
UCLA
UCLA Previously Published Works

Title
Mapping Cortical and Subcortical Asymmetry in Obsessive-Compulsive Disorder: Findings 
From the ENIGMA Consortium

Permalink
https://escholarship.org/uc/item/2bj8c4jm

Journal
Biological Psychiatry, 87(12)

ISSN
0006-3223

Authors
Kong, Xiang-Zhen
Boedhoe, Premika SW
Abe, Yoshinari
et al.

Publication Date
2020-06-01

DOI
10.1016/j.biopsych.2019.04.022
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2bj8c4jm
https://escholarship.org/uc/item/2bj8c4jm#author
https://escholarship.org
http://www.cdlib.org/


Mapping Cortical and Subcortical Asymmetry in Obsessive-
Compulsive Disorder: Findings from the ENIGMA Consortium

A full list of authors and affiliations appears at the end of the article.

Abstract

Objective: Lateralized dysfunction has been suggested in Obsessive-Compulsive Disorder 

(OCD). However, it is currently unclear whether OCD is characterized by abnormal patterns of 

structural brain asymmetry. Here we carried out by far the largest study of brain structural 

asymmetry in OCD.

Method: We studied a collection of 16 pediatric datasets (501 OCD patients and 439 healthy 

controls), as well as 30 adult datasets (1777 patients and 1654 controls) from the OCD Working 

Group within the ENIGMA (Enhancing Neuro-Imaging Genetics through Meta-Analysis) 

consortium. Asymmetries of the volumes of subcortical structures, and of regional cortical 

thickness and surface area measures, were assessed based on T1-weighted MRI scans, using 

harmonized image analysis and quality control protocols. We investigated possible alterations of 

brain asymmetry in OCD patients. We also explored potential associations of asymmetry with 

specific aspects of the disorder and medication status.

Results: In the pediatric datasets, the largest case-control differences were observed for volume 

asymmetry of the thalamus (more leftward; Cohen’s d = 0.19) and the pallidum (less leftward; d = 

−0.21). Additional analyses suggested putative links between these asymmetry patterns and 

medication status, OCD severity, and/or anxiety and depression comorbidities. No significant case-

control differences were found in the adult datasets.

Conclusions: The results suggest subtle changes of the average asymmetry of subcortical 

structures in pediatric OCD, which are not detectable in adults with the disorder. These findings 

may reflect altered neurodevelopmental processes in OCD.

Keywords

laterality; brain asymmetry; obsessive-compulsive disorder; thalamus; pallidum; mega-analysis

Introduction

Obsessive-Compulsive Disorder (OCD) is a psychiatric disorder with a lifetime prevalence 

of approximately 2% (1–4). OCD involves persistent, intrusive and unwanted thoughts 
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(obsessions) as well as repetitive behaviors which might be accompanied by mental acts 

(compulsions) (4). As a heterogeneous neuropsychiatric condition with considerable 

heritability of roughly 40% (5), OCD has significant genetic and non-genetic determinants 

(4), but the pathophysiology of this complex disorder remains unclear.

Left-right asymmetry is an important aspect of human brain organization for multiple 

functions (6). For example visual-spatial processing and emotions that elicit withdrawal 

behaviors are usually right-lateralized in healthy people (7–10), whereas language-related 

processes, hand motor dominance, and emotions that elicit approach behaviors tend to be 

left-lateralized in the brain (11, 12). Alterations of asymmetry have been reported in various 

psychiatric and neurocognitive conditions, including schizophrenia (13, 14), autism (15) and 

dyslexia (16). Altered functional laterality has also been investigated in OCD (17, 18), partly 

due to observations of psychometric deficits within the visual-spatial domain (19–21), as 

well as altered emotional processing (22–25). For example, a behavioral study found 

reduced functional asymmetry for spatial attention in OCD patients, and also that less 

typical asymmetry was correlated with more serious obsessions (20). Several studies found 

greater impairment in visual-spatial memory compared with verbal memory in OCD, 

suggestive of right-sided dysfunction (17, 18, 26). Increased left-right asymmetry of 

electroencephalographic (EEG) activity at rest, or reduced activity in the right hemisphere 

linked to approach/avoidance motivation, has also been reported in OCD compared to 

healthy controls (19, 22). However, left-sided dysfunction has also been suggested in OCD, 

on the basis of neuropsychological data (23) as well as neuroimaging studies (27–29). 

