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ABSTRACT OF THE DISSERTATION

Solving and Dissolving Musical Affection: A Critical Study of Spotify and Automated
Music Recommendation in the 21st Century

by

Asher Tobin Chodos

Doctor of Philosophy in Music

University of California San Diego, 2019

Professor Chair David Borgo, Co-Chair
Professor Rand Steiger, Co-Chair

Music has not been exempt from the so-called “curatorial turn” that is visible in so many

parts of our culture – the turn, that is, toward machine learning to help consumers sort through the

glut of media with which we are all confronted today. Automated music recommendations, in fact,

are probably the single biggest driver of the music industry’s recovery from the crisis it faced at

the beginning of the 20th century. Nobody knows what shape the music industry will take if and

when this recovery is complete, but it seems certain that automated curation will be at its center.

This fact represents a confrontation of the human faculty of aesthetic judgment and machine

x



learning at a scale the world has never seen. The issue of automated music recommendation

raises many of the philosophical problems familiar from the critique of technology in culture.

It does so, moreover, in a way that offers new insights into this familiar problem. In spite of

this, little critical attention has been paid to music as a subject in the field of critical algorithms

studies. In this dissertation, I provide an introduction to thinking critically about this crucial

topic in algorithmic culture, taking Spotify as a case study that exemplifies many broader trends.

I situate Spotify in the history of American copyright law, I perform a close reading of the

Spotify platform, and I conduct quantitative experiments to analyze the large-scale behaviors

of Spotify’s recommendation engine. Although Spotify has often been seen as a singularly

innovative company that somehow managed to “save” the music industry as a whole, this study

shows that in many ways Spotify is better understood as an expression of attitudes toward musical

meaning and commerce that are quite traditional in the music business.
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Introduction

Every day, millions of people turn to Spotify to help them choose their music. This may

seem like a simple statement about the company’s enormous reach, but it is more than that. The

interesting thing about Spotify is not that it has emerged as the world’s most visible platform

for music streaming, nor even that it signals a broader shift in the music industry away from

traditional modes of distribution. Instead, what is interesting about Spotify today is the much more

complicated – and much more culturally relevant – fact that the nature of its service is, more than

anything else, to provide music recommendations. There was a time, not too long after Napster,

when providing access to 30 million tracks was enough to distinguish Spotify from its competition,

when having lots of music “at one’s fingertips” was a huge draw for music consumers. At that

time, Spotify users were still expected to choose for themselves what music to listen to. In fact,

it was assumed that they would want to do so. But in recent years Spotify, like virtually all its

competitors and most tech companies in general, has pivoted toward recommendation, assuming

instead a “lean back” posture for its users. Customers today need more than just access; they

need help choosing.

The idea that there is a digital “curatorial turn” analogous to the one scholars have spotted

in theater and museum studies has, as a result, emerged as a common theme in studies of digital

culture.1 And when it comes to the “curatorial turn,” Spotify is probably the most dramatic

example. As of the last 10 years or so, it is not a place to go to listen to music so much as (quoting

1. See e.g. Tom Sellar, “The Curatorial Turn,” Theater 44, no. 2 (May 2014): 21–29 and Maria Eriksson et al.,
Spotify Teardown: Inside the Black Box of Streaming Music (The MIT Press, 2019).
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Spotify’s promotional materials) a place to

Find the right music or podcast for every moment.
Soundtrack your life with Spotify.2

The key to Spotify and the recommendation industry in general, in other words, is

personalization; “every pixel,” claims Yves Raimond of Netflix, is personalized.3 And the key to

personalization is another technological development currently much in vogue: machine learning.

As Tony Jebara, Spotify’s current head of machine learning, puts it,

Our algorithms allow us to scale out very personalized, hand-selected experiences
that help members feel were made just for them. The goal is to deliver an amazing
listening experience.4

That our lives need soundtracks, and that the primary role of music in general should be

to provide them, and that the best way to achieve them is machine learning, are tacit assumptions

of much more cultural import than the dazzling size of Spotify’s catalogue or the low monthly

subscription fee to access it. The real change ushered in by the era of streaming music is not

its affordability, ubiquity or ease of access so much as its drift into a position adjunct to the rest

of our lives. Market pressures have made personalization necessary; personalization has as its

necessary correlate that music serves as part of a broader “listening experience.” Music becomes

paired with life, just as wine is paired with food, to cite a comparison that appears at least twice

in Spotify’s own promotional materials.

It is a general feature of our technologized culture that a rise in algorithmic mediation

has been attended by this rise in digital curation. Brute computational tasks like sorting and

document classification, traditionally relegated to the dry disciplines of information retrieval and,

at their most colorful, library sciences, have assumed an epochal significance that their earliest

2. Accessed at https://www.spotify.com/us/about-us/contact/, on 08-08-2019. The addition of “podcasts” is new.
Spotify has in recent years made them a bigger part of their strategy.

3. “From Listening to Watching, A Recommender Systems Perspective”, given at ICML June 2019, https:
//slideslive.com/38917438/from-listening-to-watching-a-recommender-systems-perspective, accessed 9-01-2019

4. Accessed at https://newsroom.spotify.com/2019-10-24/6-questions-and-answers-with-tony-jebara-vp-of-
machine-learning/, 10-15-2019
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devotees could never have imagined. When Calvin Mooers heralded the dawn of the discipline of

information retrieval in 1950 at a conference at Rutgers University, it was in a rarefied proceedings

paper with the uninviting title “The theory of digital handling of non-numerical information and its

implications to machine economics.” In it Mooers expressed his frustration with the cumbersome

process of finding relevant information at libraries, something his academic colleagues could all

relate to. Technological mechanization offered the potential to give researchers easy access to

relevant research without having to thumb through reams of irrelevant work. Machines could help

researchers get more relevant documents faster; it had nothing titillating about it and certainly

contained no special insights for culture at large. It wasn’t particularly prestigious and it bore no

conceivable relationship to the arts or consumer culture. Nevertheless it is this same essential

project – the science of “machine searching and retrieval of information from storage according

to a specification by subject,” as Mooers puts it – that lies at the heart of Spotify and countless

other daily features of life on the Internet today.5

Make an Amazon purchase and collaborative filtering algorithms will recommend others

to you. Click on a news story and an aggregator will find you others like it. Send a Gmail and

Google will use the information in it to serve you more “relevant” ads. Commit a crime and the

COMPAS system may make a recommendation to a judge about an appropriate punishment.6

Depending on where you stand on the social role of technology and the ethics of surveillance,

these examples will hold different meanings for you. They might exemplify the inherent justice of

dispassionate reason – this, at least, has always been the pitch for criminal recidivism predictions,

which have a much longer history than is often acknowledged.7 Or they may point to the

hegemony of a way of thinking belonging to a small, powerful group of mostly white men; they

may be classic examples of the false objectivity and gendered exnomination that, for feminist

5. Mark Sanderson and W. Bruce Croft, “The History of Information Retrieval Research,” Proceedings of the
IEEE, no. 100 (May 2012).

6. See Keith Kirkpatrick, “It’s Not the Algorithm, It’s the Data,” Commun. ACM (New York, NY, USA) 60, no. 2
(January 2017): 21–23

7. See e.g. Don M. Gottfredson, “Prediction and Classification in Criminal Justice Decision Making,” Crime and
Justice 9 (1987): 1–20, which builds on his “Base Expectation Score” method from the 1960s.
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theorists of science like Donna Haraway, this class customarily evinces.8 But they are all, at

their core, recommendation tasks, the same ones powering Netflix, Tinder, the Facebook news

feed, and pretty much everything else we do on the Internet. The ubiquity of these machine

recommendations, the way users are kept in ignorance of how they work, and the biases they

must inevitably all contain, are issues of inestimable cultural importance. Real world applications

of automated recommendation describe a spectrum from the utopian to the apocalyptic. At the

core of this dissertation is the question of where on this spectrum we should locate Spotify.

The question is really alluring, especially because it has seldom been addressed from a

specifically musical perspective. But it immediately begs another: who are “we?” If the destructive

potential of algorithmic curation has received more attention in its non-musical deployments,

that may be due as much to the difficulty of this second question as it is to the admittedly higher

stakes of the social justice problems. More attention, for example, has been paid to the question

of whether automated credit scores will lead to a form of data-driven redlining.9 This is perhaps

a more urgent question that the musical one, but in a way it is also a more straightforward

one. It is almost impossible, in other words, to know what would actually represent a socially

deleterious music recommendation system. Incidentally, as I show in this dissertation, it is also

almost impossible to measure the successfulness of such a system, at least in any philosophically

coherent manner. And the flatness of that argumentative conundrum – can’t say anything certain

against music recommendation, but for the same reason can’t say anything for it either – is one of

my core findings. Automated music recommendation presents this argumentative double bind

from every angle. It is a weird tautology that the designers of Spotify can evade only by virtue of

authoring recommendation software rather than music philosophy. But the puzzle is real for them

too, or at least it ought to be; the notion of a “good” recommendation cuts in so many different

analytic directions at once that critiquing a recommender system is probably as hard as building

8. Donna Haraway, “Situated Knowledges: The Science Question in Feminism and the Privilege of Partial
Perspective,” Feminist Studies 14, no. 3 (1988): 575–599.

9. Mark Andrejevic, “Big Data, Big Questions— The Big Data Divide,” International Journal of Communication
8, no. 0 (2014).
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one. Perhaps building one would be the truest mode of critique; in writing this dissertation, I have

often wondered whether a random music recommendation system might actually make my point

for me. What better way to deflate the illusory notion of “musical meaning” than to pay attention

to the “meanings” that inevitably emerge from random random recommendations, and compare

them with Spotify’s?

It has always been the nature of aesthetic faculty, contingent and unruly as it is, to lead to

this tricky argumentative predicament. Is not Kant’s solution – purposiveness without purpose, the

presumption of universal assent that you assume but never actually demand – a classic expression

of this same problem? Nevertheless the allure of that first question, whether or not to call Spotify

apocalyptic, is strong enough for me to believe that some kind of answer to it is possible. And that

is what this dissertation arrives at: a kind of an answer. It is, of course, neither an endorsement

nor a condemnation of Spotify and automated recommendation. I do show some small ways in

which the system works, providing statistical sketches of its large-scale behaviors and an intimate

look at an early version of its recommendation engine. Depending on the reader’s commitments,

these findings may motivate real judgments of Spotify’s quality: a system that, say, is on the

whole less “confident” in its assessment of “classical” music than “funk” (this is true of Spotify’s;

see Appendix 2) may, for some, be a bad one no matter what. But it is not my goal to arrive at

this kind of claim. Nor do I claim to have caught Spotify in tacit acts of implicit bias or sinister

collusion with its major label partners, even though these are some of the very considerations

around which my experiments are structured. Instead, these issues serve as provocations to a long

meditation on the effort to automate music recommendation in general, with conclusions that do

not always point in the same argumentative direction. Thus my title’s locution: this dissertation is

an open essay on the effort to “solve” musical affection, with the ultimate conclusion being that it

admits of no solution whatsoever, but instead “dissolves” before our eyes every time we attempt

one.

The interesting thing about that is that musical affection doesn’t dissolve like this until we

5



try to solve it. The importance of musical affection for identity construction or the management

of everyday activities (to cite just two of the many theories of “musical meaning” surveyed in the

pages to come) testifies to the apparent solidity with which it constantly presents in real life. So,

in a way, does the success of Spotify itself; is not the mere survival of Spotify, a considerable

achievement in today’s precarious music business, proof that we actually do know what we like,

that our affection for music is as real as anything on earth? The answer to this question, I think,

is basically yes. As we click around the Spotify app, we do know whether or not we like what

Spotify suggests to us. The thumbs up/thumbs down adjudication is a case of genuine aesthetic

judgment, one where we postulate a universal accord that we will never actually get. But this

raises a related but different question: does the impressive survival of Spotify then prove that

there are at some level “right” and “wrong” answers to the question “do I like this?” Does it

prove, in other words, that there exists such a thing as a “good” recommendation? Countless

other recommendation systems, some using real people where Spotify uses machines, have failed

where Spotify has succeeded.10 Does Spotify’s success not, at some level, make the case that

“solutions” to the problem of musical affection exist, even granting that Spotify’s might be wrong

or partial?

To that second question (are there “good recommendations”?), this dissertation responds

in two ways: first, I go to considerable lengths to demonstrate that Spotify’s answer to this

question has to be yes. The system is necessarily predicated on a theory of musical meaning that,

first, reifies it and, at second, externalizes it; Spotify seems to believe that there are right and

wrong musical recommendations, and that those rights and wrongs involve connecting music to

things other than itself. Second, I argue that the real answer to that question is no; in the end

Spotify doesn’t actually prove anything about anything about where or what “musical meaning”

is. Spotify’s continued existence proves only that Spotify exists – and given the “legal prehistory”

of Spotify and its consistent operating losses, in a sense it doesn’t even really prove that (see

10. Neil Young’s fledgling service PonoMusic, for example, tanked in 2017. Earbits Media never really took off.
There are many other examples.
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Chapter One).

On a philosophical level, what Spotify offers are not “solutions” to musical affection in the

sense that humanistic inquiry into musical meaning has always understood the problem, but what I

term “dissolutions:” makeshift slices of data bludgeoned into an almost recognizable simulacrum

of the love for music. This sounds like a condemnation but it is not; the whole enterprise of

machine learning can be seen, not unflatteringly, as the creative and often useful practice of

information bludgeoning. As a useful, or at least marketable act, of data reduction, I make no

quarrel whatsoever with Spotify. Instead, I am making the distinction between a “solution” – a

model, say, that offers real insight into some feature of how the world is or behaves – and what I

term a “dissolution,” a phenomenon wherein the object under scrutiny goes further and further

out of focus the harder you look at it. The philosophical content contained in Spotify occupies

the latter tier. If the various quantitative experiments undertaken in this dissertation do too (see

Chapter Five), more to my point; the critic and the engineer both confront in musical affection

the same evanescent substance, so it makes sense that their results might be philosophical mirror

images.

Normative Commitments

One of the easiest places to take issue with Spotify and automated recommendation in

general is its “audio features” object, which contains the dozen or so ways in which every track

in Spotify’s catalogue is measured. This object, and the difference between it and actual human

listening, is a central provocation to this dissertation. The “audio features” according to which

the Spotify catalogue is rated are dealt with at great length in Chapter Five, but let us examine

them here too:

liveness, valence, energy, danceability, speechiness, instrumentalness, tempo, loudness, dura-

tion ms, acousticness11

11. There are other measures, but they are ignored for reasons discussed in Chapter Five. See appendix 1 for

7



Although we can never know exactly how these measures are used in Spotify’s system,

we do know that they exist, and it seems safe to assume that they are used somehow. Indeed, it

seems safe to assume that it is these very features that are brought together with “extra-signal”

information like web crawls and purchase data to form the model of “musical meaning” at work in

Spotify’s system. That these assumptions are safe is one of the main arguments made in Chapter

Three. But some of these features are musically naive; valence in particular – the “good/bad”

emotional qualia of a song – although a standard term from music psychology, feels like it does a

gross injustice to the nuance and precision of music as art, to say nothing of Adorno’s aesthetic

“truth content,” if we believe in that nebulous quantity.12 For the many musicians who today carry

on with some version of Romantic aesthetics, seeing music as something like a depiction of the

Will Itself, or as an “intimation of the absolute,” or believing that it does something very serious

with vital if ineffable bearing on world affairs, Spotify’s features are dreadfully flat footed and

trivializing. Whether or not we call ourselves Romantics, the idea that a statistically derived

“valence” captures anything musically meaningful will, I think, rub many readers the wrong way.

For these readers, then, the demonstration that machine recommendations are in part predicated on

such blunt instruments may be all they need to hear; if it’s this silly “valence” behind My Discover

Weekly, they might say, then it’s obviously a silly system. People should know, though, that in

dismissing the “two dimensional musical space” of valence and arousal they will be dismissing

much of the history of music psychology, the whole subfield of Music Emotion Recognition, and

an unknown but substantial measure of how contemporary recommendation services actually

work.13 It is not the contention of this dissertation that these fields are inherently meaningless, but

Spotify’s full definitions of these words – definitions, never explanations or derivations.
12. See Geoffrey L. Collier, “Beyond valence and activity in the emotional connotations of music,” Psychology

of Music 35, no. 1 (2007): 110–131 for an example that problematizes the idea of “valence,” and in doing so
demonstrates its ubiquity in music psychology.

13. See Huaping Liu, Yong Fang, and Qinghua Huang, “Music Emotion Recognition Using a Variant of Recurrent
Neural Network,” in 2018 International Conference on Mathematics, Modeling, Simulation and Statistics Application
(MMSSA 2018) (Atlantis Press, 2019) and Verena Haunschmid, Shreyan Chowdhury, and Gerhard Widmer, “Two-
level Explanations in Music Emotion Recognition,” CoRR abs/1905.11760 (2019) for contemporary examples that
preserve these emotion categories.
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it is important from the outset to note that within the basic building blocks of my experimental

program (the audio features object) there are already in place certain problematic assumptions.

If we grant that these categories can say something meaningful at least some of the

time, it is hard to imagine them being equally meaningful for all musical genres. They betray,

in other words, a bias toward those musical forms for which they do represent meaningful

musical categories. There are, of course, many musical traditions in which tempo, mode, etc,

are analytically meaningless. Before any experimentation or analysis, then, the audio features

object amounts to a prima facie case of implicit bias (the greatest sin in machine learning); if I

make music that cannot ever be meaningfully plotted along those 10 axes, I might be forgiven

for considering the system to be inherently biased against me. How exactly that bias actually

operates – whether it would prejudice the system in favor of certain genres, lead to incoherent

recommendations, or have some other effect – is anyone’s guess, but that it on some level exists

seems straightforwardly true.

So at a minimum we can tentatively say that Spotify has some normative commitments

built into its API methods, and that those normative features probably surface somewhere in its

recommendations. What about the commitments of this dissertation? This dissertation moves

through a number of them, discards most of them, and concludes by tentatively embracing

some of them, an embrace which amounts to the thesis about “dissolution” alluded to above.

The experiments are in many cases motivated by clear normative ideas, but in most cases this

dissertation tends to try them on without necessarily endorsing them. I occasionally assume

normative positions, that is, but usually only as a way of getting inside a particular issue related

to Spotify and music recommendation. My experiments play with the idea, for example, that

aesthetic homogeneity would be an a prioi evil effect, but on a broader level I accept the

idea that sometimes aesthetic homogeneity would be exactly what you might want from a

recommendation engine. My experiments and discussions depart from certain positions for the

purpose of exploratory data collection. In my concluding chapter, I revisit these findings an

9



synthesize them into a claim about the whole problem of automating music recommendation, at

which point I take positions that are no longer exploratory but genuinely held.

It makes sense, then, to flag these normative commitments ahead of time in this introduc-

tion. I mention above the one about aesthetic homogeneity being bad, but there are others. Chapter

One, what I call a “legal prehistory of streaming audio,” uses certain normative positions about

copyright law in American culture as a way to begin studying the broader debate that has taken

place beweem “copyright optimists” and “copyright pessimists” in the last half century. Without

actually taking the position on, the chapter proceeds from the notion that copyright protections

should, wherever possible, favor the interests of the public at large in accessing the collective

fruits of society’s creativity rather than the interests of copyright holders in profiting from that

creativity. From this perspective, copyright should exist for the sole purpose of making more

creative work happen; anything else is cynical overreach. This is the clear rhetorical charge of the

US Constitution’s copyright clause, and it is the issue around which the copyright wars of the

latter half of the 20th century were fought.14 Related to this commitment is the notion that there

are modes of human creativity that are neither effectively incentivized nor eradicated by copyright

enforcement, which therefore should be subject to some other regulatory paradigm. These are

commitments with rejoinders from the other side, and the history narrated in Chapter One plays

out on the intellectual terrain mapped by that opposition. This discussion also departs from a

broadly anti-corporate posture, assuming the position (1) that corporate surveillance is bad and (2)

that large conglomerates will tend to exploit unincorporated individuals like musicians. On the

other hand are the claims of the record labels and free marketeers, who know the enormous costs

needed to produce profitable music, and who see cultural production as just another commercial

venture. That opposition, whose most famous case by far is the battle between Napster and the

major labels at the turn of the century, leads directly to Spotify. The degree to which Spotify

inherits from Napster cannot be overstated, a fact that any critique of the former must take into

14. US Constitution, Article 1, section 8, clause 8: copyright exists “to promote the progress of science and useful
arts.”
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account. Early Spotify adopted Napster’s technological design (P2P), appropriated much of its

disruptive caché, and ultimately represents the mirror image of its (Napster’s) relationship to

copyright norms in law and culture. In neither case – the legislative nor the cultural – does the

chapter take a side, but instead plays with the normative commitments outlined here in order to

explore the legal topography Spotify has navigated since it arrived in the US market.

Perhaps the single biggest question behind all the others this dissertation raises is the

same one motivating most work on machine learning in culture generally: the question of

whether human experience and behavior is at all amenable to propositional logic and pattern

recognition, whether human intelligence is reducible to symbolic logic, brute computational

force, and statistical patterning. Or, put another way, it is the question of what exactly machine

intelligence is. We may believe, like Roger Schank, that intelligence is as intelligence does,

and that an intelligently behaving system is, by definition, so. Or, with Hubert Dreyfus, that

human intelligence depends inevitably upon human corporeality and is fundamentally irreducible

to the manipulation of logical symbols. Or, with John Searle, that syntax and semantics bear

no special relationship to eachother and that, lacking the latter, a computer cannot be said to

“understand” anything at all. Or, with Noam Chomsky, that the whole question is off-topic,

philosophically confused, and scientifically irrelevant. In Chapter Two, I survey these and other

authors, always from a perspective that combines Chomsky’s (“can machines think?” is not

a real question) with the heartfelt intuition of a professional musician (musical meaning can

never be reduced to computation). Making music legible to a computer will always involve

doing something like equating musical emotion to “valence” or the complex musical property of

rhythm to “danceability.” Or, for that matter, doing something like what I do in my experiments,

where songs are reduced to 10-d vectors and aesthetic diversity to Euclidean distance measures in

10-d musical space. For many who have devoted their lives to the art of music, these kinds of

reduction will probably never be acceptable. This is inevitably one of the central questions of

this dissertation; the question of solution and dissolution, like the question of whether Spotify
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is musically apocalyptic, points back to the opposition of man and machine, and the question

of whether there is a fundamental incommensurability between them (an opposition that one of

Spotify’s principal scientists has called “stupid”15). The normative commitment we are concerned

with here is that, yes, they are in fact incommensurable, and that, no, human aesthetic behaviors

are not fundamentally predictable given enough training data. These assumptions offer a lens

through which I read the history of critical writing on technology in culture. Assuming the worst

about technology is my way of extracting the best from its apologists.

The question of human programmability leads to fourth commitment, this time in the

philosophy of mind: a commitment to Chomsky’s “internalist” perspective in favor of behav-

ioralism. The idea, that is, that the language faculty is a biological human endowment not

unlike digestion or vision, whose development is regular (and therefore equal) across the species.

Language acquisition is not a matter of instruction upon a blank slate, and the everyday creativity

of normal language usage is not under any specifiable stimulus control.16 This insight, and its

implications for a theory of meaning, is both taken up directly in the discussion of technology in

culture (Chapter Two) and related directly to my discussion of musical meaning (Chapter Three).

Whether machines can ever possess intelligence, on the one hand, and whether a pre-theoretical

notion of “meaning” exists for which to find a musical correlate are two central questions for this

dissertation: taking just a little license in extending him to a musical domain, Chomsky offers

a calm “no” to both of them. I read Chomsky to say that Putnam’s “meaning” is nothing more

than a stipulative, technical definition; if you say meaning is outside the head, we can imagine

Chomsky saying, very well, but I fail to see what that tells me about the mind or the how language

organ works. In this dissertation, I proceed under a musical translation of Chomsky’s position,

which is the assumption that musical meaning, like linguistic meaning, is not the kind of thing

15. In a Billbaord Q&A, since removed from the Billboard site, cited below in this dissertation.
16. See, e.g., Noam Chomsky, “A Review of B. F. Skinner’s Verbal Behavior,” Language, no. 1 (1959) for the

famous review of Verbal Behavior, or Noam Chomsky, Cartesian Linguistics: A Chapter in the History of Rationalist
Thought, Originally published 1966 (Cambridge University Press, 2009) for a work that situates his thought in the
history of rationalist philosophy.
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that can ever be specified apart from actual events of musical signification. It is not in the head,

not in the the signal. It is not anywhere, because it is not a thing at all. To follow Hilary Putnam

(“meaning ain’t in the head”) to the notion that, yes, musical meaning resides somewhere – and

that the only problem is to discover where – is, from a Chomskian perspective, just silly. Or,

at least, since it tells us nothing useful about the way the musical world works, offers no true

explanatory power, and thus does not qualify as a form of knowledge. I argue that this is precisely

the road taken in Brian Whitman’s 2005 doctoral dissertation, which, moreover, almost certainly

underpins much of Spotify’s present day architecture. And here I must note that this commitment,

to a musical version of Chomskian internalism, is not really “tried on” like the others but is in

fact an important part of my overall argument. Although it is not an application of Chomsky’s

theory that he would ever countenance or probably even make sense of, I do believe that “musical

meaning” as construed by Whitman and, I argue, by Spotify itself, is a coherent extension of

Putnam’s theory of meaning, and thus subject in a similar way to Chomsky’s elegant rejoinder.

Finally, there is the commitment to heterogeneity. Here, I proceed under the assumption

that it is, in general, better to have a variety of music than to have just one kind. This is motivated

in part by the common anecdotal reports that Spotify just gives you “more of the same,”17 but also

by the familiar picture of what a technological apocalypse would look like: everything always

the same, everything homogenized, all the idiosyncrasy of human interactions brought under the

yoke of an indifferent Boolean logic. Diversity, after all, is in one way or another what is behind

the growing literature of “fairness” in machine learning; this dissertation in some ways seeks

to cast music recommendation as an analogous social problem.18 The prospect of the long arm

of Spotify’s corporate stakeholders coming to neutralize en masse the critical faculties of the

listening public (again, assuming we can follow Adorno in thinking that music does indeed serve

the purpose of nurturing those faculties) motivates my “typology” of musical meaning (Chapter

Four). Here, I offer a variegated response to the extremely short shrift given to humanistic theories

17. Pelle Snickars, “More of the Same–On Spotify Radio,” Culture Unbound 9, no. 2 (2017).
18. Solon Barocas and Andrew Selbst, “Big Data’s Disparate Impact,” California Law Review 104 (3 2016).
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of musical meaning by the technical literature in MIR and recommender systems research. Brian

Whitman’s dissertation, which cites a single musicologist (Leonard B. Meyer, Emotion and

Meaning in Music (1956)), is the immediate provocation, but his low level of engagement is

unexceptional in the field of music information retrieval.19 Where the technical literature, then,

tends to give us a very narrow sense of what musical meaning can be, I offer a representative (not

exhaustive) typology of the many different things it has been in the scholarly study of music.

Heterogeneity is also the central concern behind my quantitative experiments in Chapter

Five. Working with Spotify playlists seeded by all 125 of the musical “genres” in Spotify’s

system, my experiments establish various mathematical proxies for aesthetic diversity, and then

ask the kinds of questions a critic suspicious of automated recommendation would ask: what are

the most diverse genres? what are the features that vary least within each genre? Is there any

correlation between evaluated “popularity” and Spotify’s own “confidence” figures for a given

genre? A determined anti-recommendation partisan might find these lines of inquiry emotionally

satisfying, because ultimately Spotify is damned no matter how the results turn out: regardless

of what genre turns out to rank as the “most diverse,” we can read the results as evidence for a

certain type of “implicit bias,” the watchword of the critical algorithms studies community. A

system where J-Pop is the most diverse? What, then, about Samba? Can we accept a system that

seems to believe Samba is somehow less aesthetically diverse than J-pop?

My experiments, in other words, seem designed to corner Spotify into saying something

no person would ever be caught dead saying in polite musical company – statements like “Samba

is more diverse than J-pop” (not a genuine example). Especially since many of them are predicated

on the audio features already shown to be ethically problematic (above), this kind of ethical

condemnation might seem like a foregone conclusion. But in reality it is not, and in fact the data

rarely support this kind of rhetorical flourish anyway. Examined responsibly, in a manner that

divorces them from the normative commitments that originally animated them, these experiments

19. See Oscar Celma, Music Recommendation and Discovery - The Long Tail, Long Fail, and Long Play in the
Digital Music Space (Springer, 2010) for a useful survey of MIR research.
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do tell us valuable things about the Spotify system.

These are frequently quite interesting in their own right as a brief glimpse under the

hood of such a popular service. Funk, for example, is one of the most repetitive genres (just

80 unique items out of 500 recommendations), even though it is also fairly popular (ranks 39th

out of 125). It’s not clear if that supports any broader critique, but it is a fascinating finding

on its own. But these experiments can, occasionally, form part of the broader philosophical

conversation to which this dissertation is addressed. And in that conversation, there emerge

commitments that are not stipulated but genuinely held, and which are the true thesis of this

dissertation. Namely, that musical meaning is not any one thing, that attempts to precisify it

are acts of definitional assignation rather than science or philosophy, and that we can maintain

a line between the two (assignation and philosophy) without derogating either one. Spotify’s

system makes recommendations, and it may be that it makes them well, or, anyway, in a way that

some customers find to be better than other companies that offer the same service. But to say

that its system is better because it has come closer to realizing the “meaning of music” (quoting

Whitman (2005)) is inaccurate. Not because there is some magical quintessence in music that

can never be specified (this dissertation is basically unrelated to the question of the effability of

music) but because there is nothing there, no pre-theoretical “meaning” to be sought prior to the

one-at-a-time acts of musical perception that constitute real facts of musical affection. Musical

meaning, if there is something worthy of the name, is nothing more special or elegant than a list

of all the times music has happened. And lists have no solutions. They’re just lists.

Chapters

That is the core claim advanced in the pages that follow, but it is a claim made by way

of a general project of thinking critically about Spotify and automated music recommendation

in culture. Existing writing on the subject of MIR ranges from the technical, which engages

awkwardly or superficially with philosophical ideas, and the humanistic, which often ignores
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the design of the systems in question altogether. Critical algorithm studies, in other words,

though it has a lot to say about algorithmic culture in general, frequently glosses over “actual”

algorithms.20 There is, to my knowledge, just one book that actually attempts to join the two,

Maria Eriksson et al., Spotify Teardown: Inside the Black Box of Streaming Music (The MIT

Press, 2019). The chapters outlined below are in many ways an attempt to cover areas that that

work leaves out, or to cover the same areas in different ways. Eriksson et al tell the history of

Spotify the corporation, but fail to situate that history in the context of the shifts in American

copyright law that make Spotify possible and continue to shape its operation to this day. They

develop ingenious experiments to probe Spotify’s system (although their experiments, like mine,

tend to “raise more questions than they answer”), but they are silent on the actual operation of the

algorithm.21 My project, by contrast, goes to great lengths to know as much as possible about

how the thing actually works under the hood. Their experiments test for homogeneity, but ignore

the audio features output of the Spotify API; my experiments are all built around that very API. It

would not be unreasonable to see my project as a companion piece to theirs, a less technologically

elaborate, but more historically and philosophically oriented response to the same core questions.

We both note that, today, Spotify’s idealized listener needs “help” knowing what to play; we both

see that, and not the speed of information transfer itself, as a fact of epochal significance; we

both worry about the possibility that algorithms might recommend the same stuff over and over;

we both confront on an empirical level the confusions that inevitably follow from the effort to

harmonize aesthetics and computation.

In Chapter One, I narrate the history of American copyright legislation from 1976 to

present, situating its evolution between the poles of “copyright pessimism” and “copyright

optimism.” The trend, in general, has been a radical expansion of copyright protections; much

more than a generation ago, these protections today favor the interests of the copyright holders

20. On this subject see Nick Seaver, “Algorithms as culture: Some tactics for the ethnography of algorithmic
systems,” Big Data & Society 4, no. 2 (2017), who puts welcome pressure on that slightly condescending “actual.”

21. Eriksson et al., Spotify Teardown: Inside the Black Box of Streaming Music, 190.
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over the public at large. They have, moreover, been extended to include things that traditionally

had nothing to do with copyright at all, such as the right of a company to sell a recording device

that could, in the wrong hands, cause copyright holders some market harm. This is a story that

climaxes with the 1998 passage of the Digital Millenium Copyright Act and the infamous clash

of Napster and the RIAA in 2001. The decisive resolution of this case represented the ultimate

triumph of the new copyright norms, and it more than any other single event set the stage for

Spotify. Spotify picked up exactly where Napster left off, even if it ran in the exact opposite

direction. Any critique of Spotify – be it philosophical, empirical, or ethical – has to take stock

of the ways in which Spotify represents a continuation of, not a “disruption” of, the radically

expanded copyright norms successfully lobbied for by the RIAA in the decades before its arrival.

Chapter Two is a survey of the field to which this dissertation is a contribution, known

(recently) as “critical algorithm studies.”22 Today, this is a field primarily concerned with the em-

pirical facts of “algorithmic culture,”23 especially where technology threatens to perpetuate social

injustice. But the field has interesting forerunners from the early days of artificial intelligence

research that are essential reading for a critique of technological mediation in the musical domain.

This survey shows, first, that even though streaming music ought to be an excellent case study in

algorithmic culture, very little attention has been paid to it directly. Second, it makes the case that,

as a domain that is both philosophically stimulating and a pressing real-world matter of cultural

representation, music is uniquely positioned to unite the two threads that have characterized this

area since the 1970s. In joining these two historical threads, as well as joining the humanistic

mode of critique with the technical, this dissertation is an attempt to bring that promise to fruition.

Chapter Three is two things: first, it recounts the corporate history of Spotify and the

steady rise of its recommendation service as the core of its business model – the so-called

“curatorial turn.”24 Second, it is an extended essay on the “theory of musical meaning” engendered

22. See the “Critical Algorithms Studies reading list” maintained by Tarleton Gillespie and Nick Seaver for
Microsoft Research: https://socialmediacollective.org/reading-lists/critical-algorithm-studies/]

23. Alexander R. Galloway, Gaming: Essays on Algorithmic Culture (University of Minnesota Press, 2006).
24. Eriksson et al., Spotify Teardown: Inside the Black Box of Streaming Music.
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by this turn, a theory that, I argue, aligns perfectly with the 2005 academic dissertation of Brian

Whitman, a 2005 graduate of the MIT Media Lab whose work there formed the core of the music

information company The Echo Nest, which Spotify acquired in 2014. Whitman posits a system

based on the insight that, contrary to the dominant thinking at the time in MIR, musical meaning

does not reside in the audio signal alone. Instead, it is to be sought in the relationship of the audio

signal to various non-audio information streams: processed Google searches and other sources of

“cultural metadata” representing actual human semantic reactions to actual musical stimuli. A

machine learning model trained on these two data streams yields classifiers that can then evaluate

as-yet-unheard music in ways, so the argument goes, that accurately model musical affection, or

at least in ways that reflect the “learning” that has taken place about “musical meaning.” That’s

a summary of the core insight at work in Whitman’s dissertation, which some forensic work of

mine suggests is indeed operational in Spotify today. But the real target is not the system itself

but rather the philosophical orientation that it implies. All this technical stuff, I argue, implies a

theory of musical meaning that is “relational,” to use Whitman’s word: it is a theory that locates

meaning “outside the signal,” (cf. Putnam) and in its connection to other things. This picture, in

turn, matches perfectly the model of musical meaning that Spotify has found itself arriving at in

the era of automated music curation, when what matters most is the ability of an internet company

to make sense of the glut of information its users face. In today’s internet culture, users need

recommendations; recommendations need a theory of musical meaning; because of the shape of

the market it faces and the intellectual bent of Brian Whitman, Spotify has arrived at one theory

in particular, which this chapter attempts to ferret out. The fact that Spotify has arrived at this

theory by way of answering a market need – namely, the increased need for curation – does not

make it any less a theory; treating it as such, this chapter concludes by highlighting what I think

are some contradictions and errors contained within it.

Those flaws have to do in large part with Whitman’s reading of his only musicological

source: Leonard Meyer’s 1956 Emotion and Meaning in Music. In Chapter Three, I had argued
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that Whitman positions himself against Meyer in a way that does the latter a disservice, and

which represents a real flaw in his own reasoning about musical meaning. A more serious

error, however, is in the fact that Whitman ignores virtually all of musicological thinking on the

subject, preferring instead to let Meyer stand in for the field as a whole (and, having done that, to

dismiss the field as a whole). Of course, the field of musicology and music philosophy has been

fixated on the question of musical meaning for hundreds of years. In Chapter Four, I produce a

representative typology of such theories of musical meaning, so that that of Whitman/Spotify can

be examined in relief against it. In part, this is a riposte to Whitman’s straw man, which, it bears

repeating, is not atypical for technical literature in MIR. It is not a subdiscipline renowned among

musicologists for its philosophical nuance. It is in Chapter Four that I introduce the “internalist

perspective” as a potential answer to Whitman’s echo of Hilary Putnam. Linguistic meaning

“ain’t in the head,” says Putnam. And, Whitman adds, musical meaning “ain’t in the signal.” It

sounds reasonable, even satisfying, for the way in which it stands against the stodgy absolutists

from the grand old days of positivist musicology. But it is by no means the only way to construe

musical meaning; this chapter, while correcting the monochromatic picture of musical meaning

painted in the technical writing about MIR, lays the groundwork for the conception of meaning

the dissertation will eventually side with.

Chapter Five is a set of empirical experiments designed to probe the Spotify system in the

spirit of the questions laid out in the preceding sections. A series of geometric proxies for musical

heterogeneity is established and experiments are designed to produce “winners” and “losers” on

the diversity metric. This is done using “audio features” from songs in a a 500 song X 125 genre

database of tracks recommended by Spotify. I look at which genres tend to repeat themselves

most frequently and which audio features tend to vary least over each genre. I also consider

the “confidence” measures associated with the machine listening output and the “popularity” of

recommended tracks, including possible correlations between these two values. As noted above,

these experiments face the same intractable ambiguities and contingencies faced by the designers
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of the system in the first place, and it is often unclear what exactly the results show. If you try

to distance yourself from the granular data, abstracting from it a broader claim about Spotify

or automated recommendation generally, sometimes the results seem to support one conclusion

and its opposite simultaneously. A low diversity score is the perfect example: is the fact that

Spotify consistently picks just a handful of genres as least and most diverse evidence of its ethical

corruption? It seems possible, because surely from the human perspective, all genres ought to be

equally artistically variegated, otherwise the implicit value judgment about some genres is not

far off. But it is also possible that this finding is a case of the recommender system behaving

exactly right, giving the right music for the right genre in the right way? It’s pretty much an

undecidable question, which, in the end, is actually what the experiments tend to demonstrate.

Thus the “dissolution” effect of my title is not a humanistic feint or some belief in musical magic,

but actually an empirical fact visible in the data itself.

This dissertation combines two different types of investigation. On the one hand, it offers

an overview of Spotify and the automated music recommendation space from a musicological

perspective. In this capacity it both remedies the lacuna left in “critical algorithm studies” where

music should be, and at the same time offers a rejoinder to the discipline of MIR, which is mostly

populated with studies of music that replace musicians’ critical apparatus with its own. If they

have been studying us for years without paying attention to anything but their own intellectual

norms, this dissertation gives them a bit of their own medicine. But it is also an extended essay

on the problem of musical meaning and musical affection in the context of the world’s most

prominent effort to find a solution. Spotify is by far the biggest service, emblematic the world over

of the new way of doing business in music. I ask how that system behaves, what kind of musical

meaning it presupposes, and ultimately what kind of listening it will tend to encourage. These

issues are abstract and far removed from the pragmatic world of product design and software

engineering, and Spotify will always have an easy way of deflecting the critiques contained in

this dissertation: the system is not a theory of musical meaning, it’s not a inquiry into the future
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of listening, it’s not a philosophical treatise, it’s just a product doing its best to help people

navigate the morass of musical information on the internet. This is not an unfair parry, but it is

also one that fails to answer the critiques on their merits, or to make them any less necessary.

No matter how you slice it, the system works somehow (although a system of strict NDAs may

keep us in the dark forever), does presuppose something, and one way or another represents an

attempted “solution” to the problem of musical affection, as well as the preeminent solution to

the financial woes facing the music industry in the last quarter century. But music has a long

history of resisting solutions like this. Like linguistic meaning, musical meaning is a very unruly

thing. If, as Raymond Monelle points out, music’s half-representational character is something it

shares with language rather than something that distinguishes the two, this dissertation ultimately

documents one more failure to use one to bring the other into focus.25

25. Raymond Monelle, The Sense of Music: Semiotic Essays (Princeton University Press, 2000), 12.
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Figure 0.1: Legal Prehistory of Streaming Audio

22



Figure 0.1 (cont.): Legal Prehistory of Streaming Audio
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1 The Rise of the Bad Machines: A Legal

Prehistory of Spotify

In this chapter, I examine the history of American copyright law in the area of music and

entertainment, especially where that history is relevant to contemporary issues facing Spotify

and the music streaming industry. Following the timeline in Figure 0.1, I proceed by detailed

examinations of several key moments in this history (the moments highlighted in blue). By

focusing on these pieces of legislation and landmark legal cases, I will show that the history of

copyright protection since 1909 has, in general, seen its dramatic expansion. Copyrights have

become easier to obtain, they have grown dramatically in duration, and, perhaps most importantly,

they have come to encompass articles of commerce to which they traditionally bore no direct

relationship. Today, digital technologies are legally bound to include all kinds of protection

schemes in their design, and efforts to evade such schemes have become criminal offences unto

themselves, apart from whatever infringing activity such evasions make possible. The interests

of the copyright holders – interests, which, thanks to the wave of corporate consolidation the

music industry saw in the 1980s and 1990s, have grown ever more distant from the actual creators

of copyrighted content – are, as a matter of law, woven into the design of every technological

innovation which could conceivably cause copyright holders some market harm.

This narrative of radically expanded copyright leads us directly to Spotify, which, although

it has successfully marketed itself as a disruptive technology (in part cashing in on the anarchic
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appeal of its predecessor and model Napster), is actually the apotheosis of 21st century copyright

paradigms. The castigations of the music industry that we frequently hear – that it failed

to develop effective digital distribution systems quickly enough, that it clings irrationally to

outmoded copyright norms – are actually rather misleading.1 I argue that, in fact, the music

industry has not clung to outmoded copyright norms. Instead, it has radically expanded its vision

of copyright and, moreover, succeeded in imposing that transformation on American law and

culture. These new norms of copyright leave a small space for lawful digital music distribution;

instead of creating an innovative new space with the potential to transform the industry, we should

see Spotify as profoundly submissive to the new paradigm, ekeing out an existence in a cramped

corner of the indusry, hemorraghing its venture capital faster and faster funding even as its user

base continues to grow.

One result of the 20th century “copyright grab” was the birth of the idea of a “bad machine”

– a machine that is statutorily prohibited, its potential usages notwithstanding. A bad machine

is illegal because it makes illegal copyright infringement possible, and can therefore include

activities like DRM evasion schemes that, although they bring certain kinds of illicit copying into

the realm of possibility, are not really machines at all. In this way, a “bad machine” is just an

idea, but we live with its real-world counterparts everyday: it is the central claim of this chapter

that Spotify is first and foremost a “good machine” that, in spite of its rhetorical participation in

the culture of innovation, has thoroughly imbibed the interests of the major labels – who, it turns

out, actually own a lot if it.

Before we proceed to a critique of Spotify itself on philosophical, technical, or ethical

grounds, in other words, it is necessary first to understand what kind legal philosophy it embodies.

The utopian aura hovering around the tech sector in the popular imagination is so thick, its

marketing wing so formidable, and its hold on the industry so decisive, that before moving to the

1. See, e.g. “The Katy Perry Verdict Proves Our Music Copyright Laws Need a Tune Up,” in IP Watchdog,
Aug. 19 2019, https://www.ipwatchdog.com/2019/08/29/katy-perry-verdict-proves-music-copyright-laws-need-
tune/id=112644/, accessed 09-09-2019
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system itself, it requires some effort to see Spotify for what it is. In order to do that, this chapter

revisits the legal history that makes Spotify inevitable. Doing so will reveal that Spotify has not

discovered any novel solutions to the problems that have plagued the music industry since its

decline began at the end of the 1990s, and that there is nothing novel about Spotify from a legal

perspective. There’s nothing wrong, necessarily, with corporations in the music business, nor

is there anything inherently evil in the effort to preserve traditional copyright norms in the face

of a culture that poses serious threat to the very idea of intellectual property. There are sound

arguments in favor of preserving such protections, some of which are addressed below. But the

clash between such norms and such a culture remains as difficult a problem for Spotify as it was

for Napster. What bankrupted the one is exactly what sustains the other.

In recent court filings over whether or not to classify music streams as capable of infringing

on “mechanical rights” (discussed below), the plaintiff Bob Gaudio – lead singer from Franki

Valli and the Four Seasons – describes Spotify as “reminiscent of the primitive illegal file sharing

companies.” Or, as the Spotify defense spits the accusation back at him, as a “New Napster.” The

defense, of course, denies the claim categorically, insisting that Spotify bears “no resemblance

to Napster.” In a way they’re both right; in the way that mirror images always are, Spotify and

Napster are at once opposite and identical. In any case the specter of Napster and its infamous

relationship to U.S. copyright law continues to hover over Spotify’s ongoing legal troubles today,

many of which center on precisely the same kind of legal issues that brought Napster down. How

to regulate copyright has never been an easy question, and its difficulties have only compounded

in the digital era. The fact that the two companies tried to solve this problem differently is of little

consequence, especially because, by the time of the 2001 trial Napster was actively developing

a subscription service like Spotify in partnership with the Bertelsmann Group. Even Napster

seems to have wanted, eventually, to become Spotify. What matters, instead, is that the exact

same problems persist even though Spotify exists, and that Spotify represents just the latest, most

rigid version of the solution the industry has been pushing since before the dawn of the Internet
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era. If Spotify contains a transformative insight, it is simply in the way it has managed to turn

what was previously a good (a “digital phonorecord delivery,” to use the legal term of art) into a

service.2 But it has done so in a way that reinforced rather than challenged traditional ideas about

music copyright.

1.1 Copyright Optimism and Pessimism

Copyright law at its heart is the search for a reasonable compromise between two con-

flicting interests. On the one hand, copyright must protect the interests of copyright holders;

people who create works (or, at least, the people who have paid for the copyrights to those works)

deserve to be compensated for their labor. On the other hand, there are the interests of the public

at large; from this perspective, copyright exists merely to incentivize the labor of creative people,

and the ultimate goal is for the public to have at its disposal as large and robust a corpus of

works as possible. Copyright holders deserve remuneration, but the public deserves access. It is

worth noting preliminarily that the U.S. Constitution seems to favor the latter claim: copyrights

exist there “to promote the progress of science and useful arts.”3 Not, that is, to make sure we

compensate playwrights and composers. By contrast, many of today’s norms in the philosophy of

copyright seem to incline toward the former position. At any rate, the tension between these two

poles constitutes the fabric from which courts have fashioned a century of copyright case law, the

terrain over which several landmark pieces have taken place, and the stage upon which Spotify

made its U.S. debut in 2012.

In the 21st century, when the free flow of information seems (to some) to threaten the

very foundations of copyright itself, these two conflicting interests have hardened into political

positions, with either side implying certain ideological commitments. Tracing a pattern familiar

2. This is, in fact, one of Srnicek’s criteria for status as a “platform.” See Nick Srnicek, Platform Capitalism
(Polity Press, 2016), discussed at length in the Conclusion of this dissertation.

3. U.S. Constitution, Article 1, section 8, clause 8
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from much of today’s political and social landscape in general, debate about copyright law has

responded to the disruptions of the 21st century by becoming fractured and polemical, with the

optimists and pessimists vaguely aligned with corporate and countercultural interests. These two

sides generally agree that the technological revolutions of the late 20th and early 21st century

pose profound threats to traditional notions of copyright protection. They take opposite positions,

however, on what should be done about it.

“Optimists” argue that digital technology should lead to greater copyright protection.

Copyrights should be issued as freely as possible, as early in the process of authorship as possible,

and with a minimum of bureaucratic effort on the part of the author. They should, moreover,

entitle the author to as much of the money the work ends up generating as possible, ideally

all of it. As Paul Goldstein, a self-styled copyright optimist, puts it, copyright ought to extend

into “every corner where consumers derive value from literary or artistic work.”4 In this line of

argumentation, the role of the “fair use” exemption, which will become enormously important

in the legal history of digital music, should be minimal. It exists not as any kind of moral

entitlement but simply as a way of accommodating the dysfunctions that will inevitably arise in

the market for copyrighted material. Fair use is, for the optimists, a regrettable matter of practical

necessity, useful when, for example, there are “high transaction costs associated with negotiating,

monitoring, and controlling” potential infringement.5 Fair use, in this line of thinking, is nothing

more than a deprivation of an author’s true market entitlement, one that should be tolerated only

when “the possibility of consensual bargaining has broken down in some way.”6

Fair use, of course, was the core of Napster’s unsuccessful defense against the RIAA in

2001. The fact that the defense failed, and did so decisively and quickly, may be seen as a victory

for the optimists, emblematic of the general way in which the field has turned in their favor.

4. Paul Goldstein, Copyright’s Highway: From Gutenberg to the Celestial Jukebox (Stanford University Press,
2003), 279.

5. Raymond Shih Ray Ku, “The Creative Destruction of Copyright: Napster and the New Economics of Digital
Technology,” The University of Chicago Law Review 69, no. 1 (2002): 2002.

6. Wendy J. Gordon, “Fair Use as Market Failure: A Structural and Economic Analysis of the ”Betamax” Case
and Its Predecessors,” Columbia Law Review 82, no. 8 (1982): 1615.
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Although digital technology puts all manner of piracy within reach for millions of people, for

copyright optimists it also makes these kinds of market dysfunction less frequent, and copyright

law more enforceable – and, therefore, fair use less necessary and less plausible as a legal defense.

In the internet era, so the argument goes, creative people are newly empowered to self-publish

and make contractual arrangements directly with customers in new ways. Consensual bargaining

is possible on a larger scale than ever before, and instances where it “breaks down” – the only

instances when fair use should apply – should be relatively infrequent. For this reason copyright

optimists see the digital era as an opportunity for a tightening rather than a relaxation of copyright

enforcement: as Goldstein writes, “as new technological uses of copyrighted works emerge,

lawmakers should be quick to extend copyright to encompass these uses, even those that are

private.”7 This kind of tightening is what choked Napster to death, and what drove the RIAA

to make examples out of, say, a handful of post-adolescents downloading music in their UCSD

dorm rooms.8

It bears repeating that this position explicitly advocates for the restriction of fair use

and the aggressive expansion of copyright protections. This, obviously, is a trend of which

the copyright “pessimists” disapprove. It is derided, for example, by Pamela Samuelson as

the “copyright grab.”9 Pessimists tend to favor the interests of the public over the interests of

copyright holders. The position hearkens back to the language of the Constitution; copyright

monopolies should exist only for the purpose of increasing the amount of material to which

the public has access. Yochai Benkler, focusing his argument primarily on issues of software

intellectual property and the open source movement, argues that the kind of copyright expansion

championed by the optimists is proscribed by nothing less than the First Amendment; the right to

information, for Benkler, is so fundamental as to be analogous to the right of speech. Legislation

7. Goldstein, Copyright’s Highway: From Gutenberg to the Celestial Jukebox, 188.
8. See, e.g. http://www.mtv.com/news/1471036/riaa-sues-four-college-students-for-file-sharing/, accessed 08-20-

2019
9. Pamela Samuelson, “The Copyright Grab,” Wired, 1996, accessed June 7, 2019.
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that curtails it unduly, therefore, is downright unconstitutional.10 Even when it is constitutional,

moreover, Benkler sees today’s copyright law as premised on the spurious equation of information

and physical property. Existing copyright laws, for Benkler, assume erroneously that “property

and markets are the roots of all growth and productivity,” and that that intellectual property should

therefore be regulated in the same way as physical property. Benkler’s reservations about the trend

to strengthen copyright protections, then, are rooted not in the common techno-utopian rhetoric

about the incommensurability of copyright and the new digital culture (which is the argument

advanced in John Barlow’s infamous essay, “The Economy of Ideas,” discussed below) but rather

in his conviction that information is fundamentally different from physical property. Scarcity in

information is always artificial, Benkler points out, and the creative labor that goes into producing

it is not necessarily incentivized (or prevented) as is the case with physical labor. Information

is so qualitatively different, in fact, that consuming it is almost like a form of expression – and

thus deserves to be so treated, hence the constitutional argument. For many reasons – cold war

anti-communism, the lobbying power of certain industries, among others – Benkler argues that

the equation of physical property and intellectual property has won out. Thus we sought to

protect it like other property. We have sought to make information behave like iron ore. The

assumption was that the closer copyright law was to these kinds of traditional property rights, the

more production we would get.11 But, for Benkler, that whole idea is factually and morally wrong.

Many features of our society – Benkler’s favorite example is the open source movement, but

there are others – are plainly not property- or market-driven. There are certain things we do, and

certain kinds of information we create, that, as a matter of empirical fact, cannot be effectively

incentivized by the provision of temporary monopolies. And to pretend otherwise amounts to an

unconstitutional and toxic form of censorship.

But there is also a more familiar argument from the copyright pessimists: that traditional

10. Yochai Benkler, “Free as the Air to Common Use: First Amendment Constraints on Enclosure of the Public
Domain,” NYU Law Review 354 (1999).

11. Yochai Benkler, The Wealth of Networks: How Social Production Transforms Markets and Freedom (Yale
University Press, 2006), 461.
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copyright is just out of date. This is a line of thinking whose appeal has been mainly outside

the legal community (the fact that something is out of date is basically immaterial from a legal

perspective). The idea that “information wants to be free,” an aphorism usually credited to

Stewart Brand as early as the 1980s,12 while it may strike many jurists as facile or meaningless,

has nevertheless resonated with a generation of anti-establishment technology users. As Fred

Turner notes in From Counterculture to Cyberculture, the 20th century saw the steady fusion of

what, in the 50s, would have seemed the unlikeliest of bedfellows: hippies, government types

and computer people.13 And yet, in the hands of pseudo-prophetic figures like Stewart Brand,

Buckminster Fuller, and Kevin Kelly, the information society and its new arsenal of technological

tools were imbued with a broadly liberatory ethos as early as the 1960s. While the computer

represented the lifestyle of the mindless corporate drone for Mario Savio, it was the summit of

freedom and creativity for a subsequent generation of Californians, who have enthusiastically

embraced the culture of radical transparency. There is a strange rhetorical slide from the hackerish

commitment to transparency, to radical libertarianism, finally landing in the widely tolerating

practices of mass surveillance that we all live with today. This slide has a musical dimension, one

that is exemplified nowhere better than in the Spotify company.

The idea that information “wants to be free” has its advocates in the legal profession.

