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Abstract 
 

Commercial Office Plug Load Energy Consumption Trends and the Role of Occupant Behavior 

by 

Priya Bipin Gandhi 

Master of Science in Architecture 

University of California, Berkeley 

Professor Gail Brager, Chair 

 
Plug loads are an increasingly important end-use in commercial office buildings.  They currently 
account for 12-50% of total commercial building energy consumption, and as the efficiencies of 
regulated major end-uses, such as space conditioning and lighting systems, continue to 
increase, plug load energy use is expected to rise.  This study evaluates patterns in collected 
plug load data and the effect of a behavior-based intervention to reduce plug load energy 
consumption. 
 
This project leverages a data collection effort originally funded for a study by the California Air 
Resources Board, where 100 plug load monitoring power strips were installed at individual 
workstations in the Franklin Building, an office building in Oakland owned by the UC Office of 
the President (UCOP).  Each occupant received one power strip and connected up to four 
devices to be individually monitored.  For this project, only the labeled devices (desktop, laptop, 
monitor, task light) are included. 
 
An analysis of the collected data reveals a clear distinction between work days and non-work 
days (weekends and holidays).  Overall, the monitored occupants have regular work schedules, 
turn off their equipment at the end of the work day, and do not often stay late or come in on 
the weekends.  Desktops consume the most power per person, followed by monitors and then 
task lights.  Laptop power trends were more difficult to discern because users often disconnect 
them to work in other locations (that were not monitored).  Desktops demonstrate the widest 
range of power consumption among the devices monitored.  During unoccupied periods 
(overnight and on non-work days), desktops draw the most power, followed by laptops.  All 
devices draw more power overnight on work days than over weekends and holidays, indicating 
that users are more likely to turn equipment off before a longer break from the office. 
 
Much of the literature on reducing plug load energy consumption in commercial buildings is 
focused on technology-based solutions, such as purchasing new equipment or installing 
sophisticated controls to turn off equipment when not in use.  The literature on changing 
occupant behavior to reduce energy use is focused on residential occupants, however multiple 
studies show that even when occupants do not pay their own bills and have no financial 
incentive to save energy, other factors can encourage behavior change.  One such motivating 
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method is by using gamification, or turning an everyday activity into a game to encourage 
behavior change by making it more fun and interesting. 
 
With the help of leadership at UCOP, an online sustainability game, Cool Choices, was initiated 
in the Fall of 2014 and 30 employees signed up to play.  Cool Choices encourages occupant 
behavior changes to save water, energy, and reduce waste; players earn points for each action 
they complete at work or at home and compete with each other on teams.  Survey responses 
from game participants showed that players were motivated to play because the game looked 
fun, and because the actions suggested were easy to perform.  An analysis of the energy impact 
revealed that because occupants were already engaging in relevant energy saving behaviors 
(e.g. turning equipment off at the end of the day), there was limited opportunity for further 
behavior-based reductions. 
 
Using trends identified in the baseline analysis, a simplified plug load model was developed to 
predict power consumption based on device type, day type (work day or non-work day), and 
time step, using a Monte Carlo simulation.  The model used day type and time step as proxies 
for occupancy, so when occupancy was not well predicted by the work day/non-work day 
dichotomy, the model became increasingly unreliable.  Even after adding an additional variable 
(month), the model was still not able to predict power consumption to an acceptable degree of 
accuracy per industry standards.  The model demonstrated a need for a new, more accurate 
proxy for occupancy, perhaps based on individual occupants, rather than devices. 
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1. Introduction 
 

1.1. Problem Statement 
 
Plug load energy use is emerging as an increasingly important end-use in commercial buildings. 
While the efficiencies of heating, cooling and lighting systems have been steadily increasing due 
to code mandates and standards, plug loads are becoming a larger percent of overall 
consumption. Various sources report that plug loads currently account for 12%-50% of 
commercial building energy consumption, and they are expected to increase in proportion of 
energy use and actual energy use, as office equipment energy consumption is expected to rise 
at a rate of 0.8% per year (Cortese, Higgins, Lyles, & others, 2014; U.S. Energy Information 
Administration., 2003). The literature suggests that energy efficiency- and behavior-based 
strategies have the potential to reduce energy consumption, however existing studies are 
largely concentrated in the residential sector, and for those that do consider commercial 
buildings, there are a limited number that take into account long-term effects of intervention 
strategies. 
 
The role of plug loads in energy modeling is also important to investigate, as the ability to 
model plug load profiles accurately is a limitation in modeling whole buildings accurately. 
Currently, plug load profiles used in building energy models are usually uniform across an entire 
building or space-type, with a peak value for occupied hours and a minimum value for 
unoccupied hours. When looking at long-term performance, the variability of plug load use is 
not critical, as long as average values are approximately correct.  However, looking at cases 
where a single zone can drive changes in the HVAC system (e.g., rogue zones in VAV systems 
with static pressure reset), zone load variation plays an important role in determining overall 
energy consumption of the HVAC system. Understanding the variation in plug load use can help 
determine a way to generate zone load profiles to improve energy modeling inputs. 
 
For this study, I had a unique opportunity to analyze plug load data from the UC Office of the 
President (UCOP), where the Center for the Built Environment (CBE) has been collecting data 
continuously since November 2012. Approximately 100 Enmetric plug load monitoring devices 
(power strips) have been installed on site, one per workstation. Each piece of equipment 
plugged into the power strip has been categorized by type (e.g. computer, monitor, task lights, 
etc.) and is being tracked online (power, at one second increments). This is the only known plug 
load monitoring study collecting detailed data in a conventional office setting for this long, 
representing a unique opportunity to build on baseline data that already exists. 
 
The leadership at UCOP was also receptive to implementing a behavior-based intervention to 
study whether occupants could be persuaded to reduce their plug load energy consumption. 
Understanding what types of strategies will most influence occupants to change their energy 
consumption will be critical in determining how to reduce this unregulated building load in 
other commercial buildings.  By studying a typical office building, I can gain insights into which 
intervention methods are most successful in commercial settings. 
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1.2. Background 

 
This study used plug load monitors that were originally installed as part of a California Air 
Resources Board-funded study investigating cost-effective options for mitigating California's 
greenhouse gas emissions through energy reductions in commercial buildings (Lehrer, Levi, 
Fountain, & Uhl, 2014).  A preliminary data analysis was conducted for the original study, 
however the data were never analyzed in depth. 
 
The original study selected Enmetric powerports as the plug load monitors to provide device-
level power data.  Enmetric powerports are four-channel plug strip load meters which provide 
real time plug load data through an online interface.  They plug into regular electrical outlets 
and can monitor standard electrical appliances up to 15 A.  Each powerport transmits power 
consumption data to a wireless router ("bridge"), which then relays that information to 
Enmetric's servers.  The bridges connected to the internet using UCOP's local area network 
(LAN). 
 
100 workspaces were outfitted with one powerport each on the 6th and 7th floors of the 
Franklin building.  The original research team labeled each device as either desktop computer, 
monitor, laptop computer, task light, hard drive, or miscellaneous.  This information was 
uploaded to the online interface, which labeled each device using the occupant's workstation 
identifier (e.g. office or cubicle number) and the name of the device plugged into each port. 
 
In the spring of 2014 I was made aware of this data collection effort by David Lehrer and Gail 
Brager.  With my interest in energy use and occupant behavior, we felt that it would be 
beneficial to use the existing setup from the CARB-funded study to further analyze the collected 
energy data and conduct a behavioral intervention at the site. 
 

1.2.1. Limitations 
 
There are several important limitations of this study which provide bounds to my project’s 
scope.  Each occupant involved was provided with only one four-channel power strip, and any 
plug load equipment not plugged into the powerport was not monitored.  Therefore, the results 
of this study will not represent the range of plug load devices available in an office setting, or an 
inventory of the devices found at each desk.  The devices targeted by the original study were 
desktop computers, monitors, laptop computers, and task lights.  Any other device was labeled 
as miscellaneous.  Because I was interested in building on the existing baseline data collected 
since 2012, I did not change the scope of devices monitored. 
 
In addition, although there were 100 devices installed for the original study, at the start of this 
study in the summer of 2014, there were 67 operating Enmetric devices (verified during a July 
2014 inventory).  We identified two main reasons why powerports were disconnected: through 
changes in personnel or office moves, and when users experience hardware malfunctions.  
With personnel changes, it is possible that occupants did not know what the powerports were 
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for and assumed they were regular power strips.  During an inventory conducted in July 2014, 
the plugged in devices were updated with any changes. Surprisingly, the majority of devices 
plugged into the operating devices were unchanged. 
 
 
2. Research objective 
 
The objectives of this research are to: 

• Identify and characterize trends in the baseline plug load data to understand the 
patterns and variability of power use due to plug load device type, time of day, and 
occupancy. 

• Develop a data-driven Monte Carlo plug load modeling tool to predict aggregated plug 
load power consumption based on the characteristics identified in the baseline plug 
load analysis. 

• Evaluate whether a game-based behavior intervention can change occupant behavior to 
reduce plug load energy consumption without direct monetary incentives. 

 
 
3. Literature Review 
 
This literature review is focused on the current state of research regarding commercial building 
plug load energy consumption and how occupant behavior affects this important energy end 
use.  This section begins with an overview of the current data on plug load energy use in 
commercial buildings and discusses why plug loads are important to study. It then provides an 
overview of methods to manage and reduce plug load energy use, with a focus on behavior-
based strategies.  Historically, behavior interventions targeting energy reductions in residential 
buildings have been more common and more widely studied, so residential studies that are 
relevant and can apply to commercial settings have been selectively included. 
 

3.1. Plug load end-use in commercial office buildings 
 
The term "plug load" is not used consistently within the literature and does not have a 
standardized definition.  Fuertes (2014) evaluated the terminology used in codes, standards, 
peer-reviewed articles, surveys (e.g. Commercial Buildings Energy Consumption Survey), and 
whitepapers, finding that plug loads were also called "miscellaneous equipment," 
"miscellaneous electronic loads" (MELs), "process loads," "receptacle loads," or "office 
equipment."  She found that different sources used different definitions for these terms, from 
very specific (e.g. only equipment plugged into an AC outlet), to more broad (e.g. all 
miscellaneous loads outside of the traditional categories of HVAC, lighting, water heating, and 
major appliances).  For this paper, plug loads are considered to be devices plugged into an 
electrical outlet in commercial office building primarily including, but not limited to, IT 
equipment. 
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The 2003 Commercial Buildings Energy Consumption Survey (CBECS) estimates that plug loads 
account for 12% of energy end-use in commercial office buildings (U.S. Energy Information 
Administration., 2003).  The 2006 California Commercial End Use Survey (CEUS) estimates that, 
among small and large offices, plug load energy use (categorized as office equipment) accounts 
for 14% of total building energy use (Itron, 2006).  In a report conducted for DOE’s Building 
Technologies Program, plug and process loads (PPLs) were estimated to account for 33% of 
total US commercial building electricity use (McKenney, Guernsey, Ponoum, & Rosenfeld, 
2010).  While these categories are not all defined equally, it is clear that these unregulated 
loads do account for a nontrivial percent of total building energy use. 
 
For highly energy efficient buildings, plug loads are proportionately even more significant.  At 
the net zero energy IDeAs Z2 Design Facility in San Jose, California, plug loads account for 
approximately 40% of total building energy use due to the extremely efficient space 
conditioning and lighting systems installed (Kaneda, Jacobson, Rumsey, & Engineers, 2010).  
Similarly, for NREL’s Research Support Facility in Golden, Colorado, plug loads are responsible 
for 55% of total building energy use (including an on-site data center) (Lobato, Pless, Sheppy, & 
Torcellini, 2011).  The New Buildings Institute’s study of verified net zero energy buildings in the 
United States reports that for these highly efficient buildings with low energy lighting and space 
conditioning systems, plug loads can account for 50% of total energy use (Cortese et al., 2014). 
 
While the exact numbers vary from study to study (and of course, building to building), it is 
clear that plug load energy use is a critical issue to address.  They are increasing proportionately 
as well as absolutely as more and more electronic devices are used in office buildings.  In fact, 
while electricity use due to personal computers (e.g. laptops, desktops, monitors) is decreasing 
due to improvements in energy efficiency, expanding use of unregulated miscellaneous 
electronic equipment is expected to result in a 21.4% increase in energy intensity (energy use 
per unit area) between 2012 and 2040. (U.S. Energy Information Administration, 2014).  The 
buildings industry is also moving towards stricter energy targets on the way to achieving net 
zero energy status through regulatory and voluntary standards.  In California, the Public Utilities 
Commission is using the state’s energy code, Title 24, to push towards net zero energy status 
for all new residential construction by 2020 and all new commercial construction by 2030 
(California Public Utilities Commission & others, 2008).  Architecture 2030, a non-profit 
organization, issued the 2030 challenge in 2008, encouraging industry firms to sign up to 
commit to designing all net zero energy buildings by 2030 (“Architecture 2030,” n.d.).  As more 
buildings achieve high levels of efficiency, plug loads will become a larger percentage of overall 
energy use, as demonstrated by the aforementioned measured energy data from current net 
zero energy buildings. Understanding the daily, weekly, and monthly patterns will become 
increasingly important in achieving reductions in energy consumption. 
 

3.2. Plug load profiles 
 
The literature on plug load profiles (also known as plug load equipment schedules) is extremely 
varied.  Figure 3.1 and Figure 3.2 illustrate the disparity in plug load profile recommendations 
from three respected sources: the Department of Energy’s reference building models for small, 
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medium, and large office buildings (Deru et al., 2011); results of a building survey of small, 
medium, and large office buildings conducted for ASHRAE’s RP-1093 (Claridge, Abushakra, 
Haberl, & Sreshthaputra, 2004); and California’s Title 24 schedules for medium and large office 
buildings (California Energy Commission, 2010). 

