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Abstract

Mergers and Mass Assembly of Dark Matter Halos
in a Λ-Cold Dark Matter Universe

by

Onsi Joe Fakhouri

Doctor of Philosophy in Astrophysics

University of California, Berkeley

Professor Chung-Pei Ma, Chair

Using the combined results of the Millennium and Millennium II numerical simulations we
compute a number of robust statistics for the growth of dark matter haloes in the ΛCDM
concordance model. With an unprecedented 1.35 billion subhaloes we compute, and provide
a fit to, the halo merger rate over five orders of magnitude in descendant halo mass (1010 ≤
M0 ≤ 1015M�) and progenitor mass ratio (10−5 ≤ ξ ≤ 1) over a redshift range spanning z = 0
to 15. We also compute and categorize halo mass accretion histories and quantify the relative
contributions made by the mergers of resolved progenitors and the accretion of unresolved
diffuse material to the halo growth rate. In addition, we perform a detailed quantitative study
of the environmental dependence of halo growth, finding a higher merger rate among halos
in denser regions and, curiously, a negative correlation between environment density and
the diffuse component of halo growth. Throughout, we pay special attention to the problem
of extracting self-consistent merger trees from the Millennium simulations: numerical issues
abound and the problem of halo fragmentation in particular is shown to be important at
the 20% level, but tractable via a variety of post-processing algorithms which we describe.
Finally, we apply the insight obtained from our analysis to the problem of generating self-
consistent Monte Carlo merger trees in the extended Press-Schechter framework.
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In the beginning was the Word, and the Word was with God, and the Word
was God. He was with God in the beginning. Through Him all things were
made; without Him nothing was made that Has been made. — John 1:1-3

For the Word that continues to speak today - in the merging of haloes, the
birthing of life, the mystery of faith, the longing of hope, the joys of love,

even the cries of the poor.
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5.3.2 Distributions of Ṁmer and Ṁdif . . . . . . . . . . . . . . . . . . . . . 132
5.3.3 Redshift Evolution of the Mean Growth Rates . . . . . . . . . . . . . 133

5.4 The Environmental Dependence of Halo Growth Rates and Histories . . . . . 135
5.4.1 Halo Mass Growth Rate due to Mergers vs Diffuse Accretion . . . . . 135
5.4.2 Fraction of Final Halo Mass Acquired from Mergers vs Diffuse Accretion138
5.4.3 Halo Formation Redshifts . . . . . . . . . . . . . . . . . . . . . . . . 138
5.4.4 Mass Reservoir outside Haloes . . . . . . . . . . . . . . . . . . . . . . 142
5.4.5 Time Evolution of a Halo’s Environment . . . . . . . . . . . . . . . . 144

5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
5.5.1 Interpreting “Diffuse” Accretion . . . . . . . . . . . . . . . . . . . . 144
5.5.2 Implications for the Extended Press-Schechter and Excursion Set Models147

5.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

V Constructing Self-Consistent Theoretical Dark Matter Halo
Merger Trees in the EPS Framework 150

6 How to Grow a Healthy Merger Tree 151
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
6.2 An Overview of EPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

6.2.1 EPS Based on the Spherical Collapse Model . . . . . . . . . . . . . . 154
6.2.2 EPS Based on the Ellipsoidal Collapse Model . . . . . . . . . . . . . 155



v

6.3 Ingredients for Growing Healthy Merger Trees . . . . . . . . . . . . . . . . . 157
6.3.1 A Criterion for Consistently Reproducing the EPS Progenitor Mass

Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
6.3.2 The Asymmetry of EPS and Binary Mergers . . . . . . . . . . . . . . 159
6.3.3 Mass Resolution, Diffuse Accretion, and Mass Conservation in Monte

Carlo Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
6.4 Comparison of Four Previous Monte Carlo Algorithms . . . . . . . . . . . . 162

6.4.1 Lacey & Cole (1993) . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
6.4.2 Kauffmann & White (1993) . . . . . . . . . . . . . . . . . . . . . . . 166
6.4.3 Somerville & Kolatt (1999) . . . . . . . . . . . . . . . . . . . . . . . . 167
6.4.4 Cole et al. (2000) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

6.5 Three Consistent Monte Carlo Algorithms . . . . . . . . . . . . . . . . . . . 169
6.5.1 The Common Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
6.5.2 Method A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
6.5.3 Method B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
6.5.4 Method C (Multiple Mergers) . . . . . . . . . . . . . . . . . . . . . . 180

6.6 Comparison of Higher-Moment Statistics in Algorithms A, B, C, and KW93 182
6.7 Conclusions and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 184



vi

Acknowledgments

Many thanks to Chung-Pei for her passion and optimism - an excellent foil to my neurotic
obsession with the minutia. I could not have asked for, or imagined, a better-matched advisor
and have been blessed to work with her – you’ll be missed! Thanks also to Jun Zhang for
fun and lively conversations in the lounge, in his office, and on road trips to conferences.

Graduate school would have been impossible without the support of my friends at Veritas
and the First Presbyterian Church of Berkeley. In particular the Physics Prayer Group and
“Men’s Group B” have been an invaluable spiritual resource, as has soon-to-be-Dr. Dan
Garcia’s listening ear and twitchy trigger finger. And no acknowledgements section would
be complete without a shout-out to the indefatigable Carrie Bare who’s humor and friendship
brought much joy in the “dark” years.

I am acutely aware that graduate school is a privilege that is, all too often, reserved for
those members of our society who come from a relatively privileged and stable background.
I am no different and am thankful for, and indebted to, the love and support of my parents
and my family - again, I am blessed beyond words.

I leave graduate school successful and (mostly) emotionally unscathed. I have two people
to thank for that: my beautiful, loving, wife Hannah who has graciously and joyfully come
alongside me again and again - your words are life giving and I love you! And Jesus Christ,
Lord and savior, in whom “all things were created: things in heaven and on earth... He is
before all things” (even dark matter haloes!) “and in Him all things hold together.” Simply
put: His resurrection makes all this madness meaningful.

And finally, the politics (for which I am thankful): the work in this thesis was supported
in part by NSF grant AST 0407351 and every drop of data came directly from the brilliant
work that went into the Millennium and Millennium II simulations. There would be no halos
to analyze, no merger trees to clean up, and no bizzare halo trajectories to follow if it weren’t
for this impressive computational achievement, and so I quote: The Millennium Simulation
databases used in this thesis and the web application providing online access to them were
constructed as part of the activities of the German Astrophysical Virtual Observatory.



1

Part I

Introduction
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Dark matter haloes, the hosts of luminous galaxies like our Milky Way, are understood to
form hierarchically in modern cosmological theory. This means that large, massive, haloes
do not simply condense out of the primordial dark matter distribution; rather, haloes grow
in mass and size primarily by merging with other haloes. As these mergers take place the
centrally concentrated baryonic components - the galaxies - sink via dynamical friction and
subsequently merge. As a result, the stellar components of galaxies also grow via mergers:
both via the combination of stellar populations in galaxy-galaxy mergers and the uptick in
star formation rate observed when gaseous systems merge.

While the mergers of galaxies and the mergers of dark matter haloes are not identical
processes, the two are closely related. In particular, the merger history of a dark matter halo
affects many important theoretical and observational properties of galaxies including: star
formation rates, color and morphology transformations, formation redshifts, galaxy occupa-
tion numbers, dynamical states of stellar disks, and galaxy mass and luminosity functions.
To understand the observed distributions of these properties several theoretical models have
been constructed that require, as a primary input ingredient, the growth rates and merger
rates of dark matter haloes.

In this thesis we quantify these rates in detail, providing fitting forms for both the
merger rate and the mass accretion history (M(z)) of dark matter haloes that are valid over
several orders of magnitude in mass and mass ratio, and out to redshifts as high as z ∼ 15.
We accomplish this by analyzing the Millennium [Springel et al., 2005] and Millennium-II
[Boylan-Kolchin et al., 2009b] simulations. These are among the largest n-body cosmological
simulations ever run: the Millennium simulation uses 21603 particles with a particle mass of
1.2 × 109M� to follow the evolution of 2 × 107 dark matter haloes from z = 127 to z = 0
in a cosmological box of size 685 Mpc. The Millennium-II simulation uses the same number
of particles but has 125 times better mass resolution. When combined the two simulations
provide us with ∼ 750, 000 dark matter haloes at z = 0 with > 1000 particles and over 1.35
billion subhalo progenitors with which to produce merger trees rooted at these haloes out to
z ∼ 15.

By contrast, earlier halo growth studies have either depended on Monte Carlo merger
tree realizations based on the analytical extended Press-Schecter (EPS; Lacey and Cole
1994, Bond et al. 1991) model (e.g. Kauffmann et al. 1993, Somerville and Primack 1999,
Springel et al. 2001a) or on relatively low-resolution N -body simulations. For example:
Governato et al. [1999] studied z < 1 major mergers in an N -body simulation with 1443

particles, Gottlöber et al. [2001] used a sample of ∼ 4000 haloes to study the environmental
dependence of the major merger rate at z < 2, Berrier et al. [2006] studied major mergers
in a 171Mpc box with 5123 particles, Murali et al. [2002] and Maller et al. [2006] studied
galaxy merger rates using ∼ 500 galaxies in SPH simulations. Similarly, early studies of
halo mass accretion histories have only been performed on low resolution simulations: the
work of Wechsler et al. [2002] analyzed only ∼ 900 haloes, Tasitsiomi et al. [2004] studies 14
haloes, Cohn and White [2005] studies ∼ 1500 cluster-sized haloes.

The rich statistics afforded by the Millennium simulations allow us to push beyond first-
order measurements of halo growth and merger rates. We also quantify the second-order
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effects on these growth rates due to halo environment. Here, again, there is an abundance
of early low-resolution work [Gottlöber et al., 2001, Sheth and Tormen, 2004, Gao et al.,
2005, Harker et al., 2006, Wechsler et al., 2006, Jing et al., 2007, Wang et al., 2007, Gao
and White, 2007, Maulbetsch et al., 2007] though much of this work used halo clustering, an
unintuitive statistical quantity, to compute environmental effects. The superior statistics of
the Millennium simulations allow us to employ robust, intuitive, local overdensity measures
for environment instead.

Unfortunately, the rich merger trees obtained from the Millennium simulations are not
completely free of numerical inconsistencies and ambiguities. Two issues, in particular, are of
primary importance in computing robust and reliable merger and growth rates and we exert
much effort in this thesis to resolve them. The first is the issue of mass definition: we find,
in agreement with White [2001] that spherical over density mass measures are inferior, in
the merger context, to those derived by the friends-of-friends Davis et al. [1985]. Moreover,
we agree with Genel et al. [2009] that the use of the bound mass associated with subhaloes,
instead of the total FOF mass is better suited for measuring robust halo growth and merger
rates.

The second numerical hurdle we face is the issue of halo fragmentation. These are events
in which the particles in a given progenitor halo end up in more than one descendant halo.
We find that these events are common enough and severe enough to warrant special attention:
in order to compute self-consistent merger rates these fragmentation events must be filtered
out using a post-processing algorithm. We define a variety of these algorithms and compare
and contrast their effects on our results throughout the thesis.

This thesis consists of six chapters, each containing a paper published in the Monthly
Notices of the Royal Astronomical Society between 2008 and 2010. The organization is as
follows:

In part II we compute and present fits to the merger rates of dark matter haloes. Chapter
1 presents results for the Millennium simulation along with a suite of tests to ensure the
robustness of the resulting merger rates. We introduce and quantify the problem of halo
fragmentation and present the snipping and stitching post-processing algorithms to deal
with it.

Chapter 2 extends the work in chapter 1 to the Millennium-II simulation and provides
our most statistically well-founded fit for the dark matter halo merger rate. The results in
this chapter are valid over five orders of magnitude in descendant halo mass (1010 . M0 .
1015M�), five orders of magnitude in mass ratio (10−5 . ξ ≤ 1) and a wide range of redshift
(0 ≤ z . 15).

Part III (chapter 3) presents a detailed study of the mass accretion histories (MAH) of
dark matter haloes. In this chapter we categorize the qualitative behavior of halo growth
trajectories (M(z)) and propose a two-parameter fitting scheme that faithfully reproduces
the majority of MAHs and outperform earlier fitting models. We also provide fits to the joint
probability distribution of these two fitting parameters thereby enabling others to compute
Monte Carlo distributions of MAHs that statistically match the Millennium simulation.

In part IV we focus on the environmental dependence of halo growth. Chapter 4 intro-
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duces and discusses δ, the overdensity parameter we use to quantify the local environment of
each halo in the Millennium simulation. We also present the dependence of the halo merger
rate on halo environment (we find a positive correlation: halos in denser regions experi-
ence higher merger rates) and discuss the sensitivity of these measurements to our choice of
post-processing algorithm.

Chapter 5 quantifies the environmental dependence of the halo growth rate. This rate is
sensitive to both the merger rate quantified in chapter 4 and the rate of diffuse accretion. We
find that the diffuse component is, surprisingly, negatively correlated with environment and
note that this explains the curious correlation between formation redshift and halo clustering
observed in the literature. We also discuss potential candidates that might make up this
diffuse growth component.

Finally, part V (chapter 6) connects the insight obtained from the Millennium simulation
merger rates to the problem of generating self-consistent Monte Carlo merger trees in the
EPS framework. A number of algorithms already exist to generate these merger trees. We
analyze and compare these algorithms in detail and outline their deficiencies. We then
discuss the necessary properties that an algorithm must possess to generate a self-consistent
suite of merger trees and show that EPS does not predict a unique algorithm by proposing
three new, distinct, self-consistent algorithms. We compare the higher-moment statistics
generated by these three algorithms to the results obtained from the Millennium simulation
and show that the analytic EPS model cannot match all the merger statistics in N-body
simulations simultaneously; modification to the model is therefore required.

The cosmology used throughout this thesis is identical to that used in the Millennium
simulation: a ΛCDM model with Ωm = 0.25, Ωb = 0.045, ΩΛ = 0.75, h = 0.73, an initial
power-law index n = 1, and σ8 = 0.9 [Springel et al., 2005]. Masses and lengths are quoted
in units of M� and Mpc without the Hubble parameter h.
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Part II

The Merger Rates of Dark Matter
Haloes
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Chapter 1

The Nearly Universal Merger Rate of
Dark Matter Haloes in ΛCDM
Cosmology
Fakhouri, Onsi; Ma, Chung-Pei — May 2008
Monthly Notices of the Royal Astronomical Society Volume 386, Issue 2, pp. 577-592

We construct merger trees from the largest database of dark matter haloes to
date provided by the Millennium simulation to quantify the merger rates of
haloes over a broad range of descendant halo mass (1012 . M0 . 1015M�),
progenitor mass ratio (10−3 . ξ ≤ 1), and redshift (0 ≤ z . 6). We find
the mean merger rate per halo, B/n, to have very simple dependence on M0,
ξ, and z, and propose a universal fitting form for B/n that is accurate to
10-20%. Overall, B/n depends very weakly on the halo mass (∝ M0.08

0 ) and
scales as a power law in the progenitor mass ratio (∝ ξ−2) for minor mergers
(ξ . 0.1) with a mild upturn for major mergers. As a function of time, we
find the merger rate per Gyr to evolve roughly as (1 + z)nm with nm = 2− 2.3,
while the rate per unit redshift is nearly independent of z. Several tests are
performed to assess how our merger rates are affected by, e.g. the time interval
between Millennium outputs, binary vs multiple progenitor mergers, and mass
conservation and diffuse accretion during mergers. In particular, we find halo
fragmentations to be a general issue in merger tree construction from N-body
simulations and compare two methods for handling these events. We compare
our results with predictions of two analytical models for halo mergers based
on the Extended Press-Schechter (EPS) model and the coagulation theory. We
find that the EPS model overpredicts the major merger rates and underpredicts
the minor merger rates by up to a factor of a few.

1.1 Introduction

In hierarchical cosmological models such as ΛCDM, galaxies’ host dark matter haloes
grow in mass and size primarily through mergers with other haloes. As the haloes merge,
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their more centrally concentrated baryonic components sink through dynamical friction and
merge subsequently. The growth of stellar masses depends on both the amount of mass
brought in by mergers and the star formation rates. Having an accurate description of the
mergers of dark matter haloes is therefore a key first step in quantifying the mergers of
galaxies and in understanding galaxy formation and growth.

Earlier theoretical studies of galaxy formation typically relied on merger trees generated
from Monte Carlo realisations of the merger rates given by the analytical extended Press-
Schechter (EPS; Lacey and Cole 1993, Bond et al. 1991) model (e.g. Kauffmann et al. 1993,
Somerville and Primack 1999, Springel et al. 2001a). Some recent studies have chosen to
bypass the uncertainties and inconsistencies in the EPS model by using halo merger trees
from N -body simulations directly (Kauffmann et al. 1999, Benson et al. 2000, Helly et al.
2003, Kang et al. 2005, Springel et al. 2005). As we find in this paper, obtaining robust
halo merger rates and merger trees requires rich halo statistics from very large cosmological
simulations as well as careful treatments of systematic effects due to different algorithms
used for, e.g., assigning halo masses, constructing merger trees, removing halo fragmentation
events, and choosing time spacings between simulation outputs.

The aim of this paper is to determine the merger rates of dark matter haloes as a function
of halo mass, merger mass ratio (i.e. minor vs major), and redshift, using numerical simu-
lations of the ΛCDM cosmology. This basic quantity has not been thoroughly investigated
until now mainly because large catalogues of haloes from finely spaced simulation outputs
are required to provide sufficient merger event statistics for a reliable construction of merger
trees over a wide dynamic range in time and mass. We achieve this goal by using the public
database of the Millennium simulation [Springel et al., 2005], which follows the evolution of
roughly 2 × 107 dark matter haloes from redshift z = 127 to z = 0. This dataset allows
us to determine the merger rates of dark matter haloes ranging from galaxy-mass scales of
∼ 1012M� over redshifts z = 0 to ∼ 6, to cluster-mass scales up to ∼ 1015M� for z = 0 to
a few. We are also able to quantify the merger rates as a function of the progenitor mass
ratio ξ, from major mergers (ξ & 0.1) down to minor mergers of ξ ∼ 0.03 for galaxy haloes
and down to ξ ∼ 3× 10−4 for cluster haloes.

The inputs needed for measuring merger rates in simulations include a catalogue of dark
matter haloes and their masses at each redshift, and detailed information about their ancestry
across redshifts, that is, the merger tree. Unfortunately there is not a unique way to identify
haloes, assign halo masses, and construct merger trees. In this paper we primarily consider
a halo mass definition based on the standard friends-of-friends (FOF) algorithm and briefly
compare it with an alternative mass definition based on spherical overdensity.

For the merger trees, we investigate two possible algorithms for treating events in which
the particles in a given progenitor halo end up in more than one descendant halo (’frag-
mentations’). We find that these events are common enough that a careful treatment is
needed. In the conventional algorithm used in the literature, the progenitor halo is linked
one-to-one to the descendant halo that has inherited the largest number of the progenitor’s
particles. The ancestry links to the other descendant haloes are severed (for this reason we
call this scheme ’snipping’). We consider an alternative algorithm (’stitching’) in this paper,
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in which fragmentations are assumed to be artefacts of the FOF halo identification scheme.
We therefore choose to recombine the halo fragments and stitch them back into the original
FOF halo.

Earlier theoretical papers on merger rates either relied on a small sample of main haloes
to estimate the overall redshift evolution over a limited range of halo masses, or were pri-
marily concerned with the mergers of galaxies or subhaloes. For halo mergers, for example,
Governato et al. [1999] studied z < 1 major mergers of galaxy-sized haloes in an open CDM
and a tilted Ωm = 1 CDM model using N -body simulations in a 100 Mpc box and 1443

particles. Gottlöber et al. [2001] used a sample of ∼ 4000 haloes to study the environmental
dependence of the redshift evolution of the major merger rate at z < 2 in ΛCDM. Berrier
et al. [2006] studied major mergers of subhaloes in N -body simulations in a 171 Mpc box
with 5123 particles and the connection to the observed close pair counts of galaxies. For
galaxy merger rates, Murali et al. [2002] and Maller et al. [2006] are based on up to ∼ 500
galaxies formed in SPH simulations in ∼ 50 Mpc boxes with up to 1443 gas particles, while
Guo and White [2008] used the semi-analytical galaxy catalogue of De Lucia et al. [2006]
based on the Millennium simulation.

This paper is organised as follows. Section 1.2 describes the dark matter haloes in the
Millennium simulation (§1.2.1) and how we construct the merger trees (§1.2.2) . We then
discuss the issue of halo fragmentation and the two methods (’snipping’ and ’stitching’) used
to treat these events in §1.2.3. The notation used in this paper is summarised in §1.2.4.

Section 1.3 describes how mergers are counted (§1.3.1) and presents four (related) statis-
tical measures of the merger rate (§1.3.2). The relation between these merger rate statistics
and the analytical merger rate based on the Extended Press-Schechter (EPS) model is derived
in Section 1.3.3.

Our main results on the merger rates computed from the Millennium simulation are
presented in Section 1.4. We first discuss the z ≈ 0 results and quantify the merger rates
as a function of the descendant halo mass and the progenitor mass ratios using merger trees
constructed from the stitching method (§1.4.1). The evolution of the merger rates with
redshifts up to z ∼ 6 is discussed in Section 1.4.2. We find a simple universal form for the
merger rates and present an analytic fitting form that provides a good approximation (at
the 10-20% level) over a wide range of parameters (§1.4.3).

Section 1.5 compares the stitching and snipping merger rates (§1.5.1) and presents the
key results from a number of tests that we have carried out to assess the robustness of our
results. Among the tests are: time convergence and the dependence of the merger rates on
the redshift spacing ∆z between the Millennium outputs used to construct the merger tree
(§1.5.2); how the counting of binary vs multiple progenitor mergers affects the merger rates
(§1.5.3); mass non-conservation arising from ’diffuse’ accretion in the form of unresolved
haloes during mergers (§1.5.4); and how the definition of halo masses and the treatment of
fragmentation events affect the resulting halo mass function (§1.5.5).

In Section 1.6, we discuss two theoretical frameworks that can be used to model halo
mergers: EPS and coagulation. A direct comparison of our merger rates and the EPS
predictions for the Millennium ΛCDM model shows significant differences over a large range
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of parameter space (§1.6.1). Section 1.6.2 discusses Smoluchowski’s coagulation equation
and the connection between our merger rates and the coagulation merger kernel.

The appendix compares a third merger tree (besides snipping and stitching) constructed
from the Millennium catalogue by the Durham group [Bower et al., 2006, Harker et al., 2006,
Helly et al., 2003]. Two additional criteria are imposed on the subhaloes in this algorithm
to reduce spurious linkings of FOF haloes. We find these criteria to result in reductions in
both the major merger rates and the halo mass function.

The cosmology used throughout this paper is identical to that used in the Millennium
simulation: a ΛCDM model with Ωm = 0.25, Ωb = 0.045, ΩΛ = 0.75, h = 0.73, an initial
power-law index n = 1, and σ8 = 0.9 [Springel et al., 2005]. Masses and lengths are quoted
in units of M� and Mpc without the Hubble parameter h.

1.2 Haloes and Merger Trees in the Millennium Sim-

ulation

1.2.1 Dark Matter Haloes

The Millennium simulation provides the largest database to date for studying the merger
histories of dark matter haloes in the ΛCDM cosmology. The simulation uses 21603 particles
with a particle mass of 1.2 × 109M� in a 685 Mpc box and traces the evolution of roughly
2× 107 dark matter haloes from redshift z = 127 to z = 0 [Springel et al., 2005].

The haloes in the simulation are identified by grouping the simulation particles using
the standard friends-of-friends algorithm (FOF: Davis et al. 1985) with a linking length
of b = 0.2. Each FOF halo (henceforth referred to as FOF or halo) is then broken into
constituent subhaloes by the SUBFIND algorithm, which identifies dark matter substructure
as locally overdense regions within each FOF and removes any remaining gravitationally
unbound particles [Springel et al., 2001a]. The result is a list of disjoint subhaloes typically
dominated by one large background host subhalo and a number of smaller satellite subhaloes.

Each subhalo in the catalogue is assigned a mass given by the number of particles bound
to the subhalo; only subhaloes with more than 20 simulation particles are included in the
database. Each FOF halo is then given two definitions of mass: MFOF , which counts the
number of particles associated with the FOF group, and M200, which assumes the halo is
spherical and computes the virial mass within the radius at which the average interior density
of the halo is 200 times the mean density of the universe. MFOF includes background particles
that are unbound by the SUBFIND algorithm so it is generally larger than the sum of the
subhalo masses. In this paper we mainly use MFOF as it is found to be the more robust
mass definition in our merger study. We discuss M200 and a number of mass conservation
issues in Section 1.5.4.
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Figure 1.1: Example of a typical FOF merger tree extracted from the Millennium database.
Black circles denote FOF haloes; white circles within black circles denote subhaloes. The
radius of each circle is proportional to the log of the mass of the object; the black circles
are further scaled up by a factor of 1.5 for clarity. (The locations of the white circles within
their parent FOF haloes are drawn randomly.) Red circles denote fragmenting subhaloes.
The highlighted (yellow) fragmentation event is studied in Fig. 1.2. The numbers above the
haloes at z = 0.24 and to the right of the final descendant FOF at z = 0 correspond to the
FOF masses (in units of 1010M�).



11

0.06

0.04

0.02

z
Original Snip Stitch

Figure 1.2: Left: A closeup of the highlighted (yellow region) fragmentation event in Fig. 1.1.
The middle and right panels illustrate how the snipping and stitching methods handle frag-
mentation in order to assign a unique descendant halo. The blue circle (centre panel) shows
the snipped orphan subhalo, and the yellow circle (right panel) shows how that subhalo is
stitched. The black, white, and red circles are the same as in Fig. 1.1.

1.2.2 Merger Tree Construction

Merger trees of dark matter haloes in the Millennium database are constructed by con-
necting subhaloes (not the FOF haloes) across 64 snapshot outputs: a subhalo at a given
output is taken to be the descendant1 of a progenitor subhalo at a prior output (i.e. higher
redshift) if it contains the largest number of bound particles in the progenitor subhalo. This
procedure results in a merger tree in which each progenitor subhalo has a single descendant
subhalo, even though in general, the particles in the progenitor do not necessarily all end up
in the same descendant subhalo.

It is worth noting that merger trees in N -body simulations are typically constructed based
on the FOF haloes and not on the subhaloes. The standard way of assigning the progenitor
and descendant FOF haloes in those studies, however, is the same as the procedure applied
to the subhaloes in Millennium discussed above; that is, the descendant halo is the halo that
inherits the most number of bound particles of the progenitor. As will be elaborated on
below, we call this the ’snipping’ method.

The focus of this paper is on the merger history of the FOF haloes rather than the
subhaloes, so we must process the subhalo merger tree available from the public database to
construct a consistent merger tree for the FOF haloes. We consider an FOF halo A to be
a descendant of an earlier FOF halo B if B contains a subhalo whose descendant subhalo is
in A. Progenitor FOF haloes are said to have merged when all their descendant subhaloes
are identified with one descendant FOF. We illustrate this process in Fig. 1.1 with an actual
merger tree taken from the Millennium database. The upper left corner, for example, shows
three FOF haloes at z = 0.24 with masses 8.5 × 1012, 4 × 1011, and 3.8 × 1010M� merging
into a single FOF halo at the next Millennium output (z = 0.21). The largest FOF halo

1It is common practice in the literature to call the descendant halo the parent halo even though the parent
is formed later and, hence, is younger than the progenitor. We avoid this confusing notation throughout.
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Figure 1.3: Distribution of the ratio of fragmentation to merger events as a function of
redshift. The dotted vertical lines correspond to the redshifts of the Millennium outputs.
We choose 6 redshifts (labelled) for illustrative purposes and plot the ratio of the number
of fragmentations to the number of mergers (filled circles) at each redshift. A mass ratio
cutoff is applied: both the fragments and mergers must have mass ratios exceeding 10%. The
line emanating from each circle then traces the evolution of the number of fragmentation
events (the number of mergers being held fixed), which drops as subhalo fragments remerge
with their original FOF halo. We note that about half of the subhalo fragments remerge
within 2-3 simulation outputs. Finally, the six filled circles decrease with increasing redshift,
reaching ∼ 40% at z = 0 but dropping to ∼ 5% at high z – this is primarily due to the
increasing ∆z between Millennium outputs.

z = 0.24 has 7 subhaloes (white circles) in addition to the host (sub)halo, while each of the
two smaller FOF haloes has only one host (sub)halo. For clarity, the ancestral links between
subhaloes are suppressed in Fig. 1.1.

1.2.3 Halo Fragmentation

Even though each subhalo in the Millennium tree, by construction, is identified with a
single descendant subhalo (see last subsection), the resulting FOF tree can have fragmen-
tation events in which an FOF halo is split into two (or more) descendant FOF haloes.
The red circles in Fig. 1.1 at z = (0.12 : 0.09) and (0.06:0.04) illustrate two such events:
the subhaloes of the progenitor FOF halo end up in different descendant FOF haloes. It is
important to emphasise that this fragmentation issue is not unique to the use of subhaloes
in the Millennium simulation, but rather occurs in general in any merger tree construction
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where groups of particles at two different redshifts must be connected. This is because par-
ticles in a progenitor halo rarely end up in exactly one descendant halo; a decision must
therefore be made to select a unique descendant. There is not a unique way to do this,
and we explore below two methods that we name snipping and stitching to handle these
fragmentation events.

Fig. 1.2 illustrates these two methods for the fragmentation event shown in the highlighted
(yellow) region of Fig. 1.1. The snipping method is commonly used in the literature (e.g.
Sheth and Tormen 2002), presumably for its simplicity. Fragmentation events are removed
by ’snipping’ the link between the smaller descendant halo and its progenitor FOF halo, as
shown in the middle panel of Fig. 1.2. The fragmenting progenitor FOF halo then has only
one descendant FOF halo. We note that this method can result in a number of progenitor-less
orphan FOF haloes (e.g., the blue subhalo in Fig. 1.2).

In this paper we investigate an alternative method that we name ’stitching.’ This method
is motivated by our observation that about half of the fragmented haloes in the Millennium
simulation remerge within the following 2-3 outputs (see below). The two fragmentation
events in Fig. 1.1 both belong to this category: the fragmented haloes at z = 0.09 and 0.04
(red circles) are seen to have remerged by the following output time (z = 0.06 and 0.02).
This behaviour is not too surprising because merging haloes oscillate in and out of their
respective virial radii before dynamical friction brings them into virial equilibrium (typically
on timescales of a few Gyrs; see, e.g., Boylan-Kolchin et al. 2008). During this merging
phase, the FOF halo finder can repeatedly disassociate and associate the progenitor haloes,
leading to spurious fragmentation and remerger events and inflating the merger rate. This
behaviour needs to be taken into account before a robust merger rate can be obtained.

We therefore do not count remerging fragments as merger events in the “stitching”
method. Specifically, we group the fragmented haloes into two categories: those that re-
merge within 3 outputs after fragmentation occurs, and those that do not. The fragmented
haloes that remerge are stitched into a single FOF descendant (e.g. the yellow subhalo in the
right panel of Fig. 1.2); those that do not remerge are snipped and become orphan haloes.
Often the fragment subhaloes have become members of a new FOF group that is otherwise
unrelated to the original FOF. In such instances they are removed from that group and
stitched into the main FOF descendant2. A further test of the dependence of our results on
the choice of 3 outputs is described in Section 1.5.1.

As can be seen in Fig. 1.2, the snipping method will yield a higher merger rate than
stitching due to the remerger events. We quantify the relative importance of these events
in Fig. 1.3, where the ratio of fragmentation events to merger events is seen to peak at 40%
for major fragmentation events (defined to be fragmentations where the fragment subhalo
carries 10% or more of the halo mass) at low-z and falls off at high z where ∆z is large. For
the fragmentation events occurring at a given redshift zf in Fig. 1.3 (filled circles), the drop
of each curve with decreasing z tracks how many of them have remerged by that redshift. As

2There is, however, one exceptional case: if a subhalo fragment becomes the largest subhalo of an FOF,
all subhaloes in that FOF are stitched into the fragment’s original FOF.
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zP :zD
Galaxy-Scale Group-Scale Cluster-Scale

Np = 1 Np = 2 Np > 2 Np = 1 Np = 2 Np > 2 Np = 1 Np = 2 Np > 2

0.06:0 188,400 65,711 27,939 1,063 2,418 13,256 3 25 5,356
0.56:0.51 189,351 61,718 22,031 1,212 2,468 9,374 6 18 3,014
1.08:0.99 145,779 68,467 35,426 325 878 7,630 0 2 1,308
2.07:1.91 76,298 52,525 39,097 31 77 2,225 0 0 129
3.06:2.83 30,641 26,675 25,072 0 4 343 0 0 4

Table 1.1: The number of merger events in the Millennium simulation that we use to de-
termine the merger rates. Merger trees at five representative redshifts are shown: z ≈ 0,
0.5, 1, 2, and 3. At each z, we list the number of FOF haloes that have a single progenitor
halo (Np = 1, i.e., no mergers), two progenitors (Np = 2, i.e. binary mergers), and multiple
progenitors (Np > 2), for three separate descendant mass bins: 2× 1012 ≤M0 < 3× 1013M�
(galaxy), 3 × 1013 ≤ M0 < 1014M� (group), and M0 ≥ 1014M� (cluster). Only progenitor
haloes with mass > 4.8× 1010M� (40 simulation particles) are counted.

noted above, we find that about half of the fragmented haloes remerge within 2-3 outputs
(corresponding to a fixed ∆z/(1 + z) as the outputs are log-spaced). Given a fragmentation-
to-merger ratio of 40%, and a remerger rate of 50%, the remerging fragments can impact the
merger rate measurements inflating them at the ∼20% level.

Moreover, we find that this effect is more severe for fragmentations where the mass of the
fragment is small relative to the mass of the original parent halo (we call these minor frag-
mentations). If we consider fragmentations in which the subhalo fragments carry between
1% and 10% of the original FOF mass, the fragmentation-to-merger ratio at z = 0 (z = 1.6)
jumps to 57% (13.3%) vs 39% (6%) for major fragmentations. For very minor fragmentations
(subhalo fragments that carry less than 1% of the total mass) the fragmentation-to-merger
ratios are 85% and 28% at z = 0 and z = 1.6 respectively. Thus we anticipate that frag-
mentation events will more severely pollute the minor-merger regime of the merger rate
statistics.

1.2.4 Notation

We apply both the stitching and snipping methods and produce FOF merger trees from
the 46 Millennium outputs that span z = 0 and z = 6.2. From these trees we connect different
outputs and generate a catalogue of descendant FOF haloes at the low-z (zD) output and
their associated progenitor FOF haloes at the high-z (zP ) output. We refer to this as the
zP :zD catalogue and produce a number of catalogues for a variety of output spacings. The
redshift spacing is denoted by ∆z = zP − zD. The Millennium outputs are logarithmically
distributed, providing fine ∆z down to 0.02 (corresponding to ∼260 Myrs) near z = 0 and
larger ∆z at high redshifts, e.g., ∆z ≈ 0.1 at z ≈ 1 and ≈ 0.5 at z ≈ 6. Specifically, the
lowest 10 redshift outputs are at 0.0, 0.02, 0.04, 0.06, 0.09, 0.12, 0.14, 0.17, 0.21, and 0.24.

For a given FOF descendant halo in a zP :zD catalogue, we use M0 to denote its MFOF
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Figure 1.4: Distribution of the number of progenitors, Np, for the z = 0.06:0 merger tree.
There are ∼ 300, 000 descendant FOF haloes at redshift 0 (black) with M0 ≥ 2×1012M�. Of
these ∼ 280, 000 have 2× 1012 ≤M0 < 3× 1013M� (galaxy-scale; dark blue), ∼ 16, 000 have
3× 1013 ≤M0 < 1014M� (group scale; red), and ∼ 5, 400 have M0 ≥ 1014M� (cluster-scale;
green).

mass, Np to denote the number of progenitor haloes, and Mi with i ∈ (1, 2, . . . , Np) to denote
the rank-ordered MFOF mass of the progenitors, i.e. M1 ≥ M2 ≥ . . .MNp . We impose a
minimum mass cutoff of M0 ≥ 2 × 1012M� on the descendant FOF halo and a cutoff of
Mi ≥ 4.8 × 1010M� on the progenitors, which corresponds to 40 particles and is twice the
minimum halo mass in the Millennium database.

For certain results reported below, we make use of three large mass bins: 2×1012 ≤M0 <
3 × 1013M�, 3 × 1013 ≤ M0 < 1014M�, and 1014M� ≤ M0, referred to as the galaxy-scale,
group-scale, and cluster-scale bins, respectively.

1.3 Merger Statistics and Connection to EPS

1.3.1 Counting Many-to-One Mergers

Despite the fine time spacing between Millennium’s outputs, a non-negligible number of
the descendant FOF haloes have more than two progenitors listed in the merger tree (i.e.
Np > 2). For completeness, we list in Table 1.1 the actual number of merger events in the
Millennium simulation available to us after we construct the FOF merger trees. Statistics at
five representative redshifts are shown: z ≈ 0, 0.5, 1, 2, and 3. At each z, we list separately
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the number of FOF haloes that have Np = 1, 2 and > 2 progenitor haloes, for three separate
descendant mass bins. As expected for hierarchical cosmological models, the halo numbers
drop with increasing z and increasing M0.

Fig. 1.4 shows the distribution of the number of progenitors, f(Np), for the z = 0.06:0
merger tree for the same three mass bins. Only the stitching method is shown; the snipping
method has a similar distribution. We find that (62, 22, 16)% of the haloes have Np =
(1, 2, > 2) identifiable progenitors at z = 0.06; more than half of the FOF haloes at z = 0
therefore have only one progenitor at z = 0.06 and did not experience a merger during this
redshift interval. When separated into different descendant mass bins, the peak of f(Np)
moves to higher Np for more massive haloes. For a fixed (zP , zD), clusters therefore tend
to have more progenitors, and unlike galaxy-mass haloes, very few of the cluster haloes are
single-progenitor events (i.e. Np = 1)

For completeness, we include all the progenitors (above our minimum mass cutoff of 40
particles) in our merger rate statistics. Since we have no information about the order in
which the multiple progenitors merge with one another, we assume that each progenitor
halo Mi with i ≥ 2 merges with M1, the most massive progenitor, at some stage between
the two outputs. Thus a descendant halo with Np progenitors is assumed to be the result
of a sequence of (Np − 1) binary merger events, where each merger event is assigned a mass
ratio

ξ ≡ Mi

M1

, i = 2, ..., Np (1.1)

which by construction satisfies ξ ≤ 1. This assumption ignores the possibility that two
smaller progenitor FOF haloes merge together before merging with the most massive pro-
genitor. Section 1.5.3 describes how we have tested the validity of this assumption and found
negligible effects as long as a sufficiently small ∆z is used.

1.3.2 Definitions of Merger Rates

In this subsection we define four related quantities that will be used to measure the
merger rates of dark matter haloes. Merger rates can be measured in either per Gyr or per
unit redshift; the two sets of quantities are related by a factor of dt/dz. We will present most
of our results in units of per redshift since, as we will show below, the merger rates have a
particularly simple form in those units.

As a starting point, we consider the symmetric merger rate

BMM ′(M,M ′, zP :zD)dMdM ′ , (1.2)

which measures the mean merger rate (i.e. the number of mergers per unit redshift) per unit
volume between progenitor FOF haloes in the mass range (M ,M+dM) and (M ′, M ′+dM ′).
We compute this quantity using merger trees constructed between the progenitor output
redshift zP and the descendant output redshift zD. Note that BMM ′(M,M ′) has units of[
number of mergers× (∆z)−1 Mpc−3M−2

�
]

and generally depends on both zP and zD.
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Instead of the individual progenitor masses M and M ′, it is often useful to express merger
rates as a function of the descendant FOF mass and the mass ratio of the progenitors. We
do this by transforming BMM ′(M,M ′)dMdM ′ to

B(M0, ξ, zP :zD)dM0dξ , (1.3)

which measures the mean merger rate (per volume) for descendant FOF haloes in the mass
range (M0, M0 + dM0) at redshift zD that have progenitor FOF haloes at zP with mass
ratio in the range of (ξ, ξ + dξ), where ξ = Mi/M1, i ≥ 2 as discussed in Section 1.3.1. The
quantity B(M0, ξ) therefore has units of[

number of mergers× ∆z−1 Mpc−3M−1
� dξ−1

]
. (1.4)

In the mass-conserving binary limit of M0 = M + M ′ and ξ = M ′/M (where M ′ < M),
BMM ′ and B in equations (1.2) and (1.3) are related by a simple transformation. In practice,
the relation between the two quantities is complicated by multiple mergers and imperfect
merger mass conservation.

Since the halo abundance in a ΛCDM universe decreases with increasing halo mass, many
more haloes contribute to the merger rates in equations (1.2) and (1.3) in the lower mass
bins of M , M ′, or M0. It is useful to normalise out this effect and calculate the mean merger
rates per halo. To do this, we divide out the number density of the descendant FOF haloes
from the merger rate B and define:

B

n
≡ B(M0, ξ, zP :zD)

n(M0, zD)
, (1.5)

which measures the mean number of mergers per halo per unit redshift for a descendant halo
of mass M0 with progenitor mass ratio ξ; the units are[

number of mergers/number of descendants× (∆z)−1 (dξ)−1
]
, (1.6)

which is dimensionless. The mass function n(M0, z)dM0 gives the number density of the
descendant FOF haloes with mass in the range of (M0,M0 + dM0).

The differential merger rates defined above can be integrated over ξ and M0 to give the
mean merger rate over a certain range of merger mass ratios for haloes in a given mass range.
Explicitly, the mean rate of mergers for descendant haloes in mass range M0 ∈ [m,M ] with
progenitor mass ratios in the range ξ ∈ (x,X),

dN̄merge

dz
([m,M ], [x,X], zP :zD) , (1.7)

is simply an integral over B(M0, ξ, zP :zD):

dN̄merge

dz
≡ 1

N

∫ M

m

∫ X

x

B(M0, ξ, zP :zD) dξ dM0 , (1.8)
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where

N ≡
∫ M

m

n(M0, zD) dM0 (1.9)

is the total number of descendant haloes in the relevant mass range. For sufficiently small
(M −m), dN̄merge/dz is simply related to the merger rate per halo, B/n, by

dN̄merge

dz
∼
∫ X

x

B

n
dξ . (1.10)

1.3.3 Connection to EPS

The merger rates determined from the Millennium simulation can be compared to the
analytic predictions of the Extended Press Schechter (EPS) formalism (Bond et al. 1991,
Lacey and Cole 1993). To relate our per halo merger rate B/n to EPS, we begin with
equation (2.18) of Lacey and Cole [1993] for

d2p

d ln ∆MLC dt
(MLC

1 →MLC
2 |t) , (1.11)

the probability that a halo of mass MLC
1 will merge with another halo of mass ∆MLC =

MLC
2 −MLC

1 in time interval dt. Their notation (which we denote with superscripts ’LC’) is
related to ours by MLC

2 →M0, with MLC
1 and ∆MLC mapped to our progenitor masses M1

and M2. As we will see below, the order is ambiguous due to an inconsistency in the EPS
model that stems from the assumption of binary mergers. To relate d2p/d ln ∆MLC/dt to
B/n, we first multiply it by n(MLC

1 ), then convert the variables to (M0, ξ) (see below), and
finally divide by n(M0).

Before presenting the actual equation relating the two rates, we note two caveats. First, in
order to compute an analytical merger rate from EPS we must assume that mergers are binary
and perfectly mass conserving, i.e., M0 = M1 + M2 in our notation. Neither assumption is
strictly true in numerical simulations, e.g., Table 1.1 and Fig. 1.4 show the distributions
of the progenitor multiplicity Np. We defer to Section 1.5 for a detailed discussion of the
tests that we have performed to quantify the binary nature and the degree of merger mass
conservation in the Millennium simulation.

Second, the EPS rate in equation (1.11) is not symmetric in the progenitor masses MLC
1

and ∆MLC , in contrast to our merger rate BMM ′ in equation (1.2), which is constructed to
be symmetric in the progenitor masses M and M ′. We will therefore get different EPS rates
depending on if MLC

1 is chosen to be the bigger or smaller progenitor. We will examine both
options below: (A) ξ = ∆MLC/MLC

1 ≤ 1 and (B) ξ = MLC
1 /∆MLC ≤ 1.

With these caveats in mind, we find that the per halo merger rate B/n corresponds to
the following expression in the EPS model:

B(M0, ξ, z)

n(M0, z)
↔
√

2

π

dδc
dz

1

σ(M ′)

∣∣∣∣ d lnσ

d lnM

∣∣∣∣
M ′

[
1− σ2(M0)

σ2(M ′)

]−3/2

(1.12)
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Figure 1.5: Symmetric merger rate BMM ′ of equation (1.2) as a function of progenitor masses
M and M ′ computed from the z = 0.06:0 Millennium merger tree. The merger rates decrease
from blue to red; the overlaid black lines are contours of constant merger rates.

where M ′ can be the smaller progenitor, i.e., M ′ = M2 = M0ξ/(1 + ξ) (option A), or
the larger progenitor, i.e., M ′ = M1 = M0/(1 + ξ) (option B). The variable σ2(M) is the
variance of the linear density field smoothed with a window function containing mass M ,
and δc(z) ∝ 1/D(z) is the standard density threshold, with D(z) being the linear growth
factor. Note that the exponential dependence at the high mass end of the halo mass function
has cancelled out on the right hand side of equation (1.12). Also note that both sides of
equation (1.12) are for merger rates per redshift and not per time.

We present our results for the merger rates determined from the Millennium simulation
in the next section and compare them to the two EPS predictions in Section 1.6.1.

1.4 Results

Throughout this section, we report our results from the Millennium merger tree where
the fragmented haloes are handled with the stitching method. We find the merger rates
given by the snipping method to agree with the stitching results to within 25%. Details of
the comparison are discussed in Section 1.5.1.

1.4.1 Merger Rates at z ≈ 0

Fig. 1.5 is a contour plot of the symmetric merger rate in equation (1.2), BMM ′(M,M ′, zP :
zD), calculated using the stitching merger tree constructed from the z = 0.06:0 Millennium
outputs. Darker (bluer) regions denote higher merger rates, which are concentrated in the
lower (M,M ′) corner because there are more low mass haloes. Minor mergers (off-diagonal)
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Figure 1.6: Left panel: Mean merger rate B(M0, ξ) of equation (1.3) for the z = 0.06:0 merger
tree as a function of the mass ratio of the progenitors, ξ, for bins of fixed descendant halo
mass M0 (colour coded from black to red for increasing M0). The overlaid dashed blue lines
are from our fitting formula in equation (1.14). Note that the presence of a fixed minimum
mass resolution (4.7 × 1010M�) corresponds to a minimum mass ratio ξ that decreases as
M0 increases. Right panel: Mean merger rate per halo, B(M0, ξ)/n(M0), of equation (1.5)
for the same tree. Dividing out the halo number density n(M0) brings the curves on the left
panel to nearly a single curve, indicating B/n has very weak dependence on M0.



21

are more common than major mergers (along the diagonal). The lower left corner is blank
due to our lower cutoff on the descendant FOF mass (∼ 1000 particles; M0 & 2× 1012M�).
The noisy nature of the upper right corner is due to limited merger statistics at ∼ 1015M�.

As we discussed in Section 1.3.2, instead of progenitor masses M and M ′, it is often more
illuminating to study merger rates as a function of the descendant FOF halo mass M0 and
the mass ratio ξ of the progenitors. This is shown in Fig. 1.6 for the same dataset as in
Fig. 1.5. The left panel plots the merger rate B(M0, ξ, 0.06:0) of equation (1.3) against the
progenitor mass ratio ξ for fixed bins of descendant FOF mass M0. We observe that the
merger rate B(M0, ξ) is a power-law in the progenitor mass ratio ξ when ξ . 0.1 and shows
an upturn in the major merger regime. The power-law index is close to −2 and is nearly
independent of the descendant mass M0. More precise values are given in the fitting form in
equation (1.14) and Table 1.2 below.

The main quantity we study in this paper is the mean merger rate per descendant halo,
B/n, of equation (1.5), shown in the right panel of Fig. 1.6. The rising amplitude of B with
decreasing M0 is remarkably largely removed when B/n is plotted: the curves in the left
panel for different M0 mass bins collapse onto nearly a single curve in the right panel. This
behaviour indicates that the merger rate per halo is nearly independent of the descendant
halo mass. This weak mass dependence is further illustrated in Fig. 1.7 and is also reported
in Guo and White [2008]. As we will quantify in Section 1.4.3 below, the dependence on M0

is approximately ∝M0.08
0 .

