issues arise. Then, the cost func-
tions must be changed. One commonly used criterion is known
as “proportional fairness,” which can be formulated as sum of
logarithms of link capacities. The gradient-based method can be
applied similarly. But the details would go beyond the scope of
this paper.

III. ERGODIC SUM CAPACITY FOR MIMO LINKS

WITH I.I.D. CHANNELS

In this section, we derive a closed-form expression for the er-
godic sum capacity (2) for the case of i.i.d. channels. The corre-
lated channel case will be addressed in Section V. For simplicity,
we first derive a closed-form expression for the following er-
godic sum capacity at one time slot:

(6)
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We will later generalize the result to obtain a closed-form ex-
pression for the ergodic sum capacity averaged over all time
slots as shown in (2).

Let us denote

(7)

as the eigendecomposition of , where is the unitary
matrix of eigenvectors, and

is an diagonal matrix of all eigenvalues. For convenience,
we will use the column vectors , ,
defined as

Substituting (7) into (6), we can rewrite (6) as

(8)

where

Since , , has i.i.d. Gaussian entries and
is unitary, the statistics of are identical to those of
[11]. Hereafter, for notational simplicity, we drop the tildes on
the matrices and the dependence of matrices on , and write
the ergodic sum capacity expression (8) as

(9)

(10)

where

It can be seen from (10) that the ergodic sum capacity ex-
pression is a summation of logarithmic terms all having a
similar structure. For convenience, we can now focus on one of
the terms

(11)

It can be seen that (11) is equivalent to the ergodic capacity of a
point-to-point MIMO system under AWGN with transmit
antennas and receive antennas. A closed-form expression
for the ergodic capacity of such a system has been shown in
[9], where a determinant representation for the distribution of
quadratic forms of a complex Gaussian matrix [10] has been
used. Using the results in [9], (11) can be written as

where [see (12)–(14), shown at the bottom of the
next page]. (Note that there are typos in (16) of [9],
where the terms in the first summation should be

, using the same
notations as in [9] except for .) Here, ,

, denotes the th element of matrix ,
and is the exponential integral function
of order 1 [12, eq. 5.1.1]. It is worth noting that (12)–(14) are
derived under the assumption that all , ,
have distinct values. When some of them are identical, we can
obtain the closed-form ergodic sum capacity expression by
deriving the limit of (11) with respect to those common values
of using L’Hospital’s rule. For numerical evaluation, it
is sufficient to slightly and randomly perturb these identical
values of because all functions are continuous and
are deterministic.

Similar to (11), we can write each of the summands in
(10) in a closed form. Thus, the ergodic sum capacity can be
represented as
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(15)

where , , is given
by (12) and (13), and is given by (16) and (17), shown at
the bottom of the page.

The result (15) can be readily used to write the averaged er-
godic sum capacity (2) in closed form. First, we rewrite (2) as
(18) and (19), shown at the bottom of the page. Then, by fol-
lowing the steps given above, we can write (19) in closed form
as

(20)

where is a vector stacking the power scheduling parameters
of all links at all time slots

and is a vector stacking the power scheduling parameters of
the th link. In (20), and can be written using (12)
and (13), and (16) and (17), respectively.

As shown in (20), the ergodic sum capacity is now expressed
as a finite summation involving rational functions and exponen-
tial integration functions of the power scheduling vectors ,

, of all transmitting nodes. The exponential inte-
gration function is available in many software such as MATLAB
and Mathematica. Thus, (20) is easy to compute. For a better un-
derstanding, the function is plotted in Fig. 2 versus
for 0, 1, 2, 3. The closed-form expression (20) enables us
to numerically optimize the averaged ergodic sum capacity and
hence the power scheduling.