 
Figure 3.1 Published hourly plug load profiles for work days 

All three sources separate out weekdays (Figure 3.1), but each categorize non-weekdays 
differently (Figure 3.2).  Deru et al. (2011) classified non-weekdays as Saturdays and “Other.”  
No explanation was provided for the latter category, so it is assumed that it includes Sundays 
and holidays.  Based on measured data of 32 office buildings, Claridge (2004) classified both 
days of the weekend together, under one schedule (Weekend), while Title 24 has separate 
schedules for Saturdays and Sundays (California Energy Commission, 2010). 
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Figure 3.2 Published hourly plug load profiles for non-work days 

The obvious disparity in recommended plug load schedules indicates that modeling plug load 
equipment in whole building energy models is not necessarily straightforward.  Selecting the 
appropriate plug load profile when energy modeling will make a large difference in overall 
predicted energy use, as well as predicted peak power, which is used to size space conditioning 
equipment. 
 
Among the literature reviewed, there is strong consensus that due to the nature of occupant-
controlled plug loads, even a well-trained analyst may not be able to predict plug load energy 
usage accurately (De Wilde, 2014; Menezes, Cripps, Bouchlaghem, & Buswell, 2012; Zhang, 
Siebers, & Aickelin, 2011).  This issue will become increasingly prominent as buildings become 
more energy efficient and plug loads account for a larger percentage of overall energy use 
(Cortese et al., 2014; Lobato et al., 2011). 
 

3.3. Commercial building equipment surveys 
 
This section outlines additional energy and power consumption findings on plug load energy 
usage in commercial office buildings, including a comparison of actual power consumption to 
nameplate power ratings and surveys of plug load equipment in office buildings. 
 

3.3.1. Estimating plug load equipment use 
 
It is not always easy to evaluate energy consumption of plug loads.  Two studies were identified 
that provided guidance on setting up monitoring studies for MELs (Dirks & Rauch, 2012; 
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Lanzisera et al., 2013).  Dirks and Rauch (2012) found that MELs are often not studied in detail 
because they are not well-defined as a commercial building end-use and they vary by building 
type.  There is no established method for collecting energy consumption data, and metering at 
a device-level can be more expensive than the potential realized energy savings will pay back 
(Dirks & Rauch, 2012).  To that end, Lanzisera et al. (2013) provide a method for assessing plug 
load energy use by monitoring only a subset of equipment after an inventory of the quantity 
and diversity of equipment is conducted. 
 
Directly measuring plug load energy consumption is important because of the difficulties 
associated with estimated power draw based on nameplate rated power information.  A 
device's nameplate power is the rated power found on a tag (“nameplate”) attached to the 
device, which also includes information such as the brand name and serial number.  Desktop 
computers, monitors, and other plug load equipment are accompanied with a nameplate rated 
power value.  Various studies found that the actual power consumption of office equipment is 
only 14-36% of nameplate power ratings (Hosni, Jones, & Xu, 1999; Wilkins, Kosonen, & Laine, 
1991; Wilkins & McGaffin, 1994). 
 

3.3.2. Office building equipment surveys 
 
A number of studies have conducted equipment surveys in office buildings to ascertain plug 
load equipment densities and power status during non-working hours. 
 
In an audit of 16 buildings in San Francisco, Pittsburgh, and Atlanta, researchers found the 
quantity of office equipment ranged from 9 to 14 for small, medium, and large offices during 
the day (Sanchez et al., 2007), noting that equipment densities were lower at night in areas 
where occupants used laptops, as many were not present during non-working hours (Roberson 
et al., 2004).  During an after-hours audit, researchers found that just 36% of desktop 
computers and 29% of monitors were turned off at night, while 50% of monitors and just 4% of 
desktop computers were in a low-power state (Sanchez et al., 2007).  In another after-hours 
walkthrough of 11 office sites in San Francisco and Washington, DC, researchers found that only 
44% of computers, 32% of monitors, and 25% of printers were shut off at night (Webber et al., 
2001). 
 
In a third comprehensive audit of five commercial buildings in Botswana and South Africa, 
Masoso and Grobler (2010) found that plug loads accounted for 19-38% of total electricity use 
and that a staggering 56% of the building’s total energy use (including plug loads) was 
consumed during non-working hours. 
 
These studies indicate that plug load equipment is often wasting significant amounts of energy 
at night and on the weekends, when equipment is not being used.  By turning equipment off 
during non-working periods, it is clear that significant savings can be achieved.  There are two 
main approaches to curb equipment power draw during non-working hours, one is centered 
around technology changes, while the other relies on changing occupant behavior. 
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3.4. Approaches to reducing plug load energy use: technology & behavior 
 
There are multiple papers in the literature outlining recommendations for assessing and 
reducing plug load energy consumption based on case studies of existing buildings. Table 3.1 
provides a summary of the key strategies found in 12 sources.  These were selected because 
they based their recommendations on buildings that have been built and monitored, or were 
meta-studies, which sourced recommendations from multiple case study buildings. 
 
The technology-based strategies listed in Table 3.1 fall into two categories: equipment and 
control.  The first three strategies rely on the equipment to use less energy, either by using 
more energy efficient models, or by reducing the quantity of equipment installed.  The 
remaining technology-based strategies are all about controlling energy use.  Adjusting power 
management settings, setting equipment timers, and utilizing smart power strips that control 
energy use are ways to cut down on energy consumption when equipment is not in use.  These 
strategies specifically address the issue of wasting energy during non-working hours, or when 
equipment is simply not being used. 
 
Table 3.1 indicates that technology-based strategies are much more common and more widely 
studied than behavioral solutions.  This is probably because technology solutions remove 
responsibility from the user, thereby removing the element of uncertainty associated with 
occupant behavior.  However, behavioral strategies are important to consider as they can be 
more cost effective, especially in existing buildings where options available to replace old 
systems may be limited for a variety of reasons (cost, space constraints, historic regulations, 
etc.), which can also limit available options for devices to control equipment energy 
consumption.  The remainder of this literature review is focused on strategies which aim to 
reduce energy consumption through occupant behavior changes. 
 
Six of the recommended strategies fall under the umbrella of behavioral solutions.  The first 
two are incentive and penalty strategies; which reward occupants for reducing energy 
consumption, or for staying within a set energy budget.  In the case of Seattle’s Bullitt Center, 
tenants were rewarded with a full refund of their submetered electricity bill for staying within 
their agreed-on energy budget, while the penalty for exceeding their budget was payment of 
the full bill themselves.  The remaining solutions in Table 3.1 are educational and feedback 
strategies in the form of informational tips and reminders to occupants to empower and 
encourage them to make behavioral changes.  These, and other behavioral strategies, have 
been studied in residential and commercial settings.  The next section provides deeper insight 
into the psychology behind behavior change, the variety of behavioral interventions, and their 
associated energy savings. 
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Table 3.1 Published strategies for reducing plug load energy consumption in office buildings. 
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Replace equipment with energy 
efficient versions X  X X X X X  X  X X 

Remove unused equipment and 
consolidate personal equipment 
to shared devices 

    X  X     X 

Utilize virtual server software to 
reduce physical server size X  X X         

Co
nt

ro
l 

Adjust power management 
savings to reduce energy use 
during non-working hours 

  X  X  X X X  X X 

Set timers on equipment with 
regular schedules    X   X  X X X X 

Install load-sensing outlets and 
power strips that turn 
equipment off when not used 

   X X   X x X  X 

Use occupancy-sensing power 
strips to turn equipment off in 
unoccupied workspaces 

X  X X  X X    X X 

Control plug loads remotely X       X     
Wire plug loads on same circuit 
and turn off at night to reduce 
vampire loads 

 X X          

Be
ha

vi
or

-b
as

ed
 

Offer rewards for reduced 
energy consumption            X 

Write energy budget into lease 
agreement, with overage 
penalty 

X          X  

Educate and train staff to use 
new devices and to reduce 
energy use 

      X     X 

Email occupants reminders to 
turn off equipment       X X X  X  

Provide feedback displays 
showing real time energy use X        X  X  

Encourage changes in habits         X    
1(Urban Land Institute, 2015) 
2(Ladhad & Parrish, 2013) 
3(Dean, 2014) 
4(Knapp, 2013) 
5(Lobato et al., 2011) 
6 (National Renewable Energy Laboratory, 2013) 

7(Ghatikar, 2014) 
8(Mercier & Moorefield, 2011) 
9(Metzger, Cutler, & Sheppy, 2012) 
10(Cortese et al., 2014) 
11(New Buildings Institute, 2012) 
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The importance of understanding occupant behavior is echoed in the international community 
through the establishment of the International Energy Agency’s (IEA) Annex 66 under the 
Energy in Buildings and Communities Programme (EBC).  Annex 66’s tasks are to set up a 
standard occupant behavior definition platform, to establish a quantitative simulation 
methodology to model occupant behavior in buildings, and to understand the influence that 
occupant behavior has on building energy use and indoor environmental quality.  Subtasks C 
and D are specifically relevant to this investigation, as their goals are to establish a systematic 
approach to measuring and modeling occupant behavior, and to integrate occupant behavior 
with current building energy modeling programs (Yan & Hong, 2014). 
 

3.5. Psychology of occupant behavior 
 
One hurdle associated with encouraging occupant behavior change in the workplace is a lack of 
the financial incentives that come with saving energy.  However, research has shown that 
economics do not fully explain energy use behavior, and that the presence of financial 
incentives alone do not predict energy savings (Costanzo, Archer, Aronson, & Pettigrew, 1986; 
Dennis, Soderstrom, Koncinski, & Cavanaugh, 1990; Harrigan, 1991; Stern & Aronson, 1984).  In 
fact, Stern (1992) and Hayes & Cone (1977) found that some consumers will ignore significant 
financial incentives associated with energy saving behavior, while others will continue to 
conserve energy even when the incentive is greatly reduced.  
 
Another potential predictor of energy saving behavior is personal values or attitudes about 
energy conservation.  However, studies in psychology have shown that there is not always a 
strong connection between personal values and attitudes about energy consumption that 
individuals espouse, and their measured energy use.  McDougall et al. (1981) found that strong 
views on environmental conservation and claims of related actions did not definitely predict 
energy use reductions. Finger (1994) surveyed respondents in Switzerland and found poor 
associations between attitudes and knowledge of environmental issues and associated energy 
saving behavior. 
 
McKenzie-Mohr (2000) summarizes the literature on investigating and establishing a link 
between behaviors and knowledge.  In a residential study targeting those interested in 
increasing the energy efficiency of their homes, significant changes in attitudes and knowledge 
did not change their energy use behavior (Geller, 1995).  McKenzie-Mohr goes on to state that 
behavior requiring repetitive actions (e.g. turning lights off daily) is more difficult to maintain 
than one-time changes in behavior (e.g. purchasing more energy efficient light bulbs) 
(Kempton, Darley, & Stern, 1992; Kempton, Harris, Keith, & Weihl, 1985; McKenzie-Mohr, 
2000). 
 
These findings suggest that there is not one primary predictor of energy saving behavior that 
can be generalized among different populations.  For some individuals, financial incentives may 
be the best encouragement, while others may be motivated by their personal views on 
conservation and saving energy. 
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Behavior changes are more likely to be long lasting if new behaviors are framed as being 
beneficial to the individual (Becker, Seligman, Fazio, & Darley, 1981; Samuelson & Biek, 1991), 
and if new behaviors are convenient and neighbors or family are making the same changes 
(Costanzo et al., 1986; Harrigan, 1991; Siero, Bakker, Dekker, & Van Den Burg, 1996; Stern, 
1992).  This suggests that occupants in a commercial setting could be persuaded to change their 
behavior by participating in a program with their colleagues, and if those changes are presented 
as incremental and easy to make. 
  
Individuals are also more likely to make permanent behavior changes if energy savings are 
visible to provide motivation (Kempton et al., 1992; Stern & Aronson, 1984), and if energy use 
feedback is personalized (Costanzo et al., 1986; Dennis et al., 1990; Stern, 1992; Stern & 
Aronson, 1984).  This suggests that successful strategies will include feedback of energy use on 
an individualized level.  However, individualized feedback is not always feasible due to the 
expense of monitoring plug load equipment. 
 

3.6. Types of behavior interventions 
 
This section provides an overview of the various types of behavioral interventions possible, 
from educational programs to energy reduction competitions, in both residential and 
commercial settings.  Residential studies have been included to represent the breadth of 
strategies in use, as well as to provide precedents in situations specifically applicable to a 
commercial building (e.g. where occupants do not pay utility bills).  Where provided, measured 
energy saving results are reported.  The section closes with a discussion of the persistence of 
energy savings. 
 
Abrahamse et al. (2005) summarizes 38 studies of interventions encouraging energy reduction 
in households, examining both behavioral and technological strategies.  The study describes 
antecedent strategies (commitment, goal setting, information, modeling) and consequence 
strategies (feedback, rewards).  The summarized studies also included those using efficiency 
techniques (e.g. one-time purchase of insulation or efficient equipment), and curtailment 
behavior (e.g. reducing energy use by lowering the set point of the space conditioning system).  
The latter strategies are not explored here. 
 