Our lower cutoff of 40 particles for the progenitor FOF halo mass implies a lower cutoff
in the mass ratio of ξ ≥ 4.8 × 1010M�/M0. This resolution cutoff is seen in the left panel
of Fig. 1.6, where we have sufficient halo statistics to measure the merger rates for the
higher mass haloes (lower curves) down to very minor mergers, e.g., ξ < 10−3 for M0 >
5 × 1013M�; whereas the dynamic range is smaller for galaxy-size haloes, e.g., ξ > 0.01 for
M0 < 5× 1012M�.

The present-day merger rates shown in Fig. 1.6 are all obtained from the z = 0.06:0
merger tree. The low-redshift outputs available from the Millennium database in fact have a
smaller spacing of ∆z ∼ 0.02. We use the 0.06:0 merger tree to avoid any edge effects arising
from our stitching criterion that only subhalo fragments that remerge within three outputs
are stitched together (see Sec. 1.2.3). In practice, this precaution is not critical and we find
little difference between the 0.06:0 and 0.02:0 results.

1.4.2 Merger Rates at Higher Redshift

Figs. 1.6 and 1.7 summarise our results for the z = 0 merger rates. At higher redshifts,
the Millennium database provides sufficient halo statistics for us to measure merger rates up
to z ∼ 6. The results are shown in Fig. 1.8, where we plot the merger rate per unit time
(upper panel), dN̄merge/dt, and per unit redshift (lower panel), dN̄merge/dz, as a function of
redshift for three ranges of descendant masses (galaxy, group, cluster) and four ranges of
progenitor mass ratios (ξ ≥ 1/3, 1/10, 1/30, and 1/100). Errors are computed assuming
Poisson statistics for the number of mergers and haloes. We have suppressed merger rates
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Figure 1.7: Mean merger rate per halo (per unit z), dNm/dz, as a function of descendant
mass, M0, for various ranges of the progenitor mass ratio ξ. The upper curves include
increasingly more minor mergers. The z=0.06:0 merger tree is used. Note the weak mass
dependence over three decades of mass. The error bars are computed assuming Poisson
counting statistics in both the number of mergers and the number of haloes.
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Figure 1.8: Upper panel: Mean merger rate per halo (per Gyr), dNm/dt, as a function of
redshift for three bins of descendant mass M0 and four ranges of progenitor mass ratio ξ
from the Millennium simulation (using the stitching tree). The overlaid lines plot the best-fit
power laws, (1 + z)nm , with nm ranging from 2.03 to 2.29 (labelled). Note that power laws
are reasonable fits at z & 0.3 but underpredict the Millennium rates at lower z. Lower panel:
Same as the upper panel but showing the merger rate dNm/dz per unit z instead of per Gyr.
The dotted grey lines here show our fitting formula in equation (1.14), which is tuned to
provide close fits at low z. In both panels, the error bars are computed assuming Poisson
counting statistics in both the number of mergers and the number of haloes, and the curve
for galaxy-scale haloes (triangles) with ξ ≥ 1

100
(green) is suppressed because such minor

mergers fall below the simulation resolution limit.
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Method A ξ̃ α β γ η χ2
ν

Snip 0.0101 0.017 0.089 -2.17 0.316 0.325 1.86
Stitch 0.0289 0.098 0.083 -2.01 0.409 0.371 1.05

Table 1.2: Best fit parameters for equation (1.14).

with poor merger statistics (and, therefore large error bars) to keep the plots legible.
The mean merger rate per Gyr (upper panel) is seen to increase at higher z. We have fit

power laws to each M0 and ξ range (dotted curves) of the form

dN̄merge

dt
∝ (1 + z)nm (1.13)

and find nm ∼ 2− 2.3 for the ranges of M0 and ξ shown. The Millennium merger rates are
seen to flatten out slightly at low z and deviate from a power law when the cosmological
constant starts to dominate the energy density of the universe.

A large number of merger rate statistics can be easily read off of Fig. 1.8. For example,
at around z = 2 (z = 4) every FOF halo on average experiences ∼ 2-4 (10) minor mergers
(ξ . 1/30) per Gyr, and about 10-20% (70-90%) of FOF haloes experience a major merger
(ξ & 1/3) every Gyr.

Unlike the rising dN̄merge/dt, the merger rate per unit redshift, dN̄merge/dz, shows a re-
markably weak dependence on z in Fig. 1.8 (lower panel), increasing only slightly between
z = 0 and 1 and staying nearly constant for z & 1 for all ranges of M0 and ξ shown. The
overlaid curves are computed by integrating over the fitting form for B/n to be discussed
below (Sec. 1.4.3).

At z > 0, Fig. 1.8 shows that the dependence of dN̄merge/dz on progenitor ratio ξ and
descendant mass M0 is similar to the z = 0 merger rates shown in Fig. 1.6: minor mergers
occur more frequently than major mergers, and the dependence on M0 is weak, with galaxy-
scale haloes (triangles) on average experiencing fewer mergers (per halo) than cluster-size
haloes (squares).

1.4.3 A Universal Fitting Form

We now propose a fitting form that can be used to approximate the halo merger rates in
the Millennium simulation discussed in the last two subsections to an accuracy of 10-20%.
The key feature we will use to simplify the fit is the nearly universal form of the merger rate
(per halo) B(M0, ξ)/n shown in the right panel of Fig. 1.6, and the weak redshift dependence
shown in the bottom panel of Fig. 1.8. We find that the following functional form works
well:

B(M0, ξ, z)

n(M0, z)
= A

(
M0

M̃

)α
ξβ exp

[(
ξ

ξ̃

)γ](
dδc
dz

)η
, (1.14)
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where M̃ = 1.2×1012M� is a constant and δc(z) ∝ 1/D(z) is the standard density threshold
normalised to δc = 1.686 at z = 0, with D(z) being the linear growth factor. Note that
equation (1.14) is separable with respect to the three major variables M0, ξ, and z.

The form of the redshift dependence in equation (1.14) is chosen so that η = 1 corresponds
to the EPS prediction in equation (1.12). In addition, this form has weak z dependence at
z & 1 since the growth factor approaches that of the Einstein-de Sitter model, δc(z) =
1.68(1 + z), and dδc/dz approaches a constant. This behaviour matches the weak redshift
dependence seen in the Millennium merger rate (bottom panel of Fig. 1.8).

To determine the parameters in equation (1.14), we fit simultaneously to all redshifts
z < 1, mass ratios ξ > 10−3, and masses 1012 . M0 . 1014M�. The B/n data points
are weighted using their Poisson distributed errors. The resulting fits are plotted as dotted
curves in Figs. 1.6 and 1.8, and the fitting parameters are given in Table 1.2, along with
the overall reduced χ2

ν obtained by fitting to all redshifts z < 1 simultaneously. In addition
to computing a global χ2

ν we also compute a local χ2
ν(z) at each redshift and find relatively

good convergence across the z < 1 redshift range: χ2
ν(z) remains below 1.5 for stitching and

below 2 to 3 for snipping.
We note that the fitting form of equation (1.14) does not appear symmetric in the progen-

itor masses M1 and M2 because by construction, ξ ≡ M2/M1 < 1. However, for any pair of
progenitors, we identify M1 with the more massive and M2 with the less massive progenitor
and then compute ξ = M2/M1 < 1. This procedure yields the same ξ and therefore the same
B/n regardless of the order of the input progenitors, in contrast to the EPS model discussed
in Section 1.3.3, which is intrinsically asymmetric in M1 and M2.

1.5 Tests

1.5.1 Snipping vs Stitching Trees

Fig. 1.9 shows the ratio of the z = 0 per-halo merger rate B/n from the snipping and
stitching methods. Overall, the merger rates given by the two methods differ by no more than
25% over 2-3 orders of magnitude in both the progenitor mass ratio ξ and the descendant mass
M0. Within this difference, however, Fig. 1.9 and Table 1.2 show that the snipping method
systematically yields a higher merger rate and a steeper slope in the ξ-dependence than
the stitching method. These additional merger events come from the orphaned subhaloes
that are first snipped and subsequently remerge (see Fig. 1.2). Moreover, as discussed in
Section 1.2.3, the fragmentation-to-merger ratio is higher for more minor subhalo fragments
(those with low fragment-to-FOF mass ratios). There are therefore more remerging orphan
haloes with lower ξ, leading to the larger difference between snipping and stitching at low ξ
seen in Fig. 1.9.

A remaining issue is our choice of the stitching criterion: as described in Section 1.2.3,
we stitch only FOF fragments that are observed to remerge within the next 3 outputs. This
choice is motivated by the fact that about half of the halo fragments at a given output will
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Figure 1.9: The ratio of the snipping and stitching B/n as a function of mass ratio ξ
computed using the 0.06:0 catalogue for a variety of mass bins in the range 2.4 × 1012M�
(black) ≤ M ≤ 1.3 × 1014 (red). We find differences at the 25% level at low ξ with the
snipping method consistently predicting a higher merger rate at all ξ. We attribute this to
the population of remerging orphan haloes.
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Figure 1.10: ∆z Convergence Matrix (stitching left, snipping right). Each subplot is the
ratio of B/n for two different catalogues (labelled). The dashed lines denote equality and
the dotted lines are the 10% deviation levels. The ratios are presented for a variety of
mass bins with the high mass bin highlighted in thick blue (or red) and the low mass bin
highlighted in thick black.

have remerged within three outputs (see Fig. 1.3), and that such a small ∆z criterion will
allow us to effectively compute instantaneous merger rates. We have tested this criterion
further by implementing a more aggressive stitching algorithm that stitches all fragments,
regardless of whether they eventually remerge. We call this ∞-stitching. This algorithm
represents the opposite limit to the snipping method and may err on the side of under-
estimating the merger rates since it would stitch together close-encounter fly-by events that
do not result in actual mergers within a Hubble time. We find the amplitude of B/n from
∞-stitching to be lower than that from the 3-stitching by up to ∼ 25%, similar in magnitude
but opposite in sign to the difference between snipping vs 3-stitching shown in Fig. 1.9. The
fitting form in equation (1.14) works well for ∞-stitching, where the best fit parameters are
A = 0.0344, ξ̃ = 0.125, α = 0.118, β = −1.921, γ = 0.399, and η = 0.853. This algorithm
shows excellent convergence properties (see §1.5.2) and excellent mass conservation properties
(§1.5.4) but alters the FOF mass function by a few percent.

Since the snipping algorithm tends to inflate the merger rate and the ∞-stitching al-
gorithm tends to under-estimate it, we believe the 3-stitching used in all the results in
Section 1.4 should be a fairly robust scheme.
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1.5.2 Convergence With Respect to ∆z

We have performed a number of tests to quantify the dependence of our merger rate
results on the choice of ∆z between the Millennium outputs used to construct the merger
trees. It is not a priori clear which value of ∆z is optimal: small ∆z can result in poor
merger statistics since most haloes would not have had time to merge; whereas large ∆z
does not have the time resolution to track individual merger events accurately and also runs
the risk of smearing out real redshift dependent effects. The optimal ∆z may also vary with
redshift.

Our first test focuses on z ≈ 0 mergers and quantifies how B/n varies with the ∆z used to
construct the trees. Fig. 1.10 shows the ratios of B/n for five pairs of progenitor and descen-
dant redshifts: (zP , zD) =(0.02:0), (0.04:0), (0.06:0), (0.12:0), and (0.24:0), corresponding to
a time interval of ∆t = 0.26, 0.54, 0.83, 1.44, and 2.77 Gyr, respectively. For the stitching
method (left panel), there is excellent convergence for ∆z . 0.12 (panels A-F), where the
ratios of B/n are centred around 1 and rarely deviate beyond the 10% level (dotted line).
For ∆z = 0.24 (panels G-J), the ratios start to drop below unity. This is consistent with the
slowly rising merger rates with increasing z shown in Fig. 1.8. Thus, the stitching method
yields merger trees with robust ∆z convergence properties near z = 0, and we have chosen
∆z = 0.06 to compute the merger rates in earlier sections.

The snipping method (right panel) shows inferior ∆z convergence. The B/n computed
with smaller ∆z consistently show higher merger rates than those computed with larger ∆z.
Moving up the left column (panels G,D,B,A), we observe only some degree of convergence.
Better convergence is seen along the main diagonal (panels A,C,F,J) in order of increasing
∆z. In particular, panels C and F show excellent convergence properties (to the 10% level)
centred around (0.06:0). To emphasise that the problem is with ∆z and not with a particular
output (say, any possible edge effects at z = 0 or 0.02), we show in panels A’,B’,C’ the
ratios of B/n computed using three merger trees with the same ∆z = 0.02 but centred at
progressively higher z: z = (0.02:0), (0.04:0.02), and (0.06:0.04). The agreement is excellent,
in striking contrast to panel B. Based on these tests, we have chosen to use ∆z = 0.06 for
the snipping method.

We believe that the snipping method has inferior ∆z convergence properties because of
the remerging orphan subhaloes (see Section 1.2.3 and Fig. 1.2). These fragmentation events
are sewn together in the stitching scheme and therefore do not contribute to the merger rates.
In the snipping scheme, however, the snipped events provide a fresh supply of haloes, many
of which remerge in the next few outputs. This effect artificially boosts the merger rate
across small ∆z.

Our second ∆z convergence test is performed at all redshifts. We test three types of
spacing: (1) Adjacent spacing uses adjacent catalogues, e.g., at low z, it uses (0.02:0),
(0.04:0.02), (0.06:0.04); (2) Skip 1 spacing skips an output, e.g., (0.04:0), (0.06:0.02)....,
and (3) Skip 2 spacing skips two outputs, e.g., (0.06:0), (0.09:0.02), and so on. Fig. 1.11
shows dN̄merge/dz computed using these three ∆z for galaxy-mass haloes. We again see
excellent ∆z-convergence for the stitching method at z . 1.5 (left panel) and worse ∆z-
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Figure 1.11: Merger rate dN̄merge/dz computed using three types of redshift spacings: adja-
cent, skip 1 and skip 2 (see text). For clarity, only the galaxy-mass haloes are shown; the
group and cluster haloes behave similarly.

convergence for the snipping method (right panel). The latter follows the behaviour seen in
Fig 1.10, with adjacent spacing (∆z = 0.02 at z = 0) over-predicting the merger rate.

At higher redshifts (z & 1.5), Fig. 1.11 shows that the merger rates in the minor merger
regime differ by up to ∼ 15% depending on which of the three types of spacing is used. This
difference is not likely to be due to the fragmentation events since as Fig. 1.3 shows, the
ratio of fragmentation to merger events is 40% near z = 0 but drops to .10% for z & 3.
Rather, we believe that the inferior ∆z convergence at high z is due to the increasing ∆z
between Millennium outputs (e.g., the smallest ∆z is ∼ 0.5 at z ∼ 6 vs ∆z = 0.02 at
z ≈ 0) and the inaccuracy of the multiple counting ordering assumption for large ∆z (see
Section 1.5.3). At high z, we therefore advocate using the finest output spacings available
in the Millennium database, noting the good time convergence for major mergers (ξ & 1/3)
but ∼ 15% variations in the minor merger rates.

1.5.3 Multiple vs Binary Counting

As discussed in Section 1.3.1, for descendant FOF haloes with more than two progenitor
haloes, we include all progenitors when we calculate the merger rates for completeness.
Since mergers are often assumed to be binary events, we have tested the difference between
our multiple counting results and those obtained by counting only the two most massive
progenitors of a given descendant halo. Fig. 1.12 compares the merger rates (per halo),
B(M0, ξ)/n, for these two counting methods (dashed: multiple; solid: binary) as a function
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Figure 1.12: Comparisons of merger rate per halo, B/n, computed via multiple counting
(dashed lines) and binary counting (solid lines) for 4 merger trees with increasing ∆z. Three
descendant mass bins are shown (from left to right). We find the multiple counting rate
to be in excellent agreement regardless of ∆z of the tree, whereas the binary counting B/n
curves fall off from the observed power-law behaviour towards lower ξ.

of the progenitor mass ratio ξ for three descendant masses M0 (increasing from left to right).
In each panel, results from four merger trees using increasing ∆z of 0.02, 0.06, 0.12, and 0.24
are shown.

The most notable trend in Fig. 1.12 is that the multiple counting method gives similar
merger rates regardless of ∆z, indicating good time convergence in the results (as we have
discussed in detail in Section 1.5.2). The binary counting rates, on the other hand, deviate
increasingly from the multiple rates when larger ∆z are used because the binary assumption
becomes less valid for larger ∆z. As a function of ξ, the binary and multiple merger rates
match well in the major merger regime but deviate significantly for small ξ. This occurs
because binary counting counts only the two most massive progenitors and ignores the addi-
tional (typically low-mass) progenitors. It therefore closely approximates the major-merger
rates but under-estimates the minor-merger regime of the multiple counting result.

Fig. 1.12 suggests that for a given minimum mass resolution (i.e. a minimum ξ), there
is a corresponding ∆z for which the binary counting method is a good approximation. For
example, for 6 × 1013M� haloes (centre panel), the binary and multiple merger rates are
similar down to ξ ≈ 0.05 for ∆z ∼ 0.12, and down to ξ ≈ 0.005 when ∆z is decreased to
0.02. Thus the multiple counting B/n can be thought of as the small-∆z limit of the binary
B/n.

Another test we have performed is on the ordering of mergers assumed in the multiple
counting method described in Section 1.3.1. There, we assumed that the less massive pro-
genitors M2,M3, ... each merged with the most massive progenitor M1 and not with one
another. This assumption is motivated by the fact that satellite haloes in N -body cosmolog-
ical simulations are typically seen to accrete onto a much more massive host halo as a minor
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merger event instead of merging with another satellite halo. We have quantified the validity
of this assumption by taking large ∆z in the Millennium outputs, applying this ordering,
and checking against the actual merging order among the progenitors when finer ∆z is used.
(Of course, we cannot do this for the minimum ∆z = 0.02 available in the database.) The
fraction of misordering naturally rises with increasing ∆z due to the degraded time resolu-
tion, but for ∆z . 0.06, we find the fraction of progenitors to have merged with a progenitor
other than M1 to be . 10%. Most of the mergers among multiple progenitors, therefore,
do occur between the most massive progenitor and a less massive progenitor, as we have
assumed.

1.5.4 Mass Conservation and “Diffuse” Accretion

Thus far we have analysed mergers in terms of the progenitor halo mass Mi and the
descendant halo mass M0. Mergers are, however, messy events, and the sum of Mi does not
necessarily equal M0. To quantify this effect, we define a “diffuse” component, ∆M , for a
given descendant halo:

M0 =

Np∑
i=1

Mi + ∆M , (1.15)

where ∆M is diffuse in the sense that it is not resolved as distinct haloes in the simulation.
A non-zero ∆M can be due to physical processes such as tidal stripping and diffuse mass
accretion that cause a net loss or gain in halo mass after a merger event. In simulations,
additional numerical factors also contribute to ∆M due to different algorithms used in,
for example, defining halo mass (FOF vs spherical overdensity). ∆M therefore does not
necessarily have to be positive in every merger event.

Fig. 1.13 shows the distribution of ∆M/M0 for the z =(0.06:0) Millennium merger tree.
Only haloes that have experienced mergers between these two redshifts (i.e. those with
more than one progenitor) are plotted. The snipping tree (not shown) gives a very similar
distribution as the stitching tree shown here. For comparison, we have computed ∆M/M0

using the two different halo mass definitions MFOF and M200. The distribution shows a
prominent peak at ∆M/M0 ∼ 2.5 % for both MFOF and M200, indicating that in the majority
of the merger events between z = 0.06 and 0.0, ∼ 97.5% of the mass of the descendant halo
comes from resolvable progenitor haloes.

Even though the two distributions in Fig. 1.13 have similar peaks, the M200 mass defi-
nition produces longer ∆M/M0 tails than the MFOF mass definition, and the mean of the
distribution (dotted vertical line) is negative for M200. We believe this is because mass
definitions based on the assumption of spherical symmetry (as M200 does) have difficulties
assigning accurate mass to non-spherical FOF haloes and tend to underestimate the halo
mass (see, e.g., White 2001). MFOF , on the other hand, can account for all the mass in a
given FOF object that is identified as ’merged’ by the FOF halo finder well before virializa-
tion. As discussed in Section 1.2.1, we have been using the MFOF mass thus far.
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Figure 1.13: Distributions of ∆M/M0 from the z = 0.06:0 Millennium merger tree (using
stitching; snipping is nearly identical) computed using the MFOF mass (top panel) vs M200

virial mass (bottom panel). The solid vertical line is the median of the distribution for the
galaxy-mass bin and the dashed line is the mean. We note a longer negative ∆M tail for
the M200 tree when compared to the MFOF tree. Note, however, that the peaks of the two
distributions are in good agreement (∆M/M0 ∼ 2.5%)
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Figure 1.14: Ratios of the Millennium halo mass function (computed from the stitching
trees) to the fit of Jenkins et al. [2001] using the MFOF mass. The results for the snipping
trees are virtually identical. We note a significant deviation of ∼ 25% at z ∼ 3 between the
Jenkins fit and the Millennium mass function.

Our main results on merger rates in Section 1.4 were determined for numerically resolved
dark matter haloes; they are therefore not affected directly by the fact that ∆M is generally
non-zero for merger events. We find, however, that ∆M/M0 increases with ∆z, and this
diffuse accretion component makes an important contribution to the mass growth of a halo
over its lifetime. We will explore the growth of haloes in further detail in subsequent papers.

1.5.5 Halo Mass Function

The mass function of dark matter haloes in principle depends on both the definition of
halo mass and the algorithm used to treat fragmentation events. As illustrated in Fig. 1.2,
the snipping method by construction preserves the original FOF mass function, while the
stitching scheme modifies it slightly as it rearranges fragmented subhaloes between FOFs.
We find that the impact on the mass function is negligible (less than ∼ 0.25%) so will use
the stitching result below.

Fig. 1.14 shows the ratio of the Millennium halo mass function to the fits by Jenkins et al.
[2001] for MFOF at four redshifts: z ≈ 0, 1, 2, and 3. The fit of Jenkins et al is accurate
to better than 10% for low redshift (z . 1), but it underestimates the Millennium halo
abundance by & 25% at the high mass end for z > 1. This discrepancy is present but not
obvious on the log-log plot in Fig. 2 of Springel et al. [2005]. Lukic et al. [2007] also noted
this difference. Since the stitching and snipping mass functions are virtually identical, this
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appears to be a discrepancy between the Millennium FOF catalogue and the fit of Jenkins
et al. [2001].

1.6 Theoretical Models for Merger Rates

1.6.1 Extended Press-Schechter Model

In Section 1.3.3 we discussed how our merger rates are related to the conditional prob-
abilities in the EPS model and obtained equation (1.12), where there are two choices for
the definition of the progenitor mass M ′ since the EPS model is not symmetric in the two
progenitor masses. In Fig. 1.15 we show the ratio of the EPS prediction to our Millennium
B/n at z = 0, where we have computed the EPS rates given by the right-hand-side of equa-
tion (1.12) using the same cosmological parameters as for the Millennium simulation. We
compute the variance of the smoothed linear density field, σ2(M), in the ΛCDM cosmology
using the power spectrum fit provided in Eisenstein and Hu [1999].

Fig. 1.15 shows that EPS underpredicts the z = 0 rate for minor mergers by up to a
factor of ∼ 5, and overpredicts the rate at ξ & 0.05, indicating that the dependence of the
EPS merger rate on ξ is shallower than our B/n ∼ ξβ, where the best-fit β is −2.17 and
−2.01 for the snipping and stitching methods, respectively (see Table 1.2). In terms of the
descendant mass M0, the dependence of the EPS rate is too steep compared to our B/n,
leading to the spread in each bundle of curves in Fig. 1.15. The two choices of M ′ in EPS
are seen to lead to different predictions. Assigning M ′ to be the smaller progenitor (option
A) results in a somewhat smaller discrepancy than option B.

Fig. 1.15 compares the rates at z = 0. At higher redshifts, we find the Millennium
merger rate to evolve as ∝ (dδc/dz)η, where η ≈ 0.37 (see equation [1.14] and Table 1.2) and
is shallower than the EPS prediction of η = 1 in equation (1.12). Since the functional forms
of both our fit for B/n and the EPS expression are separable with respect to M0, ξ and z,
the z = 0 curves in Fig. 1.15 will maintain the same shape at higher z, but the amplitude of
the ratio will increase. For instance, the ratio shown in Fig. 1.15 will be increased by a factor
of 1.26, 1.32, 1.34, and 1.35 at z = 1, 2, 4, and 6 respectively. The discrepancy between the
Millennium results and the EPS predictions is therefore even worse at higher z.

Given that the Press-Schechter mass function is known not to match the halo abundances
in simulations very closely, it is not particularly surprising that the EPS merger rates in
Fig. 1.15 do not match the Millennium results closely. The substantial discrepancy, however,
does highlight the limitation of the EPS model and provides the motivation to build more
accurate merger rates based on improved PS mass functions. We address this issue in
separate papers [Zhang et al., 2008b], in which we investigate a moving density-barrier
algorithm to generate merger trees that produces a better match to simulation results than
the constant barrier of the PS model.
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Figure 1.15: Comparison between our Millennium merger rate (from the fit) and the two
predictions of the Extended Press-Schechter model. The ratio of B/n from EPS to Millen-
nium is plotted. Blue and red label the two options in assigning progenitor masses in the
EPS model (see text); within each colour, the set of curves from bottom to top denotes
increasing M0 bins, from ∼ 1012M� to ∼ 3× 1014M�. The EPS model is seen to overpredict
the major merger rate by up to a factor of ∼ 2 and underpredicts the minor merger rate by
up to a factor of ∼ 5.
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1.6.2 Halo Coagulation

The merging of dark matter haloes is, in principle, a coagulation process. Coagulation
is often modelled by the Smoluchowski coagulation equation [Smoluchowski, 1916], which
governs the time evolution of the mass function n(M, t) of the objects of interest with a
coagulation kernel. In the absence of fragmentations, the time change of n is given by

dn(M)

dt
=

1

2

∫ M

0

A(M ′,M−M ′)n(M ′)n(M−M ′)dM ′

−
∫ ∞

0

A(M,M ′)n(M ′)n(M)dM ′ ,

(1.16)

where the first term on the right-hand side is a source term due to mergers of two smaller
haloes of mass M ′ and M − M ′, while the second term is a sink term due to haloes in
the mass bin of interest merging with another halo of mass M ′, forming a halo of higher
mass M +M ′. When applied to hierarchical structure formation, A(M,M ′), the symmetric
coagulation kernel (in units of volume/time), tracks the probability for a halo of mass M to
merge with a halo of mass M ′. Our merger rate per halo, B/n, can be simply related to A
by

A(M,M ′)↔ B(M,M ′)

n(M)n(M ′)
. (1.17)

We note, however, that the coagulation equation in the form of equation (1.16) is valid only
for mass-conserving binary mergers. As seen throughout this paper, these assumptions are
not strictly true in numerical simulations, and modifications are required to account for the
issues that have been discussed thus far, such as net mass gain or loss (i.e. ∆M 6= 0),
multiple merger events, and halo fragmentation. While the relative errors may be small
when integrated over a small time interval, repeated application of equation (1.16) using
equation (1.17) may not yield robust results.

Assuming that n(M) is the Press-Schechter mass function, Benson et al. [2005] have devel-
oped numerical techniques to construct the coagulation kernel for self-similar cosmological
models with initial power-law power spectrum P (k) ∝ kn. Their technique is undercon-
strained and does not yield a unique expression for A(M,M ′). In order to pick out a par-
ticular solution, a regularisation condition was applied to force A(M,M ′) to vary smoothly.
We have transformed the coordinates of their fits to A(M,M ′) to compare their results with
our merger rate B/n. Fig. 1.16 shows the ratio of their fitting formula to the Millennium
ΛCDM merger rate for spectral indices n = −1 and −2 as a function of progenitor mass
ratio ξ for various descendant halo mass bins. The difference can be up to a factor of several.

1.7 Conclusions and Discussions

In this paper we have computed the merger rates of dark matter FOF haloes as a function
of descendant halo mass M0, progenitor mass ratio ξ, and redshift z using the merger trees
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Figure 1.16: Same as Fig. 1.15, only now comparing the merger rates from Benson et al.
(2005) to the Millennium B/n for initial power spectrum index n = −2 (blue) and n = −1
(red).

that we constructed from the halo catalogue of the Millennium simulation. Our main results
are presented in Figs. 1.6 to 1.8, which show very simple and nearly separable dependence on
M0, ξ, and z. The mean merger rate per descendant FOF halo, B/n, is seen to depend very
weakly on the halo mass M0 (Fig. 1.6 right panel and Fig. 1.7). As a function of redshift z,
the per halo merger rate in units of per Gyr increases as (1 + z)α, where α ∼ 2 to 2.3 (top
panel of Fig. 1.8), but when expressed in units of per redshift, the merger rate depends very
weakly on z (bottom panel of Fig. 1.8). Regardless of M0 and z, the dependence of B/n on
the progenitor mass ratio, ξ = Mi/M1, is a power law to a good approximation in the minor
merger regime (ξ . 0.1) and shows an upturn in the major merger regime (Fig. 1.6). These
simple behaviours have allowed us to propose a universal fitting formula in equation (1.14)
that is valid for 1012 ≤M0 . 1015M�, ξ & 10−3, and up to z ∼ 6.

Throughout the paper we have emphasised and quantified the effects on the merger rates
due to events in which a progenitor halo fragments into multiple descendant haloes. We
have shown that the method commonly used to remove these fragmented haloes in merger
trees – the snipping method – has relatively poor ∆z-convergence (Figs. 1.10 and 1.11).
Our alternative approach – the stitching method – performs well with regards to this issue
without drastically modifying the mass conservation properties or the mass function of the
Millennium FOF catalogue (Figs. 1.13 and 1.14).

We have computed the two predictions for merger rates from the analytical EPS model
for the same ΛCDM model used in the Millennium simulation. At z = 0, we find the EPS
major merger rates to be too high by 50-100% (depending on halo mass) and the minor
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merger rates to be too low by up to a factor of 2-5 (Fig. 1.15). The discrepancy increases at
higher z.

The coagulation equation offers an alternative theoretical framework for modelling the
mergers of dark matter haloes. We have discussed how our merger rate is related to the
coagulation merger kernel in theory. In practice, however, we find that mergers in simulations
are not always mass-conserving binary events, as assumed in the standard coagulation form
given by equation (1.16). Equation (1.16) will therefore have to be modified before it can be
used to model mergers in simulations.

Gottlöber et al. [2001] studied the rate of major mergers (defined to be ξ ≥ 1/3 in our
notation) in N -body simulations and found a steeper power law dependence of ∝ (1 + z)3

(at z . 2) for the merger rate per Gyr than ours. Their simulations did not have sufficient
mass resolution to determine the rate at z & 2. It is important to note, however, that our
B/n at redshift z measures the instantaneous rate of mergers during a small ∆z interval
at that redshift. By contrast, they studied the merging history of present-day haloes and
measured only the rate of major mergers for the most massive progenitor at redshift z of a
z = 0 halo (see their paragraph 4, section 2). A detailed comparison is outside the interest
of this paper.

Mergers of dark matter haloes are related to but not identical to mergers of galaxies.
It typically takes the stellar component of an infalling galaxy extra time to merge with
a central galaxy in a group or cluster after their respective dark matter haloes have been
tagged as merged by the FOF algorithm. This time delay is governed by the dynamical
friction timescale for the galaxies to lose orbital energy and momentum, and it depends on
the mass ratios of the galaxies and the orbital parameters (Boylan-Kolchin et al. 2008 and
references therein). In addition to this difference in merger timescale, the growth in the
stellar mass of a galaxy is not always proportional to the growth in its dark matter halo
mass. A recent analysis of the galaxy catalogue in the Millennium simulation [Guo and
White, 2008] finds galaxy growth via major mergers to depend strongly on stellar mass,
where mergers are more important in the buildup of stellar masses in massive galaxies while
star formation is more important in galaxies smaller than the Milky Way. Extending the
analysis of this paper to the mergers of subhaloes in the Millennium simulation will provide
the essential link between their and our results.

For similar reasons, our results for the evolution of the dark matter halo merger rate per
Gyr ((1 + z)nm with nm ∼ 2 − 2.3) cannot be trivially connected to the observed merger
rate of galaxies. It is nonetheless interesting to note that a broad disagreement persists
in the observational literature of galaxy merger rates. The reported power law indices nm
have ranged from 0 to 5 (see, for example, Burkey et al. 1994, Carlberg et al. 1994, Yee
and Ellingson 1995, Woods et al. 1995, Patton et al. 1997, Le Fèvre et al. 2000, Patton
et al. 2002, Conselice et al. 2003, Bundy et al. 2004, Lavery et al. 2004, Lin et al. 2004).
Berrier et al. [2006] followed the redshift evolution of subhalo mergers in N-body simulations
and provided a more detailed comparison with recent observations by, e.g., Lin et al. [2004]
that find nm < 1. They attributed such a weak redshift evolution in the number of close
companions per galaxy to the fact that the high merger rate per halo at early times is
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counteracted by a decrease in the number of haloes massive enough to host a galaxy pair.
The merger rates in this paper are global averages over all halo environments. The rich

statistics in the Millennium simulation allow for an in-depth analysis of the environmental
dependence of dark matter halo merger rates, which we will report in a subsequent paper
(Fakhouri & Ma, in preparation).

1.8 Appendix: The Durham Tree

In this paper we have used two methods to handle fragmentation events in the Millennium
FOF merger trees: snipping and stitching. Here we discuss and compare a third method
used by the Durham group [Bower et al., 2006, Harker et al., 2006, Helly et al., 2003].

The Durham algorithm is designed to reduce spurious linkings of FOF haloes in low-
density regions. Before constructing the FOF merger tree, they filter through the Millennium
FOF and subhalo database, and split up a subhalo from its FOF halo if (1) the subhalo’s
centre is outside twice the half mass radius of the FOF halo, or (2) the subhalo has retained
more than 75% of the mass it had at the last output time at which it was an independent
halo [Harker et al., 2006]. Condition (1) is effectively a spatial cut, while (2) is based on the
argument that less massive subhaloes are expected to undergo significant stripping as they
merge with more massive haloes. This algorithm then discards the subhaloes that are split
off from FOF groups at z = 0, along with any associated progenitor subhaloes. Around 15%
of the original FOF haloes are split in this algorithm.

The Durham algorithm tends to reduce the number of fragmented haloes in the resulting
trees, but it does not eliminate all such events. A method much like our snipping method
is used to treat the remaining fragmentation events. The resulting FOF tree is available at
the Millennium public database along with the original Millennium tree.

To compare with our stitching and snipping trees, we have repeated all of our merger
rate calculations and tests using the Durham tree. Fig. 1.17 shows the ratio of the resulting
Durham merger rate, B/n, to that from our stitching tree at z = 0. The Durham rate is
generally lower than our rate for minor mergers (by up to ∼ 30%), and it drops precipitously
for major mergers (ξ & 0.3). The two additional conditions applied to split up subhaloes in
the Durham algorithm therefore appear to have eliminated most of the major merger events.

Moreover, these splitting conditions in the Durham algorithm also modify the halo mass
function. Fig. 1.18 shows the ratio of the Durham mass function to the fit of Jenkins et al.
(2001) at z = 0, 0.5, and 1 (thick solid curves with error bars). The ratio of our stitching
mass function to the same fit is overlaid for comparison (thin dotted curves). The Durham
mass function is systematically lower: the number of z = 0 haloes with M & 1014M� is
∼ 25% lower, and the difference increases at z ∼ 1, affecting the halo mass function even at
M ∼ 2× 1012M�.

We believe that the deficit of major merger events and massive haloes in the Durham
catalogue is partially due to their second criterion that splits off subhaloes that have retained
75% of their original mass. This condition may indeed remove spurious FOF linkings in
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Figure 1.17: The ratio of the Durham merger rate B/n to our stitching rate B/n (sec-
tion 1.4.3) as a function of progenitor mass ratio ξ for a number of descendant mass bins
ranging from ∼ 2 × 1012M� (black) to ∼ 1014M� (red). The Durham merger rate tends
to be lower than the stitching merger rate, and suffers a sudden drop in the major merger
regime (ξ & 0.3).
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Figure 1.18: The ratio of the Durham halo mass function to the fit of Jenkins et al. (2001)
at redshifts 0, 0.5, and 1 (thick solid curves with error bars). The ratio of the halo mass
function from our stitching method to the same fit is shown for comparison (thin dashed
curves). The Durham algorithm tends to reduce the masses of massive haloes, leading to a
deficit that grows to ∼ 50% at ∼ 1015M� and at higher z.
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Figure 1.19: Left panels: A subset of the ∆z convergence matrix presented in Fig. 1.10, now
computed using the Durham tree. Note the poor convergence properties of the major merger
end (ξ & 0.3). This corresponds to the region of the largest difference between the stitching
and Durham merger rates (see Fig. 1.17). Right panel: The distribution of ∆M/M0 for the
z = 0.06:0 Durham catalogue (similar to Fig. 1.13).

the minor merger regime, but major merger events tend to preserve much of the original
progenitor masses and have been systematically split by the Durham algorithm.

Finally, Fig. 1.19 (right panel) shows that the Durham tree has similar mass conservation
properties as our stitching tree in Fig. 1.13. The distribution of the mass in the ’diffuse’
component, ∆M/M0, has a very similar peak of ∼ 3%, although the negative ∆M events
have been suppressed. For ∆z convergence (left panels; cf section 1.5.2), the Durham tree
performs well in the minor merger regime but is consistently poor for major mergers, again
probably due to the splitting condition (2) above.

The Durham algorithm is tuned to address questions of galaxy evolution. The issues
we have uncovered regarding this algorithm are specifically for the mergers of dark matter
haloes, the subject of this paper; issues with the mergers of galaxies will require a separate
study.



43

Chapter 2

The Merger Rates and Mass
Assembly Histories of Dark Matter
Haloes in the Two Millennium
Simulations
Fakhouri, Onsi; Ma, Chung-Pei ; Boylan-Kolchin, Michael — June 2010
Monthly Notices of the Royal Astronomical Society

We construct merger trees of dark matter haloes and quantify their merger
rates and mass growth rates using the joint dataset from the Millennium and
Millennium-II simulations. The finer resolution of the Millennium-II Simula-
tion has allowed us to extend our earlier analysis of halo merger statistics to an
unprecedentedly wide range of descendant halo mass (1010 . M0 . 1015M�),
progenitor mass ratio (10−5 . ξ ≤ 1), and redshift (0 ≤ z . 15). We update
our earlier fitting form for the mean merger rate per halo as a function of M0,
ξ, and z. The overall behavior of this quantity is unchanged: the rate per unit
redshift is nearly independent of z out to z ∼ 15; the dependence on halo mass
is weak (∝ M0.13

0 ); and it is nearly a power law in the progenitor mass ratio
(∝ ξ−2). We also present a simple and accurate fitting formula for the mean
mass growth rate of haloes as a function of mass and redshift. This mean
rate is 46M� yr−1 for 1012M� haloes at z = 0, and it increases with mass as
∝ M1.1 and with redshift as (1 + z)2.5 (for z & 1). When the fit for the mean
mass growth rate is integrated over a halo’s history, we find excellent match
to the mean mass assembly histories of the simulated haloes. By combining
merger rates and mass assembly histories, we present results for the number of
mergers over a halo’s history and the statistics of the redshift of the last major
merger.
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2.1 Introduction

Mergers of dark matter haloes are intimately connected to a wide array of phenomena
in the now-standard ΛCDM cosmology. In addition to being the dominant channel for
mass growth of haloes themselves, mergers are also responsible for the growth of stellar
mass in galaxies, both directly via galaxy-galaxy mergers, and indirectly via the accretion of
potentially star-forming gas. Furthermore, mergers help shape many important observational
properties of galaxies, e.g., star formation rates, color and morphology transformations,
dynamical states of stellar disks, and galaxy mass and luminosity functions. Mergers are
also responsible for the existence of satellite galaxies such as dwarf spheroidals in the Milky
Way and non-cD galaxies in galaxy clusters. Quantifying the rate of halo-halo mergers, and
its possible dependence on factors such as halo mass, mass ratio, and time, is therefore of
great interest for a theoretical understanding of galaxy formation and its connections to
observations.

In a series of papers, we have examined various aspects of the growth of dark matter
haloes. In Fakhouri and Ma [2008], we computed the merger rates of dark matter haloes
from the Millennium Simulation [Springel et al., 2005] and presented a simple algebraic fitting
form for our results. The resolution and size of this simulation allowed us to determine the
merger rate over the parameter range of 1012 .M0 . 1015M� for the mass of the descendant
haloes, 10−3 . ξ ≤ 1 for the mass ratio of the progenitor haloes, and 0 ≤ z . 6 for the
redshift. The detailed environmental dependence of the merger rates and halo mass growths
was analyzed in two subsequent papers [Fakhouri and Ma, 2009, 2010]. In McBride et al.
[2009], we studied the statistics of the halo mass assembly histories and mass growth rates
in the Millennium Simulation. Halo mergers have also been studied in a handful of papers
by others (e.g., Governato et al. 1999, Gottlöber et al. 2001, Berrier et al. 2006, Maller et al.
2006, Guo and White 2008, Genel et al. 2009, Stewart et al. 2009). The pre-2008 studies
were all limited to small simulations that mainly investigated major mergers in a narrow
mass range at low redshift (typically z . 1). Some such studies have emphasized potential
challenges for hierarchical structure formation; for instance, Stewart et al. [2008] have noted
that the frequency of major mergers among Milky-Way sized haloes poses a problem for
thin-disk survivability. Much work has also been done in quantifying halo mass accretion
and assembly histories using N -body simulations that are smaller than the Millennium runs
(e.g., Lacey and Cole 1994, Tormen et al. 1997, Tormen 1998, Wechsler et al. 2002, van den
Bosch 2002, Li et al. 2007, Zhao et al. 2009, except Cole et al. 2008).

In this paper, we extend the results presented in Fakhouri and Ma [2008] and McBride
et al. [2009] by incorporating the Millennium-II Simulation [Boylan-Kolchin et al., 2009b].
This simulation has the same number of particles as the Millennium Simulation but has
125 times better mass resolution. This new database provides 7.5× 106 dark matter haloes
(each containing more than 1000 simulation particles) between redshift 0 and 15 and their
subhalo merger trees for our analysis. Adding to the 11.3×106 haloes (between z = 0 and 6)
available from the Millennium Simulation, this combined dataset allows us to determine the
dark matter halo merger rates and mass growth rates from z = 0 to up to z = 15, for over
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five orders of magnitude in the descendant halo mass (1010 .M0 . 1015M�) and progenitor
mass ratio (10−5 . ξ ≤ 1).

This paper is organized as follows. Section 2.2 describes the dark matter haloes in
the Millennium and Millennium-II simulations, and how we construct the merger trees and
quantify the merger statistics and mass accretion histories of the haloes. In Section 2.3,
we present results for three types of statistics: merger rates at z = 0 up to ∼ 15 for halo
mass ∼ 1010 to 1015M� (§ 2.3.1); the rate at which the haloes are accreting dark matter
across the virial radii, and the mass growth history of haloes (§ 2.3.2); and the cumulative
merger statistics over a halo’s past history, e.g., the mean cumulative number of mergers
of a given mass ratio experienced as a function of z and halo mass, and the distribution of
the redshift at which the last major merger occurred for haloes at various mass and redshift
(§ 2.3.3). The Appendix contains a detailed comparison of the three types of algorithms
that we have tested for handling the fragmentation events in a merger tree of FOF haloes
[Fakhouri and Ma, 2008, 2010]. They are named “snip,” “stitch,” and “split,” depending
on whether the fragmented subhalo was ignored, stitched back to the original FOF halo in
subsequent outputs, or split off from the FOF at earlier times. A quantitative assessment
of the systematic differences in the merger rates derived from each algorithm is provided in
the Appendix.

The cosmology used throughout this paper is identical to that used in the the Millennium
simulations: a ΛCDM model with Ωm = 0.25, Ωb = 0.045, ΩΛ = 0.75, h = 0.73, an initial
power-law index n = 1, and σ8 = 0.9. Masses and lengths are quoted in units of M� and
Mpc without the Hubble parameter h.

2.2 Construction of Halo Merger Trees

2.2.1 The Two Millennium Simulations

The Millennium and Millennium-II simulations are large N -body simulations of cosmo-
logical structure formation using the concordance ΛCDM cosmological parameters listed at
the end of Section 2.1. The simulations are described in detail in Springel et al. [2005]
(Millennium) and Boylan-Kolchin et al. [2009b] (Millennium-II); here we summarize some
basic features of the simulations and of the default post-processing procedures that result in
subhalo merger trees.

Both simulations follow the evolution of 21603 ≈ 1010 particles from redshift 127 to
redshift 0 using versions of the GADGET tree-PM code [Springel et al., 2001b, Springel, 2005].
The simulations differ in spatial scale and mass resolution: the Millennium Simulation uses
a box size of L = 685 Mpc and a Plummer-equivalent force softening that is a factor of
105 smaller, ε = 6.85 kpc, with a particle mass of mp = 1.18 × 109 M�. The Millennium-II
Simulation uses L = 137 Mpc and ε = 1.37 kpc, both of which are a factor of 5 smaller than
the values from the Millennium Simulation; the particle mass is therefore 125 times smaller,
mp = 9.43 × 106 M�. The two simulations have 60 outputs at identical redshifts between
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z ≈ 20 and z = 0, spaced approximately equally in log z, as well as additional snapshots (4
for the Millennium, 8 for the Millennium-II) at higher redshifts.

Subhalo merger trees are constructed in an identical fashion for the Millennium and
Millennium-II simulations. Dark matter haloes are first identified at each snapshot using a
Friends-of-Friends group-finder (FOF; Davis et al. 1985) with a linking length of 0.2 times
the mean interparticle separation. All FOF groups with at least 20 particles are stored. The
SUBFIND algorithm [Springel et al., 2001a] is then applied to each FOF group to identify
halo substructure. SUBFIND identifies local density maxima and performs an unbinding
procedure to determine which particles in the FOF group are bound to each density peak.
Substructures with at least 20 particles after unbinding are stored, resulting in a list of
subhaloes (SHs) associated with each FOF group in the simulation. Note that some FOF
groups do not contain 20 self-bound particles and therefore not every FOF group contains a
subhalo, while some FOF groups can contain many self-bound density peaks and therefore
have many subhaloes.

These subhaloes are then linked across simulation snapshots to produce subhalo merger
trees. This linking is done by establishing a unique descendant for each subhalo in the
following manner. First, all particles in the subhalo are rank-ordered by binding energy. A
list of candidate descendants – all subhaloes at the subsequent snapshot containing at least
one particle from the subhalo in question – is built and a figure of merit is computed for
each descendant. The candidate descendant with the highest score is assigned as the actual
descendant. The figure of merit for candidate descendants is simply a weighted sum of the
rank-ordering of the subhalo’s particles; this procedure ensures that the tightly bound center
of a subhalo is weighted more heavily than the less-bound outer regions even if the center is
subdominant in terms of mass.

In addition to searching for a descendant at the subsequent output, a search is also per-
formed two snapshots later. This additional step accounts for subhaloes that are temporarily
unresolved when passing near the center of a more massive system but re-appear later. On
occasion, no descendant can be identified at either of the two subsequent snapshots, in which
case, the subhalo is not assigned a descendant at all but rather is considered destroyed. With
subhaloes and their unique descendants identified, subhalo merger trees are built by linking
subhaloes and their descendants: all subhaloes with a common descendant at z = 0 are
linked to all subhaloes sharing these subhaloes as descendants, and so on. A given subhalo
merger tree thus contains all subhaloes that can be linked via their descendants to one specific
subhalo at z = 0. The trees link 760 million subhaloes for the Millennium Simulation and
590 million subhaloes for the Millennium-II Simulation. For the central subhalo of a z = 0
galaxy-mass halo (M ≈ 1012 M�), its subhalo merger tree typically consists of 90 subhaloes
in the Millennium Simulation and 2800 subhaloes in the Millennium-II Simulation.