The accuracy of the ergodic sum capacity expression (20) is
verified by Fig. 3. This figure shows both the analytical and
the simulation results of the ergodic capacity versus the nom-
inal INR (i.e., ) of a symmetric network , with

active links, where each node has antennas. Here,
we set 20 dB, , , and ,

. The ergodic capacity shown is a per-link
ergodic capacity which is the ergodic sum capacity divided by
the number of active links . For the simulation results, 1000
channel realizations were used. A randomly selected power al-
location vector was used for each link. It can be seen from Fig. 3
that the analytical result is consistent with the simulation result.

(12)

.

(13)

(14)

(16)

.

(17)

(18)

(19)
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Fig. 2. Function Q(n; �) for n = 0, 1, 2, 3.

Fig. 3. Comparison of the analytical and simulation results of the per-link er-
godic capacity versus nominal INR for the case of i.i.d. channels. Here,N = 2,
L = 2.

IV. SPACE–TIME POWER SCHEDULE

It has been shown in [7] that by applying a space–time power
schedule where the source covariance matrices are allowed to
be functions of time, a larger (averaged) ergodic sum capacity
can be achieved. However, the power scheduling scheme in [7]
requires the instantaneous CSI knowledge at the transmitting
nodes, which is valid for slow fading channels. In this section,
we optimize the space–time power schedule for fast fading
channels by maximizing the ergodic sum capacity expression
derived in Section III for which the instantaneous CSI is not
required at the transmitting nodes.

Taking the power constraint of each active link into account,
our space–time power scheduling approach becomes the fol-
lowing optimization problem:

(21)

(22)

where (22) is the set of the transmit power constraints at all
transmitting nodes, and denotes the sum norm (or norm)
of a vector. For a vector , means that each entry of is
nonnegative.

The results in [6] show that when the INR is sufficiently low,
the ergodic sum capacity (15) is a concave function of the power
allocation vectors , but when the INR is suffi-
ciently high, (15) becomes a convex function of the power allo-
cation vectors. (Since the power allocation in [6] is independent
of time, the INR in [6] is an instantaneous INR, an averaged
INR and also the nominal INR.) However, in general, it can be
seen from (10) that due to the mutual interference among dif-
ferent links, the ergodic sum capacity is neither a convex func-
tion, nor a concave function, of the power allocation vectors

. Similarly, (20) is neither a convex nor a con-
cave function of the power scheduling vector in the general
INR region. Thus, in general, (21)–(22) is a nonconvex opti-
mization problem.

The objective function (21) is quite complicated and does not
have a clear structure. The gradient-based methods are effec-
tive for such a problem [13, ch. 1]. These methods guarantee
the convergence to a stationary point, provided that proper step
sizes are chosen. Moreover, since the constraints (22) are simple
linear constraints, the projected gradient technique [13, sec. 2.3]
can be applied to solve the problem (21)–(22). We first give a
brief introduction to the projected gradient algorithm.

Let us consider the following constrained optimization
problem

where is a continuously differentiable scalar function, and
is a nonempty, closed, and convex set. The projected gradient

algorithm is a feasible direction method. The algorithm starts at
an initial point . At the th iteration, is updated as

(23)

where is a step size, and

(24)

Here, denotes the projection onto the feasible set , and
is a positive scalar. From (23) and (24), we can see that to

obtain the vector , we first take a step along
the gradient, similar to the steepest descent algorithm. Then we
project the result onto the feasible set .
It has been shown that after a sufficient number of iterations,
the sequence converges to a local optimal point [13,
sec. 2.3].

Two major issues of a projected gradient algorithm are: 1)
computing the gradient of the objective function, and 2) pro-
jecting the gradient-modified vector into the feasible set.

The derivation of the gradient of (20) is tedious but straight-
forward. The complete expression for the gradient of (20) with
respect to , , , is
listed in Appendix B.
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In the sequel, we show how to carry out the projection op-
eration. Let us take the th link as an example, and denote the

column vector of gradient as

Then taking a step along the positive gradient (24), the
power vector is updated as

The next step of the projected gradient algorithm is to project
onto the feasible region of power vectors defined by (22).

