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ABSTRACT OF THE DISSERTATION

Disturbance Cancellation by State Derivative Feedback with

Application to Ramp-Connected Surface Effect Ships

by

Halil I. Basturk

Doctor of Philosophy in Engineering Sciences (Mechanical Engineering)

University of California, San Diego, 2013

Professor Miroslav Krstic, Chair

This dissertation develops a theory to design a controller which estimates

and cancels unknown sinusoidal disturbances forcing a linear time-invariant system

by using only measurement of state-derivatives of the system. Our design is based

on the following steps; parametrization of the sinusoidal disturbance as the output

of a known feedback system with an unknown output vector that depends on both

unknown disturbance parameters and unknown plant parameters, design of an

adaptive disturbance observer, and finally design of an adaptive controller. We

extend the results for unmatched disturbances by using a backstepping procedure.

We employ the developed controller to solve the problem of cargo transfer

in high sea states over a ramp from a large, medium-speed, roll-on/roll-off (LMSR)

xv



vessel to a smaller connector vessel of a surface effect ship (SES) type. Our aim

is to reduce ramp motion between the LMSR and SES in order to provide a safer

environment for cargo transfer. We design an air cushion actuated controller to

estimate and cancel the wave disturbance and stabilize the heave of the SES via

heave acceleration feedback with actuation of the louver area for the case where

the hydrodynamic and other parameters of the SES are not known a priori and

the pressure dynamics of the air-cushion contains nonlinearly parameterized un-

known terms. We also consider a two-chamber air-cushion SES model and design

an adaptive controller to regulate heave and pitch simultaneously. In addition

a tracking algorithm is proposed to keep the ramp stationary during the cargo

transfer. We demonstrate the effects of our control designs in simulations in a

time-domain seakeeping code, named AEGIR.

We also implement the developed controller on a scale model SES. We per-

form several experiments in a wave tank to test the performance of the controller.

It is shown that the experimental results we have obtained are consistent with the

developed theory.

xvi



Chapter 1

Introduction

The problem of cancelling sinusoidal disturbances in dynamical systems is a

fundamental control problem, with many applications such as vibrating structures

[42], active noise control [43] and rotating mechanisms control [44]. The common

method to approach this problem is the internal model principle for which a general

solution is given in [9], [10] in the case of linear systems. In the internal model

approach, the disturbance is modeled as the output of a linear dynamic system

which is called an exosystem. Then the effect of the disturbance on the plant

response can be completely compensated by adding a replica of the exosystem

model in the feedback loop.

The output regulation problem for minimum phase, uncertain nonlinear

systems is solved in [4], [5], [19] and extended for non-minimum phase plants

in [20]. Moreover, designs for nonlinear systems are proposed in [28], [29], [46],

[47]. The regulation of a linear time-varying system for unknown exosystem is

considered in [30]. Disturbance cancelation and output regulation designs also

exist for continuous-time LTI systems [1], [6], [21], [31], [38], [40] and discrete-time

LTI systems [41]. In all of these references, the controllers are designed by using

measurement of state or an output.

In the last decade, the state derivative feedback control has been consid-

ered by many researchers [48]–[32] due to its various advantages in applications.

In most practical systems, using accelerometers as sensors is easier, cheaper and

more reliable than using position sensors. As an application example, the heave

1
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dynamics of a surface effect ship (SES) which has air cushion chamber underneath

the deck, is given as a second order mass-spring-damper system which is driven

by sinusoidal wave disturbances and pressure of the air cushion chamber in [2].

The model can be represented in the controllable canonical state space form by

considering heave and heave rate as states. Besides, the pressure dynamics can

be modeled either as a linear system [2], [11] or as a nonlinear system for control

design purpose.

An SES offers a high quality and more efficient ride in heavy sea states

compared to conventional catamarans. One of its main operational requirements

is the transfer of cargo from a large, medium-speed, roll-on/roll-off (LMSR), to

nearby land targets [3]. An SES has two modes of operation: It is either supported

entirely by twin hulls resembling a catamaran, or by an air cushion that uses a

bag system and fans to fill a pocket of air to lift the craft towards the surface of

the water.

There is an ongoing effort on the improvement of modeling of such ships,

with a number of highly complex and coupled interactions that increase the dif-

ficulty. References [25] and [37] present mathematical models of various marine

vehicles and their applications. In addition to the synthesis of equations of motion,

there is also an effort to analyze and simulate these ships [7], [8].

There are control approaches to increase the ride quality of a marine vessel.

