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ABSTRACT OF THE DISSERTATION

Algorithm Design for High-Performance CFD Solvers on Structured Grids

By

Hengjie Wang

Doctor of Philosophy in Mechanical and Aerospace Engineering

University of California, Irvine, 2021

Associate Professor Aparna Chandramowlishwaran, Chair

Physics-based simulation, Computational Fluid Dynamics (CFD) in particular, has substan-

tially reshaped the engineering design process by dramatically reducing the experimental

cost. The effectiveness of CFD is primarily driven by the power of High Performance Com-

puting (HPC) systems. However, the CFD community’s top-priority task has been to develop

high-order accurate schemes for complex physical phenomena like turbulence, instead of de-

signing algorithms towards better usage of the hardware. Moreover, the hardware is evolving

at a much faster pace than the numerical methods. As a result, we currently lack efficient

algorithms for the practical CFD schemes to fully leverage the HPC systems. In this dis-

sertation, we propose high-performance algorithm designs to improve the performance and

productivity of CFD solvers using multi-block structured grids on modern supercomputers.

First, to parallelize simulations, we need to partition and distribute the grid across proces-

sors. Current grid partitioners only factor communication metrics and ignore the underlying

network and architectures. To achieve portable performance, we introduce a novel cost

function combining the algorithmic metrics with the network properties. Based on the cost

function, we propose new partitioning algorithms that minimize the communication cost

while balancing the computation workload.

Second, the computation in CFD solvers is typically memory-bound and optimized with

xiv



cache tiling. The state-of-the-art tiling techniques are mainly designed for single-block grids

on shared memory systems, whereas multi-block grids distributed across many nodes are the

norm for realistic CFD applications. In this thesis, we demonstrate how to tile distributed

computation for multi-block grids. Furthermore, we propose novel pipelined algorithms to

hide the communication cost which improves both the performance and strong scaling of

CFD solvers.

At last but not least, constructing a Deep Learning(DL) surrogate for CFD can further

improve its productivity in engineering design. The surrogates must be able to predict for

solutions across different boundary conditions and geometries unseen during training. In

this dissertation, we design transferable DL surrogates for Boundary Value Problems (BVP)

resembling the CFD simulations for steady-state flow. Furthermore, we propose an iterative

inference method that transfers the prediction across arbitrary domain sizes and shapes.

xv



Chapter 1

Introduction

The rapid evolution of Computational Fluid Dynamics (CFD) during the last several decades

has fundamentally reshaped the design process in many engineering disciplines. An engi-

neering design process involving many configurations can take up to O(106) test cases. For

instance, in aircraft design, just the evaluation of one aircraft configuration involves simula-

tions under different combinations of the Reynolds (Re) and Mach (Ma) numbers, various

angles of pitch, yaw, and roll, as well as numerous positions of flaps, stabilizers, etc, adding

up to thousands of test cases. With CFD, most of the test cases can be simulated numerically

on supercomputers, drastically reducing the experimental costs.

The first step to simulate a fluid phenomenon with CFD is to discretize the computation

domain with a grid. Physical variables such as velocities and pressure are stored either in

grid cells or on grid vertices. Then, a CFD solver solves the governing equations for each

grid cell/vertex. There are two main types of grids, namely, structured and unstructured

grids. Structured grids are characterized by the regular connectivity between grid cells,

where each grid cell can locate its neighbor simply by shifting the cell’s indices, for instance,

grid cell (i, j)’s left neighbor is cell (i − 1, j). Structured grids are organized into blocks

1



(rectangular shapes in the i, j, k index space). Typically, grids for complex geometries such

as an aircraft or turbo-machinery contain on the order of 100’s of blocks [1]. The block

structure and regular connectivity render an identical mapping between the grid’s data to the

memory layout in DRAM, which makes the structured grid an ideal testbed for optimization

techniques such as cache tiling and vectorization. Unstructured grids, opposite to structured

grids, sacrifice the regular connectivity for the ability to form arbitrarily connected shapes to

resolve complex geometries, resulting in a more complex data layout and irregular memory

accesses. Both grids are widely supported by the major CFD solvers used in engineering and

have demonstrated similar accuracy in practice [2]. In this thesis, we focus on improving the

performance of CFD solvers on structured grids.

The size of grids for engineering applications in 3D such as vehicle and aircraft typically

exceeds the memory of a single processor. Therefore, the grid needs to be partitioned and

distributed to multiple processors. The connectivity between different partitions results in

data dependence. To parallelize the simulation, we need to exchange the dependent data

(called halos) between processors in addition to computation. As a result, the distributed

CFD simulation follows the workflow in Figure 1.1. The workflow starts with partitioning the

grid and proceeds to an iterative process of solver computation and halo communication. The

time cost of grid partitioning is typically negligible compared to the total cost of computation

and communication. The iterative process stops when the numerical solution has either

converged to a steady-state solution or reached a prescribed time.

When exploiting the above CFD workflow in an engineering design process, we estimate

the overall simulation cost as T̄solver · Nsim. T̄solver denotes the average solve time of one

test case using CFD and Nsim represents the number of cases numerically simulated. For

instance, in aircraft design, the majority of the test cases are simulated with CFD. Therefore,

Nsim ≈ Ntest, where Ntest represents the total number of test cases.

The effectiveness of CFD in engineering design is mostly determined by how we can mini-

2



Grid Partition

Solver Computation

Halo Communication

Stop?
False

Figure 1.1: The general workflow of CFD solvers. The stop criterion for steady problems
checks whether the solution has converged. For unsteady problems, it checks if the simulation
time has reached the desired value.

mize T̄solver ·Nsim with the power of modern High Performance Computing (HPC) systems.

Nonetheless, the CFD community’s top-priority task has been to develop high-order accurate

schemes for complex physical phenomena like turbulence rather than designing algorithms

that efficiently map to the underlying hardware. On the other hand, HPC architectures have

been evolving at a rapid pace predicted by the Moore’s Law, which has outpaced the devel-

opment of CFD methods. As a result, revolutionary algorithmic developments are necessary

to improve both the performance and scalability of current CFD solvers to fully leverage the

power of modern HPC hardware [3]. More specifically, we need to

1. minimize T̄solver by systematically optimizing the workflow of CFD solvers and,

2. reduce Nsim by designing fast surrogates for CFD solvers.

In the remainder of this chapter, we will first briefly describe the limitations of the state-of-

the-art algorithms that prevent us from achieving the above goals, then list our contributions

to overcome those limitations. We will provide more detailed context for understanding these

limitations in Chapter 2.
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The initial grid partitioning step plays an essential role in reducing Tsolver despite its negligible

time cost. It determines the workload of both solver computation and halo communication.

The computation workload is directly reflected by the number of grid cells on a proces-

sor. The communication workload is typically measured by the data volume (referred to as

communication volume) and the number of messages (referred to as edge cuts) transferred

through the network. Both metrics depend on how the grid is partitioned across proces-

sors. As a result, the grid partitioner must balance the computation workload and minimize

the communication cost across processors. Note that, in addition to the above metrics,

the communication performance also relies on the network properties such as latency and

bandwidth. Depending on those properties, some networks may be more efficient in trans-

ferring a few large messages while others may favor many small messages [4–6]. However,

the state-of-the-art grid partitioners [7–14] only factor communication metrics and ignore

the network properties, rendering the communication performance not portable across dif-

ferent networks. Moreover, current partitioners are primarily designed with a flat view of

the architecture, i.e., mapping each partition to a core and averaging the communication

cost among cores. However, modern multi-core architectures follow a core-socket-node hi-

erarchy. The communication between cores on the same nodes (intra-node) is much faster

than the communication across nodes (inter-node). The grid partitioner should only focus

on minimizing the inter-node communication. As a result, we are currently in the need of

novel partitioning algorithms that factor network properties and conform to modern HPC

architectures.

After achieving an optimal partition of the grid, we optimize the iterative process in Figure

1.1 in two aspects. First, we want to optimize the computation on structure grids, which

is typically memory-bound, i.e., limited by the time cost of moving data between CPU and

DRAM. Second, we want to hide the communication cost by overlapping it with computation.

There have been significant progresses in the algorithm design for both aspects from the

HPC community [15–18]. Nonetheless, it is still quite challenging to directly apply these
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// time loop

for(int t=0; t<tEnd; ++t)

// space loop

for(int i=0; i<iEnd; ++i)

for(int j=0; j<jEnd; ++j)

for(int k=0; k<kEnd; ++k)

compute();

Figure 1.2: Pseudocode for single-
block grids characterized by a perfectly
nested loop.

// time loop

for(int t=0; t<tEnd; ++t){

// nBlock - number of blocks

for (int b=0; b<nBlock; ++b){

// space loop for block b

for(int i=0; i<iEnd[b]; ++i)

for(int j=0; j<jEnd[b]; ++j)

for(int k=0; k<kEnd[b]; ++k)

compute();

// resolve blocks' dependency

exchange_block_boudary();

}

}

Figure 1.3: Pseudocode for multi-block
grids.

algorithmic advances to practical CFD solvers. This is because most studies are based on

cache tiling techniques for perfectly nested loops, which only corresponds to a single-block

structured grid, whereas we are mainly confronted with multi-block grids in engineering

practice. As seen from Figure 1.2, a perfectly nested loop only does computation in the

inner-most loop. To solve for multi-block grids, in addition to computation, we need to

resolve the data dependency between outer loops as shown in Figure 1.3, which disrupts the

perfectly nested loop structure and prohibits a direct application of the existing optimization

techniques. This will be further discussed in Chapter 4. Furthermore, the optimizations for

the computation step are mostly designed for shared memory machines. How to efficiently

optimize the distributed computation on structured grids is yet to be explored. As a result,

we currently need novel algorithms to optimize the distributed computation and overlap

communication specifically for multi-block grids.

After systematically optimizing the CFD workflow in Figure 1.1, we want to reduce Nsim

by building a surrogate for CFD solvers with Deep Learning, or say deep neural networks,

which requires significantly less computation. The key idea is that a neural network with

sufficient parameters can approximate any complex mapping from the flow inputs such as
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boundary/initial conditions and data snapshots to the flow solution. The parameters are

determined via a tuning process (called training) using sample solutions generated by a CFD

solver. Once properly trained, the neural network should be able to predict flow solutions us-

ing inputs unseen during training (called inference) with a limited loss in accuracy compared

to CFD solvers. For example, the state-of-the-art Physics Informed Neural Network (PINN)

[19] can infer the solution of a lid-driven cavity with less than 10% error compared to a CFD

solver [20]. The reduction of accuracy is because the training can at best penalize the mean

squared residual of governing equations by tuning parameters, which is prone to reaching

plateaus. On the other hand, CFD solvers can explicitly enforce the governing equations at

each grid cell/point to machine precision. Despite the loss in accuracy, the time for inference

(Tinfer) is typically negligible compared to the simulation time using a CFD solver (T̄solver),

i.e., T̄solver � Tinfer. Ideally, the simulation cost of a design process such as aircraft design

can be reduced as follow,

T̄solver ·Ntest → T̄solver ·Nsim + Tinfer ·Ninfer,

Ntest = Nsim +Ninfer

(1.1)

where Ninfer denotes the number of test cases inferred by the surrogate. The number of CFD

simulations is approximately reduced from Nsim ≈ Ntest, which covers all the test cases, to

Ntest−Ninfer, which only involves some challenging test cases that the less accurate surrogate

can not infer. Such cases may involve complex transient phenomena such as landing and

taking off, which are still open topics for the state-of-the-art CFD solvers.

To benefit from surrogate modeling, we need to maximize the number of test cases that a

surrogate can infer. This requires the model to be transferable, i.e., trained only on simple

geometries, boundary, and initial conditions yet applicable to complex unseen geometries and

conditions. In aircraft design, this ensures the model can be reused across cases with different

pitch/yaw/roll angles (set by boundary conditions) and various configurations (corresponding
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to different geometries). Moreover, to surrogate a CFD solver is a very demanding task

as both the data collection and training are very time-consuming. These costs can only

be amortized when the model is applicable to a large number of test cases. Nonetheless,

current studies are mostly designed to make predictions for a particular domain under specific

boundary and initial conditions. For example, a PINN surrogate that infers the flow over an

airfoil will become largely useless if the shape of the airfoil or the angle of attack varies. Some

recent work [21–24] can generalize the model to infer a moderate range of unseen boundary

conditions but they only apply to the specific geometries or grids used in training. As a

result, there is a pressing need for transferable surrogate models that can infer flows across

arbitrary geometries and conditions.

To address the above algorithmic needs in minimizing the simulation cost T̄solver ·Nsim, this

thesis makes the following contributions:

• Multi-Criteria Structured Grid Partitioner (Chapter 3)

We present the very first cost function that unifies the communication metrics and net-

work properties for partitioning multi-block structured grids. Based on the multi-criteria

cost function, we design novel partitioning algorithms for both cutting large blocks and

grouping small blocks. Evaluated with a benchmark solver, our algorithms achieve up to

2x speedup in communication compared to the start-of-the-art partitioners on a structured

grid based on SpaceX’s Falcon-Heavy rocket.

• Pipelined Distributed Stencil Computation (Chapter 4)

We demonstrate how to optimally extend the current optimizations for single-block grids

and apply them to distributed computation on multi-block grids. Moreover, we propose

a novel fine-grained algorithm to pipeline the computation and communication to achieve

overlap. Combining the optimizations for computation and communication, we can im-

prove the performance of the iterative process in Figure 1.1 by up to 3.4x.
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• Generalized Neural Network Surrogate for Solving BVP (Chapter 5)

We propose a novel deep learning model to solve the Boundary Value Problem (BVP)

for elliptic PDEs. The model can predict solutions for boundary conditions unseen dur-

ing training. Furthermore, we design an iterative inference method that can transfer the

model’s prediction to domains of unseen sizes and shapes. With an overlapped domain de-

composition, the iterative inference can be performed in parallel and scaled on distributed

machines. Evaluated by solving the Laplace equation, our network trained only on sim-

ple geometries can infer solutions for complex composite shapes with unseen boundary

conditions and only introduces a limited loss of accuracy.
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Chapter 2

Basics of CFD on Structured Grids

In this chapter, we introduce the basis concepts in developing high performance CFD solvers.

Section 2.1 provides more context and examples for multi-block structured grids. Section

2.2 describes the dominant patterns of computation and communication for structured grids.

Section 2.3 introduces the most widely used parallel programming models to implement the

computation and communication.

2.1 Multi-Block Structured Grids

Structured girds are composed of blocks of rectangular shapes in the index space, i.e., i, j

space in 2D or i, j, k space in 3D. Figure 2.1a presents a single-block structured grid sur-

rounding an airfoil. The grid lines are curved in the x, y coordinates space. As shown in

Figure 2.1b, the grid can be transformed into a rectangular shape by cutting it from the

airfoil’s trailing edge to the domain’s right boundary and unfolding the airfoil’s surface to

a flat edge. Note that the blue boundary in Figure 2.1b are connected in the original grid,

which results in data dependence within the block. We denote such boundary conditions as
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Block2Block.

Figure 2.1c illustrates a structured grid for a backward facing step. Because of the step,

this geometry cannot be properly resolved by a single block. Therefore, two blocks are used

for parts before and after the step respectively. The boundary connecting the two blocks

(marked blue) is Block2Block but unlike the airfoil, it introduces data dependence between

blocks. In general, the number of blocks increases as the geometry becomes more complex.

For geometries in aircraft design or turbo-machinery, the structured grid may need on the

order of 102∼103 blocks connected by Block2Block boundaries.

(a) A single block surrounding an airfoil.

airfoil

connected

(b) The single block in index space.

(c) A 2-block structured gird for backward facing step.

Figure 2.1: Examples of structured grids. The red color marks physical boundary conditions
and the blue color notes Block2Block boundaries.
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2.2 Stencil Computation and Halo Exchange

Stencil computation is the dominant computational pattern on structured grids, which is

characterized by the regular shape of the grid cell to update and its data-dependent neigh-

boring cells. Figure 2.2a, 2.2b, and 2.2c show three different stencil shapes in a 2D structured

grid, where the update of the blue cell depends on its pink neighbors. The size of a stencil is

measured by the stencil radius, which is defined as the largest distance between the cell to

update and its dependent neighbors. The three stencils in Figure 2.2 all have a unit radius.

The regular dependency between stencil cells indicates that both the floating-point opera-

tions (FLOPs) and DRAM traffic (data transferred between CPU and DRAM) are propor-

tional to the grid size. Therefore, the stencil computation is typically memory-bound on

modern architectures with high machine balance.

(a) Star (b) Box (c) Staggered (d) Halo

Figure 2.2: Different stencil shapes in 2D with a radius of 1. The color represents the value
assigned to the cell. In Star and Box stencils, the value is at the cell’s center. For Staggered
stencils, the value is located on the cell’s face. The update of a boundary cell needs cells in
the halo (marked gray).

To update a block’s boundary cell, the stencil needs cells outside the block’s boundary.

Hence, in Figure 2.2d, each block includes additional halo layers (marked gray) as thick as

the stencil radius. For physical boundary conditions such as wall, far-field, etc, the halo

values are set up numerically. For Block2Block boundaries, the halo values are exchanged

between the connected blocks, which is referred to as halo exchange.
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2.3 Programming Model
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Figure 2.3: Multi-Core Architecture in Modern Supercomputers

Figure 2.3 illustrates the architecture of processor nodes in the modern supercomputers. The

processor follows a core-socket-node hierarchy. Each core has its own CPUs and private cache

(omitted in the figure). Cores on the same socket share access to the Last Level Cache (LLC)

and DRAM via the memory control unit. On modern architectures, there are typically three

levels of cache. So the last level cache is also frequently denoted as L3 cache. Sockets on

the same node can access each other’s memory via inter-socket connections as shown by the

red arrow in Figure 2.3. However, accesses between a core to another socket’s memory can

be significantly more expensive than accessing its socket’s own DRAM, which is known as

the Non-Uniform Memory Access (NUMA) effect. In this thesis, we refer to both memory

accesses as shared memory access despite the non-uniform cost. Furthermore, each node

has at least one Network Interface Card (NIC) that connects the node to the network and

facilitates data transfer across nodes. Such transfer is typically much more expensive that

shared memory access.

The cores execute the computation in parallel and exchange data (such as halo exchange)

to resolve data dependencies via communication. We denote the communication within the
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same node and across different nodes as intra-node and inter-node communication respec-

tively. The intra-node communication is performed via shared memory access, while the

inter-node communication is conducted through the network. Message Passing Interface

(MPI ) has been the de facto standard for communication on distributed-memory machines.

MPI can handle both intra-node and inter-node communication internally under the same

elegant functional interfaces. This results in a flat programming model, MPI-everywhere,

where the computation is partitioned evenly among cores and each MPI process is mapped

to a single core to execute that core’s computation. The advantage of MPI-everywhere is

obvious that it allows the domain scientists to ignore the architecture’s hierarchy and eases

the development of domain softwares. The disadvantage is that using communication proto-

cols for intra-node communication can result in additional memory copies and overhead than

directly transferring data via shared memory access [25]. Moreover, partitioning multi-block

grids among all the cores tends to create a large amount of halo [26], potentially resulting

in running out of memory for large grids [27].

To better leverage the on-node resources, domain scientist have introduced a new program-

ming model, MPI+threads, where each MPI process is mapped to a node/socket and launches

threads to execute computation on cores. This resolves MPI-everywhere’s disadvantages in

two ways. First, the threads directly transfer the on-node data via shared memory, avoiding

unnecessary memory copies and overhead. Furthermore, it reduces the number of partitions

(because of less MPI processes), which in turn reduces the amount of halo and memory

usage.