In fact, the projection operation can be seen as searching for a
point in the region of (22), which has a minimal Euclidean
distance to the point . Thus for the th link, the projection
operation can be formulated as the following constrained opti-
mization problem:

(25)

(26)

where denotes the Euclidean norm of a vector.
The problem (25)–(26) can be efficiently solved by using the

Lagrange multiplier method [14, sec. 5.1]. Each element of
can be written as

(27)

where is the Lagrange multiplier, and for a real scalar ,
.

The Lagrange multiplier can be obtained by substituting
(27) back into (26). We have the following equation:

(28)

The left-hand side of (28) is a piecewise linear function and
monotonically decreasing with respect to . Thus, (28) can
be easily solved by, for example, the bisection method [14,
pp. 145].

Note that under the space–time power scheduling scheme, the
iterative computation of the power allocation vectors for all links
can be done concurrently or sequentially. The concurrent iter-
ations must be done at a single place (centralized). But the se-
quential iterations can be done in a distributed manner, i.e., each
link updates its own power allocation vector at each iteration. At
the end of each sequential iteration, all links must exchange their
updated power allocation vectors before the next sequential it-
eration takes place. Due to space limitation, we only present the
centralized technique in detail in this paper.

At the th iteration of the centralized technique, the power
scheduling vector is updated as

(29)

TABLE I
PROCEDURE OF THE PROJECTED GRADIENT POWER

ALLOCATION APPROACH

(30)

where and are scalars of step size. They can be chosen,
for example, according to the Armijo rule along the feasible di-
rection [13, pp. 225–226]. In this rule, is a constant
throughout the iterations, and , where is the min-
imal nonnegative integer that satisfies the following inequality:

Here, and are constants. According to [13, pp. 225–226],
usually is chosen close to 0, and a proper choice of is from
0.1 to 0.5.

The steps of (29) and (30) are carried out for all links and
continue till the sequence converges. Such convergence is
guaranteed according to the principle of the projected gradient
algorithm using the Armijo rule along the feasible direction [13,
Proposition 2.3.1]. The convergence criterion is taken as

where denotes the maximal absolute value among
all elements of a vector, and is a positive constant close to 0.
Since the projected gradient algorithm only converges to a local
optimal solution, multiple initializations can be used to improve
the performance. In Section VI, we will study the achievable
ergodic capacities with different number of initializations.

The procedure of applying the projected gradient technique
to solve the problem (21)–(22) is summarized in Table I. Note
that there may be peak transmit power constraint in some prac-
tical systems such that , where denotes the
peak transmit power. The proposed projected gradient approach
can be easily extended to solve the problem (21)–(22) with the
additional peak transmit power constraint.

The proposed space–time power schedule requires only the
knowledge of averaged SNR and nominal INR of each link at
the transmitting nodes. This knowledge can be easily obtained
by exploiting the topology of the wireless networks and the av-
eraged transmit power of each transmitting node, which in turn,
can be obtained by having each node report its current location
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and power budget to the scheduler periodically. In practice, the
optimization procedure can be run offline for different combina-
tions of averaged SNR and nominal INR. The resulting optimal
parameters can be tabulated. Then, in real-time applications, we
only need to look up this table to select the optimal power pa-
rameters. It is worth noting that although the instantaneous SNR
and the instantaneous INR may vary from time slot to time slot,
the averaged SNR and the nominal INR are static for many mul-
tiples of time slots according to the assumption in Section II.

Before finishing this section, we want to discuss a special
case of the proposed space–time power schedule. When only
one time slot is considered for power scheduling, we have the
space-only power schedule, which can be written as the fol-
lowing constrained optimization problem:

(31)

(32)

It has been shown in [6] that at a sufficiently low interference
level, the space-only optimal power schedule is a uniform
isotropic power schedule where all links use the same source
covariance matrix and the source covariance is the identity ma-
trix. While at a sufficiently high interference level, it is shown in
[6] that the space-only optimal power schedule becomes a low
rank power schedule where each link uses a low rank source
covariance matrix. However, the work [6] does not provide a
good answer for the intermediate region of interference. Our
optimization based on a single time slot yields the space-only
optimal power schedule for any given interference level, which
will be shown in Section VI.