3.6.1. Goal setting 
 
Goal setting, where individuals are provided with a goal or set it themselves, has shown to be 
effective in combination with a commitment (promise) to save energy or with feedback in both 
residential (Abrahamse, Steg, Vlek, & Rothengatter, 2007) and commercial settings (Talbot & 
Love, 2014).  In Talbot (2014), tenants were encouraged to reduce plug load energy 
consumption by setting measurable goals and receiving performance feedback via an online 
interface.  For the 27 participants, estimated savings ranged from 22-34% after the three-
month intervention period, compared to a baseline estimated by number of plug loads and 
energy use profiles sourced from Sanchez et al. (2007) (Talbot & Love, 2014). While their 
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method of calculating the baseline may not accurately represent true baseline energy use, 
results are encouraging. 
 

3.6.2. Information and education 
 
Another antecedent strategy is providing information to individuals or educating them about 
the targeted behavior. Tailoring information to individuals can results in significant savings and 
increased knowledge (Abrahamse et al., 2007).  In a commercial office building study that 
combined informational tips with individualized feedback, overall savings of 23% were achieved 
(Lasternas et al., 2014).  In a residential study, researchers found that out of providing 
payments, feedback, and information, information alone was the least effective at inducing 
energy saving behavior (Hayes & Cone, 1977).  Another method of providing information to 
occupants in a workplace setting is through peer educators, i.e., training a subset of occupants 
to disseminate energy saving behaviors throughout the office.  In a commercial office building 
study focused on reducing whole building energy use, peer education was associated with a 4% 
energy reduction (Carrico & Riemer, 2011). 
 
One study used a variety of methods to educate occupants about energy saving behaviors.  
McMakin et al. (2002) conducted an intervention on a military base in the U.S., where residents 
do not pay their own bills and houses are not individually metered.  The study held focus 
groups to learn what behaviors could be targeted, and then organized campaigns to raise 
awareness of the energy saving initiative.  Videos and printed materials were distributed among 
residents, and tickets were given out for behavioral violations.  They used games to educate 
children and set up a competition among neighborhoods on base.  The one-year intervention 
resulted in a 10% reduction in energy use.  There were two types of survey responses that were 
particularly relevant to the commercial building setting: respondents who said their house was 
the problem, not their behavior, and those that said their job was stressful enough and they 
were not concerned about their home energy use (McMakin et al., 2002).  In commercial 
settings, it is possible that these attitudes may be prevalent, given that occupants do not pay 
their own bills, do not choose their building (and usually have no voice in how efficiently it 
runs), and likely have more pressing responsibilities to attend to. 
 
As demonstrated by these examples, information is often provided as part of a combined 
strategy.   In fact, Abrahamse et al. (2005) found that the most effective interventions 
combined antecedent and consequence strategies, and that the least effective were 
interventions characterized by a single antecedent strategy.  The authors recommend that 
future intervention programs begin by identifying behaviors that contribute to wasting energy 
and then examine what barriers prevent occupants from engaging in sustainable behavior 
patterns.  A multidisciplinary approach is suggested to examine the problem from a sociological 
and environmental standpoint (Abrahamse et al., 2005). 
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3.6.3. Feedback and incentives 
 
Darby (2006) conducted a focused review of residential feedback-based strategies and reported 
energy savings, stating that clear feedback of energy use is a necessary step for users to 
understand how to control their energy use.  Savings from direct feedback of energy 
consumption (available for users to view immediately, e.g. a display connected to a meter) 
ranged 5-15%, while indirect feedback (processed before the user can view, e.g. billing 
statement) savings ranged 0-10%.  Darby found that historic feedback, rather than comparative 
(e.g. with other households) was more effective.  Lastly, pay-as-you-go systems with a display 
were found to result in 10-20% energy savings (Darby, 2006). 
 
Other studies have also examined how feedback motivates occupants to save energy.  Carrico 
and Riemer (2011) found that providing monthly feedback to occupants of a commercial office 
building resulted in 7% energy savings for the entire building.  In another commercial office 
intervention, Lasternas et al. (2014) provided occupants with an online interface to view their 
own energy consumption by individual plug load (as well as informational energy saving tips), 
create schedules to control devices, and turn off equipment remotely.  The intervention 
resulted in 23% overall energy savings, with 74% of these savings occurring during non-working 
hours.  The study did not mention if savings were persistent (Lasternas et al., 2014). 
 
Petersen et al. (2007) initiated a two-week energy competition among 22 dormitory buildings 
on a university campus where residents do not pay their own bills and thus had no financial 
incentive to participate.  Two of the buildings were supplied with real-time energy feedback via 
a web-based interface, while the remaining dormitories were provided with weekly meter 
readings.  The dormitories with real-time feedback reduced energy by 55%, while the other 
dormitories reduced energy by 31%.  Less than 10% of students in the winning dorm attending 
the awarded ice cream social party, suggesting that this reward was not the only motivator.  
The study did not monitor energy use after the end of the competition (Petersen et al., 2007).  
Without a persistence study, no conclusions can be made about the longer term effectiveness 
of the intervention (and whether changes residents made were even sustainable beyond the 
two week period). 
 
In a residential-based study of 91 apartments in four buildings, researchers found that the 
electricity savings achieved were not significantly different for residences provided with 
individual feedback (18.8%), comparative feedback with similar residences (18.4%), and 
comparative feedback with payment incentives (19.4%).  However, the authors suggested that 
because the payments were delayed until the close of the study, it was not clear whether they 
were a true incentive to save energy (Midden, Meter, Weenig, & Zieverink, 1983).  Hayes & 
Cone (1977) conducted a residential study using multiple methods, including payments that 
were scaled by percent reduction below an established baseline.  Out of the methods they used 
(payments, feedbacks, information), payments resulted in the most immediate and stable 
energy reductions, even when the amount of payment decreased (Hayes & Cone, 1977).  
However, the authors stated that some of the changes made by occupants were unsustainable, 
such as using battery-operated equipment (Hayes & Cone).  This suggests that even reduced 
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payments were sufficient motivation to reduce energy consumption, and that the 
unsustainable energy saving behavior may stop once payments ceased altogether. 
 
While these papers have underlined the importance of feedback for reducing energy 
consumption, commercial buildings are not always submetered to the granularity needed to 
provide disaggregated or individualized feedback, and the necessary equipment can often be 
expensive to install.  Thus it is also important to look at programs conducted where feedback 
was not available. 
 

3.6.4. Gamification 
 
An approach that does not always rely on feedback is the idea of modifying occupant behavior 
through gamification.  Gamification is the concept of changing an everyday activity in the 
physical world into a game in order to make real-world changes (Grossberg, Wolfson, Mazur-
Stommen, Farley, & Nadel, 2015).  Although gamified solutions for encouraging behavior 
change are not limited to energy saving behaviors, this will be the focus of this section.  
Approaching energy savings as a game can come in many forms, from competitions between 
different buildings (Petersen et al., 2007), to competing individually with other occupants 
(Orland et al., 2014). 
 
Grossberg et al. (2015) conducted a review of 53 game-based solutions and evaluated case 
studies for 22 of them, examining them through a common framework to describe the game 
developers, the game’s objectives, the target audience, how players are motivated, and what 
energy savings are achieved.  Of the selected 22 case studies, five programs were workplace-
oriented, five were centered on schools, and the remaining were focused on the residential 
sector.  Nine programs had a social media component (i.e., interaction between users in an 
online space) and 14 were team-based.  Fifteen games provided tangible rewards to a subset of 
players, while seven provided only virtual rewards.  Only nine case studies documented energy 
savings, and while the results are not definitive, preliminary conclusions suggests savings of 3-
6% were achieved (Grossberg et al., 2015). 
 
Two of the case study programs Grossberg et al. (2015) evaluated in depth were Energy 
Chickens and Cool Choices.  Both are workplace energy savings programs that encourage 
sustained behavior changes in occupants through daily game play, but they accomplish this goal 
differently. 
 
Energy Chickens uses an individual occupant’s own plug load data to feed into a virtual chicken 
farm, with one chicken for each device plugged in (Orland et al., 2014).  Changes in daily energy 
use affect each chicken, with energy savings improving the health of individual chickens and 
earning the user points.  Players can see each other’s farms and progress over time.  During the 
16 week game, players saved an average of 23% during non-work days and 7% on work days, 
and although 69% of participants reported that the game made them more conscious about 
their daily energy use, the savings were not persistent and energy use patterns resumed to 
their pre-game baseline once the game concluded (Orland et al., 2014).  This suggests that the 
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game period was too short for occupants to form sustained habits, or that the daily feedback 
via the virtual chicken farm game interface was a primary motivator for players. 
 
While Energy Chickens targets plug loads, Cool Choices takes a more general approach, 
targeting a variety of sustainable behaviors at the office and at home.  Kuntz et al. (2012) 
discusses the founding principles of the game, which center around making change “fun, social, 
and easy” and acknowledging that change is more likely to occur when individuals want to 
make the change and when they have the support and knowledge to do so.  To that end, Cool 
Choices is an online game where players earn points for making environmentally sustainable 
actions, and compete on teams to encourage participation.  During a six month game, 
participation was awarded via weekly prizes, and 52% of actions taken during the game were 
reported as new behaviors by survey respondents (Kuntz et al., 2012).  Although energy use 
was not measured, the high rate of participation and positive player responses suggest that the 
game may induce energy savings. 
 

3.7. Persistence of savings 
 
An important facet of behavioral interventions is the question of persistence, i.e., what 
happens to energy savings attained during the intervention, after the study has concluded?  
Darby (2006) looked at persistence of savings in the literature, finding that a behavior formed 
over at least three months appeared most likely to persist longer, but that continued feedback 
was required to maintain the change.  This suggests that limited information is available to 
make a definitive statement about persistence of savings, a conclusion echoed in the present 
literature review. 
 
One residential study that did examine persistence in depth was conducted by a utility 
company using Opower reports sent to households in a randomized controlled study of 234,000 
households (Allcott & Rogers, 2012).  Opower is a software company that works with utilities to 
provide home energy reports to customers that include energy efficiency tips and energy use 
comparisons with “similar” neighbors.  The authors wanted to determine how persistent effects 
were after the intervention ended, and what incremental effects might exist with continued 
treatment, i.e., were customers habituated to the reports after a certain time span or not.  They 
found that there was an initial pattern of “action and backsliding” where consumers 
immediately reduced their energy use after receiving the report, but then usage slowly crept 
back up until the next one.   However, after the first four months of reports, the immediate 
decreases following a new report were five times smaller than initial decreases.  After two 
years, when reports were discontinued for some households, effects decayed at 10-20%, which 
is four to eight times slower than decay rates between initial reports.  The authors suggested 
this could be due to consumers making one-time purchases of more efficient equipment (new 
“capital stock”), reducing their baseline energy usage permanently.  Finally, the study found 
that even after two years of monthly reports, consumers were not completely habituated and 
still made substantial incremental changes after continued reports.  The authors concluded that 
understanding persistence, habituation and when consumers establish “capital stock” could 
help to design programs that reduce report frequency at the optimal time (Allcott & Rogers, 
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2012).  The results of this study suggest that a prolonged intervention may continue to have 
incremental effects, even after major changes or savings have been achieved.  It also suggests 
that energy savings will always decay over time, and if a continuous intervention is not possible, 
another strategy may be to reintroduce the intervention periodically to motivate occupants 
long-term. 
 

3.8. Data-driven predictive models 
 
An important reason for identifying trends and patterns in building energy use is to predict 
future use based on a set of variables.  This type of predictive model can be used to evaluate 
energy savings incurred through building retrofits (Coakley, Raftery, & Keane, 2014).  Although 
this study is focused on building plug loads, there are limited studies on predicting plug load 
consumption, so this section summarizes relevant literature surrounding predictive modeling 
techniques for overall energy use in buildings. 
 
There are three types of models which can be used to predict energy performance: white box 
models, black box models, and a hybrid of the two (also called gray box models).   White box 
models rely on first principles (e.g. First Law of Thermodynamics) and are appropriate when the 
system is governed by a physical principle. However, they are not appropriate when a main 
driver of the system is stochastic, such as occupant behavior (as is the case with plug load 
energy consumption).  Black box models, also called data-driven models, are better suited for 
these non-deterministic systems.  They are based only on the data provided (called “training” 
data), and do not describe any physical parameters within the system, however they can be 
powerful methods to predict energy consumption based on the data they are trained with 
(Coakley et al., 2014).  The third type of model is a hybrid of white box and black box modeling 
techniques.  These types of models may rely on some physical principles, but also have sources 
of uncertainty (e.g. occupant behavior) that require black box model techniques. 
 
The literature contains various methods for commercial building load prediction.  Jones et al. 
(2012) summarizes multiple methods for building load prediction, including seasonal 
regression, simple average, Fourier series, and artificial neural network models.  They also 
present an alternative method using Modified Learning from Experience (MLFE) and Recursive 
Least Squares (RLS), incorporating uncertainty in the form of fuzzy logic (Jones et al., 2012).  
This incorporation of a stochastic element is important, as all real systems contain uncertainty 
(Ross, 2009).   
 
Thus far, only one study has been identified that describes a method for predicting plug load 
energy usage specifically (Rysanek & Choudhary, 2014).  Rysanek and Choudhary describe an 
open-source modeling tool they developed to predict demand of lighting and plug load 
equipment, based on user inputs of expected occupancy, equipment quantities and operational 
power consumption levels (e.g. on/active, low/standby, and off/inactive).  They feed this user 
input into a stochastic modeling algorithm, with the intention of generating lighting and plug 
load profiles for use in building energy simulations (Rysanek & Choudhary, 2014). 
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While the number of plug load prediction studies may be limited, a number of studies have 
examined similar systems where occupant behavior is coupled with energy consumption, such 
as predicting occupant-controlled lighting energy use (Hunt, 1980; Newsham, Mahdavi, & 
Beausoleil-Morrison, 1995) and windows and blind use (Ackerly, Baker, & Brager, 2011; Fabi, 
Andersen, Corgnati, & Olesen, 2012; Gunay, O’Brien, & Beausoleil-Morrison, 2013), concluding 
that a stochastic model is most appropriate when predicting occupant behavior. 
 