As William Patry puts it, “market forces and technology have moved well beyond our current

laws and are now in conflict with them.”14 In this perspective, the “democratization of creation”

that has followed the advent of the Internet means that “digital abundance” has utterly displaced

“artificial scarcity,” with the latter cast as the essential pillar upon which traditional copyright

norms are now scaffolded. That artificial scarcity is a thing of the past seems straightforwardly

true as a practical matter; music especially no longer needs be tethered to any physical medium

12. See, e.g. “Hackers at 30: ‘Hackers’ and ‘Information Wants to Be Free’,” in Wired, 2014:
https://www.wired.com/story/hackers-at-30-hackers-and-information-wants-to-be-free/, accessed 09-09-2019

13. Fred Turner, From Counterculture to Cyberculture: Stewart Brand, the Whole Earth Network, and the Rise of
Digital Utopianism (University of Chicago Press, 2006).

14. William Patry, How to Fix Copyright (Oxford University Press, 2011), 2.
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for the vast majority of consumers. Whether or not information “wants” to be free, or whether

we can imbue copyright anarchism with the moral rectitude assumed by Stewart Brand and his

acolytes in the Whole Earth Catalogue,15 we may still want to bring our copyright system in line

with the lived reality of media consumers today. This is an environment, so the argument goes, in

which the copyright inflation that we have seen in recent decades can only harm consumers and

other sectors of the economy.16

If copyright law has hardened into an ideologically polarized spectrum, one thing upon

which all parties can probably agree is that U.S. law over the course of the 20th century moved

steadily from one side of that spectrum to the other. As the discussion below shows, U.S. copyright

law has increasingly favored the interests of copyright holders over the interests of the public,

both in case law and statutory law. The same period, of course, has also seen the profound

erosion of traditional impediments to the flow of information, including some very prominent

cases involving musical information. This leads to an interesting and precarious state of affairs:

our copyright laws have expanded and hardened, while at the same time, we occupy a culture less

inclined than ever to respect traditional copyright norms. The industry’s various campaigns to

convince people not to pirate – campaigns like “You wouldn’t steal a car” and “You can click but

you can’t hide” – are an indication of how acutely it feels the threats to copyright protections.17

Although it seems safe to say that those messages will probably never really take hold,

we have a legal system increasingly committed to enforcing those same norms, and doing so in

creative and ambitious new ways. This in turn has led to a new polarization, one that is related

but not identical to “optimist-pessimist” dichotomy discussed above. If, as Edgard Bronfman

(the CEO of Warner Music) observed, the music industry has “inadvertently gone to war with its

customers” through its inflexible thinking about copyright, the widening gulf between our laws

15. A techno-utopian publication with which he was closely associated. See Turner, From Counterculture to
Cyberculture: Stewart Brand, the Whole Earth Network, and the Rise of Digital Utopianism

16. Patry, How to Fix Copyright, 12.
17. These are just two of several propaganda campaigns designed to educate the public about the criminality of

copyright infringement in the digital age. These kinds of campaigns were explicitly encouraged by the Clinton
Administration and included as part of the remedy for some high profile infringement cases, as discussed below.
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and our consumer practices is where the battle lines were first drawn.18 Bronfman, in the very

same breath, claims that this is a war the music industry lost. But to judge from the history of

American IP laws, and crucially, to judge from the existence of Spotify, it is actually a war they

have won decisively.

1.2 Eight landmarks in the modern history of copyright law

1.2.1 The 1976 Copyright Act

In 1976, Congress passed the first major overhaul of U.S. copyright law since 1909. As

is true in general of major pieces of copyright legislation, the 1976 act casts itself as simply an

effort to accommodate copyright law to new media technologies. Even when they are advancing

radically new intellectual paradigms, copyright laws continually claim merely to be remedying

perceived incongruencies between novel technology and existing law. A particularly relevant

novel technology in the case of the 1976 act was commercial audio recordings, which before

1976 were not unto themselves copyrightable works. In an example of the slow pace with which

copyright law has traditionally accommodated technological changes, the recording industry

had actually existed for a generation before this act finally got around to granting them official

protectable status.19

Under the 1976 act, a “work” can now be fixed in a recording rather than the traditional

mode of fixation (a “composition”). Recognizing recordings as copyrightable works in this way

seems legitimately nonpartisan – what could be more straightforward than granting legal status

to the “recording artist,” a figure that was already dominating the music business at the time of

the act’s passage? The 1976 act, however, also does other things. It represents the country’s first

18. Greg Kot, Ripped: How the Wired Generation Revolutionized Music (Scribner, a division of Simon / Schuster,
2009), 56.

19. The DMCA, by contrast, a major piece of copyright legislation passed in 1998, is notorious for not following
this pattern, and instead rushing through a spate of policies before the judiciary had a chance to establish a body of
case law, or the media culture to get to know the new technologies to which it is addressed.
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dramatic pivot away from the interests of the public in favor of those of copyright holders, the

first milestone in the advance of copyright maximalism in U.S. law. This movement can be seen

by comparing the 1909 and 1976 acts. Under the 1909 act, federal copyright law had applied only

once a work was “published.”20 Before publication, copyright was a matter of state and common

law, and the nature of the protections varied from place to place. Even when federal law did apply,

moreover, the default course had always been that a work would become public. A work would

be copyrighted only if the author took certain steps to ensure her limited monopoly on a work.

Failing this, the work would fall irretrievably into the public domain, becoming freely copyable

or performable with no authorization required. The steps to gain federal copyright protections

were actually quite simple (the word “copyright,” or a symbol representing it, had to be printed at

a specified location on every distributed copy) but the natural course in 1909 is assumed to be

that everyone should have access to a given work. Although federal copyright protections were

freely accessible, they were of a much shorter term than the protections we know today, and the

spirit of the law shows a clear preference for public access over private remuneration.

The 1909 act even permitted performances of copyrighted materials, including public

performances, provided they were not for “profit.” What exactly constitutes a profit-driven

performance is not always easy to determine, but in permitting them the 1909 law shows a

markedly different attitude from the 1976 act and from contemporary copyright norms. Since

performances without a profit motive were thought not to interfere with the financial remuneration

of the author, they would therefore not diminish the incentive to produce, which is what, according

to the Constitution, all copyrights are ultimately designed to encourage (“to promote the progress

of science and useful arts”21). The 1909 Act even went so far as to include a “jukebox exemption”

specifically designating the use of copyrighted materials in jukeboxes as de minimis and therefore

20. “Publication,” a legal term of art, has a technical definition in copyright law. It is nevertheless a definition about
which reasonable people can (and have) disagreed. Martin Luther King’s “I have a dream” speech, for example, turns
out not to have been “published” although it was broadcast to millions on the radio. See Thomas F. Cotter, “Toward
a Functional Definition of Publication in Copyright Law,” Minnesota Law Review 1724 (2008)

21. U.S. Constitution, Article 1, section 8, clause 8
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not legally actionable.

It is worth pointing out here that it was the 1909 act that first established the distinction

between two types of royalty payment that still exist today: “performance royalties,” paid to

the composers of music when their works are performed in public, and “mechanical royalties,”

paid on the basis of “mechanical” reproductions of music such as recordings, or, to take the

actually motivating example, player piano rolls. The former are distributed by performance rights

societies such as ASCAP and BMI, which collect fees from venues of public performances and

distribute them appropriately to their members, who are the holders of the performance rights,

or the “publishing rights,” as they are sometimes called. Owners of the mechanical rights (not

always the composers) are entitled to compensation for each mechanical reproduction that is

made of their music, such as a recording or, lately, a “digital phonorecord delivery” (see below).

What qualifies as a “performance,” what as a “mechanical reproduction,” and the size of the

remunerations attaching to either, have shifted over the years.

In an illustrative example of the reorientation the 1976 act represents, it would essen-

tially scrap the jukebox exception, re-classifying jukebox plays as “performances” and entitling

copyright holders to appropriate royalties for them. But there were other changes too. Probably

the single most important one is that the 1976 act makes federal copyright protection apply

from the very moment an author begins work. No longer does an author need to take specific

actions to create a copyright; now a work is protected from the moment it is “fixed” in some

external, tangible medium of expression.22 This protection, moreover, exists at the federal level

and therefore applies uniformly throughout the country. Under the 1976 law the right of first

publication is protected, instantly and exclusively and by default.

One crucial consequence of this act is that it decoupled copyright from the concept

22. The fixation requirement was instituted in 1976 as part of Congress’s recognition that authors were continually
finding new expressive means beyond the traditional medium of text. “Fixation” did create the flexibility needed to
render many new forms of expression copyrightable, witness the new protections for audio recordings. Nevertheless
the concept has proven problematic in the 21st century, most notably in the question of the “fixity” of computer
software. See Evan Brown, “Fixed Perspectives: The Evolving contours of the Fixation Requirement in Copyright
Law,” Washington Journal of Law, Technology and the Arts 10/1 (2014)
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of “publication,” which had always been somewhat loosely defined, and centered it instead on

“fixation.”23 The magic moment of publication is replaced by the magic moment of externalization,

and the default course of action is reversed. The duration of these instant copyrights was also

substantially extended, from 28 years in 1909 to “life plus fifty” – that is, until 50 years after the

death of the author. Even when a work bears no visible copyright symbol, moreover, the burden

as of 1976 is upon the person seeking to copy or perform it to consult the records of the Copyright

Office to determine whether it has been filed there. If it has, the work is protected, regardless

of whether its published versions say so or not. In 1909 the mere absence of the mark would

generally have put the work in the public domain. Under the 1976 act, many previously legal

performances, most notably public performances not for profit, would thus become illicit.

The 1976 act has a convoluted legislative history, with Congress trying and failing several

times to pass a badly needed copyright overhaul. Copyright law is complex and technical, and,

as noted above, not everything about the 1976 act carries an ideological charge. Nevertheless

it does reflect an unmistakable shift in philosophical orientation, one that was not missed by

contemporary observers. As Robert Gorman wrote just two years after its passage, “the 1976

act can be read as rather consistently expanding the exclusive rights of the copyright holder.”24

This represents a totally different orientation from the 1909 act, which, in a report published by

Congress alongside it, was characterized quite explicitly as “not primarily for the benefit of the

author, but primarily for the benefit of the public.”25 The goal was to allow the public to enjoy its

citizenry’s creativity, and to compensate authors only insofar as doing so served the primary goal

of public enrichment.

Another important intervention of the 1976 act concerns the relationship of copyright to

profit seeking. Whereas the 1909 law protected copyright holders only when infringers sought

23. Robert A. Gorman, “An Overview of the Copyright Act of 1976,” University of Pennsylvania Law Review 126,
no. 4 (1978): 866.

24. Ibid., 874.
25. Benjamin W. Rudd, “Notable Dates in American Copyright, 1783-19669,” 141, accessed June 13, 2019,

https://www.copyright.gov/history/dates.pdf.
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profit, section 106 of the 1976 act grants exclusive rights to the copyright holder, regardless of

whether profit was sought. As Michaell Jarret writes, “in expanding the control of copyright

holders into the new terrain of noncommercial use, this small change represents an erosion of

user prerogatives that would have been allowable as a matter of course under the 1909 law and

establishes a new logic for the application of copyright law.”26 This is a logic that has been

sustained and developed over many subsequent pieces of case and statutory law, whose 21st

century refinements are visible nowhere more clearly than in Spotify. As the legally sanctioned

version of various illicit services whose primary defense had always been that they enabled

not-for-profit, non-infringing private home uses, Spotify can be seen as a corporate elaboration of

this signal feature of the 1976 act.

Fair Use as of 1976

On the other hand, the 1976 act is also where U.S. law first formalized the doctrine of

“fair use,” that is, a specific exemption for certain kinds of otherwise infringing behaviors. Fair

use had always existed as a possible defense against an infringement action, but its definition had

been notoriously murky; as one judge wrote, it was “so flexible as virtually to defy definition.”27

In determining if a given use is fair, and therefore immune to litigation, judges after 1976 are

advised to consider the following four factors:28

1. the purpose and character of the use, including whether such use is of a commercial nature

or is for nonprofit educational purposes;

2. the nature of the copyrighted work;

26. Michael Jarrett, “I Want My MP3: Who Owns Internet Music?,” in Policing Pop (Temple University Press,
2003), 34.

27. See Time Inc. v. Bernard Geis Assoc., 293 F. Supp. 130, 144 (S.D.N.Y. 1968).
28. U.S. Code, title 17, chapter 1, section 107, available, e.g., at https://www.law.cornell.edu/uscode/text/17/107,

accessed 06-06-2019
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3. the amount and substantiality of the portion used in relation to the copyrighted work as a

whole; and

4. the effect of the use upon the potential market for or value of the copyrighted work.

These are the “factors to be considered.” Satisfying one is not a guarantee of statutory

fairness, nor is it necessarily the case that failure to satisfy all four means a given use is not fair.

Determinations of fair use, in other words, remain somewhat less systematic than these four

items would lead one to believe. As William S. Strong puts it, “fair use is really a gestalt,” one

that often involves the “instincts” of the judge and jury.29 As the “fair use” defense is the one

most commonly invoked by streaming companies sued for infringement, this defense (and the

various grounds upon which it has been rejected, which is usually what has happened in the music

industry) can be an especially instructive place to take the measure of those judicial “instincts” at

any given time.

1.2.2 Sony Corporation vs. Universal City Studios Inc. – The “Betamax

Rule” of 1984

Of the technologies motivating the 1976 act, few loomed larger on the landscape of

American copyright law than the Sony Betamax, an innovative video recording and playback

device that Sony introduced in 1975. The Betamax brought a new level of fidelity to consumer

grade home recording, enabling users to record broadcasted TV to magnetic tape and replay it on

their own time, skipping the commercials if they desired. In the years of legal disputes that would

follow this case and others like it, this feature came to be known as “time shifting,” a broadcasting

term of art that, for anyone who followed the “copyright wars” of the late 20th century, conjures

the frequently recurring question of whether copying something so as to replay later constitutes

infringement. Fearing that time shifting would cut into their advertising revenue and reduce the

29. William S. Strong, The Copyright Book: A Practical Guide, 6th ed. (MIT Press, 2014), 273-4.
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value of their intellectual property, Universal City Studios and Walt Disney Productions argued

that Sony was liable for damages as a contributory infringer. The case is notorious for raising the

issue of a corporation’s liability as a contributing infringer for the illegal uses to which its users

put its products.

The main precedent from the Betamax case is that “time shifting” is indeed deemed a

fair use: taping something so as to watch it later is not illegal. This may seem a straightforward

conclusion, but there are good arguments on both sides. Reproducing copyrighted material is, on

the one hand, an explicitly forbidden act: the very first prohibition enumerated in the copyright

statute is “to reproduce the copyrighted work in copies or phonorecords.”30 As Stephen Kroft,

who represented Universal City Studios before the Supreme Court in this case, put it in his

remarks to the court,

This case is really very simple and straightforward. The petitioners have created a
billion dollar industry based entirely on the taking of someone else’s property.31

All things being equal, the Betamax does seem at a minimum to encourage customers

to violate this basic copyright doctrine. The Betamax ad slogan, “watch whatever, whenever,”

almost seems to wink at customers about the device’s potential dubious applications. This slogan

in fact served as evidence for Universal that Sony “knew or had reason to know” that its device

could and would be used for infringing purposes. A verdict in favor of Universal, then, would

have meant that Sony, a manufacturer of high quality magnetic tape recorders, was held liable for

the infringing activities of its customers in an international market.

That the Betamax does indeed make infringement possible, even encourages it, was never

really in doubt in this case. There is no getting around the fact, after all, that it can make high

quality copies of proprietary content. Instead, the case centered on whether Sony could be said to

have violated the copyrights held by Universal by selling copying equipment to the general public.

30. 17 U.S. Code 106. Exclusive rights in copyrighted works
31. Kroft’s oral argument, accessed at https://www.oyez.org/cases/1982/81-1687, June 18, 2019
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Universal, essentially, found itself in the position of arguing that anyone who produces a device

in full knowledge that it will likely be used to infringe is liable for contributory infringement.

Pursuing this argument put Universal’s legal team in a position that, at the time, seemed

radical. When pressed by the court about the idea of putting legal disclaimers on the device

warning users not to violate copyright law (a common expedient for this kind of matter), Stephen

Kroft dismisses such efforts as “disingenuous,’ insisting that

The real way for Sony to have avoided this problem would have been to cooperate
with the copyright owners in devising technology which would allow the broadcaster
to jam the video recorder from copying the kind of material that is owned by people
who object.

Universal is committed, in other words, to the notion that any manufacturer that knowingly

provides customers with a device that can be used to infringe is liable for that infringement, and

furthermore that the copyright holders should have final word on what types of technological

measures manufactures employ to discourage such infringement. Anything less (like warning

labels) is “disingenuous” and doomed to fail. Kroft wants copyright law, something that formally

attaches to music and movies, to apply at the level of Sony’s factory floor. This is a difficult

position to defend, at least in 1984. After a couple of questions about the degree to which a

technology manufacturer can protect itself with legal disclaimers about infringement, Justice

Stevens asks Kroft directly about what he thinks Xerox’s liability would be in an analogous

matter:

But your view of the law is that as long as Xerox knows that theres some illegal
copying going on, Xerox is a contributory infringer?

Kroft pauses for a long time, and his response, when it comes, is tellingly halting:

To be consistent, your honor, I’d have to say yes.

To this, Justice Stevens responds instantly: “a rather extreme position.”32 The idea that

a company would be liable for its users’ behavior, and the correlate argument that the rights of

32. Transcribed from audio recordings of the case, accessed at https://www.oyez.org/cases/1982/81-1687, June 18,
2019. Relevant timestamp: 32:20
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copyright holders should extend into the design of the technology in question, is an extreme one,

at least as of 1984. It is an argument that the court rejected then, but, as discussed below, it is

essentially the bedrock doctrine of the Digital Millenium Copyright Act (DMCA) and today’s

copyright norms.

It is important to note that the Supreme Court did not deny that the Betamax could pose

some market threat to Universal. In siding with Sony, the court simply affirmed that such financial

harm, while real, was minimal. In exonerating Sony from contributory infringement, the court

affirmed the broad purpose of copyright law to nourish productivity for the general public, arguing

that its public benefit outweighed its private harms. The final opinion even cites a previous

precedent echoing the original spirit of the law: Justice Potter Stewart’s 1975 opinion in Twentieth

Century Music Corp. v. Aiken: “the immediate effect of our copyright law is to secure a fair

return for an author’s creative labor. But the ultimate aim is, by this incentive, to stimulate artistic

creativity for the general public good.”33 The court also considered it significant that, even though

the Betamax could be used for infringing purposes, it has “substantial non infringing use,” for

example in the case of authorized time shifting (cases where copyright holders do not object to

their viewers’ time shifting. The children’s television personality Mr. Rogers, for example, was a

well-known copyright holder who publicly supported time shifting and users’ rights.34

Perhaps most importantly, the court also held that even unauthorized time shifting is a

fair use. If the copying were made for a profit, “such use would be preemptively unfair.” But

the majority of unauthorized time shifting is done with no commercial motive, simply so that

the consumer may enjoy on their own time a work “which he had been invited to witness in its

entirety free of charge.” Thus the use is fair, even where the entire work has been copied and no

productive changes made to it.

At stake in the case, once again, is the “tension between creative incentive and audience

33. Stewart Potter, 20th Century Music v. Aiken, US Supreme Court, decided 1975, Justice Stewart writing majority
opinion, 1975.

34. A. Perzanowski and J. Schultz, The End of Ownership: Personal Property in the Digital Economy, Information
Society Series (MIT Press, 2016).
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access that lies at the heart of copyright law.”35 In this regard the Betamax case established

two important precedents. The first precedent concerns the legality of the device in question.

The Betamax ruling meant that a device that admits of both fair use and infringement should

be allowed if its potential for fair use, and the benefits that fair use affords the general public,

outweigh its potential for infringement. The mere fact that a device allows for prohibited uses is

not necessarily dispositive, nor, crucially, is it the manufacturer’s legal responsibility to build the

device in such a way as to discourage such uses. It is this precedent to which Napster, another

manufacturer of technology largely used for illegal purposes, would primarily look in its own fair

use defense.

The second precedent concerns the liability of the manufacturer. In this regard the Betamax

case established that a company could not be held legally responsible for the infringing behavior

of the users of its product. This ruling relied on the doctrine of fair use as codified in the recent

1976 Copyright Act, and it held that a copyright should subsist narrowly in the work in question;

an extension beyond that, to something that is not the subject of copyright protection (a VTR like

the Betamax, for example) would be to enlarge unduly the scope of copyright. This, too, would

be a cornerstone of Napster’s unsuccesful defense in 2001.

1.2.3 Audio Home Recording Act (AHRA) of 1992

The Betamax, today, is remembered mostly as the consumer video technology that lost out

to VHS. This hardly seemed inevitable in 1984, especially because the Beta format was actually

higher quality than its competitors. Both the VHS and Betamax, though, were analog technology;

a new copyright debate was sparked with the introduction of digital reproduction technologies like

Digital Audio Tape (DAT), which Sony introduced in 1987. The crucial difference between DAT

and analog recording, from a copyright perspective, is not its higher quality, but rather the fact

35. Carey R. Ramos, “The Betamax Case: Accommodating Public Access and Economic Incentive in Copyright
Law,” Stanford Law Review 31, no. 2 (1979): 244.
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that digital copies are lossless. With analog technologies like the Betamax, the industry’s fears

had been mitigated somewhat by the knowledge that quality would degrade with every successive

copy; DAT devices can produce unlimited numbers of copies with virtually no degradation in

quality (“serial copying”). Lossless copying represented a new kind of threat to the market for

music recordings. The issue eventually crystallized into a conflict between the Recording Industry

Association of America (RIAA), an industry trade group that had existed since 1958, and the

Home Recording Rights Coalition (HHRC), a consumer advocacy group founded in the aftermath

of the Betamax decision.36 The debate between groups like these, and the various industry players

they represented, never amounted to high profile litigation like the Betamax case. Nevertheless

it was decisive in shaping U.S. copyright law, most prominently in the Audio Home Recording

Act of 1992. As Blayne Haggart writes, the 1992 act should therefore be understood not as the

opinion of the legislature on the correct application of copyright law to a novel technology but

rather “merely the codification of agreements between the recording industry and audio equipment

manufacturers.”37

The act is in three parts. The first part is crucial: it stipulates that DAT technology must

incorporate measures to prevent the proliferation of copied materials. Under this act, it becomes

illegal to manufacture, import, or distribute a digital recording device that does not conform to an

encoding system designed to prevent serial copying. Note that this element of the law is is more

or less what Stephen Kroft called for in his arguments before the Supreme Court in the Betamax

case (arguments that, it bears repeating, struck Justice Stevens as “extreme”). The protection

schemes encoded in DAT, known then as the Serial Copy Management System (SCMS), are

essentially an early form of what would later come to be known as Digital Rights Management

(DRM), and which continue to proliferate today, embedded in digitally distributed MP3 files and

Spotify’s Ogg Vorbis format audio files.38 These are legally mandated technological obstructions

36. Blayne Haggart, Copyfight: The Global Politics of Digital Copyright Reform (University of Toronto Press,
2014), 107.

37. Ibid., 325.
38. See the Sidify product, which removes these DRM schemes: https://www.sidify.com/guide/
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designed to discourage infringing behavior. 1990s SCMS was a crude form of DRM whose only

real feature was that, while it allowed a user to make unlimited copies from a single master, made

it impossible to produce copies from other copies (it prevented “serial copying”). This relatively

modest prevention is nevertheless the model for subsequent generations of DRM, many of which

are far more insidious. Apple, for example, has instituted controls on iPhones that disable certain

features when a user replaces the battery with a non-Apple battery of equivalent functionality,

essentially ensuring that this common repair be done at corporate rates.39 HP has used DRM

to prevent users from using third-party printer cartridges, but also to check the status of users’

HP ink subscriptions.40 It is these kinds of DRM schemes that, for many critics, turn our digital

files into “spies,” silently influencing the way we interact with them and reporting back to their

handlers about our behaviors.41

The second and third parts of the AHRA are less consequential: the second part institutes

royalties on the sale of digital reproduction technology, some of which are returned to the

record companies. In the third part, it explicitly prohibits copyright infringement actions against

home copying; the logic seems to be that, if the RIAA is going be allowed to extend copyright

protections into the design of recording devices themselves, it should forfeit its right to prosecute

people who then use those devices.42

To understand the importance of the 1992 act, recall the logic behind the Betamax case.

Part of the reason the court was unwilling to declare Sony liable for contributory infringement in

1984 is that doing so would “enlarge the scope of respondents’ statutory monopolies to encompass

control over an article of commerce that is not the subject of copyright protection.” It would, in

other words, extend the reach of copyright protections from its original provenance, music and

plays and so forth, to the design of novel technologies. The latter is traditionally subject to the

remove-drm-from-spotify.html, accessed 08-18-2019
39. See “Apple is locking batteries to specific iPhones,” in Vice, https://www.vice.com/en us/article/59nz3k/apple-

is-locking-batteries-to-specific-iphones-a-nightmare-for-diy-repair
40. See “Inkjet Dystopias,” in Boing Boing, 2019. https://boingboing.net/2019/02/08/inkjet-dystopias.html
41. Samuelson, “The Copyright Grab.”
42. Haggart, Copyfight: The Global Politics of Digital Copyright Reform, 325.
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related but distinct field of patent law. University City Studios had sought, on the grounds of such

an expanded scope, damages for contributory infringement, as well as an injunction against the

manufacture of the offending device. In the Betamax case of 1984, they were granted neither. But

in the legislative compromise negotiated between the major forces of the entertainment industry

that is the 1992 act, the industry as a whole is essentially given both; the scope of copyright

protections is extended to the design of the recording device (they have to conform to SMCS),

and certain provisions are made for royalties on the sale of such devices to be directed back to the

recording industry.

This act set two important precedents not explicitly spelled out the language of the law.

First, it represents a victory for the individual user, whom it explicitly protects against certain kinds

of infringement litigation. Second, and more importantly, it is an early example of the effort to

embed systems of copyright control in the technology itself. While DRM technology is regarded

by some as ineffective and retrogressive,43 it remains an important feature of contemporary digital

culture, something Tarleton Gillespie calls “the technological fix.”44 In this regard, the AHRA

is an important milestone in establishing the precedent for legal home audio consumption that

Spotify, as a technological solution to a legal problem, adheres to.

John Barlow, “The Economy of Ideas,” 1994

John Barlow published this influential essay in Wired in 1994. It is perhaps the first

widely read articulation of the now-familiar argument that traditional intellectual property laws

are fundamentally incompatible with digital culture. A polymath and countercultural libertarian

who has written on a wide range of topics, Barlow was probably better known in 1994 for his

work as a lyricist for the Grateful Dead than for his writing about cyberculture. Nevertheless, via

his involvement in the Electronic Frontier Foundation, Barlow had achieved a certain stature in

43. E.g. by Steve Jobs, who railed against it in 2007 in an open letter posted to Apple’s website titled “Thoughts
on Music”

44. Tarleton Gillespie, Wired Shut: Copyright and the Shape of Digital Culture (MIT Press, 2007), 1.
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techno-utopian circles, and published over his career a number of influential articles in Wired.

“The Economy of Ideas” is not taken seriously in the legal profession, but it does give emphatic

voice to ideas that resonate with many in Barlow’s generation, and which continue to have

currency today: namely, the notion that copyright is fundamentally out of step with digital culture,

and that nothing short of a complete overhaul of our whole notion of intellectual property will

do if the legal system is ever to adjust. Barlow’s ideas are mostly familiar – a central premise,

for example, is Benkler’s cited above, that information and physical property are fundamentally

different types – but his language is always colorful:

Digital technology is detaching information from the physical plane, where property
law has always found definition. ... It’s fairly paradigm warping to look at information
through fresh eyes - to see how very little it is like pig iron or pork bellies, and to
imagine the tottering travesties of case law we will stack up if we go on legally
treating it as though it were.

In fact, some of Barlow’s bemoaned case law had already been stacked up in 1994, and

the steady drift of U.S. copyright law away from the interests of the public was well underway.

The Clinton Administration’s 1995 white paper on IP rights (discussed below) was only a year

away, and the DMCA that would enshrine the principles set out therein would soon be passed.

Whether or not you agree with Barlow that copyright is “dead,” and that the efforts to re-animate

its corpse lead to legal “travesties,” he does correctly perceive the shifts taking place in legal

attitudes (although he refrains from naming the relevant cases or discussing the legal issues in

any detail). Not only does he pick up on and give a charismatic expression to this broader trend,

but Barlow also spots its potential to return cultural production to a state of 18th century style

patronage:

Before the industrialization of creation, writers, composers, artists, and the like
produced their products in the private service of patrons. Without objects to distribute
in a mass market, creative people will return to a condition somewhat like this, except
that they will serve many patrons, rather than one.45

45. John Perry Barlow, “The Economy of Ideas: A framework for patents and copyrights in the Digital Age.
(Everything you know about intellectual property is wrong.),” 1994, accessed August 10, 2019, https://www.wired.
com/1994/03/economy-ideas/.
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This insight gives Barlow something to do besides “dancing on the grave” of copyright

law. Companies in the digital age, he argues, should focus not on the delivery of products but

instead on the management of “relationships” with the market. Like the Whole Earth Catalogue

in general, this is an idea that mingles a libertarian screed with strategy advice from a corporate

self-help guru: “The future protection of your intellectual property,” writes Barlow, “will depend

on your ability to control your relationship to the market - a relationship which will most likely

live and grow over a period of time.” Intellectual property protections should not – and, in

Barlow’s estimation, cannot – apply to the material itself. Instead, they should apply to the

mechanisms through which companies relate “swiftly, conveniently, and interactively” with their

customers.

This is a prescient insight with special relevance for the case of Spotify. Following the

general trend of media companies in the 21st century, Spotify has increasingly relied upon its

discovery services, rather than its provision of content alone, to remain desirable to its customers.

This is, as Barlow notes, intimately connected to the lived reality of copyright protections in the

21st century; in a world where free access to 30 million tracks is no longer impressive, Spotify’s

greatest asset becomes its ability to help customers navigate the glut of content, to “soundtrack

your life.” And yet Spotify continues to hew to the traditional doctrine of intellectual property

rights, compensating record labels and even ceding substantial portions of its stock to them. This

contradiction – Spotify has imbibed Barlow’s insights in one way but totally ignored them in

another – is probably the biggest single reason why it has always failed to turn a profit.

1.2.4 1995, Working Group on Intellectual Property Rights White Paper

In 1995, Bruce Lehman, President Clinton’s Commissioner of Patents and Trademarks,

chaired the administration’s Working Group on Intellectual Property Rights. Charged with, once

again, accommodating U.S. copyright law to the technological changes that had taken place since
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1976, this group released a White Paper46 outlining the administration’s general approach to the

issue of copyright protections – much of which would be signed into law in the 1998 DMCA

(discussed below). In general, this document recommends preserving the essence of the 1976 act,

with some amendments where necessary. The language of the document is studiously innocuous,

but for its critics it represents some radical changes. Both its proponents and detractors would

agree, though, that it is staunchly market-oriented and, from the outset, determined to defend the

principle of copyright protection from the threats originating in “cyberspace:”

Unless the framework for legitimate commerce is preserved and adequate protection
for copyrighted works is ensured, the vast communications network will not reach its
full potential as a true, global marketplace. Copyright protection is not an obstacle
in the way of the success of the NII (national information infrastructure); it is an
essential component. Effective copyright protection is a fundamental way to promote
the availability of works to the public.47

Note the way the document takes for granted that the “true” potential of the internet is

construed a priori as being a “marketplace.” The faith in the implicit wisdom and benevolence of

the market is so deep that its place as the ultimate end for novel technologies is utterly taken for

granted. The idea that the Internet would ever be something other than a market seems never to

have occurred to the commission. The ways in which market fundamentalism shapes the attitude

of the working group toward copyright law are beyond the scope of its argumentation, and remain

latent throughout. Nevertheless the document is, at least for its critics, heavily inflected by this

prejudice. For Pamela Samuelson, for example, it is “a wholesale giveaway to its supporters in

the copyright industry,” at the expense of the user.48 Or, as Paul Goldstein puts it, this white paper

recommended a “strict application of copyright [designed to] to bring the operations of every

kind of Internet service provider...under copyright control.” From this perspective, the White

46. A memo, essentially, describing a plan or strategy, a document with no legal force.
47. Bruce Lehman, “Intellectual Property and The National Information Infrastructure: The Report of The Working

Group On Intellectual Property Rights,” accessed via the Electronic Frontier Foundation site, 1995, 16, accessed
June 24, 2019, https://www.eff.org/files/filenode/DMCA/ntia dmca white paper.pdf.

48. Samuelson, “The Copyright Grab.”
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Paper takes a hard line position that effectively makes Internet providers direct infringers, liable

for the “millions, if not billions, of signals that daily course through their facilities.”49

The white paper’s rhetorical frame, by contrast, makes its recommendations sound like

minor adjustments to existing law. It is recommended, for example, that digital “transmission”

fall under the traditional statute covering copying as an infringing behavior (a doctrine contested

today by Spotify, unsuccesfully). It also recognizes publication to the Internet as concept with

real legal weight. Taken at face value, these seem like reasonable accommodations to the digital

age with no particular ideological agenda; does not my computer receive a copy of whatever is

“transmitted” to me on it? Is not the Internet a primary site of publishing activity in the digital

age? They seem harmless but these ideas actually have radical consequences. In classifying

“transmission” as a case of “copying,” the recommendation would mean that even browsing

copyrighted material could be an infringing behavior – even the information stored in a computer’s

temporary RAM “has been found to be a sufficient fixation” to support a claim of infringement.50

The recommendations would also deal a sizeable blow to the fair use defense, arguing that fair

use is inapplicable in any case where a use could be licensed, which is a significant revision

on the precedent established in the Betamax decision – a case where non-profit home use was

presumptively fair, regardless of the licensing prospects the industry may have imagined for home

copying.

Advancing the case for the technological implementation of infringement obstructions that

we saw first in Universal’s unsuccessful arguments before the Supreme Court in 1984, the 1995

White Paper also recommends the use of “copyright management information.” This character of

this information in the white paper is anodyne:

The name and other identifying information of the author of a work, the name and
other identifying information of the copyright owner, terms and conditions for uses
of the work, and such other information as the Register of Copyrights may prescribe

49. Goldstein, Copyright’s Highway: From Gutenberg to the Celestial Jukebox, 172.
50. Lehman, “Intellectual Property and The National Information Infrastructure: The Report of The Working

Group On Intellectual Property Rights,” 28.
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by regulation – to provide adequate flexibility in the future.51

Which, on its own, does not sound particularly threatening. However, as Samuelson

points out, the recommendation is actually that tampering with such information would become a

criminal (not civil) offence. The actual implementation of these hidden watermarks, moreover, is

likely to “have the ability to report back to the copyright owner,” in a manner that amounts to a sort

of digital surveillance. Drawing on the precedent of the AHRA, which had instituted the Serial

Copying Management System in digital audio tape recording devices, this document advocates for

a system that would mandate the prevention of any copies at all, unless permitted by the copyright

holders – a significant broadening of the doctrine underlying the AHRA. The recommendation,

in fact, is that the mere manufacture or distribution of devices capable of circumventing these

protective systems become a criminal offence unto itself, apart from the actual copying that might

take place with such devices. As Samuelson points out, this recommendation would effectively

overturn the Betamax precedent, which “held that copyright holders cannot stop the distribution

of a technology as long as it has a substantial noninfringing use.”52

The White Paper would also require internet service providers (ISPs) to police their

customers for potential infringement. ISPs, it argues, are in the best position to prevent copyright

infringement on the part of their customers, and therefore “the best policy is to hold the service

provider liable.”53 In this regard the white paper effectively ignores the privacy rights of customers,

as well as the logistical burden such a policy would impose on the ISP industry. On top of all

this, the recommendations include ambitious attempts to shape public opinion about intellectual

property. These include a “copyright awareness campaign,” and an associated educational

curriculum designed to “reinforce the important role of intellectual property,” in which “respect

51. Lehman, “Intellectual Property and The National Information Infrastructure: The Report of The Working
Group On Intellectual Property Rights,” 235.

52. Samuelson, “The Copyright Grab.”
53. Lehman, “Intellectual Property and The National Information Infrastructure: The Report of The Working

Group On Intellectual Property Rights,” 117.
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for copyright protection needs to be highlighted.”54

The argument of the white paper, ultimately, is that without appropriate copyright pro-

tections, there will be insufficient incentive for the creation of new content in the digital culture.

Tough new laws are needed to prevent the Net from devolving into a “copyright Dodge city” with

rampant infringement and a resulting drought of new works.55 This is a chaotic future that the

commission hopes to avoid altogether, with a handful of aggressive measures. These measures

are also preemptive, and the fears about a digital Dodge City are largely unverified as a matter

of empirical fact. In advancing this agenda, the commission crafts a vision copyright law that

is vastly expanded, one that Samuelson derisively terms “copyright maximalism.” Whether or

not we agree that this expanded version of copyright can serve the aims of copyright protections

as set out in the Constitution, the interests of copyright holders are clearly favored to a greater

degree than ever before. They are favored over the interests of the public, certainly, but also

over the manufacturers of digital hardware (who are enjoined to encode copyright protections

into their devices) and ISPs (who are forced, willing or not, into a position of surveilling and

punishing their customers). The limited monopoly an author holds over performances of their

works, which technically exists only for the benefit of society at large, has been expanded to

protect the interests of copyright holders (who, as of 1995, were mostly corporate aggregators

rather than sole authors) to such an extent that any services or devices that could conceivably

pose them some financial threat, or which could intrude on some market that could conceivably

come about in the future, are now required to mitigate those threats actively, preemptively and at

their own expense.

54. Lehman, “Intellectual Property and The National Information Infrastructure: The Report of The Working
Group On Intellectual Property Rights,” 204.

55. Ibid., 15.
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1.2.5 1998, Digital Millennium Copyright Act

The 1995 white paper simply outlined the Clinton Administration’s intended posture on

IP law; it did not itself have any actual legal force. In 1998, when Congress passed the Digital

Millennium Copyright Act (DMCA) to (yet again) bring U.S. copyright law in line with the

technological advances that had taken place since its last major overhaul, the majority of that

philosophy became U.S. law. Once again, the language of the law was fairly innocuous; it aimed

merely to bring copyright law “squarely into the digital age.”56 But the DMCA is one of the

most hotly contested pieces of legislation in the history of copyright law, with many unintended

consequences and countless objections from civil libertarians.

As Robert Merges points out, the passage of this law did not conform to the historical

pattern set by other major reforms in copyright law. Typically, when a technological innovation

upsets current paradigms, the system will grapple with this disruption over a number of years,

accumulating a body of case law and occasionally commissioning formal studies upon which to

base future legislation. Only after this incubation period will a new law be passed in Congress. It

was in this way that the 1909 Copyright Act accommodated composers whose music was realized

in piano rolls; before 1909 composers would not have been entitled to royalties on reproductions

of their music in this form, since the encoded version of music (piano rolls) was not recognizable

to any human as a musical composition. But piano rolls had existed since before the 20th century,

and it took more than a decade to accommodate them in law. Similarly, the 1976 responded to

the proliferation of audio recording equipment by introducing copyright protections for audio

recordings themselves, but only after more than three decades of the recording industry. In both

cases, the legislative response followed a long period of real-world engagement with technology.

As Samuelson points out with respect to the 1995 white paper, the sensible thing to do has usually

been to let a new technology operate for a while, “then figure out what, if any, legal fences are

56. David Nimmer, “A Riff on Fair Use in the Digital Millennium Copyright Act,” University of Pennsylvania Law
Review 148, no. 3 (2000): 680.

52



needed to avert market failures.”57 In passing the DMCA, Congress ignored these precedents and

took a different line altogether. In the words of Merges, the DMCA was “rushed” and, moreover,

answered the needs of the new media industries rather than the actual legal issues arising from

the ways consumers used new technologies: as a piece of legislation it was, from the beginning,

“industry backed.”58

In adopting the recommendations of the 1995 white paper, the DMCA made two profound

alterations to existing copyright law: first, it extended copyright protections to include the

regulation of technological devices with potentially infringing uses. “The protection of expression,”

writes Merges, “is for the first time achieved through the regulation of devices.”59 We might point

out that this was achieved, in a crude way, in the 1992 AHRA, but the DMCA further formalized

and extended these technological protections. As David Nimmer puts it, the DMCA targets not

only “bad acts” but also “bad machines” and “bad services.”60 A device or service, even just the

idea of a device or service, can be inherently infringing, and thus preemptively prohibited by

copyright law.

This feature of the DMCA paved the way for what Tarleton Gillespie has termed the

“technical fix” to the scourge of piracy, the idea that the correct deployment of encryption

technologies by the media industry can supplant traditional legal specifications about the legitimate

uses of copyrighted materials. The legislative focus shifted away from acts of infringement to

acts that enable infringement, and the “fix” is to aggressively compel manufacturers not to

enable them in the first place. As recommended by the white paper, under the DMCA technology

companies are compelled to embed copyright compliance in the devices themselves; these systems

were originally crude and easily hacked, but today’s content protection schemes are much more

robust. These schemes have strange consequences. The enthusiastic embrace of “digital rights

57. Samuelson, “The Copyright Grab.”
58. Robert P. Merges, “One Hundred Years of Solicitude: Intellectual Property Law, 1900-2000,” California Law

Review 88, no. 6 (2000): 2187–2240.
59. Ibid., 2202.
60. Nimmer, “A Riff on Fair Use in the Digital Millennium Copyright Act,” 684.
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management” as a solution to copyright infringement, for example, produces the anomalous

result that DVD users today are legally prevented from doing what VHS users were explicitly

allowed under the 1984 Betamax ruling; where the latter decision held that even unauthorized

home copying was a fair use, today’s DVD manufacturer is legally bound to prevent its users

from exactly that kind of potential infringement. As Patry puts it, “because of the DMCA, owners

of DVD players were placed in a worse position than owners of VCRs.”61 In a way the difference

between VHS and DVD is bigger in legal than technological terms.

The DMCA represents not just the realization of the copyright expansions set out in the

white paper, but also an unexpected realignment among the forces participating in the ongoing

debate over copyright law. When copyright standards are effectively built directly into media

devices, technology producers find themselves in league, willingly or not, with copyright holders

in the broad effort to control mass media consumption. The DMCA draws a hard line in the sand,

enacting a legal structure that effectively conscripts media companies into Edgar Bronfman’s

“war on customers” alluded to above. Service providers that resist this conscription will face

litigation and, more than likely, the fate that Napster saw not two years after the passage of

the DMCA. The ultimate legacy of the DMCA, then, may be less in its technical provisions

than in the way it coerces the tech sector into allegiance with the recording industry. These are

groups between whom there exists no natural allegiance; they have, in fact, usually been at odds,

culturally speaking. The Betamax, for example, owes its stature in the history of copyright law to

the fact that it stood in opposition to the interests of copyright holders. The DMCA effectively

precludes such opposition, mandating that the interests of the copyright holders be hard wired into

a device before it can legally be sold in the U.S.. It is only by reshaping the nation’s copyright

law that these two forces are brought into such close coordination. Spotify’s close financial

relationships with the major record labels is a perfect example; a company that brands itself as

innovative, because of the provisions of the DMCA, finds itself not just cooperating with but in

61. Patry, How to Fix Copyright, 45.
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fact largely owned by the parties who control the copyrights for its catalogue.

The second, and related, legal innovation of the DMCA was to create a new list of illicit

activities pertaining to the circumvention of digital copy protections: “no person shall circumvent

a measure that effectively controls access” to a copyrighted work. This is the infamous section

1201, making it illegal either to commit an act of circumvention, or to disseminate information

or devices capable of circumventing DRM. The violation of encryption technologies, or even

information about how to do so,62 became an unlawful act unto itself, apart from the potential

infringement such violation might lead to. Thus not only does the act create “bad machines,” but

it makes tampering with good machines a “bad act” – that is, a violation of a copyright statute

even if no copyright infringement has taken place whatsoever. Violators of section 1201, which

forbids the manufacture or distribution of technology designed to circumvent “technological

adjuncts to the exclusive rights granted by copyright law,” can face harsh penalties: “up to a

$500,000 fine or up to five years imprisonment for a first offense, and up to a $1,000,000 fine or

up to 10 years imprisonment for subsequent offenses.”63

1.2.6 UMG v. MP3.com

MP3.com was a music site launched in 1997 by the San Diego based entrepreneur Michael

Robertson. Although short-lived, this site anticipated by several years many of the key functions

of music sharing sites like Myspace and Napster. On MP3.com, bands had devoted pages where

they could post promotional materials and share their music. The site featured a simple template

for music distribution and promotion, and it quickly attracted many musicians at a time when

the barriers to entry for hosting material on the Internet were much higher than they are today.

62. Edward Felton, a computer science professor at Princeton, was famously bullied about publishing research
about how to ciricumvent DRM that he had conducted at the invitation of the industry group SDMI. See the Electronic
Frontier Foundation’s list of “unintended consequences” form the DMCA, https://www.eff.org/files/2014/09/16/
unintendedconsequences2014.pdf, accessed 08-19-2019

63. U.S. Copyright Office Summary of the DMCA, available at https://www.copyright.gov/legislation/dmca.pdf,
accessed 06-28-2019
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The site saw early successes and an extremely promising IPO in 1999, but ran into serious legal

trouble almost immediately. In 1999, MP3.com introduced a “space shifting” feature marketed as

“MyMP3.” Combining the functionality of another Robertson venture (sideload.com) with the

MP3.com site, the “MyMP3” service allowed users to upload their music to a remotely accessible

server (what we would now call “the cloud”). Users could then access the content of their “locker”

from any internet connected device. In order to use this service, users first had demonstrate

ownership of the music in question, either by scanning a physical CD or making a legitimate

digital purchase. Once they demonstrated this legitimate ownership, they could play it anywhere

they had access to MP3.com.

The service, in other words, simply mimicked the ability of music owners to play their

CDs on more than one device. Despite the precedent that personal space shifting is legal,64

Universal Music Group, who owned the copyrights for many musical works being uploaded

for this service, filed suit for copyright infringement. UMG’s claim (made together with the

RIAA organization) rested on two premises. First, the MP3.com service meant that a copy of

the material in question was made from the CD owned by the user to the MP3 server; for UMG,

this alone was a straightforward violation of the copyright statute. Even in cases where the

service meant that MP3.com had to purchase additional copies of their own in order to provide

the right user experience, at some point a copy had to be made in order for the “space shifting”

to work. As this copy is neither “transformative” (involving the creative input of the copying

party) nor minimal (so small as to be legally insignificant), UMG argued that it violates the

copyright holder’s monopoly right to a work. Secondly, UMG alleged that the “MyMP3” service

caused them a market harm, another factor in the “fair use” considerations outlined in the 1976

Copyright act. The “space shifting” market upon which the “MyMP3” service depended, claimed

UMG, was one that only legitimate copyright holders have a right to enter. The fact that UMG

had not in fact entered it at all, along with the fact that that the balance of the music distributed

64. RIAA v. Diamond Multimedia Systems, Inc., 1999
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in this manner was legally purchased is, in this view, irrelevant. The only relevant facts were

that MP3.com copied the music onto its own servers, and that the right to sell a “space shifting”

product predicated on UMG’s intellectual property belonged to UMG alone. This was, in the

2000 opinion of Judge Rakoff, a straightforward case of copyright infringement. As he writes,

The complex marvels of cyberspatial communication may create difficult legal issues;
but not in this case. Defendant’s infringement of plaintiffs’ copyrights is clear. 65

Rakoff’s reasoning is simple and straightforward: is a copy made? Yes. Is there any

reasonable fair use defense? Hewing narrowly to the four factor test, his answer is that there is

not. Complete copies are made, for profit, with no productive alterations: open and shut case

of copyright infringement. It is useful to compare this ruling with the Betamax case and the

statute laid out in the AHRA of 1992. Taken together the three cases trace a series of victories

for the “copyright maximalists.” In the Betamax case, a device manufacturer is exonerated from

the contributory infringement claim in a way that classifies “time shifting” as a fair use. In the

AHRA, copyright law is construed in such a way as to require DAT manufacturers to encode

infringement prevention schemes into their wares. Is the ruling against MP3.com an extension of

copyright protections from hardware to software, and from “time shifting” to “space shifting?”

The answer is yes and no. The case does represent an important milestone in the extension of

copyright protections to digital copying in the cloud, and it does choose to treat the copying as

infringement even though all the music in question is, thereotically, legally owned by the user.

And yet the comparison is also a little misleading. In the Betamax case, the fair use

ruling depended explicitly on the “time shifting” being private and not for profit. MP3.com’s

copying practices were not private, were explicitly commercial in nature, and they were not of

material that was offered for free in the first place (as broadcast television was in the Betamax

case). The landmark in the expansionist agenda, in other words, is not as pronounced as the

tempting comparisons might lead one to believe. Instead, the victory here is somewhat narrower,

65. UMG Recordings, Incorporated v. MP3.com, Inc., case info retrieved from
https://www.leagle.com/decision/200044192fsupp2d3491412, accessed 06-08-2019
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and concerns the doctrine that the copyright holder holds the exclusive right to any market for his

holdings, even markets which he has not yet entered or which do not yet exist. That, though, is

enough of a precedent to be worth marking: if I own a copyright, I am the only one who can earn

any money from it. You cannot enter into a new market space that makes use of my holdings,

even if you do so with 100,000 copies of my work that you bought legally. The MP3.com case

establishes the precedent that the potential market made possible by a copyright belongs to the

the copyright holders, just as the copyright itself does.

1.2.7 A&M Records, Inc. v. Napster, Inc.

Among the technological disruptions to the music industry of the late 20th century, few

did more to set the course for Spotify than Napster. Founded in 1999 by Shawn Fanning, Napster

was a groundbreaking file sharing network that employed peer-to-peer technology to enable fast

and easy sharing of files stored on users’ computers. Napster provided a centralized database, a

simple and effective search engine, and, crucially, a community environment in which to find

like-minded music enthusiasts with whom to share MP3 files. Napster grew with incredible

speed, amassing hundreds of thousands of users before it was abruptly driven out of business

by aggressive litigation from the RIAA starting in 2000. During that time, though, the Napster

phenomenon in many ways set the tone for the future of the digital music industry, defining

the culture of music consumption, the ideological battle lines of music on the internet, and the

contours of the digital music commodity itself. With its easy-to-use interface, its community

orientation, and, of course, its price (free), Napster sounded the alarm bells for the music industry

about what kind of commodity the 21st century music consumer was interested in. The industry’s

inflexibility in prosecuting Napster so aggressively has generally been seen as evidence that it

failed to heed these alarm bells, clinging instead to the “sinking ship” of the business model that

had enjoyed such prosperity in the 80s and 90s. The story, of course, is more complicated than that

– certain elements at Napster had always intended to collaborate with the record industry, overtures
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were made and occasionally well received, and it was only through the dysfunctional leadership

team at Napster that these efforts did not materialize.66 Napster, in effect, really wanted and

even planned to become legal. Whether or not its reputation for “anarcho-communist” leanings

is deserved, in many ways Napster actually performed a huge service for the music industry.

As Jeremy Wade Morris writes, “Napster actually helped shaped the form of the digital music

commodity more than it contributed to its undoing.”67

The nature of the Napster service was, essentially, to make the contents of one user’s hard

drive accessible to millions of other participating users. The Napster system in principle could be

used to transmit any file, but it gained massive popularity as a music filesharing community, thanks

in large part to the MP3 compression standard developed in the 1990s. Napster’s underlying

“MusicShare” software essentially made any digital home recording of any of its users available

to all its users, without copying any of the transferred material to its own servers at any point.68

The RIAA, however, was able to show that a majority of Napster users were using the service to

get music for free illegally; in 2000, the recording industry brought suit against Napster, alleging

direct, contributory and vicarious infringement. Illegal copies, they argued, were made of their

copyrighted materials, in huge numbers, for no purpose except the commercial one. Napster’s

business model depended on the draw such illegal downloads represented for users, and its

activities were a direct market harm to the copyright holders.

Arguing in part from the 1984 “Betamax” rule, Napster mounted a fair use defense;

their technology, they argued, merely provided a service that, while it clearly could be used for

nefarious purposes, also had substantial legal uses. Many musicians, for example, were happy

to see their music distributed for free because the easy publicity helped their careers (the same

argument Mr. Rogers had made in favor of time shifting in 1984). Napster claimed merely to

66. Trevor Merriden, Irresistible Forces: The Business Legacy of Napster and the Growth of the Underground
Internet (Capstone Publishing Limited, 2001).

67. Jeremy Wade Morris, “Music in the Cloud,” 1st ed. (University of California Press, 2015), 94.
68. The fact that Napster, unlike MP3.com, didn’t make “copies” of its own was a major component in what its

lawyers thought was a reasonable defense. Napster expected to claim simply to “facilitate communication.” Merriden,
Irresistible Forces: The Business Legacy of Napster and the Growth of the Underground Internet, 54
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facilitate communication, for the purposes of such fair uses as sampling, space shifting, and

authorized distribution. In the Betamax case, a technology capable of both fair and infringing

uses had been allowed; when a device can do both, the thinking was that the interests of the

public should be deferred to over the interests of the copyright holder. Napster hoped for a similar

exemption.

There was also a second element to Napster’s defense. Among the complex technological

stipulations in the DMCA are rules governing the so-called “safe harbor” status for Online Service

Providers (OSP). OSPs, provided they obey certain complex rules, are granted protections from

legal actions based on the infringing activities of their users. A given service might, for example,

make possible the illegal sharing of MP3 files, but if it qualifies as a safe harbor, the site cannot be

held financially liable for such infringement. These conditions include that (1) the OSP informs

its users of a termination policy for repeated incidents of infringement and (2) it “accommodates

the technical measures that are used by copyright owners to identify or protect copyrighted

works.”69 In addition to its claim of fair use, Napster sought to exempt itself from liability under

this provision of the DMCA.

In both the district court and the court of appeals, all of Napster’s defenses were rejected,

and in 2001 the service was essentially forced to shut down under the pressure of the mandated

remedies. Napster’s fair use defense was rejected, and it was held liable for contributory and

vicarious infringement. Critics of this decision have argued that it represents an overly narrow

reading of the Betamax rule, and that it will have negative consequences for the music industry in

the digital age. Lisa Zepeda, for example, points out that, although the facts do seem to indicate

that the majority of Napster’s users were infringing, the Betamax rule as originally construed

requires only that a technology be capable of significant non-infringing use; that the balance of the

usage does infringe should not be enough to hold the technology manufacturer liable. She argues,

moreover, as in the case of Napster, “when new technology may be used for both legitimate and

69. Lisa M. Zepeda, “A & M Records, Inc. v. Napster, Inc.,” Berkeley Technology Law Journal 71 (2002): 75.
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infringing puroses, the balance should weigh in favor of allowing the new technology.”70

Zepeda’s position, quite clearly the one the taken by the court in the Betamax decision, is

far from the mainstream today, either culturally or legally. This is not to say that there are not

material differences between the Betamax and Napster. To cite just one, Napster’s technological

infrastructure meant that policing the activities of its subscribers, while not easy, was vastly

more feasible than it would have been for Sony in 1984. This is nothing more nor less than

an expression of how easy surveillance is in the digital era, but it does mean that Napster had

significantly more power to know what its users were doing with its product that Sony did, and

we might argue, more responsbility to ensure that its product was not being abused. For another,

the materials Napster was used to distribute were never offered for free in the way that TV had

been in the case of the Betamax; its potential market harm was therefore probably higher than

that of the Betamax.71 Perhaps most importantly, even if its legitimate uses are clearly real, it

does seem that a much smaller portion of Napster usage was genuinely legitimate than was the

case with the Betamax, something even a Napster apologist like Zepeda readily acknowledges;

given that determinations of fair use are in part a matter of judicial discretion and common sense,

this may have been what really did them in.