Also note that for the space-only power schedule, the nom-
inal interference referred to in this paper is also the actual
interference.

V. CHANNEL CORRELATION

In Sections III and IV, we assumed that the channel matrix has
i.i.d. Gaussian elements. Yet, in some practical applications, the
elements of a channel matrix can be correlated due to reasons
such as the short spacing between antenna elements, and/or lack
of scatters around the antennas [15], [16]. In this section, we
investigate the impact of channel correlation on the ergodic sum
capacity, and also study the corresponding space–time optimal
power schedule. As we aim to study the optimal power schedule,
the channel correlation at the transmitter side is of great interest.
A widely accepted model for such a channel correlation is given
by [15], [16]

(33)

where has i.i.d. complex Gaussian distributed entries with
zero mean and unit variance, and characterizes the
channel correlation at the transmit side. Although the MIMO
channel realizations can be time varying from slot to slot,
we assume that the channel statistics is static for many mul-
tiples of time slots.

Let us denote

(34)

as the eigendecomposition of the channel covariance matrix ,
where is a unitary matrix of eigenvectors, and is a di-
agonal matrix containing all the eigenvalues. Substituting (34)
back into (33), we have

Let us introduce the following new matrices

(35)

(36)

It can be seen from (35) that since is a unitary matrix,
has the same distribution as [11]. In other words, the entries
of are i.i.d. Gaussian distributed with zero mean and unit
variance. Substituting (35) and (36) back into (6), we have

(37)

where , and

When the channel covariance matrix is unknown at the
transmitting nodes, a straightforward (suboptimal) space-only
power schedule is . By substituting (36) into
(37), we have

(38)

where

(39)

From (38) and (39), we can see that in this case, the ergodic
sum capacity is equivalent to that of the multiple MIMO links
with i.i.d. fading channel and the source covariance matrices

, . Thus, the impact of the channel cor-
relation on the ergodic sum capacity for the space-only case can
be analyzed as follows.
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Fig. 4. Comparison of ergodic capacities of MIMO networks with channel cor-
relation !!! = (0; 0), !!! = (0:4; 0:5), !!! = (0:8; 0:9), or !!! = (1; 1). Here,
N = 2, L = 2.

When the interference level is low such that it can be ne-
glected, we have parallel point-to-point MIMO links. It is
well known [11] that for a single link with unknown CSI at
the transmitter, the optimal source covariance matrix is a scaled
identity matrix. If the channel is correlated, , where
is a scalar, then the ergodic capacity is reduced by using as
the source covariance matrix. For the case of highly correlated
channels, the values of the diagonal elements of are widely
spread. This may lead to a severe performance degradation of
the ergodic sum capacity.

When the interference level is high, it has been shown in [6]
that the optimal space-only power schedule is equivalent to a
low rank power schedule. When the channel is highly correlated,

has the tendency to be rank-deficient. In this case, the channel
correlation “assists” a low rank power schedule and hence could
improve the ergodic sum capacity.

Fig. 4 shows a numerical example of the impact of channel
correlation on the per-link ergodic capacity of distributed
MIMO links with active and symmetric links, where
each node has antennas and the space-only optimal
power schedule is applied. Here, we set 20 dB, ,

, and , . The
exponential correlation model has been adopted to simulate the
channel correlation, i.e., the th element of matrix is
given by

(40)

We will use to capture the channel corre-
lation of all links. Fig. 4 supports our analysis, i.e., the er-
godic capacity decreases as the channel correlation increases
when the interference is low, but the ergodic capacity increases
as the channel correlation increases when the interference is
high. In particular, the ergodic capacity becomes very robust
against INR when the channels are fully correlated, i.e., when

.