 
4. Methods 
 

4.1. Data collection: field study 
 
As described in the introduction, the plug load data were collected using four-channel Enmetric 
powerports.  Each port was labeled with a workstation identifier and the type of plugged in 
device.  Using routers (called “bridges”) placed in the office, the powerports transmitted power 
data to the Enmetric servers in real time.  This data were saved in 15 minute time steps.  Data 
were collected from December 2012 to March 2015.  There are some missing values at times 
when the plug strips or routers encountered technical difficulties. 
 
The data collected by each of the four channel powerports included timestamp (date and time), 
average power, minimum power, maximum power, energy used, average frequency, average 
voltage, average current, and average power factor.  For this project I was interested in the 
timestamp, maximum power, and average power.  I focused on average and maximum power 
because of the implications for energy use and cost as commercial building energy costs are 
dependent on total energy consumption as well as peak power consumption.  See Appendix A 
for a file header describing all the information collected by the plug load monitors.   
 
The original data is comprised of 206 individual plug load office devices.  After cleaning the 
initial data, there were 137 devices identified specifically as desktop computers, monitors, 
laptop computers, and task lights.  Because the categories of the remaining devices were 
unknown, this study focuses on just the identified devices. 
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4.2. Plug load data analysis 
 

4.2.1. Data analysis: overview 
 
Using Rstudio, I organized and analyzed the plug load data to identify trends over time.  I 
performed the following major tasks: 
 
Table 4.1 Data analysis tasks performed in R 
Task Description R packages used 
Cleaning data for 
analysis 

Extract relevant data from original dataset (device category, 
workstation identifier, timestamp, average power, maximum 
power) 
 

dplyr 
lubridate 
plyr 

Preparing data 
for analysis 

Add columns with data identifiers (year, month, day, weekday, 
hour, and minute) and combine all files into one data frame 
 

reshape2 
timeDate 
plyr 
 

Separating data 
by involvement in 
behavioral study 

Create a dataset including only workstations of users involved 
in the behavior study, starting with the first day of the study 
(using workstation identifiers and dates) 
 
Remove these rows from the baseline dataset to create a 
dataset of users not involved in the behavior study (this 
includes data from all users prior to the study, and just non-
participants after the start of the study) 
 

- 

Separating data 
by work and non-
work days 

Add column identifying each row as a working day or a non-
working day (weekends, holidays) using calendar information 
from UCOP 

plyr 
dplyr 
reshape2 
timeDate 
chron 
 

Graphing data for 
trends 

Using boxplots, histograms, density, point, line, and tile (for 
heat map) plots to graph average and maximum power data by: 
time step, day of the week, month, workday, and 
weekend/holiday; participants and non-participants of the 
behavioral intervention 
 
Where appropriate, median (rather than mean) was used 
because data is non-normal 
 

plyr 
dplyr 
ggplot2 
data.table 
stats 
 

 
 

4.2.2. Data analysis: comparison 
 
When approaching the plug load data, I separated it in multiple ways to analyze it for trends.  I 
looked at what the trends were for different days of the week and for each month of the year.  
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As will be illustrated in the results section, I decided to focus on the difference between work 
and non-work (weekends and holidays) days.  This is because although there may appear to be 
monthly or weekly trends, these trends are not specifically dependent on that month or day of 
the week, but rather on whether or not occupants are in the office.  The main driver of 
occupant plug load energy use is the presence of the occupants. 
 

4.2.3. Data analysis: representing the results 
 
For the daily profiles, power is represented as power per occupant (W/person) and power per 
square foot (W/ft2).  Not all occupants of the 6th and 7th floors participated in the field study, so 
the area per person was approximated using total areas and all occupants: 

 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑝𝑝𝑝𝑝𝑝𝑝 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =
𝐴𝐴6𝑡𝑡ℎ + 𝐴𝐴7𝑡𝑡ℎ
𝑁𝑁6𝑡𝑡ℎ + 𝑁𝑁7𝑡𝑡ℎ

=
(27,155 + 27,155)𝑓𝑓𝑡𝑡2

118 + 131
= 218𝑓𝑓𝑡𝑡2/𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 

 
 

Where A represents gross floor area, and N the number of occupants. 
 

UCOP supplied us with floor plans that included occupancy information (location of offices and 
quantity of occupants).  The floor plans were also used to calculate gross floor area.  Note that 
power values in this study do not represent all the plug loads present in the office, just the 
subset of desktop, laptops, monitors and task lights that were monitored. 
 

4.3. Cool Choices game 
 
As described in the literature review, Cool Choices is an online sustainability game which 
encourages players to make sustainable actions related to saving water and energy, conserving 
gasoline, and minimizing waste generation. The UCOP Cool Choices game was administered for 
occupants on the 6th and 7th floors of the Franklin Building.  It started on November 4, 2014 and 
ended December 12, 2014.  There was a one week recruitment period prior to the start of the 
game.  This section provides an overview of the game and subsequent data analysis including 
how the game was customized for this study and how it was administered on-site. 
 

4.3.1. Selecting Cool Choices 
 
One of the main objectives of this project was to investigate the role of occupant behavior on 
plug load energy use.  I implemented a behavior intervention at UCOP to determine if 
occupants could be persuaded to reduce their energy use even when they would not financially 
benefit from the potential energy savings.  With an interest in using my time to focus on the 
energy data collection rather than the psychology of occupant behavior, it was important to 
find an existing intervention that could be implemented instead of designing one myself. 
 
The online sustainability game, Cool Choices, was selected because it met the following criteria: 
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• Packaged program: Cool Choices is a developed sustainability game with a full staff to 
support game preparation and implementation.  To limit the scope of the project (and 
stay within my field of knowledge) I wanted to use an existing program that leveraged 
behavioral psychology in its creation.  The format and content of Cool Choices was 
informed by social science and behavioral research (Kuntz et al., 2012). 

• Online interface: Cool Choices is played entirely online with no software installation 
required.  This reduced the potential for players to experience IT problems, and if 
problems did arise, the Cool Choices staff would be available to fix them, rather than 
relying on UCOP’s IT team. 

• Social media-oriented: The Cool Choices website allows players to see each other’s 
progress; there is a stream for user content and a leaderboard updated in real time that 
is visible to all participants.  I was interested in selecting a program with a social media 
aspect to increase player engagement (Lehrer, Vasudev, & Kaam, 2014). 

• Competition format: The literature suggested that a competitive intervention could 
provide motivation to players in settings where financial incentives are missing 
(Petersen et al., 2007).  Rewarding players with points for actions can also provide a 
sense of accomplishment, and can prevent players from feeling like they can’t make a 
difference on their own (Kuntz et al., 2012). 

• Team structure: Players must be part of a team to compete in Cool Choices.  This can 
give them a sense of responsibility to their teammates, and teammates can remind and 
encourage each other to keep playing (Kuntz et al., 2012). 

 
Cool Choices had the added benefit of encouraging behavior changes at home and at work in 
order to reinforce repetitive habits.  The game’s contents include actions at home, work, and 
transportation.  And although it was a packaged game, it was also easily customizable to meet 
the study’s needs and focus on plug loads. 
 

4.3.2. Preparing the game 
 

4.3.2.1. Meeting with UCOP leaders 
 
In October 2014, the researchers met with UCOP’s director of sustainability and the group 
leaders for the 6th and 7th floor to discuss how Cool Choices would be implemented at the site.  
The gameplay and time commitment required were explained, and it was conveyed that IT 
support would not be necessary given the online nature of the game.  At the time, UCOP was 
planning to roll out a Green Department Certification Program (GDCP) in Spring 2015 
(Napolitano, 2014).  To encourage the group leaders to agree to use the Cool Choices game in 
Fall 2014, it was suggested that this could be a pilot for a potential wider rollout that could 
coincide with the GDCP in Spring 2015.  The group leaders were interested in going through 
with the implementation, so it was decided to start as quickly as possible. 
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4.3.2.2. Coordinating with Cool Choices 
 
For the duration of the game, my primary contact at Cool Choices was their Program 
Coordinator.  She worked with me to setup the game and prepared me for my role of game 
manager.  She provided me with a game manager manual (including sample daily emails), 
information about managing the Cool Choices website before and during the game, a suggested 
list of actions to include in the game, a sample schedule for weekly challenges, and a copy of 
the pre-game and post-game surveys (see Appendix B).  The surveys were developed by Cool 
Choices to be used on all games and include demographic questions, questions about resource 
consumption, and questions designed to reveal players’ attitudes towards sustainable 
behaviors. 
 
To prepare the game content I customized the list of actions we were provided to focus on 
actions related to energy, especially energy at work.  I added cards to reward players for energy 
saving behaviors for the plug loads being monitored (desktops, monitors, laptops, and task 
lights) and included actions that were important to UCOP and would be included as a “green 
pledge” as a component of the upcoming GDCP.  In total there were 42 actions available during 
the course of the game.  Day 1 of the game there were four cards released, and players could 
claim up to two choices.  Each weekday a new card was released.  Most cards were available for 
the remainder of the game, however cards associated with the weekly challenges were only 
available that week.  For each consecutive week players were allowed one extra action each 
day (e.g. Week 2 they could claim three actions), up to six during the last two weeks of the 
game.  See Appendix B for the list of actions, the source of the action (e.g. UCOP pledge), and 
the release schedule. 
 

4.3.3. Occupant recruitment 
 
After the October meeting, I was notified that several group leaders had asked that their staff 
not participate in the study due to time constraints, which meant that there were 
approximately 60 employees eligible to participate in the game.  It was unfortunate that all 
groups could not be involved, but that would not have been possible until Spring 2015. 
 
The on-site contact for the game was the Director of Building and Administrative Services.  He 
helped to publicize the game by posting flyers in the office (see Appendix B) and sending out 
three emails to eligible participants in the week before the game (10/27-11/3).  The emails 
included information about Cool Choices, a link to the pre-game survey and to sign up for the 
game.  Out of the approximately 60 eligible employees, 30 signed up to play and 24 claimed at 
least one action during the game.  Of these 24 active participants, 12 had Enmetric powerports 
at their desks. 
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4.3.4. Game administration 
 

4.3.2.3. Administrative tasks 
 
My role of game manager included: 

• Responding to questions from players and alerting Cool Choices to any website issues. 
• Updating the Cool Choices stream with content, including photos players uploaded for 

specific actions and announcement about recent prize winners. 
• Selecting prize winners each week and at the end of the game. 
• Preparing the email announcing the weekly challenge and the previous week’s winners.  

The regular daily reminder emails were sent automatically to players.  During the last 
week, a link to the post-game survey was sent in the daily emails.  See Appendix B for an 
example reminder email. 

 
4.3.2.4. Prizes 

 
Prizes were awarded primarily for participation.  Two random winners received $15 gift cards to 
Peet’s Coffee & Tea for completing the pre-game survey.  Each week, three participation prizes 
were handed out (Cool Choices-brand t-shirts, reusable water bottles, and tote bags).  Players 
were eligible for the drawing if they had taken at least one action that week.  Given the limited 
pool of participants, drawings were not always entirely random in order to distribute the prizes 
among the most number of participants.  At the end of the game, there was one individual 
winner for the most number of accumulated points, and one team winner for the most 
accumulated actions among all team members.  All game end winners received $15 Target gift 
cards. 
 

4.3.5. Post-game monitoring 
 
The Enmetric powerports were left in place through March 2015 to continue collecting data to 
assess the persistence of any energy saving behavior changes in the short term. 
 

4.3.6. Cool Choices survey 
 
The pre- and post-game surveys were administered by Cool Choices through Survey Monkey.  
All responses were provided in text and numerical form.  I used R to visualize the responses and 
allow for comparison between different survey questions and pre- and post-game responses. 
 

4.3.7. Cool Choices data analysis 
 
The data collected by Cool Choices included the daily actions each player made throughout the 
course of the game.  The data were imported into R to analyze which cards were most popular 
based on category, specific action, and point value, to visualize which cards were played each 
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day of the game and observe weekly trends, and the range of actions each individual player 
claimed. 
 

4.4. Monte Carlo simulation 
 
The goal of this plug load model is to generate power profiles with comparable median power 
and similar variability to the measured data.  I identified the key variables influencing power 
consumption: device type, day type (work or non-work day), and time of day (at 15 minute time 
steps) using the baseline analysis.  These were determined by analyzing the power consumption 
profiles for each device and for each weekday to detect patterns, similarities, and differences.  
Based on this analysis, day type and time of day were most indicative of occupancy, which is 
the real predictor of plug load power consumption (i.e., I am using these variables as proxies for 
occupancy). 
 
During the modeling process, three versions of a Monte Carlo simulation were created.  Monte 
Carlo simulations were deemed the most appropriate given the available input parameters and 
goal of creating a simple predictive model.  The first two models, MCModelv1 and MCModelv2 
were based on device type, day type, and time of day.  MCModelv2 included an improved 
method for incorporating device quantities that more accurately reflected the validation 
dataset.  The third model, MCModelv3, attempted to improve on MCModelv2 by including 
month as an additional variable.  The second, MCModelv2, was the most successful and is 
detailed here. 
 