MPI+threads supports four modes for inter-node communication, among which the Funneled

and Mutiple modes are of great research interest. In the funneled mode, only one thread

executes MPI routines for inter-node communication, overlapping with other threads’ tasks.

The multiple mode allows all the threads to communicate simultaneously, which can lead

to better communication performance. However, the start-of-the-art MPI implementations
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still use conservative approaches, such as a global critical section, to maintain thread safety

and MPI’s ordering constraints, severely deteriorating the multiple mode’s parallel efficiency.

Only until recently, the pioneering work [28] enables scalable communication in the multiple

mode but an efficient way to apply it to domain applications is yet to be explored. Therefore,

we will focus on MPI+threads funneled in this thesis. Among the available thread packages,

MPI+OpenMP is the most popular combination for OpenMP’s simplicity and wide support

from compilers. For the remainder of this thesis, we will use the term MPI+OpenMP for

MPI+threads and assume using the funneled mode by default.

Algorithm 2.1 Distributed Stencil Computation with MPI-everywhere

for t = 1 → nIter do
compute
pack halo to buffer
exchange halo
unpack buffer to halo

Algorithm 2.1 shows how the iterative process in Figure 1.1 is implemented with MPI-

everywhere. The function pack halo to buffer packs the data to be sent into a 1D buffer.

The function unpack buffer to halo unpacks the buffer’s data to the halo region. The func-

tion exchange halo consists of MPI routines that handle both intra-node and inter-node

communication.

Algorithm 2.2 Distributed Stencil Computation with MPI+threads

for t = 1 → nIter do
compute

. #pragma omp barrier
pack halo to buffer

. #pragma omp barrier

. #pragma omp master
exchange halo
copy halo shared mem

. #pragma omp barrier
unpack buffer to halo

. #pragma omp barrier

Algorithm 2.2 shows how to implement the the iterative process with MPI+OpenMP. All
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the functions are executed in parallel with threads except for exchange halo which is only

called by the master thread. The functions pack halo to buffer and unpack buffer to halo

are essentially the same as MPI-everywhere but only handle the halos in inter-node commu-

nication. The master thread performs inter-node communication in function exchange halo.

The function copy halo shared mem transfers halos between sub-blocks within the same par-

tition using shared memory access. This step is overlapped with inter-node communication.

A common mistake using threads is to allow multiple threads to access the same memory

location simultaneously (called Data Race), which leads to indeterministic results. Data race

is likely to occur between adjacent steps. For instance, in exchange halo the master thread

may access some location that another thread has not yet finished packing. To avoid data

race, we add thread barriers between each step in Algorithm 2.2. The barrier ensures that

all threads launched by the same process are synchronized before starting the next step.
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Chapter 3

Multi-Criteria Structured Grid

Partitioner

Following the CFD workflow in Chapter 1, the first step to run a CFD solver in parallel

is to partition the multi-block structured grids into sub-blocks and distribute them across

processors. A “good” partitioner should not only balance the computation workload among

the processors but also minimize the communication cost in the network. The workload can

be measured by the number of grid cells per processor. The communication cost is typically

estimated using algorithmic metrics. There are two primary metrics – the communication

volume and edge cuts. The former denotes the volume of data transferred through the

network and the latter refers to the number of messages communicated between processors.

Figure 3.1 exemplifies the metrics by partitioning two blocks into two partitions and assigning

one partition per processor. The two blocks have workloads of 90 and 20 respectively. The

large block in Figure 3.1a is cut into two sub-blocks. The larger sub-block forms one partition

(marked by brown). The smaller sub-block is grouped with the small block to construct the

second partition. The deviation from the average workload ((90 + 20)/2 = 55) is 5, resulting

in an imbalance of 5/55 in Table 3.1c. The blue color in Figure 3.1b marks the halo exchanges
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90

20

(a) 2 Blocks

50 40

20

40

30

(b) 2 Partitions

Metric value

Load Imbalance 5/55

Communication Volume 80 bytes

Edge Cuts 2

Shared Memory Copy 60 bytes

(c) Metrics

Figure 3.1: An example of partitioning 2 blocks into 2 partitions. Each solid box represents
a block/sub-block with the workload marked at its center. The brown dashed box denotes
a partition. The blue color indicates Block2Block boundaries and their halo exchanges with
message size noted in bytes. Each arrow represents two messages so the values are doubled
in the right table.

and the value above the arrow denotes the message size. Each halo exchange accounts for two

messages (one send and one receive). There is one halo exchange across processors, adding

up to two edge cuts and 80 bytes in communication volume. The halo exchange within the

partition is implemented by shared memory copy, leading to 60 bytes in DRAM traffic.

In addition to the metrics, the network properties such as bandwidth and latency also have

a substantial effect on the communication performance. Therefore, the estimation of com-

munication cost is both application-specific and architecture-specific. As a result, there are

numerous factors and trade-offs to consider when devising an optimal grid partitioner.

The state-of-the-art work on partitioning structured grids can be categorized into two classes

– top-down and bottom-up strategies. The top-down strategy either cuts off chunks of large

grid blocks or groups small blocks to fill the available capacity of partitions. Greedy heuristics

are typically suitable for this type of approach. A classical algorithm was proposed in [7]

and later studies [8–12, 29] can all be viewed as an improvement of a greedy framework.

The bottom-up strategy treats the grid as a graph and partitions it with a graph partitioner.

However, a direct application of graph partitioners such as METIS [30], CHACO [31] to

structured grids is not feasible since it fails to preserve the regular connectivity. The remedy
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is to first cut the blocks into smaller sub-blocks and then partition the grid as a graph of sub-

blocks [13]. Finally, the sub-blocks within the same partition are merged. A large number

of equal-size sub-blocks are desirable for graph partitioners but this is likely to result in

excessive blocks and halo regions which can, in turn, harm the communication performance

[14].

Prior works [7–14] mostly share the following drawbacks. First of all, most partitioners focus

on minimizing algorithmic metrics without regard for network properties like bandwidth

and latency. However, as shown by several studies, the same benchmark can have very

different communication performance depending on the network properties [4–6]. Therefore,

the blindness towards the network will render the performance non-portable. Second, current

partitioners are primarily aimed at reducing the communication volume by techniques such

as cutting at the longest edge [7–9]. Edge cuts are only implicitly factored by avoiding

splitting Block2Block boundaries [12]. Even for those well-developed graph partitioners

[30, 31], the users still need to choose between minimizing communication volume or edge

cuts. A cost function that combines both algorithmic metrics is yet to be explored. Finally,

current partitioners have only been studied with an MPI-everywhere model where each MPI

process is mapped to one core. Their communication mixes the fast shared memory access

with slow inter-node communication. Such performance can be misleadingly optimistic and

will misguide the design of partitioning algorithms. We argue that the grid partitioner

should be studied in the context of MPI+threads and focus on minimizing the inter-node

communication.

To overcome the above drawbacks, we propose a novel cost function in this chapter unifying

the algorithmic metrics and network properties, based on which we design new partitioning

algorithms following the top-down strategy. The remainder of this chapter is organized as

follows. Section 3.1 introduces two baseline heuristics following the top-down and bottom-up

strategies respectively for performance comparison. Section 3.2 presents our novel cost func-
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tion unifying the algorithmic metrics and network properties and details our new partitioning

algorithms. Section 3.3 compares our algorithms over the baseline heuristics by partitioning

two test structured grids. The resulting partitions are evaluated with a MPI+OpenMP based

benchmark solver. Section 3.4 summarizes the related works. Finally, Section 3.5 concludes

our contributions and points out further directions for partitioning structured grids.

3.1 Classic Partitioning Algorithms

In this section, we describe two baseline partitioning heuristics following the top-down and

bottom-up strategies respectively. Among the top-down algorithms, the classical greedy

heuristic [7] is most widely used in CFD software such as elsA [32]. Although researchers

[10, 12] claim improvements over the greedy heuristic, their performance enhancement is

observed in the context of a flat MPI model. As a result, the partitions’ effect on inter-

node communication is not entirely clear. In addition, their implementation details are not

available to re-produce their partitioners. Therefore we choose the classical greedy heuristic

as the baseline for top-down algorithms. As for the bottom-up algorithm, the creation of

sufficient small sub-blocks is critical while the choice of the actual graph partitioner is not

as important. Therefore, we choose METIS for its popularity and widespread use.

(a) Geometry

Block ID Size

0 224× 64× 80

1 16× 16× 16

2 16× 32× 16

3 16× 48× 16

4 16× 64× 16

(b) Block Sizes

Figure 3.2: Illustration of the geometry of the Bump3D grid with 5 blocks and its corre-
sponding block sizes.
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We explain different partitioning strategies using a synthetic grid called Bump3D which

consists of 5 blocks as shown in Figure 3.2. Bump3D has one block that is significantly

larger than the others which challenges the algorithms’ ability to cut large blocks. Bump3D

resembles the flow through a pipe with outlets on its upper surfaces.

Both the baseline heuristics and our new algorithms in section 3.2 will be evaluated in

the context of MPI+threads. From now on, we assume each partition is by default as-

signed to a single processor node. When computing the communication metrics, we view

the Block2Block connection across partitions as inter-node communication and the halo

exchange within one partition as shared memory copy.

3.1.1 Greedy Method

The greedy algorithm [7] follows the top-down strategy. At any step, it chooses the unas-

signed block with the largest workload (i.e., the maximum number of grid cells) and the

partition with the most remaining room. If the block exceeds the available capacity of the

partition, a sub-block is cut off to fill the remaining capacity and the remainder is added to

the list of unassigned blocks. Otherwise, the entire block is assigned to that partition. This

process is iterated until all blocks/sub-blocks have been assigned. The algorithm always

cuts across the longest edge so that the Block2Block boundary has the minimum surface

compared to cutting at other edges.

In the greedy algorithm, the cut position is round up to an integer, which can result in

load imbalance. For instance, if the largest block has a size of 8 × 8 × 32 and the average

workload W = 544, splitting along the longest edge at z = 8 or 9 would introduce 6.75%

load imbalance. Even worse, the algorithm may fail if the smallest surface of a block has

more cells than W . To address this limitation, we propose the following remedy. Given an

imbalance tolerance ε, a block of size Nx×Ny×Nz, Nx < Ny < Nz, and remaining capacity
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R of the most underload partition, if a cut position cz satisfying |R−NxNycz| < εW cannot

be found along the longest edge, the algorithm traverses possible cut positions cz and cy

in the longest and second longest direction to minimize the difference |R − Nxcycz|. Once

cut positions are located, the block is cut into four sub-blocks and a block of size Nxcycz is

assigned to the partition.

We denote the greedy algorithm [7] with the above fix as pure greedy (PG). PG strictly

satisfies the tolerance for load imbalance with a potential trade-off of communication cost.

When the prescribed tolerance is small, PG may create very small sub-blocks to fit in the

remaining room of available partitions. This will result in a large number of small sub-

blocks, which in turn increases both the communication volume and number of edge cuts.

Moreover, the arrangement of small blocks in PG does not respect the connectivity of blocks

and leads to increased communication volume. To see those effects, we partition Bump3D

into 16 partitions with PG. As seen from Figure 3.3, PG creates small blocks at the end of

the original large block. The communication volume is also large compared to our algorithms

in the next section (Figure 3.6).

3.1.2 METIS + Over-Decomposition

The bottom-up algorithm first decomposes the original blocks into smaller sub-blocks. The

sub-blocks along with their Block2Block connectivity are organized as a graph and parti-

tioned using a graph partitioner. After partitioning, the sub-blocks within the same parti-

tion are merged if permissible by their shapes and connectivities to reduce the number of

Block2Block boundaries.

Graph partitioners like METIS move vertices between partitions to achieve load balance and

reduce communication cost. If there are too few vertices to move or the vertices have large

variances in weight, the graph partitioner may produce imbalanced partitions. Therefore, it
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is desirable to have the number of small sub-blocks to be at least several times the number

of partitions and to be of equal size. We denote such decomposition as over-decomposition

and examine two over-decomposition methods. Both methods try to create sub-blocks of

as large as one-quarter of the average workload W . The first method is to decompose the

original blocks into elementary blocks [10] i.e., blocks with only one boundary condition on

each surface. If the elementary block is still too large to fit in one partition, it is further cut

by our IF algorithm proposed in Section 3.2.2. The second method is to directly decompose

the large blocks with IF.

(a) PG (b) METIS, elementary cuts (c) METIS, greedy cuts

Algorithm Imbalance ratio Total volume Total edge cuts Total cost

PG 0.035 2.19E+06 60 2.79E-3

METIS 1 0.214 1.72E+07 138 3.35E-3

METIS 2 0.103 2.47E+06 38 2.85E-3

(d) Metrics

Figure 3.3: Results of partitioning Bump3D into 16 partitions with PG and METIS+Over-
Decomposition. The latency and bandwidth are set to α = 10−4(s) and β = 109(bytes/s)
respectively. The tolerance for load imbalance is preset to 5%. Blocks of the same color
belong to the same partition.

As shown in Figures 3.3, different decomposition strategies can result in very different parti-

tions and metrics. The first method results in too many sub-blocks in this case. The second

method generates simple connectivities in the graph of sub-blocks and therefore easier to par-

tition. This indicates that the quality of partitions highly depends on the over-decomposition

heuristic. However, to the best of our knowledge, there is no theoretical guidance for choos-

ing the best over-decomposition heuristic. The practical choice is based on the developer’s
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experience and can be application-specific. In this thesis, we will use our IF algorithm.

Note that in Figure 3.3, the four original small blocks are grouped with their connected sub-

blocks in the same partition. This validates the graph partitioner’s strength in preserving

graph connectivities. However, it is also prone to load imbalance and large communication

cost compared with PG and our algorithms in the next section (Figure 3.6).

3.2 Partitioning Algorithms Factoring Network Prop-

erties

In this section, we first present a novel cost function which unifies communication metrics

(communication volume and edge cuts) and network properties (latency and bandwidth).

Then, we detail our new partitioning algorithms using the above cost function for cutting

large blocks and grouping small blocks.

3.2.1 Cost Criteria

The time to issue an inter-node message can be approximated using the α−β model [33, 34],

tmsg = α +
S

β
, (3.1)

where α denotes the latency, β is the bandwidth of the network, and S is the size of the

message. The latency represents the start-up time for issuing a communication. The second

term in Equation 3.1 describes the time to transfer a message of size S through the network.

For a Block2Block boundary condition with surface area A, the communication cost tb2b is
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estimated by

tb2b(A) = α +
A ·#halo · Scell

β
. (3.2)

The thickness of halo layers (#halo) and the size of data per grid cell (Scell) depend on

the specific CFD solver. We define the Total Communication Cost by summing the above

cost over all the inter-node messages, i.e., all the Block2Block boundaries connecting blocks

across different partitions,

∑
tmsg = α · edge cuts +

communication volume

β
. (3.3)

Using Equation 3.3, we not only combine communication volume and edge cuts but also

include the effects of network properties. Moreover, Equation 3.3 indicates that the edge

cuts contribute to the overall latency and the communication volume’s effect is coupled with

the network’s bandwidth.

Note that we use the α−β model solely as a cost function to capture both the communication

metrics and network properties rather than as a prediction of the actual communication time.

Such a prediction would not be realistic since this model’s simple formulation is derived

from several ideal assumptions about the network such as free of congestion, minimal queue

lengths, etc [35]. To profile the communication time accurately, more realistic models such

as logGPS [36] can be used and is beyond the scope of this thesis.

3.2.2 Algorithms for Cutting Large Blocks

The elementary operation in grid partitioning is to cut off a sub-block of a given workload.

In Algorithm 3.1, we demonstrate how to identify the optimal cut of a large block using our

new cost function. The function find min cut takes in a large block B, a workload Wcut to

cut off, a tolerance ε for imbalance, and optionally a partition P , then returns the optimal
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cut introducing minimum communication cost δtcut.

Algorithm 3.1 Find the cut of a block to fit in a given workload

1: function find min cut(B, Wcut, ε, cut, P )
. B: block to be cut.
. Wcut: workload to be cut off
. ε: tolerance
. cut: data structure for cut info
. p: current partition (optional input, empty by default)

2: δtmin =∞
3: for i = x, y, z do
4: Get area of i’s norm face Ai

5: posFloor = floor(Wcut(1− ε)/Ai)
6: posCeil = ceiling(Wcut(1 + ε)/Ai)
7: for pos∈[posFloor, posCeil] do

8: δtcut =
∑

b2b3pos

α + tb2b(Ai)−
∑
Bi∈P

tb2b(cut, Bi)

9: if δtcut < δtmin then
10: δtmin = δtcut
11: cut.pos = pos

Algorithm 3.1 starts by finding the possible cutting positions allowed by the tolerance ε

(lines 5-6). The communication cost of cutting a block, δtcut, is evaluated at line 8 for each

position. The first term tcut includes the latency introduced if the cut splits any Block2Block

boundary on the orthogonal surfaces (each cutting plane is orthogonal to four surfaces of

a block). Adding this term encourages the algorithm to align the sub-blocks’ boundary

with Block2Block boundaries. The second term adds the communication cost of the new

Block2Block boundary created by the cut using Equation 3.2. When the cut-off sub-block

is assigned to partition P , the Block2Block boundaries in contact with the blocks in P

become shared memory accesses, which is much faster than inter-node communication and

therefore subtracted from δtcut in the last term. The last term takes advantage of the blocks’

connectivity to reduce the overall communication cost. This way, we embed the cost function

in Equation 3.3 into cutting large blocks.

Given a large block fit evenly into multiple partitions, we use the function find min cut in

Algorithm 3.1 to improve two state-of-the-art algorithms, namely, Recursive Edge Bisection
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(REB) [37] and Integer Factorization (IF).

Recursive Edge Bisection (REB) The classical REB recursively bisects the block at

the longest edge until each resulting sub-block fits in a partition. Figure 3.4 illustrates REB

by partitioning a 2D block into 7 partitions. REB starts by bisecting the block at its longest

edge, the vertical edge in Figure 3.4, with a ratio of 4:3, and the two sub-blocks will be split

into 4 and 3 partitions respectively during later steps. The bisection ratio is chosen to cut

the block as even as possible while balancing the workload. The same procedure is repeated

recursively in step 2 and 3.

7

4

(a) step 0

3

4

4

(b) step 1

3

2

2

4

4/3 8/3

(c) step 2

3

2

2

2 2

4/3 8/3 3/2

3/2

(d) step 3

Figure 3.4: Partitioning a 2D block of size 4× 7 to 7 partitions. The bisections are marked
in blue. The number near each edges denotes its length.

Note that the bisection may intersect Block2Block boundaries and increases the edge cuts.

We improve REB in Algorithm 3.2 using find min cut to find the optimal bisection position.

The improved REB still chooses the bisection ratio based on the number of partitions (lines

4-5). Instead of cutting at the longest edge, the function find min cut traverses all the

edges and finds the bisection position that aligns the Block2Block boundaries and introduces

minimum communication cost (line 6). After bisecting the block, this procedure is applied

to the two sub-blocks recursively (lines 7-9).

To verify that the improved REB factors the network properties, we recursively bisect the

Bump3D grid into 16 partitions with latency α = 10−5s and α = 10−4s while fixing band-
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Algorithm 3.2 Improved Recursive Edge Bisection

1: function reb block(B, np)
. Block B fits in np partitions.