These are all, however, matters of historical contingency rather than legal doctrine or

cultural attitude. If Napster represents the increased capacity of pirates to wreak havoc, its swift

judicial condemnation represents the increased severity with which such havoc will be dealt

in the era of digital distribution. Since the first increase is the same one that makes Spotify

technically possible, down to its original P2P architecture, it is the second increase with which

I have concerned myself in this chapter. Spotify came of age in a world where fair use could

no longer excuse the same kind of behavior that it had excused in 1984, and where technology

companies can expect to tow the line for the media industry or die.

70. Zepeda, “A & M Records, Inc. v. Napster, Inc.,” 89.
71. There is reason, however, to believe that piracy accounted for much less of the music industry’s downturn than

is usually assumed. See Kot, Ripped: How the Wired Generation Revolutionized Music
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1.2.8 Spotify’s Obligations

Throughout this chapter, I have spoken mostly of the expansion of copyright in general,

without making it clear what types of copyright licensing Spotify in particular is responsible

for. Recall that U.S. Copyright law in 1909 chose to accommodate the technology of the player

piano by inventing the “mechanical” royalty. This confusing moniker derives from the supposedly

“mechanical” nature of musical representations in piano rolls. When the musical representation

in hole punched piano rolls was at first deemed to be merely a “mechanical” part of the player

piano (thus denying composers the right to be compensated for performances in them), composers

sought a “mechanical right” that would entitle them to such remuneration, without needing to

alter the way the courts had drawn a line between piano rolls and true musical notation.72 Thus

the mechanical right can be thought of as belonging simply to the composer of a song. This is

a different legal instrument from the one consisting in the recording of a song, which has been

available as a copyrightable entity since 1976 (see above). Thus a piece of music as we know it

today is divided into two legal instruments, the composition and the recording.

Another difference: performances of pieces can be licensed, and copies of “master”

recordings can be licensed, but the two types of authorization are legally distinct. Note that this is

a separate distinction altogether from the one between a composition and its recording; the latter

distinction is between types of musical property, and the former between two types of licensed

activities. The question then becomes what kinds of license Spotify requires to provide streaming

music – digital deliveries of audio recordings (legally termed “digital phonorecord deliveries” or

DPDs) of musical compositions. The confusion arises (lots of it) because Spotify is dealing with

two different types of property, in a distribution medium (streaming audio) that doesn’t always

conform to the practices copyright law was designed to regulate.

On one hand, Spotify behaves like radio, in that the customer does not “own” the streamed

content. When Taylor Swift pulled her music from Spotify in 2014, customers lost the ability

72. White-Smith Music Publishing Company v. Apollo Company, U.S. Supreme Court Case, 1908
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to listen to it there, even though their subscriptions had previously included it. On the other

hand, Spotify is like digital distributions of MP3 files, in that customers can listen to any track, at

any time, skipping around without restriction and searching for particular tracks. The interface

is clearly modeled on the iTunes player, which plays only music the user actually owns. The

way these licensing idiosyncracies are handled is a mess of legal arcana; Spotify turns out to be

an “interactive digital subscription service” (as opposed to, say, a terrestrial radio broadcaster,

“webcaster,” or “Internet Radio” station like Sirius XM Internet Radio or Pandora Radio, which

these days is different from its on-demand “Premium” tier). Since 1995, digital distributions of

music files (DPDs) have triggered performance royalties.73 In 2008, the Copyright Royalty Board

determined that streamed music, by virtue of sitting on a user’s cache, can trigger mechanical

royalties too.74 Thus in order to legally stream a piece of music, Spotify needs both kinds of

license.

Its status as “interactive”75 means that Spotify does not obtain these licenses statutorily,

but has instead to negotiate them directly with copyright holders.76 The means by which Spotify

obtains these licenses are excruciatingly complex and have been the cause of most of its (many)

legal troubles. Wixen Publishing, for example, sued Spotify for $1.6 billion the week of its IPO

in 2018, alleging that Spotify had failed to make good-faith efforts to compensate songwriters

(i.e. to obtain mechanical licenses) for streamed content. It may have obtained licenses for

the performances, but Wixen argued that the proper procedures for locating and compensating

composers and songwriters under its representation had not been followed. Two other major class

action lawsuits – Ferrick v. Spotify and Lowery v. Spotify, both settled in 2017 – centered on the

73. This is the substance of the 1995 Digital Performance Right in Sound Recordings Act, largley adopted by the
1998 DMCA.

74. As published in the Federal Register, Copyright Royalty Board, Library of Congress, Mechanical and Digital
Phonorecord Delivery Rate Determination Proceeding, 73 Fed. Reg. 57,033 (Oct. 1, 2008).

75. Pandora Radio, by contrast, has always been a “non-interactive” streaming service, which is why it limits the
number of skips a user can make. This entitles it to a royalty scheme similar to that of terrestrial radio, where no
mechanical royalty is triggered at all.

76. “Copyright Licensing in Music Distribution, Reproduction, and Public Performance,” summary article pub-
lished by the Congressional Research Service, accessed at https://www.everycrsreport.com/reports/RL33631.html#
ifn111, Aug 19, 2019
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same issue: whether Spotify obtained proper mechanical licenses.

These three cases alone have cost the company hundreds of millions of dollars. The

effort to streamline that process, and to prevent more litigation, motivated the passage of the

Music Modernization Act of 2018, the latest major overhaul of our nation’s music copyright law.

The bill’s biggest contribution is to establish a “collective management organization” dedicated

to distributing royalties for digital streams, something like a version of the SoundExchange

organization that handles digital mechanicals instead of performance rights. Senator Orrin Hatch

of Utah, the same senator who had presided over Shawn Fanning’s testimony before Congress in

2001, played an active role in bringing it into law.77 The rare example of a moment in the history

of copyright law where the various stakeholders managed to agree on a piece of legislation and

actually get it passed, this law has been encouraging for many industry players frustrated with the

existing regime.78 It is too early to say where exactly how the act pertains to the “copyright grab”

whose history I have described above. It may be a straightforward revision of what is undoubtedly

a dysfunctional way of granting mechanical licenses, or there may be other things hidden in its

legal intricacies. Time will tell if it actually succeeds in simplifying the licensing process.

1.3 Spotify the Good Machine

The expansion of copyright traced in this chapter has meant, among other things, a

“disciplining” of the tech sector. Over the course of years of legislation and case law, tech

companies have been placed in a position of subservience to copyright law. Their products

must now take into account those interests and actively discourage usages that media companies

find threatening. If the last half century of copyright legislation has seen the invention of the

“bad machine” as a rhetorical lever with which to shape legal argumentation, it has also seen

77. Hatch, a musician himself active in the music ministry of the Mormon Church, has made copyright legislation
an important part of his political legacy.

78. “Congress may actually fix music royalties,” quips Micah Singleton of the Verge. https://www.theverge.com/
2018/1/26/16931966/congress-music-modernization-act-licensing-royalties, accessed 08-22-2019
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the rise of “good machines” that are not mere concepts but empirical facts. Machines, that is,

with copyright norms hard wired into their design. Spotify was founded as a service that would

preserve the appeal of the Napster revolution – including, at first, its P2P architecture and some

of its countercultural, hackerish caché – while compensating record labels in accordance with

copyright law. Unless you go to great (and possibly illegal) lengths to capture the information

Spotify sends to your sound card, Spotify makes space-shifting impossible – except, of course,

the kind of space-shifting enabled by the Spotify client (and, we can assume, therefore sanctioned

by the RIAA). Try to space-shift or time-shift beyond the confines of the platform and you have

crossed the line into outright criminality – section 1201 of the DMCA promises harsh criminal

penalties for messing with digital copyright protections. The audio files on Spotify bear the

anti-piracy sonic watermarks mandated by many of the major labels. Perhaps most important

of all, it is to these labels that the majority of Spotify’s revenue still accrues, via their partial

ownership of it and the arcane licensing system under which it operates. Spotify is, in other

words, a quintessentially “good” machine.

The contradiction between the tech sector as, on the one hand, utopian, independent and

countercultural and, on the other, the world’s most profitable area of commerce, means that

Silicon Valley’s role in contemporary American culture is disputed. The allegiance between big

tech and the RIAA that the DMCA effectively enforces adds another layer of complexity to this

situation, one that any “good machine” will have to imbibe. Tech companies, including Spotify,

love to market themselves as disruptive in a sort of anarchical and utopian way: to “think different”

(to take the slogan of the mother of all utopic tech firms) is to flout convention, both in the

literal meaning of the slogan and its blunt non-grammar. This picture of appealing, good natured

anarchy has become the norm for tech companies. At the same time, Silicon Valley companies

have overtaken the fossil fuel and finance industries as the biggest and most profitable forces

in the world; at the time of writing, the five companies with the largest market capitalizations

in the world are all tech companies (Microsoft, Amazon, Apple, Alphabet and Facebook, from
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biggest to smallest). The figure of the utopian anarchist and the multinational behemoth are more

than a little contradictory, as are the libertarian entrepreneur, the military research lab, and the

hippie. Nevertheless these are people and things that Silicon Valley in the 20th century has thrown

together and, in many instances, fused.

The steady expansion of copyright legislation over the 20th century is a similar instance

where unlikely parties are brought together, and Spotify can be seen as another example of such a

fusion. Napster, MP3.com, and the Internet Music Underground were just three of many internet

projects that, although opposed to the music industry in court, have slowly been brought to heel

by it (or, failing that, stamped out and replaced with more cooperative imitations). The 20th

century “copyright grab”79 entailed determined efforts to sensationalize and vilify the moral

scandal of the information “pirate,” and to promote the attendant legal idea of the “bad machine”

(the machine, essentially, whose mere capacity for infringing uses renders it illegitimate). The

reactionary refrain about guns not killing people has, in the case of copyright, been reversed

and enshrined in U.S. law: ours is a now a nation where not only do people commit copyright

infringement, machines do.

By the end of the 20th century, the distribution of a device that could be used to get around

digital rights management schemes was a criminal offence, punishable by fines and prison time, a

notion that was still radical as recently as 1976. This idea, moreover, has permeated the culture,

as evidenced by the success of Spotify and the normalization of DRM. Rarely does one hear

objections to the norm that requires software systems to encode digital rights management and

preclude infringement, except in rarefied legal scholarship or fringe internet activist groups.80

The idea that our media technologies are “wired shut,”81 like the lived reality of “surveillance

capitalism,”82 simply does not today strike many users as problematic. In successfully lobbying

79. Samuelson, “The Copyright Grab.”
80. See the group, for example, “Defective by Design,” which catalogues and critiques many common instances of

DRM in daily life. https://www.defectivebydesign.org/
81. Gillespie, Wired Shut: Copyright and the Shape of Digital Culture.
82. Shoshana Zuboff, The Age of Surveillance Capitalism: The Fight for a Human Future at the New Frontier of

Power (PublicAffairs, 2019).
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the public and the legislature with its notions of proper copyright protection, the RIAA effectively

set the stage for Spotify. As I hope this chapter has shown, Spotify is neither a disruption of the

existing recording industry nor a solution to its problems; instead, it is the predictable outcome of

years of aggressive lobbying.

Spotify, in other words, is the natural product of years of legal maneuvering behind

the whole idea of “bad machines.” This maneuvering and the triumph of the “good machine,”

moreover, have trampled over other possibilities for digital music commerce. The ubiquity of

for-profit streaming and the robustness of the RIAA’s lobbying make the current arrangement

seem inevitable, but in actuality it was carefully shaped for the benefit of the copyright holders.

Nevertheless there have been fleeting glimpses of what an alternative music industry might have

looked like. Radiohead’s 2007 pay-what-you-can album In Rainbows, for example, was extremely

successful, netting the band even more profit than it would have earned with the same sales

numbers and the support of a record label. Thanks to the copyright grab, we will never know

what were the possibilities for a large-scale, “open source” movement in music. Nevertheless

moments like the Radiohead experiment suggest that one could have been possible. The story that

begins with the 1976 act, climaxes with the crushing injunctions against Napster and Grokster,

and has Spotify as its denouement, is one in which, quoting Simon Frith and Lee Marshall, “the

notion of ‘fair use’ – once essential to the copyright attempt to balance the interests of the authors

and users of a work – has been systematically marginalised.”83 The promotion of good machines

has as its necessary legal correlates the evisceration of fair use and a sustained effort to reform

copyright in the image of one organization’s notion of how music ought to be consumed.

There is much about the music business in the era of digital information that is unknown,

or unknowable: the degree to which piracy actually impacted the value of the music industry;

whether Spotify has a positive or negative net effect on CD sales; how much illegal piracy has

actually been displaced by legal streaming; whether a music business recognizable as such would

83. Simon Frith and Lee Marshall, “Making Sense of Copyright,” in Music and Copyright, ed. Frith and Marshall
(Routledge, 2004), 5.
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be possible if we had enacted the wholesale abandonment of copyright protections called for

by John Barlow. What is, clear, however, is that Spotify (and the other “good machines” like

it) represents a resounding defeat for the copyright pessismists. As much as Spotify may want

to be seen as the “solution” to music piracy, as a smiling cadre of benevolent anarcho-optimists

with one really good idea, from a legal perspective there is basically nothing disruptive about it.

Unless, that is, we understand the steady expansion of copyright’s scope as a kind of disruption, in

which case it is very disruptive indeed. But in the usual sense in which “disruption” is understood,

as a more efficient way of doing things that upsets traditional paradigms, Spotify does not deserve

the designation. The music we listen on Spotify is watermarked and surveilled, our access

to it carefully controlled, and huge portions of its revenue accrue to the major labels. Most

artists receive essentially nothing. In many ways consumers exercise even less autonomy and

independence with Spotify than they did with CDs, although the company successfully appears to

put all of music at their fingertips.

This streaming model has quickly grown to be the core of the contemporary music indusry;

according to the RIAA, it accounted for 75% of the industry’s 2018 commerce, a number which

will probably only continue to climb. In considering the role Spotify plays in this trajectory, it is

not enough to acknowledge that the difference between Spotify and Napster is that one is legal

and the other not. Yes, Spotify is legal. But that which is “legal” has changed radically since

1976. In 1984, the industry was asking for an awful lot when it sought to hold Sony liable for

infringement committed with the Betamax. With Spotify, they are granted everything they asked

for and more.
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2 Artificial Intelligence, Critical

Algorithm Studies and Music

The word “algorithm” is far more common today than it was at the turn of the century.

It has evolved from a specialized topic in logic and computer science to a widely used, and

widely critiqued, facet of 21st century life. In their multiplicity and ubiquity, algorithms can be

thought of today as a “modern myth,” embracing all manner of different computational tools

and technologically mediated activities. We are used to, perhaps even comforted by, the idea

that they mediate everything we do on the internet, and of course nobody is surprised to see

them recommending music on Spotify.1 According to Christian Sandvig, we owe our current

familiarity with the word in part to one infamous 2007 Ask.com teaser campaign featuring

ominous, unexplained billboards referring cryptically to “the algorithm.”2 While it is hard to say

just how much the ad actually did to familiarize the public with the term, it clearly shows that as

recently as 2007, the word had an exotic quality to it. As Alex Bogusky, one of the campaign’s

architects, put it in a 2007 interview with the trade publication Adage.com:

An algorithm is the central underpinning of a search engine, but it’s a funny word that
most people don’t hear every day, if at all. [The campaign] is designed to introduce
the concept of an algorithm at a high level and inject the word into the consumer

1. Solon Barocas, Sophie Hood, and Malte Ziewitz, “Governing Algorithms: A Provocation Piece,” Paper prepared
for the “Governing Algorithms” conference at NYU, March 29 2013.

2. See Christian Sandvig, “Seeing the sort: The aesthetic and industrial defense of “the algorithm”,” Journal
of the New Media Caucus 10, no. 3 (2014) The campaign in question also included the “chicks with swords”
ads, depicting the successful operation of a web search algorithm, and, naming the algorithm as such: https:
//www.youtube.com/watch?v=yasBpCHHm2E, accessed 07-17-2019
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arena – we want to get people talking about the algorithm, wondering what it is,
while also sparking additional interest in Ask.com and the overall concept of search.3

Not only was “algorithm” still a “funny word” in 2007, but our familiarity with it today is

at least in part the result of deliberate marketing efforts from the tech sector. The ubiquity of the

algorithm in contemporary American culture is not just a product of technological developments,

especially considering just how hard a concept “algorithm” is to pinpoint.4 Instead, it should be

acknowledged that we speak of algorithms today so easily because the tech sector has always

wanted us to.

And we speak of them in a wide variety of ways; the Ask.com campaign also marks the

transition away from algorithms as the sole province of computer science to the commercially

viable things we know by that name today. It is now common to speak of algorithms in nearly

everything we do, from dating to criminal justice to news consumption. “Algorithmic literacy” is

no longer something required of software engineers, but a basic skill all citizens should have to

protect themselves from bad actors on the Internet. The notion of the algorithm, embracing not

just logical processes (as, for example, in the Bubble Sort algorithm all computer science students

learn) but also the panoply of software platforms available today, has evolved a prominent place

in the popular imagination, complete with its own public relations apparatus. “Algorithm” today

refers in a general way to pretty much everything we do on the Internet – which is in fact a lot of

what we do. As Nicholas Diakopoulos puts it, algorithms are “the new power brokers in society.”5

But there is a difference between “algorithm” and just “technology” in general, even if

the two are often conflated. To be more precise about the former, we might suppose that many of

the problems we think of “algorithms” in particular as solving involve the glut of information

on the Internet. Algorithms, you might say, are technological solutions to the problems posed

by technology itself. There are many contemporary problems having to do with unmanageable

3. Feature from Adage.com, https://adage.com/creativity/work/algorithm/4447, accessed 08-22-2019
4. See, e.g. Yuri Gurevich, What is an Algorithm? (Revised), In Church’s Thesis: Logic, Mind and Nature (eds. A.

Olszewski et al.) Copernicus Center Press 2014. January 2014, discussed below.
5. Nicholas Diakopoulos, “Algorithmic accountability reporting: On the investigation of black boxes,” 2014,
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amounts of information, and the value of automatic sorting and recommendation tools has, as

a result, risen sharply over the last decade. This trend has been attended by the rise of curation

and Internet companies that sell “experiences” rather than access to information itself (of which

Spotify is increasingly one); in a world where everyone has to deal with too much information,

algorithms are not just branded, but are themselves a form of branding.

The rise of algorithmic culture has thus engendered rise of digital curation. In music no

less than in other domains, we are constantly inundated with automated suggestions. Because the

amount of information we have to sort through is so vast, moreover, these suggestions are harder

and harder to second guess. The immensity of the amount of information from which Google

search results are selected lurks menacingly behind every query. The psychological gravity of that

vastness is hard to overstate, something that will always tend to prejudice us in favor of selections

by computation. As Tarleton Gillespie points out, we are at a moment in our culture when we are

constantly confronted with curated lists – lists, moreover, whose legitimacy is premised on the

presumption that they have not been curated.6

One consequence of the popularization of the word “algorithm” has been increased

scholarly discussion of it, and increased disagreement about what exactly it means. The question

“what types of entities are algorithms” has currency in both the humanistic critique of algorithmic

culture (see e.g. Nick Seaver (2017)7) and in mathematics and computer science itself (e.g.

Gurevich (2014)8). Ultimately the question of what algorithms really are is probably undecidable,

and it is this very terminological malleability that allows the word to stand-in for the opaque

operations of many different types of sorting and curation functions. Judges use “algorithms” to

help predict whether people will commit repeat offences9. Credit card companies use algorithms

6. Tarleton Gillespie, “Can an algorithm be wrong? Twitter Trends, the specter of censorship, and our faith in the
algorithms around us,” Online resource accessed Sept 2018, Culture Digitally, 2011,

7. Seaver, “Algorithms as culture: Some tactics for the ethnography of algorithmic systems.”
8. Gurevich, What is an Algorithm? (Revised).
9. See ProPublica’s reporting on this kind of machine bias: https://www.propublica.org/article/machine-bias-risk-

assessments-in-criminal-sentencing, accessed 07-17-2019
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to determine a loan applicant’s trustworthiness.10 Netflix and Spotify, of course, use algorithms

to recommend movies and music. Meanwhile we use the same word for all these very different

operations. Thus we can think of the “algorithmic” in Alexander Galloway’s 2006 Gaming:

Essays on Algorithmic Culture11 as referring not to any particular kind of logical operation but in

a broad way to all the customs and practices of a world of constant human-computer interaction.

As algorithms have gained currency in popular conversation, there has arisen a dedicated

field of scholarship to understand and critique them. As I show in this chapter, shifts in the meaning

of the word “algorithm” trace a parallel shift in its corresponding critical discourse. Before

personal computers were common, a first wave of critics focused on the abstract philosophical

problems raised by artificial intelligence. Today’s critics, on the other hand, tend to respond

to actual fact of a real algorithmic culture in which they live and work. Unlike science and

technology writers of the 1970s, 80s and 90s, today’s critics of algorithmic culture are not

engaging in abstract philosophical speculation. It is the central claim of this chapter that music

ought to have a role in both kinds of conversations, but in general that it has not. Whether the

subject is the metaphysics of “qualia” and their derivability from matter12 or an algorithm’s

potential to replicate the bias inherent in its ground truth data,13 the study of algorithms in culture

will have important implications for the study of music in culture. It is plausible that today, more

music is listened to than ever before, and it is certain that this listening happens more and more

through algorithmically mediated platforms; it seems obvious that music, as both quintessentially

“cultural” and increasingly “algorithmic” ought to be an important part of the discussion of

algorithmic culture.

Authors frequently raise alarms about the rise of the “filter bubble” in news consumption.

10. Danielle Keats Citron and Frank Pasquale, “The Scored Society: Due Process for Automated Predictions,”
Washington Law Review 89 (2014).

11. Galloway, Gaming: Essays on Algorithmic Culture.
12. One of the central preoccupations in the philosophy of the mind that has been animated by the prospect of

artificial intelligence. See e.g. David Chalmers, The Conscious Mind (Oxford University Press, 1996)
13. Perhaps the most common theme in “critical algorithm studies” today. See, e.g. S.U. Noble, Algorithms of

Oppression: How Search Engines Reinforce Racism (NYU Press, 2018)
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They discuss the potential harms of algorithmic mediation for the functioning of democracy.

They point out the many ways algorithms can embed bias and produce abhorrent kinds of

racial discrimination. Few remark that these issues all have clear analogues in music. Will

recommendation systems lead to musical “filter bubbles” where we hear the same stuff over and

over again? If so, are there toxic cultural effects one might expect to result from that narrowing?

If recommendation systems are just “bad” at recognizing salient features of non-Western music,

does that count as a social justice issue? These musical analogues to basic questions about

algorithmic culture are unmistakable and inviting, but they are rarely addressed. Instead of taking

up these questions, in fact, music is sometimes used as the paradigmatic case where a lack of

algorithmic fairness doesn’t matter:

There is a big difference between a music recommendation service and a news
recommendation service. What are the consequences of biased recommendations in
a subscription-based service like Spotify? Getting a track recommended that you
may not like and will skip. The consequences are small for the consumer.14

The consequences may indeed be small compared with the terrifying prospect of “algo-

rithmic redlining,” but on the other hand, for a serious consumer of music the stakes couldn’t be

higher. The limitations and biases of music recommendation, in other words, should matter to us

exactly to the extent that music matters to us in the first place, and to the extent that we believe

some kind of relationship obtains between music and society in general.

This is not to say that a study of music recommendation would be as urgent as, say, a

critique of the “politics of search.”15 On the other hand, music could form part of such a critique,

shedding light on non-musical questions in a uniquely informative way. As Hillis et al (2013)

point out, for example, it is the same “logic of search” at work in Google, Amazon, Netflix and

Pandora.16 The confrontation of automated curation with the human faculty of aesthetic judgment,

14. Pierre-Nicolas Schwab, “Workshop on fairness and ethics in recommendation systems,” September 18, 2018,
https://www.intotheminds.com/blog/en/workshop-on-fairness-and-ethics-in-recommendation-systems/.

15. Helen Nissenbaum Lucas D. Introna, “Shaping the Web: Why the Politics of Search Engines Matters,” The
Information Society 16, no. 3 (2000): 169–185.

16. Ken Hillis, Michael Petit, and Kylie Jarrett, Google and the Culture of Search (Routledge, 2013), 4.
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perhaps the most stubbornly “human” faculty of all, may open up discussions about that logic that

conventional scholarship is unlikey to spot. These avenues could be of real value to the broadest

questions facing critical algorithm studies, beyond the musical questions themselves. Automated

music recommendation forces us, in other words, to consider the commensurability of the human

and the computational in a way that nothing else can.

It is important to remember that there exists no “before” moment to which we can point,

when music culture was completely innocent of technological meddling, when music discovery

was in some way “pure.”17 Just as it is never quite clear what it would mean to isolate a

“human curated playlist” today, when computer suggestions crowd in upon almost every act of

musical selection, so too it is hard to know what the features of a putatively “human” music

recommendation would have been before the digital age. Nevertheless there are features of

automated music discovery that are undeniably different from forms of discovery that involve

other people. It has been shown, moreover, that “before and after” is in fact exactly how many

contemporary listeners see the advent of digital streaming.18 These changes cannot fail to have

implications for what music becomes popular, and the ways in which people relate to that music.

In a culture where the majority of listening is already mediated by the same kinds of technology

that have received so much attention in the domain of the news media, the criminal justice system,

and the “politics of search,” a critique of algorithmic culture in the musical domain is badly

needed. In this chapter, I review the various literatures where one might expect such a critique,

highlighting the insights I feel are most relevant to my own critique of Spotify. While showing

that, for the most part, the issue of music has been neglected, I lay the philosophical groundwork

for the critiques (humanistic, in Chapter Three, and statistical, in Chapter Five) to follow.

17. I owe this insight to Erin Glass.
18. Sofia Johansson et al., Streaming Music: Practices, Media, Cultures (Routledge, 2018), 162.
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2.1 Mind and Machine: 1960s - 1980s

Forerunners of what has come to be known as Science and Technology Studies, or

sometimes Critical Algorithms Studies,19 appeared as early as the 1960s. This first wave of

authors drew on the insights of the Frankfurt School about the dangers of instrumentalized reason,

and sometimes pursued technical problems in the philosophy of mind that computer technology

raised in new ways. They dealt with the ethics and philosophy of technology in culture, but they

did so in a fundamentally different way from authors today. Even the Frankfurt School, whose

ethical commitments are motivated by the lived traumas of World War Two, and who address

themselves to very real social consequences, have a proleptic quality to them; when we read

first-wave critiques of mechanized or computerized culture, we are, in general, being warned

about the future. Critical algorithm studies today, by contrast, has the empirical fact of existent

“algorithmic culture” to reckon with. In this section, I focus on the proleptic philosophical and

ethical writings of early critics of machine intelligence and technology in culture, and I explain

how many of their ideas remain relevant to the critique of algorithmic music recommendation

today.

No sooner had the discipline of artificial intelligence been declared than it began to

frighten and titillate intellectual culture in general.20 The earliest contributors to the debates about

artificial intelligence in society were probably philosophers of mind, many of whom spotted the

inchoate idea of machine intelligence as a useful wedge into the mind-body problem. Hilary

Putnam, for example, argued in 1960 from a provocative analogy of man and machine that the

whole mind-body problem was actually of little philosophical importance.21 The putative analogy

of man and computer, in other words, is used by Putnam to deflate nothing less than Cartesian

19. For a representative sample of authors in this subfield, see the “Critical Algorithms Reading List” maintained by
Microsoft Research: https://socialmediacollective.org/reading-lists/critical-algorithm-studies/, accessed 07-15-2019

20. The founding of the discipline is customarily dated to the 1956 Dartmouth Summer Research Project on
Artificial Intelligence

21. Hilary Putnam, “Minds and Machines,” in Journal of Symbolic Logic, ed. Sidney Hook (New York University
Press, 1960), 57–80.
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dualism itself. Putnam’s is not a critique of computers but rather a mark of their growing profile

in American intellectual culture and the discipline of philosophy. Putnam’s goal, remarks Martin

Ringle, was “not to solve the Cartesian problem but rather to dissolve it.”22 Similar projects, using

the novel idea of machine consciousness as a new entry point to the mind-body problem, were

undertaken by Michael Scriven23 and Paul Ziff.24

Other philosophers in the 1960s took up the theoretical preoccupations and moral com-

mitments of the Frankfurt School, which had explicitly targeted instrumentalized reason as

the harbinger of consumerism and internalized authoritarianism, to raise issues related to the

emerging automatization of work and culture. For many in the 1960s and 1970s, computers

were simply part of the hegemonic and dehumanizing structures of corporate power.25 Herbert

Marcuse’s 1964 One Dimensional Man, for example, sounds many of the themes of an earlier

generation of Frankfurt School writers, but does so in a way that targets technological rationality

as it existed 20 years after the Dialectic of Enlightenment. Although One Dimensional Man

mostly targets mechanization in the guise of the mindless corporate drone, these critiques also

sometimes foreshadow the technological doomsday fears that would become common in the Cold

War; as early as 1966, for example, Eltin E. Morison’s Men, Machines and Modern Times raises

the question of whether man could “control the imposing system he has created for the specific

purpose of enabling him to manage his natural environment.”26 Whether as an invitation to a new

kind of thought experiments or a harbinger of mechanized apocalpyse, the intellectual allure of

artificial intelligence is as old as computers themselves.

As computer power in particular (as opposed to industrial or mechanical power) rose in

prominence in American culture, and when the intellectual fad for what John Searle would later

22. Martin Ringle, “A Brief History,” in Philosophical Perspectives in Artificial Intelligence (Humanities Press,
1979), 3.

23. Michael Scriven, “The Mechanical Concept of Mind,” Mind 62, no. 246 (1953): 230–240.
24. Paul Ziff, “The Feelings of Robots,” Analysis 19, no. 3 (1959): 64–68.
25. Turner, From Counterculture to Cyberculture: Stewart Brand, the Whole Earth Network, and the Rise of Digital

Utopianism, 2.
26. E.E. Morison and L. Marx, Men, Machines, and Modern Times, The MIT Press (MIT Press, 1966), 16.
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call “strong AI”27 began to take hold across the intellectual spectrum, similar critiques arose that

targeted artificial intelligence more specifically. The best known early critic of “first wave AI” is

Hubert Dreyfus, whose 1965 residency at the RAND corporation led to the widely read pamphlet

Alchemy and AI,28 which in 1972 he developed into the book What Computers Can’t Do.29 In

these projects and a handful of other subsequent works that built on them, Dreyfus picks apart the

overzealous promises of AI researchers, highlights the gaps between those promises and their

actual achievements, and makes an emphatic case that there are inevitable limitations to artificial

intelligence – at least, as long as it restricts itself to disembodied logical symbol manipulation.

Dreyfus is perhaps the first author to approach the subject of machine intelligence by citing the

likes of Heidegger, Merleau-Ponty and Wittgenstein, whose systems of investigation largely reject

the rationalist underpinnings of analytic philosophy – and which, so the argument goes, equally

permeate (and handicap) the discipline of computer science.

For Dreyfus, intelligence is essentially linked to corporeality, so in order to be intelligent

in any meaningful sense computers would need bodies, in particular the part of the body known

as the brain. And as for the brain, we would need to know much more about it before any

attempt to recreate it would be possible. We would need, as Dreyfus points out, a different type

of computer, one whose “only prototype is the little-understood human brain.”30 The promises

of AI fall short, he argues, not because researchers haven’t figured out the best techniques, but

because the whole project is fundamentally misguided. While some of Dreyfus’s critique today

feels overblown – to take just one example, his gloating over the poor performance of chess

programs in 1972 has not aged well – many of his words of caution ring true, and the view of

human intelligence as essentially grounded in formal symbol manipulation has indeed fallen out

of favor. In particular his comments are notable for the way they remain relevant to contemporary

27. J.R. Searle, Mind, Language and Society: Philosophy in the Real World, MasterMinds series (Basic Books,
1998).

28. Hubert L Dreyfus, Alchemy and Artificial Intelligence (RAND Corporation, 1965).
29. Hubert Dreyfus, What Computers Can’t Do: A Critique of Artificial Reason (Harper / Row Publishers, 1972).
30. Dreyfus, Alchemy and Artificial Intelligence, 16.
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debates about embodiment and ongoing feminist critiques of positivist technoscience.31 His

gentler admonitions – for example, that “the need for a critique of artificial reason is a special case

of a general need for critical caution in the behavioral sciences,”32 or the simple idea that human

intelligence may bear an inexorable relationship to the body – have been largely vindicated.

Whether or not today’s less overtly “representational” strategies for machine intelligence

(neural nets, for example, which are explicitly modeled on the human brain) qualify as “more

Heideggerian” and therefore less doomed to fail is an open question.33 Nevertheless the critiques

he has been making since the 1960s continue to resonate today; as Daniel Crevier notes, “time

has proven the accuracy and perceptiveness of some of Dreyfus’s comments.”34 If Dreyfus is

right – if, for example, there is a basic difference between “knowing how” and “knowing that,”

or if AI researchers vastly underestimate the complexity of unconscious knowledge – then such

critical caution is as warranted today as it was in 1972; the “entrepreneurial haze” surrounding

machine learning today is at least as thick as the one Dreyfus perceived in 1972, and the need to

clear the air just as urgent.35

Dreyfus’s first goal always seems to be to debunk what he regards as the overly optimistic

promises of AI researchers, pointing out that although analytic philosophers have leapt to the

philosophical implications of machines that can think and fall in love, in point of actual fact

they remained (at least as of 1970) incapable of doing all but the simplest tasks. This approach,

which Dreyfus himself characterizes as “polemical,” earned him the scorn of much of the AI

community (scorn that revealed, as he put it, the “unscientific character of the field”36). He also

raises other concerns, however, connected not to computers but to people and to the philosophical

31. See, e.g. Cecilia Åsberg and Nina Lykke, Feminist technoscience studies, 2010 and Chikako Takeshita, “The
IUD in Me: On Embodying Feminist Technoscience Studies,” Science as Culture 19, no. 1 (2010): 37–60

32. Dreyfus, What Computers Can’t Do: A Critique of Artificial Reason, xxvii.
33. Hubert L. Dreyfus, “Why Heideggerian AI Failed and How Fixing it Would Require Making it More Heidegge-

rian,” Philosophical Psychology 20, no. 2 (2007): 247–268.
34. Daniel Crevier, AI: The Tumultuous History of the Search for Artificial Intelligence (Basic Books, 1993), 125.
35. Hubert Dreyfus and Stuart E. Dreyfus, Mind Over Machine: The Power of Human Intuition and Expertise in

the Era of the Computer (The Free Press, 1986), xv.
36. Ibid., 8.
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community’s evolving conceptions of human intelligence: “what are the risks,” Dreyfus asks,

“of enthusiastic and ambitious attempts to redefine our intelligence in [computer terms]?”37 For

Dreyfus, the problem is not simply intellectual disingenuousness in the AI community, but the

real dangers posed to human culture of imbibing their reckless enthusiasm. If we accept the idea

of mind as a digital computer compiling facts and applying logical rules, we run the risk not only

of construing (wrongly) that system as intelligence, but also (even worse) of coming to equate

(wrongly) that kind of thing with true intelligence. The danger then would be that we would

want to imitate computers. Since, as compilers of facts we will indeed always fall short of the

computer, in endeavoring to mimic them we risk emerging genuinely less competent than “the

systems [we] have been trained to imitate.”38 The result will be not only the apparent validation

of the AI industry, but also the widespread degredation of real human intelligence. Dreyfus’s

critique, then, is as much a matter of technical philosophy of mind as it is a kind of social crusade.

His willingness to blend the two is perhaps above all what set the AI community ill at ease, but

there is no way to make the argument – that machine intelligence is “wrong” both intellectually

and morally – without sounding at least a little hostile.

The implications for the automation of musical tasks of any sort are clear; as a form of

human intelligence that is always embodied and extremely difficult to explain logically, music

would seem, at a minimum, to be a good piece of evidence for Dreyfus.39 The problem of musical

creativity has, after all, survived the encroachments of machine intelligence much better than

board games and other classification tasks, both of wh. Dreyfus also makes the important note

that mistaking logical symbols for intelligence is not just wrong but dangerous, and threatens to

initiate a self-reinforcing trend that will profoundly degrade humanity. Accept the equation of

37. Dreyfus and Dreyfus, Mind Over Machine: The Power of Human Intuition and Expertise in the Era of the
Computer, xi.

38. Ibid., 206.
39. “Embodiment,” in its various guises, has emerged as a common theme in contemporary music studies, from

the area of “embodied music cognition” to feminist music theories that foreground and critique the corporeal
situatedness of theorist; see e.g. Suzanne G. Cusick, “Feminist Theory, Music Theory, and the Mind/Body Problem,”
Perspectives of New Music 32, no. 1 (1994): 8–27 and Holly Watkins and Melina Esse, “Down with Disembodiment;
or, Musicology and the Material Turn,” Women and Music: A Journal of Gender and Culture, no. 19 (2015)
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logic and intelligence and you will inevitably damage the part of yourself that made the equation

wrong in the first place. The effort to explain what a musical version of this insight might look

like is a major part of what this dissertation is about.

Although much of this line of argumentation is derived from the “soft” world of Conti-

nental Philosophy, in the 1970s similar critiques began to emerge from within the technological

world itself. An important early example is Joseph Weizenbaum, whose influential 1976 work,

Computer Power and Human Reason, probes the limitations of artificial intelligence and the

ethics of applying them in society. Weizenbaum was an MIT mathematician who wrote the

computer program ELIZA, a crude but hugely popular chat bot that simulated the behavior

of a Rogerian psychotherpaist by asking open-ended questions that referred in general ways

to previous elements of a recorded conversation. The program got a lot of attention, and was

probably responsible for a significant part of the popular fascination with AI that the book ends

up targeting. Weizenbaum combines a general history of computing (complete with instructions

on how to build a Turing Machine from rocks and toilet paper) with an impassioned plea for

humanistic knowledge. It may be the first attempt from within the discipline of computer science

itself to question its emerging prestige and to raise moral questions about its role in society.

Weizenbaum had written ELIZA as an exercise in the emerging discipline of Natural

Language Processing. It was a casual experiment that demonstrated as many limitations as it did

capabilities, and it was certainly never intended as a tool with any therapeutic value. Nevertheless

it was looked to by the lay public, computer scientists, and even some clinical psychologists

as a true example of machine intelligence. Computer science in the 1970s, after all, was still

very much taken with the prospect of thinking machines – little had changed in that regard since

Herbert Simon declared in 1957 that “there are now in the world machines that think, that learn,

and that create.”40 Some psychologists even believed it could eventually be used in clinical

practice.41 Weizenbaum, whose love for psychology is constantly apparent throughout, was

40. Cited in Dreyfus, Alchemy and Artificial Intelligence, 3
41. Kenneth Mark Colby, James B Watt, and John P Gilbert, “A computer method of psychotherapy: Preliminary
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horrified by the idea that anyone would want to substitute the empathy and compassion of a

human psychologist with a computer program. For Weizenbaum, these human capacities are a

task that, even if we could mimic them convincingly (which we couldn’t then and cannot now),

should never be delegated to computers.

It is important to note that Weizenbaum, as a critic of AI from within the ranks of its

researchers, represented a distinct minority. A view more representative of the mainstream in

1970s AI would be Roger Schank, who regards the discipline’s philosophical dimensions as

basically irrelevant: “to ask whether [computers] really understand is beside the point.”42 Among

its many other virtues, Weizenbaum’s book is an instructive reminder of just how many people,

like Schank, found the promises of “strong AI” compelling in the 1970s, and the degree to which

the bald functionalism of the “Turing Test”43 had penetrated discussions of intelligence generally.

This kind of stubborn functionalism is something Roger Schank continues to push for as a

philosopher of education today, from, among other places, the platform of Trump University.44

From the vantage point of today’s intellectual and technological climate, it is startling to think

that AI of the 1970s, in all its crudeness, had already “set as its goal the building of machines

whose range of thought is to be co-extensive with that of humanity itself.”45 And yet it really had;

the power of the computer to do certain difficult things easily seems to have imbued the Turing

Test with a certain unwarranted scientific objectivity, and convinced many people that human

intelligence really was a matter of computer programming.46 Today the Turing Test itself seems

to have fallen away from the debate over what is intelligence; Searle’s (1980) refutation has done

communication,” The Journal of Nervous and Mental Disease 142, no. 2 (1966): 148–152.
42. Roger Schank, “Natural Language, Philosophy and AI,” in Philosophical Perspectives in Artificial Intelligence

(Humanities Press, 1979), 222.
43. The notion, proposed by Alan Turing, that a computer whose behavior is not distinguishable from human

behavior is, ipso facto, intelligent.
44. Schank says Trump University really wasn’t all that bad: https://www.linkedin.com/pulse/

trump-university-i-state-accreditation-issue-roger-schank, accessed 10-10-2019.
45. Joseph Weizenbaum, Computer Power and Human Reason: From Judgment to Calculation (W. H. Freeman /

Company, 1976), 197.
46. As mathematicians constantly have to remind us, the widely known Turing Test exists on a totally different

scientific plane from the idea of the Turing Machine. The first is essentially a speculative thought experiment, while
the second refers to a true mathematical proof.
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battle with it amidst 20 years of heated debate, while Chomsky has over the years deflated it in

much simpler terms.47 But the prevailing attitudes about machine intelligence in the 1970s seem

to be a fusion of Skinnerian behaviorism and a dogmatic optimism; thus a 1974 publication of

writings on machine intelligence is able simply to assume that “humans are programmed from

various sources – genetics, parents, teachers, etc, in exactly the same way as machines,”48 which

is the very notion Chomsky’s famous 1959 review of Skinner’s Verbal Behavior is usually thought

to debunk.49

Ultimately Weizenbaum’s work is a heartfelt lament against instrumentalized reason,

one that sounds Adornian themes without ever citing him. It is an extended exhortation to

draw a line between human and machine intelligence, on both technical and ethical grounds.

“The question,” he writes, “is whether or not every aspect of human thought is reducible to a

logical formalism, or, to put it into the modern idiom, whether or not human thought is entirely

computable.”50 Ultimately this is the very same question raised by automated recommendation,

and for Weizenbaum the answer is emphatically no: “There are some human functions for which

computers ought not to be substituted. It has nothing to do with what computers can or cannot be

made to do.”51 From the perspective of at least one person who actually built the tools that the

public had come to regard as proof that machines could think, the line between human mental

states and their machine simulacra was a hard one.

In some ways the book is written against the same wave of enthusiastic “strong AI”

partisans targeted by John Searle’s famous 1980 essay, “Minds, Brains and Programs,” where the

“Chinese Room” thought experiment is first laid out.52 Briefly stated, the Chinese Room thought

experiment shows that it is possible to conceive of behaviors that seem as intelligent as you like

47. As he often points out, asking whether computers can think is about as meaningful as asking whether submarines
can swim; if you want to call that swimming, then yes, they can.

48. F.H. George and J.D. Humphries, eds., The Robots are Coming (National Computing Centre, Ltd. Publications,
1974), 19.

49. Chomsky, “A Review of B. F. Skinner’s Verbal Behavior.”
50. Weizenbaum, Computer Power and Human Reason: From Judgment to Calculation, 12.
51. Ibid., 270.
52. John Searle, “Minds, brains, and programs,” Behavioral and Brain Sciences 3, no. 3, 417–457.
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by simple means of formal syntactical symbol manipulations: a person with infinite time for

computation, the correct instruction booklets, but no knowledge of Chinese, can use formal logic

to produce outputs indistinguishable from idiomatic Chinese. But these manipulations would

remain purely syntactic, and would bear no necessary relationship to semantics (the meanings

of things); the person cannot be said to know the meaning of the output. In the same way,

computers, logical manipulators and nothing more, cannot be said to have intelligence in the

human sense (which depends on meaning). The Chinese Room targets, that is, people with

grandiose conceptions of AI – grandiose not in the sense of believing AI capable of doing things

it cannot, but rather in interpreting the mere execution of tasks as equivalent to intelligence itself.

As Searle puts it, he is writing against the notion that “the appropriately programmed computer

really is a mind, in the sense that computers given the right programs can be literally said to

understand and have other cognitive states.”53 As strange as it may seem today, for the lay public

in 1980, awed by the still-new machines, as well as an intellectual community inheriting the

attitudes of the Behaviorist consensus, this was still a common position. For Searle, part of the

problem is a “residual behaviorism or operationalism” apparently lingering in 1980s intellectual

culture. This is attended by a lingering Dualism as well, another problem Searle refers to in the

1980 paper.

There are different emotional charges at work in Weizenbaum and Searle; AI inspires

ethical revulsion in Weizenbaum, who denounces it as “obscene” and “immoral.” Searle assumes

typical analytic remove, arguing from the non-identity of syntax and semantics, but in many ways

Weizenbaum’s work (1976) actually anticipates Searle’s (1980). In spite of this, Searle actually

takes aim at Weizenbaum’s ELIZA, perhaps unfairly aligning it with Roger Schank’s quest to

model human understanding in general, or the “general problem solver” research undertaken by

Newell, Simon and Shaw for the RAND corporation.54 Although in actuality Weizenbaum did not

53. Searle, “Minds, brains, and programs,” 417.
54. Researchers developing early AI software designed to model the decision making processes of “generals,

industrial planners and public policy makers.” See Dreyfus and Dreyfus, Mind Over Machine: The Power of Human
Intuition and Expertise in the Era of the Computer, 8. See also Roger C. Schank and Robert P. Abelson, Scripts,
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consider his chat bot to have achieved any intelligence worthy of the name, ELIZA was familiar

enough material to stand in for predominant ideas about the nature of machine intelligence, and it

serves as part of Searle’s punching bag. Where Searle’s refutation of “strong AI” rests primarily

on the difference between syntax and semantics – and the claim that a system of formal symbol

manipulation can never approach the latter, no matter how impressive its dexterity with the former

– Weizenbaum’s is more deeply felt and personal, while at the same time having a firmer footing

in the technical foundations of computer science.

In 1986, Terry Winograd, a prominent early computer science researcher best known

for his experiments in language parsing, along with the philosopher Fernando Flores, wrote

a book about machine intelligence that incorporated a systematic critique of the tradition of

rationalist philosophy entitled Understanding Computers and Cognition. This book took up

many of the themes introduced by Dreyfus, but, as the co-authored product of a philosopher

and computer scientist, joined them to the technical literature in a way Dreyfus could not. The

world of computer science, the authors point out, is completely dominated by that rationalist

tradition, and perhaps owing to the prestige and success of modern science, this tradition has

crystallized into “the very paradigm of what it means to think and be intelligent.”55 The rationalist

tradition, by virtue of the impressiveness of modern scientific achievements, has displaced all

other forms of intelligence to such an extent that their existence is barely acknowledged at all

anymore. A primary aim of this work is to demonstrate the “non-obviousness” of these rationalist

assumptions that so dominate the culture of computer science research and our culture more

generally. In arguing that “computers do not exist outside of language,” this work attempts to

extend to computer science the movement in the cognitive sciences away from traditional notions

of rationalism, correspondence and representation. As Eleanaor Rosch was demonstrating that the

mind seems not to categorize according to necessary and sufficient conditions, but rather exhibits

Plans, Goals and Understanding: an Inquiry into Human Knowledge Structures (Hillsdale, NJ: L. Erlbaum, 1977)
55. Terry Winograd and Fernando Flores, Understanding Computers and Cognition (Addison Wesley Publishing

Company, 1986), 16.

84



“prototype effects” wherein some members of a group tend to be more characteristic than other

members of the same group, questions about the viability of the computational model of the mind

made it int othe computer sciences.56 The authors do not go so far as to extend this critique to the

domain of ideology (that sort of thing comes later) but the work registers an important objection

the emerging field of AI, one more technically grounded than Dreyfus.

In discussing the history of critiques of artificial intelligence, it is important to mention

the organization Computer Professionals for Social Responsibility, a little-known forerunner to

today’s movement for “fairness” in machine learning. Before the publication of Understanding

Computers and Cognition, Terry Winograd was active in this group, which began to meet in 1981

and formally incorporated as a 501(c)(3) in 1983. Although initially concerned with critiquing

the use of AI in warfare, the organization eventually took on a wide range of issues in the ethics

of computing, organizing conferences and releasing a quarterly journal. They never published on

issues of aesthetics directly, but they did address the related issue of intellectual property law in

the digital era. The question of copyright law’s commensurability with algorithmic culture is, as

I show in Chapter One, a central concern for any study of streaming music in the 21st century.

Although the CPSR never approached the issue of music directly, they were one of the first groups

to spot it as an important area in need of legal and scholarly revision.

2.2 Living with Machine Intelligence: 1990s - present

Not all writing on algorithmic culture originates in analytic philosophy and computer

science. With the rise of the personal computer and growing profile of the tech sector in the

global economy, more and more disciplines took an interest in them. Perhaps most prominent

among these new critics of technology in culture is Donna Haraway, whose wide ranging work

56. See Eleanor Rosch et al., “Human categorization,” Studies in cross-cultural psychology 1 (1977): 1–49 and
George Lakoff, Women, Fire and Dangerous Things: What Categories Reveal about the Mind (University of Chicago
Press, 1987)
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manages to tie the futility of the Star Wars missile defense program to a feminist critique of

positivistic knowledge and various flavors of post-humanism. While her work remains enormously

influential in all manner of studies of technology in culture, it is Haraway’s readers who tend to

critique the relationship of computers to culture more specifically – Haraway’s deployment of the

cyborg concept, if anything, almost seems to assume a certain frictionless compatibility between

machines and people, a compatibility that is mobilized in service of a broader feminist project.57

A telling example of Haraway’s legacy, but where people and computers are kept at odds

rather than brought together, is Gilles Deleuze’s 1992 “Postscript on the Societies of Control,”

which applies a postmodernist lens to a problem that, so far, we have seen only analytic approaches

to.58 Here, Deleuze argues that Foucault’s “society of disciplinarity” has, in the age of the personal

computer, given way to a society of “control.” If disciplinarity was bad, control is even worse:

Deleuze calls it the “new monster” and exhorts readers to “look for new weapons.” This monster

is connected specifically to computers, which have replaced the traditional tools of the 19th

century (“levers, pulleys, clocks” – presumably the tools of Foucault’s “disciplinary” paradigm)

and which usher in a new pernicious form of capitalism. In a post-disciplinary, computerized

society, all production is relegated to the third world, while the wealthy engage in financial trade

wholly abstracted from material goods. Deleuze’s engagement with computer science is of a

general nature – its claims in that regard are vague enough to have been made as reasonably about

1970s and 1990s technology, and the relationship between personal computing and economic

trends that he mentions are simply general features of economic globalization – but the article

does mark a new kind of pessimism in humanistic writing about technology that is not found in

early critiques. Where Weizenbaum, for example, is merely confronting the alarming prospect

of man’s transformation into a “clock-work” (and hoping to forestall it), Deleuze regards the

transformation as a fait accompli. He does not call for any specific action, which in his voice

57. “People are nowhere near so fluid,” she writes. Whereas “cyborgs are ether, quintessence.”Donna Haraway, “A
Cyborg Manifesto: Science, Technology, and Socialist-Feminism in the Late Twentieth Century,” in The Postmodern
Turn: New Perspectives on Social Theory, ed. S. Seidman (Cambridge University Press, 1994), 89

58. Gilles Deleuze, “Postscript on the Societies of Control,” October 59 (1992): 3–7.
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would probably sound rhetorically naive, but he gives a charismatic expression to a grim diagnosis

of the emerging digital culture, one that prefigures the fatalism of many contemporary critics of

“techno-optimism.”59

With the rise of personal computing and the first cycle of dot com boom and bust, this

kind of pessimism has only increased. Daniel Crevier, in his 1993 AI: The Tumultuous History

of the Search for Artificial Intelligence, surveys some many of the emerging concerns about the

future of artificial intelligence. In a concluding chapter called “The Silicon Challengers in Our

Future,” he discusses the grim prospect of a military takeover by the machines, their potential

to facilitate mass surveillance, and the unemployment crisis that could follow the advent of

artificially intelligent robots.60 Yet he also leaves room for what he calls “the blissful scenario,”

where “AI could act as an instrument to further democracy,” and “the advent of [the] personal

librarian and intelligent database browsing programs [will] help maintain an informed citizenry.”61

In this striking passage, what Crevier holds out as the best hope for computer technology – that

the personal librarian will lead to a better functioning democracy – turns out to be the very thing

that is most frequently indicated as technology’s most deleterious effect; many commentators

argue that it is precisely this kind of technology – usually termed “personalization” today –

that has led to the media “filter bubble”62 and the decay of the democracy in the United States.

Although the book predicts, in general, “mostly beneficial effects,” it also sees AI as “immensely

threatening,” and even predicts that the “main battles of the 21st century” will be about who – us

or the machines – will control the future of the earth.63

In the first two decades of the 21st century, as critical algorithms studies has matured

into an interdisciplinary research area, the focus has shifted from the philosophical dimensions

of AI to its practical consequences. In the 1970s, 80s and 90s, writing about the intersection of

59. Samuel Alexander, “A critique of techno-optimism: Efficiency without sufficiency is lost,” Melbourne Sustain-
able Society Institute, Working Paper (WP) 1 (2014): 14.

60. Crevier, AI: The Tumultuous History of the Search for Artificial Intelligence, 312-334.
61. Ibid., 337.
62. Eli Pariser, The Filter Bubble: What the Internet is Hiding from You (The Penguin Press, 2011).
63. Crevier, AI: The Tumultuous History of the Search for Artificial Intelligence, 341.
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technology and society had, in one way or another, flowed from the philosophical issues raised

by the prospect of artificial intelligence. Even Joseph Weizenbaum’s impassioned admonitions

not to let technology supplant human interaction were basically rooted in abstract intellectual

commitments about the limitations of computation; normative though they undoubtedly were,

they were still essentially philosophical. Critical algorithm studies today, by contrast, is more

interested in ethical and social implications per se; the question is no longer what technology is

capable of, nor is it the proper definition of “intelligence.” Even less is the discipline interested

in what insights AI might yield to us about the actual function of the mind (the essence of the

kind of AI that, in different ways, Searle and Schank had actually endorsed). For a diverse range

of scholars confronting the lived reality of an algorithmically mediated world, the primary task

is simply to understand that world and critique it where it produces unjust outcomes – which it

turns out to do frequently.