2.2.2 Halo Fragmentation

In this paper, as in our previous work [Fakhouri and Ma, 2008, McBride et al., 2009],
our focus is on the merger and assembly histories of FOF haloes. To do this we must
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zd Sim
1010−11M� 1011−12M� 1012−13M� 1013−14M� >1014M� Total

Np = 1 Np ≥ 2 1 ≥ 2 1 ≥ 2 1 ≥ 2 1 ≥ 2

0.06
M 0 0 0 0 321489 90922 14504 45281 3 4817 477016
MII 214045 25292 12583 17107 13 3279 0 486 0 36 272841

0.51
M 0 0 0 0 306142 98664 11442 39469 0 2757 458474
MII 224865 29170 12422 18405 7 3199 0 421 0 20 288509

1.08
M 0 0 0 0 236280 137729 4197 32349 0 976 411531
MII 220703 49811 8473 23221 1 2985 0 316 0 8 305518

2.07
M 0 0 0 0 126926 133965 629 12746 0 73 274339
MII 202572 80435 4772 24874 2 2128 0 121 0 0 314904

Table 2.1: The number of merger events in the two Millennium simulations at four repre-
sentative redshifts (z ≈ 0, 0.5, 1, and 2). At each z, we list the number of descendant FOF
haloes that have a single progenitor halo (Np = 1, i.e., no mergers) and multiple progenitors
(Np ≥ 2), for five descendant mass bins (left to right). The descendant mass here refers to
the halo mass at the redshift listed rather than at the present day. Only haloes contain-
ing more particles than our minimum cutoff (1000 for descendants; 40 for progenitors) are
counted. The higher-resolution Millennium-II Simulation dominates the contribution to the
merger statistics of M0 . 1012M� haloes, while the larger-volume Millennium Simulation
dominates the contribution to cluster-mass haloes.

first construct merger trees of the FOF haloes from the underlying subhalo trees described
in Section 2.2.1. Such construction is nontrivial due to halo fragmentations: subhaloes
of a progenitor FOF halo may have descendants that reside in more than one FOF halo.
Sometimes this is due to a physical unbinding event in which a subhalo formerly bound to
an FOF is ejected out of the FOF system. Sometimes the fragmentation is spurious – a
subhalo may oscillate in and out of the FOF group before finally settling in. Sometimes the
FOF algorithm incorrectly groups subhaloes that are unbound but only happen to pass by
one another and should not be associated as a single FOF group.

We presented detailed comparisons in Fakhouri and Ma [2008, 2010] of three types of al-
gorithms – snip, stitch, and split – for handling these fragmentation events. In the Appendix
we summarize these algorithms and quantify the systematic differences in the merger rates
derived from each algorithm.

For the main results presented in § 2.3 below, we use the split-3 algorithm, in which
the subhalo fragments that pop out of an FOF halo are either snipped or split depending
on a simple criterion. The fragmented subhalo is snipped if it is observed to remain in the
FOF halo for all 3 snapshots immediately preceding the fragmentation event; in this case the
ancestral link between fragment and FOF is severed. If the fragmented subhalo is not in the
FOF halo for all 3 preceding snapshots, it is interpreted as distinct and is split off from the
FOF. The split-3 algorithm generally gives very similar results to the stitch-3 algorithm used
in Fakhouri and Ma [2008], e.g., the two methods produce merger rates that agree to within
10% for the redshifts and mass ranges that we have statistics for. The only exception is in
the major merger regime for low-mass haloes at low redshift (z . 1), where split-3 is lower
than stitch-3 by up to 30% (see Fig. 2.10 in Appendix). Overall, split-3 appears slightly
more robust at handling spurious FOF linking events in this regime (also see Fakhouri and
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Ma 2010, Genel et al. 2009). As discussed in the Appendix, however, the exact definition
of what constitutes a merger may be situation-dependent, meaning that no single method is
perfect in all cases.

2.2.3 Extracting Merger Rates and Mass Accretion Histories

From the merger trees of FOF haloes obtained by applying a given fragmentation al-
gorithm, we extract a merger catalog. Each catalog provides us with a list of descendant
FOF haloes at redshift zd ≥ 0 with mass M0, and for each descendant halo, its set of Np

FOF progenitors at zp = zd + ∆z, where Np can range from 1 (i.e. a single progenitor)
to a large number, depending on the halo mass and the value of ∆z. We label the rank-
ordered progenitor mass with Mi, i ∈ (1, 2, . . . , Np), and M1 ≥ M2 ≥ . . .MNp . To ensure
that only numerically resolved haloes are included in our study, we impose a minimum of
1000 particles for the descendant haloes and 40 particles for the progenitor haloes. For the
Millennium Simulation, this criterion corresponds to a minimum halo mass of 1.2× 1012 M�
for the descendant and 4.7 × 1010 M� for the progenitor. For Millennium-II, the minimum
masses are 9.4 × 109 M� and 3.8 × 108 M� for the descendant and progenitor haloes. We
emphasize that the mass of a descendant halo refers to its mass at a given redshift zd and
not its ultimate mass at z = 0 (unless zd = 0).

We compute the merger rates at redshift z as a function of descendant mass M0 and pro-
genitor mass ratio ξ = Mi/M1 (for i > 1). We define B(M0, ξ, z) to be the number of mergers
per Mpc3, dM0, dξ, and ∆z with mass M0 ± dM0/2 and mass ratio ξ ± dξ/2. As discussed
in Fakhouri and Ma [2008], we find the mean merger rate per halo, B(M0, ξ, z)/n(M0, z) ≡
dNm/dξ/dz, where n(M0, z) is the number density of haloes, to have a particularly simple
dependence on the merger parameters. This rate, when expressed in per redshift units, is a
dimensionless quantity that gives the mean number of mergers per halo per unit z per unit
ξ. To avoid artificial boundary effects at z = 0, we use the two outputs at z = 0.12 and 0.06
to compute the z ∼ 0 merger rate.

To compute the mass accretion histories and accretion rates of haloes, we start with
a given descendant FOF halo at some redshift and identify the mass of its most massive
progenitor at an earlier snapshot. This process is iterated backwards in time to construct
the main branch of the descendant’s merger tree. The mass trajectory along the main branch
of a descendant gives us its mass accretion history M(z) (see. e.g., Lacey and Cole 1993),
from which we can compute the mass accretion rate Ṁ as a function of z. Note that the
progenitor halo on the main branch of a descendant halo at a given snapshot need not be
the most massive progenitor of that descendant at that snapshot.

2.2.4 Definitions of Halo Mass

In our prior analysis of the Millennium halo merger rate [Fakhouri and Ma, 2008], we
assigned the halo mass using the standard FOF massMFOF . This mass is simply proportional
to the number of particles assigned to each FOF halo by the FOF group finder. An alternative
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Figure 2.1: Left panel: The mean merger rate of z = 0 FOF haloes, B(M0, ξ), as a function
of the mass ratio of the progenitors (ξ) and the descendant halo mass (M0) over 6 orders
of magnitude: 1010 to 1016M� from right (blue) to left (red). The Millennium-II results are
shown in solid, while the results from the Millennium are in dashed curves. Right panel:
The mean merger rate per halo, B(M0, ξ)/n(M0) ≡ dNm/dξ/dz. Normalizing B(M0, ξ) by
the halo number density n(M0) collapses the curves in the left panel to nearly a single curve,
indicating that dNm/dξ/dz is nearly independent of M0 and has a simple universal form.
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definition that we will use throughout this paper is the sum of the masses of an FOF’s
subhaloes, MSH . This definition has been shown recently by Genel et al. [2009] to be more
robust than MFOF since the SUBFIND algorithm assigns only gravitationally bound particles
to each subhalo.

Overall, we find the halo mass functions computed using these two mass definitions to
differ at the 5% level at all halo masses. This difference can be caused by a slight excess
of mass in FOF haloes due to unbound or spuriously linked particles, as well as by a slight
deficit in MSH when SUBFIND does not account for all the mass physically associated with a
subhalo. When restricted to the subset of haloes that are undergoing very minor mergers,
however, Genel et al. [2009] noted that the FOF mass of the smaller progenitor increases
as it approaches the more massive progenitor. For minor mergers involving mass ratios as
low as ξ ∼ 0.001, the ratio MFOF/MSH for the smaller progenitor can rise from 1.03 to 1.5
prior to mergers. We will therefore use MSH for halo masses in this study. We note that
this discrepancy occurs only for the small subset of low-mass haloes that are in the process
of merging onto a much larger halo; its effect on the total halo mass function is therefore
limited to ∼ 5%.

2.3 Results

To provide a sense for the halo statistics and merger events available from the two Millen-
nium simulations, we list in Table 2.1 the number of descendant haloes (above 1000 particles)
and their progenitors (above 40 particles) at four representative redshifts for five broad mass
ranges from 1010 to > 1014M�. The results presented below are based on these events and
those at other redshifts.

2.3.1 Merger Rates

Present-Day Merger Rates

The left panel of Fig. 2.1 presents B(M0, ξ, z = 0), the z = 0 mean number of mergers per
unit volume, descedant mass M0, mass ratioξ, and redshift as a function of progenitor mass
ratio ξ from the two Millennium simulations (solid for Millennium II; dashed for Millennium).
The colored curves correspond to different mass bins ranging from 1010 M� (blue) to 1016 M�
(red). The rates are determined from the z = 0.06 and 0.12 merger tree catalogue since,
as described in Section 2.2.3, we would like to avoid the z = 0.0 snapshot due to the
boundary effects that interfere with the post-processing algorithms used to handle the halo
fragmentation events. The split-3 algorithm is used here; other algorithms yield qualitatively
similar agreement between the two simulations (see Appendix for details).

The right panel of Fig. 2.1 shows the mean merger rate per halo, B/n = dNm/dξ/dz,
where each of the curves in the left panel has been divided by the number density of haloes
in that mass bin. The collapse of the curves to nearly a single curve shows that the per halo
merger rate dNm/dξ/dz is nearly independent of halo mass. This collapse is similar to that
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seen in Fig. 6 of Fakhouri and Ma [2008] for the Millennium Simulation. A comparison of
the two figures helps illustrate the large dynamic range achieved when the two Millennium
simulations are combined: the halo mass range has been increased by two orders of magnitude
in Fig. 2.1, and for each mass bin, the progenitor mass ratio is extended downward by also
a factor of ∼ 100, reaching ξ ∼ 10−6 for M0 = 1015 M�.

The overlap in the merger parameter space between the two simulations is seen to be
fairly small in Fig. 2.1. The two simulations are therefore quite complementary: Millennium
II allows us to probe descendant and progenitor masses that are a factor of 125 smaller than
Millennium, whereas the larger box of the Millennium Simulation provides robust statistics
for the rare events that are poorly sampled in Millennium II, e.g., major mergers of massive
haloes (i.e. the lower right corner of left panel of Fig. 2.1). Over the small region of
overlap, Fig. 2.1 shows good agreements between the merger rates determined from the two
simulations: both the power-law dependence on ξ and the weak dependence on M0 carry
over from Millennium to Millennium II. Boylan-Kolchin et al. [2009b] show that many other
quantities, such as halo mass functions, formation times, and subhalo abundances, have a
much wider range of overlap and that the two simulations are in excellent agreement for
these quantities as well.

The weak dependence of the merger rate on M0 is shown explicitly in Fig. 2.2. Each
curve here shows the mean rate per halo, dNm/dξ/dz, integrated over different ranges of
ξ ≥ ξmin, where ξmin = 0.3, 0.10.01, and 10−3 (from bottom up). Major mergers with mass
ratio within 1:3 (bottom curve) are clearly much more rare than minor mergers (top curves),
but all the curves have very similar power-law dependence on M0. Over about 4.5 orders of
magnitude in M0, the rate increases by only a factor of ∼ 3, suggesting that the merger rate
scales roughly as ∼M0.1

0 . A more accurate fit is provided in Sec 2.3.1 below.

z > 0 Merger Rates

The Millennium Simulation provided sufficient halo statistics for us to determine the
halo merger rates up to z ∼ 6 in our previous study. The higher mass resolution of the
Millennium-II Simulation now allows us to probe redshifts up to ∼ 15. The combined results
from the two simulations are shown in Fig. 2.3, which plots the mean merger rate per unit
redshift (left panel), dNm/dz, and per unit time (right panel), dNm/dt, as a function of
redshift. These merger rates have been integrated over different ranges of ξ ≥ ξmin, ranging
from major mergers with ξmin = 0.3 (solid curves at bottom), to extreme minor mergers
with ξmin = 10−5 (dotted curve at top). Within each line type, the colors indicate different
descendant mass bins ranging from 1010 (blue) to > 1014M� (red). Only the higher mass
bins are plotted as ξmin is lowered. This is because minor mergers of low-mass haloes fall
below the mass resolution limit.

Fig. 2.3 indicates that the general trends reported in Fig. 8 of Fakhouri and Ma [2008]
continue to hold in the Millennium-II Simulation. The dimensionless rate dNm/dz is remark-
ably independent of redshift up to z ∼ 15, whereas the rate per Gyr, dNm/dt, rises with
increasing z because a unit redshift corresponds to a shorter time interval at higher z. This
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Figure 2.2: The z ≈ 0 mean merger rate per halo (per unit z), dNm/dz, as a function of
descendant mass, M0, for four ranges of progenitor mass ratio ξ. The Millennium-II results
are shown in solid, while the original Millennium results are the dashed curves. The upper
curves include increasingly more minor mergers. The mass dependence is weak over five
orders of magnitude in mass and is well approximated by a power law ∝M0.133

0 .

redshift dependence is similar to that obtained by Guo and White [2008] for the dimension-
less growth rates due to mergers of both haloes and galaxies (based on semi-analytic models)
from the Millennium Simulation.

Merger Rate Fitting Forms

Since the merger statistics in Figs. 2.1-2.3 are very consistent between the two Millennium
simulations, we use an analytical form similar to equation (12) of Fakhouri and Ma [2008]
to fit the dimensionless mean merger rate dNm/dξ/dz (in units of mergers per halo per unit
redshift per unit ξ) from the combined Millennium dataset. An appealingly simple feature
of this fitting form is that it is separable in the variables M0, ξ, and z:

dNm

dξdz
(M, ξ, z) = A

(
M

1012M�

)α
ξβ exp

[(
ξ

ξ̃

)γ]
(1 + z)η . (2.1)

We find the best-fit parameters to be (α, β, γ, η) = (0.133,−1.995, 0.263, 0.0993) and (A, ξ̃) =
(0.0104, 9.72× 10−3). The near z-independence in the left panel of Fig. 2.3 is more striking
than in our 2008 study due to the larger coverage in redshift here. In view of this lack of
z-dependence, we choose to use the simpler factor of (1 + z)η here rather than the growth
rate of the density field used in Fakhouri and Ma [2008]. In comparison to our 2008 study,
the power-law slope of the mass dependence is slightly steeper here (α = 0.133 vs. 0.089),
whereas the power-law slope of the ξ dependence is slightly shallower here (β = −1.995 vs.
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Figure 2.3: Time evolution of the mean halo merger rates per halo in units of per redshift,
dNm/dz (left panel), and in units of per Gyr, dNm/dt (right panel) from the two Millen-
nium simulations. The descendant mass M0 and progenitor mass ratio ξ over five orders of
magnitude are plotted. The weak dependence of the rates on M0 is shown by the different
colors: ≈ 1010 (blue), 1011 (cyan), 1012 (green), 1013 (orange). to > 1014M� (red). The line
types denote different types of mergers, ranging from major mergers (solid) to extreme minor
mergers (dotted) The rate dNm/dz on the left is remarkably constant out to z ∼ 15; the
rapid rise of dNm/dt with increasing z on the right is therefore largely due to the cosmological
factor dt/dz, which spans a shorter time per unit z with increasing z.



54

−2.17). These differences are primarily due to the differing definitions of halo mass used in
the two studies (FOF vs. sum of subhalos; see Sec. 2.4) and the refinements in our stitch-3
algorithm (see the Appendix).

We note that the left panel of Fig. 2.3 does show mild variations in the redshift dependence
among the different ξ bins: the rate increases slightly with increasing z for major mergers,
while it declines somewhat for the very minor mergers (ξmin ∼ 10−4 to 10−5). Since this
variation is so minor and the minor merger regime is more prone to numerical resolution
issues, we have opted for simplicity rather than a more complicated fitting form.

2.3.2 Mass Growth Rates and Assembly Histories

In the last section, we presented results for the instantaneous rates of halo mergers as
a function of redshift, descendant mass, and progenitor mass ratio. Here, we examine a
related set of statistics that quantify the mass growth of haloes. These two quantities are
clearly related since mergers are a primary process for haloes to gain mass, but mergers are
not the only process. As discussed at length in Fakhouri and Ma [2010], “diffuse” accretion
of unresolved haloes or dark matter particles also makes an important contribution to halo
growth. In the mass assembly history of a halo, mergers with other haloes typically result
in more discrete but less frequent changes in the halo mass, while diffuse accretion leads to
a more continuous change.

Mass Accretion Rates

To compute the total mass growth rate of a halo of a given mass M0 at time t, we follow
the main branch of its merger tree (see § 2.2.3) and set Ṁ = (M0 −M1)/∆t, where M0 is
the descendant mass at time t and M1 is the mass of its most massive progenitor at time
t−∆t. The mean value of Ṁ as a function of z for the complete set of resolved haloes in the
two Millennium simulations is plotted in Fig. 2.4 (solid curves). Nine ranges of M0 spanning
five orders of magnitude (1010 M� to 1015 M� from bottom up) are shown. Fig. 2.4 can be
compared directly to Fig. 5 of McBride et al. [2009] for the Millennium Simulation alone.
The rising 〈Ṁ〉 with increasing redshift in our earlier study is seen to continue to z ∼ 14,
and the nearly linear scaling of 〈Ṁ〉 with halo mass is extended down to ∼ 1010M�.

We find the mass accretion rates shown in Fig. 2.4 to be very well fit by the forms given by
equations (8) and (9) of McBride et al. [2009]. The coefficients quoted there only need minor
adjustments after the Millennium-II results are added. We suggest the following updated
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Figure 2.4: Mean mass accretion rate of dark matter onto haloes as a function of redshift
from the two Millennium simulations (solid curves). Halo masses ranging from 1010M� to
> 1014M� are plotted. The dashed curves show the accurate fit provided by equation (2.2).
The right-hand side of the vertical axis labels the mean accretion rate of baryons, Mb,
assuming a cosmological baryon-to-dark matter ratio of 1/6.
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Figure 2.5: Differential (top) and cumulative (bottom) distributions of the baryonic accretion
rates, Ṁb, for halo masses 1010 (left), 1012 (middle), and > 1014M� (right). Within each
panel, the accretion rates at z = 0, 0.5, 1, and 2 are shown (except the right panel, where such
massive haloes are present only at z = 0 and 0.5). The distributions are seen to broaden
significantly with increasing z. The vertical axis in each of the bottom panels labels the
number of haloes per comoving Mpc3 that are accreting at a rate of Ṁb or above.
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fits to the mean and median mass growth rates of haloes of mass M at redshift z:

〈Ṁ〉mean = 46.1 M�yr−1

(
M

1012 M�

)1.1

×(1 + 1.11z)
√

Ωm(1 + z)3 + ΩΛ

〈Ṁ〉median = 25.3 M�yr−1

(
M

1012 M�

)1.1

×(1 + 1.65z)
√

Ωm(1 + z)3 + ΩΛ . (2.2)

At a given mass and redshift, the mean rate is overall higher than the median rate since
the distribution of Ṁ has a long positive tail (see Fig. 2.5). The dashed curves in Fig. 2.4
illustrate the remarkable accuracy of this formula in matching the simulation results over
the broad ranges of halo mass and redshift shown.

The right-hand-side label along the vertical axis of Fig. 2.4 shows the corresponding
mean accretion rate of baryons, Ṁb, where we have assumed a cosmological baryon-to-dark
matter ratio of Ωb/Ωm = 1/6. These values are meant to provide a rough approximation for
the mean rate at which baryons are being accreted near the virial radius of a dark matter
halo. Most of these baryons are presumably in the form of warm or hot ionized hydrogen
gas that is being channeled into the haloes along cosmic filaments, and various gas cooling
and feedback processes will likely affect the baryon accretion rate. Many studies on galaxy
formation are aimed at quantifying these physical processes under which these baryons are
cooled to form neutral gas, molecular gas, and stars, and the feedback processes that heat
up the baryons and lead to large-scale outflows.

In Fig. 2.5 we show the differential (top) and cumulative (bottom) distributions of the
baryonic accretion rate for three halo masses (left to right panels) and four redshifts. A
cosmic ratio of Ωb/Ωm = 1/6 is again assumed to convert the dark matter rate into a
baryonic rate. The distributions are strongly peaked at the mean values presented in Fig. 2.4
but exhibit long tails towards high positive values due to major merger events and towards
negative values due to tidal stripping and halo fragmentation. Not only is the mean accretion
rate higher at higher z, the distribution of Ṁb is also broader at higher z. For example, the
comoving density of Milky Way-mass haloes that are accreting baryons at a rate of at least
100M� per year is approximately ten times greater at z = 2 (∼ 2 × 10−4 Mpc−3) than at
z = 0 (∼ 3× 10−5 Mpc−3).

Mass Assembly Histories

The top panel of Fig. 2.6 shows the mean mass assembly history M(z) for nine bins of
M0 (at z = 0) from 1010 to > 1014 (from top to bottom). The solid curves show the results
obtained from the main branch (i.e. the most massive progenitor) along the merger tree
for all the z = 0 haloes in the two Millennium simulations. The dotted curves show the
M(z) obtained from integrating the fitting formula for the mean Ṁ in equation (2) from
the present-day to some redshift z. The agreement is generally very good, in particular at
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Figure 2.6: Top panel: Mean mass assembly history M(z) of all z = 0 resolved dark matter
haloes in the two Millennium simulations (solid curves). Nine ranges of halo mass from
1010M� (top blue) to 1015M� (bottom red) are plotted. The dotted curves show the predic-
tions given by integrating the mean Ṁ of our fitting formula (eq. 2.2). The lower four mass
bins contain only haloes from the Millennium-II Simulation. For the upper five mass bins in
which the haloes are drawn from both simulations, we use a solid circle to label the redshift
above which only Millennium-II haloes contribute since the Millennium Simulation can no
longer resolve haloes at such high z. The relatively smooth connection at the circle illustrates
the consistency between the two simulations. Lower panel: Median mass assembly history
M(z). For clarity, only two mass bins are plotted. Solid lines are from the simulations,
dotted lines from the integration of the mean Ṁ from eq. (2.2), and dashed lines show the
fits from Zhao et al. (2009).
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z . 8. A perfect agreement is not expected because the two quantities, Ṁ and M(z), are
not determined from the same set of haloes in the simulations: the Ṁ statistics are obtained
from all haloes of a given mass M at a given z, whereas the M(z) curves show only the mean
mass of the most massive progenitors at redshift z for the z = 0 haloes of mass M , which
are a small subset of the haloes of the same mass that are present at z in the simulation
boxes. In view of this difference, the agreement between the solid and dotted curves in the
top panel of Fig. 2.6 is in fact quite remarkable. Over the large range of mass and redshift
shown in Fig. 2.6, we have checked that the direct fits for the mean M(z) proposed in recent
literature (e.g. Boylan-Kolchin et al. 2009a, McBride et al. 2009) provide a good match at
low z, but integrating the fit for 〈Ṁ〉 in equation (2.2) provides a closer match at high z,

The solid curves in the bottom panel of Fig. 2.6 show the median, rather than the
mean, mass assembly history obtained from the simulations for two mass bins centered at
M0 = 1010M� and 1012M�. We note that integrating our fit to the median Ṁ does not
yield the median M(z) because unlike the mean Ṁ , the median and derivative operations
do not commute. The median and mean M(z) are sufficiently similar, however, that we find
integrating our mean Ṁ to yield relatively good agreement with the median M(z) (dotted
curves). For comparison, the fit of Zhao et al. [2009] to the median M(z) is shown as dashed
curves. Their fit appears to be systematically lower than the Millennium results at z > 1.

In principle, we can integrate the (mass-weighted) halo merger rate in equation (1) and
obtain the portion of the dark matter accretion rate 〈Ṁ〉 in equation (2) that is due to
mergers. As emphasized in Fakhouri and Ma [2010], however, accretion of “diffuse” mate-
rial (consisting of unresolved haloes and tidally stripped mass) also makes a non-negligible
contribution to 〈Ṁ〉; equation (2) therefore can not be obtained solely from equation (1).

2.3.3 Merger Statistics over a Halo’s History

In the last two sections we quantified the halo merger rates, the mass growth rates, and
the assembly histories of haloes. These quantities can be combined to predict a number of
additional useful merger statistics over a halo’s history.

Cumulative number of mergers

One such statistic is Nm(ξmin,M0, z0, z), the total number of mergers that a halo of mass
M0 at redshift z0 has encountered between z0 and an earlier z. The mergers can be charac-
terized by major or minor mergers by imposing a limit of ξmin on the progenitor mass ratio
(evaluated at the redshift of the merger). These numbers are essential for making theoretical
predictions of galaxy properties that are impacted by mergers, e.g., the dynamics and sta-
bility of stellar disks, the star formation rate, and the color and morphology transformation
due to mergers.

Fig. 2.7 shows Nm(ξmin,M0, z0, z) for the complete set of resolved haloes at z0 = 0 (left),
1 (middle), and 2 (right) from the two Millennium simulations. In each panel, five ranges of



60

0 1 2 3 4 5 6 789 12
z

0.01

0.1

1

10

#
of

M
er

ge
rs

be
tw

ee
n
z 0

an
d
z

ξ ≥ 0.1
ξ ≥ 0.3

z0 = 0

0 1 2 3 4 5 6 789 12
z

z0 = 1

0 1 2 3 4 5 6 789 12
z

0.01

0.1

1

10

#
of

M
er

ge
rs

be
tw

ee
n
z 0

an
d
zz0 = 2

Figure 2.7: Mean number of mergers between redshifts z0 and z experienced by a halo
at z0 = 0 (left), 1 (middle), and 2 (right) from the joint dataset of the two Millennium
simulations. In each panel, the solid and dashed curves represent mergers with a progenitor
mass ratio (defined at the time of merger) of ξ ≥ 0.3 and ξ ≥ 0.1. For each mass ratio cutoff,
five ranges of halo mass are shown (from bottom up): 1010 (blue), 1011 (cyan), 1012 (green),
1013 (orange), and > 1014M� (red). The lower-mass haloes are from the Millennium-II
Simulation, whereas the cluster mass haloes are mainly from the Millennium Simulation.
For mass bins in which the haloes are drawn from both simulations, we use a solid circle
to label the redshift above which only Millennium-II haloes contribute since the Millennium
can no longer resolve haloes at such high z. The fact that the curves connect quite smoothly
are another indication of the consistency between the two simulations.
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Figure 2.8: Same as the left panel of Fig. 2.7, with the addition of the predictions (thin
curves) computed from eq. (2.3). The agreement with the simulation results (thick curves)
is excellent, suggesting that eq. (2.3) can be used to make analytic predictions for merger
statistics over a halo’s history.

M0 are plotted for redshift up to 12. Major mergers with ξ ≥ 0.3 are shown by solid curves,
while the more minor mergers with ξ ≥ 0.1 are shown in dashed curves.

Fig. 2.7 shows that the mean trend of the number of mergers experienced over a halo’s
lifetime is a sensitive function of the halo mass and merger mass ratio. haloes of Milky-Way
mass at the present day (green curves) have on average experienced one major merger event
(ξ ≥ 0.3) per halo since z ≈ 2.3, and one merger with ξ ≥ 0.1 per halo since z ≈ 1. When
extended to z ≈ 7, these haloes have on average encountered ∼ 3 mergers with ξ ≥ 0.3,
and ∼ 7 mergers with ξ ≥ 0.1. The formation redshifts as well as the last merger epoch for
more massive haloes are both lower, a well-known trend in CDM-based cosmology (see, e.g.,
Lacey and Cole 1993, 1994). Cluster-sized haloes with M0 ∼ 1014M�, for instance, have on
average experienced one major merger event since z ≈ 1.2, and one merger with ξ ≥ 0.1
since z ≈ 0.6.

It is possible to compute the cumulative number of mergers, Nm(ξmin,M0, z0, z), shown
in Fig. 2.7 from the fitting formula for the merger rate dNm/dξ/dz in equation (2.1) and
the mass accretion history M(z) obtained by integrating 〈Ṁ〉 in equation (2.2). Specifically,
these quantities are related by

Nm(ξmin,M0, z0, z) =

∫ z

z0

dz

∫ 1

ξmin

dξ
dNm

dξdz
(M(z), ξ, z) . (2.3)

Since we are interested in the number of mergers over a halo’s past history, we must take
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Figure 2.9: Cumulative distribution of the redshift at which the last (i.e. most recent) major
merger occurred in a halo’s past history for haloes at z0 = 0, 1, and 2 (left to right) in the two
Millennium simulations. The vertical axis gives the probability that the last major merger
occurred between z0 and redshift z. The curves are defined the same way as in Fig. 2.7.

into account the fact that a halo’s mass generally decreases with increasing z, and that
the merger rate depends on the halo mass (albeit weakly). The merger rate dNm/dξ/dz at
redshift z in the integrand above therefore should be evaluated using the mean mass M(z)
that a halo of mass M0 at z0 had at the earlier z. The results are shown in Fig. 2.8, which
is identical to the left panel of Fig. 2.7 except that we have added the theoretical curves
(thin curves) for comparison. The agreement with the simulation results (thick curves) is
excellent, suggesting that equation (2.3) can be used to make analytic predictions for merger
statistics over a halo’s history.

Redshift of last major merger

The redshift at which each curve in Fig. 2.7 crosses one merger event along the vertical
axis is a useful quantity since it gives the mean redshift at which a halo has experienced its
last major merger (LMM). The LMM redshift of a halo is closely related to its formation
redshift and may be linked to the time at which the associated galaxy last experienced
prominent star formation activity and morphological changes. To analyze this quantity
further, we show in Fig. 2.9 the distribution of the LMM redshift for haloes at z0 = 0, 1, and
2 (from left to right). Within each panel, five halo masses and two ranges of ξ are plotted.
The vertical axis gives the probability that a halo at a given z0 has had a last major merger
between z0 and z.

Useful merger statistics can be read off from Fig. 2.9. For instance, 50% of present-day
haloes have had a major merger (ξ ≥ 0.3) since z ≈ 1, 1.8, and 3.4 for halo mass 1014, 1012,
and 1010M�, respectively. When more minor mergers with ξ ≥ 0.1 are considered, the
median redshift of the last merger is lowered to 0.4, 0.8, and 1.6 for the three masses. The
assembly history of Milky Way-size haloes is of particular interest; see Boylan-Kolchin et al.
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[2009a] and references therein for a detailed statistical study of this topic. For haloes of
M0 ∼ 1012M� today, the left panel of Fig. 2.9 shows that ∼ 31%, 53%, and 69% of these
haloes have experienced a major merger since z = 1, 2, and 3, respectively. For haloes of
∼ 1012M� at z0 = 1 (middle panel), about 50% of them have had a major merger since
z ≈ 2.7, and for haloes of the same mass at z0 = 2 (right panel), about 50% of them have
had a major merger since z ≈ 3.7.

2.4 Summary and Conclusions

We have combined the halo catalogs from the two Millennium simulations to form an
unprecedentedly large dataset for studying the merger statistics and assembly histories of
dark matter haloes in the ΛCDM cosmology. The two simulations provide, respectively,
11.3 × 106 haloes (between redshift 0 and 6) and 7.5 × 106 haloes (between redshift 0 and
15) above 1000 particles for our study. These haloes and their merger trees have allowed us
to determine the dark matter halo merger rates and mass growth rates from z = 0 to up to
z = 15, for over five orders of magnitude in the descendant halo mass (1010 .M0 . 1015M�)
and progenitor mass ratio (10−5 . ξ ≤ 1). For the small range of overlapping parameter
space between the two simulations, we have found the agreement to be excellent.

For the merger rates, the basic features reported in our earlier study based on the Millen-
nium Simulation alone [Fakhouri and Ma, 2008] are largely preserved in the Millennium-II
Simulation. The mean merger rate per halo, dNm/dξ/dz, is nearly independent of the de-
scendant mass (Fig. 2.1 and 2.2) and scales as ∝M0.133

0 at all redshifts. The merger rate in
units of per redshift is nearly independent of redshift out to z ∼ 15 (left panel of Fig. 2.3);
the rate in units of per Gyr is therefore largely determined by the cosmological factor of
dt/dz and increases roughly as (1 + z)2.5 at z & 1 (right panel of Fig. 2.3). Equation (2.1)
provides an update on our simple analytical fitting form for the merger rate as a function of
M0, ξ, and z.

For the mass growth rates of individual haloes, we have found the mean and median
statistics (Fig. 2.4) to be well approximated by the simple fitting form of our earlier study
[McBride et al., 2009]. The updated coefficients based on the joint dataset from the two
Millennium simulations are given by equation (2.2). The present-day mean and median
rates at which a 1012M� dark matter halo is accreting mass (at the virial radii) are 46.1
and 25.3 M� yr−1, respectively. This rate increases nearly linearly with the halo mass, and
increases with redshift approximately as (1 + z)1.5 at low z and (1 + z)2.5 at z & 1.

We have also presented statistical quantities that track the merger histories of dark matter
haloes cumulatively. Fig. 2.7 presents the number of major mergers experienced by haloes of
various mass between redshift z0 and z for z0 = 0, 1, and 2. Fig. 2.9 presents the probability
that a dark matter halo at redshift z0 will have last experienced a major merger at some
earlier redshift z. Much interesting and useful information regarding the contribution to halo
growth made by major mergers can be read off these figures with ease.

With the addition of results from the Millennium-II Simulation to our previous analysis of
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the Millennium Simulation, the merger rate of dark matter haloes is now well-quantified for
haloes with masses between 1010 and 1015 M� for redshifts z . 15, modulo the uncertainties
inherent in halo definitions and in algorithms for handling fragmentation (see Appendix), for
the cosmology used in the Millennium simulations. Several avenues remain open for future
work, however.

One obvious extension of the results in this paper is to consider the mergers of subhaloes
themselves, as subhalo mergers can be more directly linked to galaxy mergers than can FOF
halo mergers [Angulo et al., 2009, Wetzel et al., 2009]. Furthermore, the structure of the
merger trees produced for the Millennium simulations lends itself naturally to computing
subhalo merger properties. While computing subhalo merger rates and connecting them to
galaxy mergers presents additional challenges – in particular, the issues of assigning stellar
masses to subhaloes, numerical resolution effects, and subhalo identification within larger
FOF haloes – a thorough theoretical understanding of such rates is essential for disentangling
the relative contributions of merging and star formation to the growth of galaxies.

2.5 Appendix: Comparison of Different FOF Merger

Trees

We refer the reader to Section 5 and Figure 8 of Fakhouri and Ma [2009] for a detailed
discussion of the three basic operations – “snip,” “stitch,” and “snip” – that we have im-
plemented and tested for handling the issue of halo fragmentations during the construction
of a merger tree for FOF haloes (see also Section 2.2 of this paper). Briefly, “snip” removes
halo fragmentation events by severing the ancestral link between the fragment subhalo and
its progenitor, “stitch” places the fragment subhalo back into the FOF halo from which
it emerged, whereas “split” removes the fragment subhalo’s progenitor from its FOF halo,
thereby generating a new FOF at the progenitor redshift.

Within the stitch and split algorithms, the operations can be applied either on a subset
of fragments or on all fragments in a given FOF tree. We therefore subdivide each algorithm
into two: stitch-∞ vs stitch-3, and split-∞ vs split-3. The stitch-∞ and split-∞ algorithms
perform the given operation on all FOF fragments. This is done recursively from the redshift
of fragmentation, going forward in redshift for stitch-∞, and backwards in redshift for split-
∞, until there are no more fragments present in the simulation merger trees. As a result of
this recursive process, stitch-∞ identifies the first (highest-z) snapshot in which two subhaloes
join the same FOF to be their merger time, whereas split-∞ selects the last (lowest-z)
snapshot.

These algorithms introduce some complications, however. One particular problem faced
by split-∞ is the fact that there exists a firm cutoff at z = 0, beyond which we do not have
merger or fragmentation information. As a result, although a fragment may actually finally
merge beyond z = 0, split-∞ will incorrectly assign its final merger to an earlier redshift.
This results in a pile-up of merger events at z = 0 and, as we will show, artificially raises
the low-z merger rate with respect to the high-z rate. Since there is no analogous hard
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limit at high z, stitch-∞ does not suffer from this same behavior, and fragment mergers
are re-distributed across all high redshifts evenly. On the other hand, any chance encounter
between subhaloes that results in the FOF algorithm spuriously linking them together is
interpreted as a real merger event by stitch-∞. The subhaloes, which may never interact
again, are nonetheless forced to join the same FOF group down to z = 0.

The stitch-3 and split-3 algorithms are designed to limit the propagation effects of stitch-
∞ and split-∞. Stitch-3 performs the stitching operation on any FOF fragment that is
observed to remerge with its progenitor FOF’s main branch within 3 snapshots of the frag-
mentation event. Any fragments that do not satisfy this criterion are snipped, resulting in
an orphan halo that may or may not later remerge. The split-3 algorithm performs the split
operation on any FOF fragment that is not a member of the main branch FOF at some point
in the 3 snapshots before the fragmentation event. Again, fragments that do not satisfy this
criterion are snipped.

Neither stitch-3 nor split-3 adequately removes all remerger events. Depending on the
context this may be either a weakness or a strength: although the notion of halo remergers
may be considered as multiple counting from a theoretical perspective, observers will likely
count as signatures all events that trigger mergers, regardless of whether they are the first
or last entry.

Moreover, both split-3 and stitch-3 have superior time convergence properties to the snip
algorithm, in which the remerger problem is entirely unmitigated. Thus, stitch-3 and split-3
stand as intermediates between the snip and stitch-∞/split-∞ algorithms.

An immediate concern is whether the halo mass function is heavily modified by the
destruction/creation of FOFs due to the stitch/split operations. We have verified that these
operations do not modify the mass function severely. For stitch-3 and split-3, the deviations
are within 3% of the unprocessed mass function at all redshifts, while deviations of up to
10% exist for the stitch-∞ (split-∞) algorithm at low (high) redshifts.

Fig. 2.10 compares the five post-processing algorithms directly by presenting ratios of the
per-halo merger rate, dNm/dξ/dz, as a function of progenitor mass ratio ξ at five redshifts
(z = 0.06, 0.5, 1, 2, and 4 from top bottom). Each column presents the ratio of the merger
rate of a particular post-processing algorithm (left to right: snip, stitch-3, stitch-∞, split-
∞) to the merger rate extracted from the split-3 trees presented throughout this paper.
Different mass bins are presented by different colored curves ranging from 1010 M� (blue) to
1015 M� (red). We note that though the region of overlap between Millennium (dashed) and
Millennium II (solid) is small, there appears to be smooth continuation between these two
sets of curves for all post-processing algorithms.

The merger rates computed by all algorithms converge towards high z, though there is
some residual disagreement with split-∞ and snip at the ∼ 20% level. There are, however,
distinct systematic differences among the algorithms when z < 4. Since we presented stitch-3
as our algorithm of choice for handling halo fragmentation in Fakhouri and Ma [2008], we
focus on the comparison of stitch-3 and split-3 in this section. The origins of the differences
between the other algorithms and split-3 can be inferred from the discussion of the algorithms
earlier in this section.
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Figure 2.10: Comparison of five algorithms used to handle halo fragmentation events in
the FOF merger trees: snip, stitch-3, stitch-∞, split-∞, and split-3. Results presented
throughout this paper are based on the split-3 tree. Plotted as a function of the progenitor
mass ratio ξ (left to right) are the ratios of the merger rates, dNm/dξ/dz, between each of the
first four algorithms relative to the split-3 results. Five redshifts are shown: z = 0, 0.5, 1, 2
and 4 (top to bottom). Within each panel, up to nine mass bins are shown: 1010M� (blue)
to > 1014M� (red). The Millennium Simulation results are presented with dashed curves
and Millennium II with solid curves. The systematic differences amongst the five algorithms
are discussed in the text.
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The second column of Fig. 2.10 shows that stitch-3 and split-3 are in excellent agreement
at all ξ for high mass haloes (M0 > 1012). Low mass haloes, however, can show significant
deviations in the merger rate. This is true especially in the major merger regime, where
the merger rate predicted by stitch-3 is over 50% higher than split-3. This distinction
was not detectable using Millennium alone, as the mass resolution limited our analysis to
M0 ≥ 1012M�.

To understand this deviation we have studied a subset of halo mergers in detail by
analyzing halo tracks, velocities, and merger histories. In particular, we have constructed
a number of criteria to determine whether a given merger is actually a spurious encounter:
if the relative velocity of the two haloes greatly exceeds the more massive halo’s maximum
circular velocity, if the angle between the velocity vectors of the two haloes exceeds 70◦ at the
time of merger, or if the FOF algorithm only associates the two haloes for two snapshots out
of the eight snapshots centered on the merger snapshot, then the merger is deemed spurious.
A qualitative look at three-dimensional halo trajectories finds that this criteria does a good
job of identifying chance halo encounters and premature mergers.

For halo mergers with 1.1 × 1010 < M0 < 1.3 × 1010 and ξ > 0.1 at z = 0, we find
that stitch-3 identifies 1, 304 mergers, while split-3 only identifies 738 mergers. Of these, 505
mergers are in common, leaving split-3 with 233 mergers that are not in stitch-3 and stitch-3
with 799 mergers that are not in split-3. Of the 505 mergers in common, only 4 (0.8%) are
deemed spurious by our criterion. Similarly, of the 233 mergers unique to split-3, only 12
(5.2%) are deemed spurious. Of the 799 mergers unique to stitch-3, however, 589 (73.7%) are
deemed spurious. These spurious mergers are primarily comprised of chance encounters in
which the two otherwise unassociated haloes merge for a snapshot or two and then disconnect.
While split-3 correctly splits these events, stitch-3 does not and consequently inflates the
merger rate. When these spurious mergers are removed, the remaining 210 mergers unique
to the stitch-3 algorithm bring the stitch-3 and split-3 rates into close agreement.

We note that depending on the context, one may choose one algorithm over another.
Stitch-∞ provides the first encounter merger rate, but is known to link chance-encounter
haloes that should not be linked. Split-∞ provides the last encounter merger rate, but cannot
be trusted for z < 1 and may incorrectly underpredict the merger rate due to spurious
fragmentation. Split-3 stands in between both algorithms: it does not propagate up and
down the tree and does not heavily modify the distribution of FOFs, but it does double
count some halo remerger events. This may be odious to the theorist, but may yield the
most appropriate merger rate for comparison to observation.
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Part III

The Mass Accretion Histories of Dark
Matter Haloes
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Chapter 3

Mass Accretion Rates and Histories of
Dark Matter Haloes
McBride, James; Fakhouri, Onsi ; Ma, Chung-Pei — October 2009
Monthly Notices of the Royal Astronomical Society, Volume 398, Issue 4, pp. 1858-1868

We use the extensive catalog of dark matter haloes from the Millennium simu-
lation to investigate the statistics of the mass accretion histories (MAHs) and
accretion rates of ∼ 500, 000 haloes from redshift z = 0 to 6. We find only
about 25% of the haloes to have MAHs that are well described by a 1-parameter
exponential form. For the rest of the haloes, between 20% (Milky-Way mass)
to 50% (cluster mass) experience late-time growth that is steeper than an ex-
ponential, whereas the remaining haloes show plateau-ed late-time growth that
is shallower than an exponential. The haloes with slower late-time growth tend
to reside in denser environments, suggesting that either tidal stripping or the
“hotter” dynamics are suppressing the accretion rate of dark matter onto these
haloes. These deviations from exponential growth are well fit by introducing
a second parameter: M(z) ∝ (1 + z)βe−γz. The full distribution of β and γ
as a function of halo mass is provided. From the analytic form of M(z), we
obtain a simple formula for the mean accretion rate of dark matter, Ṁ , as a
function of redshift and mass. At z = 0, this rate is 42M� yr−1 for 1012M�
haloes, which corresponds to a mean baryon accretion rate of Ṁb = 7M� yr−1.
This mean rate increases approximately as (1 + z)1.5 at low z and (1 + z)2.5

at high z, reaching Ṁb = 27, 69, and 140 M� yr−1 at z = 1, 2, and 3. The
specific rate depends on halo mass weakly: Ṁ/M ∝ M0.127. Results for the
broad distributions about the mean rates are also discussed.

3.1 Introduction

The mass growth history is a basic property of dark matter haloes. Haloes in numerical
simulations are seen to be assembled through a number of processes: mergers with compara-
ble mass haloes (“major mergers”), mergers with smaller satellite haloes (“minor mergers”),
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and accretion of non-halo material that is composed of either haloes below the numerical
resolution or diffuse particles. Following the mass history of the most massive progenitor
halo as a function of redshift z is a useful way to quantify a halo’s mass assembly history.
These mass accretion histories (MAHs, or M(z)) are important for statistical studies of the
distributions of halo formation redshifts, and the correlations between formation time and
other halo properties such as environment, concentration, substructure fraction, spin, and
relative contributions to mass growth from major vs minor mergers. Moreover, the time
derivative of the MAH gives the mass growth rate of dark matter haloes, which is directly
related to the accretion rate of baryons from the cosmic web onto dark matter haloes.

A number of earlier papers have investigated various aspects of the halo MAHs. For
instance, Wechsler et al. [2002] analyzed ∼ 900 haloes (above 1012h−1M� at z = 0) in a
ΛCDM simulation in a 60h−1 Mpc box with 2563 particles. The values from a 1-parameter
fitting function for the MAHs were presented for 8 haloes. Clear correlations between the
formation redshift zf and concentration c of haloes were seen, with late-forming haloes being
less concentrated. The scatter in c was attributed to the scatter in zf . An alternative 2-
parameter fitting function was demonstrated by van den Bosch [2002] to be superior to a
1-parameter fit to haloes in a simulation with the same particle number in a 141h−1 Mpc
box.

The relationship between halo structure and accretion was further addressed in Zhao
et al. [2003b] and Zhao et al. [2003a], where the redshift dependence of c was observed to be
more complicated than a simple proportionality. Tasitsiomi et al. [2004] examined 14 haloes,
ranging in mass from group to cluster scale (.58 to 2.5× 1014h−1M�) and also found that a
2-parameter fit for M(z) worked better. Cohn and White [2005] studied the mass accretion
histories of ∼ 1500 cluster-sized haloes and characterized several properties of galaxy cluster
formation.

Maulbetsch et al. [2007] studied the environmental dependence of the formation of ∼ 4700
galaxy-sized haloes (above 1011h−1M�) in a 50h−1 Mpc simulation box. In higher-density
environments, they found the haloes to form earlier with a higher fraction of their final mass
gained via major mergers. Li et al. [2008] studied 8 different definitions of halo formation
time using the haloes from the Millennium simulation [Springel et al., 2005]. The motivation
was to search for halo formation definitions that better characterize the downsizing trend
in star formation histories, as opposed to the hierarchical growth of haloes in the ΛCDM
cosmology. Zhao et al. [2009] (Z08) investigated the mean MAH in different cosmological
models – scale-free, ΛCDM, standard CDM, and open CDM – and searched for scaled mass
and redshift variables that would lead to a universal fitting form for the median MAH for
all models.

The results in these earlier papers were presented either for M(z) of a handful of indi-
vidual haloes, or for the global mean growth of a selection of haloes. Our aim here is to
quantify systematically the diversity of growth histories and rates using the ∼ 500, 000 z = 0
haloes with M > 1012M� (i.e. above 1000 simulation particles) and their progenitors in the
Millennium simulation. Over this large range of haloes, we find that an exponential fit does
not adequately capture the behavior of halo growth. Many haloes experience large changes
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in the rate at which they accrete mass. Some haloes grow more slowly at late times, and
occasionally even lose mass, while other haloes undergo late bursts of growth. All of these
MAHs are poorly fit by an exponential, and suggest the need for a fitting form with more
flexibility. We find it helpful to classify the MAHs into four types based on their late-time
accretion rate. The large ensemble of haloes allows us to quantify the mean values as well
as the dispersions of the mass accretion rates and halo formation redshifts as a function of
mass and redshift.

This paper is organized as follows. Sec. 2 provides some background information about
the haloes in the Millennium simulation and describes how we construct halo merger trees.
This post-processing of the Millennium public data is necessary for identifying the thickest
branch (i.e. the most massive progenitor) along each final halo’s past history. The masses of
these progenitors will then allow us to quantify the MAH, M(z). In Sec. 3, we first assess the
accuracy of the 1-parameter exponential form for M(z). We then propose a more accurate
two-parameter function for M(z) and classify the diverse assembly histories into four broad
types according to their late-time growth behavior. We further quantify the statistics of the
two fitting parameters, providing (in the Appendix) algebraic fits for their joint distributions
that can be used to generate Monte Carlo realizations of an ensemble of halo growth tracks.
The applicability of M(z), which is derived for z = 0 haloes, for the mass accretion history
of higher-redshift haloes is discussed in Sec. 3.3. Sec. 4 is focused on the statistics of the
mass accretion rates. A simple analytic expression is obtained for the mean accretion rate,〈
Ṁ
〉

, of dark matter as a function of halo mass and redshift. The dispersions about the

mean rates are significant, as evidenced by the differential and cumulative distributions of
Ṁ presented here. Sec. 5 discusses the mean and the distribution of the halo formation
redshift as a function of halo mass. In Sec. 6 we report the correlations of MAHs with
halo environment, the last major merger redshift, and the fraction of haloes’ final masses
assembled via different types of mergers.