In [2], the wave equation is considered to yield a more general equation for spatial

change of the pressure of air cushion in time and design a ride control system

using dissipative control. Reference [11] proposes a decoupled cushion control to

reduce the effect of the two main resonant modes for air cushion catamarans. The

main objective of the proposed controllers in the given references is to keep the

pressure of the air cushion stable and avoid cobble stone effect. The dynamic

model and control scheme for under-actuated and fully actuated marine surface

vessels are given in [23] and [24] respectively. Reference [33] proposes a model

predictive control design to prevent dynamic stall and increase the effectiveness of

ship fin stabilizers The various techniques to control of roll motions of ships are

summarized in [34].



3

One of the main aim is to reduce ramp motion between an LMSR and SES

operating in moderate sea states in order to provide a safer environment for cargo

transfer. The oscillation of an LMSR is relatively low with respect to an SES, due

to its heavy structure. Therefore, it is reasonable to focus on the stabilization of

the heave mode of SES.

Despite of all simplification in the model, designing a controller for an SES

presents significant challenges. Difficulties arise from unmeasured sinusoidal wave

disturbances, inaccurate system parameters such as mass and hydrodynamic terms,

indirect actuation of the air cushion pressure, nonlinearly parameterized model of

the air cushion pressure dynamics and the difficulty of measuring the position of

each vessel precisely.

In Chapter 2 by employing an approach inspired by [39] and [38], we design

an adaptive controller to estimate and cancel the matched and unmatched un-

known sinusoidal disturbances forcing LTI systems with known system parameters

by using measurement of state-derivative of system and the state of input dynam-

ics. We solve the problem for the case where the parameters of the system are

unknown, in Chapter 3. We prove that the equilibrium of closed loop is stable and

state of the LTI system goes to zero as t → ∞ with perfect disturbance estimation.

In Chapter 4 we develop an adaptive backstepping wave cancelation algorithm by

using the measurement of pressure, heave rate and acceleration with actuation of

the louver area to tackle all combinations of the mentioned challenges. We con-

sider a two-chamber air-cushion SES and design an adaptive controller to regulate

heave and pitch simultaneously in Chapter 5. We use existing software, named

AEGIR, to model the system and simulate it with and without control. AEGIR

is a time-domain seakeeping code that uses an advanced, high-order boundary ele-

ment method (BEM) to solve the three-dimensional, potential and-flow, and wave

flow problems and automatically calculates the water line intersection to determine

the wetted and dry surface areas as the vessel moves through waves [7]. With the

proposed controller, we estimate the unknown wave disturbance and cancel its ef-

fect to the system. Simulation results demonstrate significant reduction in heave

and pitch of SES. Thus, we achieve to reduce ramp oscillation and provide safer
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environment for cargo transfer over the ramp. The implementation of the devel-

oped algorithm on a scale model SES and the result of the experiments which has

been performed in a wave tank are given in Chapter 6.



Chapter 2

Adaptive Cancelation of

Unknown Sinusoidal Disturbances

for Known LTI Systems by State

Derivative Feedback

We develop an adaptive controller to estimate and cancel the matched and

unmatched unknown sinusoidal disturbances forcing LTI systems with known sys-

tem parameters by using measurement of state-derivative of system and the state

of input dynamics. Our design is based on the parametrization of the sinusoidal

disturbance as the output of a known feedback system with an unknown output

vector that depends on unknown disturbance parameters. This parametrization

allows us to design an observer and convert the problem to an adaptive control

design. We also propose a design for unmatched disturbance by using a backstep-

ping procedure. We prove that the equilibrium of the closed-loop adaptive system

is stable and state of the system goes to zero as t → ∞ with perfect disturbance

estimation. The effectiveness of the controllers are illustrated with simulation ex-

amples.

This chapter is organized as follows: We state the problem for the case where

the disturbance and the system input are matched and propose our design with

5
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stability proof and numerical example in Section 2.1. In Section 2.2 we develop an

adaptive controller for unmatched disturbance by using backstepping design. The

stability of the proof with a numerical example are also given in the same section.

Section 2.3 summarizes the results.

2.1 Matched Unknown Sinusoidal Disturbance

2.1.1 Problem Statement and Adaptive Controller Design

We consider the multi-input LTI system

ẋ(t) = Ax(t) +B (u(t) + ν(t)) , (2.1)

with the state x(t) ∈ Rn, input u(t) ∈ R, and sinusoidal disturbance ν(t) ∈ R

given by

ν(t) =

q∑

i=1

gi sin(ωit+ φi), (2.2)

where i 6= j ⇒ ωi 6= ωj , ω ∈ Q, gi, φi ∈ R.