A number of the major titles in this area have targeted a general audience. Eli Pariser’s

widely read The Filter Bubble (2011), for example, highlights the ways in which our present

media culture, monopolized by a handful of corporations and optimized for user retention, poses

a threat to democracy. In the era of “personalization” (which Pariser dates to 2009), instead of the

free flow of opposing ideas envisioned by the Internet’s early adopters, we are instead “more and

more enclosed in our own bubbles.”64 Pariser argues, moreover, that the same technology that

makes the vast reach of the 21st century Internet manageable – namely, personalization – also

prevents it from realizing that emancipatory potential; OK Cupid’s recommendation algorithms

(or, for that matter, Spotify’s) and Cambridge Analytica are, in a sense, two sides of the same

coin. Christopher Steiner’s 2012 Automate This: How Algorithms Took Over Our Markets, Our

Jobs, and the World is a catalogue of the various professions threatened by the algorithmic

revolution.65 Jacob Silverman’s 2015 Terms of Service is a consummate tirade against the social

64. Pariser, The Filter Bubble: What the Internet is Hiding from You, 5.
65. C. Steiner, Automate This: How Algorithms Took Over Our Markets, Our Jobs, and the World (Penguin

Publishing Group, 2012).
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ills of networked society – “I shared therefore I am,” he quips, satirizing the corrosive way our

digital personas have supplanted real human interaction.66 Frank Pasquale’s 2016 The Black Box

Society shows how financial institutions frequently embed self-serving and reckless behavior in

their decision making algorithms, hiding the same old strategies of ruthless capitalism beneath

the apparently neutral veneer of algorithmic technology.67 Many of these same themes are taken

up in Cathy O’Neil’s 2019 Weapons of Math Destruction, which focuses on how big data, and

the apparently neutral idea of a mathematical model, can be wielded against the consumer in

concerning ways.68 Safiya Umoja Noble’s 2018 Algorithmic Oppression focuses specifically on

the negative impact algorithmic mediation can have for racial justice, a development for which

Noble coins the widely adopted phrase “technological redlining.”69 Shoshana Zuboff’s 2019 The

Age of Surveillance Capitalism is an extended critique of the covert sale of surveilled user data,

a practice that accounts for a large portion of all Internet commerce. The era of “surveillance

capitalism,” Zuboff argues, is one in which the surveillance apparatuses of the world’s major

corporations already exceed those of the worst totalitarian states in history. They are, moreover,

already leveraged to control our offline behaviors, often in ways we do not perceive: “surveillance

capitalism preys on dependent populations who are neither its consumers nor its employees and

are largely ignorant of its procedures.” Similar themes are sounded in Kate Crawford’s frequently

cited article for the Harvard Business Review, “The Hidden Bias in Big Data.”70

There are also many critical works for academic and technical audiences. The possibility

of machine bias, defined as “unfair discrimination against certain individuals or groups of

individuals,” was spotted in 1996, years before it became a popular subject, by Batya Friedman

66. Jacob Silverman, Terms of Service: Social Media and the Price of Constant Connection (Harper Collins, 2015),
ix.

67. Frank Pasquale, The Black Box Society: The Secret Algorithms That Control Money and Information (Harvard
University Press, 2015).

68. Cathy O’Neil, Weapons of Math Destruction: How Big Data Increases Inequality and Threatens Democracy
(Crown Publishing Group, 2016).

69. Noble, Algorithms of Oppression: How Search Engines Reinforce Racism.
70. Kate Crawford, “The Hidden Biases in Big Data,” 2013, accessed August 10, 2019.
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and Helena Nissenbaum.71 Elizabeth Van Couvering’s 2007 anthropological study of high ranking

employees of various search companies reveals that the “schemas” according to which search

engines are designed are thoroughly market-oriented and stand distinctly at odds with the values of

“objectivity, fairness, diversity, and representation.”72 Kate Crawford highlights the incongruence

between the logic of the algorithm, which, she says, will tend to select a clear winner, and the

logic of “agonistic pluralism” (a term borrowed from Chantal Mouffe73), which she proposes

as a new design ideal for engineers.74 Jenna Burrell in 2016 proposed a subtle taxonomy of

algorithmic opacity: opacity can refer to corporate secrecy, consumer illiteracy, or, more subtly, as

the mismatch between mathematical and human logic.75 Burrell also makes the important point

that many academic studies of algorithmic culture, even where they ask the right questions, fail to

address the actual facts of the systems in question. Nick Seaver (2017) sounds this same theme,

while resuming the scuffles from the discipline of math and logic over what should constitute an

algorithm; too much debate takes place over algorithms, he claims, without any real consensus

about the subject under consideration. Seaver raises this issue in a way that connects it to his

training as an anthropologist, drawing on interviews and participant-observer sessions with the

actual designers of various recommendation engines. He concludes that more important than the

ontological dimension of algorithms is the cultural one; algorithms should be studied not only in

culture, but as culture. They should be thought of “as heterogeneous and diffuse sociotechnical

systems, with entanglements beyond the boundaries of proprietary software.”76

David Berry (2019) takes Seaver’s idea seriously, calling for a general “critical theory

71. Helena Nissenbaum and Batya Friedman, “Bias in Computer Systems,” ACM Transactions on Information
Systems 14, no. 3 (1996).

72. Elizabeth Van Couvering, “Is Relevance Relevant? Market, Science, and War: Discourses of Search Engine
Quality,” Journal of Computer-Mediated Communication 12, no. 3 (April 2007): 866–887.

73. Chantal Mouffe, “Deliberative Democracy or Agonistic Pluralism?,” Social Research 66, no. 3 (1999): 745–
758.

74. Kate Crawford, “Can an Algorithm be Agonistic? Ten Scenes from Life in Calculated Publics,” Science,
Technology, and Human Values 41, no. 1 (2016).

75. Jenna Burrell, “How the machine ‘thinks’: Understanding opacity in machine learning algorithms,” Big Data
and Society 3, no. 1 (2016).

76. Seaver, “Algorithms as culture: Some tactics for the ethnography of algorithmic systems,” 10.
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of algorithms,” to combat the “cult of data-ism,” which has in certain cases militated against

theorizing itself, including the type of theorizing that is the scientific method.77 Berry argues that

the best way to counter the “data-ism” trend is to look at particular cases where algorithms operate

unjustly and examine them in detail; his examples relate primarily to Amazon’s “Mechanical

Turk” service, which enables companies to hire very low wage workers to handle menial tasks

that are nevertheless still impossible (or not cost-effective) to automate. As Berry notes, Amazon

conceives of the Mechanical Turk program as a modular part of a larger computational system.

This renders the human employees as essentially a subset of the computer program, reversing

the traditional way in which we conceive of automation in the workforce. Where for most of

the history of computation, the problem has been to get computers to behave like people, here

the business model is explicitly predicated on getting it the other way around, and paying the

humans almost nothing.78 Berry sees this as a strategy for keeping the system’s inherent injustices

invisible. It is only by exposing this kind of structure, by “contesting the invisibility of algorithmic

infrastructure,” that the badly needed critical theory of algorithms is possible.79

Critical Algorithms Studies and Music

While these critiques have grown in number and intensity over the 21st century, they

continue not to spot music as a viable area of critique or even a useful case study. Authors from

critical algorithms, science and the digital humanities all seem to come close but never quite

take up the subject of music. Especially because these areas often intersect with the scholarly

world of Sound Studies, the absence of much critical work on streaming audio is especially

surprising. As a place where machine learning, recommendation (which was originally part of

77. David M. Berry, “Against Infrasomatization: Towards a Critical Theory of Algorithms,” in Data Politics:
Worlds, Subjects, Rights, ed. Didier Bigo, Engin Isin, and Evelyn Ruppert (Routledge, 2019).

78. On the appalling wages of Mechanical Turk, TaskRabbit and the gig economy generally, see the
outstanding reporting of Sarah Kessler in “Pixel and Dimed”: https://www.fastcompany.com/3027355/
pixel-and-dimed-on-not-getting-by-in-the-gig-economy, accessed 10-10-2019

79. Berry, “Against Infrasomatization: Towards a Critical Theory of Algorithms,” 61.
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library science), classification and digital signal processing are all brought together with the

plainly humanistic domain of musical aesthetics, Spotify seems a natural object of study here.

But the Digital Humanities, for the most part, seems to prefer to remain outside the objects it

studies. As Jonathan Sterne puts it, “a lot of the best digital humanities work in sound studies is

pretty low-tech.”80 As a result, the field gestures at some of the issues that would be central to a

critique of Spotify, but consistently shies away from the technical dimension that would deepen

them. In the edited volume Digital Sound Studies, for example, Jonathan Stearne speaks of the

“tyranny” of the audio player. He gestures at music recommendation but only as an example of

something with which digital humanities is not particularly concerned.81

What comes closest to a study of streaming technology from the world of digital sound

studies is probably Jonathan Sterne’s 2012 work on the MP3 format, MP3: The Meaning of

a Format.82 This book is both a history of the MP3 compression format and an essay into its

meaning as a cultural artifact. Because the MP3 compression standard played such a role in

the development of the digital commodity, this book inevitably raises issues related to Spotify

today. Stearne shows that the MP3, like the telephone, depends upon the psychoacoustics task

of reducing an audio signal as much as possible while preserving its musical recognizability.

Sterne argues that the MP3 therefore bears the “traces” of telephony and other related electronic

DSP techniques. And so it should be studied alongside these other media. The digital format,

no less than the more visibly physical technologies, has informed the“dimensions of twentieth

century sound history.”83 This book is, in other words, an exploration into meaning of a now

ubiquitous music technology: exactly what I am calling for with respect to Spotify today. The

very technology in question, moreover, is directly adjacent to the rise of streaming audio; such

was the cultural force of the MP3 that debates about music culture in the early days of the Internet

80. Jonathan Sterne et al., “Demands of Duration: The Futures of Digital Sound Scholarship,” in Digital Sound
Studies, ed. Mary Caton Lingold, Darren Mueller, and Whitney Trettien (Duke University Press, 2018), 268.

81. Ibid., 277.
82. Jonathan Sterne, MP3: The Meaning of a Format (Duke University Press, 2012).
83. Ibid., 9.
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were simply debates about the MP3.84 The revolution that we now associate with streaming

digital music was originally conceived of as the “MP3 revolution.”85 Sterne may be the first

author to realize that not only are data and politics inseparable – a familiar enough theme among

critics of digital culture – but so are data and culture itself.

Of the scholarship that addresses music streaming itself, the majority is from a business

perspective. Among this number are not only many popular histories of Napster86 but also

scholarly works on the future of the music business in the digital era.87 Some of these business

and copyright oriented works raise the broader issue of what the consequences of digital culture

will be for the nature of musical meaning; Jeremy Wade Morris, for example, makes passing

mention of the “changing relationship people have with their music or the changing role of music

in the contemporary moment.”88 The second question refers to way music services tend to relate

music to observed user behavior (hence, e.g. the Spotify “work-out” and “study” and “sleep”

genres). The first question is more complex, and is not something Morris really approaches. It

requires a full length study of its own, which is in many ways the project undertaken from an

empirical perspective in Sofia Johansson et al., Streaming Music: Practices, Media, Cultures

(Routledge, 2018) (discussed below). Many other writers address the precise nature of the

supposed “recovery” for the music industry inaugurated by Spotify. While these are important

questions that do bear some relationship to my central question, I regard them as mostly outside

the purview of this chapter.

There do exist a few works that address the question of streaming music in culture

directly. There are two recent books that take the issue up in the context of broader conversations

84. Matthew David, Sharing: Crime Against Capitalism (Polity Press, 2017).
85. See M. McCandless, “The MP3 revolution,” IEEE Intelligent Systems and their Applications 14, no. 3 (1999):

8–9. Spotify, however, uses the Ogg Vorbis compression format today, which is higher fidelity than MP3.
86. E.g. Merriden, Irresistible Forces: The Business Legacy of Napster and the Growth of the Underground Internet

and Joseph Menn, All the Rave: The Rise and Fall of Shawn Fanning’s Napster (Crown Business Publishing Group,
2003)

87. E.g. Kot, Ripped: How the Wired Generation Revolutionized Music and Patrik Wikstrom, The Music Industry:
Digtal Media and Society Series (Polity Press, 2013)

88. Morris, “Music in the Cloud,” 191.
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about the nature of taste: Tom Vanderbilt, You May Also Like: Taste in an Age of Endless

Choice (Knopf Doubleday Publishing Group, 2016), alongside discussions of taste in food and

colors, visits the headquarters of the Echo Nest and interviews Brian Whitman (see Chapter

Three). There, Whitman outlines his company’s strategy for modeling user taste in a sort of

conversational way, but Vanderbilt’s critical discussion of that strategy is minimal. Nolan Gasser,

Why You Like It: The Science and Culture of Musical Taste (Flatiron Books, 2019), on the other

hand, is written by a former Pandora “musicologist” (their word for the employees in charge

of creating their meticulous database of labeled music) who also happens to be an accredited

academic Musicologist. Gasser’s project is really an extended analysis and tabulation of different

areas of musical taste, informed by his first hand experience working to profile and predict it

at Pandora. The conceit of a “genotype,” defined as “a metaphoric expression signifying the

boundaries, characteristics and content of one’s musical taste,” is, as far as I can tell, ultimately

indistinguishable from the corporate concept of a “taste profile,” and the book simply surveys a

handful of these at great length. There are chapters on, for example, the “hip hop genotype” and

the “jazz genotype,” which try to discern what musical features would be important to listeners of

those genres.89 The book is essentially a list of the ways and reasons people can and do like music;

no attempt is made to consider the commensurability of that list with automated recommendation,

or the appropriateness of the automated discovery paradigm in general.

There are some important exceptions to the prevailing absence of attention that this issue

has been given. In 2016 the journal Popular Communication published a special issue on Music

Discovery. The contributing authors, while consistently addressing automated music discovery

itself, also steer clear of technical issues. Ingvar Kjus, for example, looks at the qualitative

experience of streaming services, highlighting the disparity between their promise and what they

89. Comparisons of those features with the “salient” features derived quantitatively in Chapter Five of this
dissertation are interesting – see Appendix II
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deliver.90 Raphael Nowak concentrates on the idea of “discovery” as a sort of affective puzzle.91

Gavin Carfoot’s essay on the power relations inherent in contemporary acts of musical discovery,

and the way they tend to resume patterns from the colonial era, is highly relevant to a critical

discussion of Spotify, but that is not a connection he actually makes.92 Anja Hagen attempts such

a connection, but her data on Spotify is all hand-collected and feels somewhat anecdotal.93

There are two recent books that actually do approach the question, with serious attention to

both music and recommendation. The first is Johansson et al’s 2018 Streaming Music: Practices,

Media, Cultures. This work is a portrait of the transition from fixed media to streaming (what

Eriksson et al will call “music as experience”). Its general objective is to “shed light on what these

transformations in music culture mean for music listeners.”94 This is, for the authors, a question

of the “meaning of music as it settles online,” and as such the discussion focuses on theorizing the

empirical practices of streaming customers. Drawing on interviews with young streaming music

customers in Sweden and Moscow, conducted over three years, the authors try to understand how

the advent of streaming audio has actually changed the way people relate to music. The results

are illuminating. The Spotify platform is one among a handful the study takes on, and one of

their findings is that consumers mimic with striking fidelity the image Spotify tried to cultivate;

Spotify’s music is a way to “structure the everyday.”95 This finding agrees with my analysis of

the Echo Nest engine (Chapter Three), as well as the marketing strategy Spotify has taken in

recent years (consistently advertising its ability to create musical “soundtracks” for everyday life.

Spotify is, moreover, widely regarded by informants as having a homogenizing effect; it depends,

90. Yngvar Kjus, “Musical exploration via streaming services: The Norwegian experience,” Popular Communica-
tion 14, no. 3 (2016): 127–136.

91. Raphael Nowak, “When is a discovery? The affective dimensions of discovery in music consumption,” Popular
Communication 14, no. 3 (2016): 137–145.

92. Gavin Carfoot, “Musical discovery, colonialism, and the possibilities of intercultural communication through
music,” Popular Communication 14, no. 3 (2016): 178–186.

93. Anja Nylund Hagen, “The Playlist Experience: Personal Playlists in Music Streaming Services,” Popular Music
and Society 38, no. 5 (2015): 625–645.

94. Johansson et al., Streaming Music: Practices, Media, Cultures, 1.
95. Ibid., 93.
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so say the authors, on a paradigm of “providing more of the same.”96 The authors argue that

this seems to privilege “closed” musical experiences, a theme that other others (including me)

will take up. This is a rigorous sociological subtantiation of the anecdotally common idea about

Spotify, and this alone is valuable. But the precise nature of that musical sameness – whether

having to do with genre, spectral profile, subjective user feedback, etc – is never specified. The

authors demonstrate that many music consumers have a “before and after” perspective on the

advent of music streaming; although they listen to far more music now than before, they do so

with less dedicated focus.97 Live concerts and hard physical media are conceived by many young

listeners as similar kinds of “interruption” to the constant stream now available to them. The work

demonstrates the ubiquity both of the streaming services, and of user dissatisfaction with them.

These are valuable insights into the function of streaming music in contemporary digital

culture, but the authors, like so many, don’t try to connect them to any aspect of the Spotify

system itself. Spotify is shown to be perceived to give us more of the same, but whether or not

that is really the case, or what it would mean for that impression to be rendered falsifiable, is not

part of their discussion. The best work on Spotify, on the other hand, addresses these questions

exactly. It comes from a group of Swedish writers who have integrated humanistic critique and

serious quantitative literacy, and brought that interdisciplinary critique to bear on Spotify itself

for a number of years. This research group has published many articles, and have developed those

findings into the first serious critical study of Spotify, Maria Eriksson et al., Spotify Teardown:

Inside the Black Box of Streaming Music (The MIT Press, 2019). I review two of the articles first,

before discussing the book below.

Maria Erikssonn’s article, “Close Reading Big Data,” looks carefully at the treatment of

metadata by the music intelligence company the Echo Nest (acquired by Spotify in 2014), showing

that their system will tend to place “trivial, mundane, and sometimes far-fetched source material

96. Johansson et al., Streaming Music: Practices, Media, Cultures, 101.
97. Ibid., 162.
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at the foundation of musical analysis.”98 It is, essentially, a very intelligent way of pointing out

some of the ridiculous shortcomings of the Echo Nest’s “music intelligence.” Taking an even

more technologically sophisticated route, Pelle Snickars shows that, contrary to Nick Seaver’s

skepticism about the limited “knowability” of recommendation algorithms (or the usefulness of

such knowledge), it is in fact possible to measure the size and repetitiveness of the “loops” in

Spotify recommended content. Snickars concludes that recommended content is indeed fairly

repetitive: “music recommendation algorithms do not take advantage of the archival infinity

at Spotify” and that the algorithms are therefore a “disappointment,” at least if what is desired

is the promised “personalisation.” User behavior, moreover (“likes,” skips and so forth) are

shown unambiguously not to have any appreciable impact on the recommended songs. Snickars

characterizes the various Spotify pronouncements about its Radio product as essentially dishonest,

showing that recommendations are repetitive and simply do not respond to user behavior as

advertised.99

Spotify Teardown

The book length study of Spotify, Maria Eriksson et al., Spotify Teardown: Inside the Black

Box of Streaming Music (The MIT Press, 2019), builds on this body of research in fascinating ways.

With the support of the Swedish Research Council since 2013, this research group has marshalled

a number of strategies to render the alluring intuitive questions we all have about Spotify – does it

narrow my listening experience? does it collude with the labels? does it exploit independent stake

holders? – susceptible to scientific inquiry. Or, at least, it tries to do that, and is honest about

where those investigations break down – which, predictably, they do most often touching matters

of aesthetic form and taste. At the broadest level, the authors seek to ask “how people’s practices

and approaches toward cultural forms such as songs, books or films...are transformed under the

98. Maria Eriksson, “Close reading big data: The Echo Nest and the production of (rotten) music metadata,” First
Monday 21, no. 7 (2016).

99. Snickars, “More of the Same–On Spotify Radio.”
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shift from commodity ownership to commodity experience.”100 “Experience” here indicates that

the authors are situating their work in the new culture of streaming, which by now has pretty

thoroughly displaced the culture of owning; Spotify Teardown asks in what ways this change has

engendered other changes in the contemporary culture and business of music.

The book is divided into primary investigative chapters and interstitial “interventions.” The

former are valuable concrete essays on Spotify the company; chapter one gives a narrative history

of its evolution, highlighting the important moments in its 24 rounds of venture capital funding

(e.g. the appointment a high-ranking Napster and Facebook employee to its board). Chapter two

is an overview of its various revenue strategies that focuses on its ongoing financial losses, and

discussing the difficulties it will inevitably face in becoming profitable. Chapter three analyzes

the evolution of its marketing strategies, showing in particular how one of Spotify’s very first

marketing efforts, the #backaspotify Twitter campaign, was connected to a center-right political

effort to reform the business climate of Sweden. Chapter four situates Spotify in the history of

“free culture” on the Internet, comparing its public image with the legacy of Napster and other

free movements. The “interventions” are playful, open-ended experiments that often cut against

the grain of the intended use of the Spotify service. One of them, for example, opens with a cease

and desist letter the researchers got from Spotify alleging that they had violated the company’s

terms of service. Others are more hackerish, deploying bots to compare content recommended

to different age groups and genders, or launching a dummy record label and uploading dummy

music to Spotify. Sometimes the results lead to convincing conclusions, sometimes not, but they

are always thought provoking. The project of critiquing automated recommendation is as difficult

as the project of understanding music itself, and the authors inevitably run into argumentative

dead ends. The book as a whole is most valuable as a thorough and rigorous critical portrait of the

Spotify company, combining historical context with quantitative probes. As for its central guiding

question – how people’s practices are transformed as a result of the rise of streaming music – the

100. Eriksson et al., Spotify Teardown: Inside the Black Box of Streaming Music, 1.
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book admits to raising more questions than it answers, which is perhaps the inevitable fate for

such a project (it is also essentially the conclusion of this one).101 Nevertheless it represents the

best attempt to apply the humanistic concerns animating the field of critical algorithm studies to

the subject of music steaming, and to do so while grounding them in serious quantitative studies.

2.3 Music is Philosophical and Empirical

Eriksson et al are the exception that proves the rule; such efforts to combine humanistic

and quantitative thinking, and to do so with music streaming as a focal point, are exceedingly

rare. As I have shown in the above survey, critical studies of algorithmic culture have tended to

be either philosophical or empirical. The debate over the role of computers in human life has

steadily shifted, moreover, from one to the other, with the majority of today’s writing devoted

to the important social justice questions raised by the present ubiquity of machine learning.

Even though many of the issues raised by both types of inquiry have exciting applications in

the musical domain, little attention has been paid to the issue of music in the critical algorithms

research area. This is unfortunate not just because machine learning will matter enormously

for music consumption in the future, but also because music is one area where the two threads

– the philosophical and the empirical – can actually come into conversation with eachother. It

makes sense to consider music in both ways, perhaps more than any other topic in algorithmic

culture. Music thus represents both a lacuna unto itself, in that it hasn’t been studied enough

from this perspective, and a chance to bring together different types of critique already present in

the discourse. Music is, in some ways, almost scientific in its rationality. In other ways, it’s not

rational at all. This dual nature is probably above all what makes it so difficult for computers to

get it right. This is also what makes it a particularly good subject for critics of machine learning

and digital culture; that is to say, music is both a philosophical subject and an empirical one.

101. Eriksson et al., Spotify Teardown: Inside the Black Box of Streaming Music, 190.
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While there are recently emerging dedicated studies of music in algorithmic culture, the most

exciting research areas, joining these two avenues, remain basically untouched.

In particular, there is almost no attention paid to what is, in my view, the biggest question

of all: how do we decide if a music recommendation engine is working well? For Spotify,

the answer is really simple: it’s working well when user retention is high and revenue is up.

“Serendipity” – Spotify’s word for recommendations that you didn’t already know you like but

which you turn out, in fact, to like – is just one part of the broader strategy to keep customers

engaged. In fact, it might not be a very big part of that strategy at all. It is the nature of “platform

capitalism” to maximize user retention above everything else, and we have no reason to believe

that Spotify differs significantly from this general trend.102 But user retention is not a measure

for success that any human listener would recognize. Is a recommender system successful, then,

when a customer simply reports satisfaction? Would that then imply the design of systems that

simply give listeners “more of the same,” which is exactly the outcome so emphatically lamented

in Snickars (2017) (that our worst fears about Spotify are true; that it does just recommend

the same stuff again and again)? Snickars seems to assume, reasonably, that this represents a

failure, but the question of what a recommendation algorithm should do, if not that, is not one he

takes up. This is more than just a question about Spotify but a true problem in applied aesthetic

philosophy, resuming once again the difference between what Kant might call a judgment of

“taste” and a judgment of “beauty.” One is merely pleasing, while the other engages some deeper,

hard-to-define human faculty. Automated music recommendation is a 21st century problem, but

one that we cannot contemplate without revisiting this centuries old conundrum.

But what if there is no coherent measure of success for an automated recommendation?

What if the very act of automation has already evacuated whatever meaning a piece of music can

be said to have? The social dimension of music is, of course, universally acknowledged, even, in

a way, by Spotify itself. But Spotify, with its community playlists and its embedded Facebook

102. Srnicek, Platform Capitalism.
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code, is an even paler imitation of musical sociality than Facebook is of human friendship or

Tinder is of human courtship. If it is true that musical meaning is fundamentally predicated on

human connections – as many do indeed believe – then it may be that there really is no such thing

as a good recommendation algorithm. It may be that the whole idea is a category error. It may be,

in other words, that a good music recommendation, by definition, is something passed from one

person to another, and that it bears a much smaller relationship to the audio signal than is often

supposed (even by the people who suppose that it doesn’t matter). If so, the rise of automated

streaming may herald a collective shift not just in where and what we listen, but how we listen,

and how we conceive of musical affection.

There is also unexplored territory on the practical side of the music recommendation

question. In fact, one of the difficulties in approaching this topic quantitatively is that there are

so many potential research questions that it is hard to know where to begin. One pressing issue,

however, seems to be the question of homogeneity. Many of the complaints about Spotify center

on its potential to keep unknown artists from getting popular, on its incentives to recommend the

same music over and over, on the way it supposedly encourages passive listening.103 Eriksson et

al (2019) have designed listening bots to probe this kind of behavior in various ways, often with

fruitful results. Homogeneity, however, can mean more than one thing. So far, in every case that I

know of it has meant repetition; either repetition of the same songs in a playlist, the restriction of

recommendations to top promoted content, or the repetition of the same artist. Given the design

of Spotify’s system, however, it makes sense to think about aesthetic homogeneity as well. In

other words, you might be recommended 100 songs that all sound the same, or that look the same

to Spotify’s automated feature extraction methods, but that playlist might not repeat a single track

or artist. Such a playlist, however, could be said to be aesthetically homogeneous. Whether that

would be a good or bad thing, or whether it would be categorically different from how music

103. See Damien McCafferey, “The Narrowing Gyre of Music Recommendation,” in This is the Sound of Irony:
Music, Politics and Popular Culture, ed. Katherine L. Turner, Ashgate Popular and Folk Music Series (Taylor &
Francis, 2016), for a musicological example, or Snickars (2017), cited above, or many others from the music blog
world that sound the same themes.
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recommendation has always happened, would be require a different kind of inquiry.

A study of music recommendation that joins the philosophical mode with the empirical

one would be the correct type to substantiate these intuitions, and this is what is undertaken in

the remainder of this dissertation: the philosophical question, about the possibility of evaluating

recommendation quality, is addressed in Chapter Three, which is an extended essay on Spotify’s

notion of musical meaning. The empirical question, about content homogeneity in Spotify

recommendations, is pursued in Chapter Five, which conducts quantitative experiments using large

scale queries via the publicly available API. A concluding section brings these two discussions

together.
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3 What Does Music Mean to Spotify?

One overlooked feature of Spotify’s software is that its user experience tends not to

discriminate among traditional musical types. Its search box, for example, accepts virtually

anything as valid input. Users can enter particular artists, albums, and songs, but they can also

enter genres, moods, or other kinds of musical keywords. The resulting recommended materials

are equally heterogeneous. Whether we take the “lean in” or “lean back” approach,1 we are

confronted with a mixture of genres, moods, playlists or other kinds of “hubs” (Spotify’s umbrella

term for these variegated musical departure points) as search results. Above all of this diverse

suggested material hovers the same inviting “play” button; a hub for “black history is now” is

clickable in the exactly same way as a “radio” station seeded by Parliament. So is the “artist”

Parliament, as is their 1978 track, “Flashlight.”

This is an important feature of Spotify’s software design. This array of clickable options

nurtures an impulse for instant gratification and is probably a strategy to maximize user retention.2

It also makes Spotify not simply a place to go to hear the music you want, but a place to learn

about what you want, to browse a library of cute icons that respond to clicks with various kinds

of sonic offerings. In other words, Spotify is a music discovery service, not just a place to stream

music.

1. Industry jargon referring to different styles of music streaming software that assumes an active (“lean-in”) or
passive (“lean-back”) approach to what music is played.

2. See Nick Seaver, “Captivating Algorithms: Recommender Systems as Traps,” Fortchoming, pre-print, 2018,
for a discussion of how recommendation algorithms increasingly optimize retention over more traditional metrics for
recommendation quality.
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Spotify’s gradual transition from a streaming service to a discovery service is discussed in

detail below, but the trend is easily visible just by looking at its recent string of acquisitions. Most

importantly, Spotify acquired The Echo Nest in 2014, whose recommendation technology was

already powering Spotify and much of its competition at the time. Less well known are Spotify’s

acquisition of the curation-focused data science firms Niland, Sonalytic and MediaTv (all three in

2017). Even if we are kept mostly in the dark about how Spotify makes its recommendations,

the turn toward algorithmic curation is unmistakable. And even if we can never know exactly

how much of the Echo Nest technology is being used in Spotify recommendations, it is clear that

machine learning plays a “crucial role” in Spotify’s recommendations.3

As a place where you go essentially to explore rather than simply consume, Spotify

communicates a certain seamless intimacy with the user. Spotify is not a machine that delivers

requested goods for a fee; it seeks to give users an open-ended, benevolent and exploratory

experience in which it is assumed that the data surveilled from your behavior can only enrich your

relationship with the company and improve the quality of your recommended content. It is only

natural for a profit-driven enterprise to want to project this benevolence – and, in the contemporary

culture of what Shoshana Zuboff calls “surveillance capitalism,”4 Spotify’s practice of surveilling

user behavior is an unremarkable example of what has become the dominant business model for

tech companies. But it is worth pointing out that music consumption in the digital age was not

always this way. Napster and MP3.com, for example, were revolutionary simply for how much

music they made freely available, not for the ingenuity with which they helped users discover

new music. Today, when putting 30 million songs within reach is no longer impressive on its own,

and (related) when the glut of material is harder than ever to make sense of, music streaming

services have, increasingly, needed to become music discovery services.

It is impossible to know exactly how Spotify’s music discovery engine works. This is true,

3. As Tony Jebara, Spotify’s head of Machine Learning, puts it. https://newsroom.spotify.com/2019-10-24/6-
questions-and-answers-with-tony-jebara-vp-of-machine-learning/, accessed 01-15-2019

4. Zuboff, The Age of Surveillance Capitalism: The Fight for a Human Future at the New Frontier of Power.
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first of all, because the system does not work in any one way at any one time for any one user.5

Even if it were not subject to constant mutation, moreover, the actual algorithm is a carefully

guarded trade secret. In spite of the limitations on what we can know about it, it nevertheless

seems straightforwardly true that, no matter how Spotify’s recommendations are actually made,

the system must in some way be predicated on a notion, explicit or not, of musical meaning. This

notion is obscured from the user but it is there somewhere. Insofar as any recommendation, by

a human or by a machine, depends on ideas of musical salience and similarity, we can say that

Spotify’s recommendation service represents a tacit “theory” of musical meaning.6

In this chapter, I probe and critique that theory. After narrating the history of the Spotify

brand and tracing its transition to a music discovery service, I make some tentative claims about

what, I believe, must be the essential contours of that theory (always acknowledging that the

Spotify system is hidden and constantly evolving). A close reading of the Spotify technology

and its relationship to the humanistic tradition of aesthetic philosophy reveals that, although the

Spotify technology is based on a dissertation that promises nothing less than the meaning of music

itself, the applicable theory turns out to be a rather conventional notion about the fundamental

predictability of human behavior, and its derivability from large amounts of data. In fact, this

is not a theory at all, at least not in the traditional sense of having some explanatory power.

Spotify is therefore an exemplary case of the way machine learning, in its tolerance of opacity

and prediction rather than explanation, has blurred the line between science and engineering,

producing a sort of “qausi-theory” of musical meaning. At its heart this chapter is an attempt to

look closely at that theory and situate it alongside more traditional theories that have approached

the same topic.

5. See Nick Seaver, “Knowing Algorithms,” Unpublished draft available on nickseaver.com, 2013, accessed
July 15, 2019 for an instructive reminder to remain humble about the “knowability” of recommendation algorithms.

6. It is important to remember that although it is best known for its “data-driven” approach to music information
and its automated personalized recommendations, Spotify actually continues to employ human curators. See Reggie
Ugwu, “Inside the Playlist Factory: The Unsung Heroes of the Music Streaming Boom,” Published by Buzzfeed
Media, accessed January 8, 2019, https://www.buzzfeed.com/reggieugwu/the-unsung-heroes-of- the-music-
streaming-boom
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For good reasons, Spotify’s system does not encourage this kind of critical thinking.

Questions about the system’s implicit theory of musical meaning can only serve to remind users

that its theory is just one of many – and therefore not necessarily the one most worth paying for.

The success of the Spotify model depends on communicating that its catalog is both complete

and effectively managed – that it has achieved a unique balance of “scale” and “care,” to use

the words of one of the designers of its recommendation technology.7 Relativizing the theory

of meaning upon which the system depends represents a disconcerting imperfection. If the

technology populating my playlist relies on just one way to construe musical significance, who

knows what gems it might be missing or how it might be guiding my consumption habits. Or, to

follow the line of argumentation pursued by Tia DeNora in a more sinister direction, how it might

be manipulating my moods, or shaping my personal identity.

Spotify may not go out of its way to highlight this idea, but the notion that the system is

in fact predicated on a theory of musical meaning can be traced back to one of the first places

where Spotify’s recommendation technology was set out: the 2005 doctoral dissertation of Brian

Whitman at the MIT Media Lab.8 Although it was published three years before Spotify officially

launched, Whitman’s “Learning the Meaning of Music” introduced the basic outline of the

software that would eventually power a hugely successful music intelligence company, The Echo

Nest, which Spotify acquired in 2014. As I argue below, some aspects of this technology almost

certainly continue to operate in present-day Spotify. And so Whitman’s doctoral dissertation

forms a useful, if partial, entry point to Spotify’s black box.

As is clear from the title, Whitman proposes this technology while engaging explicitly

with the question of musical meaning. He promises that he will be “Learning the Meaning

of Music.” “Learning” is probably intended half tongue in cheek, as a nod to the “machine

learning” that takes place in the dissertation. But it’s only half tongue in cheek; as always with

7. Brian Whitman, “How Music Recommendation Works – And Doesn’t Work,” 2012, accessed July 1, 2019,
https://notes.variogr.am/2012/12/11/how-music-recommendation-works-and-doesnt-work/.

8. Brian Whitman, “Learning the Meaning of Music” (PhD diss., Massachussets Institute of Technology, 2005).
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questions of machine learning, the question of exactly what kind of learning is happening is

an open one. Indifference to the opacity of the system compounds with a certain faith in the

inherent predictability of human behavior to make the concept of “learning” difficult to construe.

The system produces output, but in what sense exactly has it “learned” anything, really? What,

moroever, about meaning? In what sense is the word intended, and what is the actual content

learned about it?

To echo Hilary Putnam, one of the few humanistic sources to which Whitman refers, what

is the “meaning of meaning” in that title?9 Regardless of how much of this technology ends up

going into a given recommendation task for Spotify in 2019 (which is unknowable), a theory of

musical meaning gleaned from Whitman’s dissertation can be part of a broader effort to think

critically about what music “means” to Spotify. More generally, this can offer a basis for thinking

critically about the consequences for music of the rise of automated curation in general.

As noted in Chapter Two, this issue is analogous to questions pursued in the discipline of

“critical algorithm studies.” The idea of embedded bias, for example – the prospect that ostensibly

objective algorithmic tools will silently encode certain assumptions – is a major theme in this field.

As is the related issue of “fairness,” which focuses on the real-world consequences of applied

machine learning, especially concerning social justice and inequality. Although the natural

temptation is to expose the bias and rectify the unfairness, the very impulse to “fix” artificial

intelligence in this way actually represents a concession to its viability and inevitability.10 If

all we do is point out that, say, Spotify’s system is better equipped to recommend Taylor Swift

than Julius Eastman, we run the risk of reinforcing the assumptions beneath Spotify and the

inevitability of the curated streaming model itself. Quibbling with a machine learning system’s

performance alone, even if we do it very cleverly, avoids the fundamental questions about its

9. Hillary Putnam, “The Meaning of ’Meaning’,” Minnesota Studies in the Philosophy of Science 7 (1975):
131–193.

10. Julia Powles and Helena Nissenbaum, “The Seductive Diversion of ‘Solving’ Bias in Artificial Intelligence,”
accessed April 1, 2019, https: / /medium.com/s/story/ the- seductive- diversion- of- solving- bias- in- artificial-
intelligence-890df5e5ef53.
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appropriateness and can even serve to reinforce its claims on our future.

The correct object of interrogation, then, is not so much the empirical facts of Spotify’s

recommendation engine as it is the whole idea of automatic recommendation in the first place.

For this reason, this chapter will remain at a relatively “high” level, discussing details of Spotify

(for example, where it is likely to preserve elements of the Echo Nest technology) only where

those details are relevant to broader considerations of automated curation. At issue, ultimately,

is the general appropriateness of data-driven approaches to the human phenomenon of musical

meaning. This chapter therefore addresses Spotify’s assumptions about music, but also the

more fundamental assumptions of data science generally – assumptions that Tal Zarsky captures

succinctly:

Any institutional decision that applies or allows algorithms to automatically sort, gov-
ern, and decide issues related to human actions makes two crucial assumptions: that
human conduct is consistent and that with sufficient data human behavior becomes
predictable.11

If Whitman’s dissertation has really accomplished what it promises, then at some level the

assumptions in this quotation have to be valid; and if they’re not valid, it’s a critique than granular

quibbles with Spotify’s performance will probably never capture. Learning the meaning of music

really would be special – it would mark the resolution of a stubborn problem that has dogged

aesthetic philosophy forever. It would, moreover, be something far more precise and interesting

than what is promised in the quotation above; it is one thing to simply assume, as all data science

must, that things are basically predictable, given enough good data. It is quite another to crack

the code of human affection for music. The rhetoric of Whitman’s dissertation, and Spotify’s

promotional materials, present a sleight of hand that makes it hard to pull these two things apart,

even though they definitely aren’t the same thing. In this chapter, I attempt to do that by looking

as closely as possible at the notion of musical meaning at work in Spotify. I also ask whether this

11. Tal Zarsky, “The Trouble with Algorithmic Decisions: An Analytic Road Map to Examine Efficiency and
Fairness in Automated and Opaque Decision Making,” Science, Technology, and Human Values 41, no. 1 (2016):
118–132.
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notion is a good one, and what is lost and what gained in the transition to a culture of listening in

which automated curation is the norm – a transition which, for better or worse, we are definitely

making.

The discussion proceeds in three sections:

• First, I sketch a history of Spotify’s development, dispelling some commonly held beliefs

about it and showing how and why it transformed from a streaming company to a discovery

company. Here, I argue that automated music recommendation services must necessarily

rely on some notion of musical meaning.

• Second, I make a case for why Spotify almost certainly continues to employ some of the

techniques Whitman develops in his 2005 dissertation. This involves some forensic work

comparing various technical documents issues by various parties in Spotify and the MIT

Media Lab.

• Finally, I attempt to discern Spotify’s theory of musical meaning itself. I do this, first, via

a close reading of the behavior of the Spotify graphical user interface (GUI) and, second,

via Whitman’s 2005 dissertation. In the latter case, I argue that the techniques outlined

are novel and probably effective, but that there are interesting gray areas where Whitman

addresses the question of musical meaning. In particular, I highlight some of what I feel are

interesting deficiencies in his work as a theory of musical “meaning.” In the end I neither

condemn nor endorse Spotify’s system. Instead, I merely hope to show that a system like

Spotify’s inevitably relies upon a theory of meaning, and that as users of that system we

will benefit from paying close attention to what that theory is.
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3.1 Spotify and the “Curatorial Turn” (2008-2018)

There is a widely held belief that when Spotify was launched in 2008, it was as a response

to a music industry imperiled by the growing practice of music piracy.12 It is true that by the time

Daniel Ek and Martin Lorentzon created the startup that would eventually mature into a publicly

traded corporation worth more than $20 billion, the recording industry had contracted enormously

from its peak at the end of the 20th century. According to Greg Kot, revenues from recorded

music in America plunged from their all-time peak of $14.6 billion in 1999 to $12.6 billion in

2002, a decline of 13.7 percent.13 The familiar narrative casts Spotify as a reaction to and, perhaps,

a solution for the industry’s financial crisis. And indeed this sometimes seems fair: according to

the International Federation of the Phonographic Industry (IFPI), for example, industry revenue in

2018 had recovered to 68.4% of that peak value, largely on the strength of a 45% growth in paid

subscription streaming.14 As Spotify is by far the largest such subscription service, with some

200 million active users today (87 million of which are paying for their subscriptions),15 Spotify

can appear from this perspective to be an important driver of the industry’s recovery, vindicating

the altruistic posture the company occasionally projects.16 The major record labels are frequently

castigated for their repeated failures to develop viable systems of electronic distribution in the

digital age. Spotify, as a kind of commercial imitation of illegal file sharing, can be seen as the

music industry’s belated, but successful, effort to rectify that mistake. Heralded as the “solution

to music piracy,” Spotify will restore value to the industry, connecting listeners with the music

they want to hear, artists with interested audiences, and seeing that all parties be compensated

fairly.

12. See for example, “Newsbeat” BBC News, Online Resource, https://www.bbc.com/news/newsbeat-43240886,
Accessed Jan 27, 2019, 2018, which casts Spotify as a “response to the growing piracy problem,” or Marsha
Silva, “Spotify, the “Solution to Music Piracy,” Is Getting Pirated by 2 Million People,” accessed February 4, 2019,
https://www.digitalmusicnews.com/2018/03/26/spotify-piracy-hacked/, or many others that echo this idea.

13. Kot, Ripped: How the Wired Generation Revolutionized Music, 31.
14. IFPI, https://gmr.ifpi.org/state-of-the-industry, Accessed Jan 27, 2019, 2018.
15. Apple music, though, is gaining on Spotify, with 56 million users as of time of writing (see Yoo 2019).
16. As it does, for example, in Brian Whitman’s lengthy 2012 blog post, “How Music Recommendation Works–and

doesn’t work,” discussed at length below.
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This narrative, however, obscures some important facts about Spotify in particular and

the relationship of music streaming to the music industry in general. First of all, it ignores the

fact that Spotify has yet to turn a profit. In fact, Spotify’s annual operating losses have increased

sharply every single year, from e98 million in 2013 to e378 million in 2017.17 In 2018 and 2019,

Spotify’s losses have decreased, but the company definitely remains unprofitable. This doesn’t

seem to trouble anyone. Spotify’s 2019 press release for investors, for example, is jubilant about

its first quarter earnings, while predicting another loss of e180-340 million.18

These kinds of consistent losses are not unheard of the present investor climate; Pandora,

for example, also reguarly posts losses in the hundreds of millions. In general, moreover,

traditional notions of value have changed radically across the economy, such that huge losses

are no longer an indicator of low stock value. As hedge fund manager David Einhorn puts it,

“the market has adopted an alternative paradigm for calculating equity value.”19 Profitability has

taken a back seat to 21st-century measures of shareholder value, like scale, market share, and

potentially monetizable data sources.

Nevertheless, Spotify’s financial profile should still give pause to those who want to see it

as the music industry’s savior. Howeover much the investor climate has changed, Spotify will,

after all, eventually have to turn a profit or fold. Perhaps more importantly, these losses are not

due to a lack of revenue or a reliable customer base, but instead point to the same old problem

the music industry has always faced in the digital age: they are due primarily to the licensing

costs Spotify pays out to the major labels, which represent its biggest operating expense by far.

The inevitable fact is that customers are unwilling to pay what they used to pay for music, while

major record labels remain committed to intellectual property paradigms that only work with 20th

century revenue streams. This has been the problem facing music sellers for the last two decades,

17. Felix Richter, “Spotify’s Losses Widen as Royalty Costs Pile Up,” 2018, accessed March 20, 2019, https:
//www.statista.com/chart/4894/spotify-revenue-vs-costs/.

18. See Spotify’s publicly available financial disclosures: “Spotify Financial Disclosures,” accessed July 24, 2019,
https://investors.spotify.com/financials/default.aspx

19. Quoted at https://www.cnbc.com/2017/10/24/david-einhorn-value-investing-may-be-dead-and-amazon-and-
tesla-killed-it.html, accessed 07-22-2019

111



and to judge from its earnings reports, Spotify’s solution is no more viable than Napster’s.

If Spotify is responding to an industry beleaguered by widespread piracy, its response in

fact fails precisely where Napster’s did. Napster was driven out of business through aggressive

litigation from the Recording Industry Association of American (RIAA), while Spotify is kept

from turning a profit as it funnels most of its revenue (and shares of its stock) to the major

labels. The money is channelled differently this time around, but in a basic sense, the RIAA has

bankrupted both companies.

The fact that this can be said of the streaming industry’s biggest player, moreover, raises

important questions about the financial viability of the streaming model itself; if Spotify can’t

make it work, one wonders, who can? Spotify has over the years shifted between various strategies

for earning revenue: early on it looked to advertising, before attempting to monetize its integration

with Facebook, and now sees subscription as its principal revenue stream. These are responses

to changes in the tech economy in general, and some have even been successful. But it would

be more accurate to say that Spotify’s true source of revenue has always been venture capital,

which it has attracted with extraordinary success, gaining more and more over 24 funding rounds

even in the face of large losses. If Spotify succeeds only in raising venture capital, growing

quickly, and collecting potentially monetizable user data, it no more represents a solution for the

music industry than does, say, Uber or any other tech company (not necessarily a music company)

whose rise has followed this template.

This familiar narrative about Spotify, in which it is lumped together with other “disruptive”

tech firms like Uber and Airbnb, also obscures another important fact: that, although it is marketed

as a novel and innovative firm, it is in fact largely owned by the traditional music industry forces.

Since Spotify cannot afford a market rate for the licensing fees its service requires, it has been

forced to compensate the major labels in part with company equity rather than cash. As a result,

Peter Tschmuck reports, major labels today own as much as 20% of Spotify.20 This is perhaps

20. Peter Tschmuck, The Economics of Music (Agenda Publishing, 2017), 179.
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the cause of the widespread concern in the music industry about so-called “playola,” a word

that refers to the influence major labels supposedly wield over the content of Spotify’s curated

playlists (not to be confused with the familiar “payola,” which denotes a similar practice from

radio broadcasting).21 It is also a possible cause for the often reported homogeneity of Spotify’s

automated recommendations, an effect which, if authentic, would give the lie to Spotify’s stated

aims as a music discovery service.22 In any case, it is important to remember that, although

Spotify is often said to have “disrupted” or “saved” the industry, in actuality it is largely owned

by the major record labels, and it is to them that the majority of its revenue accrues.

The familiar narrative also overstates the relationship between Spotify and the industry as

a whole. If we believe that Spotify has the potential to “rescue” the industry from the scourge of

piracy, we must believe that it has a marked effect on the market itself. Yet this may not be true

at all. While Pandora has commissioned studies showing that Internet radio has positive effects

on music consumption in general, there is little consensus on this point and other scholars have

found quite the opposite result. Or it may be that Spotify has no net effect on the music industry

whatsoever. Aguiar and Waldfogel, for example, find that while Spotify does displace some lost

revenue due to piracy, the new revenue is “roughly offset by revenue reductions from the sale

of permanent downloads.”23 Spotify stimulates the market in some ways while depressing it in

others, and it seems impossible to know exactly how to gauge its impact on the industry as a

whole. It is not necessarily reasonable to assume that Spotify has either “rescued” or depressed

the market.

Nor is it even certain that the industry’s crisis in 2006 (the problems to which streaming is

often seen as a solution) were due to piracy in the first place. While it is true that by 2006 revenues

21. For a representative complaint about playola, see, e.g. Glenn Peoples, How ’Playola’ Is Infiltrating Streaming
Services: Pay for Play Is ’Definitely Happening’, https://www.billboard.com/articles/business/6670475/playola-
promotion-streaming-services, Published at billboard.com, accessed 01-09-2019, 2015

22. Spotify’s app blurb on the Google app store, for example, promises “the right music for every moment” (and,
moreover, for every individual user) – not just what the major labels want to promote. This claim has been dismissed
as “mendacious” by Snickars, “More of the Same–On Spotify Radio”

23. Luis Aguiar and Joel Waldfogel, “Streaming reaches flood stage: does Spotify Stiumlate or Depress Music
Sales?,” National Bureau of Economic Research Working Paper 21653 (2015): 22.
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had seen a sharp decline from their peak in the 1990s, the golden years the record industry had

enjoyed in the 1990s were not necessarily the norm. Instead, some have seen them as anomalous,

a period of growth artificially stimulated by the advent of the CD and, therefore, inherently

short-lived. Revenues had in fact been declining for a long time before the arrival of the CD,

which gave the industry a lift largely thanks to its new ability to sell consumers CD versions of

music they already owned on vinyl and tape. From this perspective, it is only reasonable to expect

that this lift would be temporary – and perhaps, therefore, inaccurate to blame the downturn on

internet piracy and file sharing. The idea that piracy is responsible for the industry’s downturn,

though repeated constantly by the RIAA and industry insiders, is not necessarily accurate. As

Greg Kot notes,

It was disingenuous of the industry to blame its slump on file sharing without
acknowledging the role played by rising CD prices. The average retail price of CDs
had increased more than 19 percent from 1998 to 2002. Peak price was $18.99, with
middlemen getting the vast majority of the split.24

If this picture is accurate – if the industry’s pains at the turn of the century were a natural

market adjustment rather than the result of disruptive new technologies or cultural shifts – then the

whole idea of Spotify as the industry’s savior, “restoring value” to a business sector struggling to

accommodate new technological paradigms, is an oversimplification. Despite aligning itself with

the rhetoric of disruptive innovation popular in the tech industry, in actuality Spotify is probably

neither the industry’s savior nor its destroyer, and in many ways it continues the patterns and

promotes the interests of the major record labels who are among its largest shareholders. From a

business perspective, Spotify is much less exceptional than it seems.

3.2 Meaning and the “Curatorial Turn”

Although Spotify may not be the driving force behind a sudden shift in the music industry,

it certainly marks one. How (or whether) the streaming industry is to become self-sustaining

24. Kot, Ripped: How the Wired Generation Revolutionized Music, 42.
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remains a mystery; nevertheless, it is hard to imagine a future in which the music business

does not have streaming music at its center. Over the last 11 years, Spotify has evolved from

a music streaming company that in many ways inherited the mantle of Napster, Gnutella and

Limewire, seeking merely to provide legal access to a large catalogue of music, to a music

discovery company whose most valuable properties are its recommendation engines. In this

section, I trace that history.

In the only academic history of Spotify, Maria Eriksson et al. (2019) divide its evolution

into seven periods:25

• “Beta” Period (2007-2008). Spotify released to a small circle of personal acquaintances.

• Period A (2008-2009). First public version launched in October 2008 in eight European

countries. Spotify removes unlicensed music from its service. Spotify begins to sell

advertising, launches ad-free Spotify Premium.

• Period B (late 2009). Global financial crisis eats into advertising revenue and venture

capital. Doubts about viability of ad-supported model leads to increased emphasis on

subscription services.

• Period C (2010-2011). Spotify as platform, emphasis on “social” features. Linking of

Spotify and Facebook, increased practice of data extraction from users. “Related artists”

function added. Spotify opens in USA.

• Period D (2011-2012). Valuation reaches $10 billion. Increased “platformization.” Competi-

tion with Internet radio in USA (Pandora) leads to increased importance of recommendation

and discovery.

• Period E (2013). Spotify begins to address “the abundance of choice” as a primary problem.

Solution is no longer primarily social, but increasingly algorithmic. Spotify positions itself

25. Eriksson et al., Spotify Teardown: Inside the Black Box of Streaming Music, 43-67.
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as a discovery company. Spotify acquires music recommendation company Tunigo (May

2013), which recommends music based on social activities and moods.

• Period F (2013-2015). Spotify dismantles the P2P network it had inherited from Napster,

opting instead to use its own servers. Spotify acquires The Echo Nest (2014), an important

music information company, for $100 million.

• Period G (2015-2016). In competition with Apple Music, Spotify emphasizes its ability to

create musical experiences tailored for the moment. Curation strategy combines expertise

of two acquired companies: Tunigo (expert human curation) and Echo Nest (scalable

algorithmic curation). Also acquires Seed Scientific, a data science company. Summer

2015, Spotify introduces various personalized weekly playlists, such as “discover weekly.”

As this timeline shows, since its founding Spotify has nimbly adjusted to shifting market

priorities and trends in startup culture, making at times dramatic adjustments to its marketing

strategy and business model to accommodate these shifts. Not long after the collapse of Napster,

Spotify began as a peer-to-peer sharing service that not only copied parts of Napster’s technical

architecture, but actually permitted the sharing of unlicensed music. When Spotify launched its

first publicly available version in 2008, it removed the unlicensed music but preserved much of the

P2P architecture and kept the disruptive caché of Napster as part of its marketing strategy. After

the global financial crisis cast widespread doubt on the viability of advertising for all Internet

companies, Spotify recast its free tier as a marketing strategy for its subscription service, which

was now to be its primary revenue stream. In the wake of Facebook’s monumental growth around

2010, Spotify partnered with Facebook and integrated itself with the social network giant.

Among these various adjustments, the most important one for the purposes of this chapter

is the so-called “curatorial turn”: the shift toward music curation as a central element in Spotify’s

service. Largely because of its arrival in the US market in 2012, where it had to compete with

Pandora and other Internet radio services, Spotify has increasingly positioned itself as a “music
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discovery service” rather than simply a music streaming service – and this remains largely the

form Spotify takes today. Even a cursory look at Spotify’s service today reveals how central

recommendations are in its service; recommendations of all kinds confront the user at every

turn, from its “radio” button to its “discover weekly” playlist, to all the hubs under the “browse”

tab. This shift can also be seen by looking at the contrast between two versions of Spotify’s

promotional materials, one from 2006 and one from Spotify’s “about” section in 2019:

In 2006:

Spotify gives you the music you want, when you want it.
Your choice is just a search box or a friendly recommendation away.
You’ll be amazed by the speed and control you have with Spotify.26

And in 2019:

With Spotify, it’s easy to find the right music for every moment.
Choose what you want to listen to, or let Spotify surprise you.
Soundtrack your life with Spotify.27

The difference in tone is subtle but illustrative. In 2006, Spotify is a service that, ulti-

mately, delivers “your choice,” even if that choice can optionally be mediated by the service’s

recommendations (recommendations which, at the time, were probably mostly curated by humans

rather than machines). The leading line promises “the music you want,” clearly foregrounding

the volition of the user. This blurb also promises the user “speed and control,” two features that

an informed, self-directed user might value. This blurb clearly targets a user that takes an active

role in her media consumption, what the industry terms a “lean-in” strategy.