2: if np == 1 then
3: return
4: W = B’s workload
5: Wl = W · bnp/2c

np
,Wr = W −Wl

6: find min cut(B, Wl, ε, cut)
7: cut B into Bl with workload Wl and Br with workload Wr

8: reb block(Bl, bnp/2c)
9: reb block(Br, dnp/2e)

width β = 109byte/s. The resulting partitions are shown in Figure 3.6a and 3.6b respectively,

and the metrics are listed in Table 3.6d. We can see that our improved REB creates much

fewer edge cuts for larger latency values, successfully bounding the communication cost. Note

that applying the partition created for a low-latency network directly to a high-latency net-

work will be very inefficient for the excessive edge cuts. In this example, using the partition

with α = 10−5s for α = 10−4s results in a communication cost of 8.17× 10−3s, much higher

than current result (6.72 × 10−3s). This further validates the necessity to factor network

properties into grid partitioning.

Integer Factorization (IF) The classical IF finds a factorization of the given number

of partitions np according to the block’s length ratio, i.e., np = nx · ny · nz with nx : ny :

nz ≈ lx : ly : lz. Figure 3.5a exemplifies this by partitioning a 2D block of size 7 × 4 into

the 6 partitions, where the ideal factorization is 6 = 3 × 2. There are two limitations to

this decomposition. First, when np is prime, the unique factorization 1 · 1 · np may not be

proportional to the length ratio. Second, it may split Block2Block boundaries and increase

the communication cost. In [10], when np is prime, a sub-block is cut off to feed one partition

and the algorithm searches for an optimum factorization of np−1 to decompose the remaining

sub-block. This remedy is shown in Figure 3.5b. We propose a more generalized solution in

Algorithm 3.3 to address both limitations.
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Algorithm 3.3 compares two cases. First, decompose the block B according to the factor-

ization of np which introduces the minimum communication cost (lines 4-8). The cost of a

factorization tb2b(B, nx, ny, nz) is the maximum communication cost among nx · ny · nz sub-

blocks. Second, cut off a sub-block, Bcut of average workload and decompose the remaining

sub-block Brem by the factorization of np − 1 which results in minimum overall communica-

tion cost (lines 9-13). If the first case costs less than the second, the factorization for block

B is the optimum decomposition. Otherwise, the same comparison repeats on Brem.

4

7

(a) 6 partitions

4

7

(b) 7 partitions

Figure 3.5: Examples of Partitioning a 2D block of size 7 × 4 with IF. For 6 partitions,
the factorization close to the length ratio 7 : 4 is 6 = 3 × 2. For 7 partitions, the leftmost
sub-block is cut off to resolve the prime number. The remaining sub-block is factorized into
6 partitions based on the length ratio 6 : 4.

Algorithm 3.3 Integer Factorization

1: function factorize block(B, np)
. Block B fits in np partitions.

2: if np == 1 then
3: return
4: t0min =∞, t1min =∞
5: for factorization nx · ny · nz = np do
6: if tb2b(B, nx, ny, nz) < t0min then
7: t0min = tb2b(B, nx, ny, nz)
8: n0

x = nx, n
0
y = ny, n

0
z = nz

9: find min cut(B, W , ε, cut)
10: for factorization nx · ny · nz = np − 1 do
11: t1 = max(tb2b(Bcut), tb2b(Brem, nx, ny, nz))
12: if t1 < t1min then
13: t1min = t1

14: if t0min < t1min then
15: cut B by n0

x, n
0
y, n

0
z

16: else
17: factorize block(Brem, np − 1)

28



Figure 3.6c and Table 3.6d illustrate the 16 partitions created by IF. Each cut in IF cuts

through the entire block. Therefore, compared with REB, IF is more apt to align Block2Block

boundaries and reduces the edge cuts. On the other hand, the flexibility of choosing cut

positions renders REB to have less communication volume than IF.

(a) REB (b) REB α = 10−4s (c) IF

Algorithm α Imbalance ratio Total volume Total edge cuts Total cost

REB 1.0E-5 0.047 1.57E+06 66 2.23E-3

REB 1.0E-4 0.034 2.32E+06 44 6.72E-3

IF 1.0E-5 0.035 1.61E+06 66 2.27E-3

(d) Algorthmic Metrics

Figure 3.6: Partitions created by the different algorithms for the Bump3D grid when np = 16.
Blocks of the same color belong to the same partition.

3.2.3 Algorithms for Grouping Small Blocks

To design partitioning algorithms for small blocks, we initialize the communication cost

by summing up all the Block2Block connections as inter-node communication. Grouping

several small blocks into one partition can convert the blocks’ inter-node communication to

shared memory access and reduce the overall communication cost. Therefore, the grouping

algorithm should pack blocks connected by large Block2Block boundaries into the same

partition. Keeping this goal in mind, we propose the following two algorithms.

Cut-Combine-Greedy (CCG) The idea of CCG is to keep feeding the optimal small

block that converts the most inter-node communication to shared memory copy to the par-
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tition until the partition’s remaining room is fulfilled. Algorithm 3.4 depicts the function

find min company to identify the optimal small block. The function takes in the partition

to fulfill, P , and the remaining room, Wub, then finds the ID of the optimal small block,

cmpny. It traverses all the unassigned blocks. If a block fits in the remaining room Wub,

CCG computes the saved communication cost by subtracting the cost of all the Block2Block

boundaries connecting that block and partition P (line 6). If a block exceeds Wub, CCG uses

the function find min cut in Algorithm 3.1 to the find the optimal cut-off sub-block that

minimizes the communication cost. The optimal block is identified as the block or sub-block

that saves the most communication cost (lines 7-9 and 12-14). This algorithm is a greedy

heuristic since each optimal block only minimizes the communication cost for that step but

not for the final result.

Algorithm 3.4 Find company to fit in one partition

1: function find min company(P , Wub, cmpny )
. P : the partition to be filled
. Wub: upper bound of the company’s work load
. cmpny: ID of the company block

2: δtmin =∞
3: for block B ∈ {unassigned blocks} do
4: Get B’s work load W
5: if W < Wub then
6: δt = −

∑
Bi∈P

tb2b(B,Bi)

7: if δt < δtmin then
8: δtmin = δt
9: cmpny = B.ID

10: else
11: find min cut(B, Wub, ε, cut, P )
12: if cut.δt < δtmin then
13: δtmin = δt
14: cmpny = cut.ID

Figure 3.7 exemplifies CCG using 4 small blocks connected as a graph where each circle

denotes a small block with its workload marked at the center and each edge represents

a Block2Block connection with its communication cost noted. The average workload per
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partition is preset to 160. For a partition containing only block A (marked blue) in Figure

3.7a, CCG moves on to include block B because it reduces the most communication cost

(6) to shared memory copy as shown in Figure 3.7b. In the step 3, CCG first tries to

append block C to the partition to hide 8 (4+4) units of communication cost. However, this

would result in a total workload of 180 (A+B +C = 180), exceeding the average workload

W̄ = 160. Instead, CCG cuts block C into sub-block C1 and C2 with find min cut. C1 fits

in the partition’s remaining room and introduces minimum communication cost.

A:40

B:80

C:60

D:40

4

6

4

4

W̄ = 160, W = 40

(a) step 1

A:40

B:80

C:60

D:40

4

6

4

4

W̄ = 160, W = 120

(b) step 2

A:40

B:80

C1:40

C2:20

D:40

4

6

4

4 2

W̄ = 160, W = 160

(c) step 3

Figure 3.7: An example of grouping small blocks with CCG. CCG keeps including the small
block that reduces the most inter-node communication to shared memory copy. If that block
exceeds the available space of one partition, CCG will cut the block and only add the sub-
block that fits.

Graph-Growth-Sweep (GGS) The idea of GGS is to repeatedly use graph growing to

group small blocks. As shown in Algorithm 3.5, GGS first assigns each empty partition

a small block (lines 4-5). Using the small block as a seed, GGS starts the graph growing

procedure for each partition. If including a block that has been added to another partition

can reduce the overall communication cost, the block will be saved for the current partition

(lines 8-14). The saved blocks are sorted by the amount of communication reduced and

then assigned to the current partition until it is fulfilled. We define the application of graph

growing to all partitions as one sweep. The partitions are swept repeatedly until no more

blocks can be shifted across partitions to reduce the communication cost.
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Algorithm 3.5 Graph-Growth-Sweep (GGS)

1: Assign each partition a small block
2: while blocks can be assigned do
3: for all p ∈ P do
4: if p.empty() then
5: Assign a block to p
6: else
7: for all Block B connected to blocks in p do
8: if B fits in p’s room then

9: B.δt = −
∑
Bi∈p

tb2b(B,Bi)

10: if B.assigned() then
11: pB := B’s partition

12: B.δt = B.δt+
∑

Bi∈pB

tb2b(B,Bi)

13: if B.δt < 0 then
14: Save B in block array blks

15: Sort blks in ascending order of blks[i].δt
16: while !p.full() and i < blks.size() do
17: Assign blks[i] to p
18: i++

Figure 3.8 illustrates the process of GGS by grouping 5 small blocks into two partitions.

The average workload per partition is preset to W̄ = 120. We initialize the two empty

partitions with block A and D respectively. After one sweep, the two partitions marked by

blue and brown in Figure 3.8b contains connected blocks found via graph growing. Note

that the Block2Block connections between block C and the second partition (marked brown)

introduce a communication cost of 8, more than the cost (6) saved by assigning C to the

first partition (marked blue). Therefore, GGS shifts C to the second partition during the

second sweep, reducing the overall communication cost by 2 (8 - 6). As a result, the first

partitions become underloaded and will be filled with other blocks in future sweeps.

Compared with CCG, GGS avoids cutting small blocks as much as possible and therefore

is better at reducing edge cuts. On the other hand, CCG is more aggressive at minimizing

communication volume for its greedy nature.
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Figure 3.8: An example of grouping 5 small blocks into 2 partitions with GGS. The partitions
are marked by blue and brown respectively. The average workload W̄ is preset to 120. W1

and W2 denotes the workload for the first and second partition respectively. Two sweeps are
depicted.

3.2.4 Combined Algorithms and Partition Adjustment

We combine the algorithms for cutting large blocks and grouping small blocks via Algorithm

3.6. The algorithm traverses all the blocks. If a block’s workload exceeds the average, it will

be cut into a large sub-block Bl that fits evenly into multiple partitions and a small sub-block

Bs which is appended to the list of small blocks. The large sub-block Bl is partitioned with

REB or IF. After all the large blocks are partitioned, the small blocks are grouped with CCG

or GGS.

Unlike PG, both REB and IF may generate blocks that exceed the prescribed load imbalance

tolerance at the trade-off of reducing communication cost. In case the computation becomes

too imbalanced, we use a greedy heuristic to adjust the workload between overloaded and

underloaded partitions. We denote a shift between two partitions as a sub-block cut from

a block in one partition and moved to the other partition. The adjustment heuristic sorts

all possible shifts from overloaded partitions to underloaded partitions according to its com-

munication cost using an efficient Bucket List structure introduced in [38]. The adjustment

starts from the shift that results in the minimum communication cost and updates the par-
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Algorithm 3.6 Combine the algorithms for cutting large blocks and grouping small block
for general multi-block grids

1: Compute average workload per partition W̄
2: smallBlocks = []
3: for block B ∈ {all blocks} do
4: Get B’s work load W
5: if W > W̄ then
6: Wl = bW/W̄ c · W̄
7: find min cut(B, Wl, ε, cut) → large sub-block Bl, small sub-block Bs

8: Partition Bl with REB or IF
9: smallBlocks.append(Br)

10: else
11: smallBlocks.append(Br)

12: Group small Blocks with CCG or GGS.

tition and Bucket List until all the overloaded partitions are within the given imbalance

tolerance.

3.3 Experiments and Results

In Section 3.2, we proposed a novel cost function and incorporated it into two heuristics for

cutting large blocks (REB and IF) and two novel algorithms for grouping small blocks (CCG

and GGS). This leads to four combinations namely, REB+CCG, REB+GGS, IF+CCG,

and IF+GGS. To evaluate their performance, we apply all four combinations to two multi-

block structured grids including Bump3D shown in Figure 3.2 and a rocket model based

on SpaceX’s Falcon-Heavy. We simulate a benchmark solver using a 3D 13-points star-

shaped stencil with the resulting partitions. The experiments are conducted on the Mira

supercomputer at the Argonne National laboratory. For the remainder of this section, we

first describe the test grids and the experiment setup in detail, then analyze the results for

the above grids.
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3.3.1 Experiment Setup

Test Multi-block Structured Grids The first test grid is Bump3D introduced in Section

3.1. Here we refine the grid 4 times in each dimension as shown in Table 3.1. Since the grid is

dominated by a single large block (block 0), this test is aimed at evaluating the partitioner’s

capability to decompose large blocks.

Table 3.1: Refined blocks of the Bump3D grid.

Block ID 0 1 2 3 4

Workload 7.3E+7 2.6E+5 5.2E+5 7.8E+6 1.0E+6

The second grid is based on the released geometric info of SpaceX’s Falcon-Heavy rocket

[39]. As shown in Figure 3.9, the complex geometry results in 769 blocks with varying block

workloads. There are hundreds of small blocks and a few blocks significantly larger than the

others. Therefore, this grid will challenge the partitioner in both cutting large blocks and

grouping small blocks.
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Figure 3.9: A Rocket Model consisting of 769 blocks.

Benchmark Solver The experiments are conducted with a hybrid MPI+OpenMP Jacobi

solver. The computation is a finite difference scheme using a 3D 13-points star-shaped

stencil. The communication consists of the exchange of one double precision variable i.e.,

8 bytes per halo cell, for two halo layers extended outside each block’s boundary. The
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numerical experiment is done in the manner outlined in Algorithm 2.2 for 512 iterations

and the average running time per iteration is reported. We are using the MPI+threads

programming model where we assign one partition per processor node. Note that both the

estimated communication cost and the measured communication performance only include

the effect from inter-node communication, excluding shared memory copy.

Platform and Architecture We run the benchmark solver with the partitioner on the

Mira supercomputer at the Argonne National Laboratory. Each node has a PowerPC A2

processor with 16 cores clocked at 1.6 GHz with 1GB DDR3 memory. The interconnect is

a 5D torus. We obtain the latency and bandwidth of Mira using a ping-pong benchmark,

i.e., timing two adjacent nodes exchanging messages and fitting Equation 3.1 with the least

squares method as shown in Figure 3.10. The latency and bandwidth are measured as

1.73e-05 s and 1.77e+09 bytes/s respectively.
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Figure 3.10: α− β model fitted on Mira.

3.3.2 Metrics

Table 3.2a shows the imbalance ratio and the total number of sub-blocks of different parti-

tioning algorithms for Bump3D and the rocket models. Figure 3.11 compares the communi-

cation volume, edge cuts, and communication cost of different heuristics for both grids. All
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the metrics are obtained for 64 - 4096 partitions with the latency and bandwidth of Mira as

inputs. Note that the number of partitions equals the number of processor nodes since we

assign one partition per node.

Bump3D This test challenges REB and IF’s capabilities to minimize the communication

cost since the decomposition of Bump3D is dominated by cutting a single large block. Using

CCG or GGS leads to similar results. Across the board, all the schemes result in significantly

less communication volume compared to PG at all processor counts. This is because PG does

not take into account the connections between blocks at all. On the other hand, METIS has

the highest number of total edge cuts in Figure 3.11c, since the over-decomposition creates

an excessive number of sub-blocks as shown in Table 3.2a. As a result, both PG and Metis

have a higher total communication cost compared to REB and IF. The results also depict

that IF leads to more communication volume but fewer edge cuts than REB, which confirms

the analysis in Section 3.2 that IF is better at reducing edge cuts while REB is better at

reducing communication volume.

The total communication cost captures the effect of both communication volume and edge

cuts as given by Equation 3.1. For instance, on 64 nodes, PG creates fewer edge cuts but

more communication volume than all the other algorithms. The total cost indicates that

in this case communication volume plays a more important role than edge cuts and PG

results in a higher cost than the other algorithms. On the other hand, on 4096 nodes, IF has

the lowest communication cost. This indicates that at the highest processor count used for

Bump3D, reducing the edge cuts is more critical than reducing the communication volume.

This further validates the need to factor network properties into grid partitioning.

Note that in Table 3.2a, PG is the only algorithm that bounds the load imbalance within the

given tolerance (ε = 5%) for all cases while METIS and IF cause more than 20% imbalance at

4096 nodes. Unlike PG, REB and IF don’t pay the penalty of creating an excessive number
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of sub-blocks to satisfy the load balance tolerance. This trade-off between load balance and

communication cost will be further discussed in Section 3.3.3.

Rocket Model For 64-256 nodes, METIS results in the lowest communication volume,

edge cuts, and communication cost. Second to METIS are algorithms using CCG to group

small blocks. To explain this, we introduce two parameters n̄sm and %npsm. n̄sm denotes

the average number of small blocks per partition after cutting large blocks and %npsm is

the percentage of partitions filled with small blocks. As seen from Table 3.2b, for 64-256

nodes, more than 60% of the partitions are made up of small blocks and such partitions have

more than 4 sub-blocks on average. Therefore, the partitioner’s ability to group small blocks

determines the partition’s quality. As a graph partitioner, METIS is good at exploiting

connectivity to reduce communication cost. As shown in Figure 3.12, although METIS

creates more halos than other algorithms, it maps a large percentage of halo exchange to

shared memory copy. A similar trend can also be observed for CCG, which uses connectivity

in a greedy fashion to reduce communication. On the contrary, PG does not take into account

the blocks’ connectivity and hence introduces the highest communication cost.

For 512-4096 nodes, n̄sm decreases with the number of partitions and the significance of

grouping small blocks damps. METIS loses its strength at large nodes count (1024 - 4096)

and produces the most edge cuts and the worst communication cost due to the large number

of small sub-blocks created by over-decomposition. REB+GGS results in the lowest com-

munication cost because REB minimizes the communication volume in cutting large blocks

while GGS avoids introducing new edge cuts between small blocks. Surprisingly, PG results

in comparable or even less cost compared with our algorithms at 1024 and 2048 nodes. Un-

like Bump3D where the largest block occupies the majority of the partitions, the largest

block here only occupies 12 and 25 partitions on 1024 and 2048 processors respectively. As a

result, PG’s greedy heuristic of cutting at the longest edge leads to a near optimum partition.
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Table 3.2: Results of load imbalance and the number of sub-blocks (nsub) for different parti-
tioning heuristics for Bump3D and the rocket model. In all tests, the number of partitions
(np) equals the number of processor nodes used, which spans from 64 to 4096. The bold
black and red fonts represent the best and worst metrics respectively.