The sinusoidal disturbance ν can be represented as the output of a linear

exosystem,

ẇ(t) = Sw(t) (2.3)

ν(t) = hTw(t) (2.4)

where w ∈ R2q and the choice of S ∈ R2q×2q and h ∈ R2q is not unique.

We make the following assumptions regarding the plant (2.1) and the ex-

osystem (2.3)–(2.4):

Assumption 2.1 A is invertible.

Assumption 2.2 The pair (A,B) is controllable.

Assumption 2.3 x and ν are not measured but ẋ is measured.

Assumption 2.4 The pair
(
hT , S

)
is observable.
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Assumption 2.5 The eigenvalues of S are imaginary, distinct and rational.

Assumption 2.6 q is known.

Assumption 2.7 S and h are unknown.

Assumption 2.8 gi 6= 0 for all i ∈ {1, . . . , q}.

Under Assumptions 2.1 and 2.2, there exists a control gain K ∈ R1×n such

that (A−1 + A−1BK) is Hurwitz [48].

We state now our adaptive controller with a disturbance observer. In Sec-

tion 2.1.2 we analyze the stability properties of the closed-loop system.

The adaptive controller for the system (2.1), (2.3), (2.4) is given by

u = −Kẋ− θ̂T ξ, (2.5)

the update law for θ̂(t) is given by

˙̂
θ = −γξ(A−1B)TP ẋ, γ > 0, (2.6)

with the positive definite matrix P which is a solution of the matrix equation

(A−1 + A−1BK)TP + P (A−1 + A−1BK) = −2I. (2.7)

The disturbance observer is given by

η̇ = G (η +N(ẋ−Bu))−NAẋ (2.8)

ξ = η +N(ẋ− Bu), (2.9)

where G is a 2q× 2q Hurwitz matrix with distinct poles and constitutes a control-

lable pair with a chosen vector l ∈ R2q and N is a 2q × n matrix which is given

by

N =
1

BTB
lBT , (2.10)

where the given N is one of the many solutions of the following equation

NB = l. (2.11)
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Since the matrices G and S have disjoint spectra, the pair (hT , S) is ob-

servable, and the pair (G, l) is controllable, the Sylvester equation

MS −GM = lhT , (2.12)

has a unique solution[13]. This fact is exploited in the proof of our stability result

(Lemma 2.1).

We first state a theorem describing our main stability result and then we

prove it using a series of technical lemmas in Section 2.1.2.

Theorem 2.1 Consider the closed-loop system consisting of the plant (2.1) forced

by the unknown sinusoidal disturbance (2.2), the disturbance observer (2.8),(2.9)

and the adaptive controller (2.5),(2.6). Under Assumptions 2.1–2.7, the system’s

solution x(t) ≡ 0, θ̂(t) ≡ (MS)−Th, η(t) ≡ GMw(t) is globally uniformly asymp-

totically stable and locally exponentially stable. Furthermore, θ̂T (t)ξ(t)− ν(t) → 0

exponentially as t → ∞, namely, perfect estimation of the disturbance is achieved.

2.1.2 Stability Proof

The following lemma enables us to represent the unknown sinusoidal dis-

turbance as the output of a linear system whose input is the disturbance itself,

whose state and input matrices are known, and whose output matrix is unknown.

Lemma 2.1 Let G ∈ R2q×2q be a Hurwitz matrix with distinct eigenvalues and let

(G, l) be a controllable pair. Then, ν can be represented as the output of the model

ż = Gz + lν (2.13)

ν = θT ż (2.14)

θT = hT (MS)−1. (2.15)

Proof This result and its proof are inspired by [39]. To establish (2.13) from (2.3),

consider

z = Mw. (2.16)
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Differentiating (2.16), we obtain

ż = MSw. (2.17)

Using (2.12), we have

ż = MSw = GMw + lhTw. (2.18)

Substituting (2.4) and (2.16) into (2.18) yields (2.13). Substituting w = (MS)−1ż

into (2.4), we obtain (2.14) and (2.15). �

The previous lemma enables us to write the unknown external disturbance

ν as the product of an unknown constant θ and the vector ż. However, ż is not

accessible, since the signal ν can not be measured. To overcome this problem, we

design the observer (2.8)–(2.9).

The following lemma establishes the properties of the observer.