Although it probably holds appeal for aficionados and professionals, this posture eventu-

ally became a liability. In 2011, for example, Billboard published an article characterizing Spotify

as “just a huge database of songs.”28 In response to this shift in customer priorities, Spotify had

26. Accessed via the Internet Archive, at https://web.archive.org/web/20061127231638/http://www.spotify.com/,
accessed May 20, 201

27. Spotify Home Page, “About Us,”https://www.spotify.com/us/about-us/contact/, accessed May 20, 2019
28. Eriksson et al., Spotify Teardown: Inside the Black Box of Streaming Music, 59.
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to change its approach. And this meant designing software that, for the first time, had something

to say about musical quality, about music qua music. That is why, by 2019, what matters is not

the music you want, but the music that is appropriate for “every moment.” The value the user

might find in having control over the tool is replaced by its power to “soundtrack your life,” that

is, to find music for you that matches whatever non-musical activity you happen to be engaged in.

There is a notable shift to a “lean-back” approach, a shift which has taken place with respect to

the media industry in general over this decade.29 This shift engenders an adjustment in Spotify’s

attitude toward music itself; as we lean back, it seems, music’s value comes to reside primarily

in its relationship to things outside of itself rather than our relationship to it. A peculiar feature

of the rise of curation is that the value of music is in how it “goes with” other things rather than

what it sounds like.

More than the size of the catalogue or the quality of the sound,30 Spotify’s selling point,

today, is its discovery product. And although Spotify does continue to employ human curators,31

to a greater degree than any of its competitors, this product is automated. Spotify’s promise is to

help customers find the right music for a given moment, to “soundtrack your life.” On the face of

it, this slogan makes a pretty bold statement: that the millions of tracks in Spotify’s catalogue are

soundtrack music. It is only made obliquely, so it is easy to miss, but the treatment of all music as

background music is a real consequence of the curatorial turn, and a central component of the

“theory” of musical meaning this chapter is examining.

Here Spotify is part of a broader trend in digital culture from content acquisition to content

experience and curation. This is a trend that Nicholas Negroponte of the MIT Media Lab noticed

as early as 1994.32 This is perhaps the first citation connecting the issue of machine learning

29. For work on the rise of curation in general, see, e.g. Silverman, Terms of Service: Social Media and the Price
of Constant Connection and Gillespie, “Can an algorithm be wrong? Twitter Trends, the specter of censorship, and
our faith in the algorithms around us”

30. Even the sonic watermarks imposed by many of Spotify’s music industry partners (which are notice-
able) seem not to deter customers at all. See Matt Montag’s blog (https://www.mattmontag.com/music/
universals-audible-watermark) for a useful demonstration of those watermarks. Accessed 7-24-2019.

31. See Ugwu, “Inside the Playlist Factory: The Unsung Heroes of the Music Streaming Boom”
32. Nicholas Negroponte, “Less is More: Interface Agents as Digital Butlers,” accessed July 12, 2019, https:
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to the cultural problem of data glut. Too often, Negroponte points out, Silicon Valley assumes

that, with respect to technology and information, more is always better. In reality, he predicts,

what Internet customers really want is less data – but more relevance: “I am willing to project an

enormous new industry based on a service that helps navigate through massive amounts of data.”

This is a turn that has has only intensified since then. As Peter Wikstrom puts it,

In a world where information is abundant, people may not be willing to pay a
premium for basic access to that information, but they are most likely willing to pay
for services which help them navigate through the vast amounts of information.33

Spotify is not alone, in other words, in turning toward automated curation; it belongs to

the same world of information glut as Facebook and Google, and has adapted to it with similar

strategies. It is important to note, though, that doing so engenders a related shift in the company’s

notion of musical meaning, something that Google never had to contend with. The remainder of

this chapter is an attempt to precisify and analyze that notion of musical meaning.

3.3 Is Spotify Using the Echo Nest?

The rise in demand for curation services was an engineering problem that Spotify has

approached in more than one way. Following the broader trend of social networking after 2010,

Spotify’s first solution was, to use the industry’s word, “social.” In 2010, Spotify received $16

million in venture capital from Sean Parker, the co-founder of Napster. After Napster, Parker

had gone on to become the founding president of Facebook. With his investment in Spotify, he

earned a spot on its board of directors and ensured that the two companies could integrate their

products smoothly. With an integrated Spotify and Facebook, a “social” model of music discovery

became possible: the listening habits of one’s friends could be distilled and transformed into

music recommendations. This strategy has the advantage of requiring relatively little engineering

//www.wired.com/1994/06/negroponte-5/.
33. Wikstrom, The Music Industry: Digtal Media and Society Series, 7.
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(and virtually no DSP), and it is predicated on the intuitively reasonable assumption that people

share musical tastes with their social groups. There are a number of ways in which this strategy

is less useful, though: first, it will never be a reliable way to expose users to music that is not

already popular. Second, like all “context based” recommendation systems, it bears no formal

relationship to musical content itself. Third, it still demands the active engagement of the user,

the “lean-in” attitude Spotify had traditionally envisioned for its customers.

Automated recommendations could potentially address these shortcomings. Facing these

issues, as well as competition from American Internet radio stations like Pandora, Spotify in 2012

began to develop its automated recommendation engine more aggressively. It began to foreground

its recommendation services, adjust its marketing strategy, and, above all, it acquired prominent

companies in the music intelligence and recommendation space.

Probably the most important such acquisition was The Echo Nest, which Spotify bought

in 2014 for $100 million.34 Founded in 2005 by two graduates of the MIT Media Lab (Tristan

Jehan and Brian Whitman), the company had quickly grown into one of the biggest players in the

music recommendation space. By 2014, its API powered the music recommendation services

of major companies like MTV, Rdio, and Spotify (before the latter bought it). The technology

employed by The Echo Nest is described in the academic writing of its founders (especially

Whitman’s dissertation), and below I will be using those texts to make some deductions about

Spotify’s current software.

But is it at all reasonable to assume that Spotify today is actually using the technology it

acquired in 2014? It is widely acknowledged, after all, that Silicon Valley companies regularly

acquire technology without ever putting any of it to use. Moreover, 2005 was a long time ago and

the technology Whitman proposed in his dissertation may well be out of date today.

There is, however, good reason to believe that Spotify does in fact use Echo Nest tech-

nology today – or at least that with respect to its attitude toward musical meaning, Spotify in

34. Ingrid Lunded, “Spotify Acquired Music Tech Company The Echo Nest In A $100M Deal,” 2014, https:
//techcrunch.com/2014/03/07/spotify-echo-nest-100m/.
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2019 shares crucial features with what Whitman developed in 2005. This can be seen by reading

three documents closely: (1) Brian Whitman’s 2005 dissertation at MIT, (2) a blog post he made

detailing the Echo Nest’s service in 2012, and (3) the current official documentation of Spotify’s

API. The similarities among these three documents, which together trace a timeline as long as

Spotify’s own, make a compelling case that Spotify’s contemporary recommendation engine

shares at least some features with the software originally designed by Brian Whitman in 2005.

This is important, of course, because the dissertation is in the public domain and can be read in

detail. Bearing in mind the important qualifications raised by Nick Seaver,35 and being careful

about the scope of our argumentation, we can ground certain claims about Spotify and automated

recommendation in a close reading of the dissertation.

In 2012 (two years before the Spotify acquisition), Brian Whitman made a blog post

(Whitman 2012) outlining the Echo Nest’s general approach to music information, and his own

opinions on the industry as a whole. This post explicitly links the technology of the Echo Nest

to the research activities of himself and Tristan Jehan at the MIT Media Lab, and most of the

features he describes in it also appear in his doctoral dissertation. For example, in the blog post,

Whitman expresses his deeply held conviction that musical similarity derives from “cultural”

meaning, not simply the audio signal:

We’ve shown over the years that people’s expectation of “similar” – either in a playlist
or a list of artists or songs – trends heavily towards the cultural side, something that
no computer can get at simply by analyzing a signal.36

This idea – that musical meaning resides outside of the audio signal – is the central

conceptual frame for Whitman’s doctoral dissertation from 2005. There, Whitman positions his

software unambiguously against an “absolutist” theory of musical meaning deriving “from the

signal alone.” Instead, music’s meaning is constantly characterized as “cultural” and “relational.”

It is not an overstatement, in fact, to say that this is the main idea of the dissertation. When

35. Seaver, “Knowing Algorithms.”
36. Whitman, “How Music Recommendation Works – And Doesn’t Work.”
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Whitman promises to “learn” the “meaning” of music, what he is promising above all is to capture,

and render legible to machines, the difficult and unruly “cultural” information that relates to the

audio signal, and then to combine the two information streams into a single classification system

into which any music can then be fed. The dissertation and the post are seven years apart, but they

share a single animating idea: that musical meaning is not in the signal alone. There is, therefore,

a clear conceptual link between the technology behind the Echo Nest in the year 2005 and the

thinking of Whitman around the time when Spotify acquired it.

In this same post, Whitman also refers to the Echo Nest’s “Audio Analysis Engine,” and

even provides a link to Echo Nest official documentation of this product, prepared by co-founder

Tristan Jehan. This document explains how the Echo Nest’s machine listening works. How,

that is, their system deals with the audio signal itself (as distinct from the extra-signal “cultural

metadata” so central to Whitman’s intervention).

The Audio Analysis engine detailed in 2012 bears unmistakable similarities to the one

Spotify makes available today. The 2012 document, for example, takes in an audio signal and

rates it in various ways. It can evaluate it in conventional musical ways, according to its key,

mode, and tempo. These are standard music information retrieval tasks. The 2012 document

also contains more idiosyncratic measures, however, such as the abstract musical categories of

valence, danceability and speechiness.

Crucially, all these same categories are available today in Spotify’s “Get Audio Features”

API endpoint.37 Exactly as in the Echo Nest circa 2012, Spotify today evaluates tracks for their

key, mode, tempo, as well as their valence, speechiness and danceability. Moreover, in most cases

the language of the the contemporary API documentation echoes verbatim the language of Tristan

Jehan and Whitman in 2012. Here is Whitman characterizing The Echo Nest’s machine listening

tool in 2012:

We emit song attributes such as danceability, energy, key, liveness, and speechiness,

37. Accessed 04-01-2019 at https://developer.spotify.com/documentation/web-api/reference/tracks/
get-audio-features/

122



which aim to represent the aboutness of the song in single floating point scalars.38

Each of these idiosyncratic metrics (danceability, energy, etc) is also outlined in the contemporary

Spotify API documentation, with each one still represented as a single floating point scalar. For

more commonalities, we can look at the way these fields are defined. Here, for example, is Jehan

defining mode in the 2012 documentation:

Mode indicates the modality (major or minor) of a track, the type of scale from which
its melodic content is derived.39

And here is Spotify defining mode in the contemporary API documentation:

Mode indicates the modality (major or minor) of a track, the type of scale from which
its melodic content is derived. Major is represented by 1 and minor is 0.40

Similarly, in 2012, Jehan defines the key output of the Echo Nest’s audio analysis tool as

The estimated overall key of a track. The key identifies the tonic triad, the chord,
major or minor, which represents the final point of rest of a piece.41

Which has been somewhat refined in Spotify’s 2019 documentation:

The estimated overall key of the track. Integers map to pitches using standard Pitch
Class notation. E.g. 0 = C, 1 = C#/Db, 2 = D, and so on. If no key was detected, the
value is -1.

The rest of the fields exhibit the same parallelism. Clearly, whoever is generating today’s Spotify

API documentation is working with the same raw materials as Jehan and Whitman were in 2012 –

materials which are, in turn, unambiguously connected to the 2005 dissertation. The grounding

idea of Whitman’s dissertation, moreover – the one that represents its latent philosophical content

and is the true object of this inquiry – is a prominent theme in his 2012 blog post.

38. Whitman, “How Music Recommendation Works – And Doesn’t Work.”
39. Tristan Jehan, “Analyzer Documentation,” 2014, accessed January 4, 2019, http://docs.echonest.com.s3-

website-us-east-1.amazonaws.com/ static/AnalyzeDocumentation.pdf.
40. See “Get Audio Features” endpoint in the Spotify API, https://developer.spotify.com/documentation/web-api/

reference/tracks/get-audio-features/
41. Jehan, “Analyzer Documentation.”
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Reasoning from these commonalities, I take it that Spotify in 2019 is still using at least

some key features elaborated in 2005 by Whitman and that it is therefore likely that the “theory of

musical meaning” elaborated in the one is roughly operational in the other. There is undeniably

some license in this inference, and some readers may want to reject all or part of this assumption.

I hope that even the most skeptical reader, however, will nevertheless find the following discussion

worthwhile.

3.4 What does music mean to Spotify?

The theory of musical meaning I ascribe to Spotify will be principally derived from its

underlying technology, which I examine mainly in the guise of Whitman (2005). Before doing

that, though, it is worth taking a moment to look at Spotify’s graphical user interface (GUI)

and examining the notion of musical meaning implied there. Even a cursory examination of its

front-end reveals some key assumptions Spotify makes about how music is meaningful to its

users.

3.4.1 Spotify GUI

Music is grouped for Spotify users not primarily by genre or style (and certainly not by

album, a concept that has grown increasingly outdated in the post-Napster world) but rather by

mood, activity, and what might be termed “musical keywords.” Under the “browse” section,

the user is confronted with various buttons that will lead to musical options. These are termed

“hubs” in the Spotify lexicon, and they are represented by clickable square thumbnails. Hubs

are distinct from the more traditional “genre” marker in that they can refer to various different

kinds of musical reference. There are hubs pointing to traditional genres (“country” and “folk”),

but also activities (“party” and “chill”) as well as politically-oriented themes (“black history

now”), sponsored content (“Spotify singles”), and, curiously, a single hub dedicated to Ellen
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DeGeneres (“Ellen”). Hubs appear as clickable thumbnail images with crude artwork evoking

a given hub’s theme (a raised first, for example, for “black history now,” a dove for “christian,”

and a representation of African tribal garb for the “Afro” hub). These thumbnails rework the

traditional idea of an “album cover,” turning it into a generic index for a given mood, more or less

in the way emojis caricature human affective states. Examples of the clickable thumbnails “Ellen”

and “Afro” are shown in figure 3.1.42

Figure 3.1: Spotify “Hubs” for “Afro” and “Ellen”

Although the selection of “Ellen” as a hub alongside “Afro” may seem inscrutable, the

heterogeneity of the Hub themes illustrates an important feature of the kind of musical meaning

the Spotify GUI seems to assume: in the curatorial phase of music streaming, music’s meaning

resides in its relationship to other activities or feelings. The traditional idea of genre is that

there are certain musical properties shared among all members. The reference for a genre is, as

Whitman would put it, “the signal itself.” This is not true of “hubs,” which are instead significant

for their extra-musical references (as in the hubs “study,” “sleep,” “Ellen,” etc). Considered as

a “hub,” even the word “reggae” (apparently a genre word) works differently from “reggae” as

a genre. Put “reggae” next to “Ellen” and you change the status of the word subtly. A “reggae”

genre refers to the sound of the music, whereas a “reggae” hub is a broadly construed, fungible

cultural index. Like “Ellen,” it doesn’t refer to a type of music so much as a musical-cultural

vector.

In this way the Spotify GUI is perfectly in line with Whitman’s dissertation, which insists

42. Screenshots taken from Spotify desktop app on May 20, 2019
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again and again that true musical meaning is informed by “culture,” that it is not in the audio signal

alone. Of course, few people today would countenance the outmoded idea that real listening can

or should take place in a mode of idealized contemplation, divorced entirely from extra-musical

factors. Nevertheless, it is important to note that Spotify seems to have landed at the other extreme

– all music becomes “soundtrack.” Listening in Spotify is not about attending to music but using

it to evoke a desired feeling or achieve some other secondary effect. As Ellen herself puts it on a

promotional web page for the “Ellen” hub,

I’m so excited to partner with Spotify on my very own music hub because music
truly makes everything better. Well, music and salt.43

Like salt, music in the Spotify universe makes things better; presumably it also shares

with salt the property of not being much good on its own. Instead, music in the Spotify universe

is just one ingredient among others, one more good to consume in the effort to lead as full and

happy a life as possible – something the reggae hub will help you do in a way that the reggae

genre can’t.

As theories of musical meaning go, this one is not crazy. The opposite extreme, at any

rate, where musical meaning is inherent in the abstract formal properties of a composition, is no

less objectionable. It is interesting to note, however, that this is a posture Spotify has arrived at

mainly because it found itself having to help people to discover new music; the idea of music as

functional, or “relational,” as Whitman sometimes puts it, is in part a byproduct of the need to

make music discovery systematic and programmable, a need which has its origin in the market. It

is a music-philosophical statement arrived at via the effort to accommodate a capricious market.

Spotify’s traditional “lean-in” posture, in which users are trusted to know what they want to hear

and relied upon to seek it actively, does not rely upon any such position. If users are finding

their own music, Spotify itself is able to remain agnostic on the question of music’s purpose.

Users who know what they like don’t need “hubs.” It is only when market trends demand a

43. Spotify 2019 promotional materials, available at https://newsroom.spotify.com/2018-12-10/
exploring-spotifys-creative-content-partnership-with-ellen-degeneres/, accessed 3-27-2019
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recommendation engine, in the years around 2008, that Spotify has had to make choices about

these questions. Their answers are visible in part in the user interface.

3.4.2 Reading Whitman, “Learning the Meaning of Music” (2005)

As Nick Seaver points out, knowing how an algorithm works is never a simple matter.

Drawing specifically on his fieldwork in the music recommendation space, Seaver notes that,

according to one interlocutor,

There is not one playlisting algorithm, but five, and depending on how a user interacts
with the system, her radio station is assigned to one of the five master algorithms,
each of which uses a different logic to select music.44

When it comes to algorithms “in the wild,” Seaver holds, it is never the case they are simply

a black box waiting to be opened by the right investigator. The whole idea of the algorithmic

black box, in fact, is a red herring, a tempting fiction that tends to nourish the worst fears about

algorithmic mediation. If there is a single secret code at work rather than a constantly changing

and unspecifiable one, it is all too easy to assume the worst about it. The reality, though, is that

recommendation algorithms are far too intimately personalized, too frequently updated, and too

complex for those fears to either right or wrong in any straightforward way. This is not to say that

suspicions about them are never justified, nor that the logic of a system can never be divined, but

simply to remember that we must bear in mind always that our conclusions are almost always

based on incomplete and possibly outdated information.

What this means in practice when it comes to Spotify is that some types of claim are

going to be more reasonable than others. We may never know how a given playlist was curated,

nor, say, what are the precise proportions of “content-based” and “context-based” considerations

at work in Spotify’s recommendations. But we can make empirical observations about logged

recommendations, and we can think critically about the fact that every recommendation does

44. Seaver, “Knowing Algorithms,” 5.
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combine the two types of signal in some way. With these considerations in mind, one good way to

approach this question is to do a close reading of Whitman’s dissertation. The technology outlined

therein is distinguished above all by its ability to join two disparate subsets of music information

retrieval: on the one hand, sophisticated “content-based” machine listening methods (methods that

draw on the techniques alluded to above), and, on the other, “context-based” information culled

from web crawling and other kinds of natural language processing. These two types of signal

are combined into a machine learning model that, in turn, can be used to classify as-yet-unheard

musical material.

Crucially, this is an approach that Whitman specifically positions against the kinds of

music information retrieval techniques, apparently dominant in 2005, that derive musical meaning

from the audio signal alone. As Whitman puts it, systems that rely on the signal alone are

“doomed,” since they miss the essential element of human reaction. As noted above, the idea that

musical meaning isn’t “in the signal” is Whitman’s most important theoretical commitment.

One interesting thing about Whitman’s dissertation is the fact that, although it would

eventually power a major corporation (Spotify) that many artists see as an exploitative shill for

the major labels,45 it is really an extended plea for a more nuanced treatment of musical meaning.

At its heart it is the kind of argument you might expect to hear from a musician: that musical

meaning is hugely complex, variable, unpredictable and contingent.46 Whitman’s language about

music is, at times, quite personal:

Our driving force behind this work is that fundamentally, the current approaches
anger us: they don’t seem right. Music is a personal force that resists ‘processing,’
‘packing’ or ‘understanding.’47

It is striking that Whitman would refer to his anger here. “Current approaches” in the

45. See, e.g. Daniel Sanchez, “What Streaming Music Services Pay (Updated for 2018),” 2018, accessed February 5,
2019, https://www.digitalmusicnews.com/2018/01/16/streaming-music-services-pay-2018/, who ranks Spotify near
the bottom as one of the lowest-paying streaming services for artists, at $0.00397 per stream

46. This is possibly because Whitman himself has performed as an avant-garde noise musician, under the stage
name Blitter. According to Whitman’s LinkedIn profile, Blitter’s career ended in 2002. Careful not to confuse
Whitman’s stage name with the social network of the same name.

47. Whitman, “Learning the Meaning of Music,” 91.
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above are those that take a signal-only approach (or, even worse, a context-only approach) to

musical meaning. Either one, on its own, inevitably does violence to the true complexity of

musical meaning; anger at that violence is something that many musicians can probably relate

to. So far, Whitman’s argument is one that probably few musicians would quarrel with. On the

contrary, it sounds like the kinds of complaint musicians frequently make of recommendation

services (including Spotify): they just don’t get it.

But Whitman takes this complaint in a strange direction. Musical meaning may evade

digital signal processing, but Whitman argues that, simply by mixing it with “context,” and doing

so at an enormous scale, one can actually come close to the true essence of musical meaning, the

same thing that traditional system had so lamentably failed to capture. In a basic sense, if we

believe that The Echo Nest is a good system, we must agree with Whitman that this strategy has

in some non-trivial way managed to do what his title has promised: to “learn” the meaning of

music. And to do so would mean having a kind of theory of musical meaning, which I term a

“quasi-theory.”

In summary, there are four main points about Whitman’s system to bear in mind, which

together outline this “quasi-theory” of musical meaning:

1. That its basic elements seem to be operational in 2019 Spotify.

2. That it works by learning a statistical relationship between “cultural metadata” and the

audio signal, yielding a model which can then be used to classify as-yet-unheard music.

3. That the above relationship is defined as the “meaning of music.”

4. That this philosophy of “relationality” is both remarkably well suited to the market needs

facing Spotify the time of the acquisition, and that it is clearly evidenced in the GUI as

well. It is also a coherent musical extension of Hilary Putnam, as Whitman points out in

the dissertation.

129



3.4.3 Newton v. Diamond and the question of musical meaning

With that rough sketch of Spotify’s theory of musical meaning in mind, we can look more

closely at how the question of meaning is treated in the 2005 dissertation. It begins by going over

the well known legal dispute between James M. Newton and the Beastie Boys over their usage

of a sample from his 1978 release, Choir. The Beastie Boys legally licensed a few seconds of

solo flute playing and looped it for their 1992 song, “Pass the Mic.” The legality of the audio

sample is not in dispute. Nevertheless, Newton sued for copyright infringement, arguing that the

sample in question infringes upon the musical composition itself in a way not provided for by

the negotiated license. What this accomplishes for Whitman is to establish the central frame for

his entire thesis. That is to say, for Whitman this case proves that the true significance of music

resides outside the audio signal itself:

When the Beastie Boys sampled his recording they took far more than the signal,
even if the signal was all they took. Where can we find the rest?48

Having used this case to establish his thesis’s main intervention, Whitman leaves the legal

questions alone; it is enough for him that the case appears to demonstrate the non-signal nature of

musical meaning. However, it is worth paying more attention to the actual facts of the case in

question. One crucial thing Whitman ignores is that the court immediately sided with the Beastie

Boys. While James Newton would presumably agree with Whitman’s central premise (that the

Beastie Boys took more than the signal, even if it was all they took), the law does not. Strictly

speaking, the only thing the case demonstrates is that James Newton alleged that they took more

than the signal, a feeling he shares with his fellow musician Brian Whitman. Whomever we side

with in the legal matter, the case does not really argue one way or another on the question of where

musical meaning lives (which is Whitman’s real question). The central frame for Whitman’s

“meaning,” in other words, is almost off-topic.

48. Whitman, “Learning the Meaning of Music,” 17.
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Moreover, this case raises the issue of the “meaning” of music in a relatively straightfor-

ward way, the same way in which almost any intellectual property dispute in music would: it

points to the fact that reasonable people can sometimes disagree on what should constitute copy-

rightable musical property. As for the question of whether musical meaning can be convincingly

derived from amalgamated reviews, Google searches, and machine learning, or whether it should

be derived exclusively from the audio signal – the question to which Whitman’s thesis actually

addresses itself – the Newton v. Diamond case bears no special relationship to it.

It is interesting to note that the case does hinge on a question of musical meaning, but it is

a different one from Whitman’s question. As Whitman acknowledges, the legality of the sample is

not in question; the Beastie Boys obtained rights to use it from ECM for $1000. But Newton also

copyrighted the “Choir” composition, and it is this holding upon which he argues infringement

has occurred. The judge ruled on the narrow question of whether the legal instrument of a

“composition” had been infringed upon by a sample deployed in a particular musical context. At

issue, therefore, is the relationship between a sound recording and a composition (rather than, say,

a listener/customer and a piece of music). More specifically, at issue is whether or not six seconds

of sampled flute performance can constitute a vital part of the musical composition “Choir.” The

court upheld the verdict that, not only does the sample not constitute a vital part of the “Choir”

composition, but that even if it did, the Beastie Boys usage of it is “de minimis,” that is, too

insignificant to be legally actionable. In her opinion, Chief Judge Mary Schroeder writes that

“the dispositive question is whether the similarity goes to trivial or substantial elements.”

In other words, the dispositive question in the legal case is not the one Whitman says it

is. Whether the meaning can be derived from the musical stimulus is a totally different problem

from whether or not a small sample can infringe meaningfully upon the legal instrument of

the “composition.” The latter is what the court case is about; the former is what Whitman’s

dissertation is about.

The two issues are not particularly related to each other. The legal case has nothing to do
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with the meaning of music in the broad, contextual way that Whitman will eventually construe

it, that is, the sense in which music can be meaningful to a potential customer base. Much less

does it relate to the question of how or whether that meaning can be leveraged into an effective

recommendation engine. The legal case is much narrower than that, and all the argumentation

connected to it remains firmly in the domain of musical form, explicitly excluding the “cultural

metadata” so central to Whitman’s work. The frame is an interesting entry to Whitman’s real

work, but it does little to elucidate the nature of the musical “meaning” we are going to be

“learning.”

3.4.4 Whitman and Leonard B. Meyer

Although the Beastie Boys case centers on a different issue from his research topic, it

is rhetorically effective for Whitman. It is an alluring way to introduce the concept of musical

meaning and effectively sets the stage for his project. But it is only an introductory framing

device, and Whitman quickly moves on from it, proceeding to the explanation of his automated

recommendation engine. For Whitman, the central problem most recommendation services

face is that they tend to ignore human reactions to music; his contribution is to join signal

processing techniques with language processing techniques to form a more robust picture of

musical “meaning” that can be used to make more intelligent recommendations.

More specifically, his system combines context-based (amalgamated human reactions to

music) and content-based information (signal-derived) to “learn” a model of musical “meaning”

that can, in turn, be used to evaluate as-yet unheard audio signals. In sophisticated and often

musically nuanced ways, ground truth data denoting the relationship of audio signal to semantic

content is used to train classifiers that can determine membership of a given audio frame in a

given semantic category.

At the heart of Whitman’s system, then, are machines that listen to music and, in ways

informed by actual human reactions to music, determine its membership in categories that will
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be useful for making recommendations. If we have done this, we have ipso facto “learned” the

“meaning” of music. Note that Whitman is quite clear on this point, although it is sometimes

possible to discern some trepidation behind his shudder quotes:

A model of the contextual information given a signal allows us to accurately ‘un-
derstand’ music (extract semantic features of link to the outside world) that hasn’t
even been heard yet. So what we call meaning throughout this thesis is defined
as the relationship between a signal and its interpretation. In our work we create
predicted ‘machines’ that analyze audio signals and extract projected community and
personal reactions: these are ‘meaning classifiers.’ . . . What we attempt to do here is
computationally understand this extra-signal information and link it to the signal in
such a way that it can be predicted for future audio.49

As noted above, Whitman positions himself against the dominant intellectual trends in

music information retrieval. His will be the first piece of research in the MIR space to really

capture “meaning” in this way; other systems just get it wrong. Musical meaning is something

he cares deeply about, and his faith in computational understanding as a path to it appears to

be sincere. The question of musical meaning is, of course, also dealt with in the disciplines of

musicology and aesthetic philosophy, and Whitman situates his thesis in this intellectual tradition

as well. Throughout the entire thesis, however, Whitman cites but one musicological source:

Leonard Meyer’s influential 1956 Emotion and Meaning in Music.50

While this text does, in a manner of speaking, approach the same subject as Whitman, its

actual role in the dissertation is simply to serve as a humanistic counterexample to his own work.

Meyer represents what Whitman terms the “absolutist view” of musical meaning, and as such

stands in for the entire discipline of musicology itself:

At the outset we should make it clear that our definition of meaning above is mostly
referential, that is, it exists as the connection between two representations. This
contrasts with the purely absolutist view discussed by Meyer, in which the meaning
is encompassed purely within the composition or signal. Our approach considers
both with an emphasis on referential types of meaning. Many musicologists study
the absolutist view of musical meaning simply because there is no formal mechanism

49. Whitman, “Learning the Meaning of Music,” 19.
50. Leonard B. Meyer, Emotion and Meaning In Music (University of Chicago Press, 1956).
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of analyzing the contextual information. What this thesis presents are ways of
computationally representing both signal-derived and contextual music information
and then ways of learning a model to link the two.51

Whitman’s system combines digital signal processing techniques (content-based) with

natural language processing techniques (context-based) to produce “meaning classifiers” – al-

gorithms, trained on those two data sources, that can predict more “extra-signal information”

for new, as-yet-unheard audio signals. It is a system for producing descriptions of music that

incorporate both audio processing and large amounts of empirical, human-generated musical

description.

Throughout this thesis, this system is associated the words “meaning” and “understanding.”

Suppose that the system Whitman distills, a system that predicts “extra-signal information” about

musical signals, is a good one. Whitman opposes it to Meyer, but how much distance does he

really gain? In what follows I argue that the answer is not much – that is, that in spite of explicitly

positioning himself against “absolutism” as encountered in his reading of Meyer, Whitman’s

approach actually aligns with Meyer’s in most of the relevant ways.

Leonard Meyer in fact serves Whiman in a similar way to the legal case discussed above.

Which is to say that it is a framing conceit used to clarify his central intervention, but which upon

closer inspection does not really do what he intends it to do. For Whitman, Meyer exemplifies

an approach to the question of musical meaning that attempts to derive it from the “signal”

(from audio signal or representations in score, which, for Whitman, seem to be philosophically

equivalent). “Many musicologists,” Whitman tells us, take Meyer’s approach, and they do so

because “there is no formal mechanism of analyzing the contextual information.” In other words,

musicologists do not incorporate empirical human reactions into their theories of musical meaning

because they lack any rigorous method for aggregating and processing them at scale. Whitman,

of course, provides such a mechanism, and making this distinction is the beginning and the end of

his engagement with Meyer and with the rest of the intellectual tradition for which he stands in.

51. Whitman, “Learning the Meaning of Music,” 19.
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Whitman’s system, however, in spite of its engagement with extra-signal materials (“cul-

tural metadata”) preserves the same basic contour as Meyer’s. Both address themselves to a

scenario in which a signal is audited as the sole stimulus in a musical event. Meyer, availing

himself of then-popular trends in psychology, seeks to understand how that stimulus acts on

human beings; that is his notion of what an inquiry into musical meaning looks like. Meyer

characterizes music as a system of delayed gratification; music sets us up to expect certain things

and manipulates our innate desire to see those expectations fulfilled, in ways that stimulate

complex affective responses. The famous comparison from Meyer is that of the cigarette smoker

whose emotions are piqued when he, craving a smoke, reaches into his pocket to find that he’s

out of cigarettes. Music, according to Meyer, triggers a similar affective response via a similar

physiological mechanism.52

The inevitable fact of human listening is that a signal acts upon a listener; Meyer regards

the discussion of musical “meaning” to be about how that strange alchemy works. Whitman,

as we have seen, is not really concerned with that question. As a software engineer, he simply

approaches the issue in a different way (or, rather, approaches a different issue). But in spite

of his protestations against “absolutism,” his approach does not privilege the audio signal any

less. Whitman produces a system that hears music and evaluates it, predicated on sophisticated

audio- and language-processing techniques. Meyer sees musical affect as one case of a broader

system of human affect, Whitman as a data science problem. Yet both authors see the process of

musical meaning making as one in which the signal acts upon the listener (machine or human).

Considered in this light, both authors actually agree on the signal as the primary source of musical

significance.

Whitman’s whole claim is that Meyer (and, it bears repeating, the entire discipline he

stands for) fails to take contextual information into his account of musical meaning. But the truth

is that Meyer actually does address it. Throughout his work, he is perfectly aware of the role that

52. Meyer, Emotion and Meaning In Music, 14.
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extra-signal information can play in the excitement of affect and construction of meaning. It is

just that he regards this kind of information as outside his purview:

We have found that the subjective data available, taken by themselves, provide
no definite and unequivocal information about the musical stimulus, the affective
response, or the relation between them.53

Elsewhere, even more directly:

Listeners and the objective data gathered from the observation of behavior and
the study of the physiological responses to musical stimuli did not yield reliable
information about the musical stimulus or the affective responses made to it.54

By “subjective data” (and, in a terminologically confusing choice, “listeners and the

objective data gathered from [them]”), I take Meyer to be referring to listeners’ reported affective

states – the empirical responses of actual people reporting actual experiences to music. Meyer is

referring, in other words, to more or less the thing that Whitman terms “context” and “cultural

metadata.” For Meyer, this kind of “context” cannot tell us anything about the nature of the

affective response itself, which is the essential substrate of musical meaning. Instead, this data

is relevant to a conversation about musical meaning only in light of a general theory of affect,

which is what Meyer hopes to explicate. He calls for:

A general hypothesis as to the nature of affective experience and the process by
which musical stimuli might arouse such experience.55

First, Meyer says, you should postulate a general hypothesis about how meaning and

affect arise. Then and and only then can Whitman’s “cultural metadata” figure meaningfully

into a discussion of musical “meaning.” Whitman is wrong that Meyer ignores human reaction

because it’s too difficult to integrate at scale. He just regards it as of secondary importance for a

discussion of musical meaning. For Meyer, such a discussion seeks to answer “how does music

53. Meyer, Emotion and Meaning In Music, 12.
54. Ibid., 22.
55. Ibid., 12.

136



work?” – not just “how has music worked for many people, and how best to use that information

to synthesize future human reactions?” The latter question, of course, is Whitman’s.

In a part of Meyer’s book that Whitman seems to have ignored altogether, this allows

Meyer to imagine listening situations where context and conditioning do in fact play a large

role in the construction of musical meaning. In this regard Meyer leaves much more space for

extra-signal information that Whitman gives him credit for:

Often music arouses affect through the mediation of conscious connotation or un-
conscious image process. A sight, a sound, or a fragrance evokes half-forgotten
thoughts...These imaginings...are the stimuli to which the affective response is really
made. In short, music may give rise to images and trains of thought which, because
of their relation to the inner life of the particular individual, may eventually culminate
in affect.56

These internal musings can form an important part of the human affective response, but they do

not belong to the “musical stimulus.” Instead, they form a new stimulus of their own, “activated”

by the primary stimulus of the audio signal but different from it in kind:

The real stimulus is not the progressive unfolding of the musical structure but the
subjective content of the listener’s mind. Yet...it seems probable that conscious or
unconscious image processes play a role of great importance in the musical affective
experience of many listeners.57

Secondary effects are part of loving music. Meyer acknowledges quite explicitly their

role in musical experience. This is not necessarily an idea you would expect from the “absolutist”

perspective of which Whitman makes Meyer an exemplar. Far from being the opposite of

Whitman, what Meyer voices here is something very close to the intuition animating the whole of

Whitman’s project. The two authors share much more than Whitman would lead you to believe.

Whitman has created, essentially, a system for processing audio. It is one that is informed

in creative ways by empirical human affective responses, but it is still a system for processing

audio – that is, a system that grants the audio signal ultimate primacy. A signal goes in, a

56. Meyer, Emotion and Meaning In Music, 256.
57. Ibid., 258.
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classifier does its work, and an output of some kind comes out; audio frame X, say, is evaluated

as belonging or not belonging to category Y. What is positioned as a novel intervention, locating

meaning in the “relation” of the mind to the world, really just recasts it as a kind of “mind-mind

problem.”58

The nature of the outputs the system deals with has certainly changed over the years, but

the fundamental architecture of the system (audio in, evaluation out) is most likely the same. And

insofar as that fundamental architecture remains in place, Whitman has gained no philosophical

distance from Meyer, who also addresses the question of how a signal operates on a person.59

Whitman is correct that his approach, incorporating real human responses, really is different

from MIR techniques that derive from the audio signal alone. The intellectual intervention and

technical innovation legitimate (and, to judge from the success of the Echo Nest, practically

effective); nevertheless, it would be wrong to locate Meyer and Whitman at opposite ends of the

music-philosophical spectrum.

The real difference between the two authors, of course, is that Meyer is trying to understand

how people relate to music and Whitman is building a machine that emulates how people relate

to music. The machine’s listening experience is qualitatively different from the human one; it is

impossible for a machine to have the experience of Meyer’s “subjective content of the listener’s

mind,” to have the music call to mind a long forgotten experience which triggers a cascade of

memories and affective states, or to listen in the company of friends. The machine “listens” in

silence and isolation, without any subjective experience.60 In addressing itself to a scenario where

there exists no interiority or intersubjectivity or even real vibrations of the air, there is a sense in

which Whitman’s system is infinitely more “absolutist” than Meyer’s.

58. See Cusick, “Feminist Theory, Music Theory, and the Mind/Body Problem” and Amy Marie Cimini, “Music
Theory, Feminism, the Body: Mediation’s Plural Work,” Contemporary Music Review 37, nos. 5-6 (2018): 666–683

59. There are other conceivable theories of musical meaning that truly do de-center the signal. Chapter Four of this
dissertation surveys musicological theories of musical meaning beyond Meyer to give a sense of the varied texture of
humanistic thinking on this subject, much of which genuinely does not privilege the audio signal.

60. Assuming that Whitman does not believe, in “strong AI” fashion, that because his system simulates these
affective states, it actually has them.
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Although both these authors use the word “meaning,” they are for the most part not on

the same topic. Where their topics do overlap, moreover, they basically agree (they’re equally

“absolutist”). Whitman is not wrong that Meyer needs musical meaning to depend on the “signal,”

or, as Meyer calls it, the “stimulus.” That is indeed the relationship under investigation for Meyer.

Where Whitman is wrong is in claiming that this is not true of his own notion of musical meaning.

For all his talk of musical meaning, on the mysterious relationship between signal and response

Whitman is basically silent – and therefore gains no philosophical distance from Meyer. He

simply writes about a different subject, namely how best to synthesize that response for the

purposes of a commercial application. The essential, causal relationship between signal and

response – the only question Meyer really targets, and a problem for countless other thinkers

besides Meyer – is at once implicitly taken for granted and totally ignored in Whitman’s project.

3.5 The Meaning of Meaning

What, then, is the “theory of musical meaning” employed by Spotify? Above I have

sketched part of an answer: that music’s meaning is functional rather than intrinsic, and that the

mysterious ways in which music causes people to feel things – whatever they are (and Whitman

definitely doesn’t try to answer that) – will necessarily appear in a meaningful way somewhere,

provided we gather enough data. In short, the “theory” of musical meaning is nothing more

than an expression of the assumptions grounding the fields of machine learning and pattern

recognition.

The fact that Whitman’s system is able use words like “learn” and “meaning” while

essentially skirting the kinds of thinking that traditionally attach to them is part of a broader

trend. In the rhetoric of machine learning, it is almost as if with enough data, theory itself

becomes obsolete.61 Data, if the quantity and quality are high enough, can seem to supplant

61. Chris Anderson, “The End of Theory: the Data Deluge Makes the Scientific Method Obsolete,” 2008, accessed
July 25, 2019, https://www.wired.com/2008/06/pb-theory/.
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theory. Predicting supplants understanding and explaining. That, at least, is what is happening

here with respect to music. As Zarsky puts it, quoted above, this is the assumption:

That human conduct is consistent and that with sufficient data human behavior
becomes predictable.62

Turning back to the musical domain, though, is that a “theory” at all? You might answer “no,”

and you might be right. But what, then, do we make of Whitman’s claim to have “learned the

meaning of music?” If we do not have a notion in place of what musical meaning is, what is it

exactly that we have learned? And what, then, do we make of Spotify’s claim to be worth $10 a

month? Are not Whitman’s dissertation and Spotify’s pitch equally grounded, on some level, on

the idea that they’re at some level right about what music means? And is being basically right

about musical meaning not ipso facto a kind of theorizing?

Whether we approach recommendation through Spotify’s GUI or Whitman’s dissertation,

it seems clear that some kind of theory is at work; there’s no other way to “learn the meaning

of music.” And yet the theories there, such as they are, have no real explanatory power; they’re

theories of data aggregation and prediction. The recommendation problem, then, resumes the

familiar problem from the critique of AI in culture: whether machine intelligence can be evaluated

behavioralistically or not. It resumes it, but it doesn’t do anything to resolve it. This can be seen

as a flaw in its design, or it can be a simple expression of the fact that it’s a product, not a piece of

knowledge. In other words, there’s a parry available to Spotify’s apologists here: very well, you

might say, Spotify is wrong about meaning. So what? It’s not a form of scientific knowledge,

but just a collection of engineers trying to solve a problem and earn some money. But, as Pelillo

et al (2015) argue, the era of machine learning has changed the way we should think about this

traditional distinction:

The scientist’s occupation is seen today more modestly as a kind of problem-solving
activity not dissimilar conceptually to that of the engineer, whereas on the other hand

62. Zarsky, “The Trouble with Algorithmic Decisions: An Analytic Road Map to Examine Efficiency and Fairness
in Automated and Opaque Decision Making.”
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the work of the engineer is thought to produce a form of knowledge which is on a
par with that produced by the scientist.63

Whitman himself echoes this idea; without giving a full throated endorsement of “strong

AI,” he does seem to suggest that insights about man and insights about machine don’t necessary

stand at odds with each other:

You call it algorithms but it’s a lot more than that. We are obviously doing a ton of
computer stuff but it’s all based on what people are saying and choosing and that
stuff. We hate this stupid man versus machine dichotomy.64

If the man-vs-machine dichotomy is stupid, it should follow that the programmatically

derived “meaning” is not just an engineering expedient, but some kind of true statement about

how music works. If Spotify is worth paying for, it should also follow that Whitman’s technology

– culling meaning from aggregated human activity and linking that to the audio signal – should

have really captured musical meaning. It’s implicit in saying that you’ve learned the meaning

of something that you have some explanation of how it works, that you’ve cracked some kind

of code. But when you actually look at Spotify’s recommendation engine, what you have is, on

one hand, an expression of the reducibility of human conduct to statistical predicition (nothing

more than an axiom underlying all of machine learning) and, on the other, a theoretically feeble

“relationality,” which isn’t even all that different from what we find in Leonard Meyer (1956).

Whitman sidesteps, in other words, the question that should matter to him most (what

does music mean?), even as he postulates a cryptic kind of answer. Compounding matters is

the fact that, in the case of Spotify, that cryptic answer is itself never divulged to the consumer

in any way. Still, we can say one thing for certain about what that theory is: that if we collect

enough data, musical meaning, whatever that may be, will inevitably, somehow, be captured by

63. Marcello Pelillo, Teresa Scantamburlo, and Viola Schiaffonati, “Pattern recognition between science and
engineering: A red herring?,” Philosophical Aspects of Pattern Recognition, Pattern Recognition Letters 64 (2015):
3–10.

64. Emily White, “The Echo Nest CTO Brian Whitman on Spotify Deal, Man Vs. Machine, Why Pandora ’Freaks’
Him Out (Q&A)”, Billboard interview in 2014, https://www.billboard.com/biz/articles/news/digital-and-mobile/
5944950/the-echo-nest-cto-brian-whitman-on-spotify-deal-man-vs, accessed May 20 2019

141



the system. As for the nature of that meaning, Whitman takes a peculiar approach: he cites a

single source (Meyer) as representative of countless humanistic authors who have thought about

the issue, gives that source a cursory reading (it’s “absolutist”), and declares his own system

to be an improvement upon it. To the criticism that the system tramples over the nuance of

true musical experience, or to the tradition of aesthetic philosophy, Whitman will always have

the ready defense that this doesn’t matter since that the real task is software design rather than

philosophy.

Ignoring basic questions like this is a kind of privilege, the same one enjoyed by Roger

Schank when he disavowed philosophizing about technology decades earlier (see Chapter Two).

The prestige and monetary value of the tools under development by Schank and Whitman drown

out the simple questions we might want to ask about them: does this really stuff work? And, if

so, how? That these questions are hard to hear over the din of excitement surrounding machine

learning today does not mean that they shouldn’t matter to the software designer; what this chapter

argues, more than anything else, is that they do matter.

A close look at Spotify’s treatment of the problem of musical meaning shows that the

advent of big data approaches does not magically make that problem disappear; that even the

one philosophical source Whitman cites is actually aware of it in very much the same terms as

Whitman, and that, above all, it remains as obstinate a problem as it has been throughout its long

history in aesthetic philosophy. It is as thorny a problem as the financial crisis confronting the

music industry in the 21st century, to name another problem Spotify hasn’t solved.

. . .

Chapter Three, in part, is published in INSAM: The Journal of Contemporary Music, Art

and Technology, No. 2, Vol. I, July 2019, pp. 36 - 64, as “What Does Music Mean to Spotify?

An Essay on Musical Meaning in the Era of Digital Curation.” The dissertation author was the

sole investigator and author of this paper.
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4 Typology of Musical Meaning in the

20th Century

In the previous chapter, I argue that Spotify’s automated recommendation system is

predicated on a tacit theory of musical meaning. I also discern its basic contours by reading

Whitman’s dissertation against the Spotify GUI. Part of that argument was also to take issue with

Whitman’s treatment of his sole reference for humanistic theories of musical meaning, namely

Leonard Meyer (1956).1 In Whitman’s reading of Meyer, the two authors sit at opposite ends of a

crude ideological polarity; “absolutist” and “relational,” as Whitman terms them. I show that this

is a misreading of Meyer, a misreading that points to the inherent vagaries of Whitman’s notion

of musical meaning, taken on its own terms.

Not only does Whitman misread Meyer, but the whole idea of using Meyer as a stand in for

all of musicological thinking on the subject does that discipline a huge disservice; Whitman does

not, in fact, really situate his technologically derived “meaning” into meaningful conversation

with humanistic discourses on this subject. In order to do that, one would first have to survey

the history of humanistic thinking about what constitutes “musical meaning.” In this chapter, I

do just that, creating a typology of theories of musical meaning against which to examine what

we have already looked at in Whitman’s dissertation – which, again, is assumed to operate, in

1. For a more recent psychological theory of musical emotion that accounts for “aesthetic judgement” as an
experimentally verifiable category, see Patrik N Juslin, “From everyday emotions to aesthetic emotions: Towards a
unified theory of musical emotions,” Physics of life reviews 10, no. 3 (2013): 235–266
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at least the broad outlines, in Spotify today. This typology is of course not exhaustive, and it is

necessarily reductive. Nevertheless, it provides a sense of the diverse texture of musicological

thinking on this subject and is a valuable counterpoint to the one-dimensional picture one gets

from Whitman’s dissertation.

One of Whitman’s humanistic sources is the philosopher Hilary Putnam. Whitman cites

a famous aphorism associated with Putnam: “meaning just ain’t in the head.” This aphorism

refers to the “Twin Earth” thought experiment and the associated theory of semantic “externalism.”

Imagine two worlds, each with something called “water,” but which differ subtly in chemical

composition. A person from one world will say “water” and mean H20, while his twin on Twin

Earth will say “water” and mean XYZ. Their internal mental representations could be identical,

while clearly referring to two different things; thus, argues Putnam, meaning isn’t in the head.

The idea of semantic externalism is that “meaning” cannot refer to purely internal mental states.

Instead, mental content depends partially, but necessarily, upon external influences. “Meaning,”

then, is not just a matter of internal states or ideas. You can’t know the meaning of any given

word, for example, simply by describing the neural activity of the person who happens to be using

it. As Putnam writes, “the psychological state of the speaker does not determine the extension (or

the “meaning,” speaking preanalytically) of the word.”2

Whitman extends this idea into the musical domain in a way that may at first seem

counterintuitive: just as semantic meaning “ain’t in the head,” so musical meaning is not in the

audio signal. In a way, it’s an odd move, because the “signal” already isn’t in the head; there

is a strange intellectual non-parallelism in aligning “head” and “signal.” But it makes a little

more sense if you think of Whitman’s broader aims: where Putnam seeks to locate meaning in

something like a person’s interactions with the world, so Whitman wants musical meaning to

be about humans’ reported reactions to musical information (signal). Just as a person without

expertise in identifying trees can obtain the same internal state when using the word “Elm” and

2. Putnam, “The Meaning of ’Meaning’,” 143.
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“Beech” (Putnam’s example), so a music listener (and, modeling that, Whitman’s computerized

“meaning recognizer”) constantly updates its model of a given music term, producing a kind of

meaning that inherits the contingency and externalism of its linguistic cousin. Thus the “meaning”

of that term is construed in a manner intended to be analogous to Putnam’s: as Whitman writes,

“this places the meaning of music far outside the head.”3

This is the essence of what Whitman means when he characterizes his notion of musical

meaning as “relational.” Just as linguistic meaning does not reside in the mind of the language

user, but rather depends on her interactions with the world (it depends on a “linguistic division

of labor”4), so, for Whitman, the meaning of music resides fundamentally outside of the audio

stimulus. The meaning of music is “the connection between the music and other music,” and

between music and non-musical “cultural metadata.”5

This puts Whitman in a funny position, philosophically: it requires that web crawls and

surveilled internet activity stand in for the world-human interactions imagined by Putnam for his

notion of meaning – a translation that Putnam would probably never countenance. The idea that

information about how humans react to music only online is a robust enough representation of

human-music “relationality” upon which to base a theory of musical meaning is a major flaw

in Whitman’s thinking. The experiment, so to speak, bears thin resemblance to the real-world

phenomenon it seeks to explain.6 We might expect something like this if Whitman were imagining

a genuine post-human listening world, where everything takes place online. But he actually is a

rather traditional listener in that regard; his indignation at existing systems is explicitly that they

miss the essential human elements of musical meaning. He’s angry that most MIR research has

reduced music to its sonic fingerprint alone. And yet when it comes to reducing human reactions

to music and interactions with each other, supposedly so central to true musical meaning, to their

3. Whitman, “Learning the Meaning of Music,” 29.
4. Putnam, “The Meaning of ’Meaning’,” 144.
5. Whitman, “Learning the Meaning of Music,” 21.
6. This is one of the core critiques Chomsky makes of B. F. Skinner, whose experimental approach to language

use is hopelessly artificial. See Chomsky, “A Review of B. F. Skinner’s Verbal Behavior”
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mere digital representations, Whitman seems perfectly comfortable.

There are other, more complicated objections. Since Whitman invokes Putnam and the

externalist theory of meaning as analogous to his project, it makes sense to consider what the

musical analogue would be of a prominent opponent of externalism: Noam Chomsky, whose

“internalist” program is often cast in opposition to Putnam. For Chomsky, the whole idea of

defining “meaning” in the way Putnam attempts to do (“pre-theoretically”) is incoherent and

pointless. To attempt to render a “theory of meaning” itself in Putnam’s fashion, one that exists

apart from its power to explain the nature of the language faculty or to account for anything

beyond its own terminological manipulations, is not real science. It is a matter of definitions

rather than true reasoning. To ask “what is meaning?” in this way is, for Chomsky, something like

asking “how do things work?” Which is to say, while it can be an effective spur to true scientific

work, it is not in itself scientific at all. At best, it is a “guide to possible topics of inquiry.” At

worst, simply incoherent.7

Words, for Chomsky, don’t have “meanings” in the sense in which the Twin Earth

experiment requires them to have. “Meaning,” in fact, thusly construed, is an empty concept.

Instead, “lexical items provide us with a certain perspective for viewing what we take to be the

things in the world; they are like filters or lenses, providing a certain way of looking at things.”8

Words, a term Chomsky seems reluctant to use, probably for the way it continually reifies the

commonsense notion of lexical discreteness and significance, don’t “mean” anything. They’re

more like lenses, which don’t have “meanings” upon which people depend for communicating

with each other. The quest for “shared meanings in a public language” is as pointless as the quest

for shared shapes among noses; “establishing shared entities has no more explanatory value than

the postulation of shared shapes.”9 Of course meaning isn’t in the head, for Chomsky; it isn’t

anywhere. “Meaning is something that words have in sentences, or maybe even in whole belief

7. D.M. Johnson et al., eds., “Language from an Internalist Perspective,” in The Future of the Cognitive Revolution
(Oxford University Press, 1997), 120.

8. Ibid., 123.
9. Ibid., 126.
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systems. We should, so it seems, abandon the quest for a theory of meaning as quixotic.”10

Let us return to the quest for musical meaning, bearing Chomsky’s position in mind.

Recall that Whitman allies himself with Putnam’s sense of meaning; it’s not in the head, and

not in the signal. It is relational, something that consists in the relationship between music and

other music, or between music and people – in fact, among all those things, processed and made

legible to the computer in a complex fashion derived from Whitman’s training in natural language

processing. Music has meaning that can be expressed in words; how and in what way is a mystery

whose solution resides somewhere in those relations. But actually we do not need to know

anything about how or why with this kind of machine learning task; a model’s interpretability can

be pretty low if our faith in the data is strong enough.

Nevertheless the system’s notion of meaning is strangely specifiable. For example, the

system can not only classify a given audio frame X as belonging or not belonging to musical

category Y, but it can “visualize the spectral fingerprint” for a given musical term – that is, it has

an opinion on what the musical meaning of “sad” is, in addition to being able to input music and

evaluate it as sad or not:11

Setting aside the question of whether or not the relations used here (internet intercourse)

are a reasonable substitute for what Putnam had in mind, insofar as Whitman assumes the

possibility of a pre-theoretical notion of meaning, he does indeed align with Putnam. The

“musical meaning” of a word may shift over time, updated by repeated consultations with the field

of human reactions. It may, today, operate with a more sophisticated form of machine learning.

Nevertheless this is a system that does depend on there being such a thing as a “meaning” for a

musical word, one that can be deduced, isolated, and even visualized. The first quadrant in Figure

4.1 really is supposed to be the musical meaning of “quiet,” a notion that definitely externalises

musical meaning.

Let us carry Chomsky’s internalist hypothesis into the musical domain. To do so would,

10. Johnson et al., “Language from an Internalist Perspective,” 128.
11. Whitman, “Learning the Meaning of Music,” 70.
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Figure 4.1: Spectral characteristics of musical terms from Whitman (2005)
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as we saw above, would be to conclude that the whole question of musical meaning is usually

pointless. Musical meaning would be, like linguistic meaning, a matter of definition rather

than investigation; you can define it so that it’s in the head, or so that it’s not. Either way, our

sense of “meaning” is stipulative and technical, can do whatever work we want it to do. The

whole discussion, in other words, is not really scientific. Discussions of musical meaning in this

pre-theoretical way are basically harmless, but have no true explanatory power. Whitman’s notion

of musical meaning, for example, can tell us nothing about why or how people respond to music –

which is in fact exactly what Meyer’s theory of musical meaning tried to do, and which constitutes

the real difference between him and Whitman (see Chapter Three). Traditional music theory,

Schenkerian analysis for example, at least gives us some explanation of how music works, some

logic that answers real questions we have about music: why do people enjoy listening to music?