(a) Bump3D

np 64 128 256 512 1024 2048 4096

Imbalance PG 0.035 0.046 0.045 0.048 0.042 0.047 0.050

Imbalance METIS 0.256 0.517 0.491 0.516 0.226 0.253 0.257

Imbalance REB+CCG 0.035 0.050 0.044 0.075 0.106 0.100 0.134

Imbalance REB+GGS 0.035 0.050 0.044 0.075 0.106 0.100 0.122

Imbalance IF+CCG 0.035 0.019 0.035 0.035 0.043 0.086 0.214

Imbalance IF+GGS 0.035 0.019 0.035 0.035 0.043 0.086 0.214

nsub PG 65 211 275 601 1090 2505 4855

nsub METIS 89 166 421 866 1638 3532 7103

nsub REB+CCG 67 131 259 514 1025 2048 4096

nsub REB+GGS 67 131 259 514 1025 2048 4096

nsub IF+CCG 67 129 258 513 1025 2048 4096

nsub IF+GGS 67 129 258 513 1025 2048 4096

(b) Rocket Model

np 64 128 256 512 1024 2048 4096

nsm 12 7.1 4.3 2.6 1.7 1.6 1.8

%npsm 100% 84.3% 69.5% 57.2% 41.5% 22% 9.8%

Imbalance PG 0.005 0.028 0.022 0.040 0.047 0.049 0.049

Imbalance METIS 0.097 0.210 0.283 0.311 0.729 0.973 0.236

Imbalance REB+CCG 0.100 0.100 0.100 0.097 0.100 0.089 0.098

Imbalance REB+GGS 0.049 0.049 0.034 0.048 0.047 0.066 0.118

Imbalance IF+CCG 0.100 0.100 0.100 0.059 0.097 0.078 0.099

Imbalance IF+GGS 0.049 0.049 0.034 0.048 0.059 0.082 0.109

nsub PG 769 789 847 995 1466 2445 4585

nsub METIS 810 843 1005 1527 2652 4715 9006

nsub REB+CCG 787 817 927 1147 1668 2620 4620

nsub REB+GGS 769 789 847 993 1477 2443 4443

nsub IF+CCG 787 817 927 1147 1668 2617 4614

nsub REG+CCG 769 789 847 993 1486 2441 4429
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Figure 3.11: Metrics of different partitioning algorithms for Bump3D and Rocket Model. np

denotes the number of partitions. For Bump3D, IF and REB are coupled with CCG. For
Rocket Model, CCG and GGS are applied with REB.
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However, at 4096 nodes, the largest block occupies 51 partitions and PG’s disadvantage of

creating excessive blocks re-appears and increases the communication cost.
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Figure 3.12: The total amount of halo data for PG, REB+CCG, REB+GGS, and METIS
from left to right for the rocket model.

3.3.3 Performance Results

We report the running times for different partitioning algorithms coupled with the Jacobi

solver at large nodes count (1024 - 4096) in Figure 3.13. The time consists of communication,

computation, and others which is mainly the time for packing and unpacking the halos for

inter-node communication (refer to Algorithm 2.2)

Bump3D The results in Figure 3.13a confirms two expectations based on the trend of com-

munication cost in Figure 3.11e. First, PG and METIS achieve the worst and the second

worst performance for 1024-4096 nodes respectively. Second, IF achieves the best perfor-

mance across the broad. Compared to PG, IF obtains 5.8-15x speedup in communication

and up to 3.14x in the overall running time. IF’s superior performance for Bump3D indicates

the significance of reducing edge cuts at large nodes count, further validating the necessity

to incorporate edge cuts in the cost function. Moreover, Table 3.2a shows that IF results
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in as much as 20% load imbalance while PG maintains the imbalance under the prescribed

tolerance. This concludes that the trade-off of computation balance for lower communication

cost can be beneficial especially for large nodes count.
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(b) Rocket Model

Figure 3.13: The average running time of 1 iteration of the Jacobi solver coupled with the
different paritioners for the Bump3D (left) and Falcon Heavy (right) grids. Each bar from the
left to right represent the performance of the solver coupled with PG, METIS, REB+CCG,
IF+CCG, REB+GGS, and IF+GGS respectively.

Rocket Model The performance results for the rocket model as seen from Figure 3.13

are likewise consistent with the communication cost estimation in Figure 3.11f except for
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METIS at 4096 nodes. METIS achieves the worst performance at 1024 and 2048 nodes as

predicted by the communication cost in Figure 3.11f. However, the unexpected reduction of

its communication time at 4096 nodes requires further investigation. PG leads to slightly

better performance than algorithms using CCG and IF+GGS at 1024 and 2048 nodes but has

the worst runtime at 4096 nodes. As explained in Section 3.3.2, the sub-optimal performance

at 4096 node is due to PG’s drawback of creating too many small blocks for partitioning

large blocks. The best performance comes from REB+GGS, which achieves 1.5× overall

speedup and 2.1× better communication performance compared to PG.

For both grids, the communication time stops scaling at 4096 nodes for the Jacobi solver while

the communication cost estimated by the α− β model still continues to scale. As remarked

in Section 3.2.1, the α−β model is only used as a cost function rather than as a prediction of

the communication runtime. Nevertheless, it is still worthwhile to analyze the gap between

the cost model and the actual measured time. Two factors may contribute to this gap. First,

in our performance experiments, we ignore the topology of the network. Communication cost

between any two partitions is estimated based on the latency and bandwidth values measured

using a ping-pong benchmark between two adjacent nodes. However, two partitions may be

mapped to two nodes that are physically separated by several hops. Second, some fraction of

the total communication time is spent on waiting for other processes to issue their messages

sends. This idle time may take up to 80% of the total communication time [40] for some

applications. The waiting time, in turn, depends on several factors such as the overall time of

communicating processes, load imbalance, and the congestion in the network. Nevertheless,

as observed by the experimental data, the cost function is still an effective guide for grid

partitioning and leads to better performance than the current state-of-the-art heuristics for

complex structured grids.
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3.4 Related Work

Among the top-down strategies, the greedy heuristic [7] is the most widely adopted method.

Recursive Edge Bisection (REB) [37] is a good alternative to the former. In [41], a greedy

heuristic is combined with REB. At any step, the largest block is assigned to the most under-

loaded partition. After assigning all blocks, if a certain number of partitions is overloaded,

then the same number of large blocks is bisected in half at the longest edge. This process

is repeated until all partitions are within the load imbalance tolerance. It is hard to say if

this hybrid approach is better than the classical greedy heuristic [7] since no comparison has

been made.

A decomposition according to the block’s aspect ratio is optimum in the number of edge

cuts. This idea is used in [10] for 2D grids. Compared to REB [37], this strategy results

in less imbalance but more communication volume. No performance comparison is made.

More recently, this algorithm has been extended to 3D problems [42]. Given the number of

partitions, all their test grids are made of blocks larger than the average workload. Therefore,

the grouping of small blocks is not clearly shown.

In [12], large blocks are cut into cubic sub-blocks as much as possible because, for a fixed

volume, the cubic shape has the minimum surface area. The residual blocks are assumed to

have a minor effect on performance. Coupled with a CFD solver, they demonstrate 1.2−1.4×

speedup up to 800 processes against the greedy heuristic [7]. However, the communication

time stops scaling between 300-400 processes.

In the above works [7, 10, 12, 37, 41], the communication volume can be viewed as the cost

function. In [11, 43], the total running time is chosen as the cost function and balanced by

grouping small sub-blocks with a greedy heuristic similar to [7]. The communication time is

estimated using the network’s bandwidth but misses the effect of the latency.
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Compared to top-down strategies, unfortunately, there is considerably limited literature on

bottom-up strategies for multi-block structured grids. The idea is first proposed in [13] where

the original blocks are split into small sub-blocks, the number of which needs to be three

times more than the partitions. Then, a graph partitioner is used to partition the small

blocks. This algorithm is compared with top-down algorithms on a 2D multi-element and

demonstrates improved performance. More recently, a new method for decomposing the

original blocks is proposed in [14] which results in fewer blocks and communication volume

than decomposing the blocks with REB. The effect on the performance of a solver is not yet

assessed.

To the best of the author’s knowledge, we present the very first work to unify the algorithmic

metrics and network properties in partitioning multi-block grids. Our grid partitioner not

only combines the communication volume and edge cuts but also factors the network’s latency

and bandwidth.

3.5 Summary and Future Work

In this chapter, we have introduced a novel cost function based on the α − β model to

express the communication cost incurred in partitioning multi-block structured grids. To

the best of our knowledge, this is the first cost model that unifies the communication vol-

ume, edge cuts, and network properties. Based on the cost function, we have improved

two heuristics for cutting large blocks (REB and IF) and proposed two new algorithms for

grouping the small blocks (CCG and GGS). Those algorithms are combined to derive a new

grid partitioner following the top-down strategy. We evaluate the partitioner with a hybrid

MPI+OpenMP Jacobi solver for two test structured grids, Bump3D and the rocket model,

on the Mira supercomputer. Compared with PG, our algorithms result in 5.5−15× speedup

in communication for Bump3D and 1.5× speedup for Falcon Heavy at 4096 nodes.
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We believe the present grid partitioner is a critical precursor to achieve portable communi-

cation performance for CFD solvers. Nonetheless, factoring the network’s latency and band-

width is not good enough. The actual communication time is also influenced by other factors

including the network contention, synchronization, etc. A further step towards portable per-

formance is to incorporate more accurate communication models such as [36, 44].

The present partitioner follows the top-down strategy, which is still largely a greedy strategy.

The algorithms except for GGS are aimed at minimizing the communication cost at each step

of cutting large blocks or grouping small blocks. Like any greedy method, our partitioner

is prone to missing the global optimal solution. This limitation can be overcome using

reinforcement learning (RL). A well-tuned RL model should be able to predict the optimal

cutting/grouping actions to achieve the global optimal partition. We will pursue this in our

future research.
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Chapter 4

Pencil: Piplined Distributed Stencil

Computation

After designing an optimal partitioner for structured grids, we move on to the iterative

process of solver computation and halo communication in the CFD workflow. As described in

Chapter 2, stencils are the dominant computational pattern for CFD solvers using structured

grids. In stencil computations, both the number of floating-point operations (flops) and

memory accesses are proportional to the grid size. As a result, stencils are typically memory-

bound on modern architectures with high machine balance. Moreover, stencils are also

characterized by significant data reuse. We illustrate this by solving a 2D Laplace equation,

∇2p = 0 using Finite Difference on a uniform grid (constant cell size h). After discretization,

the value at grid cell (i, j) is advanced from the nth to the (n + 1)th iteration by averaging

its neighboring cells,

pn+1
i,j = w0

pni−1,j + pni+1,j + pni,j−1 + pni,j+1

4
+ w1p

n
i,j, (4.1)
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where w0 and w1 denote the weights in average. This corresponds to the 2D star-shaped

stencil in Figure 2.2a. As the computation moves from cell (i, j) to (i, j + 1), the values pni,j

and pni,j+1 are reused. Similar reuse can also be found in the ith dimension, i.e., the entire ith

row is reused to update the (i+ 1)th row.

Cache tiling, specifically temporal tiling with polyhedral techniques can effectively exploit

data reuse patterns to optimize memory-bound applications. Temporal tiling views the it-

erations traversing the spatial dimensions and the iterations in time as one iteration space

and decomposes this space into polyhedral tiles. The iterations in one tile are fused and

executed entirely in cache, significantly improving cache reuse and performance. Several

temporal tiling algorithms have been proposed in literature such as overlapped tiling [45–

48], trapezoidal tiling [49, 50], diamond tiling [51–54], and tessellating tiling [55, 56]. A

detailed summary of the state-of-the-art tiling algorithms can be found in [15, 16]. Tilings

can also be applied via automatic parallelization tools like Pluto [57, 58] and domain-specific

compilers like Pochoir [59], PolyMage[60], and Halide [61]. As highlighted in Chapter 2, the

above tiling algorithms and tools are aimed at stencil computations on shared-memory ma-

chines and, more strictly, for single-block grids resulting in perfectly nested loops. However,

in realistic CFD applications, we are confronted with multi-block grids distributed across

multiple processors. To the best of our knowledge, none of the above state-of-the-art tiling

algorithms and tools apply to multi-block grids on distributed systems.

In addition to optimizing the memory-bound computation, we also want to reduce the com-

munication time. We demonstrated in Chapter 3 that an optimal partition can effectively

minimize the communication cost. Here we want to further hide the communication run-

ning time by overlapping with computation. MPI implements non-blocking routines for this

purpose. However, as discovered by several studies [62–65], simply inserting computation be-

tween non-blocking send/receive (put/get) and wait routines (window fences) does not result

in an overlap. The MPI standard [25] does not specify that communication can progress out-
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side MPI functions. So the actual communication is likely to congest in the MPI Wait calls.

There are two remedies. The first is to dedicate one thread or one core to communication

[62, 63, 66–69]. Alternatively, one can repeatedly poll MPI Test to urge the network to make

progress, which has been proven effective by various studies and applications [18, 64, 70, 71].

Both methods need the computation to be divided into communication-dependent and in-

dependent parts. In distributed stencil computation, this requires dividing the block into a

halo-dependent part and a halo-independent part. Such division shall not forfeit the benefit

from temporal tiling. However, the state-of-the-art overlap algorithms that work with cache

tiling [17, 18] are still restricted to single-block grids.

In this chapter, we propose Pencil, a novel pipelined algorithm for distributed stencil com-

putation that overcomes the aforementioned limitations. Section 4.1 makes an in-depth

comparison of MPI-everywhere and OpenMP on a single-node, which leads to the optimal

combination of MPI and OpenMP for temporal tiling. Section 4.2 demonstrates how Pencil

extends the state-of-the-art tiling methods for single-block grids to multi-block grids. Sec-

tion 4.3 describes the pipelined algorithm in Pencil that effectively overlaps communication

with computation while retaining the benefit from temporal tiling. Section 4.4 presents the

evaluation of Pencil on two clusters and demonstrates a significant speedup over the state-

of-the-art as well as excellent weak and strong scaling. Section 4.5 summarizes the related

works. Finally, Section 4.6 concludes our contributions and points out future directions for

distributed stencil computation.

4.1 MPI vs OpenMP On a Single-Node

We have already introduced the two major parallel programming models, namely MPI-

everywhere and MPI+OpenMP in Chapter 2. Prior works have focused on comparing

MPI+OpenMP against MPI-everywhere [4, 5, 72–75] in distributed computing and we re-
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fer readers to [26] for a comprehensive summary. We have no intention to make another

comparison except to highlight that most studies overlook the single-node case.

On a single-node, the stencil computation using MPI-everywhere follows the same workflow

as the distributed Algorithm 2.1, where intra-node communication is necessary for halo

exchange. This need vanishes with threads since all threads have shared access to the data

on the node. This leads to the common intuition that threads should outperform flat MPI

on a single-node.

It is, however, non-trivial to realize this intuition in practice due to memory arrangement and

synchronization as we show in Section 4.4.2. With MPI-everywhere, each process allocates

its own data. A process looping over the space following i → j → k with i being the least

rapidly changing dimension and k the most rapidly changing dimension naturally accesses

contiguous data in memory, which is preferred for both prefetching and vectorization. With

threads, the data is allocated as a single array and each thread gets its own share of the

loop i → j → k. To emulate the streaming memory access of MPI, only the i dimension

or collapsed dimensions (for instance, with OpenMP collapse clause) is distributed among

threads. Figure 4.1 shows an example with a domain of size N3 distributed among 8 cores

on a single-node. With MPI, the domain is decomposed into 8 sub-cubes of size (N/2)3 to

minimize the intra-node communication. Each process handles one sub-cube and allocates

it as an array in DRAM. With OpenMP, the entire cube is allocated as a contiguous data

chunk and decomposed into 8 slices along the ith dimension. Each thread accesses one slice

and has a j − k plane that is 4 times that of a process. In stencil computations, the update

of each j − k plane benefits from several previously accessed planes remaining in cache to

increase locality. As a result, the large j − k plane in threads makes it easier to spill out of

cache compared to flat MPI.

Moreover, threads and processes have different synchronization patterns. Using OpenMP

requires a global barrier at the end of each computation iteration to avoid data race. Flat
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Figure 4.1: An example of optimal domain decompositions on a single-node for MPI and
OpenMP respectively. The domain is a cube of size N3 and is divided evenly among 8
processes/threads. The products in sub-titles denote the number of processes/threads in
each dimension. Each green cube/sub-cube is allocated as an array in DRAM.

MPI has no such safety guards and processes only wait for their data-dependent neighbors

in communication completion routines like MPI Waitall. In Algorithm 2.2, the computation

fetches much more data than packing and exchanging halos. An OpenMP barrier forces all

the threads to compute synchronously and therefore competes for memory bandwidth. On

the other hand, in MPI, some processes can get a larger share of the available bandwidth at

any time while other processes are packing or exchanging halos. As a result, computation in

OpenMP suffers a severe memory congestion compared to MPI. On modern architectures,

due to the disproportionate increase in the number of cores compared to other on-node

resources, memory bandwidth is typically saturated with only a fraction of the cores. In our

experiments on 18-cores of Intel Broadwell and 20-cores of Intel Gold processors, we observe

that the socket’s bandwidth is saturated by just 4 and 10 cores respectively. In Section 4.4.2,

we demonstrate the impact of memory allocation and bandwidth competition on MPI and

OpenMP’s performance on a single-node which suggests the optimal model selection.
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4.2 Cache Tiling

The section describes how we extend the start-of-the-art temporal tiling algorithms for single-

block grids to multi-block grids. Section 4.2.1 describes two state-of-the-art temporal tiling

algorithms namely, the Overlapped Tiling (OT) and Trapezoidal Tiling (TT). Section 4.2.2

demonstrates how to extent the tilings to multi-block grids using DeepHalo.

4.2.1 Temporal Tiling

In 3D stencil computations, updating a j − k plane at i depends on data from previously

visited i− 1, . . . , i− rs planes, where rs denotes the stencil radius. If the j − k plane’s area

is large, the data can spill the L3 cache. In that case, blocking the computation of a small

range j0 − j1 in the jth dimension can help retain the data of space [i − rs, i] × [j0, j1] ×

[0, Nk] in L3 cache. This is referred to as space tiling. Here we denote [j0, j1] × [0, Nk]

as a patch of the j − k plane. A patch always spans the entire kth dimension for efficient

prefetching and vectorization. Although space tiling improves locality, all the data are still

read from and written to DRAM at every iteration. Therefore, tiling in space alone is not

sufficient for highly memory-bound stencils. To further improve data reuse, several studies

have considered tiling in both space and time, which is commonly referred to as temporal

tiling.

The idea of temporal tiling is to fuse multiple iterations of a patch while it still resides in

cache. An efficient way to implement temporal tiling for stencils is to march along the ith

dimension and repeatedly use the most recently updated j − k patch to update the patch

beneath it. This is referred to as wavefront blocking [47, 51, 76]. The code snippet in Figure

4.2 shows an example of fusing f iterations on a patch [j0, j1]× [0, Nk] with a stencil of unit

radius (rs = 1). For simplicity, we omit the inputs, outputs, and boundary conditions.
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1 for (int t=1; t<nIter; t+=f)

2 for (int i=0; i<Ni; ++i)

3 for (int tt=0; tt<f; ++tt) {

4 int p = f-1-tt;

5 for (int j=j0-p; j<=j1+p; ++j)

6 for (int k=0; k<Nk; ++k)

7 compute(t+tt, i-tt, j, k)

8 }

Figure 4.2: An example of wavefront blocking

As shown by lines 3-7, immediately after the ith patch is computed at iteration t, it is used to

advance the (i− 1)th patch at the next iteration, t+ 1 . This procedure is repeated until the

(i− f)th patch of [j0, j1]× [0, Nk] is updated at iteration t+ f . To fuse the f iterations, we

need to start with a wider patch extended by f − 1 cells on both sides of the jth dimension

and drop one cell on each side per iteration (line 4). This is because the update of a cell uses

one cell from the current iteration on both sides (assuming rs = 1). Figure 4.3a illustrates

this effect in time and space dimensions with four iterations fused in the order of

, where each color stands for one time step. We denote the trapezoid formed by the

patch and the fused iterations as a time-space tile. With temporal tiling, the entire tile can

be executed in L3 cache, significantly improving the performance.

The cells outside the tile’s own patch, i.e., cells outside the range [j0, j1] in Figure 4.3a,

overlap with cells in the neighboring tiles. This introduces data dependencies between tiles

which prohibits parallel execution. There are two ways to break this dependency. The first

is to let each tile update a copy of the dependent data in other tiles. This leads to the idea

of overlapped tiling (OT) [45–48], where the tiles overlap each other as shown in Figure 4.3d.