In the sequel of this section, we develop the space–time op-
timal power schedule for MIMO links with correlated channels.
We assume that all channel covariance matrices of all links are
known at each transmitting node.

The overall network ergodic sum capacity averaged over
time slots can be written as

where is a matrix stacking the matrices of all links:

The space–time optimal power schedule can be formulated as
the following constrained optimization problem:

(41)

(42)

(43)

Note that the equality constraints in (42) follow from

Let us denote as the
eigendecomposition of , , where

is a unitary matrix of eigenvectors, and
is an diagonal matrix

containing all the eigenvalues. Then, the following theorem is
in order.

Theorem 1: The optimal solution of the
problem (41)–(43) are diagonal matrices and given by

, .
Proof: First, we note that since , have

i.i.d. Gaussian distributed entries with zero mean and unit vari-
ance, the distribution of is invariant under a unitary trans-
form . Thus, we have

(44)

where

Second, it has been shown in [17] using the theory of ma-
jorization [18] that if , satisfy the con-
straint (42), then also satisfy the constraint

(45)



RONG et al.: SPACE–TIME POWER SCHEDULE FOR DISTRIBUTED MIMO LINKS WITHOUT INSTANTANEOUS CSI 695

From (44) and (45), it can be seen that ,
.

Using Theorem 1, we can see that since
for any diagonal matrix

, obviously, we have .
Substituting back into (36), we obtain the

optimal as

(46)

We can see from (46) that the eigenspace of the optimal source
covariance matrix of each transmitting node is equal to that of
the corresponding channel covariance matrix. In other words,
the channel should be “whitened” by the source covariance ma-
trices. This property greatly reduces the number of optimization
variables from to . Now the remaining task is to find
the optimal . It can be formulated as the following constrained
optimization problem:

(47)

(48)

(49)

The objective function (47) can be further written as

(50)

Comparing (50) with (18), we find that they have the same struc-
ture. Thus (50) can be written in the same closed form as (20) by
following the computation steps listed in Section III. Since the
constraints (48)–(49) are simple linear constraints, the problem
(47)–(49) can be solved by the projected gradient technique de-
veloped in Section IV, and hence more details are omitted.

VI. NUMERICAL EXAMPLES

We now illustrate the performance of the space–time power
scheduling scheme presented earlier. For comparison in the case
of i.i.d. channel, we will consider the following five schemes.

• Scheme A1: Space–time optimal power schedule, which is
based on (21) and (22).

• Scheme A2: Orthogonal isotropic power schedule, where
all links conduct transmissions in orthogonal channels
(such as different times and/or different frequencies), and
the source covariance matrix used by all links is propor-
tional to the identity matrix.

• Scheme A3: Uniform isotropic power schedule, where all
links conduct transmissions at the same time and the same
frequency, and the source covariance matrix used by all
links is proportional to the identity matrix.

• Scheme A4: Space-only optimal power schedule, which is
based on (31) and (32).

• Scheme A5: Low rank power schedule [6], where each link
uses a low rank source covariance matrix where the corre-
sponding ranks for links are denoted by the string of in-
tegers . The th link with the rank uses

Fig. 5. Ergodic capacities of schemes A1 and A4 versus the number of initial-
izations. Here, N = 2, L = 2, SNR = 20 dB, INR = 30 dB.

a power vector of nonzero equal entries and
zero entries.

For the correlated channel case, we compare the following four
schemes.

• Scheme B1: Space–time optimal power schedule, which is
based on (46)–(49).

• Schemes B2–B4: These approaches are similar to Schemes
A2, A3, and A5, respectively. However, for a fair compar-
ison, in schemes B2, B3, and B4, the design of the source
covariance matrices takes into account the channel covari-
ance matrices.

Schemes A1, A2, B1, and B2 are space–time based, and all
other schemes are space-only based. Schemes A1 and B1 are
space–time optimal, while Schemes A2 and B2 are not.

For Schemes A1, A4, and B1, the following parameters were
applied: , , , and .