If there is a natural human instinct for following the fundamental descent from 5 to 1, as Schenker

hypothesizes, then we have an answer, a principle with some explanatory power. Whether or not

they are true “scientific” statements of objective validity, the logic of tonicization and Schenker’s

Urlinie do create a framework for making what Milton Babbitt, ever the crusader to make music

genuinely scientific, has called “testable statements about musical compositions.”12 To say that

musical meaning “is” anywhere or “is” anything, on the other hand, has no such explanatory

force. Whether you’re right or wrong about musical meaning being in the head, it doesn’t tell

you much about why people enjoy it. There is no statement about music that Whitman’s theory

validates or disproves.

Complicating matters, Whitman’s system deals with both words and music at once, even

returning values for the degree of evaluated “musicality” of given terms (some words carry more

musical-semantic weight than others).13 There’s a strange circularity in the fact that the system has

no choice but to define one semantically nebulous entity (music) in terms of another (language).

Of course, that’s nothing more than the traditional problem of talking about music (“dancing

12. Milton Babbitt, “The Structure and Function of Musical Theory: I,” College Music Symposium 5 (1965): 49.
13. Whitman, “Learning the Meaning of Music,” 86.
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about architecture”) but given that the unsolved puzzle of semantic meaning, without music to

muddy the waters, was already the thing to which Putnam addressed himself, it is worth noting

here; we don’t even know what meaning is in language, apart from its utility to define music.

What, for example, if music shares with language the property of being something like Chomsky’s

“lens?” What if it is merely a way of seeing the world whose meaning, if such a locution is ever

sensible, exists only singularly and considered against “whole belief systems?” Then then the

whole idea of musical meaning in words becomes incoherent or vague to the point of uselessness,

much more so than is captured in the “dancing about architecture” quip. Musical meaning would

not be, in this sort of Chomskian perspective, a sensible object of philosophical inquiry. Asking

about musical meaning would be like asking “how do things work?” An interesting provocation,

perhaps, even a guide to future inquiry, but not acceptable itself as a real philosophical question.

4.1 Theories of Musical Meaning

Of course, there does exist a rich tradition of musicological and philosophical thought

on this very subject, far beyond the single author whom Whitman cites. Indeed, one of the

interesting quirks of Whitmans thesis is that it uses machine learning to rehearse an argument

over musical meaning that dates literally to the beginning of Western thought. It is, moreover,

probably the most familiar and notoriously ideological polemic in all the history of Western

music: the question of whether or not music can (or should) refer beyond itself. It was essentially

Whitman’s theoretical preoccupation that the “battle of the Romantics was fought over, with

Wagner and the Hegelians on one side and Brahms and the musical “absolutists” on the other.

In terms almost identical to Whitman’s, the issue of musical meaning, especially whether it is

inherent or contingent, has been the field upon which the most notorious battles over Western

music have always been waged; it is not, in other words, a small omission on the part of Whitman.

This question is of such decisive importance for Western music that, for Lawrence Kramer, it is
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not really about music so much as a necessary condition for its existence: arguments over music’s

relationship to things other than itself is the “condition of intelligibility for most modern Western

music.”14

It is a question that admits of many different kinds of answer. In this chapter, I survey

the history of these answers and attempt to produce a rough typology of them. This typology

is, of course, incomplete, but it does give a sense of the breadth and diversity of thinking about

musical meaning over the last hundred years. Having established this typology, I revisit the issue

of Spotify to situate its theory of meaning (as derived in Chapter Three) on the spectrum this

typology describes. The meanings of musical “meaning” have been varied and diverse; in this

chapter, I ask, what do we make of Spotify in light of this fact?

4.1.1 Musical meaning is an incoherent concept or a category error

As is often noted, there are theories of musical meaning in Plato and Aristotle. Even some

of their ideas are familiar from more recent debates – Plato’s infamous anecdotes about certain

modes’ morally corrosive power, or Aristotle’s about music as a kind of mimesis are not, after all,

so different from various 20th century intellectual and political battles.15 It was the 19th century,

however, that really gave the subject of musical meaning the contours that largely persist today:

when we talk of musical meaning these days, we typically argue over whether or not music can

refer to something besides itself, more or less the question Whitman addresses himself to.

In this regard Whitman is on very firm musicological footing, raising a question that has

dogged the discipline for as long as it has been around. The battle between Hanslick and Wagner,

Jenefer Robinson writes, “may stand as exemplary of two very different attitudes toward music

that have vied for dominion in the history of Western music from Plato to the present day.”16

14. Lawrence Kramer, Musical Meaning: Toward a Critical History (University of California Press, 2002), 2.
15. The 1990s battles over whether or not to censor gangsta rap, for example, continue to this very day. See the

recent supreme court case, Elonis v. United States (2015).
16. Jenefer Robinson, “Introduction: New Ways of Thinking about Musical Meaning,” chap. 1, ed. Jenefer

Robinson, vol. Music and Meaning (Cornell University Press, 1997), 2.
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We can imagine discourse on this subject, then, roughly as spectrum between these two poles:

people who think music expresses nothing are on one end, and people who think of it as a kind of

“language” are on the other.17 Often, the analytic philosopher Peter Kivy will occupy the formalist

extreme, with the music semiotics of Jean-Jacques Nattiez at the other. This typology proceeds

more or less from one end to the other.

For Kivy, the whole idea of musical meaning is fundamentally misguided. It is what

he terms a “category error,” applying the analytic philosophical slur for a claim that is so off

that it cannot even rise to the level of being wrong. Thus the question “is music meaningful?”

cannot, for Kivy, even be answered in the negative. This is because Kivy considers meaning in

a strict semantic sense, as being propositional in exactly the way that language is: meaning for

Kivy is “the meaning that attaches to human artifacts such as language, written and spoken, and

artworks.”18 As such it makes no sense to discuss it in connection with music, which, lacking any

truly propositional content is for Kivy plainly not such an artifact.

Kivy’s major quarrel is with Anirudh Patel, who argues for a “broader” conception of

what meaning is: for Patel, “meaning exists when perception of an object/event brings something

to mind other than the object/even itself.”19 For Patel, this means that there exist degrees of

semantic-ness, with music occupying a sort of middle ground between language and, say, the

genuinely insignificant hum of a helicopter. Since music can indeed call to mind other things than

itself, it is ipso facto meaningful in some way. The problem here, says Kivy, is that this is already a

stipulative definition of meaning, one that merely changes the subject from something interesting

to something trivial. If you define meaning this way, you avoid everything that made the question

of musical meaning worth asking. “It is meaning in the echt, semantic, propositional sense that

the argument was all about in the first place.”.20 It is, of course, okay to define “meaning” in

17. This polarity, in fact, is the very approach taken in Anirudh Patel’s survey of the subject, some of which is
repeated in this typology. Anirudh Patel, Music, Language and the Brain (Oxford University Press, 2008), 300-351

18. Peter Kivy, Sounding Off: Eleven Essays in the Philosophy of Music (Oxford University Press, 2012), 166.
19. Patel, Music, Language and the Brain, 304.
20. Kivy, Sounding Off: Eleven Essays in the Philosophy of Music, 185.
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this stipulative way, but the logical error occurs when the original, semantic, sense of the word is

smuggled in under the less precise, temporarily stipulated, one.

For Kivy, music is therefore not meaningful (semantic) but rather formal (syntactic). It has

rules that govern it but contains no genuinely referential material of its own. To this category in the

typology, then, we might add Lerdahl and Jackendoff’s Generative Theory of Tonal Music, which

offers a theory of music perception that is absolutely silent on questions of affect or semantic

reference.21 Possibly as a consequence of its derivation from Chomsky’s theory of Universal

Grammar, the GTTM does not address itself to the question of whether or not music can signify

beyond itself. It is a theory of how music works in human psychology – a topic that has some

potential to explain how something in the world really works (the human musical faculty). The

question of “meaning,” its possibility, or the difference between it and syntax, and so on – these

are questions that simply never enter into the discussion. Instead, the GTTM offers a theory of

how the mind processes musical signals, a formal description of a hypothesized innate human

music faculty. The theory is analogous to, but by no means necessarily related to, the biological

endowment of language. It is a scientific description of the formal rules governing a hypothesized

musical organ somewhere in human biology; the question of music’s “meaning” or lack thereof is

irrelevant, even though the discussion proceeds with language as an obvious analogue.

For obvious reasons, the question of musical meaning often looks to language in this way.

But not everyone in music studies has taken to the idea that linguistic models will necessarily be

so instructive. In a broad critique of the whole enterprise, Steven Feld derides it as both faddish

and overly given to a retrograde kind of musical formalism.22 Feld argues that a theory’s viability

is predicated on its explanatory power alone: “we are led to seriously question whether linguistic

models, confined to sound structure, constitute adequate explanations of ethnomusicological

facts.”23 We look to language for the simple reason that it is there that we are most accustomed to

21. Fred Lerdahl and Ray Jackendoff, “An Overview of Hierarchical Structure in Music,” Music Perception: An
Interdisciplinary Journal 1, no. 2 (1983): 229–252.

22. Steven Feld, “Linguistic Models in Ethnomusicology,” Ethnomusicology 18, no. 2 (1974): 197–217.
23. Ibid., 207.
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find what we term meanings; in empirical language, we routinely consult dictionaries to discover

the “meanings” of words. But this has no analogy for the kinds of “ethnomusicological facts”

Feld is concerned with.24 Music and language might not, in other words, be as similar as they

appear, and scholarly efforts to use one to illuminate the other are seldom as fruitful as we want

them to be. Writing along similar lines, Kofi Agawu notes the tendency of the linguistic model to

point back in the direction of formalism (which, by the 21st century, has been largely repudiated

in musicology), even for scholars openly hostile to the traditional formalist program. As Agawu

puts it, for some scholars writing about music and language, “the music itself remains a treasured

concept even when it is being vigorously attacked.”25 Musical meaning, for these authors, might

not be a “category error,” but the analogy with language nevertheless leads down the wrong path.

4.1.2 Musical meaning resides in emotion (either the expression or the ex-

perience of)

Even though he is usually located on the “formalist” end of the spectrum, Leonard Meyer

actually commits himself to a version of musical meaning more ambitious than Peter Kivy. Meyer

briefly takes up the question of whether music can have propositional meaning in Kivy’s narrow,

propositional sense – he calls such meaning “designative” and its concomitant theory of meaning

“heteronomist.” But Meyer brings up this kind of meaning only to dismiss it; whether or not music

has some kind of propositional content is not his concern at all. Instead, the musical meaning he

will theorize is connected to affect and the “psychological theory of emotions.” What is under

consideration for Meyer is indeed meaning, but meaning construed as “that which is most vital

and essential in emotional experience: the feeling-tone accompanying emotional experience, that

is, the affect.”26 A theory of emotion and meaning in music (the two terms in his title), moreover,

24. Some musical cultures studied by 20th century ethnomusicologists, of course, had the language analogy as an
explicit element in their theories of music. See e.g. John Miller Chernoff, African Rhythm and African Sensibility:
Hauptwerk, Originally published 1979 (University of Chicago Press, 1986)

25. Kofi Agawu, Music as Discourse: Semiotic Adventures in Romantic Music (Oxford University Press, 2009), 5.
26. Meyer, Emotion and Meaning In Music, 12.
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would need to address the question of how music arouses this affect; thus meaning is, essentially,

a theory of arousal. In this particular theory, affect is aroused when expectations are disappointed.

The human affective response is akin to a nicotine addict reaching for the notorious missing pack

of cigarettes, piqued to find her pocket empty.27 Although the two are often taken as paradigmatic

of the “absolutist” or “formalist” perspective, it is important to note that Meyer actually points to

a kind of affective musical “meaning” that Kivy would never refer to by that word.

Another theory of musical meaning as essentially emotional comes from Stephen Davies.

Davies agrees with Meyer that music’s meaning resides in its relationship to emotion, but instead

of seeing it as arousing an undifferentiated affect that is subsequently experienced as an actual

emotion (as Meyer does), Davies sees music as capable of iconically representing a handful of

basic emotions. In exactly the manner in which a cartoon in its general “carriage” is able to

communicate an emotional state without either embodying it nor engendering it in viewers, so

music can “represent” a limited range of emotions with its sonic “carriage.” Where authors like

Meyer and Cooke28 ascribe to music a pseudo-propositional affective content, Davies argues that

the emotional content of music is best understood as a sonic icon, a representation of emotion

rather than any kind of true communication.29

For Davies, music is meaningful as the site of these emotional “appearances.” When

we speak of a piece of music being, say, “sad,” argues Davies, we use the word without any

reference to actual feelings. Davies’s theory of musical meaning dismisses the commonsense

notion of “sad.” The music does not itself “feel sad. The composer’s experience of sadness

is philosophically irrelevant, as is that of the audience. Nor do we necessarily mean that the

music causes us to feel sad, nor again should we hypothesize an imaginary “persona” (as some

philosophers have wanted to do) onto whom we project the experience of sadness. Instead, we

understand the music to be putting on the appearance of sadness, which it can do only within a

27. Meyer, Emotion and Meaning In Music, 14.
28. Deryck Cooke, The Language of Music (Oxford University Press, 1959).
29. Stephen Davies, Themes in the Philosophy of Music (Oxford University Press, 2003), 123.
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proscribed phenomenal range. Music “wears” sadness the way a clown wears a mask or a cartoon

wears an outlandish grin, indicating emotion without experiencing or actually eliciting it. It is in

the iconographic representations of this finite phenomenal range that music’s meaning resides.

4.1.3 Music has semiotic or pseudo-semantic properties

If Kivy represents the extreme of musical non-meaningfulness, the philosopher Jean-

Jacques Nattiez usually stands in for the opposite extreme, for the position that music is in fact a

kind of semiotic system. Nattiez takes it for granted that music is “meaningful” in this way, and in

his influential 1990 book, Music and Discourse, he seeks only to explain, diagram and meditate

on the discursive system through which this meaning is disseminated. He arrives at a system of

musical semiotics in which the musical sign has three faces: “the essence of a musical work is

at once its genesis, its organization, and the way it is perceived.”30 In breaking up the notion of

musical significance into these three components, Nattiez achieves some kind of compromise

with Kivy, who would insist that something either is or is not semantic; a sign, the object of

semiotic inquiry, need not satisfy Kivy’s narrow criteria in order for some kind of significance to

take place. Thus musical semiotics represents a theory of musical significance that can preserve a

kind of meaning without needing musical figures to have straightforward propositional semantics.

Efforts to construe music as pseudo-propositional in this way sometimes contain seeds

of discomfort. We know that music is, at a minimum, important, but why and how it can be so

without having any real referential force is a stubborn mystery that puts musicologists, even those

inclined toward semiotic analysis, in an uncomfortable position. As Harold Powers writes, “most

musicologists...are a little embarrassed by the notion that music is a language whose message is

something other than itself.”31 These authors, then, tend to ignore the semantic problem that Kivy

harps on (music isn’t semantic) and focus on the more digestible semiotic issue: they theorize

30. Jean-Jacques Nattiez, Music and Discourse: Toward a Semiology of Music (Princeton University Press, 1990),
ix.

31. Harold S. Powers, “Language Models and Musical Analysis,” Ethnomusicology 24, no. 1 (1980): 2.
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instead the means by which this meaning, whatever it may be, can be communicated to the listener,

given that the signal contains no propositional content of the familiar variety. As Eero Tarasti

writes, “music as a sign provides an ideal case of something meaningful and communicative, and

thus of something semiotical par excellence.”32 Music is simply assumed to be meaningful; the

question is not how is that possible but how does that work. Following the work of Charles Peirce,

Roland Barthes and Algirdas Julien Greimas (among others), the theory of musical semiotics is

designed to yield paradigms for the analysis of music that can account for longer units of musical

analysis (“utterances” rather than “phonemes”) and the existence of a broader lattice of semiotic

possibility (a “semiosphere”) as the necessary background through which musical signifying can

happen.

There are also theories in this vein that try to strike a middle ground, giving music true

pseudo-semantic qualities. If Kivy focuses on the “what” of musical meaning and Nattiez the

“how,” these authors try to get at a little of both. The most influential example is probably Leonard

Ratner’s theory of musical topoi. In this theory, via a long historical process of agglomeration,

various formulas and conventions in the Western Classical idiom gradually harden into acknowl-

edged musical reference points. These come with particular, idiosyncratic connotations that can

be called to mind in a way that is very nearly propositional if not quite semantic: the “brilliant

style,” for example, is evoked by fast virtuoso passagework, the “learned style” by complex and

venerable counterpoint, or the “Turkish sound by certain harmonic and intervallic behaviors

(namely, the flat ninth tonicizing the minor). All of these topoi would have been immediately

recognizable to initiated contemporary audiences. Some might have even been officially codified

and defined like words.33 These are necessarily limited in scope and number, but they enable a

broad alignment with 18th century rhetoric and admit of a certain kind of pseudo-semanticity:

“These materials formed part of a musical language understood by composers, performers and

32. Eero Tarasti, Sigs of Music: A Guide to Musical Semiotics (Mouton de Gruyter, 2002), 4.
33. These are more or less what Patrik Juslin, in the discipline of music psychology, terms “evaluative conditioning.”

Juslin, “From everyday emotions to aesthetic emotions: Towards a unified theory of musical emotions”
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listeners, and constituted a vast thesaurus of ’words’ and ’phrases’ from which anyone could

draw.”34 As Kofi Agawu notes, this treatment of musical meaning implies a system in which

music can refer both to itself and beyond itself, genuinely achieving a middle ground between the

polar extremes of the meaning debate. By generating a kind of pseudo-semanticity, topic theory

ignores the terms of the familiar argument. It is a theoretical paradigm capable of tremendous

analytical perspicacity but one that sometimes seems to shrug its shoulders at the hardest questions

of musical semanticity: for example, in Agawus noncommittal “music is like language but not

identical to it.”35

To this category, where music is pseudo-semantic, we can add as well the various theories

of musical communication. This theme has been developed most prominently with reference to

jazz, as early as 1956: Marhshall Stearns even uses the word itself in the very definition of jazz: it

is a “semi-improvisational American music distinguished by an immediacy of communication.”36

Ingrid Monson, too, has famously theorized the “communication” metaphor that is common in

jazz music, in scholarly circles and among performers. This is, for Monson, specifically not

the affinity with language made possible by Ratner’s pseudo-linguistic topics; the analogue is

conversation rather than rhetoric. Jazz musicians are not drawing on familiar conventions to

evoke rhetorical cliches, but doing something really akin to talking to one another.37 Nevertheless,

if jazz musicians are really “saying something, the theory represents a case where music has

certain properties that are very nearly, but not quite, propositional.

4.1.4 The meaning of music resides in the creative work of the interpreter

There are also authors who locate the meaning of music in the act of interpretation, a

discursive move familiar from the “cultural turn” in musicology. Lawrence Kramer is a good

34. Leonard G. Ratner, “Topical Content in Mozart’s Keyboard Sonatas,” Early Music 19, no. 4 (1991): 615.
35. Agawu, Music as Discourse: Semiotic Adventures in Romantic Music, 41.
36. Marshall Stearns, The Story of Jazz (Oxford University Press, 1956), 282.
37. Ingrid Monson, Saying Something: Jazz Improvisation and Interaction (University of Chicago Press, 1996), 82.
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example. Kramer situates music in the familiar dialectic of absoluteness (or “formalism”) versus

contingency. Reasoning from the ubiquity of this very dyad in the history of music criticism,

Kramer argues that musical meaning is actually an adjunct to musical interpretation: “meaning

arises where interpretation does,” when in the hermeneutic act we combines a variety of “semantic

sources – tropes, tones, phrases, images, ideas.”38 More systematic philosophers would quarrel

with this heterogeneous mixture of signal types, pointing out that some are, strictly speaking,

not semantic at all (e.g. tones). Or, at least, the quarrel would be that, if these things (tones)

are semantic, the whole problem would be first to demonstrate how that is the case rather than

elaborate a theory of musical meaning that takes it for granted that they are.

Setting aside the question of whether we can accept “tones” as “sematic sources,” the way

in which this theory locates musical meaning primarily in the mind of the interpreting subject

is an important contribution in the history of this subject. In de-centering the formal properties

of the text under investigation, Kramer follows trends in humanistic thinking of the 1990s away

from “master narratives” and autonomous truth, toward subjectivity and relativism. Kramer also

exemplifies an important shift in rhetorical emphasis. Where semiotic approaches (e.g. those

discussed below) had distributed meaning evenly among signs, semiospheres and interpreters,

this kind of critical musicology places a unique importance on the latter; people become as

important as texts in the moment of interpretation, and the attendant production of meaning. This

is why Raymond Monelle points to “post-modern musicology” as a response to the perceived

formalism even of musical semiotics, which had sought to overturn the stuffy tradition of musical

formalism: “even music semiotics,” he writes, “began as an attempt to dismiss semantics.”39

Music semiotics, in other words, while nominally an attempt to move us beyond the paralyzing

dogma of the analytic idea of semantic reference, doesn’t go far enough. Monelle thus revises

Leonard Ratner’s topic theory so that topics are construed as music-theoretical (as opposed to

music historical) phenomena. Treating musical topics as historical artifacts anchored to the 18th

38. Lawrence Kramer, Interpreting Music (Unversity of California Press, 2011), 68.
39. Monelle, The Sense of Music: Semiotic Essays, 9.
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century renders them philosophically trivial and leaves intact the traditional formalism; music still

cannot reach beyond itself, even if it seemed to be able to, at a certain time and in a limited way.

For Monelle, the existence of musical topics shows us, then, not a particular case where music

functions pseudo-semantically, but rather a particular case of the general way in which music,

like language, represents the world only partially: “music, then, is not opposed to language in

being unable to represent the real world; on the contrary, it shares this feature with language.”40

A similar perspective was articulated in a more straightforward way (and more than a

decade earlier) in an article by Mary Louise Serafine in the Journal of Aesthetic Education.

Following the scholarly conventions of the field of education, and the intellectual tradition of Jean

Piaget, Serafine arrives at more or less the same conclusion as Kramer: that too great a focus has

been placed on a model of music as a “transmission” of meaning from the composer to the listener

via a stimulus: the dominant picture in music education, she tells us, is “that of a reacting, not an

active, subject.”41 Serafine, instead, advances a picture of musical thought that “goes beyond the

mere transmission, perception, and memory of preexisting musical sounds and instead has as its

origin the cognitive construction and creation of (perhaps new, hypothetical, or not-yet-existing)

musical entities.”42 This is more than a music teacher extolling the virtues of active listening; like

Kramer and Monelle (and many others not included in this survey) Serafine sees the interpreting

subject as constitutive of every musical encounter, and therefore of musical meaning itself.

4.1.5 The meaning of music resides in its disclosures of social truths

The unseating of “positivist musicology” touched on above is a signature contribution

of the “New Musicology” that emerged in the 1980s and 1990s. Perhaps no single idea better

unites this group of thinkers than its commitment to a particular parry to the formalist approach:

40. Monelle, The Sense of Music: Semiotic Essays, 12.
41. Mary Louise Serafine, “Against Music as Communication: Implications for Education,” Journal of Aesthetic

Education 14, no. 4 (1980): 89.
42. Ibid., 91.
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that music is not just music, but it is “cultural,” that is, its meaning consists of its actual usage

in culture, and cannot be understood without the appropriate cultural context. This turn is not

just about valorizing the hermeneutic act, however. The idea that music, even “art music,” can

only be understood “culturally,” that is, as an expression or reflection of the cultural environment

which engendered it, is the signal contribution, one that stands distinctly at odds with the picture

of music as inherently meaningful that “absolutists” had long endorsed.

Musical meaning is “cultural,” in other words, in that it tells us something true about

a given culture. When Susan McClary argues for the existence of narrativity in a Schubert

Impromptu, then, it is part of a broader critique of the social convention of the Bildung in 19th

century music. McClary argues that the music contains, somehow in its sheer formal content, the

very ideology of Enlightenment reason itself. In the example of the Schubert Impromptu, the

ideological commitment is the tacit assumption that “self-development always results in success,

that reason inevitably steps in to save the day.”43 Schubert’s notorious harmonic transgressions

serve to make visible the normative harmonic logic they defy, and to render intelligible the

ideological content implicit in it. Schubert is, in other words, a form of discourse and social

critique, one whose meaning is cultural while its content is formal – and McClary’s interpretation,

therefore, is a form of knowledge rather than mere opinion. In a network of signification that

represents a kind of semanticity different from the preceding forms, the music makes an argument

in the domain of aesthetic form, the scholar decodes it.

In a similar vein, Rose Subotnik offers a reading of Chopin’s Prelude. No. 2 in which the

work is shown to embody “something paradigmatic of Romantic culture: the existential and in

a sense even the essential priority it gave to the contingent, the concrete, the individual.”44 The

prelude, with its distinctive idiosyncratic meander, makes a statement (not necessarily a musical

one) about the idea of the individual. Once again, the question of musical meaning is about

43. Susan McClary, “The Impromptu That Trod on a Loaf: Or How Music Tells Stories,” Narrative 5, no. 1 (1997):
30.

44. Rose Subotnik, “On Grounding Chopin,” vol. Music and Society: The Politics of Composition, Performance
and Reception (Cambridge University Press, 1987), 129.
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music’s power to disclose some social truth, in the discourse of pure form. The prelude mounts

an argument, one that the critic’s act of interpretation decodes for us. Chopins music is not just

music, nor just pseudo-semantic sound (although there is no reason it cannot, in this system,

use of pseudo-semantic rhetorical topoi). Instead, Chopin’s music “functions as an archetype of

the patterns out of which Western society makes sense of its experience.”45 The piece contains

an insight about how 19th century Romantic culture operated and what it valued – namely the

“contingent, the concrete, the individual.” It is not merely diverting but genuinely meaningful. Its

meaning, moreover, has a social, often critical purpose, illuminating something true and important

about the world it comes from.

This model of musical meaning can, in some ways, be traced to Theodor Adorno, who

again and again makes the case that music is a site for the expression of social truths. Adorno

has a convoluted and difficult to construe notion of aesthetic autonomy that can sometimes

resemble the formalism against which many New Musicology adherents position themselves,

but his aesthetics make a clear case that art is fundamentally connected to its social conditions,

and that its highest purpose is to lay plain the contradictions inherent in those conditions. Art

performs the indispensible function of disclosing critical truths about society. In the case of

Adorno, those truths are usually barbarous; the meaning and normative purpose of music is to

give an honest expression to these difficult truths. This, for Adorno, is accomplished best in

the dodecaphonic method of Schoenberg, an argument advanced at length in the Philosophy of

Modern Music. The idea that musical meaning depends upon its connection to the social world is

one that the New Musicologists frequently attribute gratefully to Adorno.46 On the other hand,

Adorno’s commitment to elite European forms, and his argumentative predilection for totalizing

master narratives marks him as part of tradition authors like McClary, Susan Cusick, and Subotnik

were working to upend. The reception of Adorno in 20th and 21st century musicology is a

complex issue, but what we can say for sure is that the idea that music can disclose social truths –

45. Subotnik, “On Grounding Chopin,” 131.
46. See, e.g., Rose Subotnik’s introduction to Developing Variations
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something that Adorno, in turn, inherits largely from Hegel – is an important part of that terrain.

4.1.6 Music’s meaning is in the way it serves to create identity or regulate

behavior

Others regard the meaning of music as being in the way in which it makes it possible to

create or project a personal identity: music’s meaning is not in music itself but in its deployments

by human subjects as self-expressions. As Nicholas Cook writes, “in today’s world, deciding

what music to listen to is a significant part of deciding and announcing...who you are.”47 This is

an idea that has been explored from the domain of experimental psychology as well, most notably

in Anthony Kemp’s 1996 book, The Musical Temperament, where he synthesizes a range of

empirical research on musical taste to produce a theory of “musical personalities,” including the

connections between personality and listening preferences (or, as he puts it, bringing substance

to the apparent truism that “different kinds of people like different kinds of music.”48 Whether

believe that there exist discrete musical personalities with inherent affection for certain sounds, or

we simply notice the ways in which people use music to signal things about themselves, this is a

very different position on musical meaning from, say, the Adornian one: musical meaning here is

about taste, subjectivity and identity.

An important example of this perspective on musical meaning comes from Simon Frith

in his writing about rock and pop. Frith actually accepts the Adornian idea that music can offer

a symbolic critique of its parent society’s internal “contradictions.” In a line worthy of Adorno

himself, Frith writes, “Rock star ‘politics’ are derived from an aesthetic reaction to the social

conditions of capitalism.”49 The political dimension of rock music is a latent expression, in artistic

form, of its social conditions – very Adornian so far. Frith adds to this traditional materialist

conception of musical meaning the element of personal identity: he notes that rock music is not

47. Nicholas Cook, Music: A Very Short Introduction (Oxford University Press, 1998), 6.
48. Anthony E. Kemp, The Musical Temperament (Oxford University Press, 1996), 121.
49. Simon Frith, Sound Effects: Youth, Leisure, and the Politics of Rock’n’Roll (Pantheon Books, 1981), 79.
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just an expression of these conditions, but an avenue for resisting them. Through rock music,

citizens of a society, particularly citizens of a consumer culture, use music to create individual

identities and social formations that countermand the injustice of dominant social hierarchy. So,

for example, the musical style of Rock was part of a broader cultural movement to upend the

traditional British caste system, to create a new culture (“youth culture”) that was “young but not

specifically working-class.”50 For Frith, it is this kind of thing (music’s relationship to culture,

specifically its deployment in identity formation), that constitutes its meaning. This, he tells us, is

the proper sociological study of music, a way of unearthing “the meanings that are produced and

consumed” (italics added).51

I noted above that the New Musicology of the 1990s straddles the sometimes uncomfort-

able double legacy of Adorno: on the one hand, Adorno insists on a vital relationship between

music and society, one that is important for musicology’s rejection of the traditional positivism.

On the other hand, Adorno is committed to grand, totalizing narratives and the primacy of the

Western canon – both of which stand at odds with the general scholarly and moral agenda of

1990s intellectual culture. But there is another problem for Adorno’s legacy, one that animates

the work of the sociologist Tia DeNora: there are no empirical facts in Adorno, and no effort to

render his argumentation empirically verifiable. If there exists an isomorphic relation between

music and society in some way, there ought to be some way to substantiate that claim. If the

mass music industry has ushered in a regression in the character of modern listening, such that

music has been drained of its traditional critical power, we ought to be able to observe music

actually behaving that way, or listeners actually regressing. We ought to be able to recognize the

actual places where music operates as a commodity rather than a stimulus to critical thinking. In

spite of how influential he has been for 20th century musicology, DeNora points out, these claims

are made with virtually no evidence in Adorno. DeNora’s criticism, moreover, is not merely

of Adorno himself but of his readers; she points out that, in continuing to ignore the empirical

50. Frith, Sound Effects: Youth, Leisure, and the Politics of Rock’n’Roll, 189.
51. Ibid., 11.
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existence of the people actually doing all the listening, scholars like McClary actually partake of

the same kind of musical formalism against which they are nominally positioned. As DeNora

puts it, in the end McClary’s arguments are “indistinguishable from simple assertion.”52

DeNora proposes to revisit many of Adorno’s compelling arguments about music and

sociology, but, “this time, the music-social structure nexus was specified in a manner amenable

to observation.”53 For DeNora, this leads to an “ethnographically oriented, pragmatic theory

of musical meaning and affect.”54 Note that, once again, the study of music in society touches

nothing less than the subject of meaning itself. It is a theory in which music’s meaning is in how

it actually functions in everyday life (hence the title); to calm passengers on an airplane before

takeoff, to help people workout at the gym, or, one might add, to “make everything better, as

Ellen observed in her Spotify Hub.

4.2 Meanings and Models

In the previous section, I tried to trace the outlines of the spectrum of musicological

thinking about meaning. Needless to say, the survey is not complete, and it inevitably does

not do justice to the contributions of any single author included in it. Nevertheless, it gives a

representative picture of the diversity of thinking on this subject, and it is useful to compare it

with the sense of “meaning” at work in the Spotify engine. Table 4.1 summarizes the various

ways these authors have construed the question of the meaning of music:

Looked at together like this, it is obvious that this survey embraces a vast range of subjects,

so much so that it’s not even clear that they belong in the same conversation. Frith and Kivy,

for example, both use the word “meaning,” but are they really addressing the same issue at all?

This brief survey is restricted to authors that actually use the word meaning, but in a sense even

52. Tia DeNora, Music in Everyday Life (Cambridge University Press, 2000), 29.
53. Ibid., 5.
54. Ibid., 21.
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Table 4.1: Typology of theories of musical meaning

Musical meaning is a category error Kivy, Lerdahl and Jackendoff

Musical meaning is affective Meyer, Davies

Music has semiotic properties if not linguistic Nattiez, Agawu, Ratner, Monson

Musical meaning resides in its very interpretation Kramer, Serafine, Monelle

Music discloses and critiques social truths and con-
tradictions

McClary, Subotnik, Adorno

Music’s meaning resides in how we use it to create
identity and regulate behavior

Frith, DeNora

that is an arbitrary delimiter. At some point it becomes hard to imagine any musical writing that

could not in some way be said to address the topic of “meaning.” There is something a little

tautological, then, in assembling a group of diverse authors, declaring that they all are writing

about “meaning,” and then elevating their very diversity into a musicological argument.

That may seem to neutralize the whole idea of this survey. And indeed if Spotify were

not so influential, it may never have been necessary. But the vaguely tautological quality of this

survey is actually the whole point; given the ubiquity and influence of a service that embeds

Putnam’s rather narrowly deterministic notion of reference meaning, it bears repeating that the

question of musical meaning is intractable and variegated, and that it arises virtually any time

anyone tries to say something “meaningful” about music; it is not a simple matter, in other words,

nor a regular one, nor one that you can just shrug off by virtue of a marketable product. My

point, then, is not just to demonstrate that Whitman’s efforts to situate his system in a humanistic

tradition are superficial; that alone is not really surprising or instructive. Clearly, we cannot expect

that every person researching recommender systems would get to know the intellectual history of

20th century musicology. Instead, I hope this chapter serves as a reminder that the diversity of

that thread in musicological thinking is a special case of the diversity of musical experience in
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general, which is something that Spotify generally serves to simplify and flatten.

It may be that virtually any scholarly work on meaning, or for that matter any statement

about music at all, embeds some notion of musical meaning, just as these authors have. And more

than one such notion can operate simultaneously. Sometimes, some people like music in a way

that really is derived from its abstract formal content, as Peter Kivy seems to do. Other times, the

same listeners may ignore formal considerations altogether; they may enjoy music, say, because

it calls to mind a loved one or makes dancing fun. Other times it may be a matter of identity

construction. The number of ways to like music – and the number of attendant notions of what

music “means” – are virtually infinite. Whitman’s “relational” theory is just one of them.

What the survey above demonstrates, above all, is that the lines between these various

types of affection are vanishingly small. Not only is none more “right” than the other, but they

overlap constantly. The question then becomes: how well can a system like Spotify’s, embedding

one system that bridges Putnam and Support Vector Machines, account for the intractable diversity

of musical experience? The “big data” approach to human problems assumes that from large

amounts of information about complex human problems there will emerge some kind of reliable

logic – the logic, that is, by which an audio frame is evaluated as belonging or not belonging to

a given semantic category. The process moves from the aggregate (the multiplicity of aesthetic

judgment and a huge array of empirical observations about the same) to the individual (is this or

is this not “sad” music?).

Spotify is, in other words, a statistical “model” of musical affection. And here it is relevant

to consider an often-cited adage about statistical models, usually attributed to George Box:

All models are wrong. But some are useful.55

It is easy to see what is meant by “wrong” in this aphorism: no scientific model could ever fully

reproduce the complexity of any actually existing system. All models are “wrong” to the extent

55. George E. P. Box, “Science and Statistics,” Journal of the American Statistical Association 71, no. 356 (1976):
791–799.
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that total comprehension is beyond the scope of any serious scientific inquiry. What, then, do we

mean by “useful?” In the example used by philosopher of science Peter Truran, this word seems

to mean “capable of explaining the universe:” the Newtonian theory of gravitation is “wrong”

in light of Einstein’s theory, but still “useful” in explaining the behavior of apples falling from

trees.56

But this is not at all the sense in which Spotify is useful. It tells us nothing about trees or

gravity or human musical affection. Instead, its true utility is perfectly clear: it is a commercial

utility. Nevertheless, as a doctoral dissertation approved by a prestigious institution of scientific

learning, and as a service that wants you to believe it’s really worth more than its competitors,

the system in question also wants to be knowledge of some kind, to contain some insight about

music, to have “learned” its “meaning.” The true objection to Whitman’s dissertation, and to the

system for which his dissertation is at present standing in, is that it has not made up its mind

about this question. Or, rather, that its true utility is simply commercial but that its sales pitch is

tacitly predicated on the sense that somewhere it has utility in the broader, scientific sense of the

word. “Learning the meaning of music,” as a doctoral dissertation from MIT, makes a scientific

promise, at least rhetorically. The Spotify system, however, delivers only a commercial product.

Some scientific discoveries have commercial applications, of course; the two are by no means

mutually exclusive. But if there is a legitimate scientific insight behind the software that powers

Spotify’s system, it is not at all the same kind of insight pursued by any of the authors discussed

in this survey.

Confronted with the messiness of the faculty of aesthetic judgment, the Spotify system’s

approach, in a sense, responds in kind: since we can never know how music works on people, we

have no choice but to assume that from the mess will emerge some kind of useful truth, whether

that’s useful commercially or scientifically or both. Doesn’t matter; the data can’t lead us astray.

At the same time, the system hews closely to the externalism of Putnam, and Whitman is right

56. Peter Truran, “Models: Useful but Not True,” in Practical Applications of the Philosophy of Science: Thinking
about Research (Springer International Publishing, 2013).
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to cite him: however agnostic the system remains on the actual psychological facts of music, it

still seeks to pinpoint and specify musical “meaning.” So it’s a system that throws a bunch of

math at the wall and sees what sticks, but it’s also a system invested in pinpointing meaning in a

rather narrow fashion modeled on Putnam. It is a theory where there really is some thing called

“meaning” that, while it can never really be found, is nevertheless available to be approximated.

The system may be good or bad; that is another question. What is at issue here is the

availability of a pretheoretical notion of musical meaning itself. We are not asking whether we

should agree with Kivy that music “has no meaning” in the specific technical sense in which he

understands that term. Instead, we are asking whether it even makes sense to produce a system that

characterizes musical meaning in a general way, that makes a determination about the significance

of a given piece of music abstracted from an actual act of listening, from an actual person with an

actual belief system. Putnam’s theory of meaning, transposed to the musical domain, says that

there should be one. As I argue in Chapter Three, Spotify agrees. The lived reality of musical

experience, the unruly diversity of thinking about musical meaning, and Chomsky’s rebuttal to

“externalism” (transposed in similar fashion to music) all say that there should not be one. Perhaps

our decision on whether or not to use Spotify should, ultimately, depend on where we come down

on this question.
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5 Statistical Shadowboxing with Spotify

In this chapter, I discuss quantitative experiments conducted to probe the issues raised

in the first four chapters. If Spotify’s system has indeed failed to “crack the code” of musical

meaning, or if the theory of musical meaning upon which it based is basically faulty, that ought

to be somehow statistically measurable. To investigate this question, I use the Spotify API to

solicit automated recommendations, and then look at the large-scale statistical characteristics of

the generated playlists. Before explaining the experiments themselves, a few preliminary remarks

are necessary.

The Spotify API is a tool made available to software developers who wish to include

some Spotify functionality in their own software applications. If you want to, say, embed Spotify

recommendations into an app or use Spotify user data to inform your own software’s functionality,

you’ll need the API. While it does provide actual access to elements of the Spotify system, it

is not, strictly speaking, the Spotify system itself, as experienced by those users. I have used

Python to interact programmatically with Spotify via the API; Spotify customers use a mouse to

click around the desktop application. The differences between them is, in most cases, impossible

to pinpoint. For example, consider the questions raised by this minimal example of an API

recommendation call:1

import spotipy
sp = spotipy.Spotify()
sp.recommendations(seed_genres=[’reggae’], limit=20)

1. This uses the Spotipy library, which is a Python wrapper for the Spotify API. See https://spotipy.readthedocs.
io/en/latest/, accessed 10-10-2019.
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This code snippet produces a list of 20 Spotify “track” objects, seeded by a 1-item long list

of “seed genres.” A playlist, in other words, for the genre “reggae.” This recommendation is not

associated with any particular user, but is simply a list of recommended tracks using one genre as

a seed. Now, presumably, we can go on to look at the seeded playlist and make deductions about

the nature of the automated playlist engine. But already there are points of confusion. Which of

the Spotify functions, as they are actually encountered on the GUI, does this functionality power?

Is it the “radio” function, where Spotify suggests “stations” of interest to users based on their

listening history? Or is it the “Discover Weekly” service, which offers a personalized playlist

each week? Or is it used to create the “By Spotify” playlists that appear under the “browse” tab

but don’t seem to be “personalized?” Or is it that the API function is used to create raw lists

which are then tweaked by hand?2 It could be all of these are the case, or it could be none; there

is simply no way to know, nor is there even any reason to suppose that the answers to these

questions are at all stable. This chapter makes no hypothesis as to which Spotify functions are

being emulated, but simply deals wit the API itself.

Even beyond the possible differences between the API and the GUI, there are issues to

consider. The “limit” field in the snippet above, for example, represents the number of playlists

solicited in a given call. What, then, is the difference between soliciting 100 playlists in one call

and soliciting a one-track playlist 100 times? Which of those do we suppose Spotify is really

doing for its users? In experiment 5, where I calculate mean “popularity” per genre, I use the

latter method, soliciting many recommendations per call. The number of unique items per playlist

tends to be higher using this method, but not dramatically so – see Appendix 2.2, which shows

the number of unique tracks per genre using using multiple calls of one track versus one call of

multiple tracks. Nevertheless the two are different, and it is basically impossible to know which

one is used in the Spotify system.

2. As Ugwu, “Inside the Playlist Factory: The Unsung Heroes of the Music Streaming Boom” notes, there are in
fact human curators working at Spotify, even if the company has distinguished itself from its competitors with a
greater reliance on automated methods.
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Another issue derives from the question of how to normalize data. The idea behind data

normalization is to make it meaningful to compare data from different scales, by comparing

standard deviations above the mean rather than raw information. To do this one needs a general

picture of the data distributions across a population as a whole. In the present case, that would

literally mean knowing the average value for every audio feature in Spotify’s entire 30 million-

song catalogue. This is not possible to obtain, for a few reasons, mostly because it’s too much

data. The expedient used here is a common solution for this common problem: I log feature

values for ten thousand randomly chosen songs and treat that as representative of the whole

Spotify catalogue. I then use these means and standard deviations to normalize the rest of my

data.

But what is a “random song?” If you think about it this is a philosophically dubious

concept. Spotify certainly offers no “random” recommendation function, and it is unclear what

the meaning of “random” would be in the musical context anyway. The “random” process

undertaken here is just to seed tracks with arbitrary names, using a random number generator and

a dictionary. Random words as song title seeds, ten thousand times: what do we make of that as

a corpus representative of Spotify as a whole? It might be good, but it might be defective too.

Song titles in the aggregate, compared with random words, are probably weighted toward certain

themes like love and death. If that weighting is high enough, our normalized data would tend to

locate the songs that do sound these common themes as more distant from the mean than if we

had normalized using some weighted lexicon more representative of song titles in general. It is

unclear, though, how you would get such a weighted lexicon, or how you would know that it did

a better job representing all of music than had 10k random songs.

There are, in other words, standard methods for normalizing information in situations like

this, but when you put them in a musical context, where there are countless factors not necessarily

amenable to quantitative consideration, you run into logical conundrums that threaten to impugn

experimental integrity, even at the very basic level of data normalization.
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I do not believe that the above problems represent crippling deficiencies in my own

experiment design, but they are emblematic of the general problem of this kind of investigation,

which does make it difficult to build substantial claims about the Spotify recommendation engine

from the API alone. One can show that certain genres exhibit certain features, or that certain

features correlate with others. One can make claims about what genres are more geometrically

clustered than others. But to go from there to a grand narrative about the aesthetic or social toxicity

of Spotify would be irresponsible. The experiments discussed below were conducted in an open,

exploratory fashion, following one experiment into the questions that it raised. Where they do

support conclusions about Spotify “in the wild,” they will be of a humble and sometimes tentative

nature. But that fact alone – the humility that the art of music imposes on quantitative study –

turns out to be the most significant finding in this chapter. The difficulty of making claims about

Spotify may not be solely an artifact of poor experimental design or technical limitations. Instead,

the difficulty of critiquing Spotify on experimental grounds is the mirror image of Spotify’s own

difficulty in automating music recommendation in the first place. Both project assumptions about

musical salience that are hard to justify. Both have to wrestle unruly data into some kind of

computational legibility. Both, in short, suffer from difficulties of interpretability; the experiments

herein are better at gesturing at this difficulty than they are supporting grand critical claims about

the nature of Spotify’s engine itself.

These difficulties are endemic to the field of machine learning in general. As Doshi-Velez

and Kim, “Towards a rigorous science of interpretable machine learning” point out, a general

low level of model interpretability may be a frequent cause of both persistent software bugs and,

more importantly, some of the much critiqued “unfairness” of machine intelligence. It is often

because it is so hard to know why a system behaves the way it does that they can be so socially

pernicious. Doshi-Velez and Kim, “Towards a rigorous science of interpretable machine learning”

raise, for example, a case where a system learns a relationship between suffering from asthma

and decreased risk for pneumonia. If interpretability of such a system is low enough, as in certain
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cases it is, we have no way of knowing that the correlation is due to the aggressive treatment

asthma patients in the data set tend to receive. Spotify’s system may be “un-interpretable” in just

this sense.3 Who knows why Spotify recommends “more of the same,” or behaves differently for

different gender and age groups?4

Zooming out, Spotify suffers from another crisis of interpretation. Although Lawrence

Kramer is not an author who ever addresses himself to this kind of quantitative investigation, his

comment on interpretability here is nevertheless instructive:

Meaning arises where interpretation does. It thrives, or not, on what might be termed
the contexture of interpretation, the capacity to draw together a variety of semantic
sources – tropes, tones, phrases, images, ideas – into a sustainable discourse that
resembles the way sense is made within a certain social, cultural, or intellectual
milieu.5

Musical meaning, for Kramer, happens when humans respond to music, which they do

from a position situated in an unfathomably complex circumstancial lattice; this is something like

Chomsky’s assertion that meanings can only be made with reference “whole belief systems.”6

To speak of music having meaning in the manner that Spotify seems to require is to perform

a sweeping set of reductions on this lattice, on these belief systems. It is in its inability to

embrace the whole of Kramer’s variety of semantic sources that Spotify suffers from a crisis

of interpretability – and thus, following Kramer, a crisis of meaning. It is not so much that a

given feature might perturb recommendations in a way that is hidden from the human observer,

although that too may be true. Instead, belief systems are reduced to “cultural metadata,” songs

are reduced to feature vectors, musical connections reduced to “likes.” The result is something

like the “meaning” outlined in Jerrold Katz’s instructive example: “smoke means fire.” Katz

3. Whitman’s 2005 system uses a support vector machine, which falls under the class of “linear” models whose
interpretability is usually thought to be higher. See Zachary C. Lipton, “The Mythos of Model Interpretability,”
Commun. ACM 61, no. 10 (2018). Spotify’s currently used system, of course, may be using neural nets or some other
method.

4. See Eriksson et al., Spotify Teardown: Inside the Black Box of Streaming Music
5. Kramer, Interpreting Music, 68.
6. Johnson et al., “Language from an Internalist Perspective,” 128.
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derisively refers to this kind of meaning as mere “historical lesson.” Smoke means fire in the

basic sense that one has often come after the other. If this is meaning, it is of an essentially

“extra-linguistic” variety.7

The sense in which sad “means” something in music – precisely the sense required by

the acoustic signatures for various classifiers identified in Whitman (2005), cited above – is,

it seems to me, a straightforward matter of historical conditioning or life lessons, except that

even in this capacity a certain specificity or explicitness goes wanting. Whitman wants this

meaning to be “relational” but also analogous to Putnam’s. On the other hand it seems to have a

lot in common with Katz’s “historical lesson”; the terminological heterogeneity of Whitman’s

dissertation mirrors the inevitable complexity of musical experience even as it makes the actual

content proposed in the dissertation harder to follow. The relationship of that variegated “meaning”

to its audio signal is “learned” by a machine with whatever interpretational problems it brings

to this situation.8 Meaning and interpretation, with all the various things those two can mean,

moreover, continually slide into one another. Such are the compounded difficulties for a critical

study of this system; that the findings of this chapter are tentative is both an expression of these

difficulties and a useful reminder that they are what any system like Spotify’s will have to face.

This chapter is animated by a general intuition that, at some level, machine listening and

aesthetic pleasure are incommensurable, and that the essential elements of musical “meaning”

reside somewhere beyond the reach of this kind of information processing. In particular, many of

the experiments below are structured around the idea that “homogeneity” in automated playlist

creation would be a bad thing, or at least an indication that the general intuition is right. But these

experiments are undertaken in an exploratory and open minded manner, each one leading to a

question that the next one tries to answer. In most cases they simply lead to other questions, rather

than the damning revelations a determined humanistic partisan might crave. It is yet another

7. Jerrold J. Katz, “Chomsky on Meaning,” Language 56, no. 1 (1980): 1–41.
8. Model intepretability is a common problem in machine learning. See, e.g. Doshi-Velez and Kim, “Towards a

rigorous science of interpretable machine learning”
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indication of the unruly and variegated nature of musical affection that these experiments will

rarely if ever produce definitive proof that Spotify gets it wrong or right; indeed, what they point

to more than anything else is just how hard to imagine what such “rightness” or “wrongness”

actually is in the aesthetic domain. They point, in other words, to the fact that with music there is

no right and wrong, which is what makes it incommensurable with machine learning in the first

place.

5.1 Methods and Data Set

Spotify today continues to make an API available to software developers, which is a

replacement for the API that the Echo Nest had long offered before Spotify acquired it (it is now

depreciated). This API makes it possible to automate many of Spotify’s core functions. These

experiments deal primarily with two of these functions:

1. Get automatically generated music recommendations based on provided “seed” information.

2. Run a song through the API’s musical analysis algorithm, which outputs various musical

metrics for a given song.

There are two ways this second function works: the “audio features” endpoint and the

“audio analysis” endpoint. The “analysis” is very detailed, containing information about putative

“bars,” ”beats,’ “tatums,”9 and “sections.” The “audio features” output, on the other hand, is

an 18-point high-level summary of a given song. Both API objects will be considered in these

experiments. Sample output of the “audio features” object is shown in figure 5.1.

Each of these fields represents a feature along which Spotify’s machine listening algorithm

has rated the track. Spotify’s full explanation of the meaning of each of these fields is given

in Appendix 1. It should be noted that while Spotify tells us what it thinks is “meant” by, for

9. A term of art from the world of music information retrieval, denoting the smallest perceptible unit of rhythmic
pulsation.
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Figure 5.1: Spotify API audio features analysis for Ginuwine’s Pony (1996)

example, “danceability,” it never explains how the number is actually arrived at; thus the enticing

question “how did you arrive at that figure for danceability?” is one we can only guess at. A

close examination of the full “audio analysis” can yield some plausible theories, but I regard

this information as basically inaccessible (and, as Nick Seaver points out, subject to constant

mutation) and it is not the goal of these experiments to hypothesize about it.

Taken together, the metrics in the “audio features” output represent the song’s musical

fingerprint, as Spotify understands it. As argued in Chapter Four, it is reasonable to assume that,

when Spotify “learns” a relationship between audio signal and “cultural metadata,” it is using these

feature extraction methods to render the signal legible to the system. These features therefore

represent an opportunity to make claims about the behavior of Spotify’s recommendation engine,

with reference to musical properties themselves, as these are construed by the program itself. This

is a different type of inquiry from the one undertaken by, for example, Snickars,10 which only

addresses homogeneity as repetition of artist or song (homogeneity equals “more of the same”).

To approach these questions, many preliminary steps are necessary, which I now outline.

The first step is to gain an authorization token from Spotify for Developers, which is necessary to

10. Snickars, “More of the Same–On Spotify Radio.”
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make more than a single API query at a time. Using the Spotipy library for the Python language11,

I wrote Python scripts that use this token to access the API programmatically, doing things like

getting recommended songs, creating playlists, and populating those playlists. It is important to

note here that none of the playlists I will deal with in this chapter are “personalized” or associated

with any particular user history; they are just “recommendations” given in the abstract, by the

system in response to various kinds of seed data (seeded with genre, or with tracks, or with

specified target values corresponding to the output of the feature extraction method).12

Of the 13 musical features available on the Spotify API (see “Pony” output above), I

chose to use only 10, omitting mode, key and time signature. I made these omissions because

I felt that the “aesthetic distance” between songs was not captured in any meaningful way by

comparing them along these dimensions; a song in the key of A does not differ from a song in the

key of D in the same way that a song with energy level .8 differs from energy level .01. As far as

possible, I wanted my features to represent information of equal musical salience and, moreover,

the same kind of musical salience. Thus a given song, for the purposes of the experiments to

follow, is represented as an 10 dimensional array of values selected from the “get audio features”

API object. “Pony,” then, would be represented as the following array:

[0.115, 0.966, 0.605, 0.749, 0.086, 0.0381, 142.024, -9.359, 251733, 0.00186]

where these values correspond to its

[liveness, valence, energy, danceability, speechiness, instrumentalness, tempo, loudness,

duration ms, acousticness]

I then normalize this information, using the random song lookup technique described above

to yield mean values and standard deviations representative of Spotify’s catalogue as a whole.

Normalized values are simply the raw score (above) minus the mean, divided by the standard

deviation. The normalized representation of “Pony,” for example, is:

11. https://spotipy.readthedocs.io/en/latest/
12. Snickars (2017) demonstrates that Spotify’s personalization has little to no effect on recommended content.

Still, that may have changed in the last two years and I regard it as a topic for future investigation.
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[-0.49096966, 1.99657033, 0.10854259, 1.07965357, -0.16169302, -0.68504791, 0.74268285,

0.19946204, 0.01355802, -0.95613235]

where the values now represent standard deviations above the mean for each feature. For “Pony,”

duration and loudness, for example, are roughly normal, whereas its valence (happy/sad) and

danceability are significantly higher than normal.