This removes the dependencies at the cost of redundant computation in the overlapped area.

The second is to maximize the number of concurrent tiles by designing special polyhedral

shapes and arrangements of tiles. Trapezoidal tiling (TT) [49, 50], diamond tiling [51–54],

and tessellating tiling [55, 56] follow this strategy.
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Figure 4.3: Data flow and time-space tiles for Overlapped Tiling (OT) and Trapezoidal
Tiling (TT).

Figure 4.3b illustrates the dataflow of OT. With OT, each thread has a local array to store

the intermediate results of the fused iterations. The left, middle, and right stacks in Figure

4.3b represent the input, local, and output arrays respectively. Each row in the arrays

represents a j − k patch and rows of the same color have been updated with the same

number of iterations. Given rs = 1, it takes three patches to update a patch. The second

patch in the input array is ready to be updated and it is stored in the local array (as shown

by ). Then, the iterations are performed entirely in the local array and

three patches are stored in each iteration. The final result is written to the output array.

If the local array fits in the cache, then ideally each patch in the input and output arrays is

only transferred from/to DRAM once during the fused iterations, significantly reducing the

DRAM traffic. Our implementation of OT only synchronizes the threads after the domain

has been updated for f iterations, differing from [47, 76, 77] where a barrier or a set of

spin-locks are used for each j−k plane. The size of the local array for a tile covering a j−k
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patch sj × sk is calculated as (sj + 2ho) · (sk + 2ho) · (2rs + 1) · (f − 1) where f denotes the

number of fused iterations and ho = (f − 1) · rs represents the thickness of the overlapped

area. Note that the number of j − k patches stored in cache increases linearly with f and

is proportional to the size of the stencils. The redundant computation can be estimated by

the overall overlapped area as,

((sj + 2ho)(sk + 2ho)− sjsk) · Nj

sj
· Nk

sk

= NjNk(2ho
sj + sk
sjsk

+ 4
h2o
sjsk

)

(4.2)

where Nj and Nk are the size of j and k dimensions. Note that the overlapped area increases

inversely with the size of the j − k patch sj × sk. From the above equations, the size of the

local array to fit in L3 cache can be reduced by decreasing the tile sizes but at the expense

of increasing redundant computation.

In TT, there are two types of tiles which are colored pink and orange in Figure 4.3c. Tiles

of the same type can be executed in parallel. The upward tiles (pink) are identical to the

time-space tile in Figure 4.3a. The downward trapeziums (orange) depend on the upward

ones. TT sweeps the ith dimension twice, first only updating the upward trapeziums with

f iterations and then makes a second pass over the downward trapeziums to update the

remaining iteration space. As a result, no redundant computation is introduced. The tiles

can be distributed to threads using either static scheduling with synchronization after the

execution of tiles of the same type [78] or dynamic tasking based on the tiles’ dependencies

[59]. In this paper, we follow the latter using OpenMP tasks.

In comparison to OT, TT has the advantage of reducing the required cache quota by shrinking

the tile sizes without introducing redundant computation. This is beneficial for large stencils

(large rs) and numerical schemes involving multiple variables. The disadvantage is that

intermediate results are written to DRAM and the data updated by both trapeziums is
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fetched from DRAM twice. As a result, we expect OT to exhibit better performance for

heavily memory-bound numerical schemes due to less DRAM traffic while TT might perform

better on larger stencils and systems with smaller caches.

4.2.2 Multi-Block Grids with DeepHalo

The previously discussed tiling algorithms and state-of-the-art polyhedral auto paralleliza-

tion tools and compilers such as Pluto [57, 58] and Pochoir [59] specialize at optimizing

perfectly nested loops which correspond to single-block grids in CFD. The iteration space

is typically composed of an outer loop for time and 3 nested inner loops for the 3 spatial

dimensions, as shown in Figure 1.2. In real applications, the common case is multi-block

structured grids, which disrupts the perfectly nested loop structure.

1 for (int t=0; t<tEnd; ++t) {

2 for (int block=0; block<nBlocks; ++block) {

3 get_block_range(block, range);

4 for (int i=range[0]; i<range[3]; ++i)

5 for (int j=range[1]; j<range[4]; ++j)

6 for (int k=range[2]; k<range[5]; ++k)

7 compute(block, i, j, k);

8 }

9 for (int block; block<nBlocks; ++block)

10 exchange_block_boundary(block);

11 }

Figure 4.4: Pseudocode for multi-block grids

Figure 4.4 demonstrates the nested loops for solving multi-block grids where each block

introduces 3 loops for the spatial dimensions at lines 4-6. Blocks can be connected and their

halo data is exchanged by the function exchange block boundary (line 10) at every time

iteration. This introduces data dependence between blocks and prevents state-of-the-art

polyhedral techniques to directly tile the time and space loop together for each block.
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The code snippet in Figure 4.5 illustrates how we resolve the data dependency for multi-block

grids. We tile the outer temporal loop by f so that each block has perfectly nested loops

composed of f temporal iterations and 3 space dimensions (lines 5-9). To fuse f iterations on

a grid cell, we need f · rs halo cells on both sides in each dimension. So, we attach f · rs halo

layers to the blocks’ boundaries and the halos at the connected boundaries are exchanged

with exchange block boundary once every f iterations (lines 11-12). As a result, we have

broken down the loop structure for multi-block grids in Figure 4.4 into multiple perfectly

nested loops for single-block grids, each of which can be optimized using OT or TT. We refer

to the addition of adequate halo layers to fuse f iterations as DeepHalo.

1 for (int t=0; t<tEnd; ++t) {

2 for (int block=0; block<nBlocks; ++block) {

3 get_block_range(block, range);

4 // fused iterations

5 for (int tt=0; tt<f; ++tt)

6 for (int i=range[0]; i<range[3]; ++i)

7 for (int j=range[1]; j<range[4]; ++j)

8 for (int k=range[2]; k<range[5]; ++k)

9 compute(block, i, j, k);

10 }

11 for (int block; block<nBlocks; ++block)

12 exchange_block_boundary(block);

13 }

Figure 4.5: Pseudocode for tiling multi-block grids with DeepHalo

The temporal tiling for multi-block grids can be easily generalized to distributed memory

systems by adding inter-node communication to function exchange block boundary. With

DeepHalo, each process has to communicate up to 26 messages for a rectangular block, i.e. 6

for faces, 12 for edges, and 8 for corners regardless of the shape of the stencil. DeepHalo was

originally proposed to reduce communication cost by reducing the rounds of communication

and performance improvement has been reported in literature [76, 79]. However, as shown in

Section 4.4.3, we cannot solely rely on DeepHalo to improve the communication performance

because its effect is still network-specific on modern systems.
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4.3 Overlap Communication and Computation

In this section, we present our pipelined algorithm to overlap communication with compu-

tation. Section 4.3.1 describes how to effectively overlap communication and computation

with MPI+OpenMP. Section 4.3.2 introduces the pipelined overlap algorithm in Pencil.

4.3.1 MPI+OpenMP Models for Overlap

The overlap of communication and computation becomes possible in modern architectures

that support RDMA where the Network Interface Card (NIC) takes over the communication

without the involvement of the CPU. The network software underlying most MPI implemen-

tations already make use of this feature. However, as highlighted by several studies [62–65]

merely using MPI’s non-blocking or RMA routines does not achieve overlap since the MPI

standard does not guarantee the communication to make progress outside MPI function

calls.

In practice, there are two popular workarounds:

• DedicatedCore (DC). Dedicate one core for communication while the other cores per-

form computation.

• RepeatedPoll (RP). Repeatedly call functions such as MPI Test during computation to

urge the underlying network software to make progress on communication.

For flat MPI, it’s non-trivial to implement DedicatedCore and we refer readers to Casper

[62, 66, 80]. In this paper, we only consider MPI+threads model for overlap. The degree of

overlap can be estimated using the effective overlap ratio, η defined as follows:

η =
tcomp + tcomm − tovlp

min(tcomp, tcomm)
, (4.3)
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where tcomp, tcomm, and tovlp are the measured computation time, communication time, and

the time for the overlapped computation and communication respectively.

We are interested in understanding how much overlap is achievable in practice by DC and

RP for a memory-bound computation. For this purpose, we benchmark both methods by

exchanging a large message between 2 nodes using MPI Isend/Irecv while the cores are

busy with a memory-bound computation a[i] = w0a[i] + w1b[i] + w2c[i]. On both nodes, we

start from a single thread and keep increasing the number of threads until the entire node

is occupied. Each thread is assigned a fixed workload large enough to spill the L3 cache.

The overall data volume increases with the number of threads and saturates the DRAM

bandwidth. After saturation, the computation time starts to increase proportionally with

the number of threads. With RP, MPI Test is called periodically during computation to

make progress on communication. With DC, one thread waits at MPI Wait while the other

threads split the total workload. So, DC has one less core participating in computation

compared to RP where all cores are involved in computation.

We benchmark the overlap on two clusters – Bebop and HPC3 – summarized in Table 4.2

with Omni-Path and InfiniBand networks. The results are presented in Figures 4.6 and

4.7 respectively. The leftmost stacked bar shows the time for communication and compu-

tation without overlap. The second bar represents RP and the third shows DC with its

communication time (DC tcomm) highlighted on top of the non-overlapped computation (DC

tcomp − tcomm). On both clusters, the non-overlapped computation time tcomm remains the

same for a small number of cores (2 for Bebop and 4 for HPC3). This is because the band-

width has not yet been saturated and each core has the same computation workload. As

we add more threads into the benchmark, the bandwidth becomes saturated and tcomm start

to increase. Therefore, we can tell from tcomm that 4 and 8 cores can saturate a socket’s

bandwidth for Bebop and HPC3 respectively.

On Bebop, RP can achieve up to 40% of the ideal overlap. DC performs slightly better
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(a) Performance of RepeatedPoll and DedicatedCore on Bebop

# Cores 1 2 4 8 12 18 36

ηRP 0.31 0.19 0.29 0.31 0.24 0.39 0.35

ηDC - - 0.42 0.56 0.44 0.51 0.48

(b) Overlap ratio on Bebop

Figure 4.6: Computation and communication overlap with DedicatedCore and RepeatedPoll
on Bebop.

but still only attains half of its potential. As long as the communication time is shorter

than computation, it is completely hidden. The lack of efficiency comes from using one

less core for computation. Furthermore, the actual communication in DC increases as the

bandwidth is gradually saturated. When the socket is fully occupied with 18 threads, the

communication time increases by 2.2× over the non-overlapped case. This is because, in

some PCI express (PCIe) connections, the messages written by the NIC and the DRAM I/O

issued by CPUs all go through the path between Root Complex (RC) and DRAM. Though

the NIC can issue stores without CPU’s involvement, the actual data transfer still competes

for bandwidth with CPUs, especially in memory-bound applications.

On HPC3 with InfiniBand, RP’s performance starts to drop when the bandwidth becomes

saturated. However, it still attains over 70% of the potential benefit from the overlap.

As the number of threads increases, the downside of using one less core for computation
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# Cores 1 2 4 8 16 20 40

ηRP 0.98 0.99 0.78 0.74 0.72 0.74 0.75

ηDC - - 0.19 0.57 0.69 0.75 0.76

(b) Overlap ratio on HPC3

Figure 4.7: Computation and communication overlap with DedicatedCore and RepeatedPoll
on HPC3.

gradually vanishes and DC achieves similar performance and overlap as RP. Moreover, the

actual communication time of DC only increases 16% over non-overlapped communication.

Contrasting the results from the two clusters, we conclude that the effectiveness of the overlap

highly depends on the software and hardware of the network in addition to the application

characteristics. Though NIC can fully support RDMA, the saturation of bandwidth by

applications running on CPUs can still affect the communication performance.

4.3.2 Pipeline Communication and Computation

To realize overlap irrespective of which method (DC or RP) is used, the computation must

not have data dependence on the overlapped communication. In the CFD scenario, this

means we need to divide the computational domain into a halo-dependent part and a halo-

independent part. The computation of the latter can be overlapped with the exchange of
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halos. The classic decomposition is to divide the domain into an outer layer and an inner

chunk whose update does not rely on the halo region. It is, however, challenging to compute

the outer layer efficiently in parallel. In order to divide the computation evenly among

threads, one must take into account the difference between the length of the contiguous data

segment in the i, j, and k boundaries. Such division is highly non-trivial [26].

An alternate approach is to categorize the cache tiles based on their dependence on the

halo region and overlap the communication with the halo-independent tiles. For OT and

TT, the domain can be split only in the jth dimension. Therefore, one can partition the

grid block in the jth dimension so only the tiles touching the j boundary depends on halos.

The computation of the remaining tiles can then overlap with communication. This idea has

been exploited to improve performance with diamond tiling in [17]. However, for multi-block

grids, imposing a 1D partition is not feasible since blocks can be connected in any dimension.

We propose a pipelined algorithm to break the data dependence and achieve overlap. The

idea is to cut the domain into chunks along the ith dimension. This way, each chunk’s

computation has no dependence on the previously updated chunks’ halo layers and can be

overlapped with the communication of the previous chunk. Figure 4.8 illustrates this idea

using two processors, P0 and P1 whose domains are cut into multiple chunks. Each chunk

has a rectangular shape and is suitable for temporal tiling with OT or TT. At stage l, chunk

Cl is being updated (marked as cyan) while chunk Cl−1 has already been updated (gray).

So, the communication of Cl−1’s halo (pink) is overlapped with Cl’s computation. Similarly,

in stage l + 1, Cl+1’s update overlaps with Cl’s communication and so on. Together with

DeepHalo, we can achieve overlap on multiple connected iteration spaces without losing the

performance gain from temporal tiling. Furthermore, Pencil does not impose any limitation

on the global decomposition, i.e. communication can happen in any dimension.
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Figure 4.8: Cut domain into chunks and pipeline communication and computation for over-
lap.

4.4 Experiments and Results

In this section, we evaluate Pencil against the state-of-the-art tiling algorithms on both

shared-memory and distributed-memory systems.

4.4.1 Experiment Setup

In this section, we describe the case studies and platforms used for evaluating the single-node

and distributed-memory performance of Pencil.

Case study To systematically evaluate our proposed algorithms, we choose 4 stencils

across 6 numerical schemes whose characteristics are summarized in Table 4.1. The stencils

have different shapes (illustrated in Figure 2.2) and radius. The numerical schemes have

various numbers of input/output variables and span a wide range of arithmetic intensity

(AI) from 0.42 - 2.50. Here we calculate AI with and without non-temporal (NT) stores,

which if supported by the compiler can bypass write-allocate and improve performance.

Below, we outline the numerical schemes that give rise to the stencil test cases.
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Table 4.1: Stencils and numerical schemes. Each column from left to right represents the
test name, the number of points in stencil, the shape and radius of stencil rs, the numerical
scheme, the arithmetic intensity (AI) with and without non-temporary store (NT), and the
number of input and output variables respectively. For the schemes, WJ denotes Weighted
Jacobi. WENO 3rd, Upwind 2nd and CD 2nd stand for 3rd order WENO, 2nd order Upwind,
and 2nd order Central Difference respectively.

Test #Points Shape rs Scheme AI (NT) AI #In #Out

WJ7 7 Star 1 WJ 7pt 0.42 0.31 2 1

WJ13 13 Star 2 WJ 13pt 0.67 0.5 2 1

WJ27 27 Box 1 WJ 27pt 1.25 0.94 2 1

WENO3 13 Star 2 WENO 3rd 1.96 1.64 4 1

Upwind 13 Star 2 Upwind 2nd 0.85 0.71 4 1

Burgers 24 Staggered 1 CD 2nd 2.50 1.67 3 3

• Weighted Jacobi for 3D Poisson equation. The Poisson Equation 4.4 is typically

used to solve for the pressure p in incompressible flows with source function b derived

from the velocity field.

∇2p = b (4.4)

Various stencils can be used depending on the order of accuracy. Here we consider

the star stencils with radius 1 and 2, consisting of 7 and 13 points respectively in 3D,

and the box stencil with 27 points. Equation 4.4 is solved with the weighted Jacobi

methods, which is one of the standard smoothers for multigrid [81]. Jacobi methods

are the most widely studied stencil computations in the space and temporal tiling body

of research [46, 47, 49–59, 82] for its simplicity, where the updated value is essentially

a weighted average of the stencil cells’ values. However, practical numerical schemes

in CFD can be considerably complex as in the following cases.

• Upwind and WENO schemes for 3D advection equation. Equation 4.5 simu-

lates the convection phenomena in fluid dynamics, in which ψ denotes a scalar propa-

gated by the velocity field ~u.

∂tψ + ~u · ∇ψ = 0 (4.5)
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Here we consider the memory-bound 2nd order upwind and the 3rd order WENO

schemes (which have higher flops per grid cell) [83] on a star stencil of radius 2. Both

schemes use different cells in the stencil depending on the sign of the velocity. Such

computation is typically implemented with a ternary operation, for instance in 1D,

φi −= ui > 0 ? f(ui−1, ui) : f(ui, ui+1)

where f(ui−1, ui) can be a simple expression (Upwind) or a complex inlined function

(WENO3).

• 3D Burgers equation. Equation 4.6 represents the conservative form of Burgers

equation, which is solved in simulating incompressible flows (∇ · ~u = 0).

∂t~u+∇ · (~u~u) = ν∇2~u (4.6)

The three components of velocity ~u (the 3 inputs) are discretized on grid cell’s face

centers using a staggered stencil. Figure 4.9 illustrates the staggered stencil in 2D

for velocity ~u(u, v), where each square represents a grid cell with velocity components

marked by arrows at the face centers. To update the v component of velocity (brown

arrow), not only are the surrounding v components (blue arrows) required but also

the adjacent u components (green arrows) of velocity. Similar dependencies apply in

3D. Moreover, all the three components of velocity are both read from and written

to DRAM during the update. As we show in Section 4.4.2, the coupled dependency

between components and the large data volume is highly challenging for the tiling

algorithms.
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Figure 4.9: An example of 2D staggered grid. The velocity components are located at grid
cells’ faces. The green and blue arrows mark the u and v components respectively. The
brown arrow marks the v component to be updated in this example, which depends on all
the velocities highlighted.

Platforms and Architectures We evaluate the performance of the stencils on two dis-

tributed memory machines – Bebop equipped with 653 Intel Xeon E5-2695v4 (Broadwell)

nodes at the Argonne National Laboratory and HPC3 with 38 Intel Xeon 6248 (Gold) nodes

at the University of California Irvine. The key parameters of these systems appear in Ta-

ble 4.2.

Table 4.2: Evaluation platforms and their parameters.

Bebop HPC3

Intel Xeon Intel Xeon

Architecture E5-2695v4 (Broadwell) 6248 (Gold)

CPU Frequency 2.4 GHz 2.5 GHz

Sockets 2 2

Cores/Socket 18 20

GFlops/s (DP) 1200 2207

L2 cache 32 KB 1024 KB

L3 cache 90 MB 55 MB

DRAM Bandwidth 120.3 GB/s 194.4 GB/s

Network Omni-Path InfiniBand

Nodes 653 38

Compiler Intel 2017 GCC 8.4.0
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We choose a block size of 4803 per node on both systems for the experiments which is large

enough for cache tiling to be effective but at the same time, not too large to overshadow the

communication cost. In our experiments, fusing more than 10 halos results in a performance

drop. Therefore, in the results presented in the following section, we limit the number of

fused iterations to not exceed 10 layers of halo (i.e. f · rs ≤ 10) and the total number of

iterations to 60 which is large enough to maintain a steady solve time per iteration.