For all examples, we consider a symmetric and circular net-
work where all nodes are uniformly located on a circle. Fig. 1
shows an example of such a network with active links.
For each case to be considered, we set the same transmit power
for all transmitting nodes , , the same gain
for all desired links , , and the same gain
for all interfering links , . Thus,
we have the same averaged SNR for all desired links ,

, and the same nominal INR for all interfering links
, . For all simulations of er-

godic capacities versus INR, we set 20 dB and . The
INR is changed by varying . Similarly, for all simulations of
ergodic capacities versus SNR, we take 10 dB and .
Then we change to vary SNR. Since the nominal INR and the
averaged SNR are quasi static, we assume that their values can
be obtained with relatively high precision. The ergodic capacity
shown in all figures is a per-link ergodic capacity.

For Schemes A1, A4, and B1, the power allocation vectors
were initialized randomly. For each simulation point, a certain
number of initializations were tried and the best result was
chosen. Fig. 5 shows the ergodic capacities of Schemes A1 and
A4 for the i.i.d. channel with , , SNR 20 dB,
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TABLE II
AVERAGE NUMBER OF ITERATIONS; N = 2, L = 2, SNR = 20 dB

Fig. 6. Comparison of ergodic capacities of schemes A1–A5; i.i.d. channel.
Scheme A5 uses (r ; r ) = (1; 1). Here, N = 2, L = 2.

INR 30 dB, and different number of initial points. From this
figure, one can see that the difference caused by the number of
initializations is not very large. In fact, after 30 initializations,
the difference is almost zero. Thus, in the sequel, we use 30
initializations for Schemes A1, A4, and B1.

The number of iterations required by Schemes A1, A4 and
B1 for convergence depends on many factors such as , ,
SNR, INR, and the choice of the initial point. As an example,
in Table II we list the average number of iterations for conver-
gence of Schemes A1 and A4 over 30 random initializations for
different INR levels at , , and SNR 20 dB. It is
observed that the number of iterations required at INR 10 dB
is relatively large. It must be due to the insensitivity of the ob-
jective function around the optimal covariance matrices at this
particular INR value. This INR value also coincides with the
sharp transition point of the sum capacity of Scheme A1 (see
Fig. 6).

In general, the number of iterations for convergence increases
with the number of optimization variables (i.e., ). However,
an exact relationship of the number of iterations with respect to
the number of links is difficult to obtain.

The performance comparison of Schemes A1–A5 for the i.i.d.
channel environment are shown in Figs. 6–10, while the perfor-
mance of Schemes B1–B4 for the correlated channel scenario
are compared in Figs. 11–15. Fig. 6 compares the ergodic ca-
pacities of schemes A1–A5 with and . From
Fig. 6, we can see that Scheme A2 performs the same as Scheme
A1 at high INR, and Scheme A3 has the same performance as
Scheme A1 at low INR. More interestingly, the transition of the
optimality from Scheme A2 to Scheme A3 along the INR axis
is very sharp (within about 1.5 dB of INR). This property of

Fig. 7. Comparison of ergodic capacities of schemes A1–A5; i.i.d. channel.
Scheme A5 uses (r ; r ) = (1;1). Here, N = 2, L = 2.

Fig. 8. Comparison of ergodic capacities of schemes A1–A5; i.i.d. channel.
Scheme A5 uses (r ; r ) = (1;1). Here, N = 3, L = 2.

Schemes A2 and A3 is also observed in Figs. 8 and 9. The er-
godic capacities versus SNR for the same simulation setups at
INR = 10 dB is shown in Fig. 7. Similarly, we observe the opti-
mality of Scheme A1 in the whole SNR region.

Fig. 8 compares the ergodic capacities of Schemes A1–A5
with and . Here, Scheme A5 with
remains strongly suboptimal even compared with Scheme A4
over the whole range of INR. This is because under ,
there are effectively three independent streams. But Scheme A5
with uses only two.