Lemma 2.2 The inaccessible disturbance ν can be represented in the form

ν = θT ξ + θT δ, (2.19)

where δ ∈ Rq obeys the equation

δ̇ = Gδ. (2.20)

Proof Differentiating (2.13), we obtain

z̈ = Gż + lν̇ (2.21)

By defining the estimation error, we get

δ = ż − ξ. (2.22)

Differentiating δ with respect to time and in view of (2.13), (2.8) and (2.9), we get

δ̇ =Gż + lν̇ −G (η +N(ẋ− Bu)) +NAẋ−NAẋ−NBν̇. (2.23)

Substituting (2.9) into (2.23), using (2.22) and the fact that ND = l, we get (2.20).

Using (2.14), (2.22), we obtain (2.19). �
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Lemmas 2.1 and 2.2 convert the problem from cancelation of an unknown

sinusoidal disturbance to an adaptive control problem.

The following lemma is used in the proof of the main theorem.

Lemma 2.3 There exists ρ > 0 such that for all t0 ≥ 0, the following holds

Qp(ρ, t0) =

∫ t0+ρ

t0

ξ(t)ξT (t) dt− 1

ρ

∫ t0+ρ

t0

ξ(t) dt

∫ t0+ρ

t0

ξT (t) dt > 0. (2.24)

Proof By differentiating (2.22) with respect to time and using (2.20) and (2.21),

the estimate ξ can be represented as the solution of

ξ̇ = Gξ + lν̇, (2.25)

where

ν̇ =

q∑

i=1

gi cos(ωit + φi), (2.26)

with gi = giωi.

By solving (2.25), we get

ξ(τ) = eGτξ(0) +

∫ τ

0

eG(τ−σ)lν̇ dσ. (2.27)

Since G has distinct eigenvalues and is Hurwitz, it is diagonalizable. Using a

Jordan decomposition of the matrix G, we can write

G = LΛL−1, (2.28)

where L is the square 2q × 2q matrix whose ith column is the ith eigenvector of

G and Λ is the diagonal matrix whose diagonal elements are the corresponding

eigenvalues of G.

Defining L−1l = l, substituting (2.28) into (2.27) and using the property

eLλL
−1

= LeΛL−1, we get

ξ(τ) = LeΛτL−1ξ(0) + LeΛτ
∫ τ

0

e−Λσlν̇ dσ. (2.29)

By computing the integral in (2.29), we obtain

ξ(τ) = L
(
eΛτCc +Ψ(τ)

)
, (2.30)
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where Ψ ∈ R2q is the vector whose jth row is

q∑

i=1

ljgi
λ2
j + ω2

i

(−λj cos(ωiτ + φi) + ωi sin(ωiτ + φi)) , (2.31)

and

Cc = L−1ξ(0)−Ψ(0). (2.32)

Since ν̇ is a sufficiently rich signal order of 2q and (G, l) is a controllable pair, ξ is

persistently exciting [18]. Therefore, there exist positive ρ∗ and α0 such that for

all ρ > ρ∗ and t0 ≥ 0 the following holds
∫ t0+ρ

t0

ξ(t)ξT (t) dt ≥ ρα0I. (2.33)

Under Assumption 2.5, the frequencies of ν̇ can be represented as

ωi =
num(ωi)

den(ωi)
, num(ωi), den(ωi) ∈ Z+, i = 1 . . . q.

Then ρ that given by

ρ = ϑlcm (num(ω1), ..., num(ωq))× lcm (den(ω1), ..., den(ωq)) 2π > ρ∗, (2.34)

where lcm is the abbreviation of the least common multiple, satisfies (2.33) if

ϑ ∈ Z+ is chosen sufficiently large for given ρ∗ and ω1, . . . , ωq. Since Ψ(t) defined

by (2.31) has a period ρ and incorporates only zero-mean functions, it follows that
∫ t0+ρ

t0

Ψ(t) dt = 0. (2.35)

Substituting (2.30)–(2.35) into (2.24), we get

Qp(ρ, t0) ≥ LΘLT , (2.36)

where

Θ = ρα0I −
1

ρ
Γ(ρ)ΓT (ρ), (2.37)

α0 > 0 satisfies α0I − α0LL
T > 0,

Γ(ρ) =




c1e
λ1t0
(
eλ1ρ − 1

)

...

c2qe
λ2qt0

(
eλ2qρ − 1

)


 , (2.38)
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and ci denotes the ith row of the vector Cc/λi.