Using R, the Monte Carlo simulation was created to generate power profiles for user-provided 
start and end dates.  The program detected work days and non-work days based off of these 
dates, and calculated the quantity of devices in the validation set for this timespan.  Using these 
variables, the program ran the Monte Carlo simulation: 
 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀2 = 𝑓𝑓�𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ,𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒 ,𝑞𝑞𝑞𝑞𝑦𝑦𝑑𝑑 ,𝐶𝐶𝐶𝐶𝐹𝐹𝑑𝑑,𝑡𝑡,ℎ� 
 
Where 
 

𝐷𝐷 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 [𝑀𝑀𝑀𝑀/𝐷𝐷𝐷𝐷/𝑌𝑌𝑌𝑌] 
𝑞𝑞𝑞𝑞𝑦𝑦𝑑𝑑 = 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞 𝑓𝑓𝑓𝑓𝑓𝑓 𝑒𝑒𝑒𝑒𝑒𝑒ℎ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, 𝑑𝑑 

𝐶𝐶𝐶𝐶𝐹𝐹𝑑𝑑,𝑡𝑡,ℎ = 𝐶𝐶𝐶𝐶𝐶𝐶 𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑑𝑑, 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡,𝑎𝑎𝑎𝑎𝑎𝑎 𝑑𝑑𝑑𝑑𝑑𝑑 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ℎ 
𝑑𝑑 ∈ {𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑙𝑙𝑙𝑙𝑙𝑙ℎ𝑡𝑡} 

𝑡𝑡 ∈ {0: 00, 0: 15, … ,23: 30,23: 45} 
ℎ ∈ {𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤, 𝑛𝑛𝑛𝑛𝑛𝑛 − 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤} 

 
The model was trained with data that encompassed the first full year of power data within the 
data set (December 2012-December 2013).  The training data were used to generate 
cumulative distribution functions (CDF) for each device category (desktop, laptop, monitor, task 
light), time step (15 minute intervals for one day), and day type (work or non-work day) for a 
total of 768 distributions.  The Monte Carlo simulation referenced these distributions by using 
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the inverse of the CDF function to calculate power values based on probabilities generated by a 
random number generator. 
 
I validated the model by running the simulation for different time periods (e.g. monthly or 
annually).  I calculated the number of devices present in the validation data set to use as input 
for the Monte Carlo simulation.  I ran a check for missing data to ensure that the comparison 
between measured and modeled data would be a reasonable one.   For example, if a device 
was only recording data for a few days during the time period, I discarded that device from the 
validation set so that the model would not be over-predicting power use of that device.  I 
incorporated this device count check into MCModelv2 so that the validation data used for 
comparison would only include those devices which have complete data, defined as 90% of the 
total possible data points: 
 

𝑇𝑇𝑖𝑖 > 0.9 ∗ 𝑡𝑡𝑑𝑑𝑑𝑑𝑑𝑑 ∗ 𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 
 
Where 
 

𝑇𝑇𝑖𝑖 = 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑓𝑓𝑓𝑓𝑓𝑓 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑖𝑖 
𝑡𝑡𝑑𝑑𝑑𝑑𝑑𝑑 = 96 (𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑖𝑖𝑖𝑖 𝑜𝑜𝑜𝑜𝑜𝑜 𝑑𝑑𝑑𝑑𝑑𝑑 

 
By defining complete data with some flexibility (i.e., not requiring 100% of data to be present), 
it ensures that the model does not throw out too much data. 
 
 

4.4.1. Model validation 
 
The model was validated by comparing the validation data, which consists of the remaining 
power data (January 2014-March 2015), to the output generated by the model.  This included 
the comparison of the median, variance, and evaluating the normalized mean bias error 
(NMBE). 
 
ASHRAE Guideline 14-2002 Measurement of Energy and Demand Savings provides guidance on 
comparing measured energy data with that generated by data-driven models for the same 
space (ASHRAE, 2002).  Its scope includes residential, commercial, and industrial buildings, and 
it is intended to assist in calculating predicted savings due to energy retrofits.  This guideline 
requires that hourly data must have an NMBE of no greater than 10%. 
 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =
1
𝑁𝑁∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)𝑁𝑁

𝑖𝑖

𝑦𝑦�
∗ 100 ≤ 10% 

 
This same error calculation method is used in this study as a way to assess model accuracy, and 
subsequent improvements in accuracy.  This same 10% metric was also used to compare the 
median and variance. 
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A description of the functions used (built-in or written) in R is provided in Table 4.2.   
 
Table 4.2 Description of R functions written or used for the Monte Carlo simulation 
Function Description Inputs Outputs 
distributions Creates vectors of average power 

data for each device category, day 
type, and time step 

Training data Vector of average 
power data 

runif() 
(R’s stats 
package) 

Calculates a random number [0,1] 
from a uniform distribution 

Quantity of random 
numbers to be 
generated {ℤ ≥ 0} 

Vector of random 
numbers [0,1] 

quantile() 
(R’s stats 
package) 

Calculates the value of a cumulative 
distribution function (CDF) of a 
random variable using 
discontinuous sample quantile 
method 1 (inverse of empirical 
distribution function)  

Vector of sample 
quantities for CDF 
(from distributions), 
Numeric vector of 
probabilities [0,1] from 
runif() 

Vector of quantiles 

plbaby  Calculates one day of power data, 
summed for all devices (of one 
type) at each time step using 
quantile() and runif() 

Device type {DC, LC, 
MO, TL}, Quantity 
{ℤ ≥ 0}, day type 
indicator {TRUE, 
FALSE} 

Vector of power data 

holTest Determines whether a date is a 
holiday, using UCOP’s calendar data 
for 2012-2015 

Date Boolean {TRUE, FALSE} 

plmodel References plbaby, holTest, and R’s 
chron package’s is.weekend() 
function to calculate power data 
profiles 

Quantities of all 
devices {ℤ ≥ 0}, Start 
date, End date 

Data frame of power 
data for all devices, by 
date and time step 

valTest Compares validation data and 
model output using plmodel 

Start date, End date Median and Variance 
of validation data and 
model output, 
Normalized mean bias 
error (NMBE) 
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5. Results 
 

5.1. Baseline data analysis 
 

5.1.1. Testing for normality 
 
Before analyzing the data, I performed a quick test to ascertain if the power data were normally 
distributed.  I used the QQ Plot method rather than the Shapiro Test, because the Shapiro Test 
is not suited for sample sizes larger than 5,000.  I looked at the average power data for each 
individual device type separately.  The results in Figure 5.1 clearly show that the data were not 
normally distributed.    I ran the same test with maximum power data and found that they were 
also not normally distributed.  Therefore, when aggregating the data for this analysis I use the 
median rather than the mean. 

 
Figure 5.1 QQ plot for average power data for each device category 
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To illustrate just how different the mean and median are, Figure 5.2 plots mean workday 
average power use against median workday average power use for desktop computers (a) and 
a typical work day using both mean and median (b).  Overlaid on Figure 5.2(a) is the line 𝑦𝑦 = 𝑥𝑥.  
The closer the points are to this line, the closer the mean and median are (which is what one 
would expect for a normal distribution).  As Figure 5.2(b) shows, during occupied times (8 AM – 
5 PM), the mean and median are much closer together than during unoccupied times (5 PM – 8 
AM).  When the data include many small values (which is the case during unoccupied times), 
the median more accurately captures typical behavior.   

 
(a)       (b) 

Figure 5.2 Comparison of mean vs. median average power data for desktops 

 
Note that in the following analysis any mention of “average power” data refers to the data 
collected by the Enmetric powerports, which was averaged over every 15 minute time interval.  
The median of the average power is used when this data is aggregated over longer time periods 
for analysis.  For example, when I refer to the "median average power,” it is the median value 
of the 15 minute average measured data. 
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5.1.2. Data overview 
 
This section provides a general overview in order to establish the scope of the collected data.  
Figure 5.3 is a heat map of hourly average power use over the data collection time span and 
Figure 5.4 provides a heat map of the hourly maximum power use.  Although data were 
collected every 15 minutes, these have been collapsed to hourly time steps to make it easier to 
read the large amount of information presented in the graphs.  In examining the heat maps it is 
important to note that the number of devices being monitored fluctuated over time due to 
disconnection or connection of devices, or technical problems with data transmission.  
However, these heat maps are useful in providing an overall macro-scale picture of the 
collected data and some information about general work patterns and this building, and the 
impacts on energy use trends on different time scales. 
 
One of the first things evident from these heat maps is the regularity of the five day work week 
and two day weekend.  On a daily basis, power consumption clearly ramps up between 7:00 am 
and 8:00 am and ramps down 5:00 pm to 6:00 pm, indicating a very regular 8:00 am to 5:00 pm 
daily work schedule.  There is also clear evidence of three-day weekends for holidays.  For 
example, Martin Luther King Jr. Day falls on the third Monday of February, and for all three 
Februaries in the dataset the third week is clearly occupied for only four days.  This indicates 
that occupants have regular schedules and are generally not in the office during weekends and 
holidays. 
 
When power usage is higher during the day (i.e., 8:00 am to 5:00 pm), unoccupied power usage 
is also higher (5:00 pm to 8:00 am).  This is evident when comparing the first half of 2013 with 
the second half, when power use drops.  This suggests that power consumption is strongly 
dependent on occupancy, rather than on different usage of the measured plug load equipment 
(e.g. more computationally-intensive computer work that may require higher power 
consumption).   
 
In the latter half of 2013 and through 2014, there are daily striped patterns occurring midweek 
during unoccupied times.  The pattern is very clear in September 2013.  Compared to other 
unoccupied periods, on these days it appears that power use is elevated overnight.  Microsoft 
frequently releases software bimonthly patches on Tuesdays (known as “Patch Tuesday”) so it 
is possible that this is the cause of elevated power consumption.  However, because this 
happens nearly weekly starting in the middle of 2013 (and Patch Tuesday does not occur 
weekly), another explanation is that the UCOP IT staff conducts system updates to users’ 
computers during the middle of the week.  
 
An interesting lack of a pattern is the consistency of power use during the day.  While power 
use is not constant each day, there is no obvious dip in power at any consistent time – including 
in the middle of the day for the lunch.  Unlike multiple published plug load equipment 
schedules cited in the literature review (California Energy Commission, 2010; Claridge et al., 
2004; Deru et al., 2011), the plug load usage here does not appear to regularly decrease in a 
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significant way during lunch time.  Daily trends and trends for individually devices (some of 
which do show lunch time power dips) will be discussed in further detail below. 
 
The last main observation from these heat maps is that power consumption does not appear to 
be strongly linked to month (or season).  While power consumption fluctuates in different 
months, it is not consistent from year to year within the dataset.  Some months may experience 
lower occupancy rates due to non-seasonal reasons, such as conferences or other events that 
affect a large number of people in the office. This suggests that for the plug load devices 
included in this analysis, power consumption is not related to season but rather to occupancy. 
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Figure 5.3 Average power consumption for all devices over entire data set 
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Figure 5.4 Maximum power consumption for all devices over entire data set 



 

32 
 

5.1.3. Daily profiles 
 
In this section, I explore the daily patterns of energy use.  The heat maps in the previous section 
indicated that power consumption of the measured plug load devices is most reliant on 
occupancy and did not appear to be related to time of year (i.e., seasons).  Therefore, I decided 
to split the data into two categories: working days (Monday through Friday, excluding holidays) 
and non-working days (holidays and weekends).  The graphs in this section illustrate the four 
plug load devices separately and combined, looking at average and maximum power 
consumption data. 
 
Figure 5.5 illustrates the fractional power profiles over the course of a work day and non-work 
day for this dataset at 15 minute intervals (data were not smoothed).  This is to provide a more 
direct comparison to the published plug load equipment schedules described in the literature 
review.  These schedules provide a fractional profile of power consumption, where 100% is 
equivalent to maximum possible power.  This was calculated as the maximum of the sum of 
maximum measured power for all devices i, for time step t.  This is not the same as the rated 
power (also called the nameplate power), which was not available for this study. 
 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑚𝑚𝑚𝑚𝑚𝑚 ���𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
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To generate these graphs, I divided the total power consumption at each time step by the 
maximum power consumption (over the entire data set), first for each device category 
individually, and then again with all devices combined. 
 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =
(∑ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖 )𝑡𝑡

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
 

 
Comparing Figure 5.5(a) and (b), these graphs illustrate a stark difference in work and non-work 
day power consumption.  Looking only at Figure 5.5(a), the work day profile shows that 
different devices have different daily profiles.  Although the heat maps in Figure 5.3 and Figure 
5.4 did not show a dip in midday power use (e.g., for lunch), these more detailed graphs allow 
us to see that there does appear to be a slight reduction in overall power use, as well as more 
pronounced reductions for task lights and monitors.  However, laptop and desktop computers 
do not experience a power reduction.  This suggests that some occupants may leave their 
workspace during lunch time, causing their monitors to go into sleep mode while their 
computers remain on.  
 
In examining power use during unoccupied periods, the data shows that desktops tend to be 
left on overnight on work days to a larger degree than laptops (20% compared to 10%).  This 
difference could be due to some occupants taking their laptops home and thus removing a 
portion of overnight phantom loads.  Phantom loads refer to the power electronic devices draw 
even when turned off.  Another interesting pattern depicted by Figure 5.5 is the difference in 
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power levels between non-work days and unoccupied hours of work days (i.e., 5 pm to 8 am).  
Laptops and desktops appear to draw more power overnight during work days when compared 
to non-work days.  One reason might be that occupants are more likely to turn their computers 
off before a weekend, rather than overnight before another workday. 
 
Each graph also includes a profile for combined power usage (black line), which will be used in 
Figure 6.1 to compare the UCOP data to the published schedules described in the literature 
review. 

 
(a)       (b) 

Figure 5.5 Fractional power profiles for work and non-work days. 