Fig. 9 compares the ergodic capacities of Schemes A1–A5
with and . Here, the capacity of Scheme A5
with decreases as INR increases. This
is because it over uses the total available (two) streams at high
INR.

Fig. 10 compares Schemes A3, A4, and A5, which are all
space-only schemes. Here, and . Scheme A5
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Fig. 9. Comparison of ergodic capacities of schemes A1–A5; i.i.d. channel.
Scheme A5 uses (r ; r ; r ) = (1; 1; 1). Here, N = 2, L = 3.

Fig. 10. Comparison of ergodic capacities of Schemes A3, A4, and A5; i.i.d.
channel. Scheme A5 uses (r ; r ) = (1; 1), (r ; r ) = (1;2), or (r ; r ) =
(2;2). Here, N = 3, L = 2.

with different rank conditions is illustrated. Given and
, Scheme A5 with performs the same

as Scheme A4 at high INR. When , Scheme A5
remains strongly suboptimal compared with Scheme A4 at all
INR.

Recall the optimality property of Schemes A2 and A3 that
Scheme A2 performs the same as Scheme A1 when INR is larger
than a threshold and Scheme A3 has the same performance as
Scheme A1 when INR is less than the threshold. We can de-
termine the threshold INR value by solving the following
nonlinear equation:

(51)

which is explained next.
In (51), , denotes the ergodic sum capacity

of a MIMO link with SNR . Hence,

Fig. 11. Comparison of ergodic capacity of schemes B1–B4; correlated
channel with !!! = (0:8; 0:9). Scheme B4 uses (r ; r ) = (1; 1). Here,
N = 2, L = 2.

Fig. 12. Comparison of ergodic capacity of schemes B1–B4; correlated
channel with !!! = (0:8;0:9). Scheme B4 uses (r ; r ) = (1; 1). Here,
N = 2, L = 2.

is the ergodic sum capacity using Scheme A2. Using the result
in [19], can be written as

Here, , , is the expo-
nential integral function of order [12, eq. 5.1.4] and can be
calculated using its recurrence relation
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Fig. 13. Comparison of ergodic capacity of schemes B1–B4; correlated
channel with !!! = (0:4; 0:5). Scheme B4 uses (r ; r ) = (1; 1). Here,
N = 2, L = 2.

Also, and , where
and are the number of transmit and receive antennas, re-
spectively. Thus, .

In (51), is the ergodic sum capacity of
Scheme A3. A complete form of is as follows:

where is a matrix whose th element is given by

is a column vector whose th entry is given by (52), shown at
the bottom of the page, and stands for the th to th columns
of matrix . Here denotes the derivative of order .

Since
is a monotonically decreasing function of , thus (51) can
be easily solved, for instance, by the bisection method [14,
pp. 145]. As an example, we applied (51) to the case of Fig. 9,
and obtained 9.78 dB, which agrees well with the
simulation result in Fig. 9.

In practice, the threshold INR can be tabulated for
different network parameters such as the number of links, the
number of antennas of each node, and the SNR. Once this
table is available, it can be looked up in real time to determine

Fig. 14. Comparison of ergodic capacity of schemes B1–B4; correlated
channel with !!! = (0:7; 0:8; 0:9). Scheme B4 uses (r ; r ) = (1;1; 1). Here,
N = 2, L = 3.

whether each node should be scheduled under Scheme A2 or
Scheme A3.

In the following, we simulate the environment with corre-
lated MIMO channels using the exponential correlation model
(40). Fig. 11 compares the ergodic capacities of Schemes
B1–B4 with and . Here, the channel is set to
be highly correlated with . For Scheme B4,
we have . It can be seen from Fig. 11 that
Scheme B4 outperforms Scheme B2. Note that Scheme B2
is equivalent to TDMA. We now see that for correlated chan-
nels, TDMA is no longer optimal at high INR. That is, the
channel correlation can change the optimality of a particular
power schedule scheme (exact for the space–time optimal
schemes A1 and B1). It can also be observed that Scheme B1
consistently provides the optimal ergodic capacity throughout
the whole INR region. The optimality of Scheme B1 is also
observed in Figs. 13–15.