4.4.2 Single-Node Performance

In this section, we first present a step-by-step analysis of the the single-node performance

breakdown with spatial and temporal tilings and identify the optimal decomposition of MPI

processes and OpenMP threads for temporal tiling, which will be referred to as Hybrid Tiling

for the remainder of this chapter. Next, we compare the performance of hybrid tiling against

the state-of-the-art polyhedral tiling tool, Pluto [57, 58]. Moreover, we compare the two

temporal tiling algorithms – overlapped and trapezoidal tiling and present an analysis of

scenarios where one outperforms the other.

Optimal Decomposition of MPI and OpenMP We demonstrate how to choose the

optimum combination of MPI processes and OpenMP threads step by step using the WJ7

stencil on Broadwell as an example. The MPI baseline (MPI0 ) decomposes each dimension

of the block evenly to reduce intra-node communication volume and achieve load balance.

In our experiments, a decomposition of 4× 3× 3 in the ith, jth, kth dimensions delivers the

best baseline performance. Unlike MPI0, the OpenMP baseline (OMP0 ), splits the domain

only in the ith dimension to ensure threads access contiguous data as discussed in Section

4.1. As seen from Figure 4.10a, even though communication and buffer preparation (i.e.,

packing and unpacking) take a considerable time, MPI0 still outperforms OMP0 by 30%

on Broadwell. This is because OMP0 has a j − k plane that is 9× larger than MPI0 and
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spills out of the cache. To remedy this, we add spatial tiling (denoted by OMP S ) in the jth

dimension, which has no effect on MPI0 on Broadwell (therefore not shown in Figure 4.10a)

but improves the OpenMP baseline by 1.6×.
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Figure 4.10: Performance of spatial and temporal tiling with WJ7 on a single-node.

Note that the computation in MPI0 still takes less time than OMP S. This is because of

the competition for bandwidth (described in Section 4.1). Figure 4.11 presents the trace for

MPI0, where the blue color marks the time spent on computation and the white background

indicate the processor is busy with the intra-node communication or buffer preparation.
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Figure 4.11: Trace for WJ7 on a single Broadwell node. The blue color marks a rank’s
time spent on computation. The white background denotes the time spent on intra-node
communication and buffer preparation.

Since MPI processes are only loosely synchronized by routines like MPI Wait, the computa-

tions of different ranks can be asynchronous, i.e., unaligned in Figure 4.11. When a rank’s

computation overlaps with other ranks’ communication or buffer preparation, the computa-

tion gets a larger share of bandwidth for its larger DRAM traffic. With OpenMP, all threads

are synchronized by barriers and compete for the bandwidth simultaneously. Therefore, the

computation in MPI0 appears faster than OMP S. This explanation can be validated by

enclosing the computation in MPI0 with MPI Barriers. This implementation denoted by

MPI Sync leads to similar computation performance as OMP S in Figure 4.10a.

Moreover, with spatial tiling, the measured arithmetic intensity (AI) in Table 4.3 matches our

theoretical estimate in Table 4.1 with non-temporal stores except for WENO3 and Burgers.

In the case of Burgers, the compiler fails to generate NT stores for the large loop writing

three variables. On the other hand, the flops of WENO3 depend on compiler optimizations

of ternary operators (Section 4.4.1) and it is challenging to match the theoretical estimates

which further underscores the complexity of these two stencil case studies.

On Gold, we observe a similar behavior. OMP S outperforms MPI S and the measured AI
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matches the estimate without NT stores except for Weno3. The GCC compiler does not

generate NT instructions and results in write-allocate when writing to DRAM, which lowers

the theoretical AI. Nonetheless, GCC executes all the possible paths in ternary operator and

masks the values not used, which leads to higher AI for Weno3. Our experiments thus far

establish that contrary to popular wisdom, OpenMP outperforms MPI on a single-node only

if spatial tiling is applied.

Now we add temporal cache tiling to both flat MPI and OpenMP. It is best to have a small

j − k area so that more planes can reside in cache while performing the wavefront blocking

in the ith dimension. For MPI with temporal tiling, the optimal decomposition turns out to

be 1 x 6 x 6 for the ith, jth and kth dimensions, which also minimizes the communication

volume. Each MPI rank applies either overlapped tiling (OT) or trapezoidal tiling (TT)

on its local domain. In Figure 4.10a, MPI T presents the best performance obtained when

combining MPI with either OT or TT. Although MPI T achieves 2× speedup over OMP S,

we observe that the packing and unpacking of halo can take longer than the intra-node

communication time. The cost of copying the halos’ data to/from the buffer is determined

by the data’s layout in DRAM. Since the block’s data is contiguous along the kth dimension,

the halos attached to i and j boundaries are organized into contiguous covering the block’s

kth dimension, whereas the halos on k boundaries are composed of short segments whose

length equals the thickness of the halos. Therefore, packing and unpacking the k halo involves

copying a large number of short segments to/from a 1D buffer, which is highly inefficient

and expensive. We work around this issue by merging the packing and unpacking of the

k boundaries into computation as shown in Figure 4.12. Now, the k halo’s data is used

immediately after it is loaded into cache and written to the buffer while still in cache. This

optimization denoted by MPI T+ further improves MPI T by 17% on Broadwell.

For temporal tiling implemented with OpenMP, we let OT and TT decompose the iteration

space in the jth dimension and leave the kth dimension unsplit for prefetching and SIMD. In
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1 for (int i=iBegin; i<iEnd; ++i)

2 for (int j=jBegin; j<jEnd; ++j) {

3 unpack_k_halo(i, j);

4 for (int k=kBegin; k<kEnd; ++k)

5 // computation

6 pack_k_halo(i,j);

7 }

Figure 4.12: Merge packing and unpacking k boundaries into computation

Figure 4.10a, OMP T represents the best performance obtained with OpenMP and temporal

tiling. Despite the similar overall performance between MPI T+ and OMP T, MPI T+ still

computes 18% faster than OMP T. The reason lies in the shape of the j − k plane. Each

process in MPI T+ has a j − k patch of size 80× 80 and threads in OMP T have a patch of

size 13× 480 (or 14× 480). In OT, if 6 iterations are fused, then the j − k patch including

the overlapped area in OMP T (25 × 492) becomes 1.5x larger than MPI T+ (92 × 92).

Therefore, OMP T fits fewer j − k planes in L3 cache compared to MPI T+. A similar

analysis also applies to TT.

To combine the advantages of MPI and OpenMP, we first decompose the block in the kth di-

mension among MPI ranks and then perform temporal tiling within each rank using OpenMP

threads. The cache tiles split the jth dimension and perform wavefront blocking in the ith

dimension. This combines MPI’s advantage of a small j−k area and only introduces limited

intra-node communications by using OpenMP to compute cache tiles. In our experiments,

using 2 MPI ranks with 1 rank per socket is sufficient to emulate the computation perfor-

mance of MPI T with minimal intra-node communication. The hybrid algorithm denoted as

MPIOMP T achieves the best performance not only for WJ7 in Figure 4.10a but across all

the stencils. Across the broad, MPIOMP T achieves 15% - 34% speedup over the best case

between MPI T+ and OMP T on Broadwell and up to 35% on Gold.
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Comparison with the state-of-the-art: Pluto. We now compare our hybrid algorithm

with the polyhedral tiling tool Pluto [57, 58], which generates codes using diamond tiling.

Following the guidelines in [54], we set a large tile size for the kth dimension and perform an

exhaustive search for the optimal tile sizes of the other dimensions. Table 4.3 summarizes the

performance comparison across the different stencil case studies. On Broadwell, our hybrid

algorithm achieves similar performance compared to Pluto for weighted Jacobi schemes WJ7

and WJ13 but suffers a 9% slow-down for WJ27. The sub-optimal behavior for WJ27 needs

further investigation. However, we observe a significant speedup of 1.92× and 1.49× for

more complex schemes such as Upwind and WENO3 respectively. As for Burgers, its coupled

dependencies between the three velocity components result in a huge linear programming

system with 103 ∼ 104 constraints. Pluto fails to generate diamond tiles in this case and

downgrades to a tiling that requires a pipelined start, leading to performance even below

the baseline. On Gold, our hybrid algorithm outperforms Pluto by 1.08− 1.74× on all tests

except for Burgers where Pluto fails like on Broadwell.

Note that the temporal tiling algorithm must be evaluated on top of spatial tiling rather than

the naive baseline. If a significant speedup is not observed with temporal tiling, then spatial

tiling is preferred for fewer code modifications. As shown in Table 4.3, Pluto’s temporal

tiling for Upwind and WENO3 are not effective since their performance are emulated by

spatial tiling alone on both Broadwell and Gold processors. The hybrid algorithm on the

other hand outperforms space tiling by 1.47−2.83× on Broadwell and 1.09−3.29× on Gold.

Overall, it achieves 1.47− 4.76× speedup over the baseline with OpenMP.

Overlapped Tiling vs Trapezoidal Tiling Figure 4.13 compares the two temporal tiling

algorithms (OT and TT) on WJ13 and Upwind schemes using the metric billion cells updated

per second (GCells). Both schemes use the same star stencil with rs = 2 but exhibit different

performance behavior with OT and TT. Each curve shows tiling with a fixed tile size. For
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Table 4.3: Summary of single-node performance of the stencils in Table 4.1 on the two
systems in Table 4.2. AI denotes the arithmetic intensity; MPIOMP T lists the temporal
tiling algorithm (first entry) and number of fused iterations (second entry) that achieves
the best performance with our hybrid algorithm; The three columns to its right present the
speedup of our hybrid algorithm with temporal tiling over the OpenMP baseline, OpenMP
with spatial tiling, and Pluto respectively.

(a) Performance Results for a Single Broadwell Node

Test AI(NT) MPIOPT T vs OMP0 vs OMP S vs Pluto

WJ7 0.42 TT 10; OT 6 4.63× 2.83× 0.98×
WJ13 0.69 OT 3; TT 6 3.46× 1.63× 0.98×
WJ27 1.28 TT 8 2.68× 1.69× 0.91×

Upwind 0.87 TT 5 2.86× 1.67× 1.92×
WENO3 1.71 TT 3 2.06× 1.47× 1.49×
Burgers 1.63 OT 2 2.42× 1.58× 4.63×

(b) Performance Results for a Single Gold Node

Test AI MPIOMP T vs OMP0 vs OMP S vs Pluto

WJ7 0.29 TT 10; OT 4 4.76× 3.29× 1.15×
WJ13 0.48 TT 5; 3.52× 1.89× 1.29×
WJ27 0.94 TT 5 2.06× 1.46× 1.10×

Upwind 0.71 TT 3 2.72× 1.57× 1.74×
WENO3 2.40 TT 2 1.59× 1.09× 1.08×
Burgers 1.52 OT 2; TT4 1.87× 1.25× 5.03×

OT, we limit one tile per thread to reduce redundant computation. For TT, we find 2nt− 1

is an optimal number of tiles in our experiments where nt denotes the number of threads.

This generates enough independent tiles for each thread to start computation concurrently

but not too many to increase DRAM traffic discussed in Section 4.2.

Column MPIOMP T in Table 4.3 lists the parameter configuration that results in the best

performance with hybrid MPI+OpenMP. If OT and TT achieve performance within an 8%

difference, both configurations are listed with the first being the faster one. On Broadwell,

for stencils with similar performance, OT reaches its peak with a smaller number of fused

iterations, f , as seen from Figure 4.13a for the WJ13 stencil. This is because, for small

f , OT’s local array still fits in the L3 cache and results in less DRAM traffic than TT. As
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Figure 4.13: Comparison of Overlapped and Trapezoidal tiling with increasing number of
fused iterations (f).

shown in Figure 4.13b, at f = 3, OT’s reading and writing volumes is only 34% and 70%

of TT. As f increases, OT introduces too much redundant computation and the local array

starts to spill from the L3 cache, which causes the performance to drop drastically. TT has

the advantage of using small tiles without introducing redundant computation (Section 4.2)

which allows us to start with twice as many tiles as OT. At any time, each thread executes

a tile using half the cache as overlapped tiles in OT. Therefore TT supports more fused

iterations without spilling out of the L3 cache.

Figure 4.13c compares OT and TT on Upwind which has the same stencil radius as WJ13
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but loads 3 additional variables from DRAM. Since it is desirable to keep more data in the

L3 cache, TT outperforms OT for its lower cache requirement. Using smaller tiles improves

OT’s performance as shown by the black squares in Figure 4.13c. Nonetheless, it does not

reach TT’s peak performance because it introduces additional redundant computation.

To summarize, OT can achieve similar or better performance as TT for highly memory-bound

stencils such as WJ7 and WJ13 with fewer fused iterations since it results in less DRAM

traffic. This can lead to fewer DeepHalo layers in distributed computing which may result in

less communication cost. TT outperforms OT for less memory-bound numerical schemes like

WJ27 or schemes loading multiple variables, except for Burgers in our experiments. Burgers

is a special case because three components of velocity ~u need to be written to DRAM which

highlights OT’s advantage at reducing writing volume.

The L3 cache in Gold is only about half that of Broadwell which makes it challenging for

OT. As expected, TT outruns OT in most cases including highly memory-bound stencils

such as WJ13 as shown in Figure 4.13d, and achieves similar performance for Burgers.

4.4.3 Communication with DeepHalo and Pipelined Overlap

We compare Pencil over MPI-everywhere and MPI+OpenMP Funneled on 32 nodes of Bebop

and 32 nodes of HPC3. Each node is assigned a block of size 4803 and each block is connected

to 6 other blocks by face. For MPI+OpenMP Funneled, we assign one process per node and

bind each thread to a core. For flat MPI, the block is further divided evenly among the

processors. We apply spatial tiling to both. For the hybrid temporal tiling, we map one

MPI rank per socket with one OpenMP thread per core.

Table 4.4 presents the measured effective overlap ratio, η, and speedups over MPI-everywhere

and MPI+OpenMP Funneled for the 6 case studies. We observe that the optimal choice of
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Table 4.4: Summary of the performance of six test cases in Table 4.1 on 32 nodes of Bebop
and 32 nodes of HPC3 summarized in Table 4.2. MPIOMP T lists the temporal tiling
algorithm (first entry) and the number of iterations fused (second entry) that delivers the
best performance with Pencil; ηRP and ηDC are the measured overlap ratios for RepeatedPoll
and DedicatedCore; “vs non-ovlp” is the speedup of the best of RP and DC over the same
tiling algorithm without overlap. “vs baseline” is the speedup of the best of RP and DC
over the best of MPI-everywhere and MPI+OpenMP Funneled with spatial tiling.

(a) Performance Results for 32 Gold Nodes with InfiniBand Connections

Test MPIOPT T ηRP ηDC vs non-overlap vs baseline

WJ7 TT 10 0.77 0.50 1.20× 3.36×
WJ13 TT 5 0.75 0.61 1.21× 2.19×
WJ27 TT 6 0.93 0.59 1.11× 1.86×

Upwind TT 3 0.66 0.55 1.26× 1.84×
WENO3 TT 3 0.50 0.40 1.08× 1.27×
Burgers OT 2 0.56 0.48 1.08× 1.54×

(b) Performance Results for 32 Broadwell Nodes with Omni-Path Connections

Test MPIOPT T ηRP ηDC vs non-overlap vs baseline

WJ7 OT 5 0.72 0.90 1.48× 2.77×
WJ13 OT 3 0.69 0.92 1.49× 1.97×
WJ27 TT 8 0.73 0.60 1.20× 1.61×

Upwind TT 4 0.69 0.57 1.24× 1.68×
WENO3 TT 3 0.69 0.70 1.27× 1.39×
Burgers OT 2 0.78 0.82 1.24× 1.69×

temporal tiling algorithm (OT vs TT) and the number of fused iterations (f) align closely

with the single-node results for all 6 numerical schemes on the 4 stencils. Across both clusters,

our pipelined algorithm achieves 50% - 90% of the potential benefit from overlapping the

computation and communication leading to a speedup of up to 1.48× over the non-overlapped

case. Note that RP’s overlap ratio is 8-34% higher than DC among the different stencils

on the InfiniBand cluster whereas lower or comparable to DC for most numerical schemes

on the Omni-Path cluster. This confirms again the performance of RepeatedPoll highly

depends on the software stack of the network. Compared to our baseline with spatial tiling,

the overlapped algorithm improves the performance by 1.39 − 2.77× on Bebop and up to
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3.36× on HPC3, which validates the effectiveness of Pencil on distributed systems.
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Figure 4.14: Performance breakdown for 6 test cases on HPC3 and Bebop. Each bar from
left to right represents the best case of MPI-everywhere and MPI+OpenMP with spatial
tiling, Hybrid Tiling with DeepHalo, Hybrid Tiling with DC, and Hybrid Tiling with RP
respectively.

Figure 4.14 breaks down the running time for all the six test cases. On HPC3, we observe

a 1.18 − 2.98× speedup after applying the hybrid tiling with DeepHalo. Note that using

DeepHalo significantly reduces the communication cost in all the cases except for Upwind.

The reduced communication cost only makes a small fraction of the total running time. As

a result, when we employ DC or RP for overlap, there is only a minor speedup (1.08−1.20×

in Table 4.4). On the contrary, using DeepHalo on Bebop increases the communication time

for all the test cases. The worst case appears to be WENO3, where the communication
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time is increased by 3.5×. Since the communication takes a considerable part of the total

time, overlapping with computation effectively improves the overall performance by 1.20 −

1.48×. Contrasting DeepHalo’s network-specific performance, we cannot always rely on it

to reduce the communication cost. Instead, hiding the communication cost by overlapping

with computation is a more reliable and effective optimization.

4.4.4 Weak and Strong Scaling

To evaluate the weak and strong scalability of Pencil, we choose Bebop since it has a larger

number of nodes. For weak scalability, we maintain the same block sizes and connections

per node as in Section 4.3. Pencil exhibits excellent weak scalability up to 128 nodes or

4608 cores across the board for all 6 case studies including Upwind, WENO3, and Burgers

as shown in Figure 4.15a. The maximum variance of running time appears in solving the

Burger equation, which is about 5% of the average solve time.

The strong scalability results are reported in Figure 4.15b. We test all the numerical schemes

on a grid of size 1920 × 1920 × 960. The grid is partitioned evenly into as many blocks as

the number of nodes in all the scaling tests from 16 to 128 nodes. Periodic conditions are

set on the grid’s boundaries so that each node exchanges halos on all the 6 faces of its block.

Therefore, both the computation workload and the communication metrics (communication

volume and edge cuts) are balanced in all the tests.

Pencil exhibits near-linear scaling across all the 6 numerical schemes on 4 different stencils.

However, the scaling of the non-overlapped temporal tiling algorithm is less efficient because

the communication does not scale linearly with the number of nodes. This phenomena is

highlighted in Figure 4.15c. When solving the 3D Burgers equation without overlap, the

portion of communication in the overall solve time increases from 20% to 37% as the number

of nodes increases from 16 to 128. Therefore, the poorer scalability of communication seen
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in Figure 4.15c has a negative effect on the performance at larger node counts. Pencil

effectively hides the communication penalty and exhibits improved strong scaling compared

to the non-overlapped case.
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Figure 4.15: Weak and strong scalability of Pencil up to 128 nodes (or 4608 cores) of Bebop.
In the largest simulation for weak scaling, there are 14 billion grid cells. The strong scaling
is on a grid of size 1920× 1920× 960.
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4.4.5 Application to Multi-Block Grids

To apply Pencil to multi-Block grids, we need to attach DeepHalo to the boundaries that

connect two blocks and communicate halos of that boundary if the connected blocks reside

on different nodes. Once blocks have been partitioned across nodes, how they were originally

connected only affects the communication relation and has no influence on temporal tiling

and pipelined overlap. Therefore, we can apply Pencil to distributed multi-block grids in

the same way as partitioned single-block grids. To demonstrate this capability, we apply

it to a multi-block grid illustrated in Figure 4.16a where 5 small blocks are connected to 5

different boundaries of a large block. This geometry emulates a multi-exit pipe transition in

engineering.