3.2 Halo Merger Trees in the Millennium Simulation

The Millennium simulation [Springel et al., 2005] provides a database for the evolution of
roughly 2× 107 z = 0 dark matter haloes from redshifts as high as z = 127 in a 500h−1 Mpc
box using 21603 particles of mass 1.2× 109M� (all masses quoted in this paper are in units
of M� and not h−1M�). It assumes a ΛCDM model with Ωm = 0.25, Ωb = 0.045, ΩΛ = 0.75,
h = 0.73, and a spectral index of n = 1 for the density perturbation power spectrum with a
normalization of σ8 = 0.9.

Dark matter haloes are identified with a friends-of-friends (FOF) group finder [Davis
et al., 1985] with a linking length of b = 0.2. Throughout this paper we use the number
of particles linked by the FOF finder to define the halo’s mass. Once identified, each FOF
halo is then broken into gravitationally bound substructures (subhaloes) by the SUBFIND
algorithm (see Springel et al. 2001a). These subhaloes are connected across the 64 available
redshift outputs: a subhalo is the descendant of a subhalo at the preceding output if it
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hosts the largest number of the progenitor’s bound particles. The resulting subhalo merger
tree can be used to construct merger trees of FOF haloes, although we have discussed at
length in Fakhouri and Ma [2008, 2009] the complications due to halo fragmentation and
have presented comparisons of several post-processing algorithms that handle fragmentation
events.

Our results in this paper are based on the stitch-3 post-processing algorithm described
in Fakhouri and Ma [2008]. In this algorithm, fragmented haloes that remerge within 3
outputs after fragmentation are stitched into a single FOF descendant; those that do not
remerge within 3 outputs are snipped and become orphan haloes. After applying the stitch-3
algorithm, we extract the mass accretion history, M(z), of each halo at z = 0 (or at any
higher redshift) by following the halo’s main branch of progenitors. We have compared the
resulting M(z) and formation redshifts to those obtained from the alternative algorithms
(e.g., “snip,” “split,” and subhalo vs FOF mass) discussed in Fakhouri and Ma [2008, 2009].
We find the systematic variations to all be within 5-10% of the stitch-3 values of these
quantities.

3.3 Fitting Mass Accretion Histories

3.3.1 Previous MAH Forms

To quantify the limitations of the exponential fit in capturing halo growth, consider the
formation redshift zf , here defined as the redshift at which M(z) is equal to M0/2.

For the 1-parameter exponential form (e.g. Wechsler et al. 2002)

M(z) = M0e
−αz, (3.1)

the parameter α is simply related to zf by

zf =
ln(2)

α
. (3.2)

We have compared zf as determined by the exponential fit to each halo’s M(z) from the
simulation with the zf determined directly from the M(z) tracks such that M(zf ) = M(0)/2
(using interpolation between output redshifts). We find the exponential fit to err systemati-
cally in its determination of zf , significantly overestimating the formation redshift for haloes
that form recently and underestimating it for haloes that form early. The mean value of zf
from the exponential fit, for instance, is 0.3 higher than the actual value for young haloes
and is 0.8 lower for old haloes across all masses.

A more complicated functional representation of MAHs was put forth by van den Bosch
[2002]:

log

(
M(z)

M0

)
= −0.301

[
log(1 + z)

log(1 + zf )

]ν
, (3.3)
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where ν and zf are fitting parameters. The use of an additional parameter provided signif-
icant improvement in the quality of the fits for many MAHs, especially those that formed
late. This 2-parameter form, however, is not flexible enough to handle haloes that have lost
mass, as it cannot take on values that would give M(z)/M0 greater than 1. Moreover, over
the sample of haloes tested in van den Bosch [2002], comparison between the goodness-of-fit
of this two-parameter form and the exponential fit showed that the exponential fit actually
performs better for early forming haloes.

3.3.2 A Revised MAH Form

To address the need for a fit that is both effective and simple, we find a 2-parameter
function of the form

M(z) = M0(1 + z)βe−γz, (3.4)

to be versatile enough to accurately capture the main features of most MAHs in the Millen-
nium Simulation. This form has also been studied in Tasitsiomi et al. [2004] for cluster-mass
haloes, but it has not been tested over a large number of haloes of different mass. The
form reduces to an exponential when β is 0, and γ in this case is simply the inverse of the
formation redshift: γ = ln(2)/zf . A large fraction of the haloes, however, are better fit when
the additional factor of (1 + z)β in equation (3.4) is included. In general, β can be either
positive or negative, but γ ≥ 0. We find the combination β − γ to be a useful parameter for
characterizing these MAHs as β − γ gives the mass growth rate at small redshifts:

d ln(M(z))

dz
=

β

1 + z
− γ ≈ β − γ +O(z) . (3.5)

This late-time trend can be used to characterize the MAH as described below.
To obtain the best-fit values for β and γ in equation (3.4), we have performed a χ2-like

minimization of the quantity

∆2 =
1

N

∑
N

[M(zi)/M0 − (1 + zi)
βe−γzi ]2

M(zi)/M0

, (3.6)

where the sum is over the N -available simulation redshift outputs at zi(i = 1, ..., N) for each
halo. The choice of the factor M(zi) in the denominator is akin to assuming Poissonian errors
for halo masses. We found this choice to be a suitable middle ground between minimizing
simply the sum of squares and minimizing the fractional deviation (i.e. with a factor of
M2(z) in the denominator). The former tended to fit the finely sampled low-z points well
at the expense of the sparsely spaced high-z points, whereas the latter tended to do the
opposite. Equation (3.6), on other hand, provides reasonable fits for the entire history of
the halo growth. Fig. 3.1 shows the cumulative distribution for the rms deviation of the fits
from the Nbody data (normalized by M0) for all ∼ 500, 000 z = 0 haloes. The deviation is
less than 6% for over 75% of the haloes, and only a few percent of haloes have deviations
larger than 10%. Of this most poorly fit subset of haloes, nearly half underwent mass loss
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Figure 3.1: Cumulative distribution for the RMS deviations between the fitting formula
eq. (3.4) and the Millennium Nbody output for the mass growths of 478,781 z = 0 haloes
(solid black) and the four sub-types (colored curves) listed in Table 1. The figure shows that
the fits perform well overall: about 75% of the haloes have RMS deviations less than ∼ 6%.

at late times. As expected, the fits become progressively worse at higher redshifts; for over
75% of haloes, the maximum fractional deviation between the fits and Nbody results occurs
above z = 4.

We suggest that the parameters β and γ allow for rough classifications of MAHs into a few
basic groups, summarized in Table 3.1. The classification scheme is quite straightforward.
Fits with small values for β indicate a weak contribution from the (1 + z) term, and deviate
minimally from an exponential curve. These haloes with |β| < 0.35 are labeled Type I.

The rest of the classifications are dependent upon the value of β− γ. The motivation for
this is the fact that the difference represents the value of the derivative at z = 0, as noted in

Type Criteria Characteristics
χ2
1

χ2
2

I |β| < 0.35 Good exponential 1.09
II β − γ < -0.45 Steep late growth 1.61
III -0.45 < β − γ < 0 Shallow late growth 2.15
IV β − γ > 0 Late plateau/decline 3.31

Table 3.1: MAHs are categorized based upon the best fit parameters β and γ of equa-
tion (3.4). Categorization is done in order by type; thus MAHs that satisfy the criteria for
both Type I and Type II belong to Type I. The right-most column is the mean of χ2

1/χ
2
2, the

ratio of the χ2 computed for the 1-parameter exponential form to the χ2 computed for the
2-parameter form in equation (3.4). Values > 1 imply that the 2-parameter form provides a
more accurate fit than the 1-parameter form.
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Figure 3.2: Average mass accretion histories (top) and their derivatives (bottom) for the
total population (black solid) and the four types of halo growths listed in Table 3.1. The
average is taken over the M(z) for galaxy-sized haloes with masses between 2.1×1012M� and
3.3× 1012M� in the Millennium simulation, although haloes at different mass show similar
behavior. In the top panel, the set of curves with the lighter shading shows the average M(z)
computed from our fits of equation (3.4) to each halo’s MAH. The bottom panel illustrates
that the late-type growth rates differ greatly, ranging from d lnM/dz ∼ 1.2 for Type II to
0.1 for Type IV.
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equation (3.5). Hence Type II haloes, defined to be those haloes with β−γ < −0.45, feature
steep growth at late times, typically steeper than can be captured by an exponential fit.

Type III haloes have fit parameters that fall in the range −0.45 < β − γ < 0 and exhibit
flat late time growth. Like Type II, these tend to deviate from the fit that would be found
using the exponential form, but Type III haloes do so in the opposite direction to Type II
haloes. A typical Type III halo has undergone limited growth during recent times, sometimes
after a spurt of growth at earlier times.

Type IV, with β − γ > 0, represents the most extreme deviation from an exponential.
The majority of Type IV haloes have shed mass, some of them by significant amounts. Some
Type IV haloes have merely seen their growth slow down like the Type III haloes, but over
a more significant period of time. As such, Type IV haloes are extreme cases of Type III
haloes, perhaps representing the future growth for some Type III haloes.

The boundaries delineating these classifications are rough guidelines at best. For example,
consider the definition for Type I of |β| < 0.35. For the largest values of β in this group,
which should be considered the worst of the “good exponentials” that constitute Type I, the
fractional difference between the formation redshift as determined by the simple exponential
and the modified exponential is a little under 8%. The agreement is not perfect, but the
two fits are similar enough for these haloes that the use of the power law parameter adds
little. Of course, there is no reason why we should not instead demand that the formation
redshifts differ on average by no more than 5%, or perhaps 10%. In the end, the combination
of the formation redshift metric and a couple of others for comparing the fits suggested that
demanding |β| < 0.35 was inclusive enough to capture the majority of haloes for which an
exponential is an adequate fit, without unduly diminishing the integrity of the group.

Fig. 3.2 compares the shapes of the average MAH for haloes of galaxy-size mass from
the Millennium simulation for the overall distribution and for each type. The bottom panel
shows the derivative d lnM/dz to highlight the different late-time accretion rates among the
four types. Haloes of other mass show similar behavior. Clearly, the late time growth rate is
an important factor in distinguishing haloes from one another. The average MAH for Type
I haloes is quite similar to that of the overall distribution, which indicates that the average
MAH is approximately exponential. However, the behavior of about 75% of individual haloes
deviates from an exponential noticeably. This fact is quantified in the right-most column
of Table 3.1, where the ratio of χ2 for the exponential fit to the 2-parameter fit is seen to
increase with the MAH types.

Since the mean MAH is approximately exponential, the accretion rate d lnM/dz averaged
over the whole population is also nearly independent of redshift (black solid curves in Fig. 3.2)
when expressed in units of per redshift, with d lnM/dz being between 0.6 and 0.7 for z = 0
up to 5. This weak dependence on redshift is similar to that of the halo merger rates (per
unit z) reported in Fakhouri and Ma [2008]. The different types of haloes, however, show
significant dispersions in the late-time accretion rates, with d lnM/dz being as high as 1.2
for Type II and as low as 0.1 for Type IV at z ≈ 0.

For each of the mean profiles shown in Fig. 3.2, we have fit the analytic form in equa-
tion (3.4). The best-fit values of (β, γ) are (0.10, 0.69) for all haloes, and (−0.04, 0.54),



77

Mass Range Halo Number Type I II III IV
(1012M�)

1.2 to 2.1 191421 29% 27% 32% 12%
2.1 to 4.5 143356 27% 29% 32% 12%
4.5 to 14 95744 24% 34% 31% 11%
14 to 110 43089 20% 42% 26% 11%
> 110 4787 18% 57% 17% 8%

478781 27% 31% 31% 11%

Table 3.2: Within each mass range, the percentage of haloes that belong to each type are
provided. For each type, there is a noticeable trend with mass, though the strength of the
trend varies.

(−0.9, 0.35), (0.62, 0.88), and (1.42, 1.39) for each of the four types, respectively.
The statistics of the 478,781 z = 0 haloes (above 1000 particles, or a mass of 1.2×1012M�)

belonging to each MAH type across different mass bins are given in Table 3.2 and Fig. 3.3.
Exponential MAH (Type I) is seen to apply to only 20 to 30% of the haloes. There is
also interesting dependence of the type on halo mass. Most notably, Type II haloes feature
a strong dependence on mass, where the fraction rises from 27% at ∼ 1012M� to 60% at
& 1014M�. Cluster-size haloes therefore not only form late, which is a natural consequence
of the ΛCDM cosmology, but the majority of their mass accretion rates is also faster than
an exponential at low redshifts.

The results presented thus far are for the mean MAH and mean values of (β, γ). We
find, however, significant dispersions about the mean behavior that are also important to
characterize. For completeness, we show the distributions of our best-fit (β, γ) for all halo
MAHs in the Appendix and Fig. 3.12. We also present there an accurate fitting form that
we have obtained for the two-dimensional probability distribution of β and γ as a function
of halo mass. This formula can be used to generate a Monte Carlo ensemble of realistic halo
growth histories. The details of the formula, its usage, and comparison to the Millennium
data are described in the Appendix. We emphasize that the results presented for the rest
of this paper are obtained from the Millennium haloes directly rather than from this Monte
Carlo realization.

3.3.3 MAHs for Haloes at Higher Redshifts

The MAHs presented thus far are obtained from the main branches of the descendant
haloes at z = 0. Thus, for a higher redshift z1 > 0, the distribution of M(z1) contains only
information about the main branch progenitors, which is a subset of all the haloes at z1 since
many haloes do not belong to main branches.

Since the formation of higher-redshift galaxies and their host haloes is of much interest,
it is useful to quantify the behavior of MAHs for haloes at z1, where z1 > 0. In particular,
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Figure 3.3: Cumulative fraction of haloes belonging to a given MAH type as a function of
halo mass (e.g. the magenta type-IV curve includes the contributions from the three other
types). The exponential form (Type I) is a good fit for only 20% to 30% of the haloes
at all masses. The type II fraction shows a strong mass dependence, reaching ∼ 60% for
cluster-mass haloes.

we ask whether the mean MAH for haloes of mass M1 at z1 for z > z1 can be related to the
MAHs of haloes at z = 0 that we have studied thus far.

We find that the mean MAH of haloes of mass M1 at z1 is nearly identical to the mean
MAH of haloes at z = 0 that satisfy M(z1) = M1. That is, the mean MAH for z > z1 of the
main branch subset with mean mass M(z1) = M1 at z1 is very similar to the mean MAH of
the complete population of haloes with mean mass M1 at z1. As a specific example, the mean
MAH of the 1013M� z = 0 haloes in the simulations had the value M(z = 1) = 4.5×1012M�
at z = 1. We find that the mean MAH of these 1013M� haloes at z > 1 is nearly identical
(within 2%) to the z > 1 evolution of the mean MAH of all M1 = 4.5 × 1012M� haloes at
z = 1. This property for the mean MAH is in fact a natural consequence of the Markovian
nature of the Extended Press-Schechter theory (see, e.g., Sec 2.3 of White 1994).

This self-similar property implies that in order to study the MAH properties of haloes
with mass M1 at redshift z1, one simply needs to determine which set of haloes at z = 0
have M(z1) = M1. In particular, one needs to compute the average mass M0 of the haloes
at z = 0 that map onto M(z1) = M1 at z1. This mapping is shown in Fig. 3.4 with M1 along
the x-axis and M0 along the y-axis for z1 = 0, 0.5, 1, and 2. Note that M0 = M1 at z1 = 0
by construction, and as z1 increases, the mass M0 that maps onto some fixed M1 by redshift
z1 also increases.

We note that the mapping in Fig. 3.4 implies that haloes of some mass M1 at some
redshift z1 > 0 do not have the same shape of MAH as haloes of mass M0 = M1 at z = 0.
That is, the MAH of a 1013M� halo at z = 0 and the MAH of a 1013M� halo at z1 > 0 are not
simply related by a shift from z to z− z1 in equation (3.4). This is because haloes at higher
z1 have a relative formation redshift zf − z1 that is smaller than haloes of the same mass at
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Figure 3.4: For haloes of mass M1 at redshift z1, the y-axis plots their corresponding mean
mass M0 today. Four values of z1 are shown: 0 (solid), 0.5 (dashed), 1 (dot dashed), and
2 (dotted). This mapping allows one to use equation (3.4) for the MAH of higher-redshift
haloes (see text).

z = 0. This result is not surprising since haloes of the same mass at different redshifts in the
ΛCDM model represent different part of the mass spectrum and are not generally expected
to have identical properties.

We have tested the self-similar property of the fitting form of Z08 (using their online code)
by comparing their mean MAH for z = 0 1013M� haloes and the MAH for their M(z = 1)
haloes at z > 1. Their latter MAH is higher than the former by about 15%, while ours differ
by less than 2%.

3.4 Mass Accretion Rates: Mean and Dispersion

Having quantified M(z) in Sec. 3, we now examine its time derivative – the mass accretion
rate – in more detail. In particular, we would like to obtain a general formula for the mean
accretion rates of dark matter for a wide range of halo mass and redshift. To achieve this,
we note that our analytical form in equation (3.4) for individual halo MAHs gives:

Ṁ

M
= 0.10hGyr−1 [γ(1 + z)− β]

√
Ωm(1 + z)3 + ΩΛ (3.7)

where Ωm and ΩΛ are the present-day density parameters in matter and the cosmological
constant, and we have assumed Ωm + ΩΛ = 1 (used in the Millennium simulation) and
matter-dominated era in computing dz/dt. As shown in Sec. 3, the parameters β and γ
in equation (3.7) generally depend on the halo mass. We find, however, that the mass
dependence follows a simple power law independent of the redshift, and the simple analytic
form in equation (3.7) provides an excellent approximation for the mean mass accretion rate
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Figure 3.5: Mean mass accretion rate of dark matter as a function of redshift at halo mass
1011, 1.5×1012, 1013 and 1014M�. The solid curves are computed from the Millennium haloes
(except 1011M�, which falls below our resolution limit of 1000 particles per halo) at a given
mass (±20% range); the dashed curves show the accurate fit provided by eq. (3.8). The right
side of the vertical axis labels the mean accretion rate of baryons, Ṁb, assuming a cosmic
baryon-to-dark matter ratio of ∼ 1/6. The slight dip in Ṁ at z = 0 is due to the artificial
edge effect inherent in the stitch-3 algorithm used to process the FOF merger trees.

as a function of redshift and halo mass:〈
Ṁ
〉

= 42M�yr−1

(
M

1012M�

)1.127

×(1 + 1.17z)
√

Ωm(1 + z)3 + ΩΛ . (3.8)

For completeness, the best fit for the median growth rate computed in the Millennium
simulation is 〈

Ṁ
〉

median
= 24.1M�yr−1

(
M

1012M�

)1.094

×(1 + 1.75z)
√

Ωm(1 + z)3 + ΩΛ . (3.9)

We note that the overall amplitude of the mean is higher than the median due to the long,
positive, Ṁ tail (see Fig. 3.6).

Fig. 3.5 compares the mean accretion rates of dark matter in M� per year computed from
the Millennium simulation (solid curves) and this formula (dashed curves) for haloes of mass
1012M� to 1015M� over the redshift range of 0 and 5. The overall trend of the accretion rate
is such that Ṁ/M has a weak dependence on M (∝M0.127), and its dependence on redshift
is approximately (1 + z)1.5 at low z and (1 + z)2.5 at z > 1. This z-dependence is motivated
by our 2-parameter form for M(z) and is more accurate than the simple power law used in
Genel et al. [2008], Neistein et al. [2006], and Neistein and Dekel [2008b]; our z ∼ 0 value, on



81

Figure 3.6: Differential (top) and cumulative (bottom) distributions of the accretion rates
of cosmic baryons, Ṁb, for four halo masses (left to right). Within each panel, the accretion
rates at four redshifts z = 0 (solid), 0.5 (dashed), 1 (dashed dotted), and 2 (dotted) are
shown, where the distributions are seen to broaden significantly with increasing z. The
vertical axis labels the number of haloes per comoving Mpc3 at or above a given Ṁb.
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the other hand, is consistent with theirs to within 20%. We have also computed Ṁ from the
fitting form for the median MAH in the recent preprint by Z08. We found their Ṁ to have a
slightly steeper z-dependence than our equation 3.9 where their median value is within 20%
of our median Ṁ at z ∼ 0 but exceeds ours by a factor of ∼ 2 at z ∼ 4.

Along the right side of the vertical axis of Fig. 3.5, we label the corresponding mean
accretion rates of baryons, Ṁb, assuming a cosmic baryon-to-dark matter ratio of Ωb/Ωm ≈
1/6. The results shown should be a reasonable approximation for the mean rate of baryon
mass that is being accreted at the virial radius of a dark matter halo of a given mass.
Fig. 3.5 and equation (3.8) indicate that this rate is Ṁb ≈ 7M�yr−1 for 1012M� haloes
today, and it increases to 27, 69, and 140 M�yr−1 for 1012M� haloes at z = 1, 2, and 3,
respectively. Since the infalling baryons are a reservoir for the gas that fuels star formation,
it is interesting to compare Ṁb with the mean star formation rates of different types of
galaxies, e.g., Ṁ∗ ∼ 4M�yr−1 for the Milky Way (e.g., Diehl et al. 2006), suggesting that
about half of the infalling Ṁb ≈ 7M�yr−1 for Galactic-size haloes needs to be converted
into stars. The relations among these different accretion rates and the implications will be
investigated in a subsequent work.

Having determined the mean rates, we show their distributions and dispersions in Fig. 3.6.
Four redshifts, z = 0, 0.5, 1, and 2, and four ranges of halo masses (left to right panel) are
shown. Both the differential (top panels) and cumulative (bottom panels) distributions of
Ṁb are plotted for comparison. Within each panel, the distribution of Ṁb at a given halo
mass is seen to broaden significantly with increasing redshift. For instance, the (comoving)
number density of 1.5× 1012M� haloes with Ṁb > 250M� yr−1 increases dramatically from
5× 10−7 Mpc−3 at z = 0 to 5× 10−5 Mpc−3 at z = 2. At a given redshift, the distribution
of Ṁb also broadens with increasing halo mass, although the distribution (and dispersion)
of the ratio Ṁb/Mb is largely independent of mass. The latter is similar to the weak mass
dependence of the mean Ṁ/M given by equation (3.8).

3.5 Formation Redshifts: Mean and Dispersion

It is well established that on average, more massive haloes form later than less massive
haloes in the ΛCDM cosmology. The Millennium database provides sufficient statistics for
us to quantify the distributions of the formation redshift zf and its mean and scatter over
a wide range of halo masses (∼ 1012 to ∼ 1015M�). The formation redshift, along with
the late-time growth rate β − γ, can be thought of as two physically motivated quantities
parameterizing the halo MAH.

The distributions of zf for each type of MAHs for three halo mass bins are plotted in
Fig. 3.7. The overall trend of decreasing zf with increasing halo mass is evident across the
three panels. Within each panel, a correlation between zf and the MAH type is clearly seen.
Nearly all haloes in the smallest few zf bins are Type II. This means that despite the fact
that Type II dominates the highest mass bins, the haloes that constitute Type II are not
merely the especially massive haloes which formed late, but also include less massive haloes
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Figure 3.7: Distributions of the formation redshift zf for three mass bins (left to right).
Within each mass bin, the zf distribution for all haloes is plotted (solid black), as well as the
distribution for each halo type. While the relative amplitudes of the distributions do change
from one mass bin to another, the overall shapes remain similar across all masses.

Figure 3.8: Mass dependence of the mean (solid curves) and one standard deviation scatter
(shaded regions) of the formation redshifts of the Millennium haloes. More massive haloes
on average form more recently, but the scatter is large. One exception is Type II haloes
that have a mean zf of ≈ 0.5 independent of mass. Fits to the mean and scatter of zf as a
function of mass are given in Table 3.3.



84

zf vs. M0 γ − β vs. M0

〈zf〉 σzf 〈γ − β〉 σ(γ−β)

Overall −0.24x+ 1.26 −0.11x+ 0.58 −0.25x− 0.29 0.14x+ 0.64
Type I −0.25x+ 1.30 −0.12x+ 0.51 −0.22x− 0.45 0.03x+ 0.21
Type II −0.05x+ 0.62 −0.04x+ 0.34 −0.12x− 1.15 0.14x+ 0.60
Type III −0.23x+ 1.56 −0.08x+ 0.43 −0.03x− 0.20 0.01x+ 0.11
Type IV −0.23x+ 1.56 −0.08x+ 0.43 0.03x+ 0.15 0.36

Table 3.3: Linear fits for the mass dependence of the mean formation redshift zf , mean γ−β,
and their respective 1σ scatter about the mean, where x ≡ log10(M0/1012M�).

which formed late. On average, a Type II halo has a formation redshift 0.5 smaller than
a typical halo. To a lesser degree, Type III and Type IV are also distinct from the overall
distribution. Both tend to form early, Type III more so than Type IV, and together the two
types account for most of the haloes that formed early.

Fig. 3.8 shows the mean formation redshift zf as a function of halo mass for all 478,781
z = 0 Millennium haloes (leftmost panel) as well as for each type of MAH. As the scatter
about the line is, to a good approximation, Gaussian, the 1σ range about the line is also
provided in the plots in each panel (light shaded areas). From these shaded areas, it is clear
that there is considerable scatter for the overall distribution. The relationship between M0

and zf is different from the overall distribution for all types except Type I, which suggests that
the types discriminate by formation redshift to some extent. Also note that the separation
of haloes into types also produces more limited scatter about the mean.

To approximate the mass dependence of the mean and scatter of zf , we use the linear
form

〈zf〉 = a log10

M0

1012M�
+ b , σzf = c log10

M0

1012M�
+ d (3.10)

and find it to fit the simulation data accurately. Table 3.3 lists the best-fit coefficients for all
the halo MAHs (above 1000 particles at z = 0) and for each of the four types of MAHs shown
in Fig. 3.8. Table 3.3 also includes the same fit performed for the fit parameters (β − γ).
The mean formation redshifts differ significantly among the types, with 〈zf〉 ≈ 0.6, 1.3, and
1.5 for Type II, I, and III (plus IV), respectively, for galaxy-size haloes. The dependence of
〈zf〉 on mass is noticeably weak for Type II; the other types show similar mass dependence,
where d 〈zf〉 /d logM ranges from −0.23 to −0.25.

With the relationships between formation redshift and mass for each type, we can look
at how these dependences relate to the basic halo characteristics given in Table 3.1. Recall
that Type II haloes were marked by steep growth at late times, which is captured by the
very negative value of β−γ. Type III haloes, on the other hand, have small values for β−γ,
and thus grow slowly at late times. The relationships shown in Fig. 3.8 are then no surprise.
Type II haloes are also associated with late formation times, while Type III haloes tend to
have formed quite early.
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3.6 Correlations with Halo Environments and Major

Merger Frequencies

Thus far we have discussed how the halo MAHs and mass accretion rates vary with halo
mass and redshift. We have also shown that the mean zf depends on halo mass strongly,
but the scatter in zf does not depend strongly on the MAH type nor halo mass. In this
section, we investigate if the mean and scatter in zf are correlated with quantities other than
halo mass. In particular, we ask if the shapes of MAHs (1) differ systematically between
underdense vs overdense regions, and (2) are correlated with the time and frequency of major
mergers and mass brought in by these events during a halo’s lifetime.

3.6.1 Environment

An extensive discussion and tests of halo environments can be found in Fakhouri and
Ma [2009]. Four definitions of a halo’s local environment based on the local mass density
centered at the halo were compared. Three of them were computed using the dark matter
particles in a sphere of radius R centered at a halo, either with or without the central region
carved out; the fourth definition was computed using the masses of only the haloes rather
than all the dark matter. Here we use δR−FOF, computed by subtracting out the FOF mass
M of the central halo within a sphere of radius R:

δR−FOF ≡ δR −
M

VRρ̄m
, (3.11)

where VR is the volume of a sphere of radius R, and δR is the mean mass overdensity within
R. This measure makes no assumption about the central halo’s shape. By taking out the
mass of the central halo itself, this density was shown to be a more robust measure of the
environment outside of a halo’s virial radius. Otherwise, the halo mass itself dominates the
density centered at massive haloes (see Fig. 1 of Fakhouri and Ma 2009), and it becomes
difficult to distinguish whether any correlations are due to the mass or the larger-scale
environment in which the halo resides.

Fig. 3.9 shows the distribution of the environmental densities (evaluated at z = 0) for
haloes within each MAH type and the total population. The distribution for Type IV haloes
is quite distinct from all other distributions and is offset towards higher densities. Since
Type IV haloes experience very little mass growth or even mass loss at late times, denser
environments appear to impede mass accretion onto haloes.

3.6.2 Mass Growth due to Major Mergers

Major mergers are more rare than minor mergers, but they can contribute to a significant
fraction of a halo’s final mass, and have a strong impact on halo structures and galaxy
properties such as the star formation rate.
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Figure 3.9: Normalized distributions in δ are plotted for all haloes, as well as each type of
halo. The most prominent feature is the clear separation between Type IV and all other
types. The center of the Type IV is well to the right of the other types, meaning that Type
IV haloes are predominantly found in denser environments than any other type.

A useful quantity for assessing the role of major mergers on halo MAHs is zlmm, the
redshift of the last major merger in a halo’s history. Fig. 3.10 shows the fraction of haloes
whose last major merger occurred at or before z. Type II haloes are seen to experience a
major merger in the much more recent past than the other types: about 65% of them had
encountered a major merger within redshifts 0 and 0.3, and only 25% of them had their last
major merger before z = 1. In sharp contrast, only about 5% of Type III and IV haloes had
a major merger later than z = 0.3, and over 75% of them had their last major merger earlier
than z = 1.

Another useful parameter for quantifying the role of major mergers in its MAH is F (ξ >
ξmin), which is the fraction of mass at z0 that came from mergers above some progenitor
mass ratio ξmin. We choose to define the mass ratio in relation to the mass of the progenitor
at the time of merger, as opposed to being defined in relation to the halo’s present mass.
The exact value of F is strongly dependent upon the choice of ξmin. The overall features,
however, do not change significantly, so different values for ξmin only change the values for
F (ξ > ξmin), but leave the overall characteristics in place.

Fig. 3.11 shows the differential (top) and cumulative (bottom) distribution of the major
merger mass fraction, F (ξ > 0.33) for each type of MAHs. Type II haloes (dashed curves),
which feature steep growth at late times, are seen to have the highest F among the four
types. The distribution peaks at F ≈ 0.4, indicating that ∼ 40% of their final mass was
acquired through major mergers. Type I haloes (solid cyan curves), by contrast, feature a
dearth of major mergers, which is unsurprising given the fact that large mergers are poorly
handled by the simple exponential. Likewise, Type IV haloes (dotted curves), which grow
quickly early on only to lose mass at late times, are dominated by major mergers with a
number of Type IV haloes even having F (ξ > ξmin) > 1. This occurs when a halo has less
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Figure 3.10: Distribution of the redshift of the last merger major for the four types of haloes
(colored curves) and all z = 0 haloes (solid black). The majority of the z = 0 haloes with
Type II MAH (dashed green curve) have experienced a major merger (of mass ratio > 0.33)
very recently, whereas the last major merger occurred earlier than z = 1 for more than 75%
of Type III and IV haloes.

mass presently than it has gained overall via major merger. Type III haloes (dotted dashed
curves) tend to be relatively major merger free, which is again to be expected due to the
decelerating growth of Type III haloes at later times during which much of the overall mass
is accreted.

3.7 Conclusions

We have examined the mass growth histories of ∼ 500, 000 z = 0 haloes and their
progenitors in the Millennium simulation. The two-parameter function in equation (3.4)
provides a reasonable fit for the MAHs of these haloes, as shown in Fig. 3.2. The mean mass
accretion rate of dark matter (and baryons) as a function of halo mass and redshift is well
approximated by equation (3.8), as shown in Fig. 3.5. The distributions of Ṁ are broad,
and the number density of high-Ṁ haloes increases sharply with increasing z at a given halo
mass (see Fig. 3.6). The mean halo formation redshift as a function of mass is given by
equation (3.10) and Fig. 3.8.

To facilitate the analysis of the halo MAH, we have classified M(z) into four types based
on their shapes. We have shown that only 20 to 30% of the Millennium haloes follow an
exponential form (“Type I”) in their mass accretion history M(z). Only one parameter is
needed to specify their MAH, e.g., the formation redshift zf . The formation redshift depends
strongly on halo mass, as expected for hierarchical cosmological models such as the ΛCDM.
The median zf ranges from 1.3 for 1012M� haloes to 0.6 for 1015M� haloes, and is dispersed
over a range roughly equal to the median value for all masses.



88

Figure 3.11: Differential (top) and cumulative (bottom) distributions of the fraction of halo
mass gained from major mergers of mass ratio ξ > 0.33. Much like the zf distributions, each
Type is quite distinct from the overall distribution. Type I and III haloes feature few major
mergers, while Type II and Type IV haloes tend to be dominated by major mergers. Type
IV mergers also feature a noticeable rise in the highest bin, due to having gained more mass
via major mergers across their history than they currently have.



89

About 20% of galaxy-size and 60% of cluster-size haloes have late-time growth that is
steeper than an exponential (“Type II”). These haloes are formed more recently, with a
median zf of about 0.5 for all masses. The redshift at which they experience the last major
merger is also significantly later than the exponential haloes: about 50% of them have had
the last major merger between z = 0 and 0.3, as opposed to 10% of the rest of the haloes,
including exponential haloes. Correspondingly, a higher fraction of Type II haloes’ final
mass is acquired through major mergers, e.g. 60% of these haloes obtained more than 30%
of their final mass from major mergers, whereas a little over 30% of all haloes obtained more
than 30% of their final mass from major mergers, and fewer than 20% of exponential haloes
did.

The rest of the haloes have stunted late-time growth relative to an exponential form.
The median zf ranges from 1.5 at low mass to 0.8 at high mass. These haloes can be further
separated into two groups (Type III and IV), where the two are primarily distinguished
by the roles that major mergers have played in their growth; that is, Type III haloes tend
to experience few major mergers, whereas Type IV haloes grew predominantly from major
mergers at early redshifts. The MAHs of the two can be distinguished by the sharpness in the
downturn of late time growth. Type IV haloes also live in somewhat denser environments,
where the stronger tidal fields and more frequent interactions may have contributed to rapid
accretion at early times followed by a slow down of their late time mass growth.

Despite this diverse behavior of halo MAHs, we have found the individual M(z) to be well
fit when a second parameter is introduced (eq. 3.4). To quantify the statistics of M(z), we
have provided fits to the joint probability distribution of the two MAH parameters β and γ
in the Appendix. These can be used to generate realizations of halo mass growth histories in
semi-analytic models of galaxy formation that incorporate realistic scatters about the mean
trends.

3.8 Appendix: Joint Distribution of β and γ

We have seen that halo MAHs are well-fit by equation (3.4) with two parameters β and γ.
Applying this fit to haloes in the Millennium simulation yields a joint distribution of β and
γ. In this appendix we provide a fitting form to this distribution as a function of β, γ, and
halo mass that is intended to allow the reader to generate rapidly a mock catalog of MAH
tracks. We find that a straightforward rejection method can generate 300,000 mock MAH
trajectories in under a minute on a standard laptop. The mean properties of the resulting
trajectories match the mean properties of the Millennium trajectories at the 10% level. The
fitting forms presented below are chosen for the practical purpose of matching the underlying
distribution as closely as possible.

We find that 95.34% of the haloes occupy a smooth region in the (β, γ) plane shown in
the left panel of Fig. 3.12. The remaining 4.66% of the haloes live along a distinct line with
γ = 0 and β ≤ 0, where the distribution of β is shown in the right panel of Fig. 3.12. That
is, their MAHs are better approximated by a power law in 1 + z rather than an exponential.
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Figure 3.12: Probability distributions of β and γ for haloes of mass 1.5× 1012M�. The left
panel is the PDF of β and γ for haloes with γ > 10−3 (95.34% of all haloes). The shaded 2D
histogram presents the distribution of β and γ obtained from Millennium (see color scale for
units) with corresponding contours drawn at the 0.005, 0.01,0.1 and 1 levels (black to white).
The appropriately normalized fitting form D2D is overlaid as red dashed contour lines. The
right panel is the PDF of β for haloes with γ = 0 (4.66%). The appropriately normalized
fitting form D1D is overlaid in red. For both panels, the background shading corresponds
to regions of phase space denote type I (grey), type II (red), type III (green) and type IV
(blue) MAHs.
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Figure 3.13: Distribution of the formation redshifts (left) and the mean MAHs (right) from
the simulation directly (solid), the (β, γ) fits to the simulation MAHs (dashed), and a Monte
Carlo ensemble of 300,000 halos per mass bin generated using equations (A1)-(A3) (dotted).
In each panel, three mass bins are shown:1012M� (blue), 1013M� (green), and 1014M� (red).
Note that the dashed and dotted curves are almost indistinguishable in the right panel.

Interestingly, this 95.34% vs 4.66% division is independent of halo mass, even though the
shape of the distributions generally depends on mass. For accuracy, we choose to separate
the distribution of β and γ into these two components and fit to them separately.

For the 4.66% of haloes with γ = 0, their β distribution is well approximated by

dP

dβ
∝ e−X

2

(3.12)

where
X = 7.443 e0.6335β+0.2626M0.1992 − 2.852M−0.05412 (3.13)

and M ≡Mhalo/1012M�. This fit is valid in the range −10 < β ≤ 0.
For the 95.34% of haloes with γ > 10−3, the joint distribution in β and γ is well approx-

imated by
dP

dβdγ
∝ e−(XM−0.05569)2−(YM−0.05697)2 (3.14)
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where

X = (−1.722− 0.1568β + 0.007592β2)(1− T2) +

(1.242 + 0.3138β − 0.01399β2)T2

Y = 13.39[1−1.224 tanh(1.043Y ′)](1−0.08018β)

Y ′ = γ − (28.85 + 0.4537β)(1− T1)−
(28.38 + 0.7624β)T1 + 29.21M−0.001933

T1 = 0.5[1 + tanh(1.174β)]

T2 = 0.5[1 + tanh(0.7671β − 0.1269)] .

This is valid in the range −8 < β < 12, 0 < Y ′ < 3. Since the rejection method does not
require a normalized PDF for input, we leave these probability distributions unnormalized.

Fig. 3.13 illustrates that Monte Carlo realizations generated from the probability dis-
tributions above (dotted curves) reproduce accurately the formation redshift distributions
(left panel) and the mean MAHs (right panel) obtained from the (β, γ) fits to the Millen-
nium MAHs (dashed curves), and both match closely the results computed directly from the
Millennium simulation (solid curves).
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Part IV

The Environmental Dependence of
Dark Matter Halo Growth



94

Chapter 4

Environmental Dependence of Dark
Matter Halo Growth I: Halo Merger
Rates
Fakhouri, Onsi; Ma, Chung-Pei — April 2009
Monthly Notices of the Royal Astronomical Society, Volume 394, Issue 4, pp. 1825-1840

In an earlier paper we quantified the mean merger rate of dark matter haloes as
a function of redshift z, descendant halo mass M0, and progenitor halo mass
ratio ξ using the Millennium simulation of the ΛCDM cosmology. Here we
broaden that study and investigate the dependence of the merger rate of haloes
on their surrounding environment. A number of local mass overdensity vari-
ables, both including and excluding the halo mass itself, are tested as measures
of a halo’s environment. The simple functional dependence on z, M0, and ξ
of the merger rate found in our earlier work is largely preserved in different
environments, but we find that the overall amplitude of the merger rate has a
strong positive correlation with the environmental densities. For galaxy-mass
haloes, we find mergers to occur ∼ 2.5 times more frequently in the densest
regions than in voids at both z = 0 and higher redshifts. Higher-mass haloes
show similar trends. We present a fitting form for this environmental depen-
dence that is a function of both mass and local density and is valid out to z = 2.
The amplitude of the progenitor (or conditional) mass function shows a similar
correlation with local overdensity, suggesting that the extended Press-Schechter
model for halo growth needs to be modified to incorporate environmental effects.

4.1 Introduction

In studies of cosmological structure formation, the mass of a dark matter halo is a key
variable upon which many properties of galaxies and their host haloes depend. For instance,
dark matter haloes of lower mass are expected to form earlier on average than more massive
haloes in hierarchical cosmological models such as ΛCDM. In semi-analytical modelling of
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galaxy formation (see Baugh 2006 for a review), properties such as the formation redshift,
halo occupation number, galaxy colour and morphology, and stellar vs AGN feedback pro-
cesses are all assumed to depend on the mass of the halo (sometimes better characterised by
the halo circular velocity).

In addition to the halo mass, however, recent work based on numerical simulations has
shown that a halo’s local environment also affects various aspects of halo formation. For
instance, at a fixed mass, older haloes are found to cluster more strongly than more recently
formed haloes [Gottlöber et al., 2001, Sheth and Tormen, 2004, Gao et al., 2005, Harker
et al., 2006, Wechsler et al., 2006, Jing et al., 2007, Wang et al., 2007, Gao and White,
2007, Maulbetsch et al., 2007]. Other halo properties such as concentration, spin, shape,
and substructure mass fraction have also been found to vary with halo environment (e.g.,
Avila-Reese et al. 2005, Wechsler et al. 2006, Jing et al. 2007, Gao and White 2007, Bett
et al. 2007).

In contrast, no such environmental dependence is predicted in the extended Press-Schechter
(EPS) and excursion set models [Press and Schechter, 1974, Bond et al., 1991, Lacey and
Cole, 1993] that are widely used for making theoretical predictions of galaxy statistics and
for Monte Carlo constructions of merger trees. The lack of environmental correlation arises
from the Markovian nature of the random walks in the excursion set model. This limitation
is not built into the model per se, but is an assumption stemming from the use of a tophat
Fourier-space window function. When a Gaussian window function is used, for instance,
Zentner [2007] finds an environmental dependence in the halo formation redshift, but the
dependence is opposite to that seen in the numerical simulations cited above. Other attempts
at incorporating environmental effects into the excursion set model thus far have not been
able to reproduce the correlations in simulations (e.g., Sandvik et al. 2007, Desjacques 2008).

In this paper, we focus on the environmental dependence of the merger rate of dark
matter haloes, a topic that has not been studied in detail. The merger rate is an important
quantity for understanding and interpreting observational data on galaxy formation, growth,
and feedback processes. While the mergers of galaxies and the mergers of dark matter haloes
are not identical processes, the two processes are closely related, and quantifying the latter
is the first key step in understanding the former. There have been few theoretical studies of
merger rates (e.g., Gottlöber et al. 2001, Fakhouri and Ma 2008, Stewart et al. 2008) probably
because mergers are two- (or more-) body processes, and a large ensemble of descendent
haloes and their progenitor haloes must be identified from merger trees before the rate can
be reliably calculated. In comparison, studies of halo properties such as the mass function,
density and velocity profiles, concentration, triaxiality, spin, and substructure distribution
require only the particle information from a single simulation output.

This paper is an extension of our earlier study Fakhouri and Ma [2008] (henceforth FM08).
There we quantified the global mean merger rates of haloes in the Millennium simulation
[Springel et al., 2005] over a wide range of descendant halo mass (1012 . M0 . 1015M�),
progenitor mass ratio (10−3 . ξ ≤ 1), and redshift (0 ≤ z . 6). We found that when
expressed in units of the mean number of mergers per halo per unit redshift, the merger rate
has a very simple dependence on M0, ξ, and z: the rate depends very weakly on halo mass
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(∝ M0.08
0 ) and redshift, and scales as a power law in the progenitor mass ratio (∝ ξ−2.01)

for minor mergers (ξ . 0.1), with a mild upturn for major mergers. These simple trends
allowed us to propose a universal fitting form for the mean merger rate that is accurate to
10-20%.

Here we go beyond the global merger rate and use the rich halo statistics in the Millen-
nium database to quantify the merger rate as a function of halo environment, in addition to
descendant mass, progenitor mass ratio, and redshift. We also investigate the environmental
dependence of the progenitor (or conditional) mass function. This quantity is closely related
to the merger rate and is also the most important ingredient in the EPS and excursion set
models for constructing Monte Carlo merger trees.

Several recent environmental studies have used halo clustering, quantified by the halo
bias, as a measure of environment (e.g. Gottlöber et al. 2002, Sheth and Tormen 2004, Gao
et al. 2005, Harker et al. 2006, Jing et al. 2007, Wechsler et al. 2006, Gao and White 2007).
While halo bias is a powerful statistical quantity, we choose a simpler and more intuitive local
environment measure and use the local mass density centred at each halo. The earlier studies
that have used local overdensities as measures of halo environment have used a variety of
definitions, e.g., the mean density within a sphere of some radius (ranging from 4 to 10h−1

Mpc) or within a spherical shell (e.g. between 2 and 5h−1 Mpc) [Lemson and Kauffmann,
1999, Harker et al., 2006, Wang et al., 2007, Maulbetsch et al., 2007, Hahn et al., 2008].
In this paper we compare different definitions of the local overdensity, both including and
excluding the mass of the central halo itself.

In this paper we also provide an in-depth investigation of the effects of halo fragmen-
tation on the merger rate and its environmental dependence. In FM08, we discussed how
fragmentation is a generic feature of all merger trees and compared the stitching method with
the conventional snipping method for handling these events. We will show here that frag-
mentation occurs more frequently in dense regions than in voids; understanding the effects
of fragmentation on merger rates is therefore essential for obtaining robust results in dense
environments. There are three general types of approaches to handling fragmentations: do
nothing (snipping), stitching together fragmented haloes, or splitting up the common progen-
itor of the fragmented haloes. We will compare five algorithms for handling fragmentations
based on these three approaches and show that except for one algorithm, all the algorithms
give similar merger rates to within 20%.

This paper is organised as follows. In § 4.2 we briefly review how haloes and merger trees
are constructed from the particle data in the Millennium simulation. Statistics detailing the
distribution of halo mass at different redshifts are summarised in Table 4.1. In § 4.3 we
compare four local density measures and their distributions in relation to halo mass. Three
of the measures use the dark matter mass in a sphere centred at a given halo, either including
or excluding the mass of the central halo. The fourth measure is motivated by observables
such as luminosity-weighted galaxy counts and uses only the masses of the haloes within a
sphere. § 4.4 contains the main results of this paper, where we quantify how the merger rate is
amplified in denser regions and suppressed in voids for redshifts z = 0 to 2 over three decades
of halo mass (1012−5×1015M�). A simple power-law fitting function for this environmental



97

Mass Percentile
Redshift Quantity 0-40% 40-70% 70-90% 90-99% 99-100%

z = 0
Number of haloes 192038 144028 96019 43208 4800
Mass bins (1012M�) 1.2− 2.1 2.1− 4.5 4.5− 14 14− 110 > 110
ν bins 0.75-0.81 0.81-0.92 0.92-1.11 1.11-1.63 1.63-4.30

z = 0.51
Number of haloes 188258 141194 94129 42358 4706
Mass bins (1012M�) 1.2− 2.0 2.0− 4.1 4.1− 12 12− 74 > 74
ν bins 0.95-1.03 1.03-1.15 1.15-1.37 1.37-1.93 1.93-4.66

z = 1.08
Number of haloes 172568 129426 86284 38827 4314
Mass bins (1012M�) 1.2− 1.9 1.9− 3.7 3.7− 9.5 9.5− 48 > 48
ν bins 1.22-1.32 1.32-1.46 1.46-1.70 1.70-2.27 2.27-4.73

z = 2.07
Number of haloes 116830 87622 58415 26286 2920
Mass bins (1012M�) 1.2− 1.8 1.8− 3.0 3.0− 6.5 6.5− 24 > 24
ν bins 1.74-1.86 1.86-2.01 2.01-2.27 2.27-2.85 2.85-5.20

Table 4.1: Halo mass bins and number statistics at redshifts z = 0, 0.51, 1.08 and 2.07
(∆z = 0.06, 0.06, 0.09, 0.17) from the Millennium simulation used in this paper. The bins
are computed assuming fixed mass-percentile bins (header row). Listed are the number of
haloes in each bin, and the corresponding mass and ν boundaries for each percentile bin.
The highest 1% mass bins extend out to 5.2 × 1015, 3 × 1015, 1.3 × 1015, and 4.4 × 1014M�
for z = 0, 0.51, 1.08 and 2.07 respectively.

dependence is proposed, which can be used in combination with the fit for the global rate
presented in FM08. We also show that the progenitor (or conditional) mass function has
a similar environmental trend as the merger rate. Even though this is expected given that
the two quantities are closely related, this result demonstrates directly that the excursion
set model is incomplete. In § 5, we present statistics of halo fragmentations, compare five
algorithms for handling these events, and illustrate the robustness of the results reported
in § 4. The Appendix provides a discussion of the self-similarity of the merger rate and its
environmental dependence in the context of the choice of mass and environment variables
used in the fitting formula.