Reduced right-ear advantage, which can indicate left-hemisphere dysfunction, was reported 

in OCD for certain tasks (23). In addition, hyper-responsiveness was observed in the left 

hemisphere based on event-related potentials (27, 30). More recently, left lateralized 

differences in functional connectivity of the amygdala were reported in OCD versus 

controls, using task fMRI (31). Studies with animal models of OCD (32), and transcranial 

magnetic stimulation (TMS) in treatment-resistant OCD patients (33) have suggested that 

left-lateralized stimulation is more effective compared to right. Therefore, overall, the 

literature suggests altered hemispheric functional balance in OCD, but does not point 

consistently to one of the hemispheres as being the primary site of disruption.

Importantly, any structural basis linked to altered functional laterality in OCD is still unclear. 

Two previous studies explored brain structural asymmetry in OCD as a specific outcome of 

interest, but with low sample sizes. In one of these studies, with 16 OCD patients, leftward 

asymmetry (i.e., left > right) of cortical thickness in the anterior cingulate region was found 

in OCD patients and their siblings but not in matched controls, and this was claimed to 

present a potential endophenotype linked to increased hereditary risk for OCD (34). In the 

other study, with 32 patients, significant differences of frontal white matter volume 

asymmetry were found in both medicated (N = 19) and non-medicated (N = 13) patients, as 

compared with healthy controls (35). Unfortunately, small sample sizes tend to limit the 

reliability of findings in human neuroscience (36), and the extent of any association between 

OCD and structural brain asymmetry remains uncertain.

The OCD working group within the Enhancing Neuro-Imaging Genetics through Meta-

Analysis (ENIGMA) consortium (37) recently achieved more highly powered analyses of 

Kong et al. Page 2

Biol Psychiatry. Author manuscript; available in PMC 2020 June 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



brain changes in OCD, based on a sample size of over 1500 OCD individuals and a similar 

number of controls (38). They reported several regional case-control differences in cerebral 

cortical measures which involved only one hemisphere (38). However, these analyses did not 

examine whether effect sizes were significantly different on the left and right sides, and 

asymmetry was not quantitatively characterized. Unilateral patterns in this and other studies 

may arise from small but uniform bilateral effect sizes; the fact that statistical significance 

was achieved on one side, but not on the other, does not necessarily indicate a significant 

change in asymmetry. Furthermore, a post-hoc statistical comparison of the left and right-

sided effect sizes as reported by the previous ENIGMA study (38) would not yield the same 

level of statistical power as can be provided by utilizing the individual-level, paired left and 

right data, to analyze asymmetry alterations in OCD. In addition, a previous ENIGMA study 

of subcortical volumes in OCD only reported combined left and right volumes (39).

Here, we used the latest data for both subcortical and cortical structures from the ENIGMA 

OCD Working Group, and targeted hemispheric structural asymmetry across subcortical and 

cortical measures, as assessed by subject-specific asymmetry indexes, AI = (Left-Right)/

((Left+Right)/2) (40). The AI is a widely used approach in studies of brain asymmetry (e.g., 

(41, 42)). Our primary interest was to compare structural asymmetries between patients and 

healthy controls, but we also performed post-hoc analyses to investigate possible 

associations of brain asymmetries with medication status, age at disease onset, disease 

duration, OCD severity, and presence of anxiety and depression comorbidities. As the recent 

studies from the ENIGMA OCD working group had indicated distinct alterations in 

pediatric and adult patients (38, 39), and because asymmetries of both cortical and 

subcortical structures are also known to change subtly with age in the healthy population 

(40, 43), we carried out all analyses for the pediatric (<18 year old) and adult (>=18 year 

old) data separately (see also (44)).

Materials and Methods

See Supplementary Materials for detailed methods.