A playlist, then, can be represented as a list of these normalized arrays. I then measure

some geometric properties of these lists. A playlist, for example, can be very spread out over

10-d musical space, or it can be very clustered. This kind of geometric clustering is my proxy

for aesthetic self-similarity, or “homogeneity.” Self similar playlists are homogeneous, disperse

playlists are not. I measure this homogeneity in three ways:

1. by calculating the average dot product of all pairs of songs in a playlist,

2. by calculating the average Euclidean distance between all pairs of songs in a playlist,

3. by calculating the convex hull of the playlist representation as a whole.13

The result is a small program, analyze playlist.py, which takes as input a Spotify Playlist

ID, logs all its audio features, and outputs these aesthetic homogeneity measures. Figure 5.2

shows sample output of an early version of analyze playlist. The complete Python script (of one

representative version) is offered as a reference in Appendix 2.14

Data Set

Because constant queries to the Spotify servers are time consuming, it was necessary

to store large numbers of recommended songs on a local device. Random samples from this

13. Convex Hull is the smallest convex set that contains a given geometric region, commonly visualized as the
“least amount of bubble wrap” needed to enclose a given set of points. Convex Hulls in this project are calculated
using the ConvexHull method from the standard scipy.spatial library.

14. Note that the actual scripts I used were tweaked for the purposes of different experiments. The script listed
there, though, should give a basic idea of the techniques I used.

179



Figure 5.2: Sample output of playlist analyzer script

ordered database could then serve as simulations of Spotify recommendations. The data set was

assembled by doing the following:

1. Determine how many genres exist in Spotify’s system: there are 126, a complete list of

which is provided in Appendix 1. The genre ’comedy’ was omitted from all experiments,

as it contains very few musical recommendations.

2. Get recommendations from Spotify using each genre as a seed. There are other possible

seeds with which one can solicit recommendations. They can be seeded by other songs, or

by target market, for example. For this dataset, I use only genres.

3. Funnel recommended tracks (500 per genre) to actual Spotify playlists, owned by user

“tobinchodos.” Note that this does not mean that the playlists are in any way affected

by the user’s listening history; the recommendations were generated with API queries

associated with no user in particular, the track IDs pulled from the recommendations, and

then the lists of track IDs pushed to “tobinchodos” as a matter of convenience. Now user

’tobinchodos’ has 126 playlists each corresponding to a Spotify genre, each populated with

500 automatically generated Spotify recommendations.

4. Run Spotify “get audio features” module on each track in a given playlist, store one .json

file containing 500 audio features objects (like the one shown above for “Pony”) for each
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Figure 5.3: Ten least repetitive genres in the data set

genre. Do the same for the full “audio analysis” object, which includes more detailed

information.15

After removing “comedy,” the resulting databases are: two arrays, grouped by genre. One contains

audio feature objects and the other audio analyses.

Before proceeding further, I should note that the playlists in no case represent 500 unique

recommendations. They actually all have many repetitions. This is assumed to be an accurate

reflection of the actual behavior of the Spotify system in the real world, and so the repetitions

have been preserved in the data set. Not all genres are equally repetitive, of course, which is an

interesting preliminary finding on its own. Figure 5.3, for example, shows the ten least repeating

genres, while figure 5.4 shows the ten most repeating genres. That information, given in full in

Appendix 2, will form part of the discussion of the results, but I have made no effort to artificially

obtain non-repeating playlists.

15. The analyses objects are large, and so the analyses database contains only 100 songs per genre.
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Figure 5.4: Ten most repetitive genres in the data set

5.2 Experiments

5.2.1 Experiment 1: determine Spotify genres with greatest and least aes-

thetic diversity

In the first experiment, I aim to determine which genres have the greatest and least feature

diversity. Feature diversity here is evaluated using each of the four geometric measures outlined

above: convex hull (area and volume), euclidean distance, and dot product. An experiment is run

that gets a specified number of playlists and determines which genre had the highest and lowest

rank for each of these four homogeneity metrics. This produces a histogram of “winning” and

“losing” genres per metric. The experiment proceeds like this:

1. It iterates through the database and generates two playlists per genre, each 40 tracks long.

These are created by randomly sampling the 500 songs Spotify recommended for each

genre.

2. It evaluates the four metrics for each playlist, then stores the mean of the two values for

each metric, per genre. One run of the experiment, then, “rates” a genre in four ways.

3. It iterates through the evaluated list of rated genres and returns a “winner” and a “loser” for
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Figure 5.5: Most diverse (blue) and least diverse (gold) genres as evaluated by the four diversity
metrics, n=100

each experimental run. That is, for each of the four metrics, the script returns the genre

with the maximum and minimum score, respectively: the genres that are most and least

diverse, according to four measures.

Three of these measures (convex hulls and distances) will tend to go up when a playlist is more

“spread out” in 10-d musical space. Dot products, on the other hand, are higher when vectors are

similar; a high dot product measure thus represents less, not more, aesthetic diversity. Figure

5.5 shows the results of experiment 1, with high diversity indicators in blue and low diversity

indicators in gold.

IDM (“intelligent dance music”) seems to dominate as most diverse. Given the nature

of the genre in question, one that includes atmospherics that lack tonal center, pulse, or the

human voice, as well as familiar tropes from electronica (four-on-the-floor backbeats, pulsing,

unambiguous tonal drones), this makes some sense. We might suppose that this diversity is due

to the sheer size of the IDM catalogue itself, but if that were true we would expect it to number

among the top-10 in total number of unique songs (see 5.4), which it does not. So we can assume
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that this experiment reveals something unique about IDM as a genre – at least according to the

metrics in the Spotify system.

5.2.2 Experiment 2: aesthetic diversity by mean variance

Another way to measure aesthetic diversity is to look at the mean feature variance per

genre. Genres that tend not to vary much in their feature measures are, in this case, more

self-similar and therefore less diverse. The process to do this is simple:

1. Create playlists by the same method as above (by sampling randomly from the sorted

database).

2. Find the mean feature variance across all features per genre.

3. For each run of the experiment, register a “winner” and “loser” (the genre with highest and

lowest mean feature variance, respectively).

The results of this experiment conform somewhat to the picture painted in the first experiment.

While IDM appears among the most “diverse” genres by this measure, it is actually “tango” that

consistently registers the highest mean feature variance. The histogram in 5.6 shows the results

of 100 mean variance experiments.

5.2.3 Experiment 3: feature with greatest and least variance by genre

After seeing that a handful of genres consistently rank as most and least aesthetically

diverse, I became interested to know what features in particular were most salient to a given genre.

Another way of asking this is, “what is the feature that varies the least within a single genre?”

The feature that varies least for a genre is assumed to be the one that best defines it, that is most

salient for it. It may also be relevant to know which feature is least salient for each genre. To

answer these questions, I designed a simple experiment:
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Figure 5.6: Genres with highest (blue) and lowest (gold) mean feature variance, n=100
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Figure 5.7: Sample data from the greatest and least feature variance experiment

1. Get 10 50-track playlists for each genre, log audio features for each track.

2. For each genre, determine which audio feature has least variance.

Each time this experiment is run, it returns the feature for each genre that had the least

variance over the specified range of tracks. This yields 125 histograms, representing the features

that have tended to vary least for each genre. The data basically looks like this: for genre x,

experiment number one, the least varying feature was “danceability.” For genre x, experiment

two, the least varying feature was “tempo,” etc. From these lists it is possible to select the feature

that most frequently appears as having the least and greatest variance, and thus to get a sense in

general of what feature is most and least salient to each genre.

Figure 5.7 shows a representative sample of the data. What this means is that, e.g. for the

genre “blues,” instrumentalness was the feature that most frequently appeared as the one with

least variance. Nevertheless, it did so in only 54% of the experiments; not a very high confidence

measure. Similarly, liveness was the feature that appeared for “blues” more than any other as the

one with highest variance, which it did 78% of the time. I am not extremely confident, in other

words, that instrumentalness is in fact the most salient feature for the genre blues, although it

is the feature that most frequently presented with lowest variance. Compare this with afrobeat,

for which speechiness was the least variant feature 97% of the time. In this latter case I can say

with confidence that, for the “afrobeat” genre, speechiness is the most salient genre. Note that

sometimes the feature that presents most frequently hardly does so with much frequency at all:
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acousticness for “afrobeat” beat out all other features for most variant, but did so 34% of the time.

In the vast majority of cases, though, one feature appears much more frequently than the

others, indicating high confidence that that feature is indeed the one that varies least. Setting a

confidence threshold reduces the total number of genres about which one can make claims about

what features matter most and least; but many genres do indeed meet very high thresholds. With

a threshold of 85%, there emerge 81 genres with a least varying feature. At a threshold of 90%,

that number drops to just 77. At 95%, it is still 66, meaning that for 66 genres, we can say with

97% confidence what is the most salient (least varying) feature. Indeed, there are only two genres

for which the dominant feature appears less frequently than 50%: “cantopop” and “electronic.”

What this means is that, for all but these two genres, we can say that there is one feature that will,

in a majority of cases, vary less than the others. Even if we set the threshold extremely high, we

still get many genres presenting with a defining feature. Table 5.1 shows all genres with their

least variant features, thresholded at 97% confidence.

Table 5.1: Spotify genres with least variant features, thresholded at 97% confidence

Genre Feature Confidence (selections/no. experiments (n=100))

alt-rock speechiness 1

alternative speechiness 0.99

ambient speechiness 1

bluegrass speechiness 1

bossanova duration ms 0.98

children duration ms 1

club duration ms 0.99

country instrumentalness 1

death-metal acousticness 0.99

Table 5.1 continues on next page
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Table 5.1, Spotify genres with least variant features – continued from previous page

Genre Feature Confidence

deep-house tempo 0.98

detroit-techno speechiness 0.99

drum-and-bass acousticness 1

dub acousticness 1

dubstep acousticness 1

emo instrumentalness 0.99

folk speechiness 1

gospel instrumentalness 1

goth speechiness 1

grindcore acousticness 1

grunge speechiness 1

guitar speechiness 1

happy duration ms 0.98

hard-rock speechiness 0.99

heavy-metal acousticness 1

hip-hop instrumentalness 1

indian instrumentalness 0.98

industrial speechiness 0.99

j-dance speechiness 0.98

jazz speechiness 1

k-pop duration ms 1

kids duration ms 1

latin instrumentalness 1

Table 5.1 continues on next page
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Table 5.1, Spotify genres with least variant features – continued from previous page

Genre Feature Confidence

latino instrumentalness 1

minimal-techno tempo 1

movies speechiness 1

new-age speechiness 1

new-release duration ms 0.99

pagode instrumentalness 1

piano speechiness 1

pop-film speechiness 1

post-dubstep duration ms 1

psych-rock speechiness 0.99

r-n-b instrumentalness 1

reggae instrumentalness 1

reggaeton instrumentalness 1

samba duration ms 1

sertanejo instrumentalness 1

show-tunes instrumentalness 1

sleep speechiness 1

songwriter speechiness 1

soundtracks speechiness 0.99

spanish instrumentalness 1

swedish instrumentalness 1

techno acousticness 0.99

trip-hop speechiness 1

Table 5.1 continues on next page
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Table 5.1, Spotify genres with least variant features – continued from previous page

Genre Feature Confidence

work-out duration ms 1

world-music speechiness 1

5.2.4 Experiment 4: “confidence” and “popularity” measures

The API offers, in addition to the “audio features” output upon which many of the above

experiments are structured, an “audio analysis” with more granular detail. The analysis almost

certainly underpins the higher-level features from the “audio features” endpoint. A large portion

of the analysis, for example, is devoted to “beats” and “bars,” musical features that are represented

as python dictionaries where onset time and duration are logged. It seems reasonable to suppose,

for example, that the degree of consistency among these “beats” across a song would be a sensible

way to estimate “danceability” – more constant beats usually equals danceability. The tonality

stored in the analysis might be a factor in calculating “valence,” which Spotify defines as “the

musical positiveness of a track.”16 But, as noted above, while they are highly plausible, such

conclusions are inevitably speculative, since Spotify does not publish the formal derivations of

the audio features fields.

One interesting feature of the full audio analysis is that it contains various “confidence”

measures. As Spotify puts it in its API documentation,

Confidence indicates the reliability of its corresponding attribute. Elements carrying a
small confidence value should be considered speculative. There may not be sufficient
data in the audio to compute the attribute with high certainty.17

These “confidence” measures are attached to granular attributes like beats and sections, but they

are also attached to four crucial song-level metrics: key, mode, tempo and time signature. The

16. See appendix 1
17. Spotify API documentation, available at https://developer.spotify.com/documentation/web-api/reference, ac-

cessed 08-14-2019
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audio analysis, in other words, tells us how confident the system is about these four basic musical

properties. In experiment four, I determine the mean confidence values per genre, using these

broader attributes, for my entire data set of musical analyses.

Because the analysis files are so large, my data set of analyses is smaller than my “audio

features” data set: just 100 song analyses per genre. These 100-song playlists are subsets of the

broader 500-song database, so the same caveat about repetitions should be borne in mind. In this

experiment, I am not simulating playlist recommendations the way I did for the audio features,

but instead I tabulate mean values on the entire data set. This gives a rough idea of the genres that

Spotify, in general, feels more and less confident about. Figure 5.8 plots every genre on a plane

that represents popularity (x axis) and confidence (y axis).

5.3 What do these results show?

A preliminary finding not labeled as an “experiment” above is simply that there are signif-

icant differences across genres in terms of how many unique songs appear per 500 recommended

songs. The genres that rank as most and least repetitive are sometimes curious; why, for example,

is “j-rock” so full of unique songs (321), where “brazil” has only 100 of them? The latter, after all,

names an entire nation that embraces many different musical styles, while j-rock is comparatively

specific and, compared with Brazil, rather new. The disparity is anomalous. And “funk,” a genre

with the relatively high popularity score of .66, is the second-most repetitive genre, with just

80 unique items, a figure that is not improved by making larger calls to the recommendation

function. Other popular genres are not so repetitive – why, then, is funk? It’s hard to think of a

good answer; on the other hand, it’s hard to say exactly what this experimental result says about

Spotify in a global sense.

It is hard, in general, to make sense of these results or comment on them with any real

confidence. You might suppose, for example, that the repetitiveness of a genre would mean that
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the genre as a whole has fewer tracks associated with it. But do we accept the idea that there are

so many fewer “funk” tracks in existence that Spotify has more trouble populating 500 tracks

with unique recommendations than, say, “turkish?” It doesn’t seem likely. Given the immense

size of Spotify’s catalogue, and the comparatively small sample size for this experiment, it seems

surprising that there are any such differences at all. And yet there they are; solicited for 500

songs, Spotify’s recommendation engine recommended just 80 unique funk songs, whereas it

recommended 320 unique reggaeton songs. The finding, in general, is that some genres are much

more repetitive than others, in a way that is hard to explain.

Experiments 1 and 2 are about making determinations of aesthetic homogeneity. Experi-

ment 1 determines which genres tend to be most and least diverse according to the four geometric

methods, while experiment 2 uses average feature variance. By the convex hull method, the IDM

genre is very consistently the most “diverse.” By a thinner margin, it is also the most “diverse”

as measured by Euclidean distance. By the dot product metric, on the other hand, it is never the

most diverse. This seems to suggest, at a minimum, that the dot product measure is capturing

something different from the other three, which is confirmed by the rest of the findings (the

gold bars, indicating most homogeneous genres, are consistent across three of the measures, but

they’re different in dot product). These diversity metrics, moreover, seem not to correlate with the

number of unique playlists particularly strongly. It is not the case, in other words, that it is simply

the genres with the most unique tracks that rate as most diverse. Instead, the experiments seem to

determined which genres “really” are more or less diverse, as measured in these four ways.

What do we make of the dominance of IDM? At first, I thought there must have been

an error in my code. It seemed unlikely that a dance genre, any dance genre, would occupy this

position. This perhaps suggests some of my own personal assumptions about the genre, about

which I didn’t know very much. The IDM genre (“intelligent dance music”) turns out to be a sort

of blend of metered dance music with an experimental, atmospheric style. It frequently presages

backbeat dance sections with long, ambient sections. It may be that this blend lends itself to

193



varied audio features readings. Many IDM tracks, for example, at first fail to establish a tonal

center, but most eventually do. Some feature vocals, some do not. One hypothesis, then, is that

IDM, as a genre that mixes electronically generated atmospherics with more familiar “danceable”

tropes, is legible to the system as more “diverse” because it manages to score both high and low

on these crude musical metrics. It would send the feature ratings in extreme directions, which my

script would pick up as geometric spread-out-ness. As such this genre is an interesting focal point

for the difference between human listening and machine listening: while probably no human

listener would really understand the IDM genre as inherently “diverse,” if I’m right about what’s

happening in these experiments, the machine will.

The above hypothesis, if we accept it, is actually a statement about how “IDM” sounds to

Spotify. It is a possible explanation for why it would rank as “diverse” according to the methods

employed in this experiment, and an interesting difference between human and machine listening.

And there are other interesting findings like it. Classical music, for example, ranks as least

diverse by the dot product metric every time. The least diverse genres as measured by convex hull

tend to be the ones associated with particular cultures: mandopop, country, sertanejo, pagode,

philipines-opm, cantopop, j-idol. This suggests that, whatever registers as “diversity” in IDM

is manifestly absent in musics associated with particular nations and subcultures (of which I

think “classical” is probably one, at least here in the Spotify universe). More generally, it seems

that Spotify makes recommendations that are less self-similar for genres that are in an ambient,

electronic vein: idm, ambient, post-dubstep, trip-hop.

It is probably not unfair to say that these “ambient” genres do all share certain broad traits.

This is a difficult fact to reckon with, and one that admits various different readings:

• That listeners of these genres are getting a more aesthetically diverse experience than

listeners of funk, classical, and minimal-techno. Here we assume that the feature extraction

methods, and the aesthetic similarity measures built upon them, tell us something musically

meaningful. We thus conclude that, in Spotify’s system, some genres are genuinely more
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diverse than others. Then, we have to decide whether we think this is evidence that Spotify

is working well, or that it is dysfunctional somehow; if classical listeners are getting a less

diverse experience, are they being done a disservice by Spotify? Or is it actually working

well for them? On this point, there are intelligent arguments in both directions; perhaps the

greater homogeneity is just an accurate representation of certain genres.

• We take it for granted that all genres should be equally diverse, and point to the fact that

Spotify’s system does not reflect this as a dysfunctional behavior. Here, we assume that the

similarity measures are meaningful, but are not committed to believing that the features

themselves are meaningful; either they tell us something meaningful about the music, and

the Spotify recommendations are defective, or they don’t, in which case Spotify is defective

in a different way.

• We reject the validity of the aesthetic homogeneity measures, and of the features themselves

too. Here our interpretation is that the results tell us nothing useful at all.

Given the variety of these interpretive options, can we say anything certain about these

results at all? I think we can, but only something rather humble. If we look at the results of

experiments one and two together, the general impression is that a handful of genres tend to rank

as least and most diverse. Which genres rank where varies somewhat from technique to technique,

but it is never the case that more than 13 genres appear as either most or least diverse. There

are, remember, 125 genres in total. The vast majority of genres never appear as the most or least

diverse. It was never the case, for example, that the “new age” playlist was the most diverse one.

It was always the case that “classical” was least diverse as measured by dot product. We might

reasonably have expected a much wider spread, with, say, the title “most” and “least” diverse

distributed among, say, 50 genres rather than 13. Even given the crudeness of the audio features,

this does not seem like an unreasonable expectation. The picture we get, though, is considerably

more constrained, with just a handful of extremes at either end. So, the humble claim is following
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from experiments one and two is that, even taking into account the dubiousness of the features

and the diversity measures measures, Spotify does indeed recommend more diverse and less

diverse playlists for a tiny fraction of the total number of genres in its system. Spotify has a few

genres that, a striking majority of the time, lead the pack (and trail the pack) in terms of aesthetic

diversity.

The finding of experiment four is straightforward: it shows that, for a majority of genres,

it is possible to say with high confidence which feature is most discriminating. The feature that

varies least for, say, alt-rock, is almost always “speechiness.” The feature that varies least for

“ambient” was always speechiness. Not all genres present with such compelling figures. That

is to say, some genres don’t really have just one most discriminating feature; features for their

tracks tend to vary in more than one dimension. We might have expected many or most genres to

behave that way, not presenting with just one feature that defines it a majority of the time. But

this is not the finding; the vast majority of genres do give you just one feature that doesn’t really

change much no matter what, even thresholding at 97% confidence. This, too, can be a kind of

a statement about Spotify in general: it is a system where, for a given genre, one thing usually

emerges as the most discriminating feature. According to Spotify, “jazz” playlists vary least in

their “speechiness” 100% of the time; this feature, more than any other, is the most definitive of

the genre. The system is, in other words, sort of prejudiced against “speechy” jazz. There are,

once again, readings of this that can see it as a defect and readings that can see it as evidence of

success, but what is certain is that it is a true feature of the genre as Spotify understands it.

Experiment five plots every genre’s mean confidence and popularity. The chart is a useful

reference for the analysis of the other experiments but it shows little of consequence on its own,

except for the rather predictable fact that most of the most popular genres tend to have high

confidence measures.
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5.4 Shadowboxing

From the analyses above, it should be clear what is meant by “shadowboxing.” In part

because of the scope of the project, and in part because of the nature of working with a for-profit

corporation that does not disclose its trade secrets, there is an enormous amount of mystery in

these experiments. There are many things I cannot know. I don’t know how Spotify makes

its recommendations; I am left to monitor its behavior instead of hypothesizing about its inner

logic. I have no way to know in what ways its actual recommendations differ from the behavior

of its API. A serious deficiency is that, lacking a machine listening engine of my own, I use

Spotify’s instead. While this makes sense from a certain perspective, it also presents with logical

conundrums. Aesthetic diversity, after all, should probably be validated by some external system

in order to become really meaningful; here I am restricted to using Spotify’s metrics to analyze

Spotify’s behaviors. I don’t even know what “genre” is to Spotify, beyond being an available

recommendation seed; while there is no “genre” value assigned to a given “track” object, there

might be one represented internally somewhere for Spotify. At the broadest level, I don’t even

know for sure that Spotify is even using the technology at work in this machine listening engine.

Nor do I know whether Spotify’s proprietary playlists, the ones users actually encounter, are

machine or human curated, or both.

The results, moreover, while often quite interesting, are highly ambiguous. This ambiguity

is intimately connected to the argumentative double bind of music recommendation discussed in

the introduction to this dissertation: the fact that I don’t know what would constitute a successful or

healthy recommendation engine in the experimental terms laid out above. The results sometimes

seem to go one way; but if they had gone the other, in general my interpretive extrapolations could

have remained the same. If, for example, 70 genres had registered as “most diverse” by the convex

hull method, I might reasonably have asked, why did not any genre emerge as the most diverse

one? Don’t genres, after all, sound different? If the goal was to reverse engineer the Spotify
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system, or to catch it in blatant acts of implicit bias, then it must be admitted that the results are

profoundly inconclusive. They are, I think, enjoyable and can lay a valuable foundation for future

experimentation that may indeed reveal something about Spotify, but they do not amount to an

indictment of Spotify on their own.

On a higher level of abstraction, though, they do present something more instructive; the

mere fact that the project undertaken here leads to a kind of solipsistic shadowboxing may be the

whole point. The ignorance that I am kept in as an experimenter is the same ignorance facing

all Spotify users, who also have know way of knowing how their recommendations are made.

The fact that we are kept in the dark like this is a basic part of musical life in the era of digital

streaming. This opacity has a practical dimension and a philosophical one. The difficulty I face,

in other words, in defining the success or failure of Spotify is the same one Spotify itself must

necessarily face is designing its system. No matter what choices you make as a critic – or, for

that matter, as a designer – of a recommendation system, you pretty much have to end up talking

yourself in circles. That’s the true source of the ambiguity of the experiments above. In the

world of automated music recommendation, whether we’re users or critics, we are all in a sense

shadowboxing.

This is not necessarily a bad thing. Like Spotify’s recommendation engine, the shad-

owboxing I have done in this chapter occasionally (not always) produced worthwhile results.

Shadowboxing, in other words, can be amusing. Even if I had definitively shown that it produced

“more of the same” on the level of audio features, it would not necessarily be my place as a

researcher to condemn that as a failed recommendation engine. Instead, my experiments can

serve as a reminder that the right way to approach Spotify is probably philosophically, since

quantitative critiques will always face the same kind of argumentative circularity. In order for the

shadowboxing in this chapter to amount to real claims about the quality of the Spotify recom-

mendation engine would mean taking on one commitment or another, embracing one theory of

musical meaning as more “right” than another, which is the user’s job rather than the researcher’s.
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Ultimately this chapter is a long winded way of reminding us, by way of a detailed look at its

behavior, that Spotify’s system is just one of many. Spotify’s system will inevitably have made

some commitments in that department; it may have hard-wired in a prejudice against one genre

or in favor of one particular record label. We just cannot know what these are, if they exist at all

(at least, not from the experiments in this chapter).

If we choose to regard Spotify recommendations as the almost-arbitrary output of the kind

of shadowboxing I have done in this chapter, I would say that we are responsible Spotify users.

Musical meaning is elusive, in such a way that the most you can do with it is play around. That’s

what these experiments are doing, and that’s what they tell us that Spotify is doing. If, on the other

hand, we accept that Spotify has some kind of special insight into musical meaning – that, in the

words of Whitman, it truly has “learned the meaning of music” – we risk the musical equivalent

of what Dreyfus warned us about in the 1970s with regard to the study of human intelligence in

general. We risk, that is, not just getting it wrong intellectually, but blunting the very parts of

ourselves that make the problem tricky in the first place. Bearing in mind that shadowboxing is

the best you can hope for seems like a good way to avoid that.
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Conclusion: Spotify, Semantic Skepticism,

and Platform Capitalism

The original provocation for this dissertation was a talk I saw by a leading researcher in

the field of MIR. As he described a new project of his that would make recommendations for users

based on very refined information about their activities and whereabouts, I heard for the first time

some of the standard strategies for getting a machine to recommend music to a user. You can base

the recommendation on information in the audio signal, like its key, tempo and mode. Or, you can

use its its metadata: country of origin, genre, user reviews, etc. You can use collaborative filtering,

or you can use “personalization.” You can log real-time information about your users, like their

location or even, he said hopefully, their biometric data, and make judgments about what music

will be best for the given activity or mood. We can know that user X is almost certainly at the gym

on such a day at such an hour, and so we can know to make recommendations for exercise music.

The idea that was always present but left unsaid was that this kind of situational appropriateness

would give us a market edge. The market orientation of the research was taken for granted, and it

seemed to imply certain ideas about what music could mean. The engineering involved in such a

system is by no means trivial, but the outcome itself – getting the right music for the right moment

– seemed odd to me as an exemplary case of a successful music recommendation. As we have

seen, these days this kind of situational appropriateness is essentially Spotify’s whole mission

statement. The idea that music is for situations has hardened into a foundational truth for the
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automated music recommendation industry, and, as the latter sits at the center of the industry’s

financial recovery, into the a core principal of music listening in the 21st century.

As I listened to the presentation, it occurred to me that most of the musicians I know

don’t even listen to music while exercising. It would be distracting, and you wouldn’t be able to

hear the music well enough to really enjoy it. At the risk of reinforcing an outdated myth of the

idealized listener, I’d say that for many musicians it might even feel disrespectful or sacrilegious

to turn music into background music like that, to relegate it to a kind of sonic adornment. These

artists didn’t labor every day of their lives so that my time on the stairmaster would be more

endurable, I thought, indulging in a rather common flavor of 21st century Romanticism as I

heard the researcher speak. Adorno’s grand ideas about music communicating some abstruse

kind of truth content, hard as they sometimes are to swallow, do give voice to an intuition that

is, I think, shared among many musicians to this day: that music really does matter, that it’s not

just a diversion or a side dish, that it stimulates a unique kind of critical intelligence and merits

serious, devoted attention. Automating music recommendation, in its commitment to the “music

as soundtrack” idea, seemed to do violence to this intuition, and thus to something basic in the

discipline of music itself.

At the same time, to privilege that kind of listening, the one where you take music so

seriously that you couldn’t possibly be doing anything else at the same time, or where its meaning

has at some level to be inherent and in no way dependent on other factors, resumes a milder

version of the musical absolutism that, for good reasons, most of musicology has moved on

from. The musical features amenable to workouts, for example – repetitiveness, accessibility,

sensuousness, what Adorno derisively called a “culinary” quality – have traditionally been the

grounds upon which structures of elite music have dismissed and excluded popular forms.18 Since

excluding popular forms is unacceptable, this presents a tricky conundrum: one intuition says that

18. Richard Middleton, “In the Groove or Blowing Your Mind: The Pleasures of Musical Repetition,” in The
Popular Music Studies Reader, ed. A. Bennett, B. Shank, and J. Toynbee, Popular music /cultural studies (Routledge,
2006).
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tethering automated music recommendation to the “situational” must miss something important

about what musical meaning really is, but another has difficulty locating that musical meaning

anywhere that doesn’t feel like a stodgy rehashed Romanticism.

My way out of this conundrum is via Noam Chomsky and his lucid expression of what is

sometimes termed semantic skepticism, or, in John Searle’s words, the idea that meaning is “too

vaporous and unscientific a notion for use in a rigorous science of language.”19 That comment

was made in connection with the structuralist school of linguistic inquiry, which Chomsky is

usually thought to have overturned, so it may seem odd to align it with Chomsky. But the truth is

that Chomsky’s “internalism” too is somewhat quiet on the subject of semantics. Since his system

approaches language as a basic biological endowment to be studied for its formal properties (its

syntax) rather than one whose primary function is communication, the whole idea of semantics

sort of takes a back seat. That we communicate meanings with language is, for Chomsky, true but

somewhat incidental to the study of the language organ.

This complicated idea has many implications. The one that applies here is that “meaning,”

while definitely real, is also scientifically intractable and probably inextricable from the beliefs

and world view of the speaker. It is not unreasonable to extend this idea to the musical domain, and

when we do, a philosophical posture toward Spotify becomes available that neither indulges the

market-inflected pretensions of the automated recommendation industry, nor dismisses vernacular

musical forms and casual listening.

Recall the quotation, referred to frequently throughout this dissertation, that “meaning

ain’t in the head.”20 The assertion is made, originally, as part of Hilary Putnam’s effort to attack

semantic internalism, the idea that, just as there are formal rules governing the transformation

from deep structure to surface structure in language, so there exist on some level internal mental

representations corresponding to what we think of casually as the linguistic “meaning.” Putnam,

in other words, is attacking the idea that meaning is in some sense in the head. A good expression

19. John R. Searle, “Chomsky’s Revolution in Linguistics,” The New York Review of Books 18, no. 12 (1972).
20. A paraphrase of the thesis in Putnam, “The Meaning of ’Meaning’”

202



of the kind of semantic internalism against which Putnam is positioning himself is Jerrold Katz’s

“Chomsky on Meaning,” where he makes the case, actually against Chomsky, that linguistic

theory can provide a system for the representation of meaning (Chomsky’s skepticism about this

will be reviewed in a moment).21 Putnam argues that there are no such “linguistic universals”

as those posited by Katz, and that, instead, theories of meaning, essentially, should look for the

relationship of mind to world (the subject of traditional semantics) in a “sloppy and impressionistic

fashion.” Semantic theory, dealing with the unruly matter of how people try to refer to things,

ought to be seen as part of “social science.”22 So we see, once again, just how coherent an

application of Putnam’s approach to meaning is found in Whitman’s 2005 dissertation and,

I argue, contemporary Spotify, which, amalgamating various types of internet behaviors and

dumping them into a support vector machine, really is an exceptionally sloppy (sloppier, probably,

than Putnam would ever countenance) form of social science.

But the point here isn’t that Whitman has correctly cited Putnam. Nor is it to replace

Putnam’s impressionistic social science or Whitman’s data driven recommendations with a theory

of internal music-semantic “universals.” That would mean, in music, a “content only” approach to

recommendation that derives musical information from the audio signal alone, which Whitman is

correct in claiming doesn’t work very well. Instead, my point is to look to semantic skepticism as a

verification for what feels intuitively wrong about an automatic system of music recommendation

in the first place.

Semantic skepticism comes in more than one flavor. There is Wittgenstein, who ridiculed

the whole idea of looking for word-world correspondences as unscientific:

You say: the point isn’t the word, but its meaning, and you think of the meaning as a
thing of the same kind as the word, though also different from the word. Here the
word, there the meaning. The money, and the cow that you can buy with it.23

21. Katz, “Chomsky on Meaning.”
22. Hilary Putnam, “Is semantics possible?,” Metaphilosophy 1, no. 3 (1970): 201.
23. Jeff Speaks, “Theories of Meaning,” in The Stanford Encyclopedia of Philosophy, Fall 2019, ed. Edward N.

Zalta (Metaphysics Research Lab, Stanford University, 2019).
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Or, there is Quine, whose thesis of translational indeterminacy undermines the whole possibility

of a “semantic theory.”24 Then there is Chomsky’s skepticism, similar but not identical to these

two, maintained more or less in tact throughout his career. As John Searle points out, Chomsky’s

indifference to meaning is actually something he shares with some of the behavioralists he is

credited with overturning, but which probably comes from his deep philosophical commitment to

syntax as the essence of the language organ.25 Here is a representative comment of Chomsky’s

on meaning:

Much of what is often regarded as central to the study of meaning cannot be dissoci-
ated from systems of belief in any natural way.26

The study of language, for Chomsky, is the process of discovering the rules by which a

certain biologically endowed component of mind operates, to solve the following empirically

observable puzzle: how is it that mastery of language means the capacity to produce an infinite

number of expressions that are not analogous to previous experience? This is the puzzle of what

Chomsky terms the “creativity” of normal language use.

It will be useful at this point to review a concrete example of a Chomskian insight. In

English, nominal phrases exist for sentences whose surface form and deep structure are close, but

not for sentences where they are remote. This degree of proximity can be rendered precise. The

rule explains thus the empirical fact that, for the sentences

1. John is certain that Bill will leave

2. John is certain to leave

there is a correct nominal phrase “John’s certainty” corresponding to (1) but not to (2).27 We can

observe this English peculiarity as a matter of empirical fact; it is the job of linguistic theory

24. Willard Quine, Word and Object (MIT Press, 1960).
25. Searle, “Chomsky’s Revolution in Linguistics.”
26. Noam Chomsky, “The logical structure of linguistic theory,” 1975, 23, quoted in Katz, “Chomsky on Meaning”
27. N. Chomsky, Language and Mind (Cambridge University Press, 2006), 89ff.
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to explain why it is so. This example is trivial but nevertheless serves to illustrate the kind of

knowledge that generative grammar aims for: the description of rules according to which a natural

system (language) operates. This is distinct from the project undertaken by Putnam, which instead

attempts to render precise a concept “meaning” that is, for Chomsky, basically unscientific.

Deeper examples than the one reviewed here, moreover, have deeper implications for

theories of psychology and philosophy of mind in general. They will tell us something about what

it means to be human in the first place. And although he is always careful to avoid humanistic

representations of the internalist perspective, these conclusions have unambiguous implications

outside of linguistics, some of which even Chomsky acknowledges. One of these implications,

for example, involves human-technology interactions:

Technique and even technology is available for rapid and efficient inculcation of
skilled behavior, in language teaching, teaching of arithmetic, and other domains.
There is, consequently, a real temptation to reconstruct curriculum in the terms
defined by the new technology.28

This skepticism about the technologization of education, the replacement of real learning

with mere proficiency, oddly echoes Hubert Dreyfus. It is also probably what motivates Chomsky’s

frequent indifference about the prospect of machine intelligence more generally. And, more than

that, it implies a devastating critique of many different fields that are in one way or another built

upon behavioralist assumptions. Among these fields are, of course, the social sciences. As Harry

Bracken writes,

Chomsky’s attack on behaviorism has threatened the social scientists. That in turn
has begun to affect the university institutionalization of the social sciences – and
hence, in a perfectly direct way, university educational policy.29

Internalism and semantic skepticism, in other words, seem to imply not only a rejection of

behavioralism, but also a rejection of those social sciences premised on its fictitious pretensions to

scientific objectivity. The rejection of behavioralism amounts to “a broad assault on the political

28. Chomsky, Language and Mind, 89.
29. Harry M. Bracken, “Minds and Learning: The Chomskian Revolution,” Metaphilosophy 4, no. 3 (1973): 230.
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role of the social sciences and the cult of the expert.”30 Recall that “sloppy social science” is

exactly what Putnam called for as a research program into a theory of meaning; recall also

that sloppy social science seems to be a good description of at least part of what goes into the

Spotify recommendation algorithm. The simple idea that normal language creativity is not, in

fact, under any stimulus control, that it is not necessarily “for” communication, and that all people

are basically born with the same biological endowment – ideas that are in fact, for Chomsky,

recovered from Descartes and Wilhelm von Humboldt,31 – demand that we take a close look

at structures of authority that claim to have found the “key to understanding man’s apparently

unique qualities of mind.”32 Behavioralism and the social sciences are two places where that

skepticism should kick in; automated music recommendation, which 1) deals with a medium as

distinctively human as language while being even less obviously communicative, and 2) does so

in a way that closely resembles social science, is another.

Usefulness

To return to Adorno and music recommendation itself: as I sat listening to the MIR

research mentioned above, it occurred to me that the whole idea of automating music recom-

mendation seems like a paradigmatic example of a great Adornian sin, the instrumentalization

of reason. What is the industry of automated music recommendation if not the application of

complex logical processes to standardize and automate what should be one of the most human

expressions of all? And this particular expression, music, is Adorno’s personal favorite, the art

form around which more than any other he elaborated a theory of aesthetics that located art at the

center of human individuality and freedom. Music was his best hope for mankind, our last guard

against the totalizing crush of mass culture and the dark side of enlightenment. In the industry of

automated music recommendation we have a large apparatus of speculative capitalism, leveraging

30. Bracken, “Minds and Learning: The Chomskian Revolution,” 234.
31. Chomsky, Cartesian Linguistics: A Chapter in the History of Rationalist Thought.
32. Chomsky, Language and Mind, 88.
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the latest fad in mathematics (machine learning) to tell millions of people how to listen and what

to listen to; how could it fail to have the same neutering effect on music today that Adorno noticed

with respect to Beethoven and the radio? When it comes to automatic music recommendation,

in other words, the scene is set all too perfectly for a heroic act of Eve Sedgewick’s “paranoid

reading”33 and the critical apparatus of Dialectic of Enlightenment. Somebody, it seemed, had to

pull back the veil and reveal the industry for the ideological steamroller it undoubtedly was.

Spotify’s API often seems to confirm this paranoia. A song is reduced to an atomistic

“analysis” with a crude semantics heavily geared toward the musical attitude evinced in the Spotify

slogan, “soundtrack your life.” Music can be happy or sad (“valence”), it can be danceable or not

(“danceability”), it can involve human speech or not (“speechiness”), etc. A song, that complex

conjunction of memory and sensory pleasure and identity construction, is represented as an array

of 10 floating point scalars. These scalars, moreover, explicitly participate in a system that locates

the meaning of music in its relationship to non-musical things and events. In this way Spotify’s

marketing strategy and its GUI are in striking harmony with each other, and, moreover, with the

philosophical posture assumed in Brian Whitman’s 2005 dissertation: that musical meaning is

“relational.” Or, as Ellen Degeneres puts it in her promotional materials for her partnership with

Spotify, music “makes everything better.” The consistency across the academic dissertation, the

GUI design, and the marketing is remarkable. Such a system leaves little room for any kind of

Adornian locution, or the closely aligned romantic aesthetics of music that are actually pretty

common today. Listeners who want to see critical truth content represented in Spotify, of course,

will always be disappointed. Art may be “the social antithesis of society,” but that fact will never

be part of a Spotify recommendation.34 An intimation of the absolute, of which this kind of truth

content can be seen as a kind of variant, is not something we would ever expect the Spotify API

to capture.

33. E.K. Sedgwick et al., Touching Feeling: Affect, Pedagogy, Performativity, Series Q (Duke University Press,
2003).

34. T.W. Adorno et al., Aesthetic Theory, Athlone Contemporary European Thinkers Series (1997), 8.
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So far we are on firm ground; even a mild version of this kind of aesthetic theory will

definitely be incommensurable with machine listening and recommendation. What would it

even mean for a machine to understand the socially antithetical character of music? It is hard to

imagine there actually being an answer. In other words, Spotify’s machine listening outputs, while

more sophisticated than their competitors’, are crude. This is not really a novel finding, however,

and is really little more than saying “machine listening isn’t the same as human listening.” It is

an obvious claim, not a particularly interesting one, and even it can always be parried with the

familiar adage in statistics from George Box, cited previously in this dissertation:

All models are wrong, but some are useful.35

This insight appears in a paper about the scientific method in general. It is in the nature of

scientific knowledge, Box points out, to be approximate; the essence of the scientific method is

the “iteration between theory and practice.” Theories – all of them – are wrong or incomplete, to

say nothing of the ways in which they are also informed and inflected by the social positions of

the people assembling them.36 The famous case for this lesson in the philosophy of science is

Newton’s laws of motion. They are silent on where the gravitational force comes from, on exactly

why it is that two bodies have this strange property of attracting each other. They have, moreover,

been superseded by Einstein’s theory of general relativity, which recasts the gravitational force as

an expression of the curvature of space-time. Newton didn’t know about space-time. Would it

be accurate, then, to say that Newton’s laws were wrong? No, it would not, because all models

are wrong, and scientific models are “right” insofar as they tell us something useful about the

universe. Newton’s laws remain very useful and are taught unceremoniously as true facts in high

school physics courses to this day.

It is a very special sense in which these laws are useful, though, and this is perhaps the

sticking point when it comes to music. Newton’s laws have the virtue of explaining effectively

35. Box, “Science and Statistics.”
36. As Donna Haraway writes, “official ideologies about objectivity and scientific method are particularly bad

guides to how scientific knowledge is actually made.”Haraway, “Situated Knowledges: The Science Question in
Feminism and the Privilege of Partial Perspective”
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some observable phenomenon in the universe, solving a scientific problem. Aristotle was wrong;

a heavy stone does not fall to the earth faster than a light stone. Newton’s theory explains

why (its greater gravitational acceleration is offset by its greater inertia). It is in this respect

specifically that Newton’s laws are useful, and it is this usefulness that qualifies them still as

scientific knowledge. The theory that superseded Newton’s is useful in exactly the same way.

Spotify’s “theory of musical meaning,” such as it is, is also useful, but in a different way.

As I hope that my reading of Whitman and the Spotify GUI have shown, this theory does not really

tell us anything about the universe. There is no empirical puzzle that it solves. There do exist real

problems when it comes to the study of musical meaning: why does music, which is just a bunch

of sound waves ordered in enigmatic, unsystematic ways, appear so profoundly meaningful to

human beings? That is the problem of music, considered scientifically, and it is this question to

which the majority of the authors in surveyed in Chapter Four address themselves. Music works

by delayed gratification, or by facilitating identity construction, or by exercising a hypothesized

music organ analogous to the language organ – these are proposals with true explanatory power.

Spotify, though based on an academic dissertation called “Learning the Meaning of Music,” does

not share this property.

The Whitman dissertation, in other words, effectively ignores the problem of musical

meaning, even as it sort of misconstrues other efforts to solve it. In doing so, Whitman really

wants to have it both ways; he sometimes seems to be making statements about the meaning of

music as this problem has been construed by philosophers from time immemorial, but sometimes

seems simply to be building a system whose ultimate purpose can only be commercial. The

question becomes, exactly how tongue-in-cheek is the dissertation’s title? Sometimes, it seems to

be winking at us. “Learning” as in machine learning, clearly. But “meaning” as in...what exactly?

This is, after all, a dissertation accepted for publication by a prestigious institution of higher

education, which would traditionally mean it contained knowledge. It ought to be “useful.”

And so it is, but only if we construe Box’s “useful” in a way that he probably never
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intended it: as referring to potential “uses” in commerce. It is useful for increasing “enjoyment,”

which, as Yves Raimond observed in a recent paper at ICML, “directly impacts customer

satisfaction” in recommender services.37 That a dissertation can be published that is “useful”

in this narrow sense is perhaps an expression of just how deeply the academic profession has

been penetrated by the ideology of capitalism. What in another era might have been classed

as an invention, subject to patent protections instead of academic credentialization, today gets

institutional sanction as a kind of knowledge. Whitman’s dissertation earned him a Ph. D., but it

was always pointed at industry, which is where he headed immediately after finishing it. And on

some level this rhetorical slippage – between “useful” as scientific and “useful” as commercial,

between research as knowledge and research as products – serves Spotify in its commercial

application. Their pretension to knowledge, the idea that a particular company has “solved the

problem” of musical meaning, is a major part of what music information companies are selling;

this is perhaps most visible in the pseudo-scientific jargon of Pandora around its “music genome

project” but the posture is equally true of Spotify and most of the others. They’re supposed to

have real insights about musical affection. They’re supposed, in other words, to have solved it.

If Spotify doesn’t have some special kind of insight, why after all should it deserve its

annointed status as the savior of the music industry? If there is anything this dissertation has

demonstrated clearly, it is that Spotify is not so exceptional. Not legally, not technologically, and

not philosophically. Spotify is an good expression of the copyright norms for which the recording

industry has been lobbying heavily since the 1970s. It is an ingenious, but not terribly innovative,

combination of natural language processing, DSP and machine learning. And philosophically, its

major commitment seems to be that “music” equals “soundtrack.” There is nothing necessarily

diabolical about these features of the Spotify service, especially from the commercial perspective,

but they are definitely not particularly innovative. Spotify’s great insight, if it has one, is simply to

37. Seen in his paper, “From Listening to Watching, A Recommender Systems Perspective,” ICML June 2019,
https://slideslive.com/38917438/from-listening-to-watching-a-recommender-systems-perspective, accessed 9-01-
2019
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become what Napster was trying to become in 2001 but couldn’t: a digital distribution platform

that the major labels are invested in, whose copyright norms are written into the technology, and

from which they alone profit.

Spotify as Platform

To claim that Spotify is unexceptional sounds mild, but I don’t mean to downplay the

weight of that insight. To show that Spotify is not that special involved a close reading of

Whitman’s dissertation against the philosophical tradition in which it partially situates itself, and

a comparison of that dissertation with the behavior of the GUI. It also meant situating Spotify

in the history of copyright legislation in the 20th century. It runs against the grain of Spotify’s

marketing, and it can re-frame how we think of the future of the music business in general. It

means, in other words, seeing Spotify as primarily a straightforward economic actor rather than

some novel type of entity with some special power to reinvigorate a troubled industry. With the

decline of CD sales at the end of the 20th century, the record industry faced a crisis, from which

it has only partially recovered. Streaming music is the prime driver of that recovery, and Spotify

is the biggest streaming music company. It is, moreover, one of the few to have traded on the

music commodity alone (others, like Amazon and Apple, use music to sell other products and

services).38 This has led many to see Spotify as the driver of the industry’s recovery.

But that picture, as I have argued, is misleading. It would be more accurate to see Spotify

as a straightforward case of “platform capitalism,” that is, as a company that sells a platform rather

than a traditional service. A company whose nominal purpose is to bring two things together

(users, say, and music catalogues) but whose true traffic is in data, participating in a system

where “the product of work becomes immaterial.” The rise of the “platform” in the US economy,

according to Neal Srnicek, is a kind of compensation for the decline of the manufacturing sector;

the economy has “turned to data” because traditional production has ground to a halt, and because

38. Although Spotify is aggressively developing its podcast platform.
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post-2008 monetary policy has freed up enormous amounts of capital eager to see a better return

than the Fed-mandated low interest rates. This signals an economy dominated by a new class that

controls not the means of production but rather holds ownership over information.39 Platform

capitalism is a model in which data is the raw material. This material takes novel forms (forms

whose immateriality is usually overstated, witness the enormous amounts of energy needed to run

a data center) but is nevertheless produced and exploited in ways perfectly familiar from older

forms of capitalism.

The only way, then, to really understand tech platforms, is to abstract them from the

“Californian values” with which they are so deeply enmeshed, and to see them as a straightforward

capitalist actors in the traditional sense. Doing so reveals, for Srnicek, that in most of the important

ways, the tech companies that appear to be so novel actually represent “simple continuities” of

traditional forms of accumulation and exploitation.40 All of which gives us a different perspective

on the Spotify business model from their marketing materials. It also suggests a different

perspective from the one taken in the quantitative experiments conducted in the previous chapter.

We ought to look not at the music data, or at the recommendation engine at all, but at the

economics, since that has always been the guiding principle for Spotify. As a “platform” in

Srnicek’s sense, Spotify could be successful, for example, by being purchased by a larger company,

which many have speculated will happen soon.41 That company might go on to turn a profit

by finding a way to sell its user data. This would, at any rate, be the normal course for an

internet company that doesn’t have a true commodity from which it can actually profit; if these

are Spotify’s maneuverings, the whole quesiton of musical meaning and its commensurability

with machine intelligence is irrelevant.

Spotify does not contribute directly to swelling the ranks of new social class of the

39. Srnicek, Platform Capitalism, 3-10.
40. Ibid., 9.
41. See, e.g., Tim Ingham, “Who Will Own Spotify in Five Years?,” accessed September 9, 2019, https://www.

rollingstone.com/music/music-features/who-will-own-spotify-in-five-years-876693/
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“precariat” in the way that Uber does.42 Nor is its monopoly power as decisive as the power

wielded by Facebook and Google. Nevertheless, insofar as its true commoditites are its own

technological novelty and its surveilled user data, and insofar as its value as a service scales

in direct proportion to its size rather than its quality (which, as we have seen, is pretty much

impossible to gauge), it can coherently be regarded as part of the same economic trend. This is

a trend that, according to Frank Pasquale, can be told with two narratives, one positive and one

negative. It is either an invitation to make a living with flexible, creative labor (the “neoliberal

narrative”) or a “glidepath to precarity” (the “progressive narrative”). There are, of course, legions

of musicians ready to accuse Spotify of exploiting their creative work and making it harder to

make a stable living. Pasquale’s sympathies are clearly with these exploited workers, but he

also argues in general against the monopoly that atomistic, quantitative narratives have on the

truth about platforms. Narrativity, he argues, is valuable precisely because it doesn’t “model our

understanding of people on our understanding of atoms or molecules; nor [does it] promise the

false precision of numerical estimates of well-being.”43 The numbers about Spotify as a business,

in other words, don’t tell its whole story. In much the same fashion, nor do its numbers about

musical meaning.

This leads to an unflattering but instructive comparison. If Spotify was never actually

supposed to turn music profitable again, it would mean that Spotify is no different from, say,

the Angry Birds smartphone game, which earns its money by selling the geolocation data of

its customers to third parties. This leads naturally to a comparison between the pseudo-service

provided by Angry Birds (the game) and the Spotify recommendation engine; can we conclude

that Spotify’s recommendation engine is not really about musical quality at all, but is “gamefied”

in the same way that Tinder, or Angry Birds, is? Can we assume that Spotify, like so many

other digital platforms, wants nothing more than to retain its users, monitor their behavior, and

eventually sell that information to the highest bidder? Can it be that a statistical query of Spotify’s

42. Guy Standing, “The precariat,” Contexts 13, no. 4 (2014): 10–12.
43. Frank Pasquale, “Two narratives of platform capitalism,” Yale L. & Pol’y Rev. 35 (2016): 309.
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recommendation behavior (like mine, or like Ericksson’s) is no more musically valuable than the

same query brought to bear on a non-musical platform?

We cannot make that claim yet, but it is to this conclusion that the suggestion that Spotify

is not special points. Nothing, after all, could be less exceptional than a company that lures us into

volunteering personal information, and then sells that information to a data broker. We confront

that kind of thing constantly. The data broker Axciom, for example, claims to have information on

“two thirds of the world’s digital population.”44 As Tim Sparapani, the former director of public

policy at Facebook, puts it, “most retailers are finding out that they have a secondary source of

income, which is that the data about their customers is probably just about as valuable, maybe

even more so, than the actual product or service that they’re selling to the individual.”45 Spotify

doesn’t even own the stuff that constitutes its “primary” source of income; the only thing it can

really be said to own is the immensely valuable information about what music people like: data,

the raw material of platform capitalism. Whitman’s dissertation certainly hasn’t “learned” the

meaning of music, but the company that is built upon it certainly trades upon the fact that musical

meaning is real. Given how personally meaningful music is for almost everyone on earth, it

seems safe to assume that Spotify is sitting on some extremely valuable information. All Spotify

would have to do would be to click the link on Axciom’s site that promises to “create new revenue

streams,” and they could finally start making money. If Spotify is so unexceptional as to be a

participant, present or future, in this “new data economy,” it could mean that its recommendation

engine is really no more musically significant than Angry Birds. The recommendation system,

in other words, would be exactly what Nick Seaver said it was: a “trap,” a way to seduce users

into retaining engaged and surrendering as much valuable information as possible.46 Incidentally,

this conclusion would also obviate certain music-focused parts of the critique mounted in this

dissertation.

44. From Axciom’s promotional video, available at https://www.acxiom.com/
45. In a recent interview with CBS news:

https://www.cbsnews.com/news/the-data-brokers-selling-your-personal-information/, accessed 09-09-2019
46. Seaver, “Captivating Algorithms: Recommender Systems as Traps.”
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This actually seems plausible, but this dissertation does not support that conclusion exactly.

We know that Spotify is, from a copyright perspective, unexceptional. We know that it has not

managed the miracle of making music profitable again, any more than Napster did. We know that

it logs lots of user data, and we know that it has never yet turned a profit. We know, moreover, that

Spotify allows advertisers to target users based on their listening profiles; according to Spotify’s

privacy policy, “we use marketing and advertising partners to show you more tailored content.”47

We know that Spotify is intimately connected with Facebook, which is essentially an empire of

monetized user data with a reputation for low integrity in data privacy. If Spotify turned around

and sold all our data tomorrow, it wouldn’t be the craziest thing that ever happened; nevertheless

about its plans for the future we can only speculate.

What does this tell us about its recommendation engine? The short answer is, nothing.

The recommendation engine remains a protected trade secret whose true operation is probably

not understood by anyone, even internally at Spotify. Considering Spotify as a case of platform

capitalism, the best we can do is situate Spotify in the relevant context: we can describe the

way things are done in Silicon Valley, and outline the economic pressures exerted on Spotify

the company. Doing so predicts certain seemingly sinister practices from Spotify, but it doesn’t

necessarily tell us anything precise about the recommendation engine’s efficacy. The fact that

Tinder and OK Cupid’s real business models might be trafficking in user data, after all, does

not exclude the possibility that, in addition to being effectively gamified data mining tools, their

systems do make good recommendations. Or, to put it more precisely, that in spite of the fact

that there is probably no such thing as a “good recommendation,” in Tinder or Spotify, people do

actually fall in love on these services. Tinder doesn’t need people to fall in love, any more than

Spotify needs us to like our recommendations. But commerce and beauty can happen at the same

time; even if it did turn out that the whole idea was always to monetize stored user profiles, the

Spotify recommendation engine could still be of very high quality.

47. Spotify, “Spotify Privacy Policy,” accessed September 9, 2019, https://www.spotify.com/us/legal/privacy-
policy/.
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But is it high quality? If we try to approach that admittedly alluring question, we quickly

lose our footing. Which brings us to the “dissolution” indicated in this dissertation’s title. What

would it mean for a recommendation engine to be high quality? Would it mean selecting, from a

set of music that you already love, music that is appropriate for whatever mood you happen to

be in at a given moment? Suggesting music that you didn’t already know but which you then

turn out to like (what the industry terms “serendipity”)? Would it mean deliberately broadening

your horizons, or understanding what your horizons are and remaining squarely within them?