4.2 Haloes in the Millennium Simulation

The Millennium simulation [Springel et al., 2005] follows the evolution of roughly 2×107

dark matter haloes from redshift z = 127 to z = 0 in a 500h−1 Mpc box using 21603 particles
of mass 1.2× 109M� (all masses quoted in this paper include the factor of h−1). It assumes
a ΛCDM model with Ωm = 0.25, Ωb = 0.045, ΩΛ = 0.75, h = 0.73 and an initial power-law
distribution of density perturbations with index n = 1 and normalisation σ8 = 0.9.

A friends-of-friends (FOF) group finder [Davis et al., 1985] with a linking length of b = 0.2
is used to identify haloes in the simulation. Each FOF halo (henceforth halo) thus identified
is further broken into constituent subhaloes (each with at least 20 particles or 2.35×1010M�)
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by the SUBFIND algorithm which identifies gravitationally bound substructures within the
host FOF halo (for more on SUBFIND, see Springel et al. 2001a).

The subhaloes are connected across the 64 available redshift outputs to form a subhalo
merger tree. Mergers are complicated processes and the particles in a given subhalo will not
necessarily end up in a single subhalo in the subsequent output. As such, a subhalo is chosen
to be the descendent of a progenitor subhalo at an earlier output if it hosts the largest number
of bound particles in the progenitor subhalo. The resulting merger tree of the subhaloes can
be used to construct the merger tree of the FOF haloes, although we have discussed at length
in FM08 that this construction is non-trivial due to the fragmentation of FOF haloes. Our
main results reported in Sec. 4 use the stitching tree of FM08. Since fragmentation occurs
more frequently in denser environments, we provide a detailed comparison in Sec. 5 between
stitching and four alternative algorithms to test the robustness of our results.

The Millennium database provides a number of mass measurements for each identified
FOF halo. We use the total mass of the particles connected to an FOF by the group finder.
Tinker et al. [2008] argue that spherical overdensity measures of mass are more closely
linked to cluster observables than FOF measures and, therefore, are to be preferred. We
have found, however, that the FOF mass definition is more robust in the context of merging
haloes than definitions that make assumptions about halo geometry and virialization (for
the simple reason that merging haloes are typically not virialized at the simulation outputs
immediately preceding and following a merger event; see also White 2001).

We study the dependence of halo growth on halo environment in a variety of halo mass
bins at different redshifts. Since the most massive haloes at z = 0 are more massive than
the most massive haloes at higher redshifts, we use mass bins with boundaries that vary
with redshift such that each mass bin contains a fixed percentage of haloes. Table 4.1 lists
the five percentile bins used in our study, and the corresponding number of haloes and halo
masses at z = 0, 0.51, 1.08, and 2.07. We note that even in the highest 1% mass bin, there
are 4000 to 5000 cluster-mass haloes at z . 1 available for this study.

Table 4.1 also lists the range of ν for each mass bin, where ν = δc(z)/σ(M) is often
used as a mass variable for comparing haloes over different redshifts. Here σ(M) is the
variance of the linear density perturbations and δc(z) is the critical overdensity at redshift
z, where δc(z) = 1.686/D(z) and D(z) is the linear growth function of density perturbations
in ΛCDM. A comparison of the FOF mass versus ν as the mass variable is provided in the
Appendix.

Our notation is as follows. When computing the merger rate, we refer to the haloes at the
lower redshift as the descendants and label their masses by M0. The progenitors of a given
descendant halo at a (slightly) higher redshift are labelled M1,M2,M3..., where M1 ≥M2 ≥
M3... by our convention. The mass ratio of the progenitors is defined as ξ = Mi≥2/M1. In
this paper we find that there are sufficient halo statistics from the Millennium simulation for
studying the environmental dependence of the descendant haloes over a range of redshifts,
and shall present results at z0 = 0, 0.51, 1.08, and 2.07 and their progenitors at z1 = z0 +∆z,
where ∆z = 0.06, 0.06, 0.09, and 0.17, respectively.
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Figure 4.1: Scatter plots of halo mass vs three measures of halo environment for all FOF
haloes above 1.2 × 1012M� (1000 particles or more) in the z = 0 Millennium simulation
output. The colour scale indicates the number of haloes present in each (δ,M) grid cell
normalised by the bin size, and the contours are drawn at the 1, 100, and 104 bin levels
(decreasing line width). The left panel uses 1 + δ7, the density in a sphere of radius 7h−1

Mpc centred at each halo. The black line is 1 + δ7 = M/V7/ρ̄m (see text). The middle
panel shows 1 + δ7−2, the density in a shell between 2h−1 and 7h−1 Mpc. The right panel
uses 1 + δ7−FOF by subtracting the halo mass from δ7. At the high mass end, the halo itself
is the main contribution to δ7 and δ7−2, leading to the tight correlation between δ and M
in the upper right region in the left and middle panels. The right panels shows that this
correlation is largely removed when δ7−FOF is used, which subtracts out the FOF mass of the
central halo. The variable δ7−FOF is therefore a more independent measure of the immediate
environment outside of the haloes.

4.3 Measuring Halo Environment

In this paper we quantify a halo’s local environment using the local mass density centred
at the halo. In this section we examine four definitions of density. Three of them are
computed using the dark matter particles in a sphere of radius R centred at a halo, either
with or without the central region carved out (see Sec 3.1-3.3). The fourth definition is
computed using the masses of only the haloes rather than all the dark matter (Sec. 3.4).
This last environmental measure based on mass-weighted halo counts has the advantage that
it can be linked to observables such as luminosity-weighted galaxy counts.

4.3.1 Definitions of Environment

Only a few studies of halo environment have used local overdensities as measures of envi-
ronment [Lemson and Kauffmann, 1999, Harker et al., 2006, Wang et al., 2007, Hahn et al.,
2008]. By contrast, many studies have used the halo bias as a proxy for halo environment,
which is obtained by taking the ratio of the halo-halo (or halo-mass) two-point correlation
function to the underlying dark matter two-point correlation function (e.g., Gottlöber et al.
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2002, Sheth and Tormen 2004, Gao et al. 2005, Harker et al. 2006, Jing et al. 2007, Wechsler
et al. 2006, Gao and White 2007). Typically, these studies explore the dependence of bias
on a variety of tracers of the halo growth history such as formation redshift, concentration,
and number of major mergers. This technique has yielded clear signs of environmental de-
pendence, particularly when combined with the marked correlation function statistical test
[Gottlöber et al., 2002, Sheth and Tormen, 2004, Harker et al., 2006, Wechsler et al., 2006].

The connection between a halo’s local density and the halo bias, however, is not entirely
straightforward. The two quantities are certainly correlated, e.g., the two-point correlation
function of objects in denser regions is typically higher than that in less dense regions [Abbas
and Sheth, 2005]. However, the local density is a simple quantity that can be computed
for each halo, whereas the bias is a statistical measure of clustering strength computed by
averaging over a large number of pairs of haloes and particles over a range of pair separations.

The rich statistics of the Millennium simulation over large dynamic ranges in both mass
and redshift make it possible to use the more intuitive local density as a measure of envi-
ronment.

To compute the local overdensity in a halo’s neighbourhood, we centre either a sphere or
shell on the halo at spatial coordinates x and define the halo’s environment by

δR(x) ≡ ρR(x)− ρ̄m
ρ̄m

(4.1)

for a sphere of radius R, or

δRo−Ri
≡ δRoR

3
o − δRi

R3
i

R3
o −R3

i

(4.2)

for a shell of inner and outer radii Ri and Ro. Here ρ̄m is the mean matter density in the
simulation box, and ρR(x) is the mean density of a sphere of radius R centred at x. We also
propose an environmental measure, δR−FOF, computed by subtracting out the FOF mass M
of the central halo within a sphere of radius R:

δR−FOF ≡ δR −
M

VRρ̄m
, (4.3)

where VR is the volume of a sphere of radius R. Note that unlike the shell measure, this
measure makes no assumption about the central halo’s shape.

To compute ρR(x), one would need all the particle positions from the Millennium simu-
lation, which are not available on the online public database. The database, however, does
provide the density on a 2563 cubic grid (with a grid spacing of 1.95h−1 Mpc) computed
from the dark matter particles in the simulation using the Cloud-in-Cell (CIC) interpolation
scheme. We use this data to sum up the contributions within the sphere centred at x to
evaluate ρR(x). We note that the grid in the database is indexed using a Peano-Hilbert
space filling curve, which we have mapped to spatial coordinates in order to compute ρR.

It is important to choose an appropriate radius R (or Ro − Ri) in equations (4.1)-(4.3)
when computing halo environment. Lemson and Kauffmann [1999] used both δ10 and δ5−2
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(in units of h−1 Mpc) but failed to detect any environmental dependence in the formation
redshift for haloes with masses between 2 × 1012 and 1014h−1M�. Harker et al. [2006],
following Lemson and Kauffmann [1999], used δ5−2 and did detect environmental dependence
in Millennium for haloes with masses between 2×1012 and 1014h−1M�. Similarly, Hahn et al.
[2008] used δ5 and δ5−2 and found environmental dependence for haloes with masses between
2 × 1010 and 1.6 × 1011h−1M�. We will show in §4.3.3 that R = 7h−1 Mpc is an adequate
choice that effectively characterises the environments of massive halos.

4.3.2 Disentangling Environment and Mass

Since the goal of this paper is to quantify the dependence of merger rates on halo envi-
ronment as well as mass, it is essential for us to first examine the extent to which these two
variables are independent measures of halo properties. This is particularly relevant consid-
ering that our measure of environment is based on the local mass density. We note that in
the literature mass is often used loosely to refer to environment, e.g., clusters are considered
denser environments than galaxies. This interpretation is valid for galaxy counts. We are
concerned with FOF haloes (and not subhaloes or galaxies) here, however. As we will show,
haloes of all masses can reside in a wide range of overdensities.

To study the relation between halo mass and environment, we present a scatter plot of
the mass of every FOF halo (above 1000 particles M > 1.2 × 1012M�) at z = 0 in the
Millennium simulation versus its local 1 + δ in Fig. 4.1. Three definitions of local density are
shown for comparison: all mass within a 7h−1 Mpc sphere (δ7; left panel), all mass within
7h−1 Mpc excluding the central 2h−1 Mpc (δ7−2; middle panel), and all mass within 7h−1

Mpc excluding the central FOF mass (δ7−FOF; right panel).
Fig. 4.1 shows that galaxy-size haloes (∼ 1012M�) reside in a wide range of environmental

densities from extreme underdense regions of δ ∼ −0.8 to regions with δ > 20. The three
panels show similar distributions of δ for these low mass haloes regardless of the definition
of δ used. The high mass haloes, on the other hand, have very different distributions of
δ. The rich statistics of the Millennium simulation allow us to study halo mass out to
2 × 1015M�, an order of magnitude higher than in previous studies. At 5 × 1014M� and
above, the spherical and shell measures of overdensity, δ7 and δ7−2, are seen to be tightly
correlated with the halo mass (left and middle panels). In addition, all the points lie close
to the line that represents the density in a 7h−1 Mpc sphere computed from the FOF halo
mass alone, that is, M/V7/ρ̄m, where V7 is the volume of a sphere of radius 7h−1 Mpc. This
trend clearly indicates that the central haloes are dominating the local overdensity at masses
above ∼ 5 × 1014M�, and both δ7 and δ7−2 are tracing the central halo mass rather than
the overdensities in the neighbourhood outside the virial radius of the halo. Even though
δ7−2 subtracts out the central 2h−1 Mpc regions, the tight residual correlation seen in the
middle panel suggests that this quantity does not cleanly remove the contribution made by
the central halo, probably because these massive haloes extend well beyond 2h−1 Mpc. We
have also tested δ5−2, the measure of environment used in Lemson and Kauffmann [1999],
Harker et al. [2006], Hahn et al. [2007], and found nearly identical results as δ7−2. This
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Figure 4.2: Left panels: Distribution of the environmental variable 1 + δR−FOF defined in
equation (4.3) at four redshifts z = 0, 0.51, 1.08 and 2.07 (top to bottom) computed from
all haloes with M > 1.2 × 1012 (i.e. above 1000 particles) in the Millennium simulation.
The broadening of the distribution with decreasing z illustrates the effect of gravitational
instability. Within each panel, the four grey-scale histograms compare four smoothing radiiR
in h−1 Mpc: 3 (thin black), 5 (thin dark grey), 7 (thick black) and 9 (thin light grey); the five
coloured dotted histograms compare the separate contributions to the δ7−FOF distribution
from haloes of different mass percentile bins: top 1% (red), 90-99% (olive), 70-90% (green)
40-70% (cyan), and bottom 40% (blue). Right panels: Similar scatter plot as the right panel
of Fig. 4.1 but at four redshifts. The horizontal dotted lines mark the five mass percentile
bins used in the left panels and listed in Table 4.1.
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correlation may not be problematic for the results reported in these earlier papers, however,
as these studies did not report results beyond ∼ 1014M�.

The right panel of Fig. 4.1 shows that our third environmental variable, δ7−FOF, in equa-
tion (4.3) is capable of disentangling the tight correlation between halo mass and density
seen for δ7 and δ7−2; δ7−FOF is therefore a more robust measure of the environment outside
of a halo’s virial radius. It should, however, be kept in mind that haloes of different masses
residing in the same 7 Mpc region will have the same δ7 but different δ7−FOF. A cluster-sized
halo, for instance, will have a smaller value of δ7−FOF than a neighbouring galaxy-sized halo,
and the difference between the two values of δ7−FOF will be the difference between the mass
of the cluster and the galaxy (appropriately normalised). This caveat should be considered
when interpreting values of δ7−FOF across different mass bins. The spherical measure δ7, on
the other hand, is simpler in this context. For this reason, we will report results using both
δ7−FOF and δ7 below.

4.3.3 δ Distributions

To gain further insight into the properties of the environmental measure δR−FOF of
equation (4.3), we plot in the left panels of Fig. 4.2 the distribution of 1 + δR−FOF cen-
tred at each halo for all haloes in the Millennium database with more than 1000 particles
(M > 1.2 × 1012M�) at four redshifts z = 0, 0.51, 1.08, and 2.07 (top to bottom). Within
each panel, four choices of radii, R = 3, 5, 7, and 9h−1 Mpc, are shown for comparison (thin
black, thin dark grey, thick black, and thin light grey). A comparison of the four left panels
shows that the width of the 1+δR−FOF distribution becomes broader towards lower redshifts.
This is a natural consequence of gravitational instability: denser regions become denser and
vice versa as the universe evolves. We will explore the implications of this effect further in
the appendix.

At a given redshift, as expected for a ΛCDM model, the overdensities computed using
a larger smoothing radius R are generally smaller than those computed using a smaller R.
In the voids, the distribution of 1 + δ3−FOF is seen to have a low δ tail that extends down
to unphysical (negative) 1 + δ; a faint remnant of this tail is also visible in 1 + δ5−FOF at
z = 0. This tail is due to a number of cluster-size haloes whose FOF member particles
extend beyond 3 to 5 Mpc. We note that the virial radii of even the most massive halos
(1015M�) do not extend beyond 3 Mpc; however we have found that the distance between
the centre of an FOF’s most massive subhalo and the furthest subhalo associated with said
FOF can extend beyond 5 Mpc even for halos with masses of a few ×1014M�. We therefore
use 1+ δ7−FOF throughout this paper in order to better sample the environment surrounding
these large haloes.

We break down the haloes represented by the thick black 1 + δ7−FOF curve in the left
panels of Fig. 4.2 into different mass bins and plot their δ-distributions using dotted colour
histograms. Less massive haloes cover a broader range of 1 + δ7−FOF than more massive
haloes, and their distribution peaks at a lower value of δ7−FOF. We note that even though
the histograms for both the lower mass haloes and the total distribution at z = 0 are peaked
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Figure 4.3: Scatter plot of two density variables: 1 + δ7 (see Fig. 1) computed from all dark
matter particles centred within a 7h−1 Mpc sphere of each halo, and the mass-weighted halo
counts 1+δH7 computed by including only masses in haloes in the same sphere (down to halo
mass of 1.2× 1012M�). The contours are plotted at probability values of 10−4 (black), 0.01,
0.1 and 1 (white); the thick contours are for simulation data, the thin contours are from the
fit in eq. (4.5). The grey dotted line is for δ7 = δH7 .

at a slightly negative value of δ, the mean value is in fact positive, e.g., < δ7 >= 0.864 and
< δ7−FOF >= 0.849 for the lowest mass bin, and < δ7 >= 1.04 and < δ7−FOF >= 0.956 for all
the halos. The value of < δ7−FOF > is only slightly smaller than < δ7 > because subtracting
the FOF mass of the low mass haloes (which dominate the total distribution) makes little
difference when δ is averaged over a sphere of radius as large as 7h−1 Mpc. The mean of δ
is not zero here because the overdensities are not randomly sampled but are instead centred
on haloes.

The right panels in Fig. 4.2 are scatter plots of each halo’s local density 1+δ7−FOF versus
its mass at z = 0, 0.51, 1.08, and 2.07 (top to bottom). (The top panel is a repeat of the
right panel of Fig. 4.1.) The mass bins based on percentiles from Table 4.1 are marked by
the horizontal lines. At high z the haloes cover a narrower range in both δ and M , but
the tight correlation seen in Fig. 4.1 between the mass of the massive haloes and their local
densities δ7 and δ7−2 is removed at all redshifts when δ7−FOF is used.
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4.3.4 Computing δ via Halo Counts

The local environmental measure δ7 is convenient from a theoretical standpoint but is
not easy to measure observationally as it demands accurate knowledge of the background
dark matter distribution within a large (7 Mpc) radius of the halo in question. Here we
consider a more observer-friendly quantity based on the mass-weighted halo counts (above
a certain mass threshold):

1 + δH7 (x) ≡
∑
Mhalo

V7ρ̄m
(4.4)

where the sum is over all halos within a 7h−1 Mpc sphere centred at x above some minimum
mass (we use 40 particles, or 4.7× 1010M�), and V7 is the volume of a sphere of radius 7h−1

Mpc. For a given halo in the Millennium simulation, we compute this quantity by summing
over all haloes whose centres lie within the 7h−1 Mpc sphere centred on the halo in question.
We do not account for the fact that halos near the boundary may only strictly contribute a
fraction of their mass to the 7h−1 Mpc sphere.

The resulting mass-weighed halo counts 1 + δH7 is plotted against 1 + δ7 computed from
the CIC density grid in Fig. 4.3. The 2d-histogram is normalised to have unit area and can
be thought of as a bivariate probably distribution. We note that, while δ7 is generally greater
than δH7 as expected, there are regions with δH7 > δ7, particularly in dense environments.
This is due to the fact that a halo’s entire mass contributes to δH7 if its centre lies within the
7h−1 Mpc sphere in question.

We approximate the distribution with a two-dimensional log-normal distribution. Since
the variables are correlated, the fitting form has five parameters and is given by

dP

dδ7dδH7
=

1

2πx1x2σ1σ2

exp

[
− ln(x1)2

2σ2
1

−− ln(x2)2

2σ2
2

]
, (4.5)

where ln(x1) and ln(x2) are uncorrelated variables that are simply linear combinations of
ln(1 + δ7) and ln(1 + δH7 ) given by[

ln(x1)
ln(x2)

]
=

[
cos θ sin θ
− sin θ cos θ

] [
ln(1 + δ7)− µ1

ln(1 + δH7 )− µ2

]
. (4.6)

Here µ1 and µ2 denote the mean values of ln(1+δ7) and ln(1+δH7 ) respectively, θ is an angle
that quantifies the correlation between the two δs, and σ1 and σ2 are the standard deviations
along the major and minor axes defined by θ. The best fit values for these five parameters
are µ1 = 0.210, µ2 = −0.549, σ1 = 1.03, σ2 = 0.141, θ = 0.943. The thin contours in Fig. 4.3
represent the resulting fit.

We have also computed a simpler power-law fit that can be used to approximate the
mean relation between the two densities:

ln(1 + δH7 ) = 1.28 ln(1 + δ7)− 0.865 . (4.7)

Both fitting forms can be used to convert back and forth between δ7 and δH7 .
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4.4 Environmental Dependence

4.4.1 Halo Merger Rate

In FM08 we defined and computed the merger rate B/n as a function of progenitor
mass ratio ξ ≡ Mi/M1 (with i ≥ 2), descendant mass M0, and redshift z. The rate B/n is
dimensionless and measures the mean number of mergers per halo per redshift interval per
mass ratio. We found that in these units, the merger rate has a remarkably simple form and
depends only weakly on mass and redshift. We proposed the fitting form

B(M0, ξ, z)

n(M0, z)
= A

(
M0

M̃

)α
ξβ exp

[(
ξ

ξ̃

)γ](
dδc
dz

)η
, (4.8)

where (α, β, γ, η) = (0.083,−2.01, 0.409, 0.371), A = 0.0289, ξ̃ = 0.098, M̃ = 1.2 × 1012M�,
and δc(z) ∝ 1/D(z) is the standard density threshold normalised to δc = 1.686 at z = 0,
with D(z) being the linear growth factor. This fit is accurate to 10-20% over the mass range
1012 − 1015M� and redshift range z < 6.

The merger rates B/n at z = 0 for the five descendant halo mass bins in Table 4.1 are
reproduced for reference in the top left panel of Fig. 4.4. As shown in FM08 and indicated by
equation (4.8), the merger rate is approximately a power law in ξ in the minor merger regime
and has a slight upturn in the major merger regime (ξ & 0.2). All five curves are nearly on
top of one another, reflecting the very mild mass dependence (α ∼ 0.1) in equation (4.8).
We compute each curve by first selecting the descendant haloes in a given mass bin and
computing the mass ratios ξ for the progenitors of these haloes. We then compute B/n by
counting B, the number of progenitors (Mi with i > 2) that lie in a given mass ratio bin (ξ),
and dividing by n, the total number of descendants in the mass bin in question. See FM08
for further details of this procedure and discussions of the results.

Equation (4.8) gives the global mean merger rate averaged over all halo environments.
To investigate the correlation of B/n with environment, we divide each mass bin shown in
the top left panel of Fig. 4.4 into five environmental bins and compute B/n[δ] using B and n
in the given δ7−FOF bin. The remaining five panels in Fig. 4.4 show our results for the ratios
of B/n[δ] to the global mean B/n, as a function of ξ, for each of the five descendant mass
bins. Within each panel, the different curves are for different δ7−FOF bins for which there are
sufficient halo statistics.

For descendant haloes of mass 1012 to 1013M�, Fig. 4.4 shows a strong environmental
effect with a positive correlation between merger rates and local density: haloes in the
densest regions (1 + δ7−FOF > 7; red curves) experience 1.5 to 2 times more mergers than
the average, while haloes in underdense regions (1 + δ7−FOF < 0.7; blue curves) experience
fewer mergers (by a factor of 0.7 to 0.8) than average. For group and cluster scale haloes
(1013 to 5× 1015M�) in the bottom panels, only three curves are shown for the middle three
δ7−FOF bins because massive haloes span a smaller range of δ7−FOF, as shown in Figs. 1 and
2. For each δ7−FOF bin, the value of the merger rate ratio is quite similar for all five panels,
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Figure 4.4: Halo merger rate and its environmental dependence on the local overdensity
δ7−FOF measured in a 7h−1 Mpc sphere excluding the central FOF halo mass. Top left panel:
The global mean merger rate B/n (in units of mergers per descendant halo per unit redshift
per ξ bin) as a function of the progenitor mass ratio ξ for descendant haloes in five mass
percentile bins (see Table 4.1). The results are computed using the z = 0 and 0.06 outputs
from the Millennium simulation. The higher mass curves extend down to lower ξ because
we have chosen a fixed minimal progenitor mass (40 particles) for all descendants. Other
five panels: The ratio of the merger rate of haloes in a given environmental bin B/n[δ] to
the global mean B/n as a function of ξ. Each panel is for a mass bin shown in the upper
left panel. Within each panel, different colours show different 1 + δ7−FOF bins (red for the
densest regions; blue for the void regions), and the bands indicate the size of the Poisson
errors. Note that the lower panels for the higher mass haloes have fewer δ curves since δ7−FOF

for these haloes spans a narrower range. This figure clearly shows that the merger rate is
higher in dense regions and lower in voids for all halo masses, and the boost or reduction
factor is nearly independent of the progenitor mass ratios ξ.
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Figure 4.5: Same as the merger rate ratio plots in Fig. 4.4 except at higher redshifts: z =
0.51, 1.08, 2.07 (from top to bottom). The five columns correspond to the five mass percentile
bins (see Table 4.1). Within each panel, the coloured curves show different 1 + δ7−FOF bins
(red for the densest regions; blue for the void regions), and the bands indicate the size of the
Poisson errors. Note that since the distribution of δ7−FOF evolves with z, the corresponding
δ bins (labelled in the leftmost columns) for the five coloured curves change with redshift.
This figure shows that the positive correlation of the merger rate with δ7−FOF persists out
to z ≈ 2.
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Figure 4.6: Dependence of the mean merger rate dNmerge/dz (=
∫
B/ndξ) on environ-

mental variables 1 + δ7−FOF (top figure) and 1 + δ7 (bottom figure) at four redshifts
z = 0, 0.51, 1.08,and 2.07 (left to right). Within each figure, the top panel shows the ra-
tio of the mean merger rate dNmerge/dz[δ] for haloes in a given environment to the global
mean merger rate dNmerge/dz. The bottom panel plots the ratio of the simulation results to
the fits, showing that eq. (4.11) is generally accurate to within 10% (indicated by the dotted
horizontal line). The colours correspond to the five mass percentile bins in Table 4.1 (red for
the highest and blue for the lowest mass bin); the bands correspond to Poisson errors. This
figure shows that the positive correlation of the merger rate with environmental density is
present at all mass and redshift ranges probed.
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Figure 4.7: Same as Fig. 4.4 except the quantity shown is the progenitor (or conditional)
mass function φ(M1, z1|M0, z0) instead of the merger rate B/n. The results are computed
using the (z0, z1) = (0, 0.06) outputs from the Millennium simulation. Similar to Fig. 4.4,
we find that descendant haloes in the densest regions (red curves) have significantly more
progenitors (by a factor of 1.5 to 2) than the global distribution of progenitors, whereas
those in the voids (blue curves) have ∼ 20% to 30% fewer progenitors.
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indicating that the environmental effect, as measured by δ7−FOF, depends very weakly on
halo mass. We will quantify this statement using a fitting formula below.

Fig. 4.5 presents the same information as Fig. 4.4 but at higher redshifts (z = 0.51, 1.08,
and 2.07 from top to bottom panels). The δ-bins for which the curves are too noisy are
excluded. Since the distribution of 1 + δ7−FOF narrows with increasing z, the δ7−FOF bins
span a smaller range at z = 2 than at z = 0. Nonetheless, we see that the environmental
dependence observed at z = 0 persists out to z = 2. Moreover, haloes with similar 1+δ7−FOF

experience similar amplifications or reductions in the merger rate regardless of mass and
redshift.

An additional feature to note in Figs. 4.4 and 4.5 is that the curves are horizontal:
environmental effect is therefore largely independent of the mass ratio ξ; that is, major and
minor merger rates are boosted or dampened by a halo’s environment by a similar factor.
We can therefore integrate over the mass ratio parameter without diluting the environmental
effect:

dNmerge

dz
(M, z) =

∫ 1

ξmin

B(M, ξ, z)

n(M, z)
dξ (4.9)

where dNmerge/dz is the mean merger rate per unit redshift per descendant halo with pro-
genitor mass ratio above ξmin.

The value of dNmerge/dz clearly depends on ξmin and is larger when more minor mergers
are included (see, e.g., Figs. 7 and 8 of FM08). For a fixed resolution mass (our choice is
40 particles or more for progenitor haloes), ξmin extends down to lower values for higher
mass descendants. For a fair comparison across halo mass bins, one should in principle use
a fixed ξmin for all mass bins at the expense of throwing out resolved progenitors for high
mass descendant haloes. Since we plot ratios of the merger rates, however, the fact that
more massive haloes are better resolved and have higher dNmerge/dz is normalised out. It
is therefore possible to make a fair comparison across mass bins without throwing out any
resolved progenitors.

Fig. 4.6 shows the ratio of the merger rate dNmerge/dz as a function of 1 + δ at four
redshifts (z = 0, 0.51, 1.08, 2.07 from left to right). For comparison, the results for two
environmental measures are included: δ7−FOF (top figure) and δ7 (bottom figure). Within
each figure, the upper panel shows the simulation data and the lower panel compares the
data to the analytic fitting formula discussed below. The five curves in each panel are for
the five mass bins listed in Table 4.1. This figure shows the same trend as Fig. 4.4: haloes
in the densest regions at z = 0 experience up to ∼ 1.5 times as many mergers as the average
halo, whereas the merger rate in the voids is 20 to 30% below the global average.

To quantify the dependence of the merger rate on δ, we introduce

dNmerge

dz
(δ,M, z) ≈ dNmerge

dz
(M, z)× f(δ,M, z) , (4.10)

where we have made use of the fact that the environmental dependence is independent of ξ
to define f , and dN/dz(M, z) is the global merger rate from FM08. We provide two fitting
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forms for f using δ = δ7−FOF and δ7, respectively. We find that a simple power-law and
redshift-independent form works well:

f(δ7−FOF,M) = 0.963 (1 + δ7−FOF)0.130

(
M

1012M�

)−0.0156

f(δ7,M) = 0.968 (1 + δ7)0.135

(
M

1012M�

)−0.0252

. (4.11)

The fits are performed using data from all four redshifts simultaneously (over much finer
mass bins than those shown in Fig. 4.6). The reduced χ2

ν for the two fits is 0.95 and 1.08,
respectively. Errors are computed assuming Poisson statistics and are represented by the
filled regions in Fig. 4.6. The resulting fit is shown as dashed curves in the upper row of
each figure, and the ratio of the simulation data to the fits is shown in the lower rows. The
fits are seen to be accurate to within 10% for a wide range of δ and M , except for low mass
haloes with δ & 5 at z = 0 and 0.51, where the rates steepen suddenly.

As we will discuss in § 4.5, our extensive tests using various algorithms suggest that the
merger rate in this particular parameter range (i.e. low mass, low z, high density) depends
sensitively on the post-processing algorithm used to handle fragmentations in the merger
tree, and variations of order 20% or more among different algorithms are observed. We
therefore do not attempt to use a fitting form more complicated than equation (4.11) to get
a better fit in this uncertain regime.

It is interesting to note that when δ7 is used, instead of δ7−FOF, as the environment
variable, the only change in the fit in equation (4.11) is a stronger dependence on halo mass.
This trend makes sense since the difference between δ7 and δ7−FOF is δ7−δ7−FOF = M/(V7ρ̄m)
(see eq. [4.3]). This difference is negligible for galaxy-scale haloes (e.g. δ7 − δ7−FOF ∼ 0.01
for 1012M�) but becomes larger for more massive haloes, reaching δ7 − δ7−FOF ∼ 10 at
M ∼ 1015M�. The five curves for the five mass bins at a given z in Fig. 4.6 are therefore
more spread out when δ7 is used as the variable, resulting in a stronger mass dependence.

We have chosen to use halo mass and local density as variables in equation (4.11). It
is interesting to ask if other choices of variables may lead to a more accurate fit across
the wide ranges of halo masses, densities, and redshifts shown in Fig. 4.6. For instance,
the variance of the linear density perturbation σ(M) and the scaled density threshold
ν(M, z) = δc/σ(M)D(z) are commonly used to characterise mass and redshift dependence of
halo properties (e.g., the mass function). We test these variables and describe the results in
appendix 4.7. Our conclusion is that these alternative variables do not perform any better,
and the [M, 1 + δ7−FOF] pair shows the least systematic variation with redshift.

In summary, the simple parametrisation of the environmental dependence of the merger
rate given by equations (4.10) and (4.11) can be used along with the fit for the global merger
rate B/n in equation (4.8) to compute the merger rate in different environments at a variety
of redshifts.
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4.4.2 Progenitor Mass Function

For completeness and ease of comparison with analytic models, we present here the
results for the environmental dependence of the conditional (or progenitor) mass function
φ(M1, z1|M0, z0). This function gives the mean distribution of the progenitor masses Mi at
redshift z1 for a descendant halo of mass M0 at redshift z0. It is the key ingredient for the
construction of Monte Carlo merger trees in the Extended Press-Schechter model.

The relation between φ and the merger rate B/n is discussed in Sec 3.3 of FM08. These
two quantities are closely related but differ in two ways. First, φ is typically plotted vs
M1/M0, while B/n is expressed in the mass ratio of the progenitors Mi/M1(i ≥ 2) and the
descendant mass M0. Second, the conditional mass function φ(M1, z1|M0, z0) includes all
progenitor halos at z1 regardless of if a merger has occurred between z1 and z0, whereas
the merger rate includes only descendant haloes with more than one progenitor. When the
lookback time z1 − z0 is small, a large fraction of haloes in fact have only one resolved
progenitor typically with a mass M1 comparable to the descendant mass M0. See the sharp
rise in φ near M1/M0 = 1 in Fig. 4.7). No such peak is present in the merger rate in Fig. 4.4.

Fig. 4.7 shows that the progenitor mass function has a similar dependence on 1 + δ7−FOF

as the merger rate in Figs. 4.4-4.6. We have chosen to plot Fig. 4.7 in the same way as
Fig. 4.4, where the upper left panel shows the global progenitor mass function φ at z1 = 0.06
for five bins of descendant mass M0 at z0 = 0, and the other five panels show how φ for haloes
in different δ7−FOF bins compare to the global mean φ. We see that, like B/n, the progenitor
mass function has a noted dependence on environment. For galaxy-size descendant haloes,
those in the overdense regions have ∼ 1.5 times as many progenitor haloes as the mean,
while those in the underdense regions have ∼ 0.7 times as many progenitor haloes as the
mean.

4.5 Alternative Algorithms for Post-Processing Halo

Fragmentations

As we discussed in Sec. 2 and FM08, even though each subhalo in the Millennium tree
is, by construction, identified with a single descendant subhalo, the resulting FOF tree can
contain fragmentation events in which an FOF halo is split into two (or more) descendant
FOF haloes. This fragmentation issue is not unique to the use of subhaloes in the Millennium
simulation but occurs in merger trees in all prior studies that are typically constructed
based on the FOF haloes rather than subhaloes. This problem arises because particles in a
progenitor halo (or subhalo) rarely end up in exactly one descendant halo; a decision must
therefore be made to select a unique descendant and there is no unique way to do this.
The standard procedure to assign progenitor and descendant FOF haloes is the same as
that applied to the subhaloes in Millennium: the descendant halo is the halo that inherits
the most number of bound particles of the progenitor. We call this algorithm snipping
since it effectively cuts off the ancestral link between a progenitor halo and its subdominant
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Figure 4.8: Example of a typical fragmentation event in the Millennium simulation. Black
circles represent FOF haloes; white circles represent subhaloes. Circle radii scale with the
logarithm of the (sub)halo mass. The left panel shows a fragmentation event occurring
between z = 0.06 and 0.04 (red subhalo). The snip panel shows how the ancestral link
between the fragmented halo and its progenitor is severed, producing a (blue) orphan halo.
The stitch panel shows how the fragment is stitched back into the main branch at z = 0.04
(yellow subhalo). The split panel shows how the fragment’s progenitor at z = 0.06 is split
off from the FOF halo (green subhaloes).

descendant fragments, while leaving the halo masses unchanged (see Fig. 4.8).
In FM08, we explored a new method stitching for handling these fragmentation events.

In this method (which we call stitch-3 here), the fragmented haloes that remerge within 3
outputs after fragmentation occurs are stitched into a single FOF descendant; those that
do not remerge within 3 outputs are snipped and become orphan haloes. We compared the
two methods and showed that snipping inflates the merger rates by up to 10% in the major
merger regime and 25% in the minor merger regime (Fig. 9 of FM08). This is not surprising
since bound subhaloes are often on eccentric orbits that extend out to 2 to 3 virial radii of
the main halo (see, e.g., Ludlow et al. 2008). The FOF finder can repeatedly disassociate
and associate these subhaloes, leading to spurious fragmentation and remerger events.

In addition to the snipping and stitching algorithms, we examine a third method here that
is complementary to stitching. We call this method splitting (see also Genel et al. [2009]).
Our motivation for introducing this algorithm is the fact that fragmentations can be the
result of either false fragmentation at the lower z0, where physically bound subhaloes are
broken up, or false grouping at the earlier z1, where physically unbound subhaloes are falsely
associated by the FOF finder. Even though multi-body subhalo encounters may unbind a
subhalo, our visual inspections of a number of halo merger tracks indicate that such events
are rare. Instead, most of the apparent fragmentations are due to the halo finder, which
at an earlier output (z1) may group subhaloes together, only to separate them at the next
timestep (z0 < z1). A decision needs to be made about whether the falsely separated haloes
at z0 should be put back together (i.e. stitching), or the falsely grouped halo at z1 should
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Figure 4.9: Fragmentation statistics (fraction of haloes that fragmented) as a function of
environmental density 1 + δ7−FOF at redshifts z = 0.06, 0.51, 1.08, 2.07 (left to right). Within
each panel, three fragmentation mass ratios ξ are shown: major fragmentations with ξ > 0.1
(dotted); those with ξ > 0.04 (dashed), and all fragmentations down to the resolution limit
(40 particles; solid). The two colours are for different mass bins: 0 to 40% (blue) and
90-99% mass bin (red); see Table 4.1. The red solid curve is significantly higher than the
blue solid curve because the fragments of higher mass haloes are better resolved (i.e. ξmin
is smaller). Minor fragmentations are seen to dominate, while only ∼ 1% of haloes suffer
major fragmentations (ξ > 0.1) in typical environments.

be broken up (i.e. splitting). (Note: Snipping effectively does nothing.)
Fig. 4.8 illustrates how each of the three algorithms – snip, stitch, and split – handles

halo fragmentation. For completeness, we also explore a variation of stitch (and split),
in which the number of outputs used to make the decision is altered. Instead of stitch-3
(or split-3), which only stitches (or splits) fragmented haloes that remerge within 3 time
outputs, we consider stitch-∞ (or split-∞), which stitches (or splits) any fragmented haloes
regardless of their future (or past) history. An important distinction between stitch-3 and
stitch-∞ (and similarly for split-3 vs split-∞) is that the modifications to the haloes are
confined to the three adjacent outputs in stitch-3 and split-3; haloes along the merger tree
outside of this time range are unaltered. The modifications made in stitch-∞ and split-∞
however, propagate indefinitely either forward or backward along any tree branch where a
fragmentation occurs. No algorithm is perfect, but any error made in stitch-∞ and split-∞
will affect the entire branch of the tree that contains a fragmentation event. By contrast,
errors made in stitch-3 and split-3 are confined to the redshift at which the fragmentation
occurs. Stitch-∞ and split-∞ are therefore extreme algorithms, which are included here for
comparison purposes only.

Before comparing the algorithms, we first show the frequency of fragmentations in the
Millennium FOF tree as a function of environment in Fig. 4.9. The fraction of haloes that
experience fragmentations is seen to increase with δ7−FOF, differing by a factor of ∼ 3 at
low z and by a factor of ∼ 5 to 10 at z ≈ 2. The fragments, however, are dominated by
low-mass haloes: only ∼ 1% of the haloes in typical densities have fragments of mass ratio
ξ above 0.1, and this fraction is no larger than ∼ 10% even in the densest regions. Most of
the fragmentations are therefore minor.
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Figure 4.10: Comparison of the global merger rate B/n (including all environment) vs
progenitor mass ratio ξ computed from five fragmentation algorithms at z = 0.06, 0.51, 1.08,
and 2.07 (left to right). Since stitch-3 is the method used in FM08, we plot the ratio of B/n
from the other four methods to B/n from stitch-3. Colours correspond to the mass bins in
Table 4.1 (blue: lowest mass, red: highest mass). The shaded regions denote Poisson errors.
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Figure 4.11: Comparison of the environmental dependence of the merger rate computed from
five algorithms at z = 0.06, 0.51, 1.08, 2.07 (left to right). Similar to Fig. 4.6, we plot the
ratio of the mean merger rate dNmerge/dz[δ] for haloes in a given δ7−FOF bin to the global
mean merger rate dNmerge/dz. The mass bins are shown in different colours (blue for the
lowest and red for the highest bin in Table 4.1). Shaded regions indicate Poisson errors. This
figure shows that stitch-3, snip, and split-3 have similar δ dependence. Split-∞, however,
reverses the δ-trend for low mass haloes, which we believe is an artefact of the propagation
of fragmentations up the tree (see text).
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Fig. 4.10 compares the global mean merger rates B/n (i.e. including all environment) as
a function of progenitor mass ratio ξ for the five algorithms (top to bottom) at four redshifts
(z = 0.06, 0.51, 1.08, 2.07 from left to right). Since stitch-3 is the algorithm used in FM08,
we show the ratio of each of the four alternative algorithms to stitch-3. Within each panel,
the coloured curves show a variety of descendant mass bins (the bands show Poisson errors).
As we have already seen in FM08, snipping (first row in Fig. 4.10) yields a higher merger
rate (by ∼ 20% at ξ < 0.01) due to the orphaned haloes, resulting in a steeper power-law
dependence ξβ (β ∼ −2.2) than stitch-3 (β ∼ −2). Stitch-∞ (second row), on the other
hand, zips together all the fragments and reduces the number of minor mergers by as much
as ∼ 40% (β ∼ −1.8) in comparison to stitch-3. Split-3 (third row) tends to raise the minor
merger rate by up to ∼ 15 − 20%. Split-∞ (fourth row) has a feature in the low-ξ merger
rate that breaks the power-law behaviour seen in the other trees. This feature is redshift
dependent and drives the merger rate lower than in stitch-3.

We now examine how the environmental dependence of the merger rates is affected by
the algorithm used for handling fragmentations. To do this, we integrate B/n over ξ and
show the total rate, dNmerge/dz, as a function of 1 + δ7−FOF for the five algorithms (top to
bottom) at four redshifts in Fig. 4.11. Similar to Fig. 4.6, the vertical axis shows the ratio
of the merger rate in a δ7−FOF bin to the global rate, dNmerge/dz[δ] : dNmerge/dz, computed
with each method. This figure shows that the stitching (both stitch-3 and stitch-∞) and
snipping algorithms produce very similar environmental dependence; though the extreme
stitch-∞ yields a mildly weaker δ dependence. In contrast, split-∞ shows a sudden reversal
in the δ-dependence at z = 0.51, 1.08, 2.07 in the three lower mass bins, with haloes in the
densest regions experiencing fewer mergers. Split-3, on the other hand, shows a positive
(albeit weak) correlation of merger rate with δ for all mass bins but the very lowest. We
believe the difference between the split and stitch trees is due to an ”unzipping” effect that
is most pronounced in split-∞, in which splitting a fragmentation event at low z affects
the entire branch above this redshift, resulting in the discrepantly low merger rates in high
density regions seen in the last row of Fig. 4.11.

In summary, halo fragmentation is a generic feature of all merger trees. It occurs more
frequently in dense regions than in voids, thereby prompting the detailed investigation in
this section. Our tests of five algorithms show that the majority of tree-processing meth-
ods (stitch-3, stitch-∞, snip, and, to some extent, split-3) give very similar environmental
dependence for the mean merger rate. In addition, the global merger rate (including all
environment) is robust, differing by less than 10% for major mergers and less than 20% even
in the very minor merger regime (ξ < 0.01) that is more prone to systematic effects. The
split-∞ algorithm, on the other hand, appears to suffer from “non-local” effects that have
propagated up the merger tree from the fragmentation point. In particular, the merger rate
is greatly reduced in high density regions when split-∞ is used.
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4.6 Conclusions and Implications

We have used the dark matter haloes and merger trees constructed from the Millennium
simulation to quantify the dependence of halo merger rates on halo environment from redshift
z = 0 to 2. A number of local mass density parameters centred at the haloes, both including
and excluding the central halo mass itself, are tested as measures of environment. We
have found that δ7−FOF defined in equation (4.3) is a robust measure of the surrounding
environment outside of a halo’s virial radius. It cleanly subtracts out the contributions to
the local density from the central halo and thereby breaks the degeneracy between halo mass
and environment for high mass haloes (see Figs. 4.1 and 4.2).

We have found strong and positive correlations in both the halo merger rate and the
progenitor mass function with environmental densities. Figs. 4.4-4.7 present our main results,
where haloes in the densest regions are seen to experience 2 to 2.5 times higher merger rates
than haloes in the voids. Such a density dependence can be approximated analytically by
multiplying our earlier fitting formula FM08 for the global merger rates (eq. 4.8) by an
additional δ-dependent factor given by equation (4.11). This factor is a simple power-law
in both the environmental density and halo mass, and it is redshift-independent. The mass
dependence is quite weak, indicating that haloes with different masses but similar values of
1 + δ7−FOF experience similar merger rate amplifications. This is intriguing in light of the
fact, discussed in Section 4.3.2, that these haloes actually reside in different environments.

The strong correlations of the halo merger rate and progenitor mass function with envi-
ronment discussed in this paper have important implications for the analytic Press-Schechter
[Press and Schechter, 1974] and excursion set models [Bond et al., 1991, Lacey and Cole,
1993]. In this popular formalism, halo growth is modelled by the random walk trajectories
of dark matter density perturbations smoothed at decreasing scales. Haloes are identi-
fied at scales at which these trajectories first cross some critical density threshold, and the
Markovian nature of the model allows one to compute the distribution of these first cross-
ings. This distribution is then mapped onto the number-weighted conditional mass function
φ(M, z|M0, z0) discussed in Section 4.4.2 and plays an important role in the Monte Carlo
construction of mock merger tree catalogues (see Zhang et al. 2008a and references therein).

It is generally assumed that the conditional mass function is independent of environment
as the excursion set model is Markovian. The Markovian nature of the random walks, how-
ever, is not a prediction but rather an assumption resulting from the use of the k-space tophat
window function to smooth the density perturbations. There have been recent attempts to
weaken this assumption or to introduce environmental dependence into other parts of the
model [Zentner, 2007, Sandvik et al., 2007, Desjacques, 2008], but these modifications thus
far have not been able to reproduce the basic statistical correlation between halo clustering
and formation time found in simulation studies: older haloes are more clustered [Gottlöber
et al., 2001, Sheth and Tormen, 2004, Gao et al., 2005, Harker et al., 2006, Wechsler et al.,
2006, Jing et al., 2007, Wang et al., 2007, Gao and White, 2007, Maulbetsch et al., 2007].

How do our environmental results for the merger rates tie in with these simulation and
EPS studies? We have shown that the amplification of halo merger rates in denser regions
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persists at all redshifts (up to at least z = 2). If mergers were the dominant channel for
halo growth, our results would imply that for haloes of a fixed mass today, those in denser
regions should have formed more recently than those in void regions. Interestingly, this is
exactly opposite to the trend reported in many recent studies that have found older (i.e.
earlier forming) haloes to be more clustered than younger haloes. As we will discuss in the
next paper (Fakhouri & Ma 2008c), these two results are in fact not in conflict once the
other important channel for halo mass growth – the “diffuse” accretion of non-halo material
(either unresolved or stripped) – is taken into account. We will quantify the environmental
dependence of this component and show that, when combined with the merger rate results
presented in this paper, we recover the formation redshift dependence reported in prior
simulation studies.

4.7 Appendix: Self-Similar Mass and Environment Vari-

ables

We have chosen to use the intuitive mass and environment variables M and δ7−FOF in the
fitting form (eq. 4.11) for the environmental dependence of the merger rate for 0 ≤ z ≤ 2.
Here we investigate if other choices of mass and density variables may improve the fit. This is
motivated by the well known property that the unconditional halo mass function is (almost)
redshift-independent when the variable

ν(M, z) =
δc

σ(M)D(z)
(4.12)

is used to characterise mass (see, for example, Jenkins et al. 2001); whereas when M is
used as the mass variable, the halo mass function evolves significantly with redshift. Here
δc = 1.686 is the critical overdensity for spherical collapse, σ(M) is the variance of the linear
density perturbations evaluated at a scale corresponding to the halo mass M , and D(z) is
the linear growth function. On the other hand, as we discussed in the paper, the merger
rate is more closely related to the conditional mass function than the unconditional mass
function, and the redshift dependence of the former cannot be scaled out simply by using ν.
Nonetheless, one can ask whether ν is the more appropriate variable for capturing the mass
dependence of the environmental dependence of dNmerge/dz.

A similar question can be raised about δ7−FOF. The overdensity δ7−FOF grows as a result
of gravitational instability, leading to broader distributions of δ7−FOF towards lower redshifts
as shown in Fig. 4.21. We can scale out the growth of δ7−FOF in the linear regime by replacing
δ7−FOF(z) by δ7−FOF(z)/D(z).

To incorporate the effects of nonlinear growth, we use the approach of Goldberg and
Vogeley [2004] for underdensities and Peebles [1984] and Eke et al. [1996] for overdensities.