Datasets.

The datasets used in this study were provided by members of the OCD Working Group 

within the ENIGMA Consortium (37). There were 46 independent datasets from 16 

countries: 16 pediatric datasets comprising 501 OCD patients and 439 healthy controls, and 

30 adult datasets comprising 1777 OCD patients and 1654 healthy controls (Table 1, Figure 

S1–2 and Table S1). All local institutional reviews boards permitted the use of extracted 

measures from their anonymized data. In addition, we leveraged publicly available summary 

statistics which describe the average form of brain regional asymmetries, based on our 

previous larger studies of healthy individuals (40, 43).

Image Acquisition and Processing.

Structural T1-weighted MRI scans were acquired and processed locally at each collection 

site. Images were acquired at different field strengths (1.5 T and 3T). All images were 

analyzed using one automated and validated pipeline, i.e. “recon-all” as implemented in 
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FreeSurfer. For each subject, surface area and mean thickness was extracted for each of the 

68 cortical regions (34 per hemisphere) in the Desikan-Killiany parcellation scheme (45), as 

well as total hemispheric surface area, and the average mean thickness over each 

hemisphere. In addition, volumes of eight subcortical regions of interest, including seven 

subcortical structures (nucleus accumbens, amygdala, caudate, hippocampus, pallidum, 

putamen, and thalamus), and the lateral ventricle volume, were calculated.

Asymmetry indexes.

The aim of this study was to investigate differences in subcortical and cortical asymmetry 

related to OCD. To this end, for each participant, and each subcortical or cortical measure, 

an Asymmetry Index (AI) was defined as (L-R)/((L+R)/2), where L and R represent the 

corresponding left and right volume measures (from subcortical regions), or thickness and 

surface area measures (from cortical regions). This AI formula has been widely used in 

previous brain asymmetry studies (41, 42, 46), including our own (8, 40, 43).

Case-control analyses.

Separately for the pediatric and adult data, and for each AI, we pooled data from all 

available individuals from each dataset, and used a mega-analytical framework to investigate 

the case-control effects. Specifically, for each AI, we used a linear mixed-effect model 

(using lme4 R package), with AI as the outcome variable, and a binary indicator of diagnosis 

(0=controls, 1=OCD patients) as the predictor of interest. In each model, a binary variable 

for sex, and a continuous measure for age (in years at time of scan) were included as 

confounding factors, and the categorical variable ‘dataset’ as a random-effect term.

Separately for thickness and surface area, we additionally calculated an overall ‘typicality 

score’ per subject, which indexed how much a given subject deviated from the population 

mean asymmetry profile, when considered simultaneously across all 34 cortical regions. A 

lower typicality score indicates more deviation from the mean asymmetry profile in the 

population.

OCD case-only analyses of clinical characteristics.

For AIs which were potentially associated with OCD in the main analysis (see Results), we 

further investigated, within cases only, whether the AIs were associated with specific aspects 

of the disorder and medication status.

Results

An overview of the datasets is provided in Table 1, Figure S1–2, and Table S1.

Pediatric data.

The results for both subcortical and cortical AIs in the pediatric data, including the effect 

size estimates for diagnosis on each AI, are presented in Figure 1 and Tables S2–S4.

The largest effects of diagnosis in pediatric cases were more leftward asymmetry of the 

thalamus (t = 2.84, p = 0.0047, d = 0.19; Figure 1–2), and less leftward asymmetry of the 
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pallidum volume (t = −3.17, p = 0.0016, d = −0.21; Figure 1–2). These two findings were 

significant when controlling the FDR at 0.05 (see Materials and Methods). Post hoc analyses 

showed that these case-control differences were mainly due to a left thalamus which was 

relatively larger in OCD patients than controls (Left: t = 4.08, p = 4.89e-05, d = 0.27; Right: 

t = 2.12, p = 0.034, d = 0.14), and a left pallidum which was relatively smaller in OCD 

patients than controls (Left: t = −1.98, p = 0.048, d = −0.13; Right: t <1.0, p = 0.35, d = 

0.062) (see also Figure 2B for distribution and group differences of each unilateral volume 

measure). In addition, we confirmed that the effects remained when excluding possible 

outliers in each AI per dataset (see Methods) (pediatric thalamus volume asymmetry: t = 

2.90, p = 0.0038, d = 0.19; pediatric pallidum volume asymmetry: t = −3.16, p = 0.0016, d = 

−0.21).