In addition to looking at these fractional profiles, it is important to understand the average 
power used by these devices, and by all devices in aggregate, in order to estimate overall 
energy costs.  In Figure 5.6 power data are presented in daily profiles (with 15 minute time 
steps) for workdays, representing a median profile of the average power use within that time 
step, and the median profile of the maximum power use for each device category.  These are 
presented side-by-side to more easily compare the difference in maximum and average power 
consumption by device.  The primary (left) y-axis is power per occupant (W/person) while the 
secondary (right) y-axis is per area (W/ft2), calculated as described previously. 
 
Viewing these graphs together highlights important power consumption features of each 
device.  Task lights are used so infrequently that even the median profile of maximum power is 
zero.  This means that over half of the task light maximum power data at each time step is zero 
(since the median is the middle value of the data set).   For monitors, the profiles for average 
and maximum power are not significantly different, suggesting that there is not a wide range in 
typical power consumption for monitors.  The same is true for laptops, which show very little 
difference between the two graphs as well.  Desktops are the one device category that do show 
a significant difference between the two graphs, indicating that there is a wider range in 
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desktop power consumption in comparison to the other devices.  This is likely due to the range 
of tasks that may be conducted on a computer, and the varying sizes of computers occupants 
have (e.g. low-power thin clients vs. CPU-intensive machines).   It is interesting to note that this 
characteristic is not shared by laptops.  The extremely low power profile (0-5 W) coupled with 
the mobility of laptops suggests that occupants with laptops frequently worked from other 
locations (within or outside of the Franklin Building), which is of course not an option for 
occupants with desktops.  Although laptops do typically draw less power than desktops, this 
behavior can explain why there is such a significant difference in average and maximum laptop 
and desktop power consumption shown in these graphs.  

 
(a)       (b) 

Figure 5.6 Work day profiles for median average and median maximum power 

The last profile graph presented in Figure 5.7 illustrates the behavior profile for all devices 
individually and combined as a percent of maximum power by individual device (rather than 
overall maximum power) for all time steps: 
 

𝑏𝑏𝑏𝑏ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ��
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑟𝑟𝑡𝑡,𝑗𝑗

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑟𝑟𝑗𝑗
�
𝑖𝑖
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Where MaxPower represents the maximum power for an individual device j across the entire 
data set, and i represents the set of all devices.   
 
By normalizing each individual device by its own maximum power, this metric better isolates 
the use patterns of the occupants.  And by evaluating devices individually, I can account for the 
fact that different equipment within the same device category might have different maximum 
power consumption levels.  For example, if there are two desktops with maximum power 
usages of 100 W and 200 W, but measurements show both use 50 W on average, the fractional 
power use will be 50% and 25%, respectively.  This means that the first desktop is used at half 
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of its maximum power, while the latter is used at just a quarter, revealing interesting 
information about occupant behavior, rather than absolute power information.  This approach 
eliminates the effect of equipment efficiency and provides a way to look at how occupants use 
their devices.  In other words, if these same occupants were given new, more efficient devices, 
but did not change their work habits, these profiles would remain approximately the same. 
 
With Figure 5.7, I can examine how devices within each category are used.  For example, the 
behavior profile for monitors shows that they are typically used at about 50% of their maximum 
power, while desktops are typically using about 38% of their maximum power.  This suggests 
that many occupants are not using their desktop computers for CPU-intensive tasks (or 
potentially that the desktop computers are oversized).  For laptops, the behavior is not quite as 
straightforward to interpret.  The extremely low profile is most likely due to occupants 
relocating their laptops by disconnecting them and charging them elsewhere (inside or outside 
of the Franklin Building), and not necessarily due to using laptops at a lower rate. 

 
Figure 5.7 Fractional profile of daily behavior for all devices 

5.1.4. Weekly trends 
 
Figure 5.8 shows a median week of average and maximum power consumption to allow for 
comparison between different days of the week, and between working days and 
weekend/holidays.  These graphs illustrate that there is no difference between Saturday and 
Sunday profiles for average or maximum power consumption.  During the work week, there is 
some variation depending on the device, however the profile peaks daily between 8:00 am and 
5:00 pm, indicating regularity of occupant schedule.  This is reflected in the device profiles, 
which may vary slightly in magnitude, but in shape are very similar from one work day to the 
next.  Desktop use fluctuates the most, with highest power consumption on Tuesday and 
Wednesday, and lowest on Friday.  Laptop power consumption is similar, but drops significantly 
on Fridays.  Monitor power consumption is generally consistent from day to day and between 
maximum and average power (reflecting the results found in the overall work profile). 
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Figure 5.8 Weekly profiles of maximum and after power, by device category 
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5.2. Cool Choices survey 
 
Of the 24 active participants, 15 completed the pre-game survey and 12 completed the end-of-
game survey.  This section summarizes the responses to questions about players’ attitudes and 
outlooks.  Not all survey questions were deemed relevant to this study because they centered 
on home energy use.  Please see Appendix B for both surveys. 
 

5.2.1. Pre-game survey 
 
Cool Choices administers the same survey before each game.  Many of the pre-game survey 
questions are intended to reveal players’ attitudes towards sustainability related to energy use, 
water consumption, gasoline consumption, and waste generation.  The primary purpose of this 
survey is to establish a baseline to evaluate if there are changes in players’ attitudes after the 
game. 
  
Figure 5.9 summarizes the responses when players were asked to compare their resource use 
with similar households.  The majority of respondents stated that they were similar or used less 
(energy, gasoline, water and generated less waste) than similar households.  Although there is 
no way to verify these responses, it does suggest that players generally felt they were not using 
more energy than average.  

 
Figure 5.9 Pre-game survey question: household comparison 
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In Figure 5.10, players were asked to state how often they took certain actions related to saving 
energy, conserving gasoline, conserving water, and generating trash.   The graph is organized so 
that the more resource-conserving behaviors are on the top.  Players reported turning off 
unused work equipment most or all of the time, a response that is reflected in the baseline data 
analysis, where results showed that power consumption overnight and on unoccupied days 
(e.g. non-work days) drops considerably.  A similar question was asked about electronics in 
general, and players responded that they rarely or never leave electronics on when not in use.  
Overall, players reported that they actively engaged in conservation behaviors, indicating a 
general high level of sustainable behavior. 

 

 
Figure 5.10 Pre-game survey question: conservation actions 
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In Figure 5.11, respondents were asked to rate their level of agreement with a series of 
statements to gauge attitude and levels of knowledge about specific energy saving behaviors 
and opinions.  Like the previous figure, the graph is organized so that the more resource-
conserving attitudes are on the top.  In general, respondents agreed that it was worth saving 
energy to save money and preserve the environment, that they were interested in making 
energy-related home improvements, and that people are not entitled to using as much energy 
as they can pay for.  Respondents were split on the statement “my household has already done 
its part to reduce resource usage,” with about one third agreeing, one third disagreeing, and 
one third neutral. 

 
Figure 5.11 Pre-game survey question: attitudes and beliefs 
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5.2.2. Post-game survey 
 
The post-game survey was administered during the last week of the game.  It included 
questions intended to reveal any changes in players’ attitudes and opinions, and to find out 
what motivated players to sign up for and play Cool Choices. 
 
Figure 5.12 summarizes the responses to a question asking players about what motivated them 
to play the game.  Respondents reported a variety of influential factors, which included (in 
order of highest influence) that they thought it was fun, they liked the lifestyle changes that 
could occur, that they wanted to win, Cool Choices made the game seem appealing, and they 
could save money.  Cited as least influential were the chance to win a gift card and a sense of 
work obligation to play.  These responses show that players felt there were both external 
motivators (e.g., potential to save money at home) and internal motivators (e.g., the game was 
fun) that interested them in signing up for the game. 

 
Figure 5.12 Post-game survey: reasons to sign up for the game 
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Figure 5.13 summarizes answers to a follow up question, which asked respondents to explain 
what influenced them to choose specific actions during the game.  In order of highest influence, 
respondents said they selected actions that were easy to complete, ones they were already 
doing, and those they perceived as being beneficial for the environment.  Cited as less 
influential were earning points, that the action was fun to do and that they would save money.  
Coworkers choosing the same action was cited as not influential. 

 
Figure 5.13 Post-game survey questions: reasons to select in-game actions 

For Figure 5.14, respondents were asked where they talked about sustainability while the game 
was active. Most respondents stated that they discussed sustainability at work and at home at 
least weekly, while half said it was several times a week or more frequently.  Interestingly, 
although this game was initiated at work, players were just as likely to discuss the game at 
home as they were at work. 

 
Figure 5.14 Post-game survey question: talking about the game at home and work 
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The question summarized in Figure 5.15 asked respondents to agree or disagree with 
statements about how Cool Choices affected them. They stated that the in-game actions were 
simple to do, and they felt the game was a meaningful part of UCOP's sustainability efforts, and 
made them more aware of opportunities to save energy.  Players reported that they were more 
likely to turn off equipment or lights when not in use.  They also said that their families were 
enthusiastic about taking Cool Choices actions, further reinforcing the fact that players were 
engaged in the game outside of the workplace.  

 
Figure 5.15 Post-game survey question: how Cool Choices affected the players 
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5.2.3. Before and After 
 
The graphs in this section summarize survey responses that describe players’ behaviors before 
and after the game.  For Figure 5.16, players were asked how much they were doing to save 
energy, gasoline, and water before and after the game.  Note that although this question was 
only asked once, not all surveyed players provided answers for all questions, which explains the 
different number of responses in the figure.  This question was included only in the post-game 
survey, so players were self-assessing their behaviors before and after the game.  In all cases, 
players reported that they were making efforts to save energy, gasoline, and water (i.e., purple 
shades correspond to more effort).  There was a modest increase in the amount of actions 
players reported after the game (i.e., in comparing each pair of responses for before vs. after, 
the purple bars got larger).  This is most evident for energy, where four players reported doing 
little or nothing before the game, but after the game those responses disappeared and all 
players reported more significant efforts in the top two response categories. 
 

 
Figure 5.16 Post-game survey question: self-assessment of before and after game actions 
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In both the pre-game and post-game surveys players were asked to gauge the importance of 
sustainability to themselves and others around them.   Before the game (Figure 5.17), players 
generally reported that sustainability was important to themselves, their household, their 
friends, extended family, coworkers, and UCOP leadership.  After the game (Figure 5.18), there 
was an increase in reporting that sustainability was important to UCOP and coworkers. 

 
Figure 5.17 Pre-game survey question: importance of sustainability 

 
Figure 5.18 Post-game survey question: importance of sustainability  
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5.3. Cool Choices game: daily actions 
 
The graphs in this section illustrate the daily actions players claimed they took throughout the 
course of the game.  Unless otherwise noted, actions are color-coded by location (Home or 
Work) and category (Energy, Water, Waste, Transportation, and Knowledge).  For example, a 
“Work, Energy” action might be turning off a work computer at the end of the day, while a 
“Home, Energy” action might be replacing incandescent light bulbs at home with CFLs or LEDs.  
Cards categorized as Knowledge include actions like reading the University of California’s 
sustainability policy or uploading a photo of the player recycling. 
Figure 5.19 and Figure 5.20 summarize the most popular categories and point values of actions 
played by all participants throughout the game.  Figure 5.19 reveals that the most popular 
category was Home, Transportation (229 cards), followed by Home, Waste (175) and Home, 
Energy (168).  A total of 136 Work, Energy actions were claimed.  Although this is a game 
administered at work, actions at home were more popular.  This could be because occupants 
were more motivated by potential savings they could achieve at home, as suggested by the 
post-game survey result indicating that saving money was a motivator for players (Figure 5.12).  
These results also help to further explain Figure 5.14, which showed that players talked about 
the game nearly equally at home and at work.   

 
Figure 5.19 Cool Choices: popular card categories 
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Figure 5.20 reveals which point values were most popular, however considering that 32 of the 
42 possible actions were worth 10, 20 or 30 points, it is not surprising that most cards were in 
this range. 

 
Figure 5.20 Cool Choices: point values of popular cards by category 

 
Figure 5.21 lists all 42 cards, sorted from most frequently to least frequently played for all 
players.  Actions that were claimed most frequently include reducing water use and taking 
alternative modes of transportation.  The most popular Work, Energy actions were turning off 
computers before leaving work (20), changing monitor settings to turn off after 10 minutes of 
inactivity (18), and getting rid of personal printers (18). 
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Figure 5.21 Cool Choices: popularity of individual cards 
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Figure 5.22 illustrates the number of cards played each day by all Cool Choices participants for 
the 39-day game.  Because players were limited by the number of available actions they could 
claim each day, (starting with two actions the first week and increasing to six actions the last 
week), Figure 5.23 is provided to illustrate the percentage of possible cards played each day by 
all players.  At least one new action was added to the game each work day, which meant the 
variety of card categories increased as the game progressed (Figure 5.22). As an online game, 
players could access Cool Choices from home as well.  Figure 5.23 shows that more actions 
were taken during weekdays (dark blue) than weekends (light blue), however players were still 
active when not in the office, which means that they were motivated to play even when not 
receiving the reminder emails, which were only sent during work days.  The days with the least 
activity include the first weekend (days 5 and 6) and Thanksgiving Day (day 24). 

Figure 5.22 Cool Choices: number of cards played each day 

 

 
Figure 5.23 Cool Choices: percent of possible cards played each day 
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Figure 5.24 shows which categories of actions were claimed by each player and the total 
number of cards each participant played.  It is clear that there were different levels of 
participation, with some players claiming over 80 actions.  Figure 5.25 illustrates the percentage 
of cards each participant played in each category.  In general, those who played more cards 
(top of figure) selected them from a wider variety of cards than those who played fewer cards.  
 