(a) Geometry

Block Size

0 1440× 1440× 1440

1 480× 480× 480

2 480× 480× 480

3 480× 480× 480

4 480× 480× 480

5 480× 480× 480

(b) Sizes

Figure 4.16: Geometry and sizes of the multi-block mesh with 6 blocks that are connected
at 5 faces.

The gird blocks are partitioned into 32 sub-blocks of size 4803 and assigned to 32 nodes.

Physical boundary conditions are set at all the external faces and communication only occurs

at the connection between sub-blocks. Note this test is intractable for overlap methods that

decompose the domain only in one dimension [17] but not for Pencil which uses DeepHalo

to resolve the blocks’ dependencies. Table 4.5 presents the performance results of the 6 test

cases on the multi-block grid on 32-nodes of Bebop. We achieve 1.33− 3.41× speedup over
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MPI+OpenMP with spatial tiling.

Table 4.5: Summary of performance on the multi-block grid. Optimal knobs list the overlap
method (first entry), temporal tiling algorithm (second entry), and the number of fused
iterations (third entry) that achieve the best performance.

Stencils Optimal knobs Speedup

WJ7 DC OT 5 3.41×
WJ13 DC OT 3 2.46×
WJ27 DC TT 6 2.30×

Upwind RP TT 4; DC TT 3 1.55×
Weno3 RP TT 3; DC TT 3 1.33×

Burgers DC OT 2; RP OT 2 2.20×

4.5 Related Work

Pencil represents a pipelined algorithm for distributed stencil computation. The term

pipelined stencil or stencil pipelines has taken different definitions in various studies aimed

at vastly different tasks. In image processing, the stencil pipeline refers to multiple sten-

cil computation stages. Different stages can have completely different stencils and grids in

contrast to CFD applications where a fixed set of stencils are used on one grid over many

temporal iterations. Domain-Specific Languages (DSLs) and compliers such as PolyMage[60]

and Halide [61] embed cache tiling to optimize the stencil pipelines but are still far from de-

livering a performance that is on-par with hand-tuned codes for real CFD applications [84].

For stencil studies on FPGA or other custom architectures [85], the stencil update is first

explicitly broken down into tasks of memory load, store, and arithmetic operations. These

tasks are then pipelined among multiple processing elements to enable parallel execution

[85–90]. The pipelined approach in Pencil applies exclusively to overlap communication and

computation in distributed systems and thereby, differs from prior works.

The most related pipelined algorithm to Pencil is [91, 92] where a pipelined execution is
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employed to overlap communication and computation among processors. Pencil’s key dis-

tinction is that the pipelining happens within each process. Moreover, prior work assumes

that the data dependence between sub-blocks is only one-way, i.e. a block only sends halo

to its target block but does not receive any halo back. This assumption, in general, does not

apply to CFD applications such as the Equations 4.4, 4.5, and 4.6 in Section 4.4.1.

Several studies have applied temporal tiling techniques to distributed computation. The

Geometric Multi-Grid Solver developed in [76, 93] combines DeepHalo with the overlapped

tiling [47] and demonstrates significant speedups for solving the Helmholtz equation in a 3D

box. In [17], diamond tiling is extended to distributed systems by partitioning the grid in

the jth dimension among processes so that only the two j boundaries need to communicate.

Each process’s iteration space is decomposed into diamond tiles [51] in a similar way to how

we arrange the trapeziums. The communication overlaps with the update of diamonds inside

the domain since only diamonds touching the j boundaries depend on halo. The restriction

to 1D decomposition works for single-block grids but not multi-block grids where blocks can

be connected on any face. Pencil does not impose any constraint on the decomposition.

Domain-Specific Languages (DSLs) such as Distributed Halide [94] and the Oxford Parallel

library for Structured meshes (OPS) [95, 96] can tile loops over a single block and distribute

tiles among processors with communication routines automatically generated. Nonetheless,

they mostly lack the support of sophisticated tiling methods like trapezoidal tiling [49, 50]

or diamond tiling [51, 52].

Pluto [57, 58] represents the start-of-the-art in automatic parallelization tools using diamond

tiling with polyhedral techniques [53, 54]. First. it decomposes the iteration space into tiles,

then distributes the tiles among processes, and finally generates the corresponding MPI

routines [97]. Communication is only needed for tiles with data dependencies across nodes

and can be overlapped with the computation of tiles satisfying their dependencies within the

node. An effective overlap is demonstrated in [18]. However, the application is still limited
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to the perfectly nested loop structure formed by a single-block grid. To the best of the

author’s knowledge, none of the state-of-the-art polyhedral compilers or DSLs can directly

tile multi-block grids on distributed systems. Therefore, the present study contributes to

the state-of-the-art in distributed stencil computation for multi-block grids used in real CFD

applications.

4.6 Summary and Future Work

We propose Pencil, a novel pipelined algorithm to extend temporal tiling to multi-block

grids for distributed stencil computation. Through an in-depth analysis of single-node per-

formance, we demonstrate how to combine MPI and OpenMP to obtain the best performance

of temporal tiling. This optimal hybrid tiling method can be extended to multi-block grids

using DeepHalo. Evaluated with various stencils and numerical schemes, Pencil’s hybrid

tiling outperforms the start-of-the-art tool based on the polyhedral model, Pluto [57, 58] on

a single-node by up to 1.9×.

On distributed systems, Pencil achieves overlap by pipelining computation and communi-

cation and significantly outperforms MPI-everywhere and MPI+OpenMP on both clusters

considered in this thesis. Moreover, it exhibits excellent weak and strong scaling up to 128

nodes on Bebop. At last, we apply Pencil to a multi-block grid with 6 connected blocks and

achieve a 1.33-3.41× speedup over MPI+OpenMP with spatial tiling.

The implementation of sophisticated tiling algorithms and overlap methods can be time-

consuming and error-prone. For now, all our optimizations are manually implemented for

each test case, which works for a small number of benchmarks. To extend Pencil to various

complex CFD solvers, further studies will incorporate Pencil into DSLs like OPS [95, 96] or

auto-parallelizing tools such as Pluto [57, 58].

83



Chapter 5

Transferable Deep Learning Model for

BVP

In chapters 3 and 4, we have presented systematic optimizations to each step of the CFD

workflow. Nonetheless, the simulation in real engineering applications can still be time-

consuming. A further optimization is to design a fast surrogate for CFD solvers, which can

infer the flow solution without solving governing equations and only has an acceptable loss

of accuracy. Owing to the recent technological advances in Deep Learning (DL) or say Deep

Neural Networks, we can now build accurate surrogates for extremely complicated systems

with high dimensional inputs and outputs. Figure 5.1a illustrates the structure of a fully

connected neural network, which is composed of layers of neurons. The layers between the

input and output are referred to as hidden layers. As shown in Figure 5.1b, each neuron

forms a linear combination of the input vector ~x and passes that combination through a

non-linear activation function φ as follows,

y = φ(
∑

wi · xi + b), (5.1)
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where wi and b are referred to as the neuron’s weights and bias respectively. The fully

connected neural network passes its input through all the hidden layers, using the prior

layer’s output as the following layer’s input. The weights and biases from all neurons are

determined by a tuning process (called training), which minimizes a loss function measuring

the error between the network’s output and the ground truth with gradient decent.

...
...

...· · ·

HiddenInput Output

(a) Fully connected network.

x1

x2

xn

w1

w2

wn

...

φ(·)
yb

(b) A neuron

Figure 5.1: An example of fully connected neural network.

According to the Universal Approximation Theorem [98, 99], a fully connected network

with sufficient parameters can approximate any complex mapping between the given inputs

and outputs. In the CFD scenario, the network can be used to approximate the mapping

between flow snapshots to steady-state solutions [100, 101], or between the domain and

boundary info to a PDE’s solution [21, 102], etc. These studies require moderate/large

data sets for training, which are typically generated from prior flow simulations by CFD

solvers. These data-driven approaches face two limitations. First, it is challenging and time-

consuming to generate high-quality data for realistic engineering applications. Moreover,

the DL model built based on data does not respect the underlying physical laws, leading to

solutions violating the conservations laws in fluid dynamics [101].

The pioneering work, Physics-Informed Neural Network (PINN) [19], makes a significant

advance towards resolving both limitations by embedding the PDEs governing physical phe-
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nomena into the loss function.

For general PDE systems on a spatio-temporal domain Ω× [0, T ],

H(~u(t, ~x)) = f(~x), ~x ∈ Ω, t ∈ [0, T ],

where H(·) denotes a non-linear differential operator with derivatives in time and space,

PINN approximates the solution ~u(t, ~x) with a neural network N (t, ~x) and defines the loss

function as

Loss = MSEpde +MSEbc +MSE0

MSEpde =
1

Ncol

Ncol∑
(H(N (t, ~xi))− f(~xi))

2

MSEbc =
1

Nbc

Nbc∑
(N (t, ~xbci )− ~u(t, ~xbci ))2

MSE0 =
1

N0

N0∑
(N (0, ~x0i )− ~u(0, ~x0i ))

2,

(5.2)

where all the terms are expressed as Mean Squared Error (MSE). The first term MSEpde

denotes the residual of the governing PDE system. The derivatives in H(·) are computed

using the network’s auto-differentiation (AD). Minimizing this term during training informs

the model of the physical laws. To compute MSEpde, the domain is discretized with Ncol

collocation points. The distribution of collocation points can be adaptively adjusted based

on the solution and the domain’s geometry, which is much simpler and flexible than the mesh

generation in CFD. The second term MSEbc denotes the error in satisfying the boundary

condition, where the boundary is resolved by Nbc boundary points ~xbc. The last term MSE0

represents the error in satisfying the initial condition on N0 initial points ~x0, which do not

have to be the same as collocation points. Note that the loss function in Equation 5.2

eliminates the need for data in training.

Given a well-posed PDE system, the minimization of Equation 5.2 leads to a neural network

N converging to the exact solution ~u(t, ~x). However, when training with gradient descent,
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the gradients of MSEpde and MSEbc may have orders-of-magnitude difference in eigenvalues,

resulting in a stiff system prone to divergence. To remedy, the loss function in Equation 5.2

is augmented with weight averaging and datasets in [20, 103],

Loss = w0MSEpde + w1MSEbc + w2MSE0 + w3MSEdata

MSEpde =
1

Ncol

Ncol∑
(H(N (t, ~xi))− f(~xi))

2

MSEbc =
1

Nbc

Nbc∑
(N (t, ~xbci )− ~u(t, ~xbci ))2

MSE0 =
1

N0

N0∑
(N (0, ~x0i )− ~u(0, ~x0i ))

2

MSEdata =
1

Ndata

Ndata∑
(N (t, ~xdatai )− ~u(t, ~xdatai ))2

(5.3)

where the weights (different from the weights in neural network) w0, w1, w2 and w3 prescribes

the contribution of each loss term. Assigning proper weights can balance the gradients of

different terms and help the training to converge. The fourth term in Equation 5.3 denotes

the error on Ndata data points ~xdata inside the domain. The datasets used here can be

much smaller than the ones in purely data-driven approaches. Although using data is not

necessary, minimizing a share of data error can still ease the training. With a properly tuned

loss and network, the state-of-the-art PINN model can infer the steady-state solution of a

lid-driven cavity benchmark with ∼3% L2 error in velocity magnitude [20].

Despite the empirical success of physics-informed DL models, it is still very challenging to

generalize these models to realistic applications. This is because the developments so far only

result in problem-specific models that infer the solution of a PDE system in a particular

domain under specific conditions. As mentioned in Chapter 1, in practical engineering

designs, we need to simulate flow with different geometries and conditions. For example,

we can train a PINN model to substitute CFD solvers in simulating the flow over an airfoil.

This model applies to the unique configuration and flow conditions used in training and will
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become largely useless when simulating under different angles of attack (set by boundary

condition) or for different airfoils (set by geometry). Therefore, to truly benefit from DL

surrogates in engineering, we need to design transferable models that can be trained once on

particular geometries and conditions and applied widely to unseen geometries and conditions.

To this end, we propose a novel transferable DL model in this chapter as a surrogate for

solving the 2D Boundary Value Problem (BVP) of elliptic PDEs, which covers the widely used

Poisson-Helmholtz type equations, incompressible Navier-Stokes equations, etc. Section 5.1

describes our network for solving BVP with arbitrary conditions and domain shapes. Section

5.2 introduces a novel iterative inference method that transfer the network’s prediction for

simple geometries to complex composite domains unseen during training. Section 5.3 presents

our results for the 2D Lapace equation. Section 5.4 summarizes the recent works on designing

transferable DL models. Finally, Section 5.5 concludes our contributions and points out

future directions.

5.1 Neural Network for BVP

We aim at solving the 2D BVP for elliptic PDE(s) on an arbitrary domain Ω,

H(u) = f(x, y), (x, y) ∈ Ω,

u = g(x, y), (x, y) ∈ ∂Ω,

(5.4)

where H(·) denotes an elliptic partial differential operator composed by spacial derivatives.

Functions f and g represent the source/sink in space and the boundary condition respectively.

If f = 0, the PDE becomes homogeneous. Note that u, f , and g can be vectors, in which

case Equation 5.4 represents a system of PDEs such as Navier-Stokes (NS) equations.

The domain Ω is discretized with boundary points ~xbc ∈ ∂Ω, data points ~xdata ∈ Ω, and
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collocation points ~x ∈ Ω. Both the boundary points and data points are extracted from grid

points while the collocation points are adaptively distributed based on the solution and the

domain’s geometry.

To design a neural network transferable across different boundary conditions, we embed the

boundary condition g(x, y) and domain geometry ∂Ω into the network’s input as shown in

Equation 5.5, where Nbc, Nvar and Ndim denote the number of boundary points, variables,

and spacial dimensions respectively. Ndim = 2 since we only study 2D BVP in this thesis.

Nvar = 1 for scalar PDEs such as the Laplace equation, Poisson equation, etc. Nvar = 3 for

the incompressible NS equations, which involves two velocity components and pressure.

g(~xbc1 ), g(~xbc2 ), · · ·, g(~xbcNbc
)︸ ︷︷ ︸

G : Nvar ·Nbc

, ~xbc1 , ~x
bc
2 , · · ·, ~xbcNbc︸ ︷︷ ︸

∂Ω : Ndim ·Nbc

, ~x︸︷︷︸
Ndim

(5.5)

The first part of Equation 5.5, G, denote the boundary condition, which is represented by

values at all the boundary points. The second part, ∂Ω, depicts the shape of the boundary

using the coordinates of boundary points. The last part consists of the coordinates of one

input point. As a result, there are in total (Nvar +Ndim) ·Nbc+Ndim elements in the input. If

we fix the domain’s geometry and only train the network for different boundary conditions,

we can omit ∂Ω, reducing the input to Nvar ·Nbc +Ndim elements.

The output of our neural network is the solution u(~x) of Nvar components at the input point.

The loss function of our network is defined similar to Equation 5.3,

loss =
w0

Nbc +Ndata

Nbc+Ndata∑
(N (G, ∂Ω, ~x∗i )− g(~x∗i ))

2

+
w1

Ncol

Ncol∑
(H(N (G, ∂Ω, ~xi))− f(~xi))

2,

(5.6)

where N (G, ∂Ω, ~x∗i ) denotes our neural network approximating the solution u(~x) for a given

boundary condition G and boundary shape ∂Ω. In the first term ~x∗i represents either a
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boundary point or a data point. Their contributions are merged since both of them are

extracted from grid points. The second term stands for the PDE’s residual. The derivatives

in H(·) is calculated using the network’s auto-differentiation with respect to the collocation

point’s coordinates ~xi. During training, we test different combinations of weights w0 and w1

to achieve the most accurate model.

For the hidden layers, we use the fully connected network architecture presented in Figure

5.1. Using more advanced architectures such as the Convolutional Neural Network (CNN)

or the Recurrent Neural Networks (RNN) may help to improve the model’s accuracy but is

beyond the scope of this thesis.

We propose two methods to generate sufficient distinct boundary conditions for the training.

First, for simple PDEs such as the Laplace and Poisson equations, there exists a unique

solution as long as the boundary condition g(~x) is a smooth function. In this case, we generate

g(~x) using a random process and minimize the correlation between samples. For complex

PDEs such as the NS equations, the boundary condition must satisfy the underlying physical

laws such as mass conservation, momentum conservation, etc. As a result, it becomes highly

non-trivial to create realistic boundary conditions from scratch. We propose to first solve

the PDEs with realistic boundary conditions on a large domain, then extract solutions for

small sub-domains, referred to as genome. The solution on each genome’s edges forms the

boundary condition for that genome. Figure 5.2 shows an example of extracting genomes

from a Lid-Driven Cavity benchmark with a non-uniform grid. In general, we can extract

boundary points at arbitrary positions and set their values by interpolating the solutions

in nearby grid cells. For simplicity, we choose boundary points from grid points and use a

genome of fixed size, i.e., 10 × 10 in this example. As seen from Figure 5.2a, although the

genomes have the same number of grid points in the ith and jth dimension, their boundary

shapes are still different because the grid is non-uniform. The boundary points inherit their

values from the flow solution shown in Figure 5.2b. Moreover, genomes do not have to be

90



rectangular. If we extract boundaries from a curved grid such as the airfoil in Figure 2.1a,

the genomes can also be curved.

U

(a) Genomes extracted from a non-
uniform grid.

(b) Solution for the Lid-Driven Cavity benchmark.

Figure 5.2: An example of extracting genomes from the Lid-Driven Cavity benchmark with
a non-uniform grid. The colored rectangles mark the genomes. The red and blue colors are
only for visual clarity.

5.2 Iterative Inference Method

In this section, we introduce an iterative inference method to transfer our model’s prediction

on genomes to domains of unseen sizes and shapes. For elliptic PDEs, we can decompose

the domain into small genomes and solve the BVP on the genomes iteratively. The solution

converges to the same solution obtained by directly solving for the entire domain. We

substitute the conventional PDE solver with the neural network designed in Section 5.1,

which leads to our iterative inference method. We train the neural network by solving BVP

for simple genomes with a sufficient amount of distinct boundary conditions. Then, for an

unseen domain geometry, we decompose the domain into multiple sets of overlapped genomes.

and use our model to infer the solution for genomes iteratively. Genomes in the first set,
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referred to as basic genomes, cover the entire domain and inherit boundary conditions from

the domain’s boundaries. The following sets of genomes overlap the shared border of the

basic genomes to speed up the propagation of boundary information. We infer the solution

for genomes set by set and iterate this procedure until the solution on the global domain

converges.

We illustrate the iterative procedure by solving the following Poisson equation on a domain

of size 2× 1.