Since L is full rank, Qp satisfies the inequality (2.24) if µTΘµ > 0 for all

nonzero µ ∈ R2q. Using (2.37), we have

µTΘµ =ρα0

(
µ2
1 + . . .+ µ2

2q

)
− 1

ρ

(
µ1c1e

λ1t0
(
eλ1ρ − 1

)

+ . . .+ µ2qc2qe
λ2qt0

(
eλ2qρ − 1

))2

. (2.39)

By using Cauchy-Schwarz’s inequality and by noting that λi < 0, |
(
eλiρ − 1

)
| ≤ 1,

we have

µTΘµ ≥ρα0

(
µ2
1 + . . .+ µ2

2q

)
− 1

ρ

(
µ2
1 + . . .+ µ2

2q

)((
c1e

λ1t0
(
eλ1ρ − 1

))2

+ . . .+
(
c2qe

λ2qt0
(
eλ2qρ − 1

))2
)

≥
(
µ2
1 + . . .+ µ2

2q

)(
ρα0 −

1

ρ

((
c1e

λ1t0
)2

+ . . .+
(
c2qe

λ2qt0
)2)

)
. (2.40)

Since ρα0 is monotonically increasing and 1
ρ

((
c1e

λ1t0
)2

+ . . .+
(
cqe

λqt0
)2)

is mono-

tonically decreasing with respect to ρ for all fixed t0, one can find a ρ using (2.34)

such that for all t0 ≥ 0, (2.24) holds. �

Proof of Theorem 2.1: We represent the closed-loop system as a linear

time-varying (LTV) system which is given by

ζ̇ = E(t)ζ + F (t)δ, (2.41)

where

E(t) =

[
Acl BξT

γξ(A−1B)TPAcl γξ(A−1B)TPBξT

]
(2.42)

F (t) =

[
BθT

γξ(A−1B)TPBθT

]
(2.43)

ζ =
[
xT , θ̃T

]T
(2.44)

θ̃ = θ − θ̂, (2.45)
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with

Acl = (A−1 + A−1BK)−1 (2.46)

B = AclA
−1B. (2.47)

We first show that the equilibrium ζ = 0 of the homogenous part of the LTV

system (2.41) is exponentially stable. Towards that end, we choose the following

Lyapunov function

V =
1

2
ζTPcζ, (2.48)

where

Pc =

[
P 0

0 1
γ
I

]
. (2.49)

Taking the derivative of V , we get

V̇ =
1

2
ζT

[
AT

clP + PAcl

(
AT

clPA−1
cl + P

)
BξT

ξBT
(
AT

clPA−1
cl + P

)T
ξBT

(
A−T

cl P + PA−1
cl

)
BξT

]
ζ. (2.50)

By pre and post multiplying (2.7) by AT
cl and Acl and using the fact that Acl =

(A−1 + A−1BK)−1, we obtain

AT
clP + PAcl = −2AT

clAcl. (2.51)

Pre-multiplying (2.7) by AT
cl, we get

AT
clPA−1

cl + P = −2AT
cl. (2.52)

Post-multiplying (2.7) by Acl, we get

P + A−T
cl PAcl = −2Acl. (2.53)

Substituting (2.7), (2.51)–(2.53) into (2.50), we get

V̇ = −ζT

[
AT

clAcl AT
clBξT

ξBTAcl ξBTBξT

]
ζ. (2.54)
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Defining

CT (t) =
[
Acl BξT

]
, (2.55)

we get

V̇ =
1

2
ζT
(
ET (t)Pc + PcE(t)

)
ζ = −ζTC(t)C(t)T ζ. (2.56)

Therefore, it follows that Pc, as defined in (2.49), satisfies the following inequality

ET (t)Pc + PcE(t) + αCT (t)C(t) ≤ 0 (2.57)

for some α > 0.

The equilibrium ζ = 0 of the homogenous part of (2.41) is exponentially

stable if (C(t), E(t)) is a uniformly completely observable (UCO) pair [26]. For a

bounded H(t), the pairs (C(t), E(t)) and (C(t), E(t) +H(t)C(t)T ) have the same

UCO property [26]. Choosing

H(t) =

[
−I

−ξ(A−1B)TP

]
, (2.58)

we write the system corresponding to the pair (C,E +HCT ) as

Ẏ = 0 (2.59)

y = CT (t)Y. (2.60)