 
Figure 5.24 Cool Choices: number and category of cards played by each player during the game 

 

 
Figure 5.25 Cool Choices: percent and category of cards played by each player during the game 
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5.4. Cool Choices energy impact 

 
Technical problems with the Enmetric devices and bridges led to an unfortunate loss of data 
during the game.  This mean that, of the submetered devices belonging to Cool Choices players, 
there were only two monitors and three desktops with sufficient data for analysis.  I looked at 
the chronological use of average power use (heat map), and frequency of average power use 
(density plot) for each device to analyze game impacts.  In the density plot, the area under the 
curve represents probability, i.e., the area under the curve between two points on the x-axis 
represents the probability of the device power being between those two values. 
 

5.4.1. Monitors 
 
Figure 5.26 and Figure 5.27 show the power use for Monitor 1 (M1).  The heat map in Figure 
5.26 shows that M1 is either regularly in use, or completely turned off, suggesting that this 
occupant spends large amounts of time away from the office, and that the monitor is regularly 
off when not in use.  The data for this device did not include any values for any November 
during the monitoring period, suggesting that the occupant may be out of the office in 
November on an annual basis.  In fact, UCOP management informed us that this workspace has 
been occupied by temporary or contract employees in recent years, which explains the large 
gaps in power consumption.  This explains why Figure 5.27’s density plot does not include any 
data during the game.  In Figure 5.27 the “before” data have three peaks: 0 W, 19 W and 24 W, 
while the “after” data have two peaks: 0 W and 19W.  This difference in use can be explained 
by examining April 2014 in the heat map, when there was a clear permanent drop in average 
power use for this device (perhaps due to a change in device).  For M1, the game did not have 
an effect on power use, however it is not surprising given that the occupant was already 
engaging in energy saving behaviors, and was not present during the majority of the game. 
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Figure 5.26 Cool Choices: heat map plot for monitor M1 average power use 

 
Figure 5.27 Cool Choices: density plot for monitor M1 average power use 
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Figure 5.28 and Figure 5.29 show power use for Monitor 2 (M2).   The heat map in Figure 5.28 
shows clearly that this device is regularly turned off during unoccupied periods, which suggests 
that there are very little additional potential savings to be incurred.  The density plot in Figure 
5.29 shows clear bimodal behavior: the monitor is either on (37 W) or off (near 0 W).  The 
before, during and after datasets show similar behavior, confirming that energy savings did not 
occur. 

 
Figure 5.28 Cool Choices: heat map plot for monitor M2 average power use 

 
Figure 5.29 Cool Choices: density plot for monitor M2 average power use 

 



 

53 
 

5.4.2. Desktops 
 
Figure 5.30 and Figure 5.31 show power use for Desktop 1 (D1), while Figure 5.32 and Figure 
5.33 show power use for Desktop 2 (D2).  These devices belong to different occupants than 
device M1 and M2. The heat maps for these devices show infrequent, inconsistent power use, 
suggesting that these occupants are frequently out of the office.  Both heat maps also show 
that, in general, occupants turn off their devices at the end of the day.  The density plots for 
these devices are shown excluding power below 1 W in order to better understand how the 
device is used when it is on.  The density plot for D1 shows a higher power use after the game 
when compared to data from before the game.  This can be explained with the heat map, which 
shows that the device was left on overnight more frequently November 2014-March 2015.  
Given that this appears to be a new behavior, it is possible that there were work-related 
reasons for leaving their computer on overnight, such as to access their computers remotely 
from other locations.  For D2, the density plot shows a higher peak mode before (160 W), than 
during and after data (115 W).  One possible explanation is that the occupant changed out their 
device for a more efficient replacement, however the drop coincided with the start of the 
game, which could also indicate that the occupant changed the computer settings to reduce 
power consumption, resulting in a permanent reduction in power use.  Another explanation 
comes to us from UCOP management, who explained that this workspace was occupied by 
temporary or contract employees, which suggests irregular occupancy patterns. 
 

 
Figure 5.30 Cool Choices: heat map plot for desktop D1 average power use 
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Figure 5.31 Cool Choices: density plot for desktop D1 average power use (greater than 1 W) 

 

 
Figure 5.32 Cool Choices: heat map plot for desktop D2 average power use 
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Figure 5.33 Cool Choices: density plot for desktop D2 average power use (greater than 1 W) 

Figure 5.34 and Figure 5.35 show power use for Desktop 3 (D3).  The heat map in Figure 5.34 
shows that D3 was in consistent use throughout the monitoring period.  It also shows that since 
July 2014, the device is not left on overnight, as it was previously.  Examining the density plot in 
Figure 5.35 shows a bimodal trend, and a clear drop in power use after the game.  This drop is 
echoed in the heat map, which shows a permanent drop in average power starting in January 
2015.  Like D2, this could be explained through equipment replacement or adjusted power 
settings coinciding with the end of the Cool Choices, game, or the fact that this workspace was 
occupied by temporary or contract employees. 

 
Figure 5.34 Cool Choices: heat map plot for desktop D3 average power use 
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Figure 5.35 Cool Choices: density plot for desktop D3 average power use 

5.5. Plug load model 
 
An important application for the trends discovered in the baseline analysis is a predictive model 
based on collected data.  For this plug load model, I created multiple iterations of a Monte 
Carlo simulation and describe the results of the last two versions here. 
 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀2 = 𝑓𝑓�𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ,𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒 ,𝑞𝑞𝑞𝑞𝑦𝑦𝑑𝑑 ,𝐶𝐶𝐶𝐶𝐹𝐹𝑑𝑑,𝑡𝑡,ℎ� 
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀3 = 𝑓𝑓�𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ,𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒 ,𝑞𝑞𝑞𝑞𝑦𝑦𝑑𝑑 ,𝐶𝐶𝐶𝐶𝐹𝐹𝑑𝑑,𝑡𝑡,ℎ,𝑚𝑚� 

 
Where subscript m means month. 
 
These two models performed differently for each comparison metric (median, variance, NMBE), 
but one model was not uniformly better than the other.  Both are included to demonstrate 
when the additional complexity of MCModelv3 might be helpful, and when it is not worth it.  
The two models were executed for each month and for the entire year.  Figure 5.36 and Figure 
5.37 provide a comparison of the median and variance between the measured data, 
MCModelv2 data and MCModelv3 data for each timespan.  Figure 5.40 illustrates the NMBE for 
MCModelv2 and MCModelv3. 
 
The points for the measured data are fitted with ± 10% error bars to indicate the acceptability 
range established within the Methods section.   For the median, MCModelv2 was within 10% of 
the measured data’s median for only seven of the 14 timespans.  However, considering that the 
range is so small (less than 1 W), this is not a significant difference. 
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Figure 5.36 Plug load model validation: median power comparison 

Figure 5.37 shows the measured data, MCModelv2 and MCModelv3 output.  The MCModelv2-
predicted variance varies greatly and never falls within 10% of the measured data.  In general, 
both models predict significantly larger variances than the measured variance. 

 
Figure 5.37 Plug load model validation: variance power comparison 

Figure 5.38 and Figure 5.39 present two months of plug load power profiles that illustrate the 
difference in variability between MCModelv2 and the measured data.  For clarity, MCModelv3 
output is not plotted.  Figure 5.38 presents data for October, which had the closest variance 
(13% difference), while Figure 5.39 presents data for July, which had one of the most inaccurate 
variances (87% difference).  Appendix C includes graphs for the remaining months.  Figure 5.38 
shows that when the work day/non-work day split is an accurate proxy for occupancy, then the 
model does a fairly good job of predicting power consumption. However, when occupancy 
cannot be predicted by this categorization, as in June in Figure 5.39, the model cannot 
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accurately predict power profiles.  Please note that we contacted UCOP about the sudden drop 
in power during the last week of October, but they found no obvious reason for the reduction.   

 
Figure 5.38 Plug load model: October power profile 

 
Figure 5.39 Plug load model: June power profile 

The last comparison metric I used was the normalized mean bias error (NMBE).  Figure 5.40 
plots the NMBE for MCModelv2 and MCModelv3 for each timespan (each month individually, 
January-June, and January-December). The graph also indicates the 10% maximum limit 
required by ASHRAE Guideline 14.  Neither model does particularly well in this metric, with only 
a few timespans meeting this requirement.  The poor performance can be explained by 
returning to Figure 5.38 and Figure 5.39 and considering the variance.  Recall that the NMBE is 
dependent on the difference between the measured and modeled data at each time step.  The 
NMBE is so high because the modeled data varied so much more than the measured data at 
each time step. 
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Figure 5.40 Plug load model validation: normalized mean bias error 

This comparison shows that including an additional variable (month), as MCModelv3 does, did 
not result in a plug load prediction which is significantly more accurate than the more simple 
MCModelv3. 
 
 
6. Discussion 
 

6.1. Occupancy patterns 
 
The trends from the baseline data analysis illustrate that occupants in the Franklin Building 
generally have very regular schedules, working from approximately 8:00 am to 5:00 pm during 
the week (excluding holidays) and not working on weekends.  UCOP occupants appear to have 
an office culture of regular work schedules with minimal overtime in the evenings or on 
weekends.  The daily profiles extracted from the data set illustrate a strong dependence on 
occupancy rates.  Because power consumption during occupied and unoccupied periods on the 
same day tracked one another, it indicates that when more people are in the office, more 
power is being consumed, and also that more devices are left running overnight. 
 
Figure 6.1 plots the combined UCOP fractional plug load schedule for work days and non-work 
days with a selection of published plug load equipment schedules.  As described in the 
literature review, these diversity schedules are often used in energy models to simulate power 
consumption of plug load devices and peak loads.  For clarity of presentation, only the profiles 
for "medium" size office buildings are included.  The published schedules are hourly, while the 
UCOP schedule is plotted at 15 minute time steps to preserve the nuance within each hour. 
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Figure 6.1 Comparison of UCOP daily profiles with published schedules in the literature 

This graph illustrates the difference in the published power profiles that were based on all plug 
load devices, and the UCOP profiles based on monitoring only a selected subset of devices.  The 
difference in workday overnight and non-workday power use indicates that the plug loads 
responsible for power consumption during unoccupied periods are not personal computing 
devices.  Most likely the elevated power levels during the workday overnight periods in the 
published schedules are due to shared devices (e.g. printers, servers) that are left on after the 
workers leave for the day.  If a comprehensive plug load study were conducted at UCOP, it 
would be possible to more completely compare this building to industry standard profiles. 
 
The work/non-work day dichotomy of power consumption evident in the UCOP data is similar 
to the divisions used in the published sources, although some sources provide different 
schedules for Saturdays and Sundays, while the UCOP data did not show a distinction between 
these two days.  The power use of the personal computing devices is a strong indicator of 
occupancy, and that is why I used those trends to inform the plug load model. 
 
The predictive plug load model considers day type and time step key variables in its algorithm.  
Essentially, the Monte Carlo simulation uses these as stand-ins for occupancy, which is the real 
predictor of plug load energy consumption.  The large discrepancy between the validation data 
and modeled output indicates that this simplification did not truly capture occupancy patterns. 
   
One of the assumptions of the model is that work days and non-work days (holidays and 
weekends) are significantly different due to dramatic differences in occupancy on these two 
types of days.  Actual occupancy data was not collected, and therefore occupancy could not be 
included as a variable in the model.  Thus, it follows that there may be periods of time where 
occupants are out of the office (vacation, working remotely, etc.) that the model does not 
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account for.  Indirectly, the model does account for occupants leaving their workstations for 
periods of time during the day, as this information is captured in the reduced power 
consumption of devices in sleep mode. 
 
The cumulative distribution functions (CDFs) from the training data might have been able to 
take out-of-office time into account if these periods were spread out across the year.  However, 
out-of-office events like vacations are likely concentrated during certain times of the year for 
scheduling reasons.  By including month as a variable, MCModelv3 was developed with the 
intention of picking up on some of these nuances. 
 
For example, Figure 5.3 and Figure 5.4 indicate that there is consistently lower power 
consumption in November and December for both full years of data, even when excluding 
holiday periods.  This might be because staff takes more holidays or there are more out-of-
office events occurring this time of year.  MCModelv2 had the highest normalized mean bias 
error (NMBE) in November and December, 53% and 42%, respectively, while MCModelv3 had 
much lower numbers, 11% and 24%, respectively.  Conversely, when the trends do not repeat 
themselves, of course MCModelv3 is not be an improvement on MCModelv2, as can be seen 
with September, where MCModelv2 had an NMBE of 14%, while MCModelv3 had an NMBE of 
31%. 
 
Although adding month as a variable in MCModelv3 was an improvement in some months, 
overall it was not significantly better at predicting the median power and variance of the 
measured data, and therefore was not providing value commensurate with the additional 
complexity and computing time a fourth variable added.  An improvement on this model would 
include a different variable to indicate occupancy, such as a minimum power threshold per 
occupant. 
 

6.2. Energy saving behavior 
 
As the literature review suggested, opportunities for saving energy through behavior hinge 
primarily on turning unused equipment off, rather than reducing use of equipment during 
business hours.  For monitors, this can be accomplished by using power management settings 
that put the device into sleep mode after a set period of inactivity (e.g. 10 minutes).  Similarly, 
for desktops, changing power management settings can go a long way towards reducing power 
use by setting timers to dim the display, turn off the display, and enter sleep mode (e.g. turn 
down the CPU).  The greatest potential savings will occur when occupants do not already have 
these settings in place, or do not engage in turning devices off when not in use (e.g. overnight, 
weekends, or just periods when occupants are not at their desk). 
 