1We have also compared distributions across fixed ν bins and found equivalent changes in the distribution
of δ7−FOF.
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Figure 4.12: Distribution of scaled overdensity variable 1 + ψ(δ7−FOF) (top panel) vs the
original 1 + δ7−FOF (bottom panel) for z = 0, 0.51, 1.08, and 2.07. Each histogram is nor-
malised to have unit area. The broadening of the 1 + δ7−FOF distribution with decreasing z
is a natural consequence of gravitational instability. This evolution is largely removed when
ψ(δ7−FOF) is used as the variable, suggesting that ψ(δ7−FOF) is a more self-similar measure
of halo environment.
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Figure 4.13: Ratios of the environmental dependence of the halo merger rates, R(M, δ, z) =
dNmerge

dz
[M, δ, z]/dNmerge

dz
[M, z], computed at different redshifts: R(z2)/R(z1). Two mass and

two environment variables are used, in clockwise order from the top-left matrix of subplots:
(M, δ7−FOF),(M, 1 + ψ(δ7−FOF)),(ν(M, z), 1 + ψ(δ7−FOF)), (ν(M, z), δ7−FOF). Each matrix
presents ratios of R(z2)/R(z1) plotted as a function of environment. Each line represents
a different mass bin with low mass in black and high mass in blue. The shaded regions
represent Poisson errors. The redshifts used to compute R(z2)/R(z1) are noted in the top
left corner of each subplot. The top-left matrix (M, δ7−FOF), the variables used throughout
this paper, shows the least systematic dependence on mass and environment.
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These authors assume that the under/overdense regions are spherically symmetric and apply
Birkhoff’s theorem, treating these regions as self-contained universes embedded within an
expanding universe. The model cosmological parameters for these embedded cosmologies
are computed from the density of the region under consideration, and the resulting Fried-
mann equation is solved to relate the densities at some redshift, δ7−FOF(z), to densities,
ψ(δ7−FOF(z)), at z = 0. When δ7−FOF � 1, this procedure is in agreement with the linear
relation ψ(δ7−FOF) ∼ δ7−FOF/D(z)

A further complication for δ7−FOF is that the mass of the central object has been removed
from δ7. We have tested swapping the order of operation by first nonlinearly propagating
δ7 → ψ(δ7) then subtracting the mass of the central object. We find that the resulting
distributions of ψ(δ7)−FOF are only slightly modified from the distributions of ψ(δ7−FOF).

Fig. 4.12 compares the distribution of the scaled 1 + ψ(δ7−FOF) (top panel) with that
of the original 1 + δ7−FOF (bottom panel) for all haloes with M > 1.2 × 1012M� at z =
0, 0.51, 1.08 and 2.07 (black to light grey lines). The upper panel shows far less broadening
with decreasing z than in the lower panel, indicating that ψ(δ7−FOF) does remove much of
the redshift evolution of δ7−FOF. The mapping is clearly imperfect: The distributions at
z = 1.08 and z = 2.07 have long positive density tails that are not present at z = 0. This is
not surprising since the simple spherical approximation used for evolving the density cannot
account for all non-linear effects such as the mergers of overdense and underdense regions.

To test if ψ(δ7−FOF) and ν are more appropriate variables to use in the fitting formula
than δ7−FOF and M , we show in Fig. 4.13 the ratio of dNmerge/dz[δ] to the global mean
dNmerge/dz for a number of log-spaced mass bins at z = 0, 0.51, 1.08, and 2.07. For brevity,
let us refer to this ratio as Ξ(M, δ, z). We can compute Ξ using either M or ν(M, z) as the
mass variable, and either δ7−FOF or 1 +ψ(δ7−FOF) as the environmental variable. The upper
left set of plots in Fig. 4.13 uses M and 1 + δ7−FOF, which are the variables used throughout
this paper; the upper right set uses M and 1 +ψ(δ7−FOF); the lower left set uses ν(M, z) and
1 + δ7−FOF; and the lower right set uses ν(M, z) and 1 + ψ(δ7−FOF).

Within each set of figures we plot a matrix of ratios of Ξ computed at different redshifts.
The redshifts used to compute the ratios are noted in the upper left corner of each subplot.
For example, the upper subplot is the ratio Ξ(M, δ, 0.51)/Ξ(M, δ, 0) and is labelled “0.51/0”.
Each subplot contains five mass bins. Only points containing more than 40 haloes are
plotted to minimise noise (this results in some mass bins being dropped). The variables that
successfully capture the redshift evolution in the merger rate will show very little variation in
Ξ(M, δ, z) with redshift and give ratios Ξ(M, δ, z1)/Ξ(M, δ, z2) close to unity. Interestingly,
the [M, δ7−FOF] pair used throughout this paper does the best job. The upper left matrix
in Fig. 4.13 shows ratios of Ξ that tend to cluster around 1 and show few systematic trends
with mass and environment.

Using ν(M, z) instead of M (lower panels) introduces a strong δ dependence in the ratios
of Ξ: the δ-slope of dNmerge/dz flattens with increasing redshift. Similarly, using 1+ψ(δ7−FOF)
instead of δ7−FOF (right panels) introduces a strong mass dependence when M is used as
mass variable and does not improve on the δ dependence introduced by ν(M, z).

Thus, M and 1 + δ7−FOF appear to be the optimal variables for capturing the environ-
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mental dependence of dark matter halo merger rates for 0 ≤ z ≤ 2.
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Chapter 5

Dark Matter Halo Growth II: Diffuse
Accretion and its Environmental
Dependence
Fakhouri, Onsi; Ma, Chung-Pei — Februrary 2010
Monthly Notices of the Royal Astronomical Society, Volume 401, Issue 4, pp. 2245-2256

Dark matter haloes in ΛCDM simulations grow by mergers with other haloes as
well as accretion of “diffuse” non-halo material. We quantify the mass growth
rates via these two processes, Ṁmer and Ṁdif , and their respective dependence
on the local halo environment using the ∼ 500, 000 haloes of mass ∼ 1012 to
1015M� in the Millennium simulation. Adopting a local mass density param-
eter as a measure of halo environment, we find the two rates to show strong
but opposite environmental dependence, with mergers playing an increasingly
important role for halo growths in overdense regions while diffuse accretion
dominating the growth in the voids. For galaxy-scale haloes, these two op-
posite correlations largely cancel out, but a weak environmental dependence
remains that results in a slightly lower mean total growth rate, and hence an
earlier mean formation redshift, for haloes in denser environments. The mean
formation redshift of cluster-mass haloes, on the other hand, shows no corre-
lation with halo environment. The origin of the positive correlation of Ṁmer

with local density can be traced to the sourrounding mass reservoir outside the
virial radii of the haloes, where more than 80% of the mass is in the form of
resolved haloes for haloes residing in densest regions, while this fraction drops
to ∼ 20% in the voids. The negative correlation of Ṁdif with local density,
however, is not explained by the available diffuse mass in the reservoir outside
of haloes, which is in fact larger in denser regions. The non-halo component
may therefore be partially comprised of truly diffuse dark matter particles that
are dynamically hotter due to tidal stripping and are accreted at a suppressed
rate in denser regions. We also discuss the implications of these results for
how to modify the analytic Extended Press-Schechter model of halo growths,
which in its original form does not predict environmental dependence.
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5.1 Introduction

The bottom-up growth of structure is a hallmark of hierarchical cosmological models
such as the Λ cold dark matter (ΛCDM) model. In these universes, dark matter haloes of
lower mass are expected to form earlier, on average, than massive haloes. In observations,
theoretical studies, and semi-analytical modelling of galaxy formation (see Baugh 2006 for
a review), the mass of a halo is the key variable upon which many properties of galaxies
and their host haloes depend, e.g., formation redshift, galaxy occupation number, colour,
morphology, star formation rate, and stellar feedback processes.

Recent work has shown that in addition to the mass, various properties of halo formation
and evolution also depend on the environment within which the haloes reside. For instance,
at a fixed halo mass, older haloes have been found to be more clustered than younger haloes,
and the correlation between clustering strength and formation redshift is stronger for lower
mass haloes [Gottlöber et al., 2002, Sheth and Tormen, 2004, Gao et al., 2005, Harker et al.,
2006, Gao and White, 2007, Jing et al., 2007, Wechsler et al., 2006, Wang et al., 2007, Hahn
et al., 2008, McBride et al., 2009]. In many of these studies, halo environment is characterised
via the halo bias parameter, which is determined from the relative clustering strengths of
haloes to the underlying dark matter distribution.

In Part I of this series (Fakhouri and Ma 2009; henceforth FM09), we have instead
chosen to use local overdensities as a more direct measure of halo environment. The focus of
the study was to quantify the environmental dependence of the merger rate of haloes. We
compared a number of local overdensity variables (both including and excluding the halo
mass itself), some of which had been used in earlier studies [Lemson and Kauffmann, 1999,
Harker et al., 2006, Wang et al., 2007, Maulbetsch et al., 2007, Hahn et al., 2008]. The key
finding in FM09 was that halo-halo mergers occur more frequently in denser regions than
in voids, and that this environmental dependence is similar regardless of the merger mass
ratio (e.g., minor vs major) or the descendant halo mass (galaxy- vs cluster-sized): we found
mergers to occur about 2.5 times more frequently in the densest regions than in the emptiest
regions. We provided an analytical formula as a function of local density to approximate
this environmental trend. This expression can be used with the fit for the global mean rate
of Fakhouri and Ma [2008] (henceforth FM08) to predict halo merger rates as a function
of descendant mass, progenitor mass ratio, redshift, and environment over a wide range of
parameter space.

In this paper, we build on our earlier merger rate studies by investigating the mass growth
of haloes, and its environmental dependence, via two sources: growth from mergers with
other haloes (a quantity closely related to the results of FM09), and growth from accretion of
non-halo material, which we will refer to as ”diffuse” accretion. Due to the finite resolution of
the simulations, we expect a portion of this diffuse component to be comprised of unresolved
haloes, which, in a higher-resolution simulation, should largely follow the merger physics and
scaling laws of their higher mass counterparts in our earlier studies. The diffuse non-halo
component, however, can in principal also contain truly diffuse dark matter particles that
either were tidally stripped from existing haloes or were never gravitationally bound to any
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haloes.
As reported below, we find that diffuse accretion plays an important role in contributing

to halo mass growth in the Millennium simulation. Moreover, we will show that this growth
component correlates with the local halo environment in an opposite way from the component
due to mergers, with diffuse accretion playing an increasingly important role in halo growth in
the voids, and mergers playing a more important role in the densest regions. This difference
suggests that the diffuse component is not simply an extension of the resolved haloes down
to lower masses, but rather that there is an intrinsic difference between the two components
that results in the opposite environmental trends. An implication of this result is that Milky-
Way size galaxies in voids and those that reside near massive clusters may have statistically
distinguishable formation history, where the galaxies in voids acquire their baryons more
quiescently via diffuse accretion, while those in dense regions assemble their baryons mainly
via mergers. Such environmental effect can show up in galaxy properties such as the star
formation rates, colors, and morphologies.

The environmental dependence of halo growths reported in this paper also has far-
reaching implications for the much-used analytic theories for halo growth such as the Ex-
tended Press-Schechter (EPS) and excursion set models [Press and Schechter, 1974, Bond
et al., 1991, Lacey and Cole, 1993]. These models assume that all dark matter particles
reside in haloes, and halo growths depend only on mass and not environment. As we will
elaborate on below, both assumptions are too simplistic and must be modified to account
for the results from numerical simulations.

This paper is organised as follows. §5.2.1 summarises the various definitions of halo
mass and environment used in our analysis, as well as the means by which we extract halo
merger trees from the public data in the Millennium simulation. In Sec. 3 we discuss how
the two mass growth rates due to mergers and diffuse accretion, Ṁmer and Ṁdif , are defined
and computed. The distributions of the rates for the ∼ 500, 000 haloes at z = 0 and their
redshift evolution are presented. The environmental dependence of halo growths is analysed
in Sec. 4. The correlations of four halo properties with the local density parameter are
investigated: the mass growth rates Ṁmer and Ṁdif (§ 4.1), the fraction of a halo’s final mass
gained via mergers vs. diffuse accretion (§ 4.2), the formation redshift zf (§ 4.3), and the
composition of the surrounding mass reservoir outside of the virial radii of the haloes (§ 4.4).
§5.4.5 discusses a test that we have performed to verify that the majority of haloes reside
in a similar environmental region (e.g. overdense or underdense) throughout their lifetimes.
In Sec. 5 we investigate further the nature of the “diffuse” component by varying the mass
threshold used to define Ṁmer vs Ṁdif . We then discuss the implications of our results for
the analytic EPS model of halo growth, which is entirely independent of environment in its
basic form and therefore must be modified to account for the various environmental trends
reported in § 4.
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Mass Percentile (Masses in units of 1012M�)
Redshift 0-40% 40-70% 70-90% 90-99% 99-100%

z = 0 (∆z = 0.06,∆t = 0.83 Gyr) 1.2− 2.1 2.1− 4.5 4.5− 14 14− 110 > 110

z = 0.51 (∆z = 0.06,∆t = 0.38 Gyr) 1.2− 2.0 2.0− 4.1 4.1− 12 12− 74 > 74

z = 1.08 (∆z = 0.09,∆t = 0.34 Gyr) 1.2− 1.9 1.9− 3.7 3.7− 9.5 9.5− 48 > 48

z = 2.07 (∆z = 0.17,∆t = 0.25 Gyr) 1.2− 1.8 1.8− 3.0 3.0− 6.5 6.5− 24 > 24

Table 5.1: Mass bins used in this paper for redshifts 0, 0.51, 1.08, and 2.07. The bins
are computed assuming fixed mass-percentile bins (header row) and the mass bound-
aries are computed using the prescribed percentile. The high mass bins extend out to
5.2 × 1015, 3 × 1015, 1.3 × 1015, and 4.4 × 1014M� for z = 0, 0.51, 1.08, 2.07 respectively,
though these exceptionally high mass objects are outliers and not particularly representative
of the high mass range.

5.2 Merger Trees and Halo Environment in the Mil-

lennium Simulation

5.2.1 Merger Trees of the Millennium Haloes

The Millennium simulation [Springel et al., 2005] assumes a ΛCDM model with Ωm =
0.25, Ωb = 0.045, ΩΛ = 0.73, h = 0.73 and a spectral index of n = 1 for the primordial
density perturbations with normalisation σ8 = 0.9 [Springel et al., 2005]. The dark matter
N-body simulation followed the trajectories of 21603 particles of mass 1.2× 109M� in a (685
Mpc)3 box from redshift z = 127 to z = 0. A friends-of-friends group finder with a linking
length of b = 0.2 is used to identify ∼ 2× 107 dark matter haloes in the simulation down to
a mass resolution of 40 particles (∼ 4.7× 1010M�). Each FOF halo thus identified is further
broken into constituent subhaloes, each with at least 20 particles, by the SUBFIND algorithm
that identifies gravitationally bound substructures within the host FOF halo [Springel et al.,
2001a].

Even though the Millennium public database provides a catalogue of FOF haloes at each
output, it does not give the merger trees for these haloes. Instead, it provides merger trees
for the subhaloes, which are constructed by connecting the subhaloes across the 64 available
redshift outputs. During this construction, a decision must be made about the ancestral
relations of the subhaloes since the particles in a given subhalo may go into more than a
single subhalo in the subsequent output. In this case, a subhalo is chosen to be the descendent
of a progenitor subhalo at an earlier output if it hosts the largest number of bound particles
in the progenitor subhalo. The resulting merger tree of subhaloes can then be processed
further to construct the merger tree of the FOF haloes. This construction is non-trivial due
to the fragmentation of FOF haloes; this is discussed at length in FM08 and FM09.

In FM08 and FM09, we proposed a variety of post-processing algorithms to handle FOF
fragmentation. Three methods were compared in FM08: snip, stitch-3, and stitch-∞. The
snipping method severs the ancestral relationship between halo fragments and their progen-
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itors. This is the method commonly used in the literature and suffers from inflated merger
rates due to the aberrant remerger of snipped fragments. The two stitching algorithms pre-
vent halo fragmentation by ”stitching” halo fragments together such that each FOF halo
in the simulation has exactly one descendant. Stitch-∞ performs this procedure whenever
fragmentation occurs, whereas stitch-3 only reincorporates halo fragments that are destined
to remerge within 3 outputs of the fragmentation event. Both stitching algorithms lower
the minor merger rate as they prevent spurious remergers of halo fragments. Naturally, this
reduction is strongest for stitch-∞.

In FM09 we showed that the rate of halo fragmentation was a strong function of halo
environment, with haloes residing in overdense regions undergoing fragmentations over three
times as often as haloes in underdense regions. We showed that the choice of post-processing
algorithm was important in determining the environmental dependence of halo merger rates
in dense environments and introduced two new algorithms: split-3 and split-∞. These
algorithms remove halo fragmentations by splitting progenitor haloes that fragment into
multiple haloes to ensure that each halo has exactly one descendant. As with stitch-3, split-
3 only splits progenitors that are split within the past 3 outputs (looking backwards towards
high z) of the fragmentation event. Split-∞ always splits fragmenting haloes. See also Genel
et al. [2009] who introduced a similar algorithm.

We showed in FM09 that split-∞ suffered from an ”unzipping” effect as halo fragmenta-
tions propagated up the tree, breaking the self-similarity in the merger rate, B/n, observed
in FM08. Split-3, however, yielded very similar merger rates (within ∼ 10%) as stitch-3 (see
Fig. 10 of FM09).

We have tested the various quantities presented in this paper using all five post-processing
algorithms and have indeed found the differences not to be significant enough to warrant
presentating plots for all methods. We will, however, briefly discuss any relevant differences
in the text. The results presented throughout this paper will use the stitch-3 algorithm used
in FM08 and FM09.

5.2.2 Halo Environment

To measure each halo’s local environment, we will primarily use the overdensity variable
δ7−FOF presented in FM09. This quantity computes the overdensity within a sphere of radius
7 Mpc, centred on each halo in the simulation, by adding up the mass contributions made
by the particles within the sphere and subtracting the FOF mass of the central halo. The
database provides the dark matter density on a 2563 grid but not the full particle distribution
itself. We have mapped this grid, which is given along a Peano-Hilbert space filling curve,
to spatial coordinates and interpolated it to obtain δ at the position of each halo’s centre.

We will also compare some of the results in this paper to the alternative environmental
variable δ7 discussed in FM09, where δ7 is the overdensity surrounding a halo within a sphere
of radius 7 Mpc (including the halo mass itself). Fig. 1 of FM09 showed that δ7 was strongly
correlated with mass for haloes above 1014M� when the central object’s contribution to δ
began to dominate at these mass scales. This correlation was absent when the variable
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δ7−FOF was used. We will therefore use δ7−FOF as the environmental measure for most of the
analyses below.

5.2.3 Halo Mass Definitions

The Millennium database provides a number of mass measurements for each identified
FOF halo. Two simple mass measures are MFOF , the total mass of the particles connected
to an FOF by the group finder, and MSH , the sum of the masses of the subhaloes that
constitute the FOF halo. The latter mass includes only particles that are bound by the
SUBFIND algorithm; thus MSH ≤MFOF by definition.

In FM08 and FM09 we used MFOF , the total mass of the particles that belong to an FOF
halo by the group finder. Genel et al. [2009] have shown, however, that for the subset of
haloes that are about to undergo minor mergers, the FOF mass of the lower-mass halo can
be significantly higher (up to a factor of 1.4) than its subhalo mass (MSH) due to deficiencies
in the FOF halo-finding algorithm. Genel et al. [2009] showed that this effect is more severe
for more minor mergers. In light of this study, we will present the majority of our results for
both MFOF and MSH and comment on the difference.

Since the most massive haloes at z = 0 are more massive than the most massive haloes
at higher redshifts, we will present some results below using mass bins defined by a fixed
percentage of haloes rather than by a fixed absolute mass at different redshifts. Table 5.1 lists
the corresponding halo masses at z = 0, 0.51, 1.08, and 2.07 for each of the five percentile
bins. Note that even in the highest 1% mass bin, there are ∼ 5000 cluster-mass haloes
available for our study.

5.3 Diffuse Accretion

5.3.1 Quantifying Halo Growth via Mergers vs Diffuse Accretion

The merger trees of FOF haloes constructed in Fakhouri and Ma [2008] provide, for a
descendant halo of mass M0 identified at redshift z0, a list of the masses of its Np progenitors
at any chosen z1. We label the progenitors Mi, with i = 1, ..., Np, and M1 ≥M2 ≥M3... etc.
The number of progenitors, Np, for a given descendant can range from 1 (i.e. no mergers
in that timestep), 2 (binary mergers), to high values for massive haloes. The variable ξ
is used to denote the mass ratio of a merging progenitor and the largest progenitor M1:
ξ = Mi>1/M1.

Typically we find that the mass M0 of a descendant halo is not equal to the mass in the
progenitors

∑
i≥1Mi, leading us to define

∆M = M0 −
NP∑
i=1

Mi , (5.1)
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where ∆M quantifies the portion of the mass change that cannot be attributed to mergers
of resolved haloes Mi, and ∆M can be negative. A non-zero ∆M can be due to the merging
of unresolved progenitors below our minimum halo mass, accretion of dark matter that is
not locked up in haloes, or mass loss processes such as tidal stripping. We collectively refer
to ∆M as diffuse accretion throughout this paper.

To quantify the relative contributions to halo growth due to mergers vs diffuse accretion
we define two mass growth rates for each halo of mass M0 at some redshift z0:

Ṁmer ≡
∑

i≥2Mi

∆t
,

Ṁdif ≡
∆M

∆t
, (5.2)

Ṁtot = Ṁmer + Ṁdif =
M0 −M1

∆t
.

where Ṁmer is due to mergers and Ṁdif is due to the accretion of diffuse material. Since
M0 − M1 is the mass difference along the thickest branch of the merger tree, the sum,
Ṁtot = Ṁmer + Ṁdif , is simply the net mass growth rate of the halo. A detailed study of
Ṁtot of the haloes in the Millennium simulation is given in McBride et al. [2009]; here our
focus is on the separate contributions and their environmental dependence. The timestep
∆t in equation (5.2) is the time interval corresponding to ∆z = z1− z0, the redshift spacing
between two Millennium outputs used to calculate the rate. We use ∆z = 0.06 for z0 = 0
(∆t = 0.83 Myrs) and 0.51, ∆z = 0.09 for z0 = 1.08, and ∆z = 0.17 for z0 = 2.07, following
the extensive convergence tests reported in Fakhouri and Ma [2008].

We also find it convenient to present the results for the mass growth rates in dimension-
less units. When these occasions arise, we will use the fractional mass gain per unit redshift,
dMmer/dz/M0 and dMdif/dz/M0, which are simply equal to the rates in equation (5.2) mul-
tiplied by ∆t/∆z/M0.

It is important to keep in mind that the distinction between mass growth from resolvable
haloes and diffuse accretion depends on the mass threshold used to define these two com-
ponents. In this study, we have made the conservative choice of including only descendant
haloes with more than 1000 particles (with a corresponding mass of 1.2× 1012M�) and pro-
genitor haloes with more than 40 particles (4.8 × 1010M�). A mass ratio of ξmin = 0.04 is
therefore the resolution limit on progenitors for the most poorly resolved descendant haloes
(1000 particles) in our sample. For these haloes, the mass contributed by progenitors above
40 particles is tagged as due to mergers, while any remaining mass contribution is tagged as
due to diffuse accretion.

For more massive descendants, there are two natural choices for the mass threshold:
one can include either all progenitors down to the 40 particle resolution limit as mergers,
or all progenitors down to a fixed mass ratio of ξmin = 0.04 as mergers (any progenitors
with ξ < ξmin are then counted as ”diffuse” material). The former has the advantage that
40 particles correspond to a smaller ξmin for more massive descendants; we will therefore
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Figure 5.1: Distributions of the mass growth rates (per unit redshift) via mergers (left
panel) and via diffuse accretion (right panel) for the ∼ 500, 000 haloes at z = 0 in the
Millennium simulation. In each panel, the colours denote haloes of different mass percentiles
(see Table 5.1), and two definitions of halo mass are shown (dashed for MFOF ; solid for
MSH).

have better statistics and dynamic range for more massive haloes. The latter choice has the
advantage that mergers and diffuse accretion can be compared objectively across different
descendant mass bins since the two components are defined with respect to the same ξmin

for all haloes and are, therefore, effectively equally well resolved. In Sec. 5.5.1 we will show
that the basic behaviour of the environmental dependence presented in this paper does not
depend on which definition is used. We generally favour the latter definition, and will use
ξmin = 0.04 to separate mergers vs. diffuse accretion unless otherwise stated in this paper.

5.3.2 Distributions of Ṁmer and Ṁdif

Fig. 5.1 presents the distributions of the mass growth rates due to mergers (left panel) and
diffuse accretion (right panel) at z = 0 for five halo mass bins. The two halo mass definitions
discussed in Sec. 2.3, MFOF (dashed) and MSH (solid), are compared. In constructing these
plots, we have used a ξ > ξmin cut: mergers with mass ratios less than ξmin = 0.04 are
counted as diffuse accretion.

We have also imposed a cut on the very negative and positive tails of the distribu-
tions. Although the majority of the haloes in the Millennium simulation have reasonable
dMmer/dz/M0 and dMdif/dz/M0, about 0.3% of them more than doubled their mass via
diffuse accretion between z = 0 and z = 0.06, and about 0.4% lost over half of their current
mass via diffuse accretion. Our detailed examination of the merger histories of haloes in
these tails of the distributions shows that these very large values of |dMdif/dz/M0| are un-
physical and are due primarily to complex and spurious halo fragmentation. The algorithm
used to construct the FOF merger trees, stitch-3, only stitches halo fragmentations that are
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destined to remerge within 3 snapshots. Some fragmentations do not satisfy this condition.
This small set of haloes – a set too small to affect the merger statistics studied in our ear-

lier work – can significantly affect the mean values of dMmer/dz/M0 and dMdif/dz/M0. This
is especially true when these mean values are computed as a function of halo environment,
since fragmentations occur more frequently in the messier dense environments. Moreover,
haloes with artificially high growth rates have correspondingly artificially low formation red-
shifts (zf ). These events pollute the distribution of zf and tend to underpredict the formation
redshift, especially in overdense regions. We therefore implement a cut on dMmer/dz/M0 and
dMdif/dz/M0 to remove this aberrant population. This is done by demanding that a halo
never gains more than a fraction f+ = 1/2, nor lose more than a fraction f− = 1/2, of its
final mass M0 in either dMmer/dz/M0 or dMdif/dz/M0 between any two adjacent simulation
outputs along the halo’s main branch (dotted vertical lines in Fig. 5.1). This is a fairly
stringent cut as it is applied to a halo’s entire mass history. The resulting cut removes ∼ 3%
of the haloes in our sample. Varying the values of f+ and f− in the range of f ∈ [0.2, 1.] and
allowing f+ 6= f− made insignificant changes and did not affect the overall trends reported
in this work. A handful haloes with rates beyond these cuts remain in Fig. 5.1 because
the cut is applied to the halo growth across adjacent outputs whereas the rates shown in
Fig. 5.1 are computed across the three outputs between z = 0 and z = 0.06 (which straddle
the z = 0.02, 0.04 outputs).

In the left panel of Fig. 5.1, the strong peak at dMmer/dz/M0 = 0 is due to the fact
that between z = 0 and 0.06 roughly 65% of haloes have only one progenitor and, there-
fore, experience no mergers. The remaining 35% of haloes have a distribution that falls
off smoothly out to dMmer/dz/M0 ∼ 8.3 (dotted vertical line). Values exceeding 8.3 corre-
spond to haloes that have gained more than half their mass between z = 0.06 and z = 0
(i.e.,

∑
Mi/M0/∆z > 1/2/0.06 = 8.3); only ∼ 0.2% of haloes are in this category. In the

right panel of Fig. 5.1, the peak occurs at small positive values of dMdif/dz/M0, though a
significant set of haloes experience diffuse stripping.

To complement the differential distributions presented in Fig. 5.1, we show in Fig. 5.2 the
cumulative distributions for the number density of haloes above a given mass growth rates
in units of M� per year. The three panels are for three halo mass bins. The contributions
from mergers (thick curves), non-halo material (thin curve), and the sum (black curves) are
plotted separately. The curves for the total rate are identical to the solid curves (z = 0) in
the bottom panels of Fig. 5 of McBride et al. [2009]. This figure shows that the haloes with
high accretion rates in the simulation are undergoing mergers with other haloes, while the
haloes with low accretion rates are mostly accreting non-halo mass.

5.3.3 Redshift Evolution of the Mean Growth Rates

Having examined the distributions of the growth rates at z = 0 in the last section, we
now study the redshift dependence of the mean growth rates. The left panel of Fig. 5.3
shows the mean Ṁmer (solid), Ṁdif (dashed), and total growth rate Ṁmer +Ṁdif (dotted) as a
function of redshift for three mass bins: 1012M� (blue), 1013M� (green), and 1014M� (red),
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Figure 5.2: Cumulative distributions of the z = 0 mass growth rates via mergers with haloes
(thick curves) and diffuse accretion (thin curves) for haloes in three mass bins (left to right
panels). The axes are in physical units: halo number density (y-axis) and accretion rate in
M� per year (x-axis). The total rate is plotted in black. The solid and dotted curves are for
the two halo mass definitions MSH and MFOF . The high accretion rate events are dominated
by mergers with other haloes.
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Figure 5.3: Redshift evolution of the mean halo mass growth rates due to mergers (solid)
and diffuse accretion (dashed) for three mass bins: 1012M� (blue), 1013M� (green), and
1014M� (red). The rates in units of M� per year (left panel) are seen to rise with increasing
z, while the rates in units of per redshift (right panel) is largely independent of z. We also
plot the total merger rate (haloes + diffues) with dotted lines and overlay the fit presented
in equation 5.3 in black. Note that the fit is quite good and the total rate and fit are difficult
to distinguish.
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where the threshold ξmin = 0.04 is used to define Ṁmer and Ṁdif . The right panel shows the
same information except the rates are expressed in the dimensionless units of dM/dz/M0.
The growth rates per year (left) are seen to increase rapidly with increasing z, while the
rate per unit z (right) has a very weak dependence on z out to z ∼ 6. As a function of halo
mass M0, the right panel shows that the haloes of higher mass experience somewhat higher
fractional mass growth rates than haloes of lower mass. Similar dependence on time and
mass was seen for the halo merger rates in Fakhouri and Ma [2008].

The left panel of Fig. 5.3 can be compared directly with the total mass growth rates shown
in Fig. 4 of McBride et al. [2009], which is well approximated by equation (7) proposed there:〈

Ṁtot

〉
= 42M�yr−1

(
M

1012M�

)1.127

×(1 + 1.17z)
√

Ωm(1 + z)3 + ΩΛ . (5.3)

where Ωm and ΩΛ are the present-day density parameters in matter and the cosmological
constant, and we have assumed Ωm + ΩΛ = 1 (used in the Millennium simulation). We have
overlaid this fit using black dotted curves in Fig. 5.3. A comparison of the dashed and solid
curves in Fig. 5.3 shows that the mean Ṁdif is consistently ∼ 30% higher than the mean
Ṁmer at all mass and redshifts. The functional form of the mass and redshift dependence in
equation (5.3) is therefore also applicable for these separate rates; only the overall amplitude
needs to be adjusted to obtain a fitting form for Ṁmer and Ṁdif .

The similarity in shape and mass dependence of the Ṁmer and Ṁdif curves in Fig. 5.3
may lead one to conclude that the ”non-halo” material contributing to Ṁdif can be simply
attributed to mergers with sub-resolution haloes. This interpretation is too simplistic, how-
ever, as we will discuss in Sections 4 and 5 below where their environmental dependence is
analysed.

5.4 The Environmental Dependence of Halo Growth

Rates and Histories

5.4.1 Halo Mass Growth Rate due to Mergers vs Diffuse Accretion

In Part I of this series [Fakhouri and Ma, 2009], we reported a strong positive correlation
between the number of halo mergers and halo environment. We now turn to the environ-
mental dependence of the rate of halo mass growth. Since haloes acquire mass through both
mergers and diffuse accretion in the form of non-halo mass or unresolved haloes, we examine
separately the two growth components defined in equation (5.2).

The minimum mass ratio ξmin = 0.04 discussed in §5.3.1 is used as the threshold between
Ṁmer and Ṁdif . We compute Ṁmer and Ṁdif for each descendant halo and then bin the results
by averaging over various ranges of mass and δ. For haloes with only one progenitor (above
the mass threshold), there is no contribution from mergers by definition, and Ṁmer = 0.
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Figure 5.4: Environmental dependence of the halo mass growth rates due to contributions
from merging progenitor haloes (top), diffuse accretion of non-halo mass (middle), and sum
of the two (bottom). Four redshifts z = 0, 0.51, 1.08, 2.07 are shown for comparison (left to
right). Within each panel, the five curves show five mass bins for the descendant haloes listed
in Table 5.1 (blue: low mass, red: high mass) with solid lines computed using the subhalo
mass definition and dashed lines computed using the FOF mass definition. On average,
haloes in denser regions experience a higher mass growth rate from mergers and a lower rate
from diffuse accretion than similar mass haloes in the voids. These two opposite trends with
environment roughly cancel out to yield a weak, but net negative, dependence on 1 + δ7−FOF

for the total growth rate.
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These events are included when averaging over Ṁmer so that a fair comparison can be made
to the mass growth rate due to diffuse accretion, Ṁdif .

Fig. 5.4 compares the environmental dependence of the mean halo mass growth rate
(per unit redshift) due to mergers (top row), diffuse accretion (middle), and the total rate
(bottom) computed from the Millennium simulation. The rates at four redshifts are shown:
z = 0, 0.51, 1.08 and 2.07 (from left to right). Within each panel, different colours correspond
to different mass bins (listed in Table 5.1), where more massive haloes have higher growth
rates. The solid curves are computed using MSH , the sum of all the subhalo masses in a
given FOF halo, while the dotted curves are computed using MFOF (see Sec. 2.3). Both mass
definitions yield similar quantitative behaviour, though the subhalo mass definition yields
slightly lower merger growth rates in accordance with the results in Genel et al. [2009].

The mass growth due to mergers (top row) is seen to increase in denser regions, in
agreement with the higher merger rates in denser regions reported in FM09. This is to be
expected as the merger rate B/n is related to the mass growth due to mergers Ṁmer by

Ṁmer ≈
∫ 1

0.04

M0ξ
B

n
dξ . (5.4)

As with B/n, the environmental dependence of Ṁmer persists out to higher redshift.
By contrast, the middle row of Fig. 5.4 shows that the mass growth rate due to non-

halo material has an opposite dependence on δ: the mean value of dMdif/dz/M0 decreases
with increasing δ for all halo masses at all redshifts. This trend is clean when MSH is used
as the mass definition (solid curves) but the curves show a sharp rise for low mass haloes
when MFOF is used (blue dotted curve). We believe this is due to the inadequacy of the
FOF halo finder in dense regions. As Genel et al. [2009] have shown, the FOF mass for low
mass haloes sometimes rise as they approach high mass haloes; this may contribute to the
rise in FOF mass observed in the densest regions. Despite this fact, we emphasise that the
discrepancies between the MFOF rates and the MSH rates only arise in the densest regions
(beyond 1 + δ7−FOF ∼ 5). Outside of these regions, dMmer/dz/M0 still increases with δ and
dMdif/dz/M0 decreases with δ regardless of the halo mass definition.

The mean total mass growth rate is shown in the bottom row of Fig. 5.4. It shows
that the strong but opposite dependence on environment found for the two growth rates act
against each other, producing a relatively weak δ-dependence for the overall growth rate that
declines with increasing δ for the three low mass bins. This dependence is not as clearly seen
for the very highest mass bin, though the statistics are poor for the cluster-scale bin (red
curves). Again, the trends are much cleaner for MSH than for MFOF in the high-δ regions.
The mass dependence of the total growth rates, on the other hand, is more prominent than
the environmental dependence, with massive haloes growing more rapidly than low mass
haloes. Equation (7) of McBride et al. [2009] (repeated above in eq. (5.3) shows that this
mass dependence is well approximated by a power-law: ˙Mtot ∝M1.127.

The curves in Fig. 5.4 are sensitive to the choice of cut used to remove the aberrant
haloes (see Sec. 3.2) at the 20-50% level. The qualitative features of the plot, including the
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markedly opposite correlation of the two rates with δ, and the negative, but relatively weak,
δ dependence of the total rate, are insensitive to choices of f+ and f− in the cut and persist
even if the cut is made asymmetric (f+ 6= f−).

It should be pointed out that although the two growth rates depend on the choice of ξmin
used to define resolvable haloes and diffuse material (0.04 in this case), the total growth rate
is independent of this parameter. Thus, redistributing progenitors with ξmin < 0.04 from
dMdif/dz/M0 to dMmer/dz/M0 would not impact the bottom row of Fig. 5.4. We will return
to this point in more detail in §5.5.1.

5.4.2 Fraction of Final Halo Mass Acquired from Mergers vs Dif-
fuse Accretion

In addition to the instantaneous halo mass growth rates shown in Fig. 5.4, a related
quantity of interest is the integrated contribution to a halo’s final mass due to mergers vs
diffuse accretion. Fig. 5.5 compares these contributions as a function of environment. The
lowest set of curves plots the fraction of a halo’s final mass gained from major mergers
(defined to have progenitor mass ratio ξ > 1/3 at the time of merger) through the halo’s
entire history (out to z = 6); the set of curves above it shows the same quantity for more
minor mergers with mass ratio ξ > 1/10. The five curves in each set show the five halo mass
bins listed in Table 5.1. Similar to the top panels of Fig. 5.4, these two sets of curves exhibit a
positive environmental dependence, where haloes in denser regions experience more mergers
and have a higher fraction of their mass coming in from mergers. From voids to overdense
regions, the average mass fraction of a halo due to major mergers (ξ > 1/3) increases from
∼ 20% to 25%, and the mass fraction due to mergers with ξ > 1/10 increases from ∼ 30%
to 40%.

The upper two sets of curves show the analogous quantity for the fraction of a halo’s final
mass gained from material with ξ < 0.04 and ξ < 0.1. In contrast to the lower two sets of
curves, the correlation of the mass contribution by non-halo matter with δ has the opposite
sign, again consistent with the middle panels of Fig. 5.4.

A consistent picture is therefore emerging in that haloes in denser regions experience a
higher rate of growth via mergers and a lower rate of growth via diffuse accretion than haloes
of comparable mass in less dense regions. As a result, in dense regions, a higher fraction of
a halo’s final mass is gained through mergers than haloes in the voids. By contrast, diffuse
accretion contributes less to halo mass growth in denser regions than in the voids. Overall,
however, diffuse accretion (defined as ξ < 0.04) is an important component of a halo’s final
mass regardless of the environment: its contribution to the mass fraction is never lower than
∼ 40% (second set of curves from the top in Fig. 5.5).

5.4.3 Halo Formation Redshifts

We follow the convention in the literature and define the formation redshift zf for a halo
to be the redshift at which the halo’s mass first reaches M0/2 (when traced backwards in
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Figure 5.5: Environmental dependence of the fraction of the final halo mass M0 gained by
mergers vs diffuse accretion. The bottom two sets of curves show the rising mass fraction
with 1 + δ7−FOF for mass gained via mergers with progenitors of mass ratios ξ > 1/3 and
ξ > 0.1. The top two sets of curves show the declining mass fraction with 1 + δ7−FOF

for the contributions from non-halo mass with ξ < 0.04 and ξ < 0.1. Within each set
of curves, different colors represent different mass bins, and solid and dotted curves are
for the two halo mass definitions MSH and MFOF , respectively. This figure illustrates the
increasing importance of mergers to halo growth in overdense regions and importance of
diffuse accretion in the voids.
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Figure 5.6: Environmental dependence of the mean formation redshifts for haloes in five mass
percentile bins (same bins as Fig. 5.5) in increasing mass from top down. Two measures
of environment are shown for comparison: 1 + δ7 that includes the halo mass (left), and
1 + δ7−FOF that excludes the central halo. Solid lines are computed using MSH and dotted
lines using MFOF . The darker colors are computed after the cut described in Section 5.3.2 is
applied; the light colors are computed without the cut. This figure shows that more massive
haloes (bottom curves) on average form more recently. Within a mass bin, galaxy-size haloes
in denser regions form earlier than those in the voids, while cluster-size haloes show little
environmental dependence in their formation time.
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time), where M0 is measured at z = 0. This is computed by tracing the mass of each of the
∼ 500, 000 haloes from low to high redshift in the Millennium outputs. A complementary zf
can be defined by going from high to low redshift; we have done this as well and found little
difference in our results.

Fig. 5.6 shows the mean formation redshift for haloes in five mass bins (in increasing
mass from top down) as a function of their environment at z = 0. The two panels compare
two definitions of the local densities discussed in Fakhouri and Ma [2009]: 1 + δ7−FOF used
throughout this paper (right) and the simpler 1+δ7 (left). The two measures of local densities
give very similar results except in the most massive halo bin (red curves), where zf shows
little correlation with δ7−FOF but decreases with increasing δ7. The negative correlation of zf
with δ7 should not be interpreted as a true dependence on a halo’s surrounding environment;
instead, it is due to the tight correlation between δ7 and the masses of massive haloes shown
in Fig. 2 of FM09 and the fact that, on average, more massive haloes form earlier than less
massive haloes. This degeneracy between mass and density of massive haloes is removed
when the variable δ7−FOF is used (see Fig. 2 of FM09). The resulting zf vs δ7−FOF shows
almost no correlation in the right panel of Fig. 5.6.

The solid and dotted curves in Fig. 5.6 compare the mean values of zf computed using
the MSH vs MFOF definition of halo mass. As seen in Fig. 5.4, the two mass definitions
yield similar results in underdense regions but differ in the densest regions. Fig. 5.6 also
compares zf computed with (darker shades) and without (lighter shades) the cut described
in Section 5.3.2. The two zf ’s are identical in underdense regions, but the sample without
the cut has a lower zf at high δ. This drop is unphysical and is due to the orhpaned halo
fragments that suddenly appear at low z and thus bias zf to artificially low values.

A number of conclusions can be drawn from Fig. 5.6. First, within a given environment,
higher mass haloes on average form later (i.e. lower zf ). For instance, the mean formation
redshift drops from zf ∼ 1.1 to 1.4 for M ∼ 1012M� haloes, to about 0.7 for M > 1014M�
haloes. This is a well known property of hierarchical cosmological models such as the ΛCDM.
This mass dependence is also consistent with that shown in the bottom panels of Fig. 5.4,
where more massive haloes have a larger mean mass growth rate and hence a later mean
formation time.

The second feature to note is that galaxy-size haloes (top few curves) in denser regions
form earlier than the same mass haloes in the voids, whereas zf for cluster-size haloes (bot-
tom curve) hardly correlates with environment (when δ7−FOF is used as a measure). The
earlier formation of galaxy haloes in denser regions is consistent with the halo assembly bias
discussed in a number of recent papers [Gao et al., 2005, Sheth and Tormen, 2004, Jing et al.,
2007, Gao and White, 2007, Harker et al., 2006, Wechsler et al., 2006, Wetzel et al., 2007,
Wang et al., 2007, Hahn et al., 2008, McBride et al., 2009]. Interestingly, Wechsler et al.
[2006] and Jing et al. [2007] reported decreasing zf with increasing halo bias for 1013−1014M�
haloes. This trend is similar to the trend for the cluster-mass haloes (red curve) in the left
panel of our Fig. 5.6. Since the connection between δ and halo bias is complex, it is not
immediately clear that their results are inconsistent with ours. Perhaps the negative corre-
lation observed by these authors is also due to the fact that the bias of high mass haloes is
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Figure 5.7: Composition of the mass reservoir in the region outside of the halo but within a
7 Mpc sphere centered at the halo. The vertical axis shows the contribution to 1 + δ7−FOF

by haloes (with mass above 4% of the central halo; solid curves) and the remaining material
(dashed lines). By construction, the solid and dashed curves add up to the thick diagonal
line. Different colours denote the same mass bins in earlier figures. The mass reservoir for
haloes in overdense regions is seen to be dominated by resolved haloes, whereas the reservoir
for haloes in the voids is dominated by non-halo material.

strongly correlated with mass and does not provide an independent measure of environment.
The third feature to note in Fig. 5.6 is the slight upturn of zf in the most underdense

void region. This trend makes intuitive sense since haloes in sufficiently underdense regions
are deprived of fuel for growth, thereby growing more slowly and having larger formation
redshifts. This trend does not seem to appear in any of the earlier literature except Des-
jacques [2008], which noticed a similar trend in Harker et al. [2006]. We suspect that the use
of bias as a measure of halo environment in most of these earlier papers (as opposed to the
local density used here and in Harker et al. 2006) is not a sensitive probe of the zf statistics
of haloes in the voids.

5.4.4 Mass Reservoir outside Haloes

In this subsection, we address the question: are the opposite environmental correlations
of Ṁmer and Ṁdif with δ seen in Figs. 5.4 and 5.5 also present in the surrounding mass
reservoirs outside of the haloes? If yes, then the different environmental dependence of the
growth rates is originated from the mass reservoirs that are feeding the haloes. If not, then
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different accretion timescales have to be operating for the haloes and non-halo material in
overdense vs underdense regions. The answer to this question will therefore help explain the
origin of the difference in the environmental correlations reported thus far.

To answer this question, we analyse the halo vs non-halo composition of the mass in the
volume used to compute δ7−FOF for each halo at z = 0. Centered at each halo, we compute
the mass within the 7 Mpc sphere (excluding the FOF mass itself) that resides in haloes with
mass ratios exceeding ξ > 0.04 (relative to the central FOF mass) vs in all other matter.
The results are shown in Fig. 5.7, which plots the mean values of these two components in
the mass reservoir as a function of 1 + δ7−FOF for five mass bins. The black diagonal line
marks the sum of the two components, which by definition is simply 1 + δ7−FOF.

Both the halo and non-halo components in the 7 Mpc reservoir outside the haloes are
seen to increase with 1 + δ7−FOF, but the halo component has a much steeper slope. The
two components contribute a comparable amount for haloes in the cosmic mean density (i.e.
δ7−FOF ∼ 0), but up to 80% of the mass reservoir is made of haloes in very dense regions, while
this fraction drops to ∼ 20% in voids, where the diffuse component dominates. Even though
only a fraction of this mass reservoir is accreted onto the central haloes and contributes to
actual halo growths, Fig. 5.7 suggests that the higher merger rates in denser environments
are a direct consequence of the larger fraction of available haloes in the reservoir.

A somewhat subtle but important feature to note in Fig. 5.7 is that the absolute amount
of diffuse mass in the reservoir rises with increasing δ7−FOF even though the fractional contri-
bution due to this component drops. This rising trend with δ7−FOF of the diffuse component
is in striking contrast to the middle panels of Fig. 5.4, where the accretion rates of diffuse
material, Ṁdif , onto haloes are seen to decrease in denser regions. The naive interpretation
that Ṁdif decreases with increasing δ7−FOF is due to a dwindling reservoir of diffuse material
outside of the haloes in denser regions is therefore invalid. On the contrary, at a fixed halo
mass, there is more non-halo material available in the regions where Ṁdif is lower.

Additional gravitational effects are likely to be at work in dense environments to explain
why the halo mass growth rate due to diffuse material is stunted in denser regions while the
supply of this mass is in fact larger. For instance, the non-halo component in the reservoir
may be dynamically hotter than the resolved haloes due to tidal heating and stripping,
thereby reducing Ṁdif in higher density regions as shown in Fig. 5.4. Pieces of this picture
have been suggested in the literature. Wang et al. [2007] noted that a halo’s ability to
consume the available fuel is as important as the amount of fuel available for growth. They
found that haloes in dense regions accreted matter more slowly than expected, although
they did not examine the separate Ṁmer and Ṁdif components as we do here. It has also
been suggested that low-mass haloes form earlier because their late accretion is eliminated
in a competition with massive neighbors [Zentner, 2007]. Fig. 5.4, however, shows that this
competition idea is not strictly true: regardless of mass, all haloes in overdense regions have
both increased growth rate Ṁmer and decreased growth rate Ṁdif . The growth rates of low
mass haloes are therefore not simply controlled by competition with nearby high-mass haloes
in overdense regions. Alternatively, the diffuse material surrounding very dense regions may
preferentially accrete onto the lower-density filaments and the haloes within them, which
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then infall onto the clusters. Further analysis taking into account of filaments as well haloes
would be required to test this idea.

5.4.5 Time Evolution of a Halo’s Environment

Thus far we have used the mass densities computed at a halo’s redshift to quantify its
environment. Here we examine whether the environments of haloes evolve significantly over
their lifetimes, that is, if the haloes in overdense regions today tended to have progenitors
that also resided in overdense regions at earlier times.