The ergodic capacities versus SNR for the same simulation
setups at INR 10 dB is shown in Fig. 12. Similarly, we ob-
serve the optimality of Scheme B1 in the whole SNR region.

Fig. 13 illustrates the performance of Schemes B1–B4 with
, , and low channel correlation .

Comparing Fig. 13 with Fig. 11, it can be seen that the
ergodic capacity of Scheme B2 increases when the channel
is less correlated, while the performance of Scheme B4
with degrades. The reason is that when the
channel is less correlated, tends to be an identity matrix.
Thus, Scheme B2 is close to be optimal in high interference

(52)
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region. And Scheme B4 becomes suboptimal when the
channel correlation is low. Interestingly, for ,
Schemes B2 and B4 happen to yield a similar ergodic
capacity in the high interference region.

Fig. 14 compares the ergodic capacities of Schemes B1–B4
with , , and . We find that in the
presence of strong interference, Scheme B2 performs the same
as Scheme B1. The capacity of Scheme B4 with

decreases as INR increases, because it over uses the
total available streams at high INR.

Finally, Fig. 15 shows the ergodic capacities of Schemes
B1–B4 with , , and . Interestingly,
we can observe that Scheme B4 consistently outperforms
Scheme B2. Here, the optimality result is different from
that of the i.i.d. channel environment, where the orthogonal
isotropic power schedule outperforms the low rank power
schedule (see Fig. 8). In contrast to Fig. 11, Scheme B4 is
suboptimal even in the high interference region. This fact
demonstrates the importance of Scheme B1. The optimal
ergodic capacity can not be achieved by a “prefixed” power

(53)

(54)

(55)

.

(56)

.

.
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Fig. 15. Comparison of ergodic capacity of schemes B1–B4; correlated
channel with !!! = (0:8; 0:9). Scheme B4 uses (r ; r ) = (1; 1). Here,
N = 3, L = 2.

scheduling schemes. Our schemes A1 and B1 are adaptive to
the network conditions.

VII. CONCLUSION

We have proposed a space–time optimal power scheduling
approach for multiple distributed MIMO links assuming no
instantaneous CSI at the transmitting nodes. For the i.i.d. and
correlated channel environments, this approach leads to Scheme
A1 and Scheme B1, respectively. In particular, for a symmetric
network of i.i.d. channels, using Scheme A1 as the optimal
benchmark, we have observed that Scheme A2, an orthogonal
isotropic power schedule (such as TDMA), is optimal when
the INR is larger than a threshold, and Scheme A3, a uniform
isotropic power schedule, is optimal when the INR is less than
the same threshold. The threshold INR value can be computed
based on the network topology and the transmit power level.
For the correlated channel environment, we have shown that the
channel correlation has a great impact on the ergodic capacity
and the optimality of different power scheduling approaches.
Future research should address issues arising from asymmetric
networks.

APPENDIX A
SUMMARY OF NOTATIONS FOR SYSTEM MODEL

MIMO channel between the th transmitting node
and the th receiving node.

, channel gain of a link-of-interest; ,
channel gain of an interfering link.
Transmit covariance matrix of the th transmitting
node in the th time slot.
Interference-plus-noise covariance matrix at the
receiving node in the th time slot.
Averaged transmit power from the th transmitting
node.

Signal vector transmitted from the th transmitting
node within time slot .
Signal vector received by the th destination node
within time slot .
Averaged ergodic sum capacity.
Ergodic sum capacity at one time slot.
Channel correlation matrix of the th transmitting
node.

APPENDIX B
THE GRADIENT OF (20)

See the first equation shown at the bottom of the previous
page, where denotes the first order derivative, , ,

, and are given by (53)–(56), respec-
tively, shown at the bottom of the previous page. Here,

.
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