Or, would it simply mean doing whatever it is that keeps users logged in and generating new

profile data? Any one of these goals is plausible; none is more right than the others, even if the

economic pressures on Spotify strongly incline toward the last one. The whole idea of a “good”

recommendation system, in other words, dissolves when you try to figure out what it would really

mean.

Which, in a sense, is the same reason that statistical “shadowboxing” is all we can manage

with the Spotify API, and why the quantitative results in Chapter Five are so inconclusive. Just as

it is almost impossible to imagine one model of success in music recommendation, it is equally

impossible to put your finger on any one indicting piece of statistical evidence. I show, for

example, that a handful of genres do in fact turn out to be more diverse than others. Classical

music, by one measure, is the least diverse genre 100% of the time. IDM seems, somewhat

surprisingly, to be consistently the most diverse. These are findings of the same type as those of

Erikssonn et al, who, for example, show that older users in general tend to get more unique artists

recommended.48 They also note that most Spotify proprietary playlists tend to have happy themes

rather than sad ones.49 For some users, these kinds of finding may be genuinely concerning. They

might even feel like the “smoking gun” some skeptical luddites hope for.

Probably for most readers this will not be the case. For some, these findings could even be

an indicator of a well-tuned system. That’s what makes it shadowboxing – any conclusion we’re

48. Eriksson et al., Spotify Teardown: Inside the Black Box of Streaming Music, 134.
49. Ibid., 125.
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likely to find is neutralized by the intractability and irregularity of the object under experimental

scrutiny. Musical meaning remains as nebulous a quantity in the 21st century as it has been

throughout the long history of aesthetic philosophy. The Spotify system is predicated on the

attempt to solidify musical meaning, to make it legible to a digital information system. For all the

plasticity and interpretational obscurity presented with contemporary machine learning models,

they are still essentially digital, in particular when they produce simple binary classification

outputs. Does this seed genre produce this recommendation? It’s a yes or no question, and the

only sense in which the answer to it can be successful is a commercial one. Whether or not

users stay logged in, a purely financial measure, is the only measure that seems not to evaporate

upon close inspection. In a philosophical sense, on the other hand, it seems pretty clear that

musical meaning, like meaning in general, is not any one thing such that it can be specified or

have attributions made to it.

This dissertation, in other words, ultimately sides with Chomsky (or, at least, mimics him

in the musical domain) on the question of precisifying “meaning.” This is a simple claim that

might strike some people as anti-philosophical: any pre-theoretical inquiry into musical meaning

is a topic unworthy of philosophical attention. There is no real quantity “meaning” such that it

can be located in the audio signal, cultural metadata, the relation between them, or anywhere

else. The attention this topic is given in Whitman’s dissertation, and even more so in Spotify’s

system, is not scientific but rather commercial. Its definition of musical meaning is, as a result,

stipulative rather than explanatory, and its true goal was always industrial implementation rather

than knowledge. It is more of an invention than a discovery. What Whitman terms “musical

meaning” is the philosophical equivalent of any proprietary term of art. It’s something like

the way computers are said to go to “sleep.” Sleep here is an invention made by the computer

manufacturer to the improve battery life of its products; it doesn’t tell us anything about the kind

of “sleep” that doctors might want to study to understand this peculiar property of human biology.

The same is true of Spotify’s meaning. It is no more a statement of fact about the world than
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the Spotify “track” objects are actual pieces of music. True philosophers of musical meaning,

whatever we might say of their results, do try to think about musical meaning in a scientific sense:

they try to answer questions that arise from the actual operation of music in the world. Leonard

Meyer really does posit an answer to the problem of how music works on people. In a very

different way, so does Susan McClary. This is just a different kind of project from Spotify’s.

Which brings us back to the nature of the Spotify project, and the related question of why

Spotify cares if users listen. As Eriksson et al point out, the Spotify pitch has always emphasized

scale.50 Spotify has both a larger user base and a much larger catalogue than, say, Netflix; it’s

a similar machine learning problem posed on a vastly larger scale. But users don’t care about

scale; only investors do. Spotify’s investors (Goldman Sachs, Coca-Cola, countless Silicon Valley

investors, and after Spotify’s IPO, its public shareholders) are the audience Spotify will ultimately

have to satisfy. And these stakeholders are not to be satisfied with the musical commodity, no

matter what contortions Spotify forces it into; they are interested in stock value, of which scale is,

in today’s investor climate, a primary determinant. Spotify’s real marketplace, in other words, is

in finance, not music.

We would expect such a system to behave more or less like Tinder’s, whose commodities

are, similarly, not those of human affection around which its sales pitch is structured. It makes

sense, when you look at Spotify from this materialist perspective, that its system would seek

simply to tap into a basic human need as a way of keeping users engaged. That’s why Spotify

promises to make our lives better, to make us happier, to help us better conform to the “chrono-

normative” picture of happy, productive, fit consumers, engaged in various enriching activities at

different times throughout the day.51 As Eriksson et al point out, “soundtrack your life” really

means that music can make your work life (specifically, your office life) better, can help you

get fit at the gym, or focus better while you’re preparing for an exam. The “curatorial turn” for

Spotify may have meant that the company had to start making judgments about music itself in

50. Eriksson et al., Spotify Teardown: Inside the Black Box of Streaming Music, 160.
51. Ibid., 153.

218



a way it never had before, but those judgments are ultimately far less important than the metric

of user retention. Recommendation quality and user retention are essentially the same thing for

Spotify, and the primary task of machine learning is unambiguously to keep users tuned in for as

long as possible, something that Spotify’s vice president of machine learning makes clear:

My hope is that three years from now, machine learning becomes less myopic. It
should figure out the best sequence of actions to lead you on a journey where you
discover new great audio content, become more engaged, and stay satisfied as a
listener for years to come.52

The facile critiques of Spotify’s machine listening and recommendation engine, in other

words, while they might be right, also miss the point. The system doesn’t have to be good at

understanding musical meaning, isn’t even aiming at a “good” recommendation service, unless

we define the same as one that keeps people tuned in. The Spotify business model has shifted

over the years, from one where users were assumed to have their own well-defined musical

preferences to one where Spotify helps you figure out what those preferences are. The business

model, though, an unexceptional case of platform capitalism focused on financial markets and

scaling up aggressively, has been totally consistent.

The affect management element of Spotify’s service may indicate a more salient critique

than quantitative methods ever could. Again, like Tinder, Spotify has every incentive to try to

convince its users that it will make them feel better. The “mood” section in Spotify is really

a series of mood management tools: “mood booster,” “have a great day,” “confidence boost,”

“sunny bliss,” and many more of the like. Even the nominally “sad” playlists promise some

kind of consolation or soothing. The “life sucks” playlist, for example, offers commiseration:

“Feeling like life sucks? We’ve all been there.”53 This particular playlist, as a matter of fact,

seems recently to have removed from its byline the one phrase that didn’t promise to help you feel

better: Erikssonn et al cite it as containing the phrase, “these songs will probably only make you

52. https://newsroom.spotify.com/2019-10-24/6-questions-and-answers-with-tony-jebara-vp-of-machine-
learning/, accessed 10-15-2019

53. Spotify GUI, accessed 09-09-2019
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feel worse, but least they’ll let you know you’re not alone.”54 That decidedly negative tone has

been excised since Erikssoon et al published. Spotify is clearly committed to fostering positive

thinking in its users, which is a profound aesthetic limitation that flows naturally from its market

orientation and conforms disturbingly with the very worst suspicions about aesthetic homogeneity.

There is no space to “let suffering speak,” which is one of Adorno’s basic criteria for any kind of

truth.55 Or, to take a less abstruse example, James Baldwin, who saw music as a place to confront

pain unflinchingly. He contrasts true musical experience, which deals with pain, with a chilling

Cold War example: bomb shelters. Sheltering yourself against pain, managing your emotions so

as to exclude negative feelings, is, for Baldwin, the polar opposite of true aesthetic experience.

Bomb shelters are thus “very close to being a crime.” If we side with Adorno, Baldwin, or if we

just believe that music shouldn’t always be about soundtracking your life in a way that makes

things better, more manageable, more productive, then we’ll always run against the grain with

Spotify.

Thus the kind of identity construction that mass data surveillance makes possible is not

just a matter of discerning “measurable types” and evaluating individual users against them, but

also of actively modulating the emotional contours of those types.56 Whereas we usually think of

music as part of the subjective act of identity construction, where a person figures out for herself

who she is and what kind of persona she wants to project, the identity construction in the world

of surveillance capitalism is largely objectified, out of control of the user, and not in her interests

anyway. It is the difference between identity construction that is useful for the person, and identity

construction that is useful for the corporation, or, to take a case from music recommendation

itself, between “taste” and “taste profiles.”

The music industry, of course, has never been particularly distinguished for its moral

rectitude or its commitment to artistic nuance. It is the industry of “race records,” “world music,”

54. Eriksson et al., Spotify Teardown: Inside the Black Box of Streaming Music, 125.
55. Lambert Zuidervaart, “Theodor W. Adorno,” in The Stanford Encyclopedia of Philosophy, Winter 2015, ed.

Edward N. Zalta (Metaphysics Research Lab, Stanford University, 2015).
56. John Cheney-Lippold, We Are Data: Algorithms and The Making of Our Digital Selves (NYU Press, 2017).
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“payola,” and a century of racial appropriation. If there are questionable elements to Spotify’s

participation in the regime of platform capitalism, it is natural to ask whether these are any worse,

or even very different, from the ethical problems that have always been part of the record business.

This is a related but different question from the ones I have raised about its general quality, or

even its potential to marginalize certain aesthetic categories. It is a question, once again, about

novelty: whether Spotify does or does not represent something qualitatively new and different. It

is the question of whether Spotify’s potential to exploit its users and artists represents a departure

from or a continuation of existent practices in the music industry. In some ways, of course, both

are true, and even the novel forms of platform capitalism that Spotify participates in can be seen

as carrying on venerable record industry traditions. To commodify wherever possible, to prioritize

shareholder value over all else, and to let business strategy be utterly dictated by market need are,

after all, the most familiar of capitalist truisms. To the extent that Spotify participates in them, it

can be seen as a pretty typical entity. That participation in this broader economy of speculation

and surveillance is not atypical is, ultimately, the most important insight that the study of Spotify

can produce.
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Appendix I - Spotify Materials

5.5 Definitions of Spotify “Get Audio Features” API object

fields

Key Value Type Value Description

duration ms int The duration of the track in milliseconds.

key int The estimated overall key of the track. Integers

map to pitches using standard Pitch Class nota-

tion . E.g. 0 = C, 1 = C#/Db, 2 = D, and so on.

If no key was detected, the value is -1.

mode int Mode indicates the modality (major or minor) of

a track, the type of scale from which its melodic

content is derived. Major is represented by 1 and

minor is 0.

time signature int An estimated overall time signature of a track.

The time signature (meter) is a notational con-

vention to specify how many beats are in each

bar (or measure).
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acousticness float A confidence measure from 0.0 to 1.0 of whether

the track is acoustic. 1.0 represents high confi-

dence the track is acoustic.

danceability float Danceability describes how suitable a track is

for dancing based on a combination of musical

elements including tempo, rhythm stability, beat

strength, and overall regularity. A value of 0.0 is

least danceable and 1.0 is most danceable.

energy float Energy is a measure from 0.0 to 1.0 and repre-

sents a perceptual measure of intensity and ac-

tivity. Typically, energetic tracks feel fast, loud,

and noisy. For example, death metal has high

energy, while a Bach prelude scores low on the

scale. Perceptual features contributing to this

attribute include dynamic range, perceived loud-

ness, timbre, onset rate, and general entropy.

instrumentalness float Predicts whether a track contains no vocals.

“Ooh” and “aah” sounds are treated as instrumen-

tal in this context. Rap or spoken word tracks

are clearly “vocal”. The closer the instrumen-

talness value is to 1.0, the greater likelihood the

track contains no vocal content. Values above

0.5 are intended to represent instrumental tracks,

but confidence is higher as the value approaches

1.0.
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liveness float Detects the presence of an audience in the record-

ing. Higher liveness values represent an in-

creased probability that the track was performed

live. A value above 0.8 provides strong likeli-

hood that the track is live.

loudness float The overall loudness of a track in decibels (dB).

Loudness values are averaged across the entire

track and are useful for comparing relative loud-

ness of tracks. Loudness is the quality of a sound

that is the primary psychological correlate of

physical strength (amplitude). Values typical

range between -60 and 0 db.

speechiness float Speechiness detects the presence of spoken

words in a track. The more exclusively speech-

like the recording (e.g. talk show, audio book,

poetry), the closer to 1.0 the attribute value. Val-

ues above 0.66 describe tracks that are probably

made entirely of spoken words. Values between

0.33 and 0.66 describe tracks that may contain

both music and speech, either in sections or lay-

ered, including such cases as rap music. Values

below 0.33 most likely represent music and other

non-speech-like tracks.
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valence float A measure from 0.0 to 1.0 describing the musical

positiveness conveyed by a track. Tracks with

high valence sound more positive (e.g. happy,

cheerful, euphoric), while tracks with low va-

lence sound more negative (e.g. sad, depressed,

angry).

tempo float The overall estimated tempo of a track in beats

per minute (BPM). In musical terminology,

tempo is the speed or pace of a given piece and

derives directly from the average beat duration.

id string The Spotify ID for the track.

uri string The Spotify URI for the track.

track href string A link to the Web API endpoint providing full

details of the track.

analysis url string An HTTP URL to access the full audio analysis

of this track. An access token is required to

access this data.

type string The object type: “audio features”

5.6 Spotify’s 126 genres

[’acoustic’, ’afrobeat’, ’alt-rock’, ’alternative’, ’ambient’, ’anime’, ’black-metal’, ’blue-

grass’, ’blues’, ’bossanova’, ’brazil’, ’breakbeat’, ’british’, ’cantopop’, ’chicago-house’, ’chil-

dren’, ’chill’, ’classical’, ’club’, ’comedy’, ’country’, ’dance’, ’dancehall’, ’death-metal’, ’deep-

house’, ’detroit-techno’, ’disco’, ’disney’, ’drum-and-bass’, ’dub’, ’dubstep’, ’edm’, ’electro’,

’electronic’, ’emo’, ’folk’, ’forro’, ’french’, ’funk’, ’garage’, ’german’, ’gospel’, ’goth’, ’grind-
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core’, ’groove’, ’grunge’, ’guitar’, ’happy’, ’hard-rock’, ’hardcore’, ’hardstyle’, ’heavy-metal’,

’hip-hop’, ’holidays’, ’honky-tonk’, ’house’, ’idm’, ’indian’, ’indie’, ’indie-pop’, ’industrial’,

’iranian’, ’j-dance’, ’j-idol’, ’j-pop’, ’j-rock’, ’jazz’, ’k-pop’, ’kids’, ’latin’, ’latino’, ’malay’,

’mandopop’, ’metal’, ’metal-misc’, ’metalcore’, ’minimal-techno’, ’movies’, ’mpb’, ’new-age’,

’new-release’, ’opera’, ’pagode’, ’party’, ’philippines-opm’, ’piano’, ’pop’, ’pop-film’, ’post-

dubstep’, ’power-pop’, ’progressive-house’, ’psych-rock’, ’punk’, ’punk-rock’, ’r-n-b’, ’rainy-

day’, ’reggae’, ’reggaeton’, ’road-trip’, ’rock’, ’rock-n-roll’, ’rockabilly’, ’romance’, ’sad’, ’salsa’,

’samba’, ’sertanejo’, ’show-tunes’, ’singer-songwriter’, ’ska’, ’sleep’, ’songwriter’, ’soul’, ’sound-

tracks’, ’spanish’, ’study’, ’summer’, ’swedish’, ’synth-pop’, ’tango’, ’techno’, ’trance’, ’trip-hop’,

’turkish’, ’work-out’, ’world-music’]
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Appendix II – Experimental Results

5.7 analyze playlist.py (representative example)

import j s o n

from s c i p y . s p a t i a l import ConvexHull

import numpy as np

import random

from i t e r t o o l s import c o m b i n a t i o n s

import i t e r t o o l s

from s c i p y . s p a t i a l import d i s t a n c e

from g lob import g lob

import os

import os . p a t h

import S t r i n g I O

import csv

means = j s o n . l o a d ( open ( ’ . / means . j s o n ’ ) )

s t d s = j s o n . l o a d ( open ( ’ . / s t d s . j s o n ’ ) )

def wh i t en ( f e a t u r e s , means , s t d s ) :

w h i t e n e d l i s t = [ ]

f o r song in f e a t u r e s :

new song = [ ]

new song = [0 f o r i in range ( l e n ( song ) ) ]
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f o r i in range ( l e n ( song ) ) :

new song [ i ] = ( song [ i ] − means [ i ] ) / s t d s [ i ]

w h i t e n e d l i s t . append ( new song )

re turn w h i t e n e d l i s t

def f e a t u r i z e p l a y l i s t ( p l a y l i s t ) :

f e a t u r e s = [ ]

f o r song in p l a y l i s t [ ’ t r a c k s ’ ] :

t r a c k a r r a y = [ ]

t r a c k a r r a y . append ( song [ ’ l i v e n e s s ’ ] )

t r a c k a r r a y . append ( song [ ’ v a l e n c e ’ ] )

t r a c k a r r a y . append ( song [ ’ e ne rg y ’ ] )

t r a c k a r r a y . append ( song [ ’ d a n c e a b i l i t y ’ ] )

t r a c k a r r a y . append ( song [ ’ s p e e c h i n e s s ’ ] )

t r a c k a r r a y . append ( song [ ’ i n s t r u m e n t a l n e s s ’ ] )

t r a c k a r r a y . append ( song [ ’ tempo ’ ] )

t r a c k a r r a y . append ( song [ ’ l o u d n e s s ’ ] )

t r a c k a r r a y . append ( song [ ’ d u r a t i o n m s ’ ] )

t r a c k a r r a y . append ( song [ ’ a c o u s t i c n e s s ’ ] )

f e a t u r e s . append ( t r a c k a r r a y )

f e a t = w h i t en ( f e a t u r e s , means , s t d s )

f e a t = np . a s a r r a y ( f e a t )

re turn f e a t

def c r e a t e p l a y l i s t ( p l a y l i s t n a m e , s a m p l e s i z e ) :

s o u r c e = j s o n . l o a d ( open ( p l a y l i s t n a m e ) )

p l a y l i s t = {}

p l a y l i s t [ ’ name ’ ] = s o u r c e [ ’ name ’ ]

p l a y l i s t [ ’ t r a c k s ’ ] = [ ]

p l a y l i s t [ ’ t r a c k s ’ ] = random . sample ( s o u r c e [ ’ t r a c k s ’ ] , s a m p l e s i z e )

re turn p l a y l i s t
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def a v e d i s t ( p l a y l i s t a r r a y ) :

l i s t o f d i s t a n c e s = [ ]

comb = [ ]

comb = i t e r t o o l s . c o m b i n a t i o n s ( p l a y l i s t a r r a y , 2 )

f o r p a i r in comb :

l i s t o f d i s t a n c e s . append ( d i s t a n c e . e u c l i d e a n ( p a i r [ 0 ] , p a i r [ 1 ] ) )

a v e d i s t = np . mean ( l i s t o f d i s t a n c e s )

re turn a v e d i s t

def a v e d o t p r o d u c t ( p l a y l i s t a r r a y ) :

# c a l c u l a t e average d o t p r o d u c t o f a l l p o s s i b l e t r a c k p a i r s i n p l a y l i s t

l i s t o f d o t p r o d u c t s = [ ]

comb = [ ]

v e c t o r s = p l a y l i s t a r r a y

comb = i t e r t o o l s . c o m b i n a t i o n s ( v e c t o r s , 2 )

f o r p a i r in comb :

l i s t o f d o t p r o d u c t s . append ( np . d o t ( p a i r [ 0 ] , p a i r [ 1 ] ) )

a v e d o t s = np . mean ( l i s t o f d o t p r o d u c t s )

re turn a v e d o t s

# ######################################################

l i s t s o f w i n n e r s = [ [ ] , [ ] , [ ] , [ ] ]

l i s t s o f l o s e r s = [ [ ] , [ ] , [ ] , [ ] ]

num exp = 100

r e s u l t s = {}

f o r i in range ( num exp ) :

p r i n t ’ working on e x p e r i m e n t number ’ + s t r ( i +1) + ’ . . . . . ’

i = i + 1

a n a l y s i s = [ ]
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v a l u e s = [ ]

number samples = 2

p l a y l i s t s i z e = 40

a r e a s = [ ]

volumes = [ ]

d i s t s = [ ]

d o t s = [ ]

f o r f name in s o r t e d ( g lob ( ’ d a t a b a s e / ∗ . j s o n ’ ) ) :

h u l l a r e a s = [ ]

h u l l v o l u m e s = [ ]

d o t s = [ ]

d i s t s = [ ]

f o r i in range ( number samples ) :

p l a y l i s t = c r e a t e p l a y l i s t ( f name , p l a y l i s t s i z e )

f e a t u r e s = f e a t u r i z e p l a y l i s t ( p l a y l i s t )

h u l l = ConvexHull ( f e a t u r e s , q h u l l o p t i o n s = ’QJ ’ )

h u l l a r e a s . append ( h u l l . a r e a )

h u l l v o l u m e s . append ( h u l l . volume )

d o t s . append ( a v e d o t p r o d u c t ( f e a t u r e s ) )

d i s t s . append ( a v e d i s t ( f e a t u r e s ) )

a n a l y s i s . append ( [ p l a y l i s t [ ’ name ’ ] ,

np . mean ( h u l l a r e a s ) ,

np . mean ( h u l l v o l u m e s ) , np . mean ( d o t s ) ,

np . mean ( d i s t s ) ] )

w i n n e r i n d e x = i n t

l o s e r i n d e x = i n t

names = [ ]

v o l s = [ ]

a r e a s = [ ]

d o t s = [ ]

d i s t s = [ ]
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f o r g e n r e in a n a l y s i s :

names . append ( g e n r e [ 0 ] )

a r e a s . append ( g e n r e [ 1 ] )

v o l s . append ( g e n r e [ 2 ] )

d o t s . append ( g e n r e [ 3 ] )

d i s t s . append ( g e n r e [ 4 ] )

l i s t s = [ names , vo l s , a r e a s , do t s , d i s t s ]

s c o r e s = [ vo l s , a r e a s , do t s , d i s t s ]

f o r s c o r e , i in i t e r t o o l s . i z i p l o n g e s t ( s c o r e s , range ( l e n ( s c o r e s ) ) ) :

winner = max ( s c o r e )

l o s e r = min ( s c o r e )

w i n n e r i n d e x = s c o r e . i n d e x ( winner )

l o s e r i n d e x = s c o r e . i n d e x ( l o s e r )

w i n n e r g e n r e = l i s t s [ 0 ] [ w i n n e r i n d e x ]

l o s e r g e n r e = l i s t s [ 0 ] [ l o s e r i n d e x ]

p r i n t ’ winner f o r method ’ + s t r ( i ) + ’ i s ’ + s t r ( w i n n e r g e n r e )

p r i n t ’ l o s e r f o r method ’ + s t r ( i ) + ’ i s ’ + s t r ( l o s e r g e n r e )

l i s t s o f w i n n e r s [ i ] . append ( w i n n e r g e n r e )

l i s t s o f l o s e r s [ i ] . append ( l o s e r g e n r e )

r e s u l t s [ ’ w i n n e r s ’ ] = l i s t s o f w i n n e r s

r e s u l t s [ ’ l o s e r s ’ ] = l i s t s o f l o s e r s

j s o n = j s o n . dumps ( r e s u l t s )

f = open ( ” s c o r e s ” , ”w” )

f . w r i t e ( j s o n )

f . c l o s e ( )
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5.8 Mean Popularity, Confidence, and Unique Items in playlists

genre popularity confidence unique recs (n = 1) unique recs (n=100)

acoustic 33.484 0.5849475 291 310

afrobeat 14.944 0.641185 302 324

alt-rock 29.584 0.61865 284 314

alternative 44.568 0.6233325 301 318

ambient 18.534 0.483015 312 330

anime 17.128 0.562835 304 324

black-metal 8.638 0.45537 304 324

bluegrass 19.324 0.67385 295 337

blues 20.644 0.5844375 300 311

bossanova 4.412 0.5179225 221 230

brazil 27.71 0.6142 100 100

breakbeat 12.226 0.6121975 300 331

british 37.896 0.6133325 319 322

cantopop 13.152 0.60135 217 228

chicago-house 6.564 0.684885 297 333

children 39.522 0.5830775 293 335

chill 46.112 0.58534 304 326

classical 25.856 0.44557 287 291

club 37.39 0.649655 99 100

country 49.79 0.65028 309 338

dance 33.886 0.6283425 290 311

dancehall 17.174 0.58854 305 321

death-metal 19.426 0.4753675 305 331
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deep-house 16.39 0.6886075 315 336

detroit-techno 6.028 0.641855 294 324

disco 34.038 0.684865 308 336

disney 34.688 0.4913925 295 326

drum-and-bass 11.694 0.599825 289 312

dub 18.4 0.5883075 295 328

dubstep 16.406 0.5971175 301 330

edm 20.876 0.6242625 104 105

electro 31.396 0.62801 308 323

electronic 27.614 0.61829 318 340

emo 36.13 0.58528 291 323

folk 19.162 0.6364225 291 320

forro 6.064 0.60225 234 242

french 16.634 0.56295 305 318

funk 32.4625 0.6605575 80 80

garage 17.052 0.6196675 300 314

german 27.036 0.632635 300 327

gospel 27.532 0.5080775 295 313

goth 14.21 0.6063375 289 323

grindcore 11.678 0.41293 304 332

groove 21.28 0.6323625 99 99

grunge 31.102 0.5776125 307 322

guitar 37.342 0.57956 303 313

happy 42.712 0.6238325 304 339

hard-rock 25.43 0.6167375 100 100

hardcore 16.394 0.5133275 288 329
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hardstyle 14.334 0.56986 303 331

heavy-metal 25.248 0.5412575 286 329

hip-hop 60.428 0.5937975 301 336

holidays 2.662 0.48895 208 167

honky-tonk 37.066 0.6362175 310 327

house 25.856 0.6683975 288 327

idm 18.32 0.529655 306 341

indian 23.05 0.6336975 315 330

indie 47.328 0.6258775 98 336

indie-pop 43.18 0.5976825 301 100

industrial 20.678 0.63595 301 327

iranian 19.434 0.595575 300 315

j-dance 9.33 0.63789 260 279

j-idol 9.004 0.595505 253 259

j-pop 17.284 0.6048725 303 328

j-rock 15.402 0.593455 321 324

jazz 30.164 0.4642925 286 303

k-pop 4.944 0.608035 300 314

kids 8.904 0.647885 125 126

latin 53.674 0.5915025 310 320

latino 36.91 0.6078075 100 100

malay 14.712 0.6001825 222 231

mandopop 14.742 0.61516 241 255

metal 20.37 0.579435 99 100

metal-misc 20.37 0.56477 100 100

metalcore 29.932 0.50665 310 337
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minimal-techno 9.542 0.6569925 304 330

movies 38.202 0.51837 307 312

mpb 16.536 0.5827525 209 236

new-age 24.668 0.575365 308 337

new-release 14.6 0.58326 50 50

opera 9.894 0.424235 307 304

pagode 12.026 0.5633625 216 231

party 36.378 0.57192 321 329

philippines-opm 9.918 0.5532 169 172

piano 30.594 0.5341875 311 322

pop 63.732 0.636015 96 96

pop-film 28.7604166667 0.5981625 301 326

post-dubstep 9.51 0.5853375 311 344

power-pop 14.242 0.6282775 240 253

progressive-house 12.792 0.67227 297 330

psych-rock 16.938 0.600145 307 335

punk 25.306 0.642165 307 315

punk-rock 30.24 0.5877175 299 318

r-n-b 49.724 0.546675 311 334

rainy-day 40.898 0.5660725 308 341

reggae 23.45 0.528385 306 308

reggaeton 27.53 0.5841375 320 326

road-trip 43.588 0.62845 295 322

rock 57.154 0.6280725 304 324

rock-n-roll 31.146 0.6096475 296 336

rockabilly 15.542 0.5828125 303 327
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romance 46.06 0.6005075 307 321

sad 45.576 0.5726925 297 306

salsa 32.626 0.6120075 302 308

samba 8.83 0.5654025 225 224

sertanejo 11.648 0.6425125 231 240

show-tunes 29.87 0.4668225 310 315

singer-songwriter 36.528 0.567295 312 323

ska 15.414 0.60188 319 328

sleep 47.064 0.56392 302 315

songwriter 23.946 0.6170125 303 304

soul 27.872 0.5666875 302 321

soundtracks 37.004 0.4830275 306 329

spanish 38.522 0.6396725 312 317

study 45.498 0.5885 304 318

summer 42.234 0.64641 293 327

swedish 32.192 0.60506 296 329

synth-pop 42.42 0.6114675 100 100

tango 10.936 0.5528375 301 310

techno 30.41 0.65122 305 330

trance 18.526 0.6636725 313 323

trip-hop 23.542 0.587935 298 336

turkish 27.614 0.619765 315 320

work-out 38.28 0.6199075 304 332

world-music 15.208 0.5894225 313 334
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Åsberg, Cecilia, and Nina Lykke. Feminist technoscience studies, 2010.

Babbitt, Milton. “The Structure and Function of Musical Theory: I.” College Music Symposium 5
(1965): 49–60.

Barlow, John Perry. “The Economy of Ideas: A framework for patents and copyrights in the
Digital Age. (Everything you know about intellectual property is wrong.)” 1994. Accessed
August 10, 2019. https://www.wired.com/1994/03/economy-ideas/.

Barocas, Solon, Sophie Hood, and Malte Ziewitz. “Governing Algorithms: A Provocation Piece.”
Paper prepared for the “Governing Algorithms” conference at NYU, March 29 2013.

Barocas, Solon, and Andrew Selbst. “Big Data’s Disparate Impact.” California Law Review 104
(3 2016).

BBC News, “Newsbeat”. Online Resource, https://www.bbc.com/news/newsbeat-43240886.
Accessed Jan 27, 2019, 2018.

Benkler, Yochai. “Free as the Air to Common Use: First Amendment Constraints on Enclosure of
the Public Domain.” NYU Law Review 354 (1999).

. The Wealth of Networks: How Social Production Transforms Markets and Freedom. Yale
University Press, 2006.

237



Berry, David M. “Against Infrasomatization: Towards a Critical Theory of Algorithms.” In Data
Politics: Worlds, Subjects, Rights, edited by Didier Bigo, Engin Isin, and Evelyn Ruppert.
Routledge, 2019.

Box, George E. P. “Science and Statistics.” Journal of the American Statistical Association 71, no.
356 (1976): 791–799.

Bracken, Harry M. “Minds and Learning: The Chomskian Revolution.” Metaphilosophy 4, no. 3
(1973): 229–245.

Brown, Evan. “Fixed Perspectives: The Evolving contours of the Fixation Requirement in Copy-
right Law.” Washington Journal of Law, Technology and the Arts 10/1 (2014).

Burrell, Jenna. “How the machine ‘thinks’: Understanding opacity in machine learning algorithms.”
Big Data and Society 3, no. 1 (2016).

Carfoot, Gavin. “Musical discovery, colonialism, and the possibilities of intercultural communi-
cation through music.” Popular Communication 14, no. 3 (2016): 178–186.

Celma, Oscar. Music Recommendation and Discovery - The Long Tail, Long Fail, and Long Play
in the Digital Music Space. Springer, 2010.

Chalmers, David. The Conscious Mind. Oxford University Press, 1996.

Cheney-Lippold, John. We Are Data: Algorithms and The Making of Our Digital Selves. NYU
Press, 2017.

Chernoff, John Miller. African Rhythm and African Sensibility: Hauptwerk. Originally published
1979. University of Chicago Press, 1986.

Chomsky, N. Language and Mind. Cambridge University Press, 2006.

Chomsky, Noam. “A Review of B. F. Skinner’s Verbal Behavior.” Language, no. 1 (1959).

. Cartesian Linguistics: A Chapter in the History of Rationalist Thought. Originally
published 1966. Cambridge University Press, 2009.

. “The logical structure of linguistic theory,” 1975.

Cimini, Amy Marie. “Music Theory, Feminism, the Body: Mediation’s Plural Work.” Contempo-
rary Music Review 37, nos. 5-6 (2018): 666–683.

Citron, Danielle Keats, and Frank Pasquale. “The Scored Society: Due Process for Automated
Predictions.” Washington Law Review 89 (2014).

Colby, Kenneth Mark, James B Watt, and John P Gilbert. “A computer method of psychotherapy:
Preliminary communication.” The Journal of Nervous and Mental Disease 142, no. 2 (1966):
148–152.

Collier, Geoffrey L. “Beyond valence and activity in the emotional connotations of music.”
Psychology of Music 35, no. 1 (2007): 110–131.

Cook, Nicholas. Music: A Very Short Introduction. Oxford University Press, 1998.

238



Cooke, Deryck. The Language of Music. Oxford University Press, 1959.

Cotter, Thomas F. “Toward a Functional Definition of Publication in Copyright Law.” Minnesota
Law Review 1724 (2008).

Crawford, Kate. “Can an Algorithm be Agonistic? Ten Scenes from Life in Calculated Publics.”
Science, Technology, and Human Values 41, no. 1 (2016).

. “The Hidden Biases in Big Data,” 2013. Accessed August 10, 2019.

Crevier, Daniel. AI: The Tumultuous History of the Search for Artificial Intelligence. Basic Books,
1993.

Cusick, Suzanne G. “Feminist Theory, Music Theory, and the Mind/Body Problem.” Perspectives
of New Music 32, no. 1 (1994): 8–27.

David, Matthew. Sharing: Crime Against Capitalism. Polity Press, 2017.

Davies, Stephen. Themes in the Philosophy of Music. Oxford University Press, 2003.

Deleuze, Gilles. “Postscript on the Societies of Control.” October 59 (1992): 3–7.

DeNora, Tia. Music in Everyday Life. Cambridge University Press, 2000.

Diakopoulos, Nicholas. “Algorithmic accountability reporting: On the investigation of black
boxes,” 2014.

Doshi-Velez, Finale, and Been Kim. “Towards a rigorous science of interpretable machine
learning.” arXiv 1 (2017).

Dreyfus, Hubert. What Computers Can’t Do: A Critique of Artificial Reason. Harper / Row
Publishers, 1972.

Dreyfus, Hubert L. Alchemy and Artificial Intelligence. RAND Corporation, 1965.

Dreyfus, Hubert L. “Why Heideggerian AI Failed and How Fixing it Would Require Making it
More Heideggerian.” Philosophical Psychology 20, no. 2 (2007): 247–268.

Dreyfus, Hubert, and Stuart E. Dreyfus. Mind Over Machine: The Power of Human Intuition and
Expertise in the Era of the Computer. The Free Press, 1986.

Eriksson, Maria. “Close reading big data: The Echo Nest and the production of (rotten) music
metadata.” First Monday 21, no. 7 (2016).

Eriksson, Maria, Rasmus Fleischer, Anna Johansson, Pelle Snickars, and Patrick Vonderau.
Spotify Teardown: Inside the Black Box of Streaming Music. The MIT Press, 2019.

Feld, Steven. “Linguistic Models in Ethnomusicology.” Ethnomusicology 18, no. 2 (1974): 197–
217.

Frith, Simon. Sound Effects: Youth, Leisure, and the Politics of Rock’n’Roll. Pantheon Books,
1981.

239



Frith, Simon, and Lee Marshall. “Making Sense of Copyright.” In Music and Copyright, edited
by Frith and Marshall. Routledge, 2004.

Galloway, Alexander R. Gaming: Essays on Algorithmic Culture. University of Minnesota Press,
2006.

Gasser, Nolan. Why You Like It: The Science and Culture of Musical Taste. Flatiron Books, 2019.

George, F.H., and J.D. Humphries, eds. The Robots are Coming. National Computing Centre, Ltd.
Publications, 1974.

Gillespie, Tarleton. “Can an algorithm be wrong? Twitter Trends, the specter of censorship, and
our faith in the algorithms around us.” Online resource accessed Sept 2018, Culture Digitally,
2011.

. Wired Shut: Copyright and the Shape of Digital Culture. MIT Press, 2007.

Goldstein, Paul. Copyright’s Highway: From Gutenberg to the Celestial Jukebox. Stanford
University Press, 2003.

Gordon, Wendy J. “Fair Use as Market Failure: A Structural and Economic Analysis of the
”Betamax” Case and Its Predecessors.” Columbia Law Review 82, no. 8 (1982): 1600–1657.

Gorman, Robert A. “An Overview of the Copyright Act of 1976.” University of Pennsylvania
Law Review 126, no. 4 (1978): 856–884.

Gottfredson, Don M. “Prediction and Classification in Criminal Justice Decision Making.” Crime
and Justice 9 (1987): 1–20.

Gurevich, Yuri. What is an Algorithm? (Revised). In Church’s Thesis: Logic, Mind and Nature
(eds. A. Olszewski et al.) Copernicus Center Press 2014. January 2014.

Hagen, Anja Nylund. “The Playlist Experience: Personal Playlists in Music Streaming Services.”
Popular Music and Society 38, no. 5 (2015): 625–645.

Haggart, Blayne. Copyfight: The Global Politics of Digital Copyright Reform. University of
Toronto Press, 2014.

Haraway, Donna. “A Cyborg Manifesto: Science, Technology, and Socialist-Feminism in the Late
Twentieth Century.” In The Postmodern Turn: New Perspectives on Social Theory, edited by
S. Seidman. Cambridge University Press, 1994.

. “Situated Knowledges: The Science Question in Feminism and the Privilege of Partial
Perspective.” Feminist Studies 14, no. 3 (1988): 575–599.

Haunschmid, Verena, Shreyan Chowdhury, and Gerhard Widmer. “Two-level Explanations in
Music Emotion Recognition.” CoRR abs/1905.11760 (2019).

Hillis, Ken, Michael Petit, and Kylie Jarrett. Google and the Culture of Search. Routledge, 2013.

IFPI. https://gmr.ifpi.org/state-of-the-industry. Accessed Jan 27, 2019, 2018.

240



Ingham, Tim. “Who Will Own Spotify in Five Years?” Accessed September 9, 2019. https :
//www.rollingstone.com/music/music- features/who-will-own-spotify- in- five-years-
876693/.

Jarrett, Michael. “I Want My MP3: Who Owns Internet Music?” In Policing Pop, 30–45. Temple
University Press, 2003.

Jehan, Tristan. “Analyzer Documentation.” 2014. Accessed January 4, 2019. http://docs.echonest.
com.s3-website-us-east-1.amazonaws.com/ static/AnalyzeDocumentation.pdf.

Johansson, Sofia, Ann Werner, Patrik Aker, and Gregory Goldenzwaig. Streaming Music: Prac-
tices, Media, Cultures. Routledge, 2018.

Johnson, D.M., C.E. Erneling, S.L.P.C. Erneling, and Ont.) York University (Toronto, eds. “Lan-
guage from an Internalist Perspective.” In The Future of the Cognitive Revolution. Oxford
University Press, 1997.

Juslin, Patrik N. “From everyday emotions to aesthetic emotions: Towards a unified theory of
musical emotions.” Physics of life reviews 10, no. 3 (2013): 235–266.

Katz, Jerrold J. “Chomsky on Meaning.” Language 56, no. 1 (1980): 1–41.

Kemp, Anthony E. The Musical Temperament. Oxford University Press, 1996.

Kirkpatrick, Keith. “It’s Not the Algorithm, It’s the Data.” Commun. ACM (New York, NY, USA)
60, no. 2 (January 2017): 21–23.

Kivy, Peter. Sounding Off: Eleven Essays in the Philosophy of Music. Oxford University Press,
2012.

Kjus, Yngvar. “Musical exploration via streaming services: The Norwegian experience.” Popular
Communication 14, no. 3 (2016): 127–136.

Kot, Greg. Ripped: How the Wired Generation Revolutionized Music. Scribner, a division of
Simon / Schuster, 2009.

Kramer, Lawrence. Interpreting Music. Unversity of California Press, 2011.

. Musical Meaning: Toward a Critical History. University of California Press, 2002.

Ku, Raymond Shih Ray. “The Creative Destruction of Copyright: Napster and the New Economics
of Digital Technology.” The University of Chicago Law Review 69, no. 1 (2002): 263–324.

Lakoff, George. Women, Fire and Dangerous Things: What Categories Reveal about the Mind.
University of Chicago Press, 1987.

Lehman, Bruce. “Intellectual Property and The National Information Infrastructure: The Report of
The Working Group On Intellectual Property Rights.” Accessed via the Electronic Frontier
Foundation site. 1995. Accessed June 24, 2019. https://www.eff.org/files/filenode/DMCA/
ntia dmca white paper.pdf.

Lerdahl, Fred, and Ray Jackendoff. “An Overview of Hierarchical Structure in Music.” Music
Perception: An Interdisciplinary Journal 1, no. 2 (1983): 229–252.

241



Lipton, Zachary C. “The Mythos of Model Interpretability.” Commun. ACM 61, no. 10 (2018).

Liu, Huaping, Yong Fang, and Qinghua Huang. “Music Emotion Recognition Using a Variant of
Recurrent Neural Network.” In 2018 International Conference on Mathematics, Modeling,
Simulation and Statistics Application (MMSSA 2018). Atlantis Press, 2019.

Lucas D. Introna, Helen Nissenbaum. “Shaping the Web: Why the Politics of Search Engines
Matters.” The Information Society 16, no. 3 (2000): 169–185.

Lunded, Ingrid. “Spotify Acquired Music Tech Company The Echo Nest In A $100M Deal.”
2014. https://techcrunch.com/2014/03/07/spotify-echo-nest-100m/.

McCafferey, Damien. “The Narrowing Gyre of Music Recommendation.” In This is the Sound of
Irony: Music, Politics and Popular Culture, edited by Katherine L. Turner. Ashgate Popular
and Folk Music Series. Taylor & Francis, 2016.

McCandless, M. “The MP3 revolution.” IEEE Intelligent Systems and their Applications 14, no.
3 (1999): 8–9.

McClary, Susan. “The Impromptu That Trod on a Loaf: Or How Music Tells Stories.” Narrative
5, no. 1 (1997): 20–35.

Menn, Joseph. All the Rave: The Rise and Fall of Shawn Fanning’s Napster. Crown Business
Publishing Group, 2003.

Merges, Robert P. “One Hundred Years of Solicitude: Intellectual Property Law, 1900-2000.”
California Law Review 88, no. 6 (2000): 2187–2240.

Merriden, Trevor. Irresistible Forces: The Business Legacy of Napster and the Growth of the
Underground Internet. Capstone Publishing Limited, 2001.

Meyer, Leonard B. Emotion and Meaning In Music. University of Chicago Press, 1956.

Middleton, Richard. “In the Groove or Blowing Your Mind: The Pleasures of Musical Repetition.”
In The Popular Music Studies Reader, edited by A. Bennett, B. Shank, and J. Toynbee.
Popular music /cultural studies. Routledge, 2006.

Monelle, Raymond. The Sense of Music: Semiotic Essays. Princeton University Press, 2000.

Monson, Ingrid. Saying Something: Jazz Improvisation and Interaction. University of Chicago
Press, 1996.

Morison, E.E., and L. Marx. Men, Machines, and Modern Times. The MIT Press. MIT Press,
1966.

Morris, Jeremy Wade. “Music in the Cloud,” 1st ed., 166–191. University of California Press,
2015.

Mouffe, Chantal. “Deliberative Democracy or Agonistic Pluralism?” Social Research 66, no. 3
(1999): 745–758.

Nattiez, Jean-Jacques. Music and Discourse: Toward a Semiology of Music. Princeton University
Press, 1990.

242



Negroponte, Nicholas. “Less is More: Interface Agents as Digital Butlers.” Accessed July 12,
2019. https://www.wired.com/1994/06/negroponte-5/.

Nimmer, David. “A Riff on Fair Use in the Digital Millennium Copyright Act.” University of
Pennsylvania Law Review 148, no. 3 (2000): 673–742.

Nissenbaum, Helena, and Batya Friedman. “Bias in Computer Systems.” ACM Transactions on
Information Systems 14, no. 3 (1996).

Noble, S.U. Algorithms of Oppression: How Search Engines Reinforce Racism. NYU Press, 2018.

Nowak, Raphael. “When is a discovery? The affective dimensions of discovery in music con-
sumption.” Popular Communication 14, no. 3 (2016): 137–145.

O’Neil, Cathy. Weapons of Math Destruction: How Big Data Increases Inequality and Threatens
Democracy. Crown Publishing Group, 2016.

Pariser, Eli. The Filter Bubble: What the Internet is Hiding from You. The Penguin Press, 2011.

Pasquale, Frank. The Black Box Society: The Secret Algorithms That Control Money and Informa-
tion. Harvard University Press, 2015.

. “Two narratives of platform capitalism.” Yale L. & Pol’y Rev. 35 (2016): 309.

Patel, Anirudh. Music, Language and the Brain. Oxford University Press, 2008.

Patry, William. How to Fix Copyright. Oxford University Press, 2011.

Pelillo, Marcello, Teresa Scantamburlo, and Viola Schiaffonati. “Pattern recognition between
science and engineering: A red herring?” Philosophical Aspects of Pattern Recognition,
Pattern Recognition Letters 64 (2015): 3–10.

Peoples, Glenn. How ’Playola’ Is Infiltrating Streaming Services: Pay for Play Is ’Definitely
Happening’. https://www.billboard.com/articles/business/6670475/playola-promotion-
streaming-services. Published at billboard.com, accessed 01-09-2019, 2015.

Perzanowski, A., and J. Schultz. The End of Ownership: Personal Property in the Digital Economy.
Information Society Series. MIT Press, 2016.

Potter, Stewart. 20th Century Music v. Aiken, US Supreme Court, decided 1975, Justice Stewart
writing majority opinion, 1975.

Powers, Harold S. “Language Models and Musical Analysis.” Ethnomusicology 24, no. 1 (1980):
1–60.

Powles, Julia, and Helena Nissenbaum. “The Seductive Diversion of ‘Solving’ Bias in Artificial
Intelligence.” Accessed April 1, 2019. https://medium.com/s/story/the-seductive-diversion-
of-solving-bias-in-artificial-intelligence-890df5e5ef53.

Putnam, Hilary. “Is semantics possible?” Metaphilosophy 1, no. 3 (1970): 187–201.

. “Minds and Machines.” In Journal of Symbolic Logic, edited by Sidney Hook, 57–80.
New York University Press, 1960.

243



Putnam, Hillary. “The Meaning of ’Meaning’.” Minnesota Studies in the Philosophy of Science 7
(1975): 131–193.

Quine, Willard. Word and Object. MIT Press, 1960.

Ramos, Carey R. “The Betamax Case: Accommodating Public Access and Economic Incentive
in Copyright Law.” Stanford Law Review 31, no. 2 (1979): 243–263.

Ratner, Leonard G. “Topical Content in Mozart’s Keyboard Sonatas.” Early Music 19, no. 4
(1991): 615–619.

Richter, Felix. “Spotify’s Losses Widen as Royalty Costs Pile Up.” 2018. Accessed March 20,
2019. https://www.statista.com/chart/4894/spotify-revenue-vs-costs/.

Ringle, Martin. “A Brief History.” In Philosophical Perspectives in Artificial Intelligence. Hu-
manities Press, 1979.

Robinson, Jenefer. “Introduction: New Ways of Thinking about Musical Meaning.” Chap. 1,
edited by Jenefer Robinson, vol. Music and Meaning. Cornell University Press, 1997.

Rosch, Eleanor, et al. “Human categorization.” Studies in cross-cultural psychology 1 (1977):
1–49.

Rudd, Benjamin W. “Notable Dates in American Copyright, 1783-19669.” Accessed June 13,
2019. https://www.copyright.gov/history/dates.pdf.

Samuelson, Pamela. “The Copyright Grab.” Wired, 1996. Accessed June 7, 2019.

Sanchez, Daniel. “What Streaming Music Services Pay (Updated for 2018).” 2018. Accessed
February 5, 2019. https:/ /www.digitalmusicnews.com/2018/01/16/streaming- music-
services-pay-2018/.

Sanderson, Mark, and W. Bruce Croft. “The History of Information Retrieval Research.” Pro-
ceedings of the IEEE, no. 100 (May 2012).

Sandvig, Christian. “Seeing the sort: The aesthetic and industrial defense of “the algorithm”.”
Journal of the New Media Caucus 10, no. 3 (2014).

Schank, Roger. “Natural Language, Philosophy and AI.” In Philosophical Perspectives in Artificial
Intelligence. Humanities Press, 1979.

Schank, Roger C., and Robert P. Abelson. Scripts, Plans, Goals and Understanding: an Inquiry
into Human Knowledge Structures. Hillsdale, NJ: L. Erlbaum, 1977.

Schwab, Pierre-Nicolas. “Workshop on fairness and ethics in recommendation systems.” Septem-
ber 18, 2018. https://www.intotheminds.com/blog/en/workshop-on-fairness-and-ethics-in-
recommendation-systems/.

Scriven, Michael. “The Mechanical Concept of Mind.” Mind 62, no. 246 (1953): 230–240.

Searle, John. “Minds, brains, and programs.” Behavioral and Brain Sciences 3, no. 3, 417–457.

244



Searle, John R. “Chomsky’s Revolution in Linguistics.” The New York Review of Books 18, no.
12 (1972).

Searle, J.R. Mind, Language and Society: Philosophy in the Real World. MasterMinds series.
Basic Books, 1998.

Seaver, Nick. “Algorithms as culture: Some tactics for the ethnography of algorithmic systems.”
Big Data & Society 4, no. 2 (2017).

. “Captivating Algorithms: Recommender Systems as Traps.” Fortchoming, pre-print,
2018.

. “Knowing Algorithms.” Unpublished draft available on nickseaver.com, 2013. Accessed
July 15, 2019.

Sedgwick, E.K., A. Frank, M.A. Barale, M. Moon, and J. Goldberg. Touching Feeling: Affect,
Pedagogy, Performativity. Series Q. Duke University Press, 2003.

Sellar, Tom. “The Curatorial Turn.” Theater 44, no. 2 (May 2014): 21–29.

Serafine, Mary Louise. “Against Music as Communication: Implications for Education.” Journal
of Aesthetic Education 14, no. 4 (1980): 85–96.

Silva, Marsha. “Spotify, the “Solution to Music Piracy,” Is Getting Pirated by 2 Million People.”
Accessed February 4, 2019. https://www.digitalmusicnews.com/2018/03/26/spotify-piracy-
hacked/.

Silverman, Jacob. Terms of Service: Social Media and the Price of Constant Connection. Harper
Collins, 2015.

Snickars, Pelle. “More of the Same–On Spotify Radio.” Culture Unbound 9, no. 2 (2017).

Speaks, Jeff. “Theories of Meaning.” In The Stanford Encyclopedia of Philosophy, Fall 2019,
edited by Edward N. Zalta. Metaphysics Research Lab, Stanford University, 2019.

Spotify. “Spotify Privacy Policy.” Accessed September 9, 2019. https://www.spotify.com/us/
legal/privacy-policy/.

“Spotify Financial Disclosures.” Accessed July 24, 2019. https://investors.spotify.com/financials/
default.aspx.

Srnicek, Nick. Platform Capitalism. Polity Press, 2016.

Standing, Guy. “The precariat.” Contexts 13, no. 4 (2014): 10–12.

Stearns, Marshall. The Story of Jazz. Oxford University Press, 1956.

Steiner, C. Automate This: How Algorithms Took Over Our Markets, Our Jobs, and the World.
Penguin Publishing Group, 2012.

Sterne, Jonathan. MP3: The Meaning of a Format. Duke University Press, 2012.

245



Sterne, Jonathan, Mary Caton Lingold, Darren Mueller, and Whitney Trettien. “Demands of
Duration: The Futures of Digital Sound Scholarship.” In Digital Sound Studies, edited by
Mary Caton Lingold, Darren Mueller, and Whitney Trettien. Duke University Press, 2018.

Strong, William S. The Copyright Book: A Practical Guide. 6th ed. MIT Press, 2014.

Subotnik, Rose. “On Grounding Chopin,” vol. Music and Society: The Politics of Composition,
Performance and Reception. Cambridge University Press, 1987.

Takeshita, Chikako. “The IUD in Me: On Embodying Feminist Technoscience Studies.” Science
as Culture 19, no. 1 (2010): 37–60.

Tarasti, Eero. Sigs of Music: A Guide to Musical Semiotics. Mouton de Gruyter, 2002.

Truran, Peter. “Models: Useful but Not True.” In Practical Applications of the Philosophy of
Science: Thinking about Research. Springer International Publishing, 2013.

Tschmuck, Peter. The Economics of Music. Agenda Publishing, 2017.

Turner, Fred. From Counterculture to Cyberculture: Stewart Brand, the Whole Earth Network,
and the Rise of Digital Utopianism. University of Chicago Press, 2006.

Ugwu, Reggie. “Inside the Playlist Factory: The Unsung Heroes of the Music Streaming Boom.”
Published by Buzzfeed Media. Accessed January 8, 2019. https://www.buzzfeed.com/
reggieugwu/the-unsung-heroes-of-the-music-streaming-boom.

Van Couvering, Elizabeth. “Is Relevance Relevant? Market, Science, and War: Discourses of
Search Engine Quality.” Journal of Computer-Mediated Communication 12, no. 3 (April
2007): 866–887.

Vanderbilt, Tom. You May Also Like: Taste in an Age of Endless Choice. Knopf Doubleday
Publishing Group, 2016.

Watkins, Holly, and Melina Esse. “Down with Disembodiment; or, Musicology and the Material
Turn.” Women and Music: A Journal of Gender and Culture, no. 19 (2015).

Weizenbaum, Joseph. Computer Power and Human Reason: From Judgment to Calculation. W.
H. Freeman / Company, 1976.

Whitman, Brian. “How Music Recommendation Works – And Doesn’t Work.” 2012. Accessed
July 1, 2019. https://notes.variogr.am/2012/12/11/how-music-recommendation-works-and-
doesnt-work/.

. “Learning the Meaning of Music.” PhD diss., Massachussets Institute of Technology,
2005.

Wikstrom, Patrik. The Music Industry: Digtal Media and Society Series. Polity Press, 2013.

Winograd, Terry, and Fernando Flores. Understanding Computers and Cognition. Addison Wesley
Publishing Company, 1986.

246



Zarsky, Tal. “The Trouble with Algorithmic Decisions: An Analytic Road Map to Examine
Efficiency and Fairness in Automated and Opaque Decision Making.” Science, Technology,
and Human Values 41, no. 1 (2016): 118–132.

Zepeda, Lisa M. “A & M Records, Inc. v. Napster, Inc.” Berkeley Technology Law Journal 71
(2002).

Ziff, Paul. “The Feelings of Robots.” Analysis 19, no. 3 (1959): 64–68.

Zuboff, Shoshana. The Age of Surveillance Capitalism: The Fight for a Human Future at the New
Frontier of Power. PublicAffairs, 2019.

Zuidervaart, Lambert. “Theodor W. Adorno.” In The Stanford Encyclopedia of Philosophy, Winter
2015, edited by Edward N. Zalta. Metaphysics Research Lab, Stanford University, 2015.

247