To study such environmental evolution, we first group the haloes at z = 0 into mass
bins. Within each mass bin, the haloes are further divided into five environmental bins,
each corresponding to 20 percentile in the distribution of 1 + δ7−FOF. Each halo is therefore
assigned to a mass and a δ7−FOF bin. For each halo at z = 0 we then identify its most massive
progenitor at z = 0.51 and z = 1.08. We assign each progenitor a mass bin at its redshift
and compute the δ7−FOF bin to which it belongs, using the density field at that given z.

We then compute the fraction of haloes at z = 0, as a function of mass bin, whose most
massive progenitors reside in the same percentile δ bin at z = 0.51 and 1.08. Such haloes
have not deviated from their local environment significantly over time. Since δ evolves with
time, it is more meaningful to compare relative percentiles instead of absolute values of δ
at different redshifts. We also compute the fraction of haloes at z = 0 that are at most one
percentile bin away at z = 0.51 and 1.08 . These haloes have moved slightly outside of their
z = 0 environmental percentile.

We find that ∼ 70% of M . 1013M� haloes do not change environmental bins between
z = 0.51 and today, and 60% do not change environments between z = 1.08 and today.
In addition, more than 95% of these haloes are within one δ-percentile bin of their final
environment. The range of δ for cluster-mass haloes is too narrow (see, e.g., Fig. 6) for this
analysis to be meaningful. Thus, the majority of haloes reside in the same environmental
context across their lifetimes.

5.5 Discussion

5.5.1 Interpreting “Diffuse” Accretion

In Sections 3 and 4, we presented results for the mass accretion rates of dark matter
haloes through mergers (Ṁmer) and diffuse non-halo material (Ṁdif), and their respective
environmental dependence. As emphasised there, merging progenitors with a mass ratio
of ξ > ξmin = 0.04 were counted towards Ṁmer, whereas the rest of the mass growth was
counted towards Ṁdif .

To test the robustness of the results in Sections 3 and 4 with respect to the value of ξmin

used to define haloes vs non-haloes, we take haloes in one of the more massive bins (the 90-
99% mass bin, corresponding to 1.4× 1013 to 1.1× 1014M�) that provides good statistics as
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well as high mass dynamic range, and recompute the two rates using different values of ξmin.
The results are shown in Fig. 5.8, which plots the environmental dependence of the two mass
growth rates for three values of ξmin: 0.4 (black), 0.04 (dark grey; the value used in earlier
figures), and 0.004 (light grey). As ξmin is lowered, more of the mass is counted towards
the merger component, so dMmer/dz/M0 (solid curves) increases and dMdif/dz/M0 (dashed
curves) decreases, while the sum of the two (dotted curve) is, by construction, independent
of ξmin. We note that even though the overall amplitudes of the two rates change with ξmin,
dMmer/dz/M0 remains positively correlated and dMdif/dz/M0 remains negatively correlated
with δ7−FOF regardless of ξmin. This test suggests that the environmental correlations shown
in Figs. 5.4 and 5.5 are robust to the value of ξmin used to define haloes vs non-haloes.

We explore further the nature of the diffuse non-halo component by examining the hy-
pothesis that this component is comprised entirely of sub-resolution haloes such that in the
limit of ξmin → 0 (or more precisely, the true minimal halo mass, which is likely to be about
an Earth mass [Diemand et al., 2005], but the difference is negligible), we would expect
Ṁdif → 0 and Ṁmer → M0 − M1. To assess whether this hypothesis is plausible, we re-
compute Ṁmer by extrapolating down to ξmin = 0, assuming that Ṁmer maintains the same
power-law dependence on ξ determined for a given mass bin in the simulation.1

The predicted mass growth rate under this assumption is plotted as a function of envi-
ronment in Fig. 5.8 (top solid red curve). In comparison with the total rate Ṁmer + Ṁdif

(dotted curve) determined from the Millennium simulation, we observe a clear environment-
dependent gap between these two curves that widens in the lower-density regions. This gap
suggests two possible scenarios: (1) the power-law behaviour of Ṁmer steepens towards low
ξ (an effect that is not observed down to ξ ∼ 10−4 resolvable by current simulations), or (2)
there exists a truly diffuse component of dark matter that does not belong to bound haloes.
Moreover, both scenarios must be dependent on environment. For (1), the δ-dependent gap
in Fig. 5.8 can only be closed if the power-law slope of Ṁmer vs ξ for sub-resolution pro-
genitors is a strong function of halo environment (being steeper in underdense regions). We
cannot rule out this possibility without testing it in higher-resolution simulations, but all
the halo properties that we have examined thus far in FM08 and FM09 do not exhibit such
complex, non-universal behavior. On the contrary, down to the current simulation resolu-
tion, the halo-halo merger rates and mass growth rates as a function of progenitor mass
ratio ξ were all well fit by a single power law, where the slope was entirely independent
of the halo environment (see Figs. 4, 5, and 7 of FM09). We therefore favour scenario (2)
that the diffuse non-halo mass has a truly diffuse component, and this component is more
prominent in lower-density regions. New simulations with higher mass resolution such as
the Millennium-II [Boylan-Kolchin et al., 2009b] will be used to explore further these two
possibilities.

1We note that our best-fit slope for the ξ-dependence of Ṁmer in Fakhouri and Ma [2008] was in fact
slightly steeper than −2, which would give a divergent growth rate. Our goal there was to obtain a simple
universal form. For better accuracy, here we fit Ṁmer vs ξ for each mass bin independently, where the slope
had a very mild mass dependence, ranging from −1.7 to −1.9.
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Figure 5.8: Dependence of the two growth rates dMmer/dz/M0 (solid) and dMdif/dz/M0

(dashed) on the mass threshold ξmin used to define the halo and non-halo components.
The sum of the two rates (dotted), by construction, is independent of ξmin. Haloes in the
90− 99% mass bin are used. As ξmin is lowered from 0.4 (black), 0.04 (dark grey), to 0.004
(light grey), the amplitude of dMmer/dz/M0 increases and that of dMdif/dz/M0 decreases, but
their respective correlations with δ7−FOF remain the same, suggesting that the environmental
dependences reported in this paper are robust and do not depend on the exact values of ξmin

used to define haloes vs non-haloes. The top solid curve (in red) shows the hypothetical value
of dMmer/dz/M0 extrapolated down to ξmin = 0 (see text for discussion). One explanation
for the δ-dependent gap between this curve and the total rate (dotted) is that there exists a
truly diffuse component of dark matter that does not belong to bound haloes, in particular
in the lower-density regions.
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5.5.2 Implications for the Extended Press-Schechter and Excur-
sion Set Models

The Press-Schechter model [Press and Schechter, 1974] assumes that primordial Gaussian-
distributed dark matter perturbations collapse into haloes of mass M when their linearly
extrapolated overdensities, smoothed on a scale corresponding to a given mass, exceed a
critical threshold computed using a simple spherical collapse model.

This framework was extended to address the problem of halo growth in the excursion set
formalism (sometimes called the Extended Press-Schechter or EPS model) [Bond et al., 1991,
Lacey and Cole, 1993]. Using a k-space tophat smoothing window, these authors showed
that the density perturbation at a given point in space undergoes a random walk as the
perturbation is smoothed on smaller and smaller scales. These perturbation “trajectories”
obey the diffusion equation and are Markovian, i.e., the change in overdensity at a given
scale is independent of the overdensities at other scales. The EPS model in its standard form
therefore predicts no environmental dependence. For example, the conditional mass function
φ(M1, z1|M0, z0) – the distribution of progenitor mass M1 at redshift z1 for a descendant halo
of mass M0 at z0 – is predicted to be the same for all environments, in contrast to Fig. 7
of Fakhouri and Ma [2009] that showed descendant haloes in dense regions to have more
progenitors than those in voids.

Recent attempts have been made to introduce environmental correlations into the EPS
model. As emphasised in Zentner [2007], the Markovian nature of the random walks in the
excursion set model is not a prediction but is an assumption originating from the use of the
k-space tophat window function. This window function is traditionally chosen to reduce the
time required for computing density perturbation trajectories since for other window func-
tions, the perturbations must be computed at all scales simultaneously. When a Gaussian
window function was used, Zentner [2007] indeed found an environmental dependence of the
halo formation redshift, but the dependence was opposite to that seen in numerical simula-
tions (including Fig. 5.6 of this paper), where older (i.e. earlier forming) haloes tended to
be more clustered.

Desjacques [2008] instead chose to introduce environmental dependence into the threshold
density for collapse in the ellipsoidal excursion set formalism. Overdense regions will tend
to exert more tidal shear on collapsing haloes, an effect that causes the haloes to virialize
earlier. Like Zentner [2007], however, Desjacques [2008] found the low mass haloes in denser
regions to form later than similar mass haloes in emptier regions, again opposite to the effect
seen in simulations. Desjacques [2008] did note that his results may be valid in the lowest-
density region, where Fig. 5.6 here and Harker et al. [2006] both reported a subtle increase
in formation redshift with decreasing δ.

Sandvik et al. [2007] carried out a multi-dimensional generalisation of EPS that allowed
them to incorporate environmental effects by tracking the shapes of collapsing haloes and
incorporating information about gravitational shear. They found zf in this approach to
depend very weakly on the environment; moreover, the δ dependence they did observe was
stronger for more massive haloes, in contrary to the results of N-body simulations such as our
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Fig. 5.6. They proposed, instead, that the environmental dependence of a halo’s formation
history may be related to the halo’s progenitor pancakes and filaments. They found that
haloes whose progenitors were the most massive pancakes or filaments were more clustered
than halo’s whose progenitors were the least massive pancakes or filaments, and that this
clustering dependence was stronger for low mass haloes.

In summary, there is not yet a modification of the EPS model that can successfully predict
the correct correlation of halo formation with environment seen in numerical simulations.
We emphasize that in addition to the “assembly bias” for the formation redshift discussed in
Sec 4.3 and shown in Fig. 5.6, an improved EPS model would also need to predict the strong
but opposite environmental dependence of the growth rates shown in Fig. 5.4. A first step
towards this goal would be to introduce into the model, and track, the contribution made
by the non-halo material Ṁdif . The model would also need to be sophisticated enough to
account for the opposite behaviours of Ṁmer and Ṁdif as a function of the local density.

5.6 Conclusions

We have used the Millennium simulation [Springel et al., 2005] to investigate the depen-
dence of halo mass growth rates and histories on halo environment. This paper complements
our previous paper [Fakhouri and Ma, 2009] in which we reported and quantified how haloes
in overdense regions experienced higher merger rates than haloes in underdense regions. Here,
we have studied the mass growth rates due to both mergers with other resolved haloes, Ṁmer,
and accretion from non-halo “diffuse” material, Ṁdif . Results for the distributions of Ṁmer

and Ṁdif at z = 0 and the redshift evolution of the mean Ṁmer and Ṁdif are summarized in
Figs. 5.1-5.3.

As a function of halo environment, we have found (see Fig. 5.4) that the growth rate Ṁmer

due to mergers, in agreement with the merger rates in Fakhouri and Ma [2009], is positively
correlated with the local density, whereas Ṁdif is negatively correlated. Consequently, in
denser regions, mergers play a relatively more important role than diffuse accretion for the
mass growth of haloes, and a higher fraction of a halo’s final mass is acquired through mergers
in these regions than in the voids (Fig. 5.5).

We have shown that the origin of the environmental dependence of growth rate due to
mergers, Ṁmer, is directly linked to the mass reservoir immediately outside the virial radii
of the haloes (see Fig. 5.7). The mass composition in these surrounding regions exhibits a
strong positive correlation with environment such that more than 80% of the mass is in the
form of resolved haloes for haloes residing in dense regions (for 1 + δ7−FOF & 5), while only
∼ 20% of the mass is in resolved haloes for haloes residing in voids (for 1 + δ7−FOF . 0.4).
Even though only a fraction of these haloes enters the virial radii and contributes to the
actual growth of the central halo, it is the environmental property of this mass reservoir that
leads to the environmental dependence of Ṁmer. For the diffuse growth component Ṁdif ,
however, its negative correlation with local density observed in Fig. 5.4 is not explained by
the environmental dependence of the available diffuse mass in the reservoir outside of the
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haloes. In fact, more diffuse material is available in the reservoir in denser regions (dashed
curves in Fig. 5.7). Why then is the diffuse accretion rate Ṁdif lower in denser regions? We
speculated that some of the diffuse mass may be dynamically hotter due to tidal stripping
and therefore is harder to accrete. A careful analysis using the actual particle data from the
simulation would be needed to investigate this issue further.

The halo growth rates Ṁmer and Ṁdif together account for the overall halo mass accretion
history (MAH) that we have studied in detail in a separate paper [McBride et al., 2009].
When combined, the opposite correlations of the two rates with the local density cancel each
other to some extent, resulting in a weak environmental dependence for the formation redshift
zf (Fig. 5.6). At a fixed mass, galaxy-sized haloes in overdense regions on average form earlier
than those in underdense regions, consistent with the assembly bias result reported in several
recent papers [Gao et al., 2005, Sheth and Tormen, 2004, Jing et al., 2007, Gao and White,
2007, Harker et al., 2006, Wechsler et al., 2006, Wetzel et al., 2007, Wang et al., 2007, Hahn
et al., 2008]. The zf for cluster-sized haloes, on the other hand, show no dependence on
environment. We note that had we ignored Ṁdif and only taken into account the mass
growth due to mergers, then the positively-correlated δ dependence of Ṁmer would imply a
later formation redshift (i.e., a smaller zf ) for haloes in denser regions, which is opposite to
that shown in Fig. 5.6. The negatively correlated Ṁdif with the local density therefore plays
a crucial role in counterbalancing the positively correlated Ṁmer so that the environmental
dependence of the total rate is consistent with that of zf .

We have emphasized throughout the paper that the values of Ṁmer vs. Ṁdif depend on
the mass threshold ξmin used to defined these two components. Despite this fact, our tests
have shown (see Fig. 5.8) that the enviromental trends of Ṁmer and Ṁdif in Figs. 5.4 – 5.7
are robust and are independent of the definition.

A number of interesting questions remain to be explored. For instance, what is the
nature of the non-halo component Ṁdif? Besides tidal stripping, are there additional physical
processes controlling the different environmental dependence of Ṁmer vs Ṁdif? How do our
results for Ṁmer and Ṁdif extend to higher-resolution simulations, e.g., will the power-law
slope of Ṁmer vs progenitor mass ratio ξ remain the same or steepen at smaller ξ, and will this
change be δ-dependent? How does one introduce non-Markovian features into the random-
walk picture in the much-used EPS model in order to reproduce the halo growth histories
as a function of halo mass and halo environment reported in this paper? We expect to
shed light on some of these questions by using the Millennium-II simulation [Boylan-Kolchin
et al., 2009b] with ∼ 1000 times better mass resolution in an upcoming paper.
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Part V

Constructing Self-Consistent
Theoretical Dark Matter Halo Merger

Trees in the EPS Framework
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Chapter 6

How to Grow a Healthy Merger Tree
Zhang, Jun ; Fakhouri, Onsi; Ma, Chung-Pei — October 2008
Monthly Notices of the Royal Astronomical Society, Volume 389, Issue 4, pp. 1521-1538

We investigate seven Monte Carlo algorithms – four old and three new – for
constructing merger histories of dark matter halos using the extended Press-
Schechter (EPS) formalism based on both the spherical and ellipsoidal collapse
models. We compare, side-by-side, the algorithms’ abilities at reproducing the
analytic EPS conditional (or progenitor) mass function over a broad range of
mass and redshift (z = 0 to 15). Among the four old algorithms (Lacey & Cole
1993, Kauffmann & White 1993, Somerville & Kolatt 1999, Cole et al 2000),
we find that only KW93 produces a progenitor mass function that is consistent
with the EPS prediction for all look-back redshifts. The origins of the discrep-
ancies in the other three algorithms are discussed. Our three new algorithms
are designed to generate the correct progenitor mass function at each timestep.
We show that this is a necessary and sufficient condition for consistency with
EPS at any look-back time. We illustrate the differences among the three new
algorithms and KW93 by investigating two other conditional statistics: the
mass function of the ith most massive progenitors and the mass function for
descendants with Np progenitors.

6.1 Introduction

In the hierarchical structure formation scenario, dark matter halos grow by accreting
and merging with other halos. Statistically modelling halo merger histories is important for
understanding a diverse spectrum of astrophysical processes ranging from galaxy formation,
the growth of super-massive black holes, to cosmic reionization.

Numerical simulations aside, the most frequently used theoretical framework for studying
the build up of dark matter halos is the Press-Schechter (PS) model [Press and Schechter,
1974]. This framework is further developed in the so-called extended Press-Schechter (EPS)
model (Bond et al. 1991, Lacey and Cole 1993, Mo and White 1996, Sheth et al. 2001, Sheth
and Tormen 2002). For a descendant halo of a given mass at redshift z0, the EPS model
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predicts the average mass spectrum of its progenitors at a higher redshift z1 (the conditional
or progenitor mass function).

The EPS model provides only statistical information about halo mergers and does not
specify how progenitor halos are to be grouped into descendant halos. However, it is often
useful, particularly in semi-analytial modelling, to have actual realisations of the merging
history for a large set of haloes. A number of Monte Carlo algorithms have been proposed for
this purpose (see, e.g. , Lacey and Cole 1993, Kauffmann and White 1993, Sheth and Pitman
1997, Sheth and Lemson 1999, Somerville and Kolatt 1999, Cole et al. 2000, 2008, Moreno
et al. 2008, Neistein and Dekel 2008a). These algorithms allow one to produce realisations of
halo merger trees stretching back to high redshifts in a fraction of the time that is required
for performing and analysing cosmological N -body simulations of comparable resolution.

Thus far, most of the commonly used Monte Carlo methods are based on the spherical
EPS theory. In Lacey and Cole 1993 (also see Bond et al. 1991), halo mergers at each time
step are assumed to be binary: one of the progenitor masses is randomly drawn from the
conditional mass function, and the other progenitor mass is defined by the difference between
the descendant halo mass and this first progenitor mass. Though this seems to be the most
natural way to generate halo merger histories, it has been pointed out by several authors
that the binary picture does not reproduce the EPS progenitor abundance at earlier times
(see, e.g. , Somerville and Kolatt 1999). Moreover, this problem does not disappear when
the time step is greatly reduced. This fact has led to the investigation of alternative Monte
Carlo algorithms with different recipes for building halo merger trees in the spherical EPS
framework. For example, Somerville & Kolatt (1999) find that if the binary assumption
is relaxed while taking into account the contribution of mass from continuous accretion
then the progenitor abundance at large look-back times is better reproduced. Cole et al.
(2000), on the other hand, include diffuse accretion but preserve the assumption of binary
mergers. More recently, partially due to the rapid advances in N-body simulation, various
other algorithms have been proposed that are either designed to fit N-body results (e.g.
, Parkinson et al. 2008, Cole et al. 2008, Neistein and Dekel 2008b) or are based on the
spherical [Neistein and Dekel, 2008a] or ellipsoidal [Moreno et al., 2008] excursion set model.
The presence of these numerous Monte Carlo algorithms suggests that building a Monte
Carlo algorithm that is fully consistent with the underlying EPS model is not unique and
can be non-trivial.

We were motivated to write this paper for a number of reasons. First, this is a sequel
to our previous work [Zhang et al., 2008b], which presented an accurate analytic formula
for the conditional mass function for small timesteps in the ellipsoidal EPS model. This
formula is particularly useful as an input for high-resolution Monte Carlo simulations of
halo merger trees. Earlier formulae (e.g. Sheth and Tormen 2002) were accurate only
for larger look-back redshifts (z1 − z0 & 0.1). Taking such a large timestep would limit the
dynamic range in both the progenitor mass and redshift that can be covered in a Monte Carlo
simulation. In addition, until recently, all previous Monte Carlo algorithms were studied in
the framework of the spherical EPS model, which is well known to produce inaccurate total
(i.e. unconditional) halo mass function when compared with simulations. This paper will
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investigate the algorithms in the ellipsoidal model using the formula in Zhang et al. [2008b].
Second, as we began to investigate the various Monte Carlo algorithms proposed in

the literature, we were frustrated by the lack of direct comparison among the different
methods, each of which has its own range of validity and own set of assumptions about
how to group progenitors into descendants (e.g. binary vs multiple progenitors; how the
mass in progenitors below mass resolution is treated). Moreover, it was not always clear
why a given algorithm succeeded or failed. In this paper, we examine closely the four most
frequently used algorithms – Lacey and Cole 1993, Kauffmann and White 1993, Somerville
and Kolatt 1999, Cole et al. 2000 – and compare their predictions for the conditional mass
function over a wide range of progenitor masses and look-back redshift (e.g., down to 10−6 of
descendant mass and up to redshift 15). We find that only Kauffmann and White [1993] is
fully consistent with the EPS model at all look-back time steps. The limitations and causes
of discrepancies in the other three methods are discussed.

Third, in light of the discrepancies in earlier algorithms, we investigate three new Monte
Carlo algorithms that are all constructed to reproduce accurately the EPS predicted condi-
tional mass function at any look-back redshift. We present a consistency criterion that is
useful as a general guide for building Monte Carlo algorithms: If an algorithm reproduces
the EPS progenitor mass function for a sequence of simulation timesteps between zi and zi+1

(where i = 0, N), then it is guaranteed to reproduce the EPS progenitor mass function at
any zj for descendants at any later zk (where j, k = 0, N). This is a necessary and sufficient
condition.

Fourth, the EPS model is an incomplete theory that predicts only a subset of statistical
properties of halo mergers. It therefore leaves one with much freedom in how to assign
progenitors to descendants in a given Monte Carlo algorithm. For instance, it is possible to
construct different consistent Monte Carlo algorithms that predict different statistical merger
quantities beyond the conditional mass function. Our three new algorithms and KW93 are
four examples that are degenerate in the conditional mass function but are different in other
progenitor statistics. In this paper we illustrate the differences among the models with two
such statistics: the mass function of the ith most massive progenitors and the mass function
of progenitors for descendant halos with Np progenitors. Results from N -body simulations
will be needed to constrain these higher-moment statistics. Since computing the statistics of
progenitor dark matter halos in simulations is by itself a major independent project, we will
focus on the EPS theory and Monte Carlo algorithms in this paper and leave the comparison
with N -body results to a subsequent paper (Zhang, Fakhouri & Ma 2008, in prep).

The paper is structured as follows. The EPS formalism based on both the spherical
and ellipsoidal gravitational collapse models is reviewed in §6.2. In §6.3 we discuss three
ingredients for how to grow an accurate Monte Carlo merger tree: the consistency criterion
for reproducing EPS (§6.3.1), the asymmetry in the EPS progenitor mass function and the
necessity of non-binary mergers in an algorithm (§3.2), and the role of mass resolution and
diffuse accretion for progenitor mass assignment (§3.3). Details of the four old and three
new algorithms are discussed in §4 and §5, respectively. Whenever possible, the resulting
progenitor mass functions from different algorithms are shown on the same plots for ease of
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comparison. §6 compares the two new progenitor statistics that can be used to discriminate
among the Monte Carlo algorithms that are consistent with EPS. We summarise our findings
in §6.7, with a discussion of some recent work in this field.

The calculations in this paper assume a ΛCDM model with Ωm = 0.25, Ωb = 0.045,
h = 0.73, ΩΛ = 0.75, n = 1, σ8 = 0.9. This is the same cosmology used in the Millennium
simulation (Springel et al. 2005).

6.2 An Overview of EPS

In this section we present a brief overview of the EPS theory based on both the spherical
and ellipsoidal gravitational collapse models. We often refer to the two models in parallel as
the spherical and ellipsoidal EPS models, with the understanding that the ellipsoidal version
is based on the excursion set formalism of Bond et al. [1991]. The emphasis here is on the
conditional mass function, which is the main statistical quantity used to generate progenitors
in merger tree algorithms. For a more complete and pedagogical review of EPS, see Zentner
[2007] and references therein.

6.2.1 EPS Based on the Spherical Collapse Model

The Press-Schechter (PS) model provides a framework for identifying virialized dark
matter halos. It is assumed that the seed density perturbations that grow to form these
halos are characterised by an initially Gaussian random density field with larger fluctuations
on smaller spatial scales. This latter assumption allows one to use S(R) = σ2(R), the
variance of the linear density fluctuations1 smoothed over spatial scale R, as a proxy for
the spatial scale R. Moreover, since a given spatial scale is related to a unique mass scale
M(R) via the mean density of the universe ρ̄, one can use R, M , and S interchangeably as
measures of scale.

The density field smoothed over a given scale M is given by δM = ρM/ρ̄− 1 where ρM is
the average density within the smoothing scale R. In the EPS model, the linear density field
centred at a given point in the initial Lagrangian space traces out a random walk (referring
to a Markovian process)2 as the smoothing scale is reduced. Starting from a large smoothing
scale, a virialized dark matter halo is assumed to form at the given spatial coordinate when
the linear δM crosses a critical value for the first time; the mass of the halo is determined by
the smoothing scale at first-crossing. In the spherical EPS model, the critical over-density is
given by the spherical collapse model and is a constant δc = 1.69 independent of mass scale.

In the above description, as a result of gravitational instability, the density field grows
with time as a linear function of its initial value, i.e. , δM(z) = δM(0)D(z), where D(z) is
the standard cosmology-dependent linear growth factor satisfying D(z = 0) = 1. In practice,

1In this paper, the variance of the density fluctuation is calculated using the fitting formula of the linear
mass power spectrum from Eisenstein and Hu 1998

2Strictly speaking, this is only true when the smoothing window function is a top-hat in Fourier space.
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one usually fixes the value of δM at some reference time (e.g. today: δM(0)) and evolves
the critical over-density to identify virialized halos at earlier redshifts. We denote this time-
dependent critical over-density by ω(z) = δc/D(z). Note that a lower redshift corresponds
to a smaller ω(z), implying that larger halos form at later times, in accordance with the
hierarchical structure formation scenario.

Under the assumption of Gaussian statistics, the EPS framework allows one to compute
the first crossing distribution f(S(M1), z1|S(M0), z0). Of the set of random walks that begin
at δM0 = ω(z0), the first crossing distribution is the fraction of these random walks that first
cross the critical over-density ω(z1) at scale S(M1), where z1 > z0 and S(M1) > S(M0) (i.e.
M1 < M0). It can be shown [Lacey and Cole, 1993] that the first crossing distribution in the
spherical EPS model has the form

f(S(M1), z1|S(M0), z0)d∆S (6.1)

=
1√
2π

∆ω

∆S3/2
exp

(
−∆ω2

2∆S

)
d∆S

where ∆ω = ω(z1)− ω(z0) and ∆S = S(M1)− S(M0).
The first crossing distribution can be reinterpreted as the conditional mass function

P (M1, z1|M0, z0), which is defined to be the mass fraction of a descendant halo of mass M0

at redshift z0 that originates from a progenitor halo of mass M1 at redshift z1:

P (M1, z1|M0, z0)dM1 = −f(S(M1), z1|S(M0), z0)d∆S (6.2)

Note, in particular, that P (M1, z1|M0, z0) is the mass-weighted conditional mass function as
it represents the merging history of a unit of mass. The average number of progenitors of
mass M1 at z1 associated with the formation of each descendant halo of mass M0 at z0 is
given by the number-weighted conditional mass function φ(M1, z1|M0, z0), which is simply
related to the mass-weighted conditional mass function P (M1, z1|M0, z0) by

φ(M1, z1|M0, z0) ≡ M0

M1

P (M1, z1|M0, z0) . (6.3)

For brevity, we often refer to the number-weighted conditional mass function φ(M1, z1|M0, z0)
as the progenitor mass function, and denote it simply as φ(M1|M0) with z0 and z1

specified elsewhere in the rest of the paper. This quantity is sometimes denoted as
dN(M1, z1|M0, z0)/dM1 in the literature.

6.2.2 EPS Based on the Ellipsoidal Collapse Model

The original Press-Schechter theory was based on the spherical collapse model. The
unconditional mass function in this model is well known to have an excess of small halos and
a deficit of massive halos in comparison with simulation results (e.g. , Lacey and Cole 1994,
Gelb and Bertschinger 1994, Ma and Bertschinger 1994, Tormen 1998, Sheth and Tormen
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1999). This discrepancy arises because halo collapses are generally triaxial rather than
spherical (Bardeen et al. 1986, Sheth et al. 2001, Sheth and Tormen 2002). In the spherical
collapse picture, the virialization of a dark matter halo is purely determined by the density-
contrast on the scale of the halo mass. This assumption is too simplistic because dark matter
halos generally have non-zero ellipticity and prolateness, and the condition for virialization
should be determined by both the density-contrast and the halo shape parameters.

By assuming that a dark matter halo virializes when its third axis collapses, Sheth et al.
[2001] find a new criterion for virialization that depends on the ellipticity and prolateness
of a dark matter halo in addition to its density contrast. In practice, this condition can be
simplified either by averaging over its dependence on the shape parameters, or by fixing the
shape parameters at their most likely values for a given over-density. By doing so, these
authors obtain a fitting formula for the scale-dependent critical over-density, or barrier,
in contrast to the scale-independent δc of the spherical collapse model. In this ellipsoidal
collapse model, the scale-dependence is such that the formation of small halos is delayed,
thereby reducing their abundance and providing closer agreement with the unconditional
mass function in simulations than the spherical model.

To compute the conditional mass function in the ellipsoidal EPS model, one would need
the equivalent of the first-crossing distribution eq. (6.1). The exact analytical form of
eq. (6.1), unfortunately, is valid only for the scale-independent constant barrier δc of the
spherical EPS model. Sheth and Tormen [2002] have presented a Taylor-series-like approxi-
mation for the ellipsoidal model, but Zhang et al. [2008b] show that this form works well for
large z1 − z0 but is invalid for small z1 − z0. As the construction of an accurate ellipsoidal
Monte Carlo merger tree algorithm requires accurate knowledge of the ellipsoidal progenitor
mass function at small timesteps, it is crucial that this matter be resolved.

This was done in Zhang et al. [2008b]. Using the scale-dependent critical over-density of
Sheth and Tormen [2002] and the technique of Zhang and Hui [2006], Zhang et al. [2008b]
derived an accurate form for the progenitor mass function of ellipsoidal EPS model for small
time steps (∆z ∼< 0.1), which can be written as:

φ(M1|M0) =
M0

M1

dS(M1)

dM1

B0

∆S
√

2π∆S
(6.4)

×
{

exp

[
−(B0 +B′0∆S)2

2∆S

]
+ exp

(
−B

′2
0∆S

2

)
× 0.0373ν−0.115

0

(
∆S

S(M0)

)3/2
[

1 +
B′0
√

∆S

Γ(3/2)

]}
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where

∆S = S(M1)− S(M0), (6.5)

B0 = 0.866[ω(z1)− ω(z0)](1− 0.133ν−0.615
0 ),

B′0 = 0.308ν−0.115
0 S(M0)−0.5,

ν0 = ω2(z0)/S(M0).

Note that unlike eq. (15) of Zhang et al. [2008b], we have not neglected the small B0 in
the exponent because it is important for tracing the massive progenitors (small ∆S). The
coefficients in eq. (6.4) are closely related to the scale dependence of the critical over-density
of Sheth and Tormen [2002]. The details can be found in Zhang et al. [2008b]. Eq. (6.4)
provides a closer match to the merger rates determined from N -body simulations [Zhang
et al., 2008b], but the agreement was not perfect, perhaps due to the non-Markovian nature
of numerical simulations.

6.3 Ingredients for Growing Healthy Merger Trees

As discussed in the introduction, the EPS model only provides a subset of statistical
information about dark matter halo merger histories. For example, the EPS progenitor mass
function φ(M |M0) (eq. 6.3 for spherical and eq. 6.4 for ellipsoidal) gives the average mass
spectrum of the progenitors for the descendant halos. However, it is often useful, especially
in semi-analytical modelling, to have an actual Monte Carlo realisation of the formation
history for a large set of halos. Of particular interest is the merger tree of individual halos,
which provides the hierarchical links among the progenitors and their descendants. Since
the EPS model itself does not specify explicitly how to group progenitors into descendants,
in each timestep in a Monte Carlo algorithm, assumptions must be made about the number
of progenitors and their mass distributions to be assigned to a given descendant.

The earlier Monte Carlo algorithms (e.g., Lacey and Cole 1993, Kauffmann and White
1993, Somerville and Kolatt 1999, Cole et al. 2000) for merger tree constructions share
a similar overall structure: A descendant halo of mass M0 at some redshift z0 (typically
z0 = 0) is chosen. The EPS progenitor mass function, φ(M |M0), is then used to generate
a set of progenitors at some earlier redshift, using the rules of the given algorithm. In the
next timestep, these progenitors become descendants, and each is assigned its own set of
progenitors at an earlier redshift using φ(M |M0). This process is repeated out to some early
redshift and for a (typically large) number of halos of mass M0 at the starting z0.

The existence of a number of diverse Monte Carlo algorithms (see further discussion in
§6.4) in the literature implies that the above process is, in fact, not unique and can be quite
subtle. We now explore some of these subtleties and the key ingredients for constructing a
healthy merger tree.
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6.3.1 A Criterion for Consistently Reproducing the EPS Progen-
itor Mass Function

We consider a Monte Carlo algorithm to be consistent with EPS if the merger trees it
produces can reproduce the EPS progenitor mass function φ(M1, z1|M0, z0) exactly for any
set of {M1, z1,M0, z0} regardless of the number or size of the simulation timesteps between
z0 and z1.

Clearly, to be consistent with EPS, a Monte Carlo algorithm must necessarily reproduce
the EPS-predicted φ(M |M0) exactly at adjacent time steps. We now show that this is also
a sufficient condition for the Monte Carlo method to reproduce φ(M |M0) exactly at any
look-back time regardless of the number, or width, of intervening timesteps. This condition
is important because it simplifies the analysis of Monte Carlo algorithms: the failure of a
given algorithm to reproduce faithfully the EPS φ(M |M0) at a particular redshift or mass
range necessarily implies that the algorithm fails to reproduce the progenitor mass function
(in either amplitude or shape or both) across a single time step.

We start with the first crossing distribution eq. (6.1) and note that due to the continuous
nature of the random walk, it obeys the following identity at different look-back times:

f(S(M), z|S(M0), z0) (6.6)

=

∫ S(M)

S(M0)

dS ′f(S(M), z|S(M ′), z′) f(S(M ′), z′|S(M0), z0)

for any z0 < z′ < z. This relationship is true in both spherical and ellipsoidal EPS mod-
els because both variants are based on barrier crossings of random walks. Note that in
the ellipsoidal model, eq. (6.6) is a property of only the exact first-crossing distribution,
which is well represented by eq. (6.4) for small look-back times but not the Taylor-series-like
approximation of Sheth and Tormen [2002].

Using eqs. (6.2) and (6.3) to relate f to the progenitor mass function φ, we then obtain

φ(M, z|M0, z0) (6.7)

=

∫ M0

M

dM ′φ(M, z|M ′, z′)φ(M ′, z′|M0, z0) .

Setting z′ = z0 + ∆z and z = z0 + 2∆z, we see that eq. (6.7) implies that if a Monte Carlo
method generates progenitors exactly according to the progenitor mass function of EPS at
each time step ∆z, then the Monte Carlo progenitor mass function should agree with the
EPS prediction at any look-back time z − z0. We stress that φ(M |M0) must be reproduced
exactly, that is, in both the overall shape and normalisation of φ(M |M0). This consistency
condition is both necessary and sufficient.

An additional feature to note is that consistency is possible in the presence of a mass
resolution limit Mres (discussed further in §6.3.3). Eq. (6.7) shows that φ(M, z|M0, z0) does
not depend on masses outside of the range [M,M0]. Thus if a Monte Carlo algorithm
reproduces φ(M |M0) for all M > Mres in single timesteps, it will consistently reproduce
φ(M |M0) at M > Mres for any z − z0.
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6.3.2 The Asymmetry of EPS and Binary Mergers

The simplest way to group progenitors into descendants in a Monte Carlo algorithm is
through mass conserving binary mergers, i.e. , each descendant halo of mass M0 is composed
of two progenitors of mass M1 and M0 −M1. This assumption is used in, e.g., Lacey and
Cole [1993] and Cole et al. [2000]. This simple scenario, however, will necessarily fail to
reproduce both the spherical and ellipsoidal EPS progenitor mass functions. This is because
if all descendants were the products of binary mergers, then φ(M |M0) would be symmetric
about M0/2. This is simply not the case in EPS even for infinitesimal ∆z.

We illustrate the asymmetry of the EPS φ(M |M0) in Fig. 6.1 for a descendant halo of
mass 1013M� at z0 = 0 and a look-back time of z = 0.02 (which is the typical timestep used
in our Monte Carlo simulations; see Sec. 4). The solid black curve shows the total φ(M |M0),
while the red dashed curve shows the symmetric part φsym(M |M0) defined by

φ(M |M0) = φsym(M |M0) + φasym(M |M0) , (6.8)

where the left side (M ≤ M0/2) of φsym(M |M0) is defined to be identical to φ(M |M0) and
the right side is defined to be simply the reflection of the left half about the mid point M0/2.
The second term φasym(M |M0) is then the residual of φ after subtracting out φsym. The
figure illustrates that it is not possible for all progenitors with M > M0/2 to have binary-
paired progenitors of mass M0 − M < M0/2. In particular, we find that for sufficiently
small look-back times (e.g. z = 0.02 used in Fig. 6.1), φ(M |M0) > φsym(M |M0) when
M0/2 ≤ M ∼< 0.97M0 and φ(M |M0) < φsym(M |M0) when M ∼> 0.97M0 (see the popup in
Fig. 6.1). That is, there are slightly fewer progenitors with masses below M0/2 than above,
except near the end points (below 0.03M0 and above 0.97M0) where the trend is flipped.

Even though the asymmetry is typically small ( φasym . 0.1φsym out to M0 −Mres), an
accurate algorithm must include non-binary progenitor events. These can be descendants
with either a single progenitor or multiple (Np > 2) progenitors, as will be seen in the
new algorithms discussed in §6.5 below. This fact was emphasised by Neistein and Dekel
[2008a]. These authors construct a mass conserving consistent Monte Carlo algorithm that
produces a large number of non-binary descendants. However, one intuitively expects that
more mergers will be binary as z1 − z0 → 0. This intuition is supported by results from
the Millennium simulation [Fakhouri and Ma, 2008], which show that the binary assumption
becomes increasingly valid down to smaller Mres as z1 − z0 is made smaller. This result
suggests that the Markovian nature of the standard EPS model with a tophat smoothing
window may need to be modified to account for the correlated sequences of mergers occurring
in simulations [Neistein and Dekel, 2008a, Zentner, 2007].

6.3.3 Mass Resolution, Diffuse Accretion, and Mass Conservation
in Monte Carlo Algorithms

In the EPS model, all the mass in the universe is assumed to be in dark matter halos.
Although the mass-integral of the (unconditional) mass function in this model is finite, the
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Figure 6.1: An illustration of the asymmetry in the number-weighted conditional (or pro-
genitor) mass function φ(M, z|M0, z0) of the spherical EPS model for a descendant halo of
mass M0 = 1013M� at z0 = 0 and a look-back redshift of z − z0 = 0.02. The red dashed
curve shows the symmetric part of φ(M |M0), φsym(M |M0), whose right side is simply the
reflection of the left side. The figure indicates that some progenitors of masses larger than
M0/2 do not have companions in the simplest binary scheme. The popup is a zoom-in on
the right-most part of the plot and illustrates that the red dashed curve exceeds the solid
curve at M ≈ 0.977M0.
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number-integral is unbounded; that is, EPS predicts a preponderance of very low mass halos.
Thus, any practical Monte Carlo algorithm must necessarily assume a lower mass cutoff, the
mass resolution Mres.

For a nonzero Mres, a halo’s merger history at each time step can be thought of consisting
of mass in the form of resolvable progenitor halos and a reservoir of mass due to “diffuse”
accretion that is the aggregate contribution from all subresolution progenitors. This technical
distinction is introduced for ease of implementing the Monte Carlo methods. It will, however,
play a more physical role when we compare the results with N -body simulations, which has
its own mass resolution as well as a possibly physical diffuse component consisting of tidally
stripped dark matter particles. In this paper we use ∆M to denote this diffuse accretion
component, which we define to be

∆M = M0 −
∑
i

Mi , (6.9)

where Mi are the masses of the progenitors above Mres and M0 is the mass of the descendant.
We call a Monte Carlo algorithm mass conserving if each descendant and its progenitors

produced by the algorithm satisfies
∑

iMi ≤ M0. Monte Carlo algorithms are generally
expected to be mass conserving, but we note that this is not a necessary condition for
reproducing the EPS progenitor mass function because the latter is a statistical measure of
merger properties. In two of our new algorithms below (methods A and B in §6.5), a small
fraction of the descendants can have

∑
iMi > M0. We allow this to simplify the description

and implementation of our algorithms. We have experimented with redistributing these
excess progenitors among other descendant halos in a mass-conserving manner and found it
not to modify significantly the resulting merger statistics. In addition, it may appear that∑

iMi > M0 is unphysical. We have found, however, that a non-negligible fraction of halos
in N -body simulations in fact have ∆M < 0, perhaps as a result of tidal stripping. This
point will be discussed in greater detail in our next paper.

We note that for a Monte Carlo algorithm that is consistent with EPS, the mean value of
∆M per descendant halo of mass M0 (i.e., averaged over all descendants in a given timestep)
is, by construction, related to the mass resolution by

〈∆M〉 =

∫ Mres

0

Mφ(M |M0)dM , (6.10)

For a given φ(M |M0) and Mres, 〈∆M〉 is therefore specified. The distribution of ∆M ,
however, can differ greatly among different algorithms; that is, there is much freedom in
how to assign the amount of diffuse accretion to individual descendants in a given timestep.
For instance, Cole et al. [2000] assumes a delta-function distribution for ∆M (see §6.4.4 for
details), while most of other methods, including our new methods discussed in §6.5, have
broader distributions.
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6.4 Comparison of Four Previous Monte Carlo Algo-

rithms

In this section we examine four existing Monte Carlo algorithms for generating merger
trees: Lacey and Cole [1993] [LC93], Kauffmann and White [1993] [KW93], Somerville and
Kolatt [1999] [SK99], and Cole et al. [2000] [C00]. This set is by no means complete, but
these are four of the most frequently used algorithms in the literature. The purpose here is
to compare these well known algorithms side-by-side and to illustrate the mass and redshift
ranges for which each method succeeds and fails in matching the spherical EPS model.
Comparison of KW93 with the ellipsoidal model will be presented in Sec. 5.

We review each algorithm in a subsection below and compare the resulting progenitor
mass functions φ(M |M0) with the spherical EPS prediction for look-back redshifts ranging
from 0.24 to 15. In Figs. 6.2-6.4 we plot the progenitor mass functions produced by all four
methods, along with the analytical EPS prediction, on log-log plots for three descendant
masses (1012, 1013, 1014M�) and four look-back times (z1−z0 = 0.24, 2.07, 7 and 15). To ease
comparison, we also plot the ratio between each Monte Carlo result and the EPS prediction
on a linear-log plot. As Figs. 6.2-6.4 clearly show, of the four algorithms, only KW93 is able
to match the spherical EPS φ(M |M0) for all z − z0. We will explore why each algorithm
fails below and discuss the care that must be taken when implementing KW93. A summary
of the four algorithms, their discrepancies, and the causes of the discrepancies is given in
Table 6.1.

In our Monte Carlo simulations, we generally keep track of all progenitors down to
0.001M0 at each time step for a descendant halo of mass M0. This large dynamic range
allows us to predict reliably the progenitor abundance even for a very large look-back time
(z1−z0 ∼ 15). To speed up the algorithm, we take each time step to be a constant difference
in the barrier height ∆ω(z) = ω(z+ ∆z)−ω(z) (where ∆ω ≈ ∆z at low z), which is chosen
to be about 0.02 for LC93, KW93, SK99, and 0.003 for C00 at z = 0. The progenitor mass
function of a given descendant halo mass is then identical for each time step and does not
have to be recomputed. Numerical convergence is tested by changing the timesteps used in
the simulation: our results do not change.

6.4.1 Lacey & Cole (1993)

The algorithm proposed by LC93 makes two important assumptions: all mergers are
binary (before mass resolution is imposed), and the descendant mass M0 is the sum of the
two progenitor masses M1 and M2 (where M1 ≥M2 in our convention). For each small look-
back time step and for each descendant, a progenitor mass is randomly chosen according to
the mass-weighted conditional mass function eq. (6.2), and the mass of the other progenitor
(which can be larger or smaller) is simply set to be the difference between M0 and the
first chosen progenitor mass. If the less massive progenitor M2 falls below a chosen mass
resolution Mres, or equivalently, M1 > M0 −Mres, then M1 is kept but M2, being a sub-
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Overview Discrepancy in progenitor
mass function φ(M |M0)

Reasons for Discrepancies

LC93 Binary and 1-
to-1 ∆M ≤
Mres

Overestimates φ(M |M0) by
large factors when the look-
back time is large, i.e. , z1 −
z0 ∼> 1

Binary assumption fails to re-
produce EPS φ(M |M0) asym-
metry.

KW93 Multiple merg-
ers ∆M 6= 0

None

SK99 Multiple merg-
ers ∆M 6= 0
(can be bigger
or smaller than
Mres)

Typically over-predicts the
abundances of small pro-
genitors ( ∼< 10% of the
descendant halo mass) by a
factor of ∼ 2 for z1 − z0 ∼< 1.
This discrepancy propagates
to smaller mass scales for
larger look-back times.

Truncation of φ(M |M0) fails
to reproduce its shape exactly.

C00 Binary and
1-to-1 ∆M is a
constant given
by equation
(6.12)

Works reasonably well for a
large range of the look-back
time but significantly underes-
timates φ(M |M0) at high mass
ends, particularly when the
look back time is large (z1 −
z0 � 1).

Binary assumption fails to
capture asymmetry of EPS
φ(M |M0); fixed ∆M yields 1-
to-1 events that do not accu-
rately reproduce the high mass
end of φ(M |M0).

Table 6.1: A scorecard for the four old Monte Carlo algorithms discussed in §6.4. We note
that the 1-to-1 events in LC93 and C00 are actually binary mergers involving a secondary
progenitor with mass below Mres. Since these progenitors are below the resolution limit they
are not counted as progenitors but as diffuse mass ∆M .
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Figure 6.2: Comparison of the progenitor (or conditional) mass functions φ(M, z|M0, z0) that
we generated using the four previous Monte Carlo algorithms by LC93 (red solid), KW93
(orange dot-dashed), SK99 (blue dashed), and C00 (green dotted), and the predictions of the
analytic spherical EPS model (black solid). The four panels show four look-back redshifts
(z − z0 = 0.24, 2.07, 7 and 15) for a descendant halo of M0 = 1012M� at z0 = 0. For clarity,
we plot in the sub-panel below each panel the ratios of the Monte Carlo result and the EPS
prediction. One can see that KW93 is the only accurate algorithm for all z. Note that
different ranges of M/M0 are shown in each panel since the progenitors have progressively
smaller masses at higher redshifts.
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Figure 6.3: Same as Fig. 6.2, but for a descendant halo of 1013M�.

Figure 6.4: Same as Fig. 6.2, but for a descendant halo of 1014M�.
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resolution progenitor, is discarded. This results in single-progenitor halos which we label
as “1 → 1” events. In this notation, binary mergers are “2 → 1” events. When a smaller
timestep is used in LC93, the ratio of 2→ 1 to 1→ 1 events decreases.

We find that random progenitor masses can be easily generated using the parameter
transformation:

x = erf
{

∆ω/
√

2[S(M1)− S(M0)]
}
. (6.11)

The parameter x has a uniform probability distribution between 0 and 1 and can be quickly
generated using any random-number generator. A simple inversion then yields progenitors
distributed according to the mass-weighted conditional mass function.

The red solid histograms and curves in Fig. 6.2 – 6.4 compare the progenitor mass func-
tions generated using the LC93 algorithm with the predictions of the spherical EPS model
(solid black curves). For all three descendant halo masses shown (1012, 1013 and 1014M�),
we see close agreement for small look-back times such as z1 − z0 = 0.24, but LC93 produces
an excess of progenitors at larger look-back times, and the discrepancy worsens, reaching
an order of magnitude by z1 − z0 = 15. We believe this discrepancy is due to the binary
nature of LC93: the number of progenitors with mass M is equal to the number of binary
companions of mass M0−M . Thus the LC93 Monte Carlo algorithm generates a progenitor
mass function after one time step that is symmetric in the left and right sides, which will
not match the asymmetric nature of the EPS φ(M |M0) discussed in Sec. 6.3.2 and shown
in Fig. 6.1. This discrepancy is amplified after many timesteps when the look-back time
becomes large.

Finally, we note that the authors of LC93 also consider another way of drawing the
first progenitor mass from the mass-weighted conditional mass function, which is to draw it
from the mass range of [M0/2,M0] instead of [0,M0]. In practice, we find that this slightly
modified version of LC93 generates very similar results, and our above discussion is valid.