As was observed, occupants monitored in this study already engage in plug load energy saving 
behaviors, which can be seen by the significant drop in overnight and weekend power use.  It is 
highly likely that many of these occupants already have the appropriate power settings on their 
computers, which means that any potential savings are likely to be small. 
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However, the data also show less power consumption overnight during the week, than on 
weekends.  This is a consistent trend overnight (i.e., the aggregated power level is close to 
constant), which suggests that more equipment is being left on during the week, than before a 
weekend.  I interpret this to show that there is a subset of occupants who do know that they 
should turn off their equipment, but have other reasons for leaving it on (e.g. leaving programs 
running, or to be able to access their machines remotely).  If these occupants need to keep 
computers on overnight, then potential savings are also likely to be small. 
 
One of the most significant differences in the work day profile comparison (Figure 6.1) is that 
the UCOP monitored devices have very short ramp up and ramp down periods at the beginning 
and end of the work day.  This kind of behavior indicates that occupants have similar work 
schedules.  And if they have similar work schedules, there are viable options for using timers 
and occupancy sensors to save energy by turning equipment off when not in use.  This can 
apply to the equipment monitored, as well as other devices that may be switched off when not 
in use. 
 
For the Cool Choices game, the energy analysis shows that because occupants were already 
engaging in energy saving behaviors, there was limited opportunity to make additional savings 
through behavior change alone.  For future interventions, it would be helpful to understand the 
office’s culture to better target what energy saving behaviors would be most effective, or if 
technological interventions might be more promising. 
 
In addition, with a larger sample size, it would be easier to distinguish new behaviors by using 
the plug load model to predict energy savings after the game.  If there had been sufficient 
energy data associated with Cool Choices participants, the model developed for this study could 
have been used as a way to evaluate expected energy savings, by comparing actual usage after 
the game with predicted use that was generated by a model trained with pre-game data. 
 

6.3. Occupant behavior and attitudes 
 
The Cool Choices pre- and post-game surveys provided us with insights into what motivated 
occupants to play the game, and how they felt about sustainability and saving resources in 
general. 
 
The responses to the survey questions suggest that players were generally conscious of 
behaviors that would save and waste energy.  In Figure 5.10, respondents generally agreed with 
statements that would lead towards saving energy or other resources, while disagreeing with 
statements that would lead towards resource waste, illustrating that they had the knowledge 
to distinguish different kinds of behaviors.  In Figure 5.11, by disagreeing with statements such 
as “People have the right to use as much energy as they want as long as they pay for it” and 
“My life is too busy to worry about making energy-related improvements in my home”, while 
agreeing with “It is worth it to me for my household to use less energy, in order to help 
preserve the environment”, it is clear that these respondents feel a sense of responsibility and 
awareness regarding sustainability and resource conservation.  At the same time, Figure 5.9 
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indicates that approximately half of respondents feel that they use similar amounts of energy, 
water, and gasoline as comparable households, indicating that while they are aware of what 
behaviors can save resources, they either do not always engage in them or they feel like most 
of their peers do engage in these behaviors, which puts them on equal footing.  This is in 
agreement with the findings from the literature review, which report that knowledge and 
attitudes are not necessarily predictors of energy saving behavior. 
 
The literature review also discussed how occupants might be motivated to save energy without 
financial incentives.  While the actions recommended by the Cool Choices game could result in 
lowered energy bills (e.g. replacing light bulbs or adding insulation), the post-game survey 
asked players to describe what motivated them to sign up (Figure 5.12 and Figure 5.13).  While 
saving money was cited by about half of players as a reason to sign up, it is interesting to note 
what other reasons players had, and to also compare what motivated players to sign up vs. 
what motivated them to select specific in-game actions. 
 
Two thirds of players stated that they signed up because the game was fun, but less than half 
reported choosing specific actions in the game because they were fun.  About half of players 
reported that encouragement by colleagues was a reason why they signed up to play, but less 
than a third stated that they selected actions based on what their coworkers were doing.  This 
suggests that the occupants were motivated by different factors when choosing to sign up for 
the game, and then choosing specific behaviors.  This could be explained in part because the 
game was not what they expected or, after seeing what types of behaviors were possible, they 
came to different conclusions.  It would be interesting to do a more granular version of this 
question where players are asked why they chose specific categories or types of actions to 
understand, more specifically, how they are motivated. 
 
 
7. Conclusions 
 

7.1. Baseline analysis 
 
The measured plug load data from the monitored work stations exhibit fairly regular power use.  
There is a clear distinction between work and non-work days, and very regular schedules on 
work days, indicating that most occupants are at their workstations between 8 AM and 5 PM. 
 
Desktops display the most variety in terms of power consumption, which suggests that their 
power use is the hardest to predict.  Monitors, on the other hand, have very regular power 
consumption patterns because they are either on or off, with no third power state in between.  
Laptops show very low power consumption, probably due to the fact that occupants with 
laptops may be more likely to work at locations other than their assigned workspace.  So the 
monitored data isn’t a true representation of total laptop energy use, but rather just the use 
patterns in the occupant’s workstation.  Task lights are the most infrequently used monitored 
device, which could suggest that general lighting is sufficient for most occupants.  This could 
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indicate a source of potential energy savings: by reducing ambient lighting in favor of low 
power task lights, general lighting power could be reduced. 
 
During unoccupied periods (outside of the typical 8 AM to 5 PM work day), desktops draw the 
most energy, followed by laptops, monitors and task lights (of which the latter two are drawing 
close to 0 W).  This pattern suggests that desktops not only draw more power during the day, 
but are also drawing more phantom loads when not in use.  This could be, in part, because 
laptop users take their device home at the end of the day and because laptops are more likely 
to be turned off at the end of the day. 
 
Lastly, in examining power consumption patterns, it is possible to infer occupant behavior in 
terms of device usage.  Desktops are generally used at a constant rate all day, while monitors 
experience large dips around lunch time, indicating that occupants engage power settings to 
put their monitor into sleep mode.  Laptop power consumption is very low and, as described 
above, is not necessarily indicative of actual laptop use behavior. 
 

7.2. Cool Choices game 
 
Cool Choices game participants were very conscious of what behaviors could result in energy, 
water, and waste savings and they self-reported regularly engaging in these behaviors both at 
work and at home.  Game participants were motivated to sign up for Cool Choices in part 
because the game looked fun and they wanted to win.  They were motivated to play because 
the actions were easy to do, good for the environment, and they could earn points towards 
winning.  Players ranged in engagement level, from playing daily to playing only a handful of 
days. 
 
Despite the fact that the game was administered from the workplace, occupants played more 
at home (in terms of actions they claimed) than at work, and reported discussing the game 
about equally at home and at work.  One of the main goals of Cool Choices is to reinforce 
conservation behavior in all parts of a player's life to encourage long-term habit formation.  The 
survey responses suggest that the players do think about Cool Choices outside of the 
workplace, but to fully evaluate long-term habit formation would require monitoring behaviors 
at home, which this study did not do. 
 
The Cool Choices players not only reported engaging in conservation behavior, but actively 
exhibited energy saving behavior in how they used their plug load devices.  For the five devices 
we monitored, the power use analysis showed either no change, or a small reduction in power 
consumption.  However, due to limited data, it's not possible to conclude that the game had a 
meaningful impact on plug load usage.  In addition, analysis of the data before the game 
suggests that some players were, in fact, turning their devices off when out of the office, 
meaning that there was limited potential for demonstrating energy savings as users were 
already engaging in energy saving behaviors. 
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7.3. Plug load model 
 
Using a Monte Carlo simulation, I created a simplified plug load model to predict power 
consumption based on device type, day type (work day or non-work day) and time step using a 
Monte Carlo simulation.  Per the baseline analysis, these variables were identified as most 
influential in determining power use. 
 
The model (MCModelv2) was underfit as it was not able to fully capture the power 
consumption behavior.  It did a reasonable job of predicting median power use, but vastly 
overestimated the plug loads’ variability (i.e., variance).  When occupancy was not well 
predicted by the work day/non-work day dichotomy, the model was increasingly unreliable.  
Even after adding an additional variable (month), the model was still not able to predict power 
consumption to an acceptable degree of accuracy per industry standard (NMBE ≤ 10% per 
ASHRAE Guideline 14).  To improve this type of model, a new, more accurate proxy for 
occupancy would be needed. 
 
 
8. Future Work 
 
Based on the lessons learned through this study, there are several recommendations for future 
work in this field. 
 

8.1. Baseline analysis 
 
Collect data from a wider range of plug load devices, including all of the other devices that an 
occupant may have and shared devices like high volume printers and severs.  This will provide a 
well-rounded view of plug load usage and more accurately illustrate power use during 
unoccupied periods when shared devices are most likely to be left on. 
 

8.2. Cool Choices 
 
To better understand why players were motivated, I recommend incorporating more detailed 
questions in the post-game survey to ask participants why they chose specific actions and 
action categories.  This would help understand if there were different reasons for picking 
various categories of actions, and what other motivations players had. 
 
In addition, for future interventions it would be helpful to survey office occupants to 
understand their current behaviors and attitudes, and then more fully tailor an intervention to 
target the behaviors that would be most instrumental in reducing energy consumption. 
 

8.3. Plug Load 
 
The Monte Carlo simulation could be improved in multiple ways.  The first is to establish a new 
proxy variable for occupancy, e.g. analyze individual device data by occupant and establish an 
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individual threshold for “occupied” based on a minimum power or which devices are in use.  
This method would require modeling individuals, rather than the aggregated approach 
described in this study.  The second improvement would require that the baseline data 
collection include monitoring for occupancy.  This would allow the model to use actual 
occupancy, rather than a proxy for occupancy, to predict plug load power consumption. 
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10. Appendices 
 

10.1. Appendix A. Enmetric 
 

10.1.1. Enmetric website interface 
 

 
Figure 10.1 Enmetric home page view with system status and power graph 
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Figure 10.2 Enmetric website data export page example 

10.1.2. Data export file header 
 
Table 10.1 Enmetric data export file header description 
Column name Description 
Account ID Identifier for CBE’s Enmetric account 
Node Hid Identifier for CBE’s Enmetric account 
Node Description Name of monitoring equipment (e.g. powerport) 
Channel Number Port number {1,2,3,4} 
Description Workspace identifier and device category 
Interval Start Time Date and time in UTC 
Average Power (W) Over 15 minute period 
Minimum Power (W) Over 15 minute period 
Maximum Power (W) Over 15 minute period 
Energy Used (W Hours) Over 15 minute period 
Average Frequency Over 15 minute period 
Average Voltage Over 15 minute period 
Average Current Over 15 minute period 
Average Power Factor Over 15 minute period 
Number of Measurements Over 15 minute period 
Channel On/Off % 1 is ON, 2 is OFF 
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10.2. Appendix B. Cool Choices 
 

10.2.1. Recruitment flyers 
 

 
Figure 10.3 Cool Choices recruitment flyers posted at UCOP 

 
10.2.2. Sample daily reminder email 

 
Subject: Your Cool Choices Summary 
 
Hi [first_name]! 
 
Login to play today! 
 
Week 1 Challenge – Claim at least ONE Cool Choice 
 
Now that you’re registered it’s time to start playing.  Did you know that everyone who plays just one 
card this week has the chance to win a prize? Well, it’s true, all you have to do is make a Cool Choice.  
One player will be randomly selected at the end of this week.  Good luck!    
 
Your Cool Choices yesterday: 
[actions_yesterday] 
 
Your team, [team name], is making strides because of you! 
    [team_total_actions] total actions 
    [team_total_points] total points 
 
The following cards are now available: 
[cards_released_today] 
 
Way to go and keep up the Cool Choices! 
Login to your account to play today! 
 
Thanks!  
The Cool Choices Team 
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10.2.3. Weekly challenge schedule 
 

Week Theme/Focus - 
Communications 

Engagement Tools* Recognition/Prizes 

Sign-up 
period 
 

 
 

Sign-up challenge/ incentives 4 prizes:  
- any combination of 

water bottles or totes 

Week 1  
 
 

“How to play/why 
play?” 
Who/What is Cool 
Choices? 

Offer tutorial cards first day, then 
start releasing 1-2 cards daily – 
randomly select a winner who 
fulfills this requirement 

2 prizes:  
- 1 for individual 

challenge 
- 1 random player for 

participation 
Week 2 
 
 

Teamwork – Team 
Photo card. 

Team Photo Challenge – feature 
top photo submissions; make 
them fun, wacky, crazy, etc. 

2 prizes:  
- 1 for individual 

challenge 
- 1 random player for 

participation 
Week 3 
 

 Team Photo Challenge Voting – 
players vote on their favorite 
team photo (cannot vote for their 
own) 

1 prize + team prizes:  
- letter of recognition 

from President or CEO 
for winning team(s)  

- 1 random player for 
participation 

Week 4 
 
 

Wellness - Share a 
healthy recipe. 

Healthy Recipe Challenge – 
randomly select a winner who 
played this card 
 
 

2 prizes:  
- 1 for individual 

challenge 
- 1 random player for 

participation 
Week 5  
 
 

Energy – Watch 2 
hours less TV today. 

Photo Challenge – will ask for 
photos of the theme card (i.e. 
watch 2 hours less TV today) 

2 prizes:  
- 1 for individual 

challenge 
- 1 random player for 

participation 
 

Week 6 
 
 

Final Week – post-
game survey and final 
play 
 
 

“Tell your story” - get testimonials 
from players about their 
experience in Cool Choices game – 
feature one each day 

Quotes can be featured on our 
social media, public use, on 
the news feed. 
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10.2.4. List of game actions and schedule of release 
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10.2.5. Cool Choices interface 
 

 
Figure 10.4 Cool Choices home page 

 
Figure 10.5 Cool Choices team and individual standings page 
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Figure 10.6 Cool Choices game play interface 
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10.2.6. Pre-game survey 
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10.2.7. Post-game survey 
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10.3. Appendix C. Plug load model results 
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