The state transition matrix of (2.59) is Φ = I. Therefore, (C,E+HCT ) is a UCO

pair if there exist positive constants α1, α2, ρ such that the observability Gramian

satisfies

α2I ≥
∫ t0+ρ

t0

C(t)CT (t) dt ≥ α1I, (2.61)

for all t0 ≥ 0. Since ξ is bounded, recalling (2.55), the upper bound of (2.61) is

satisfied. We now prove the lower bound in (2.61). Calculating the integral in

(2.61), we get

X =

∫ t0+ρ

t0

C(t)CT (t) dt

=

[
AT

clAclρ AT
clB
∫ t0+ρ

t0
ξT dt

∫ t0+ρ

t0
ξ dtBTAcl

∫ t0+ρ

t0
ξBTBξT dt

]
. (2.62)
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Let Sh be the Schur complement of AT
clAclρ in X, where

Sh =

∫ t0+ρ

t0

ξBTBξT dt− 1

ρ

∫ t0+ρ

t0

ξ dtBTAclA
−1
cl A

−T
cl AT

clB

∫ t0+ρ

t0

ξT dt

=BTB

(∫ t0+ρ

t0

ξξT dt− 1

ρ

∫ t0+ρ

t0

ξ dt

∫ t0+ρ

t0

ξT dt

)
. (2.63)

Since AT
clAclρ is positive definite, X is positive definite if and only if Sh is positive

definite. Since DTD is a positive scalar, according to Lemma 2.3 there exists

a positive ρ such that for all t0 > 0, Sh > 0. Hence, (C,E + HCT ) is UCO,

which implies that (C,E) is UCO. Therefore, the state transition matrix Φ(t, t0)

corresponding to E(t) in (2.41) satisfies

‖ Φ(t, t0) ‖≤ κ0e
−γ0(t−t0) (2.64)

for some positive constants κ0, γ0. Since G is Hurwitz, we have that

|δ(t)| = |eG(t−t0)δ(0)| ≤ κ1e
−γ1(t−t0)|δ(0)| (2.65)

for some positive constants κ1, γ1. The solution of (2.41) is written as

ζ(t) =Φ(t, 0)ζ(0) +

∫ t

0

Φ(t, τ)F (τ)δ(τ)dτ. (2.66)

Using (2.64)–(2.66), we get

|ζ(t)| ≤κ0e
−γ0t|ζ(0)|+

∫ t

0

κ0e
−γ0(t−τ)|F (τ)|κ1e

−γ1τ |δ(0)|dτ

≤κ0e
−γ0t|ζ(0)|+ κ1κ0e

−γ0t|δ(0)| sup
0≤τ≤t

|F (τ)|
∫ t

0

e(γ0−
1

2
min{γ0,γ1})τdτ

=κ0e
−γ0t|ζ(0)|+

κ1κ0 sup
0≤τ≤t

|F (τ)|
(
γ0 − 1

2
min{γ0, γ1}

) |δ(0)|e−γ0t
(
e(γ0−

1

2
min{γ0,γ1})t − 1

)

=κ0e
−γ0t|ζ(0)|+

κ1κ0 sup
0≤τ≤t

|F (τ)|
(
γ0 − 1

2
min{γ0, γ1}

) |δ(0)|
(
e−

1

2
min{γ0,γ1}t − e−γ0t

)

≤κ0e
−γ0t|ζ(0)|+

κ1κ0 sup
0≤τ≤t

|F (τ)|
(
γ0 − 1

2
min{γ0, γ1}

) |δ(0)|e− 1

2
min{γ0,γ1}t. (2.67)

Substituting (2.17) into (2.22), we get

ξ(t) = MSw(t)− δ(t). (2.68)
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Figure 2.1: Closed loop system’s response for the simulation example where the

system parameters are known and the unknown disturbance is matched.

Substituting (2.68) into (2.9) and using (2.12) and the fact that ẋ−Bu = Ax+Bν

and NB = l, we obtain

η(t)−GMw(t) = −NAx(t) − δ(t). (2.69)

By virtue of (2.44),

η(t)−GMw(t) = − [NA, 0, I]

[
ζ

δ

]
. (2.70)

Since ζ(0) =
[
xT (0), θ̂(0)− hT (MS)−1

]T
and δ(0) = −NAx(0)− η(0)+GMw(0),

following (2.65) and (2.67) we get that the solution x(t) ≡ 0, θ̂(t) ≡ (MS)−Th,

η(t) ≡ GMw(t) is globally uniformly asymptotically stable and locally exponen-

tially stable. Furthermore, according to Lemma 2.2, θ̂T (t)ξ(t) − ν(t) → 0 expo-

nentially as t → ∞, namely, perfect estimation of the disturbance is achieved.