Within pediatric patients only, there were no differences of the thalamus or pallidum AIs 

between medicated and unmedicated subjects (uncorrected ps >0.20), nor with respect to 

current anxiety or depression comorbidity (ps >0.20), or age at disease onset or disease 

duration (ps >0.05). In terms of OCD symptom, the pallidum AI showed significant 

association with two of the 5 major Y-BOCS symptom components: hoarding (t = −2.37, p = 

0.0065) and cleaning/contamination (t = −2.29, p = 0.014), such that cases with these 

symptoms had reduced leftward asymmetry of the pallidum compared to cases without these 

symptoms. No significant associations of symptom severity were observed with the thalamus 

AI, within the pediatric cases (ps >0.10).

When repeating the main analysis including age2 in the model, in case of substantial non-

linear effects of age on AIs, all of the Cohen’s d for the effects of diagnosis remained within 

0.005 of their values before having included age2, and the same two AIs (thalamus volume 

AI, pallidum volume AI) remained significant after FDR correction. None of the AIs showed 

significant scanner effects in the pediatric data (ps >0.05), and the significant effects of 

diagnosis remained when adding scanner field strength as a predictor variable to the main 

analysis models (pediatric thalamus volume asymmetry: t = 2.81, p = 0.0050, d = 0.19; 

pediatric pallidum volume asymmetry: t = −3.02, p = 0.0025, d = −0.20).

We calculated per-subject ‘typicality scores’ (see Methods), and compared the typicality 

scores between patients and controls. However, no significant differences were found in the 

pediatric data for either thickness or surface area asymmetries (ps >0.15). This analysis 

might have been sensitive to multi-regional disruptions of laterality that are not consistent in 

direction, as could conceivably arise from generally increased developmental instability.

Adult data.

The results for both subcortical and cortical AIs in the adult data, including the effect size 

estimates for diagnosis on each AI, are presented in Figure 1 and Tables S5–S7. All effects 

were subtle (Cohen’s d between −0.086 and 0.066), and not as strong as found in the 

pediatric data.

The largest effect in adults was a case-control difference in the AI of global hemispheric 

surface area (t = −2.48, p = 0.013, d = −0.086), indicating that adult OCD was associated 

with slightly more rightward overall asymmetry in surface area, compared with controls. 

Kong et al. Page 5

Biol Psychiatry. Author manuscript; available in PMC 2020 June 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



However, this did not survive multiple testing correction when accounting for all regional 

surface area AI comparisons. Post hoc analyses showed that this difference was mainly due 

to relatively smaller surface area in the left hemisphere (Left: t = −2.80, p = 0.0051, d = 

−0.098; Right: t = −2.18, p = 0.029, d = −0.076) in adult OCD patients than controls. The 

effect on this AI remained after excluding potential outliers (see Methods) (t = −3.03, p = 

0.0025, d = −0.10). No significant case-control difference in the total average asymmetry of 

cortical thickness was found (p =0.35). No significant differences were found in regional 

asymmetries after multiple testing correction (Supplementary Materials).

Although the observed effect of diagnosis on the AI of global hemispheric surface area did 

not survive multiple testing correction, we were interested to explore associations of this AI 

with case-only variables, as it is a global rather than regional measure. Within the adult OCD 

patients, there was a trend towards unmedicated cases showing a mean AI difference 

compared to medicated cases (t = −1.77, p = 0.077, d =−0.086; i.e., more rightward 

asymmetry in medicated cases). Adult cases with current depression showed a mean AI 

difference compared to those without (t = −2.15, p = 0.032, d = −0.17; i.e., more rightward 

asymmetry in cases with current depression), while no effect of current anxiety comorbidity 

was observed (p =0.48). There was no correlation of this AI with the age at disease onset (t 
<1.0, p = 0.53) or the disease duration (t = −1.03, p =0.30). In terms of OCD severity 

measures, no significant associations were found with either the severity in total score or the 

subcomponent variables (ps >0.10).