∇2u = −8π2 cos(2πx) cos(2πy)

The boundary condition is set uniformly to zero. We discretize the domain with a uniform

grid of size 64 × 32 using Finite Difference and solve the Poisson equation via Algebraic

Multi-Grid (AMG) provided by the PyAMG library [104]. The solution is shown in Figure

5.3a. Instead of obtaining the solution in one solve for the entire domain, we can partition the

domain into two genomes as shown in Figure 5.3b. Genome 0 and 1 are unit squares sharing

the vertical border at the center of the domain. Each genome has three edges aligned with

the domain’s boundary, which inherit the boundary conditions. We solve for the two genomes

by initializing the shared border with zero values. Note that genome 0 and 1 are connected

at the shared border just like two blocks are connected in the multi-block grids (Chapter

4). Therefore, we can exchange the halo (marked by red and blue) between genome 0 and

1 and iterate the solve for them. To solve BVP for elliptic PDEs is essentially to propagate

the boundary condition into the inside of the domain. Solving for the whole domain ensures

each inner grid point receives the boundary info instantly. When solving iteratively with two

genomes, one genome’s boundary info is gradually passed to the other genome through halo

exchange. Hence, we expect the result to converge to the exact solution but with a large

number of iterations. This is validated by the convergence history in Figure 5.3d, where the

mean absolute error (MAE) compared to the solution by AMG drops below the 10−14 after

300 iterations.
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(a) Solution by AMG.

genome0 genome1

(b) Two genomes.

genome2

(c) Overlapped genomes.

0 10 100 400

1.0

1e-5

1e-10

1e-14

Iteration

M
A

E

Exchange halo
Overlapped

(d) Convergence History

Figure 5.3: An example of solving elliptic PDEs by iterating genomes.

We can speed up the propagation of boundary info by adding a third genome overlapping

the shared border as shown in Figure 5.3c. After one iteration for genome 0 and 1, we solve

for genome 2 using genome 0 and 1’s latest results as boundary conditions. This passes

genome 0 and 1’s boundary info to cells near the shared border. As shown in Figure 5.3d,

using overlapped genomes significantly speeds up the convergence and reduces the number

of iterations to reach machine precision by 12×. In this example, each genome is still solved

by a conventional numerical method and in next section we will demonstrate the effect of

employing neural network to infer genomes.

5.3 Experiments and Results

In this section, we present experimental evaluations of our DL model by solving the 2D

Laplace equation with Dirichlet boundary conditions.
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5.3.1 Laplace Equation

To solve the following Laplace equation, we fix the geometry and focus on our model’s ability

to handle different boundary conditions.

∇2u = 0, (x, y) ∈ Ω,

u = g(x, y), (x, y) ∈ ∂Ω,

(5.7)

Training Samples We construct our genomes by solving Equation 5.7 on an unit square,

i.e., Ω = [0, 1] × [0, 1]. To generate boundary conditions, we sample smooth functions

along the perimeter ∂Ω using Gaussian Process (GP) with a minimization of inter-sample

correlation.

Similar to solving the Poisson equation in Section 5.2, we discretize Equation 5.7 using FD

on a uniform grid of size 32 × 32 and solve it with AMG. The boundary points consist of

all the 4 × 32 = 128 grid cells on the boundaries. The data points are extracted uniformly

from grid cells inside the domain. Both the boundary points and data points are fixed

during training. The collocation points are initially distributed with a larger density at

near-boundary regions, then adapted according to the network’s spatial gradients. Figure 5.4

illustrates the distribution of 128 boundary points, 20× 20 data points, and 400 collocation

points. During training, we update the spatial derivatives of N (G,Ω, ~x) with network’s

auto-differentiation and shift more collocation points towards regions with larger gradients,

as shown by Figures 5.4b and 5.4c.

Neural Network Architecture Since we fix the geometry, we can omit the coordinates of

boundary points in Equation 5.5. For genome size 32×32, we have in total Nvar ·Nbc+Ndim =

128 + 2 = 130 elements in the network’s input vector including the boundary values and

one boundary/data/collocation point’s coordinates. The output is the inferred solution to
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Figure 5.4: Distribution of 128 boundary points, 400 data points, and 400 collocation points

Equation 5.7 at the input point. We consider two architectures for the hidden layers, referred

to as Arch 0 and Arch 1 respectively. Arch 0 is composed of fully connected layers following

our strategy in Section 5.1, resulting in a coned structure as shown in Figure 5.5a. The

second architecture is based on the linearity of Equation 5.7, where the solution at each

inner point is essentially a linear combination of the discretized boundary values. As shown

in Figure 5.5b, Arch 1’s fully connected layers start from the input coordinates ~x and end

with a layer containing the same number of neurons as the boundary points. The inference

follows N (G,~x) =
∑
αig(~xbci ), where ~α denotes the outputs from the last hidden layer.

We evaluate the two architectures using a moderate size of samples listed in Table 5.1. For

Arch 0, we use 8 hidden layers of sizes 128×128×96×96×64×64×32×32. We inverse these

hidden layers for Arch 1 so that they have the same number of parameters. The networks

are implemented with Tensorflow [105]. All layers in both architectures employs the tanh

activation function. The loss function 5.6 is minimized by the ADAM [106] optimizer. We

reduce the learning rate η by 20% when the validation loss descent reaches a plateau and

terminates the training when η becomes so small that the loss barely decreases over time.

In our experiments, the combination w0 = 1 and w1 = 0.001 leads to the minimum terminal

loss.

After training, both models are evaluated using 400 unseen boundary conditions generated
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Figure 5.5: Two network architectures for solving BVP for the Laplace equation. Arch 0
passes the boundary values G (violet) and input coordinates ~x (pink) together through fully
connected hidden layers (blue). Arch 1 only passes the input coordinates through the hidden
layers. The last hidden layer’s output and the boundary values are multiplied using vectors’
dot product.
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Table 5.1: The key parameters and evaluations for Arch 0 and Arch 1. In the training column,
from left to right, we list the number of layers, the number of sample boundary conditions,
and the number of data/collocation points used in training. For evaluations with unseen
boundary conditions (BC), we report the Mean Absolute Error (MAE) and Mean Relative
Absolute Error (MRAE) compared to the solution by PyAMG, and the Mean Absolute
Residual for Equation 5.7.

Network
Training Unseen BC

Layers Samples Points MAE MRAE MAR

Arch 0 8 2000 100\400 2.24e-3 3.28e-2 1.12e-1

Arch 1 8 2000 100\400 7.54e-4 8.58e-3 2.92e-2

Arch 1 14 8000 400\400 6.02e-4 7.06e-3 1.63e-2

Arch 1 DP 14 8000 400\400 5.99e-4 6.98e-3 1.71e-2

by GP. We measure the model’s accuracy with three metrics, Mean Absolute Error (MAE),

Mean Relative Absolute Error (MRAE), and Mean Absolute Residual (MAR), which are

defined as follows,

MAE: |N (G,Ω, ~x)− u(~x)| (5.8)

MRAE: |N (G,Ω, ~x)− u(~x)|/|u(~x)| (5.9)

MAR: |H(N (G,Ω, ~x))− f(~x)| (5.10)

As seen from Table 5.1, all the metrics of Arch 1 is better than Arch 0 by one order of

magnitude. This is because Arch 0 applies a non-linear activation to the boundary values,

which conflicts with the linearity of Equation 5.7. Note that it is necessary to use non-

linear activation functions to compute the second order spatial derivatives in Equation 5.7

with auto-differentiation. However, Arch 1 restricts the non-linear activation to spatial

coordinates and retains the linearity of the boundary values, resulting in superior accuracy

over Arch 0.

We further improve Arch 1’s accuracy by increasing the network’s depth and the number

of boundary conditions used in training. As shown in Table 5.1, the MAE and MAR are

improved by 20% and 80% respectively. The networks so far are built in single precision
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(SP), i.e., all the weights and biases are 4-bytes float variables. We also train the same

network using double precision (DP). Although it doesn’t improve the accuracy compared

to SP, it later helps to transfer the model’s prediction to unseen domains.

Domains of Unseen sizes and shapes We use our iterative inference method to extend

the network’s prediction to domains with unseen sizes and shapes. First, we consider domains

of the same square shape but with a larger size. Figure 5.6 shows how a 2 × 2 square is

decomposed with three sets of overlapped genomes. The basic genome set consists of four

genomes of size 1 × 1. The remaining two genome sets overlap the vertical and horizontal

shared borders between the basic genomes. Each iteration updates all the genomes set by

set and each genome extracts its boundary conditions from genomes in the prior set. We

terminate the iterations when the difference between adjacent iterations is below a prescribed

tolerance, 10−6.

Figure 5.6: Overlapped genomes for a square domain of size 2× 2.

Figure 5.7 presents the error between our iterative inference and the solution from AMG.

For networks in both SP and DP, most of the errors appear at the genomes’ borders. The

genomes’ skeletons are still visible in the error plots. As shown in Table 5.2, the iterative

inference of the DP model results in significantly less error than the SP model, improving

the MAE and MAR by 65% and 16% respectively.

We further increase the domain size to 4 × 4 and decompose it similarly with three sets of

genomes. Note that some of the genomes are completely immersed in the domain, i.e., none
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Figure 5.7: Iterative inference for the square domain of size 2× 2.
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of the genome’s boundary overlaps with the domain’s boundary, which makes it more difficult

to propagate the boundary condition into the domain. The errors of the iterative inference is

illustrated in Figure 5.8 and listed in Table 5.2. We observe similar trends that the border of

genomes are prone to errors, and the iterative inference of the DP model is significantly more

accurate than that of the SP model, even though both models have comparable accuracy for

a single genome (Table 5.1).

This is because, at each iteration, the DP model accumulates less round-off error than the

SP model. Figure 5.9 shows the convergence history of iterative inference for both domains.

For the 2×2 square, the errors of the DP and SP models start from the same value and reach

plateaus after about the same number of iterations. However, the DP model has accumulated

much less round-off error than the SP model, which results in a much better accuracy. The

accumulated round-off error also slows down the propagation of boundary info and increases

the number of iterations. As shown in Figure 5.9, the SP model uses twice the number of

iterations for convergence compared to the DP model for the 4 × 4 square domain. As a

result, even though the SP and DP model have similar accuracy in inferring solutions for

different boundary conditions, it is necessary to employ DP to minimize the round-off error

when transferring our model’s inference to unseen domains.

For both SP and DP models, the error increases as we expand the domain. Besides the

round-off error, the error from inference on a single genome, i.e., O(10−4) in Table 5.1 also

accumulates during iterations. Large domains require considerable iterations to propagate

the boundary info and therefore, increase the accumulated error. Nonetheless, for the 4× 4

square, which is 16× larger than the genome, our DP model still limits the MRAE below

10%, comparable to state-of-the-art non-transferable DL models.

The tests on square domains validate that the iterative inference can transfer our model’s

prediction to larger domains. We want to further evaluate its ability to transfer prediction

across different domain shapes. To this end, we test our model on the cross-shaped domain
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Figure 5.8: Iterative inference for the square domain of size 4× 4.
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Figure 5.9: Convergence History of SP and DP models for the square domain tests

Table 5.2: Summary of results for the iterative inference of the SP and DP models.

Test
SP Model DP Model

MAE MRAE MAR MAE MRAE MAR

Square 2× 2 1.38E-3 7.36E-2 3.99E-3 4.93E-4 1.3eE-2 3.35E-3

Square 4× 4 2.43E-3 9.39E-2 1.87E-3 1.85E-3 8.12E-2 1.31E-3

Cross 3.18E-3 1.12E-1 4.69E-3 1.70E-3 5.02E-2 3.73E-3

in Figure 5.10. The domain is decomposed into 5 unit square genomes, which form the basic

genome set. We include two additional genome sets (marked red and blue) to cover the

vertical and horizontal shared borders respectively.

Figure 5.10: Overlapped genomes for a cross-shaped domain.

The solution and inference are illustrated in Figure 5.11 and the error metrics are listed

in Table 5.2. The results are consistent with our prior observation that the errors tend to

accumulate at the genomes’ boundaries. Using the DP model with iterative inference only

introduces 5% error compared to the solution by AMG, which validates iterative inference’s

102



capability of transferring prediction across unseen shapes.
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Figure 5.11: The solution and DP model’s iterative inference for the cross-shaped domain.

5.4 Related Work

The empirical success of PINN [19] has sparkled a large body of work applying DL models

to physics-based simulations. Nonetheless, studies specialized at transferring DL model’s

inference across domains of unseen shapes and sizes are quite limited. In this section, we

briefly summarize these works and highlight our contributions to this topic.

The first step to transfer inference across various geometries is to embed the geometry info

into the DL model. In [21], Convolutional Neural Networks (CNN) are employed to solve

the 2D Poisson equation on rectangular domains. With the domain’s width and height as

input, the model is transferable across rectangles of different aspect ratios. In [102], a DL

model is exploited as a surrogate for the RANS turbulence model in solving Navier-Stokes

equations. The model is trained specifically for the flow over a backward facing step. Taking

the step height as an input, the model can infer flows over various steps. In [107], the DL

model infers the lift and drag of various elliptic objects with the ellipse’s aspect ratio as

input. Note that such generalizations, though effective in their target applications, are still
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restricted to the specific type of geometries (rectangle, ellipse, etc).

Several studies [23, 24, 108] have proposed more general techniques to represent the geometry

info. CNN is used in [108] to solve the 3D Poisson equation for plume flow over rigid objects,

where the object’s shape is captured by a 3D array marking whether a grid cell belongs to

the object. With the marker array input to the network, the model can predict flows across

various object shapes, yet its usage is limited to uniform Cartesian girds of prescribed sizes.

In [23], CNN is exploited to predict the flow over different airfoils. The airfoil’s shape is

resolved by a uniform Cartesian field measuring the distance from each grid cell to the airfoil’s

surface, which is passed as an image to the convolution layers. The model can potentially

predict for geometries other than airfoils but is still limited to the fixed Cartesian grids. The

model in [24] takes a 3D single-block structured grids as input and generalize its inference

to various domain shapes that can be resolved with that particular block. Generalization

methods based on CNN primarily rely on Cartesian grids and are limited to the size and

resolution of the grid.

There are fewer works to transfer the model’s inference from a small segment to larger

domains. In [103], the domain is decomposed into non-overlapped sub-domains. The gov-

erning PDEs are penalized on each sub-domain with a separate network and their solutions

are stitched together by regularizing the continuity conditions on the sub-domains’ inter-

faces. Like our model, this method can combine sub-domains’ solution to infer the global

domain. However, it is not transferable at all, i.e., if the boundary condition or the domain

shape changes, the model is no longer applicable.

Our model differs from the prior works as follows. First, we present the first work that can

transfer a network’s inference to domains of both unseen shapes and sizes. Moreover, our

model is essentially mesh-free. The extraction of data points from grid points is merely to

improve the training but not a necessity. At last but not least, the genomes’ update can be

performed in parallel, which potentially allows the model to scale on distributed systems.
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5.5 Summary and Future Work

We design a DL model based on fully connected neural networks to solve 2D BVP for elliptic

PDEs. Based on the model, we introduce a novel iterative inference method that can transfer

the model’s prediction to domains of unseen sizes and shapes. We present evaluations of our

model by solving the linear Laplace equation. The results validate the iterative inference’s

ability to transfer prediction across various unseen domains with a limited loss of accuracy

compared to the conventional PDE solvers.

To extend our model to the non-linear NS equations, the neural network needs to infer

multiple flow variables (velocities, pressure, etc) and regularize a system of PDEs, which

significantly increases the complexity of training. Moreover, it is unclear whether the itera-

tion of overlapped genomes would converge to the correct solution of the NS equations due

to their non-linear nature. An alternative approach is to optimize the values at the shared

borders to satisfy the flow’s continuity across genomes, which could lead to a more robust

convergence. We will investigate these possibilities in our future research.

We have only evaluated our methods using rectilinear geometries, whereas the model can

potentially handle arbitrary boundary shapes. Future studies involve extracting genomes

from flow over curved objects such as cylinders, ellipse, etc, and evaluations of the iterative

inference with unseen curved bodies.

We only implement our algorithm in 2D experiments, whereas the same idea also applies to

3D PDEs. In 3D, the input vector in Equation 5.5 includes a large number of boundary points

covering the surfaces of a genome. For a genome of size 32×32×32, we face ∼ 104 elements

in the input, which highly challenges the training of fully connected networks. Moreover, we

have observed that most of the errors accumulate near the shared borders. For 3D domains,

the shared borders, i.e., surfaces occupy one more degree of freedom, rendering the iterative

inference more error-prone. We will address these challenges in our future research.
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Chapter 6

Concluding Remarks

6.1 Summary

This dissertation presents high-performance algorithm designs to systemically improve the

performance and productivity of CFD solvers using multi-block structured grids on modern

architectures. We summarize the main contributions of this dissertation below.

Multi-block structure grid partitioner. The CFD workflow starts with partitioning

multi-block grids, which has a substantial impact on load balance and communication cost.

In Chapter 3, we present the first cost model in grid partitioning that unifies the algorithm

metrics and network properties. Based on the cost model, we propose novel partitioning

algorithms, effectively balancing the workload between processors and minimizing the com-

munication cost. Evaluated with the MPI+Threads programming model, our grid partitioner

speeds up the communication of the benchmark solver by up to 15×.
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Pipelined Distributed Stencil Computation. After finding the optimal partitions for

the multi-block grids, we move on to optimize the iterative process of solver computation

and halo communication in the CFD workflow. In Chapter 4, we introduce Pencil, a pipeline

algorithm for distributed stencil computation. Pencil identifies the optimal combination of

MPI and OpenMP for temporal tiling and extends the state-of-the-art temporal tiling algo-

rithms for single-blocks grids to multi-block grids via DeepHalo. Moreover, Pencil overlaps

the communication with computation via pipelining, which effectively hides the communi-

cation cost and enhances strong scaling. Evaluated with numerous stencils and numerical

schemes, Pencil outperforms MPI+OpenMP with spatial tiling by up to 3.4× for a multi-

block grid.

Transferable Deep Learning Model for BVP. After optimizing all the critical steps

in the CFD workflow, we propose to further improve the productivity of CFD solvers with

surrogate modeling. In Chapter 5, we propose a DL surrogate for solving the general BVP

for 2D elliptic PDEs. The model is transferable across different boundary conditions and

shapes resolved by a given number of boundary points. Furthermore, we introduce a novel

iterative inference method to transfer the model’s prediction to domains of unseen shapes

and sizes. Our experiments demonstrate the model’s transferability in solving Laplace and

Navier-Stokes equations with a limited loss of accuracy.

6.2 Future Directions

6.2.1 Optimizations for GPU

Current and upcoming supercomputers such as Summit and Aurora all feature multiple

GPUs per node. The state-of-the-art CPU-based CFD solvers will be inevitably ported to

107



GPUs for higher performance. Applying our optimizations on CPU to GPU faces several

challenges. Compared to CPU, GPU has much higher flops but disproportionately less

cache, which challenges the tiling algorithm. Moreover, the preferred programming model for

GPUs is MPI+threads+GPU, where each GPU is driven by one thread and communicates

with other GPUs using GPUDirect [109]. How to extend our pipelined algorithm using

MPI+threads to exploit MPI+threads+GPU is yet to be explored. We will address these

challenges in future studies.

6.2.2 Deep Learning Models for CFD

We anticipate that the surrogate modeling based on DL will impact CFD simulations the

same way as CFD replaces experiments in the engineering design process. Towards this

trend, there are some fundamental questions to be answered. For instance, what type of

hidden layers (Convolutional, Recurrent, Fully Connected, etc) can learn 3D unsteady sim-

ulations more efficiently in realistic engineering applications? Can neural networks maintain

the Galilean invariance underlying the physical phenomena? How does the inference error

propagate over time for unsteady simulations? Future investigations on these issues will help

to broaden DL’s application in physics-based simulations.
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