The reason why we are not claiming global exponential stability is that

the quantities sup
0≤τ≤t

|F (τ)|, κ0, γ0, while bounded, actually depend on the initial

conditions x(0), θ̂(0), η(0), as can be observed by tracing the derivation of these

quantities throughout the paper and in the quoted sources. �
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Figure 2.2: Disturbance estimation for the simulation example where the system

parameters are known and the unknown disturbance is matched.

2.1.3 Simulation Results

We illustrate the performance of our controller with a second-order system

with A =

[
0 1

1 3

]
, B =

[
0

1

]
, the unknown disturbance ν(t) = 3 sin(t + π/5)

and initial condition x =
[
5 0

]T
. The control gain K is chosen such that the

eigenvalues of (A−1 + A−1BK) are −2 and −1. For the update law, we choose

γ = 1. Finally, the controllable pair (G, l) is chosen as G =

[
0 1

−1.95 −2.8

]
,

B =

[
0

1

]
, and N =

[
0 0

1 0

]
. From Figures 2.1 and 2.2 one can observe that

x(t) exponentially converges to zero and the unknown disturbance is perfectly

estimated, as Theorem2.1 predicts.

The placement of the poles of (A−1 + A−1BK) as well as the update gain

γ affect the convergence of the states and the estimation. Increasing the absolute

value of the real part of the poles provides high control gain. The update gain γ

should be chosen proportionally high or low with respect to control gain to provide

an optimum convergence rate.
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2.2 Unmatched and Unknown Sinusoidal Distur-

bance

2.2.1 Problem Statement and Backstepping Adaptive Con-

troller Design

In this section, we consider the single-input LTI system

ẋ =Ax+B (p+ ν) (2.71)

ṗ =aTx+ bpp + buu (2.72)

with the state x ∈ Rn and p ∈ R, input u ∈ R, and sinusoidal disturbance ν ∈ R

given by

ν(t) =

q∑

i=1

gi sin(ωit+ φi), (2.73)

where i 6= j ⇒ ωi 6= ωj , ω ∈ Q, gi, φi ∈ R. The main difference between (2.1)

and (2.71) is the unmatched sinusoidal disturbance. Since p has its own dynamics

(2.72), the main input u and ν are not in the same equation. There is an integrator

between them. Therefore, we use a backstepping procedure to design an adaptive

controller controller.

We state now our adaptive controller with a disturbance observer. In Sec-

tion 2.2.2 we analyze the stability properties of the closed-loop system.

The adaptive controller for the system (2.3), (2.4), (2.71), (2.72) is given

by

u =
1

(1 +KB)bu

(( ˙̂
θT l − (1 +KB)(bp − aTA−1B)

)
p

−
( ˙̂
θTN + (θ̂TN +K)A+ (1 +KB)aTA−1

− (A−1B)TP
)
ẋ+ (1 +KB)(aTA−1B)θ̂T ξ

− (KB + θ̂T l)β̂T ξ − ˙̂
θTη − θ̂T η̇

−
(
(KB + θ̂T l)2 + c

)
e

)
, (2.74)
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where c > 1
2
and

e = p−
(
−Kẋ− θ̂T ξ

)
. (2.75)

The update laws for θ̂(t) and β̂(t) are given by

˙̂
θ = −γtξ

(
(A−1B)TP ẋ+ (1 +KB)(aTA−1B)e

)
, (2.76)

˙̂
β = γbξ

(
KB + θ̂T l

)
(2.77)

with γt, γb > 0. The positive definite matrix P and the disturbance observer

filters are given in (2.7)–(2.12). The error signal e represents the deviation of the

the actual p from the desired value which is given in (2.5) as the control law for

matched disturbance.

We first define the signals needed in the analysis and state a theorem de-

scribing our main stability result. Then we prove the theorem using a series of

technical lemmas in Section 2.2.2.

Estimation errors of the unknown parameters are denoted by

θ̃(t) =(MS)−Th− θ̂(t), (2.78)

β̃(t) =
1

1− hT (MS)−1l
GT (MS)−Th− β̂(t), (2.79)

and δ(t) and ξ̃(t) denotes the signals,

δ(t) =MSw(t)− ξ(t), (2.80)

ξ̃(t) =ξ(t)− ξ(t), (2.81)

where

ξ(t) =

t∫

0

eG(t−τ)lν̇(τ)dτ. (2.82)

Theorem 2.2 Consider the closed-loop system consisting of the plant (2.71)–

(2.72) forced by the unknown sinusoidal disturbance (2.4), the disturbance observer

(2.8), (2.9) and the adaptive controller (2.74), (2.76), (2.77). Under Assumptions

2.1–2.7, the following holds:
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(a) The equilibrium x = 0, δ = ξ̃ = θ̃ = β̃ = 0, e = 0 is globally stable,

(b) For all initial conditions x(0) ∈ Rn, ξ̃(0) ∈ R2q, θ̂(0) ∈ R2q, β̂(0) ∈ R2q, e(0) ∈
R and all w(0) ∈ R2q such that Assumption 2.8 holds, the signals x(t), e(t), θ̃(t),

δ(t), ξ̃(t), ν(t)− θ̂T (t)ξ(t) converge to zero as t → ∞.