Including age2 or scanner field strength did not change the main results (Supplementary 

Materials). Typicality scores (see Methods) showed no case-control differences in the adult 

data, for either thickness or surface area asymmetry (ps >0.15).

The effect sizes of the AI case-control differences in the pediatric and adult data were found 

to be uncorrelated across the 34 cortical regions, for either thickness AIs or surface area AIs 

(ps >0.40).

Discussion

In this study we aimed to map differences in brain asymmetry between OCD patients and 

healthy controls, by leveraging a collection of 16 pediatric datasets and 30 adult datasets, via 

the ENIGMA Consortium. Using by far the largest sample size to address this issue to date, 

the results revealed a small number of asymmetry differences in OCD patients. The largest 

effects were in the pediatric patients for the volume asymmetry of the thalamus and the 

pallidum. These effects both had Cohen’s d values of around 0.2, which indicates their 

subtlety and suggests that altered structural brain asymmetry alone is unlikely to be a 

clinically useful predictor of OCD. Nonetheless, these effect sizes were comparable to those 

reported by previous large-scale studies of disorder-related changes in brain structure, in 

which asymmetry was not studied, including studies of OCD as well as major depression, 

schizophrenia, and autism (e.g., (38, 39, 47–51)). Given that the effect sizes in the present 

study were estimated based on large sample sizes, relatively accurate estimations of the true 

effects were possible, whether they were statistically significant or not. As such, the effects 

are informative to share with the field.
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Our finding of subtle changes in thalamus asymmetry in pediatric patients is broadly in 

accordance with previous disease models for OCD as regards the cortico-striato-thalamo-

cortical (CSTC) circuitry, which is involved in a wide range of cognitive, motivational and 

emotional processes (44). Boedhoe et al. (39) observed a mean increase in bilateral thalamus 

volume (left plus right) in pediatric OCD patients versus controls, while in the present study, 

with a larger collection of 16 datasets (including 10 datasets used by Boedhoe et al.), we 

found that this OCD-related volume alteration was largely left-lateralized and resulted in 

altered thalamus asymmetry. It is not clear what pathophysiological mechanisms might link 

altered thalamus asymmetry to OCD. Within OCD individuals, we found no associations of 

thalamus asymmetry with medication status, age at a disease onset, disease duration, current 

anxiety and depression comorbidity, or disease symptoms, which might have given some 

insights into the observed differences. The thalamus is involved in diverse interactions 

among cortical, subcortical, and brainstem nuclei, and many of its functions are 

asymmetrical in normal subjects (52). In addition, the thalamus is subdivided into 

cytoarchitectonically distinct nuclei with different functions (53). Future studies using 

higher resolution mapping of internal thalamus subsegments’ structure and function may 

therefore be informative in pediatric OCD.

For the pallidum, no total volume change (left plus right) was reported by Boedhoe et al. in 

pediatric OCD patients, while here, with a larger collection of 16 pediatric datasets 

(including 10 used by Boedhoe et al.), we found an asymmetry difference of the pallidum 

which was largely driven by a significantly reduced left-sided volume in pediatric OCD 

patients. Boedhoe et al. also reported that adult OCD patients showed a larger pallidum 

(again left plus right) than controls, driven by patients with a childhood-onset of disease 

(39). We saw no significant effect on pallidum asymmetry in adult patients, in either the 

subgroups of early- or late-onset of disease (Supplemental Materials). This overall pattern of 

results suggests that disease chronicity, cumulative treatment effects and/or late adolescent 

volumetric changes in patients are linked to a bilateral increase in pallidum volume, but that 

reduced left sided volume in pediatric patients reflects a different, earlier developmental 

process. Moreover, pallidum asymmetry in the pediatric patients showed associations with 

symptom components “hoarding” and “cleaning/contamination”. Although recently 

“hoarding disorder” was suggested as a separate diagnostic entity (54), in the present data 

there was only 1 case with hoarding behavior in the absence of other symptoms. Thus, we do 

not consider this tentative effect on asymmetry to relate to hoarding disorder specifically.