6.4.2 Kauffmann & White (1993)

For each timestep in the KW93 algorithm, a large number of progenitors are generated
across many progenitor mass bins for a fixed number of descendant halos of the same mass.
The number of progenitors in each mass bin is determined by the progenitor mass function
of the descendant halo mass, and rounded to the nearest integer value. These progenitors
are then assigned to the descendant halos in order of decreasing progenitor mass. The target
descendant halo is chosen with a probability proportional to its available mass (i.e. the
mass not yet occupied by progenitors), and with the restriction that the total mass of the
progenitors in a descendant halo cannot exceed the descendant mass. This procedure allows
one to work out all the merger configurations and their frequencies for one time step and for
different descendant halo masses. This information is then stored and used repeatedly for
determining the progenitors of a halo at each time step.

To speed up the implementation of KW93, we divide the look-back time into steps with
equal spacing in the barrier height ∆ω as discussed earlier. The progenitor mass function
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for a fixed descendant halo mass is then identical for every time step and only has to be
calculated once. We store the ensemble of progenitors and their merger configurations for
each descendant halo mass bin. In a Monte Carlo simulation, we randomly select one merger
configuration from the many stored ones for a descendant halo at each time step.

In practice, we find that extreme care must be taken to avoid numerical problems in
KW93. First of all, this algorithm requires a large number of progenitor mass bins in the
neighbourhood of M0 because φ(M |M0) is sharply peaked near M1 ∼M0 for small timesteps.
Interestingly, we find that if the mass range of [Mres,M0] is simply divided into evenly-spaced
logarithmic bins, this method is not accurate even when the number of mass bins is as large
as 2000, which already requires more than ∼ 50000 descendant halos to guarantee that the
integer rounding does not introduce a significant error to the progenitor number in each bin.
As a result, a large amount of computer memory is necessary to repeat this procedure for
descendant halos of different masses. The improved mass bin configuration that we end up
using will be introduced in §6.5. Using that setup, we find that only 200 bins are required
to reproduce accurately the EPS progenitor mass function over large look-back times.

The second problem is that KW93’s scheme for assigning progenitors to descendant ha-
los is somewhat ambiguous and does not guarantee that all the progenitors can be assigned.
Fortunately, we find that this problem usually does not arise when the ensemble of progeni-
tors is large. For each descendant halo mass, we use ∼ 8000 descendant halos to determine
the merger configurations of the progenitors.

The orange dash-dotted curves in Fig. 6.2 - 6.4 compare the progenitor mass functions
generated using the KW93 algorithm with the predictions of the spherical EPS model (black).
The results show very good agreement. Since KW93 reproduces the exact EPS progenitor
mass function at every timestep, it is expected to be consistent with EPS at any z1 − z0

according to the discussion in §6.3.1.

6.4.3 Somerville & Kolatt (1999)

Somerville & Kolatt (1999) [SK99] point out that the assumptions of binary mergers and
M0 = M1 +M2 made in LC93 lead to an overestimate of the progenitor abundance at high
redshift. They first attempt to remedy this problem by preserving the binary assumption
while allowing the mass below the resolution limit Mres to be counted as diffusely accreted
mass ∆M (see §6.3.3). They show, however, that this “binary tree with accretion” method
fails in the opposite direction, underproducing the progenitor mass function relative to the
spherical EPS prediction. This discrepancy arises partly because whenever two progenitors
are chosen in this method, the remaining mass is assigned to ∆M regardless of whether it
is above or below Mres. Thus the EPS φ(M |M0) is not faithfully reproduced: the binary
tree with accretion method yields an excess of accreted mass and a corresponding shortage
of low-mass halos.

SK99 then consider a natural extension of this method, in which both assumptions made
in LC93 are relaxed. In this “N-branch tree with accretion” algorithm, each descendant
halo is allowed to have more than two progenitors for every simulation timestep. To guar-
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antee that the total mass of the progenitors does not exceed that of the descendant, each
subsequent progenitor mass is randomly chosen from the mass-weighted conditional mass
function truncated to the maximally possible progenitor mass. This procedure is repeated
until the descendant halo cannot contain any more progenitors with masses above Mres, and
the remaining mass deficit is assigned to diffuse accretion ∆M .

The parameter transformation of eq. (6.11) is also applicable for SK99. The probability
distribution of x is still uniform, but the upper limit of x can now take on any value between
0 and 1 depending on where the conditional mass function is truncated.

The blue dashed curves in Fig. 6.2 - 6.4 compare the progenitor mass functions generated
using the N-branch tree algorithm of SK99 with the predictions of the spherical EPS model
(black). It is interesting to note that the sign of the discrepancy is now opposite to that of
LC93: SK99 produces an excess of low-mass ( ∼< 0.1M0) progenitors by up to a factor of ∼ 2
for small look-back times, but it does a better job than LC93 at high redshifts. However,
it is noteworthy that even at high redshifts, discrepancies of up to a factor of ∼ 2 are still
present for small progenitor masses.

We believe that the use of a truncated progenitor mass function in SK99 is at least a par-
tial cause for the over-prediction of small progenitors. Since the distribution of progenitors
(in particular, the upper limit for the progenitor mass) depends on the sum of the masses
of the progenitors already picked out for the current halo, the order in which progenitor
halos are randomly pulled out matters in this method. Halos more massive than the trun-
cation limit are effectively discarded instead of being randomly selected and placed in, for
example, new descendant halos. This procedure tends to preferentially skew the progenitor
mass function at small time steps towards more low mass progenitors and fewer high mass
progenitors.

6.4.4 Cole et al. (2000)

Similar to SK99, Cole et al. [2000] [C00] treats the mass in progenitors smaller than the
mass resolution Mres in the Monte Carlo simulation as accreted mass, but unlike the N-
branch tree model in SK99, only a maximum of two progenitors are allowed per descendant.
The amount of accreted mass gained in one timestep, ∆M , is fixed to a single value and is
calculated by integrating the mass-weighted conditional mass function from 0 to Mres:

∆M =

∫ Mres

0

Mφ(M |M0)dM , (6.12)

where M0 is the descendant mass. The progenitors are drawn from the lower half of the pro-
genitor mass function between Mres and M0/2 according to the average number of progenitors
in that range:

p =

∫ M0/2

Mres

φ(M |M0)dM . (6.13)

The simulation timestep is chosen to be small enough so that p� 1 (note that it is for this
reason that we use ∆z = 0.003 when implementing C00).
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The C00 merger tree is generated with the following steps: A random number x between 0
and 1 determines whether a descendant halo has one progenitor (if x > p) or two progenitors
(if x ≤ p). In the case of a single progenitor, its mass is M1 = M0−∆M . In the case of two
progenitors, the mass of the smaller progenitor, M2, is chosen randomly between Mres and
M0/2 according to the progenitor mass function. The larger progenitor is then assigned a
mass of M1 = M0−M2−∆M . Since p� 1, most descendants form via 1→ 1 events rather
than 2 → 1 events. To improve the speed of this algorithm, we precompute and store the
binary merger rates and diffuse accretion mass fractions for a single time step for different
descendant mass bins.

The green dotted curves in Fig. 6.2 - 6.4 compare the progenitor mass functions generated
using the C00 algorithm with the predictions of the spherical EPS model (black). The
agreement is noticeably better than LC93 and SK99. The largest discrepancy occurs at the
high mass end at large z1−z0, where C00 underpredicts the progenitor number at z1 by more
than a factor of two for group-to-cluster size descendants at z0 with M0 & 1013M�.

At least two problems contribute to this discrepancy: (i) Since ∆M is fixed to one
value (eq. 6.12), the mass of the progenitor for 1 → 1 descendants is also a fixed value:
M1 = M0 − ∆M . This is an over-simplification that compresses the high mass end of
φ(M |M0) into a delta function. (ii) For descendants with binary progenitors, C00 uses the
spherical EPS conditional mass function only in the lower mass range [0,M0/2] to generate
the progenitor abundance. By construction, then, the shape of the progenitor mass function
in the upper mass range, [M0/2,M0], is symmetric with the lower half and fails to match
accurately the asymmetric EPS φ(M |M0).

6.5 Three Consistent Monte Carlo Algorithms

In this section, we present three Monte Carlo algorithms that all satisfy the criterion for
consistency discussed in §6.3.1 and will therefore accurately reproduce the EPS progenitor
mass function φ(M |M0). We introduce the common setup for our methods in §6.5.1 and
discuss in detail how each method assigns the ensemble of progenitors to descendants in
§6.5.2 – 6.5.4.

To help the reader follow our discussions, we provide a summary of the breakdown of
the merger configurations for the three new algorithms in Table 6.3 and the accompanying
Fig. 6.6.

Although the standard practice in the community has been to generate merger trees using
the spherical EPS model, we emphasise that the Monte Carlo algorithms can be applied to the
ellipsoidal EPS model as well. In fact, since the ellipsoidal model matches the unconditional
mass function in simulations better than the spherical model, we would expect the ellipsoidal
EPS to also match better the progenitor statistics in simulations. We will therefore present
our results for both the spherical and ellipsoidal EPS models in parallel below.
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6.5.1 The Common Setup

Basic Features

Our Monte Carlo algorithms for growing consistent merger trees all share the following im-
plementation framework. We begin at redshift 0 and build the merger tree backwards in cos-
mic time. We typically choose a large descendant halo mass range (M0 = [106M�, 1015M�])
and a small simulation timestep (∆z ≈ 0.02 at low z; see discussion below) to achieve a high
resolution tree and a large dynamic range in the progenitor mass. For a given descendant
halo, we first compute which mass bin it belongs to, and then obtain its progenitors across
a single timestep using the distribution of merger configurations specific to each algorithm
(described in the next three subsections). The progenitors then become descendants in the
next timestep, and this process is repeated to build up the higher tree branches.

To be specific, a merger configuration here is defined as a set of progenitor masses that
form a descendant halo of a given mass in one timestep. For example, for a descendant halo
of mass M0, one merger configurations may include only two progenitors of mass 0.6M0 and
0.4M0, while another may contain three progenitors of mass 0.4M0, 0.3M0, and 0.2M0. Note
that the sum of the progenitor mass in each configuration need not equal the descendant
mass, and the deficit, ∆M , is implicitly attributed to sub-resolution progenitors (see §6.3.3).
Different Monte Carlo algorithms have different distributions of merger configurations and
progenitor multiplicities for each descendant bin. For convenience, we call the most massive
progenitor in a merger configuration the primary progenitor, and the rest of the progenitors
the secondary progenitors.

Our basic implementation is applicable to both the spherical and ellipsoidal EPS models.
We find a particularly efficient choice of timestep to be the one corresponding to a constant
difference in the barrier height ∆ω(z) = ω(z + ∆z) − ω(z), as is used in §6.4 for the four
old algorithms. For the spherical case, the progenitor mass function eq. (6.3) depends on
time only through ∆ω(z) and is therefore identical for all redshifts when the same ∆ω(z)
is used. Thus we only have to generate the merger configurations in the spherical case
across a single timestep once. For the ellipsoidal case, however, the progenitor mass function
eq. (6.4) not only is a function of ∆ω(z) but also depends explicitly on z. For each Monte
Carlo algorithm, it is therefore necessary to generate and store the merger configurations and
their probabilities for both descendant halos of different masses and several redshift bins. In
practice, since the redshift dependence of eq. (6.4) is weak, typically fewer than ∼ 20 redshift
bins are required.

Important Progenitor Mass Scales

A number of natural mass boundaries play critical roles in the construction of our algo-
rithms. These mass scales demarcate the regions with different progenitor multiplicities, as
illustrated in Fig. 6.6 and discussed in detail in the next three subsections.

(i) The resolution scale Mres and its complement M0 −Mres are two obvious boundaries,
as is the half descendant mass M0/2 discussed in the context of binary mergers in Sec. 6.3.2.



171

We generally choose a small Mres (typically Mres = 0.001M0) for numerical precision and
keep track of all the progenitors down to this limit at each timestep.

(ii) The mass αM0 given by ∫ M0

αM0

φ(M |M0) dM = 1 (6.14)

defines the range of progenitor mass over which every descendant halo is guaranteed to have
one progenitor with M ∈ [αM0,M0]. Table 6.2 lists the values of α for both the spherical
and ellipsoidal progenitor mass functions for three descendant masses; α is seen to range
from 0.361 to 0.448.

(iii) The mass µM0 demarcates where the asymmetric progenitor mass function self-
intersects: φ(µM0|M0) = φ(M0 − µM0|M0) with µ > 0.5. For binary merger configurations
of the form M0 = M1 + M2, φ(M1|M0) > φ(M2|M0) when M1 < µM0 and φ(M2|M0) >
φ(M1|M0) when M1 > µM0. This mass scale is illustrated in the pop-up in Fig. 6.1. Table 6.2
shows that µ ≈ 0.956 to 0.977.

Fig. 6.5 shows α and µ as functions of the look-back time ∆z for three descen-
dant halo masses (1012M�, 1013M�, 1014M�) at redshift zero. According to the
figure, α and µ have well defined constant values when ∆z is less than about 0.05,
a natural upper limit of time stepsize for a Monte Carlo simulation to achieve
convergence in both the spherical and ellipsoidal EPS models.

Mass Bins

To help the reader reproduce our Monte Carlo algorithms, we discuss our distribution of
mass bins.

We divide the descendant mass range 106 ≤ M0 ≤ 1015M� into ∼ 100 logarithmic
descendant bins. Halos that fall into the same descendant bin are assumed to have the same
distribution of single-timestep merger configurations that are computed using the central
(in logarithmic scale) value of the bin as the descendant mass. The progenitor masses in a
merger configuration are recorded in the form of ratios to the descendant halo mass, instead
of their absolute masses. This allows us to correct for the (small) difference between the
descendant halo in question and the central mass of its bin.

For a given descendant mass M0, its progenitor mass range [Mres,M0] is divided into
a certain number of mass bins to facilitate the process of forming merger configurations.
Interestingly, we note that simply dividing the whole progenitor mass range into evenly
spaced logarithmic bins is not accurate, as discussed in §6.4.2. This is because the simplest
logarithmic binning assigns very few bins to the mass range of [M0/2,M0], which requires
many mass bins to sample accurately the shape of the sharply peaked (at around M0)
progenitor mass function for a small timestep. To give the peaked region more fine structures,
we find a simple way: the mass range of [Mres,M0/2] is divided into evenly spaced logarithmic
bins, and its reflection about the mid point M0/2 determines the binning on the right side
of the mid point. Mathematically, it can be stated as follows: The progenitor mass range
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Figure 6.5: α and µ as functions of the look-back time ∆z at redshift zero. The red solid,
blue dotted, and black dashed curves are for descendant halos of 1012M�, 1013M�, and
1014M� respectively. The label in each plot indicates the quantity (α or µ) shown and the
EPS model (spherical or ellipsoidal) used.

[Mres,M0] is divided into 2N+1 logarithmic mass bins. The ith (i = 0, 1, 2, ..., 2N) bin spans
[M i+1,M i], where M i is defined as follows:

M i =


M0 if i = 0;
exp [lnMres + ∆× (2N + 1− i)] if i ≥ N + 1;
M0 −M2N+2−i if 1 ≤ i ≤ N.

and ∆ = (ln(M0/2)− lnMres)/N .
The average number of progenitors (per descendant halo) in the ith bin is called N i, which

is equal to
∫M i

M i+1 φ(M |M0)dM . Note that N i is not an integer. For i ≥ 1, we choose the mean

mass M̄ i of the ith bin to be
√
M iM i+1. The progenitor mass function often changes rapidly

across the 0th bin so we do not assign it a mean mass. Instead, whenever a progenitor of the
0th bin is needed, we generate a probabilistic progenitor mass according to the progenitor
mass function inside this bin.

6.5.2 Method A

We first attempt to resolve the asymmetry problem in the EPS progenitor mass function
φ(M |M0) by assuming that the primary progenitors in the symmetric part φsym in eq. (6.8)
are paired up with secondary progenitors to form binary mergers such that M0 = M1 +M2.
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Figure 6.6: A schematic summary of how the three new algorithms proposed in this paper
assign progenitors to descendants in a single timestep (see §5). The regions are shaded
according to the progenitor multiplicity (marked by Np → 1) and the mass ranges. See
Table 6.3 for a description of each shaded region and the fraction of descendants that belongs
to each region. The numbers quoted in this plot are from the ellipsoidal EPS model. The axes
are in arbitrary units, though the horizontal axis is drawn to be symmetric about M0/2 and
the vertical axis is assumed to be logarithmic. Important characteristic progenitor masses
are labelled on the horizontal axis (see §5.1.2 for discussion). The dashed line in panel A
plots φsym, the reflection of the left side of φ(M |M0).
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Spherical EPS Ellipsoidal EPS (z=0)
M0 (M�) 1012 1013 1014 1012 1013 1014

α 0.421 0.448 0.435 0.361 0.384 0.372
µ 0.977 0.977 0.970 0.974 0.970 0.956

Table 6.2: Values of the progenitor mass scales α and µ discussed in §6.5.1 for the spherical
and ellipsoidal EPS models for three descendant masses (1012, 1013, and 1014M�) and ∆z =

0.02, where αM0 is defined such that
∫M0

αM0
φ(M |M0) dM = 1 and µM0 is defined such that

φ(µM0|M0) = φ(M0 − µM0|M0) with µ 6= 0.5.

Figure 6.7: Comparison of the progenitor (or conditional) mass functions φ(M, z|M0, z0)
generated using the three new Monte Carlo algorithms introduced in §6.5: A (red solid),
B (green dashed), and C (blue dotted), and the predictions of the spherical EPS model
(black solid). The four panels show four look-back redshifts (z − z0 = 0.24, 2.07, 7, 15) for a
descendant halo of mass 1013M� at z0 = 0. For clarity, we plot in the sub-panel below each
panel the ratios of the Monte Carlo result and the EPS prediction. All three algorithms are
seen to match very closely the spherical EPS prediction at all redshifts.
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Method Np % Desc. % Desc. Description Key
(spher.) (ellip.)

A 0→ 1 0.3% 0.4% Descendants with no progenitors because∫M0

M0/2
φdM < 1

N/A

1→ 1 60% 69% M1 ∈ [M0 − Mres,M0]: binary-turned-
singles due to M2 < Mres

1→ 1 0.8% 0.4% M1 ∈ [M0/2, µM0]: φsym < φ results
in unpaired primary progenitors: ∆M >
Mres

2→ 1 21% 12% M1 ∈ [M0/2, µM0] and M0 = M1 + M2:
binary pairs generated from φsym

3+→ 1 18% 18% M1 ∈ [µM0,M0−Mres]: φsym > φ results
in excess secondary progenitors. M0 <
M1 +M2 +M3 + ...

B 1→ 1 60% 69% M1 ∈ [M0 − Mres,M0]: binary-turned-
singles due to M2 < Mres

2→ 1 20% 14% Binary paired progenitors generated by
the iterative algorithm of §6.5.3: M0 ≥
M1 +M2

3+→ 1 20% 17% M1 ∈ [µM0,M0−Mres]: identical to 3+→
1 configuration in method A

C 1→ 1 60% 69% M1 ∈ [M0 − Mres,M0]: binary-turned-
singles due to M2 < Mres

1→ 1 35% 29% All secondary progenitors have already
been assigned to smaller primary progeni-
tors: these remaining primary progenitors
have ∆M > Mres

3→ 1 0.1% 0.01% Merger configurations with 3 progenitors
4→ 1 2% 0.3% Merger configurations with 4 progenitors

5+→ 1 2.9% 1.7% Merger configurations with 5 or more pro-
genitors

KW93 1→ 1 60% 69% M1 ∈ [M0 − Mres,M0]: binary-turned-
singles due to M2 < Mres

N/A

1→ 1 15% 9% Merger configurations with a single pro-
genitor with M1 < M0 −Mres

N/A

2→ 1 11% 9% Merger configurations with 2 progenitors N/A
3+→ 1 14% 13% Merger configurations with 3 or more pro-

genitors
N/A

Table 6.3: A summary of our three new Monte Carlo methods discussed in §6.5 and the
method of KW93. The percentages indicate the fractions of descendants with Np progenitors
in a given method, computed for M0 = 1013M� and Mres = 0.001M0 for a single timestep
∆z = 0.02 in both the spherical and ellipsoidal EPS models. They are representative of the
merger configuration distributions for other descendant halo masses M0.
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Figure 6.8: Same as Fig. 6.7 except both the Monte Carlo and analytic results are now
generated from the ellipsoidal instead of the standard spherical EPS model. The Monte Carlo
methods use eq. (6.4) as the progenitor mass function for each time step. The analytic results
are calculated using the integral equation proposed by Zhang & Hui (2006). The agreement is
again excellent, indicating that our new Monte Carlo algorithms work well in reproducing the
EPS progenitor mass function regardless if the EPS model is based on constant (i.e. spherical
collapse) or moving barrier (ellipsoidal) random walks. For completeness, we include the
results from the ellipsoidal version of the KW93 method (orange dash-dotted).
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This is done so long as the smaller progenitor is above the mass resolution of the Monte Carlo
simulation, i.e. M2 ≥ Mres and M1 ≤ M0 −Mres. If M2 < Mres, then the second progenitor
is discarded and M1 is assumed to be a single progenitor (the darkest grey region marked
1 → 1 in Fig. 6.6 A). The remaining primary progenitors in the asymmetric part φasym are
assumed not to pair up, i.e. each descendant halo has a single progenitor (the lightest grey
region marked 1→ 1 in Fig. 6.6 A).

In practice, we generate the merger configurations of a descendant halo of mass M0 at
each time step by repeating these two simple steps:

(i) Draw the primary progenitor mass M1 from the mass range [M0/2,M0] of the progen-
itor mass function.

(ii) If M1 > M0 − Mres, no more progenitors are generated; if M1 ≤ M0 − Mres, the
probability of having a second progenitor of mass M2 = M0 −M1 is set to

r =
φsym(M1|M0)

φ(M1|M0)
=
φ(M0 −M1|M0)

φ(M1|M0)
. (6.15)

Then, drawing a random number x between 0 and 1 allows us to determine whether a
secondary progenitor should be generated. If x < r, M2 is assigned as a secondary progenitor;
otherwise M1 is left as the sole progenitor.

We point out two subtleties with this algorithm. First, r is not always ≤ 1. It is true
that r is below 1 for most of the relevant mass range M1 ∈ [M0/2, µM0] (see Fig. 6.6 A
and Table 6.2) since the left side of φ(M |M0) is slightly lower than the right side. But
when M1 > µM0, we find that r ∼> 1, implying that on average more than one secondary
progenitors should be generated to couple with the primary progenitor M1, and we must
generate merger configurations with multiple progenitors. To accommodate this feature,
for each M1 that satisfies M1 ∈ [µM0,M0 −Mres], we generate3 either int(r) or int(r) + 1
secondary progenitors of mass M0 −M1 according to whether a random number between
0 and 1 is larger or smaller than r − int(r). Note that the resulting merger configurations
do not conserve mass exactly because the sum of the progenitor masses is slightly larger
than the descendant mass. Typically most of these configurations only end up with 3 or 4
progenitors as r ∼< 2 for M1 ∼< 0.999M0 and ∆z ∼< 0.02.

The second subtlety with method A is that since the total number of progenitors in the
mass range of [M0/2,M0] (which is equal to

∫M0

M0/2
φ(M |M0)dM) is always slightly smaller

than one (typically by 0.2% to 0.4% for ∆z = 0.02; recall from Table 6.2 that αM0 < M0/2),
it is possible that we sometimes cannot assign any progenitors to a given descendant halo.
When this happens, the descendant halo does not have any progenitor halos and is a ”0→ 1
event”.

For a thorough description of our algorithm A, we list below all the possible merger
configurations and their frequencies of occurrence for descendant halos at z = 0 over a single
simulation timestep ∆z = 0.02 and mass resolution Mres = 0.001M0. This information is
also summarised in Table 6.3 and Fig. 6.6. In general, the relative frequencies of different

3Here int(r) is defined to be the largest integer n that satisfies n ≤ r.
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merger configurations are insensitive to the descendant mass M0 but do depend on the ∆z
and Mres used in the Monte Carlo simulation. For example, the fraction of 1 → 1 events
increases as ∆z decreases; and if Mres is chosen to be larger than (1− µ)M0 ∼ 0.03M0, then
there are no 3 → 1 or 4 → 1 mergers at each timestep and mass conservation is exactly
respected.

I. About 12% in the ellipsoidal model (21% for spherical) of descendant halos have two
progenitors each. These are binary pairs drawn from the symmetric part of the progenitor
mass function φsym, where M1 ∈ [M0/2, µM0] and M0 = M1 +M2 (Fig. 6.6 ).

II. About 69% (60%) of descendant halos have only one progenitor each. The majority
( ∼> 99%) of these descendants originally have binary progenitors but the smaller progenitor
is discarded since M2 < Mres (i.e. M1 ∼> M0 − Mres) (Fig. 6.6 ). The rest ( ∼< 1%)
of these descendant have progenitors with M1 ∈ [M0/2, µM0] and originate from the small
asymmetric part φasym of the progenitor mass function where r < 1 (Fig. 6.6 ).

III. About 18% of descendant halos have three or four progenitors each, typically con-
sisting of one massive progenitor and two or three very small secondary progenitors ( ∼< (1−
µ)M0 ∼ 0.03M0). These have M1 ∈ [µM0,M0 −Mres] (Fig. 6.6 ).

IV. About 0.4% (0.3%) of the descendants have no progenitors due to the sharp cutoff
of the primary progenitor mass at M0/2 discussed above.

The red solid curves in Fig. 6.7 compare the progenitor mass functions from this Monte
Carlo algorithm with the analytic eq. (6.3) of the spherical EPS model. Fig. 6.8 shows the
same thing except everything is for the ellipsoidal EPS model, where we use eq. (6.4) to
compute the progenitor mass function for each small simulation timestep. Both figures show
excellent agreement (< 10% deviation) at z1−z0 = 0.24, 2.07, 7, and 15 for a descendant halo
of mass 1013M� at z0 = 0. We have tested other descendant masses (1012 .M0 . 1014M�)
and found equally good agreement. This agreement also provides numerical verification of
the criterion introduced in §6.3.1.

6.5.3 Method B

Two features in method A may seem unnatural. First, as shown in Table 6.3 and discussed
in the previous section, a small fraction (∼ 0.3% to 0.4%) of the descendant halos in method

A are not assigned any progenitors in one timestep because
∫M0

M0/2
φ(M |M0)dM ≈ 0.997 (for

∆z = 0.02 and a large range of M0) and is not exactly unity. It is important to note that
though these descendants are rare, one cannot remove them from method A by modifying
the normalisation of φ(M |M0) in the mass range of [M0/2,M0], as such a modification is
amplified with iterations and leads to a large error in φ(M |M0) after many timesteps.

Second, due to the asymmetry in the EPS φ(M |M0), we have assigned a small fraction
(0.4% to 0.8% for parameters used in Table 6.3) of the descendant halos to 1 → 1 events.
There is therefore a small chance that a progenitor of mass comparable to half of the de-
scendant mass does not have any companions, corresponding to a large deficit between the
mass of the descendant halo and the total mass of its progenitors.
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The first feature can be avoided by decreasing the lower limit of the mass range from
which the primary progenitor is drawn from M0/2 to αM0, where α is defined in eq. (6.14)
and ranges from α ≈ 0.36 to 0.45 in Table 6.2. The second feature can be altered by
distributing the secondary progenitors in a slightly different way. These options motivate us
to invent Method B with the following set up:

1. We assume the primary progenitor mass lies in the mass range [αM0,M0]. This
condition guarantees that every descendant halo has a primary progenitor of mass > αM0

due to the definition of α.
2. We then assign secondary progenitors to primary progenitors from the left side of

αM0. For simplicity, whenever possible, we make only binary configurations, each of which
contains one primary and one secondary progenitor. We start with the primary and sec-
ondary progenitor bins that share the αM0 boundary (i.e. nearly equal-mass pairs) and
work our way outwards to the M1 �M2 pairs. This is a natural decision as this way of pair-
ing the primary and secondary masses minimises the difference between M0 and M1 + M2.
Specifically, for a given M1 bin, we determine its binary companion’s mass M2 from∫ αM0

M2

φ(M |M0) dM =

∫ M1

αM0

φ(M |M0) dM , (6.16)

which guarantees that we always have an equal number of secondary progenitors to pair up
with the primary halos. Note that since α < 0.5 it is generally true that M0 > M1 +M2.

3. One caveat with step 2 above is that this simple binary pairing scheme works for
a large range of masses but needs to be modified near the end points when M1 is close to
M0 and M2 � M1. This is because the scheme starts out with nearly equal-mass pairs at
M1 ∼ M2 ∼ αM0 and M1 + M2 < M0, and the asymmetric shape of the progenitor mass
function is such that the method produces pairs with increasing M1+M2 as we move outward
from αM0. The equality M1 + M2 = M0 is reached when M1 is slightly larger than µM0

(typically at 0.99M0), beyond which there are more secondary progenitors left to be paired
than the primary ones. We therefore stop the binary pairing when M1 +M2 = M0 is reached.
From this point on, we instead use the same multiple merger configurations as in method A.
For simplicity in the following few paragraphs, we denote this transitional M1 as µ′M0.

In summary, methods A and B are closely related and are compared side-by-side in
Table 6.3 and Fig. 6.6. They have identical merger configurations in the following regions:

I. The high-M1 region M1 ∈ [M0 −Mres,M0], where 60% to 70% of descendant halos
belong. The secondary progenitor is below Mres, so M1 is effectively the sole progenitor (i.e.
Np = 1) for these descendants

II. The region M1 ∈ [µ′M0,M0 −Mres] (µ′ replaced by µ in method A), where 17% to
20% of descendant halos belong. These descendants all each have 3 or more progenitors
(Np = 3+).

Methods A and B differ in the following regions:
III. The binary pairing algorithm used in method B removes the sliver of 1→ 1 configura-

tions in the M1 ∈ [M0/2, µM0] region in method A ( ) and redistributes the binary merger
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configurations in this region ( ) to yield a robust set of binary configurations between
αM0 ≤M1 ≤ µ′M0 ( ). This affects ∼ 20% of the descendant halos.

IV. Since the primary progenitor mass range extends down to αM0 instead of M0/2,
method B does not have any of the 0→ 1 configurations that are present in method A.

The green dashed curves in Figs. 6.7 and 6.8 compare the progenitor mass functions
from method B with the analytic predictions of the spherical and ellipsoidal EPS models,
respectively. The agreement is again excellent (< 10% deviation) at z1 − z0 = 0.24, 2.07, 7,
and 15 for a descendant halo of mass 1013M� at z0 = 0.

Finally, we note that mass is not strictly conserved for the multiple merger configurations
generated in the M1 ∈ [µM0,M0−Mres] region of method A and the M1 ∈ [µ′M0,M0−Mres]
region of method B (Fig. 6.6 , ). These configurations have more than one companion of
mass M0−M1, making the total mass of the progenitors slightly above the descendant halo
mass. This issue is due to the rapid rise of the progenitor number as the secondary progenitor
mass approaches zero. In principle, the small progenitors ( ∼< (1 − µ)M0) that are causing
this problem can be re-distributed and combined, e.g. , with progenitors in some of the
1 → 1 and 0 → 1 merger configurations in method A, or with some binary configurations
of total masses smaller than the descendant mass in method B, to form multiple merger
configurations that obey mass conservation (this, in fact, is what happens in method C
below, where mass conservation is strictly respected). We have checked that this can be
done successfully without violating mass conservation down to very small Mres and find
that in practice, these modifications do not introduce significant changes to the statistical
properties of the halo merger histories. We have therefore chosen to present the simpler
version of each model. It is also worth noting that in the EPS theory, mass conservation
only has to be obeyed statistically and is not required for individual merger configurations.

6.5.4 Method C (Multiple Mergers)

As shown in Table 6.3, methods A and B both produce comparable number of descen-
dants with binary (Np = 2) and multiple (Np = 3+) progenitors in a single timestep. The
importance of multiple merger configurations have been emphasised by a number of authors
(e.g., Kauffmann and White 1993, Somerville and Kolatt 1999, Neistein and Dekel 2008a).
It is therefore interesting to explore the relative importance of binary vs multiple mergers by
relaxing the binary assumption. Our method C is designed for this purpose. More specifi-
cally, this method does not have any restrictions on the number of progenitors in each merger
configuration. We only require that the total progenitor mass of every merger configuration
be smaller than (or equal to) the descendant halo mass.

We now describe method C:
1. To prevent the formation of 0 → 1 merger configurations we mimic the setup of

method B and choose to draw primary progenitors from the mass range M1 ∈ [αM0,M0].
Thus methods B and C share the same distribution of primary and secondary progenitor
mass bins.

2. As with method B, we form merger configurations by assigning secondary progenitors
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to progenitors in primary bins. Every primary bin starts with one merger configuration:
that which contains only the primary progenitor itself, and has a probability Nconf equal to
the number of primary progenitors in the bin. The assignment of secondary progenitors to
primary bins is done in order of decreasing secondary progenitor mass. For each secondary
bin, we scan the primary bins in order of increasing primary progenitor mass to find configu-
rations with room to hold at least one secondary progenitor from the bin in question (recall
that we require the sum of progenitor masses to never exceed the descendant mass).

3. When a valid configuration is found, we always assign the maximal number of sec-
ondary progenitors to that configuration. For example, suppose we start to assign secondary
progenitors from a bin with central mass M2 (say there are N2 such progenitors in this
bin), and find a valid configuration of probability Nconf and total progenitor mass Mtot. The
maximum number nmax of secondary progenitors that can be added into each realisation
of this configuration is equal to int[(M0 −Mtot)/M2]. Therefore, we can maximally assign
Nmax = nmax ×Nconf secondary progenitors to this configuration.

I. If Nmax > N2, we break the configuration into two: one contains the original set of
progenitors, with a probability equal to (1−N2/Nmax)×Nconf ; the other contains the original
set of progenitors plus nmax secondary progenitors of mass M2, with a probability equal to
(N2/Nmax) × Nconf . In this case all the secondary progenitors of the current secondary bin
are assigned.

II. If Nmax ≤ N2 we simply add the nmax secondary progenitors of mass M2 to the con-
figuration, and update the list of progenitors in the configuration. Nconf , the configuration’s
probability does not change. The number of remaining secondary progenitors to be matched
is now N2 − Nmax, and we continue our search across merger configurations (in order of
increasing primary progenitor mass) until all of them have been assigned.

Once a secondary bin is fully assigned, we move on to the next secondary bin (of a
slightly smaller mass) and repeat the same assignment procedure. As this process goes on
all configurations are gradually filled with secondary progenitors of smaller and smaller mass.
For technical convenience, the number of configurations in each primary bin and the number
of unique progenitor masses in each configuration are both limited to be fewer than 6. In
practice, we find that this setup allows us to successfully assign all secondary progenitors in
the mass range [Mres, αM0], even when the mass resolution of each time step is as low as
Mres = 0.001M0.

In fact this dense packing of secondary progenitors into primary bin configurations man-
ages to distribute efficiently all secondary progenitors in [Mres, αM0] in only a fraction of
the available primary progenitors. As seen in Fig. 6.6 C, only 2% (5% for spheircal) of
the primary progenitors (at the low mass end) are grouped with secondary progenitors and
the remaining 98% (95%) are 1 → 1 events. We note that even though there are far more
secondary progenitors than primary progenitors, this is possible because many secondary
progenitors have exceedingly small masses and can be efficiently distributed into the mass
reservoirs of relatively few primary progenitors.

The execution of method C is as follows:
(i) Generate a primary progenitor M1 from the mass range [αM0,M0] of the EPS pro-
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genitor mass function. Determine which primary bin contains M1.
(ii) If M1 > M0−Mres, no more progenitors are generated; if M1 ≤M0−Mres, a random

number determines which merger configuration to choose according to the probability distri-
bution of all possible configurations associated with the given primary bin. The progenitors
of the chosen configuration are then generated.

For a better understanding of method C, we show in Table 6.3 and discuss below all
the possible merger configurations and their frequencies of occurrence for descendant halos
(regardless of their masses) at z = 0, assuming timestep ∆z = 0.02 and mass resolution
Mres = 0.001M0:

I. About 98% (95% for spherical) of the descendant halos have only one progenitor each.
A) About 2/3 of these descendants’ progenitors are within the resolution limit of the

descendant mass (i.e. M1 ∼> M0 −Mres, see figure 6.6 ).
B) The remaining 1/3 of these descendant halos’ progenitors have masses below M0 −

Mres. As discussed above, these massive primary progenitors are not assigned any secondary
companions because all the available secondary progenitors are maximally assigned to the
less massive primary bins. Note that this region extends to masses below µM0 ( ).

II. For the remaining primary progenitor bins, there are no configurations having only two
progenitors. All in all, 0.01% (0.1% for spherical) of all descendants have three progenitors
( ); 0.3% (2%) have four progenitors ( ); 1.7% (2.9%) have five or more progenitors ( ).
The progenitor count for a given configuration can be rather large reaching values of more
than 100.

As in methods A and B, the values quoted above depend on ∆z and Mres. They also de-
pend on the maximal number of configurations allowed in each primary bin and the maximal
number of unique progenitor masses allowed in each configuration.

The blue dotted curves in Figs. 6.7 and 6.8 compare the progenitor mass functions from
this Monte Carlo algorithm with the analytic predictions of the spherical and ellipsoidal EPS
models, respectively. They again show excellent agreement (< 10% deviation) at z1 − z0 =
0.24, 2.07, 7, and 15 for a descendant halo of mass 1013M� at z0 = 0.

6.6 Comparison of Higher-Moment Statistics in Algo-

rithms A, B, C, and KW93

We have designed Monte Carlo algorithms A, B, and C for constructing merger trees
that can accurately reproduce the EPS prediction for the progenitor mass function φ(M |M0)
across each individual timestep. According to the discussion in §6.3.1, these methods should
then accurately generate the progenitor mass function at any look-back time in any number
of timesteps. Figs. 6.7 and 6.8 show that this is indeed the case for both the spherical and
ellipsoidal EPS models. Including KW93, there are now four methods that are completely
consistent with the EPS φ(M |M0). The results of the ellipsoidal version of KW93 have been
shown in Fig. 6.8 as well.
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Despite this agreement, we recall that the progenitor mass function is only one of many
statistical properties of a halo merger tree. Even though all four algorithms are degenerate
in φ(M |M0), they are likely to (and should) differ in their predictions for other statistical
quantities. Here we investigate two such quantities as an illustration: (i) φ(Np)(M |M0), the
progenitor mass function for the subset of descendant halos that have Np progenitors. The
sum of φ(Np)(M |M0) over all Np is equal to φ(M |M0). (ii) φ(ith)(M |M0), the distribution of
the ith most massive progenitor of each descendant halo. Again, the sum of φ(ith)(M |M0)
over all i is equal to φ(M |M0). These two statistics are two obvious ways of decomposing
the total φ(M |M0) into individual moments: φ(Np) separates flourishing trees from quiescent
trees, while φ(ith) compares the individual distributions of the primary, secondary and more
minor progenitors, which are relevant for modelling galaxy formation through mergers. Other
statistics such as the distributions of halo formation time and last major merger time (e.g.,
Cole et al. 2008, Moreno et al. 2008) and the factorial moments of the partition function
[Sheth and Pitman, 1997] are also useful. Some of these will be examined in our next paper.

To compute these moments, we set the descendant halo at redshift zero to be 1013M�,
and the mass resolution to be 4 × 1010M�. The results are plotted at two look-back
times (z1 − z0 = 0.51, 2.07) in Figs. 6.9-6.12, where Figs. 6.9 and 6.10 show φ(Np)(M |M0)
for the spherical and ellipsoidal EPS models, respectively, while Figs. 6.11 and 6.12 show
φ(ith)(M |M0). In each figure, results from our three methods (red solid for A, green dashed
for B, blue dotted for C) and from our implementation of KW93 (orange dash-dotted) are
shown for comparison. These figures clearly indicate that methods A, B, C, and KW93
generate distinct predictions for these specific moments of the progenitor mass distribution.
Some of the notable differences are:

1. Method C produces a much lower amplitude for the Np = 2 and 3 moments than
methods A and B. This is because C is designed to be a multiple-merger algorithm that
effectively does not generate any binary configuration in one individual timestep (note the
absence of the Np = 2 entry for method C in Table 6.3). This feature can been seen by
the absence of blue short-dashed curves in the Np = 2 and 3 panels in Figs. 6.9 and 6.10,
i.e., there are almost no descendant halos having only two or three progenitors in method
C at z = 0.51. By contrast, methods A and B have a wealth of descendants with binary
progenitors at these redshifts.

2. The removal of the binary assumption in method C leads to many features in the
moments of the progenitor distributions. By contrast, the predictions from A and B are
mostly power-laws, or at least smooth functions, in the progenitor mass. This difference
is due to the fact that the merger configurations in the binary methods are much more
regulated than those in the non-binary method: a binary configuration contains only two
progenitors, the total mass of which is always quite close (if not equal) to the descendant
mass, whereas the distribution of progenitor masses in a multiple configuration can have
various forms, which can easily affect, e.g. , the ranking of the progenitor masses and the
number of progenitors. It is interesting to note that the predictions of KW93 are fairly
smooth functions in spite of the fact that it does not assume binary. This is likely because
the way progenitors are assigned in KW93 effectively suppresses the probability of mergers
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involving multiple progenitors.
3. The differences between method A and B are more subtle because they are both

mostly binary methods. The main feature that distinguishes A from B is in the distribution
of the most massive progenitor (i.e. ith = 1) shown in the first columns of Figs. 6.11 and 6.12.
At the high mass end, method B has a slightly broader shape for the primary progenitor
mass than method A. This is expected, because it is the case across every time step by
construction (the primary bins in method B extend down to αM0 as opposed to M0/2 for
method A). At the low mass end, however, there is a long tail in the distribution of primary
progenitor masses in method A, which is not present in other methods. This tail is caused
by the fact that in method A, there is a small chance (∼ 0.3%) at every timestep that a
primary progenitor completely disappears, transferring the rank of “primary” to one of the
much smaller secondary progenitors. Over several timesteps this rare occurrence affects more
and more branches of the merger tree and can significantly modify the primary progenitor
statistics.

In summary, we have constructed three Monte Carlo algorithms that can all reproduce
closely the progenitor mass function of the EPS model (both spherical and ellipsoidal).
The methods, however, produce significantly different higher moments of the progenitor
distributions. They are also very different from KW93. Either a theoretical model more
complete than the EPS or direct N -body results will be needed to determine which, if any,
of the thus-far successful algorithms is the winner. We will turn to this subject in the next
paper (Zhang, Fakhouri & Ma, in preparation).

6.7 Conclusions and Discussion

Monte Carlo algorithms based on the spherical EPS model have been an essential tool
for many studies of galaxy and structure formation. These algorithms allow one to gen-
erate realisations of actual halo merger histories starting from a limited set of statistical
information about dark matter halo properties provided by the EPS model. Since the EPS
model does not uniquely determine many statistical quantities of halo mergers beyond the
progenitor mass function, there is considerable freedom in how to combine progenitors to
form descendant halos in each time step in a Monte Carlo algorithm.

The emphasis of this paper is on elucidating and quantifying the ability of a Monte Carlo
algorithm to construct merger trees that match the analytic progenitor mass function of
the EPS model (both the spherical and ellipsoidal versions). Four main conclusions can be
drawn:

1. We have shown rigourously that to match the EPS progenitor mass function accurately
at any look-back time, it is necessary and sufficient for a Monte Carlo algorithm to reproduce
the exact progenitor mass function at each time step.

2. We have reviewed and compared the four most frequently used Monte Carlo algorithms
based on the spherical EPS model in the literature: Lacey and Cole 1993, Kauffmann and
White 1993, Somerville and Kolatt 1999, and Cole et al. 2000. As seen in Figs. 6.2-6.4,
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Figure 6.9: Predictions of algorithms A (red solid), B (green dashed), C (blue dotted),
and KW93 (orange dash-dotted) for φ(Np)(M, z|M0, z0), the mass function of progenitors for
descendant halos that have a total of Np progenitors. Two look-back redshifts are shown:
z − z0 = 0.51 (left) and 2.07 (right). For each redshift, four representative values of Np are
shown (from top down). The simulations are for the spherical EPS model and assume a
descendant halo mass of 1013M� at z0 = 0 and mass resolution of Mres = 4× 1010M�.
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Figure 6.10: Same as Fig. 6.9 except the Monte Carlo results are generated from the ellip-
soidal instead of the standard spherical EPS model.
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Figure 6.11: Same as Fig. 6.9 except for a different progenitor statistic: φ(ith)(M, z|M0, z0),
the mass function of the ith most massive progenitor.
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Figure 6.12: Same as Fig. 6.11 except the Monte Carlo results are generated from the
ellipsoidal instead of the spherical EPS model.
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all but KW93 only approximately reproduce the spherical EPS progenitor mass function at
each time step, resulting in large deviations from the spherical EPS predictions after the
accumulation of small errors over many time steps.

Their problems (see Table 6.1 for details) can be summarised as: (i) SK99 generally
over-estimates the abundances of small progenitors by about a factor of two; (ii) LC93 over-
produces progenitors by a factor of a few when the look-back time is large (∆z � 1); (iii)
C00 under-predicts the progenitor abundance at the high mass end when the look-back time
is large. The origin of these discrepancies frequently comes from the incompatibility between
the binary merger assumption used in the Monte Carlo algorithm (e.g. LC93, C00) and the
asymmetric progenitor mass function of the EPS model.

3. We have designed three new Monte Carlo algorithms that all reproduce closely the EPS
progenitor mass function over a broad range of redshift (z1 − z0 up to at least 15) and halo
mass. In addition, the algorithms are tested for both the spherical and ellipsoidal EPS models
and the results are shown in Figs.6.7 and 6.8. We see that all three methods perform equally
well at reproducing the respective progenitor mass function at higher redshifts, regardless
of whether the spherical progenitor mass function eq. (6.3) or ellipsoidal progenitor mass
function eq. (6.4) is used as input.

4. As emphasised throughout the paper, the EPS model only provides a partial statis-
tical description of dark matter halo properties; it does not tell us explicitly how to group
progenitors into descendants in a Monte Carlo realisation. Therefore, there are different
ways to combine progenitors into descendant halos in consistent Monte Carlo algorithms.

We have used our three new algorithms to illustrate this exact point. Despite their suc-
cess in generating merger trees that accurately reproduce the EPS progenitor mass function,
Figs. 6.9-6.12 show that the three algorithms make significantly different predictions for
quantities such as the distribution of the most (or the 2nd or 3rd most) massive progenitor
masses, and the mass function of progenitors in descendant halos with Np (= 1, 2, 3...) pro-
genitors. A theory more complete than EPS would be needed to predict these higher-order
merger statistics and break the degeneracies in the progenitor mass function. Alternatively,
comparisons with N -body simulations should determine which, if any, of the three new algo-
rithms is viable. We view the EPS models (spherical or ellipsoidal), Monto Carlo algorithms,
and N -body simulations as three major components in the general study of the formation,
growth, and clustering of dark matter halos. In this paper we have focused on the first
two areas, comparing various Monte Carlo algorithms for generating halo merger trees and
quantifying their abilities to consistently match the analytical EPS progenitor mass functions
over a broad range of mass and redshift. In our next paper (Zhang, Fakhouri, Ma 2008b),
we will turn to comparisons with the Millennium simulation.

Several recent papers have investigated other Monte Carlo methods (see, e.g., Parkinson
et al. 2008, Neistein and Dekel 2008b, Moreno et al. 2008, Neistein and Dekel 2008a. Al-
though a complete review of these methods is beyond the scope of this paper, it is worth
pointing out some of their features. The method of Moreno et al. [2008] is essentially equiva-
lent to LC93 but is based on the ellipsoidal collapse model and is discretized in mass instead
of redshift. The two progenitor masses for each time step are assigned using computer-
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generated random walks and moving barriers. Since the asymmetry problem of the progen-
itor mass function is also present in the ellipsoidal model, this method does not accurately
reproduce the theory-predicted progenitor mass function at each time step. Such a discrep-
ancy is amplified with increasing redshift and is indeed shown in Fig. 5, 6, and 7 of Moreno
et al. [2008].

Neistein and Dekel [2008a] have proposed a method that exactly reproduces the pro-
genitor mass function of the spherical EPS model at each time step. This feature alone
guarantees it to be consistent with EPS at any look-back time according to our discussion
in §3.1. However, since the method requires solving several differential equations with non-
trivial boundary conditions for the progenitor masses, it is technically harder to implement
it.

Finally, the methods described in Parkinson et al. [2008] and Neistein and Dekel [2008b]
are proposed to mimic N-body results. They are based on fitting to N-body data rather
than the EPS theory. It will be interesting to compare the predictions for the various merger
statistics discussed in this paper from these methods with those from our ellipsoidal EPS-
based methods and from N-body simulations. This will be done in the next paper.
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