The pallidum, linking with the striatum and the thalamus within the CSTC circuitry (44), has 

roles in reward and motivation, as well as broader cognitive, affective and sensorimotor 

processes (44, 55). Further studies on specific functions of the (left) pallidum in compulsive 

symptoms, cleaning/contamination behaviors specifically, are needed. While it is not clear 

why lateralized changes in particular should be involved, in general terms our findings in 

pediatric cases help to characterize the brain structural changes in this disorder, and suggest 

altered subcortical neurodevelopment affecting the cortico-striato-thalamo-cortical circuitry. 

Further research will be needed to clarify any potential functional relevance of asymmetrical 

alterations in particular.
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In terms of cortical measures in the pediatric data, we found no significant case-control 

differences in the asymmetry of regional or global measures of cortical thickness or surface 

area. This indicates that none of the cortical case-control differences reported by the 

previous large-scale ENIGMA study (38) are significantly lateralized, even when they might 

have been reported with respect to only one side. We also used a multivariable measure to 

describe the ‘typicality’ of each subject’s asymmetry pattern over all cortical regions with 

respect to a healthy and general population database (40). However, no case-control 

differences in this measure were found. Together these analyses indicate that alterations of 

cerebral cortical anatomical asymmetry are not notable features of pediatric OCD.

In the adult data, there was no evidence for case-control differences of regional asymmetries, 

for either subcortical or cortical measures. The strongest cortical effect in adults was at the 

total hemispheric level, whereby cases showed slightly more rightward asymmetry of total 

surface area, mainly due to having a relatively smaller surface area in the left hemisphere 

than controls. However, this very small effect, with Cohen’s d of 0.086, was not significant 

in the context of multiple testing, so that further studies with even larger sample sizes will be 

needed to confirm or refute this result. The effect was more pronounced in cases with 

comorbid depression, although this observation also remains tentative in the context of 

multiple testing.

Consistently with the previous findings of distinct alterations between pediatric and adult 

patients by the ENIGMA OCD Working Group (38, 39), the present study of structural 

asymmetry also showed different OCD-related effects between pediatric and adult data. 

There was also no correlation of case-control asymmetry differences between pediatric and 

adult data across the 34 cortical regions, which further supported the distinct OCD-related 

effects between pediatric and adult patients. Nonetheless, it is intriguing that the most 

notable effects in the pediatric and adult data all involved predominantly left-hemisphere 

alterations, which might support previous models of left-hemisphere dysfunction in OCD, as 

have been suggested by some functional imaging and neuropsychological findings (see 

Introduction) (23, 27–29). However, it will be important for future functional imaging 

studies to avoid reporting lateralized dysfunction on the basis that only one of the two 

hemispheres shows significant case-control differences. This is because, as noted in the 

Introduction, a hemispheric difference of significance does not necessarily indicate a 

significant difference of effects between hemispheres.

OCD is a heterogeneous neuropsychiatric condition with a heritability of roughly 40%, as 

has been observed using both twin/family based estimation and SNP-based estimation (5, 

56). A recent study showed that genetic variation across the genome, which impacts risk for 

OCD, also includes variation which affects the volumes of the nucleus accumbens and 

putamen (57). The structural brain asymmetries which showed the strongest associations 

with OCD in the present study have been shown to have significant heritability: 23% for the 

volume asymmetry of the thalamus, 15% for the volume asymmetry of the pallidum (43), 

and 17% for the total hemispheric asymmetry of cerebral cortical surface area (40). It may 

therefore be useful in future studies to assess the genetic correlation between these aspects 

of brain asymmetry and OCD, which might lead towards genome-wide association studies 
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(58) to identify individual genetic loci that are involved in OCD-related asymmetry 

abnormalities.

This study has several limitations. First, the cross-sectional study design limits the 

interpretation of the results particularly with respect to age-related changes. Further work 

using longitudinal studies, and incorporating genetic and environmental variables, may be 

useful to understand the mechanisms underlying the potential associations reported here. 

Second, while the region-based approach used in this study is feasible for large-scale, 

collaborative projects, it is necessarily limited in terms of spatial resolution, and this might 

have contributed to some of the null results for regional cortical or subcortical regions. 

Investigation with more fined definition of regions (e.g., sub-regions of the thalamus (59)) or 

a vertex-wise approach combined with cross-hemispheric registration methods will be likely 

to be useful for future cortical asymmetry studies (60, 61). Third, the symptoms of OCD are 

heterogeneous (4). Identifying potential subtypes of OCD could therefore provide further 

insights into the pathophysiology.

In summary, we mapped structural brain asymmetry in pediatric and adult OCD as 

compared to controls, using by far the largest sample size to date. Effects were small overall, 

and most pronounced in the thalamus and the pallidum in pediatric patients, which also 

showed potential links with medication status, disorder severity, and/or anxiety and 

depression comorbidities. Our study adds to literature implicating the thalamus in the 

pathophysiology of pediatric OCD, and additionally implicates the pallidum in pediatric 

cases. The full set of results from this study is available in the SI Tables and online for easy 

access (https://conxz.github.io/AsymOCD/).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights:

Brain structural asymmetry alterations in patients with OCD were investigated.

This study was performed with a large sample size via the ENIGMA Consortium.

The largest case-control mean differences were found in the thalamus and pallidum in 

pediatric OCD patients.

Alterations of structural asymmetry in OCD were subtle and restricted to pediatric cases.
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Figure 1. Effect size (Cohen’s d) distributions for diagnosis on regional AIs in the pediatric (left) 
and adult (right) data.
In terms of cortical asymmetries in the pediatric data, no significant case-control differences 

in the global hemispheric AI for either cortical thickness or surface area were found (ps 

>0.40). Regionally, only one AI showed a nominally significant effect (i.e. prior to multiple 

testing correction) of diagnosis, which was for thickness asymmetry of the lateral occipital 

cortex (greater rightward asymmetry in OCD patients; t = −2.08, p = 0.038, d = −0.14; 

Figure 2). This did not survive multiple testing correction. No other AIs in case-control 

comparisons within the pediatric data showed significant effects (uncorrected ps >0.05).
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Figure 2. Subcortical structures showing altered volumetric asymmetry in pediatric OCD 
patients: the thalamus and the pallidum.
The violin plots show the distributions and group differences of the volume asymmetry (A) 

and the lateral volume measures (in mm3) in each hemisphere (B) for the thalamus and the 

pallidum. Note that the main analyses were based on linear mixed-effect modelling with 

‘dataset’ as a random-effect term, whereas data are plotted here without correction for the 

‘dataset’ variable, for display purposes only.
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Table 1.

Summary information on the case-control datasets included in the present study.

Group Site Field Strength Age in Years Male (%) N Controls N OCD Total N

Controls OCD Controls OCD

Pediatric James 1.5 T 16.63 (1.23) 16.3 (1.42) 58 54 12 13 25

Lazaro 1.5 T 14.63 (2.3) 14.61 (2.04) 47 58 32 31 63

Buitelaar 1.5 T 10.93 (1.04) 10.57 (1.41) 72 64 61 22 83

Fitzgerald 3 T 12.96 (2.73) 14.17 (2.59) 51 48 59 62 121

Gruner 3 T 14.19 (2.21) 14.33 (2.09) 52 57 23 23 46

Arnold 3 T 12.3 (2.19) 12.86 (2.35) 54 61 13 36 49

Hoexter 3 T 12 (2.42) 12.61 (2.45) 57 61 28 28 56

Huyser 3 T 13.32 (2.55) 13.59 (2.47) 36 37 25 27 52

Stewart 3 T 14.02 (3.48) 15.04 (2.68) 40 39 30 28 58

Lazaro 3 T 14.57 (2.1) 14.57 (2.04) 55 60 44 58 102

Nurmi 3 T 13.3 (2.49) 12.53 (2.84) 50 54 36 59 95

Walitza 3 T 14.64 (1.34) 15.68 (1.45) 50 81 20 16 36

Reddy 3 T 13.07 (2.06) 14.56 (1.98) 50 56 14 18 32

Marsh 3 T 9.14 (2.48) 12.12 (3.4) 57 52 14 25 39

Hirano 3 T 15.33 (1.03) 14 (2.18) 67 65 6 20 26

Soreni 3 T 11.09 (3.02) 13.09 (2.47) 50 37 22 35 57

Pediatric Samples Combined 13.06 (2.77) 13.67 (2.65) 53 54 439 501 940

Adult Menchon 1.5 T 33.06 (10.19) 34.83 (9.17) 45 50 66 117 183

Cheng 1.5 T 31.43 (7.96) 30.63 (10.21) 33 38 40 24 64

KwonNMC 1.5 T 24.05 (3.63) 24.76 (5.36) 56 76 104 45 149

KwonSNU 1.5 T 24.89 (5.35) 28.1 (6.71) 64 63 45 41 86

Nakamae 1.5 T 30.44 (7.9) 31.61 (9.15) 46 48 48 82 130

Morgado 1.5 T 27.58 (6.23) 27.69 (7.4) 38 47 53 59 112

Mataix_Cols 1.5 T 36.12 (11.26) 38.68 (10.9) 36 43 33 44 77

Reddy 1.5 T 27.22 (6.45) 27.45 (6.31) 74 59 46 44 90

Hoexter 1.5 T 27.62 (7.75) 31.46 (10.06) 35 44 37 50 87

van den Heuvel 1.5 T 31.57 (7.67) 33.54 (9.19) 39 30 49 54 103

Beucke 1.5 T 31.92 (9.5) 32.41 (9.74) 49 50 104 92 196

Cheng 3 T 26.19 (4.18) 32.89 (10.57) 28 55 95 56 151

Nakamae 3 T 29.57 (7.27) 32.82 (9.74) 45 35 42 34 76

Brennan 3 T 32.38 (12.14) 28.84 (9.99) 45 56 29 98 127

van den Heuvel 3 T 39.61 (11.37) 38.32 (10.07) 47 48 38 42 80

Denys 3 T 39.64 (10.32) 35.26 (9.17) 44 26 25 31 56

Kwon 3 T 26.26 (6.9) 26.7 (7.28) 61 62 89 90 179
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Group Site Field Strength Age in Years Male (%) N Controls N OCD Total N

Controls OCD Controls OCD

Benedetti 3 T 33.98 (12.35) 35.02 (10.39) 73 71 62 66 128

Hirano 3 T 30.95 (8.36) 33.11 (7.82) 45 36 44 47 91

Koch 3 T 30.27 (9.04) 30.91 (9.55) 39 37 74 76 150

Stein 3 T 30.59 (10.76) 30.48 (10.63) 38 48 29 23 52

Tolin 3 T 48 (11.87) 32.11 (12.04) 22 67 32 27 59

Simpson 3 T 28.27 (8.04) 29.62 (7.98) 52 52 33 33 66

Nakao 3 T 39.34 (12.99) 36.6 (10.02) 39 42 41 81 122

Spalletta 3 T 36.52 (10.55) 36.67 (11.56) 59 67 128 84 212

Stern 3 T 28.17 (7.15) 27.87 (6.9) 44 33 18 15 33

Wang 3 T 26.24 (7.55) 29.47 (9.33) 54 55 37 53 90

Nurmi 3 T 30.76 (11.77) 33.31 (11.04) 56 51 25 49 74

Walitza 3 T 32.89 (9.21) 30.72 (7.76) 28 47 18 17 35

Reddy 3 T 26.59 (4.88) 29.5 (6.74) 64 53 170 203 373

Adult Samples Combined 30.55 (9.73) 31.74 (9.66) 50 51 1654 1777 3431

Site indicate the representative author of each dataset; Numbers in parenthesis indicate the standard deviation of age.
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