2.2.2 Stability Proof

The following lemma establishes the properties of the observer for ν̇.

Lemma 2.4 The inaccessible disturbance ν̇ can be represented in the form

ν̇ =βT ξ + βT δ (2.83)

where

β =
1

1− θT l
GT θ, (2.84)

with 1− θT l > 0. δ ∈ Rq obeys the equation (2.20).

Proof Post-multiplying (2.12) by (MS)−1and using (2.15), we get I − lθT =

GMS−1M−1. Using Sylvester’s determinant theorem [45], the fact that detM−1 =

1
detM

and noting that G and S have 2q poles on left half plane and imaginary axis,

respectively, we obtain 1− θT l > 0. Differentiating (2.14) and using (2.21), we get

ν̇ =
1

1− θT l
θTGż. (2.85)

Using (2.14), (2.84), (2.22) and (2.85), we obtain (2.83). �

Proof of Theorem 2.2: With the error variable (2.75), the closed-loop is

written as

ẋ =Aclx+B
(
θ̃T ξ + θT δ + e

)
, (2.86)

ė =
(
(KB + θ̂T l)2 + c+B

T
PB
)
e+ (KB + θ̂T l)

(
β̃T ξ + βT δ

)

+
(
B

T
PB − (1 +KB)aTB

)(
θ̃T ξ + θT δ

)
+B

T
PAclx, (2.87)

where Acl and B are given in (2.46) and (2.47), respectively and B = A−1B.
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The stability of the equilibrium of the closed-loop system is established with

the use of Lyapunov function

V =
1

2
xTPx+

1

2
e2 +

1

2
θ̃T θ̃ +

1

2
β̃T β̃ +

εδ
2
δTPδδ (2.88)

where

GTPG + PGG =− 2I, (2.89)

εδ =λmax{θB
T
PPBθT}+

(
(1 +KB)aTB

)2
λmax{θθT}+ λmax{ββT}.

(2.90)

Taking time derivative of V , in view of (2.76), (2.77), (2.20), (2.86) and (2.87), we

obtain

V̇ =− ẋT ẋ+
(
(KB + θ̂T l)2 + c

)
e2 − (1 +KB)aTBθT δeδT θB

T
P ẋ

+ (KB + θ̂T l)βT δe− εδδ
T δ. (2.91)

Using Young’s inequality for the cross terms, we get

V̇ ≤− ẋT ẋ+
(
(KB + θ̂T l)2 + c

)
e2 +

1

2
e2 +

(
(1 +KB)aTB

)2
δT θθT δ +

1

2
ẋT ẋ

+
1

2
δT θB

T
PPBθT δ +

1

2
(KB + θ̂T l)2e2 +

1

2
δTββT δ − εδδ

T δ, (2.92)

≤− 1

2
ẋT ẋ−

(
c− 1

2

)
e2 − 1

2
εδδ

T δ. (2.93)

Using (2.93), we conclude

V (t) ≤ V (0). (2.94)

Defining

Θ(t) =[xT (t), e(t), θ̃T (t), β̃T (t), δT (t)]T , (2.95)

and using (2.88) and (2.94), we get

|Θ(t)|2 ≤ M1|Θ(0)|2, (2.96)

for some M1 > 0. Taking derivative of (2.81) and using (2.82) and (2.25) we get

˙̃
ξ(t) = Gξ̃(t). (2.97)
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Since G is Hurwitz, using (2.97), we have

|ξ̃(t)| ≤ M2e
−α1t|ξ̃(0)|, (2.98)

for some M2, α1 > 0. By using (2.98), we write

|ξ̃(t)| ≤ M2|ξ̃(0)|+M3|Θ(0)|, (2.99)

for some M3 > 0. By using (2.96) and (2.99), we obtain

|Ξ(t)| ≤ M4|Ξ(0)|, (2.100)

where

Ξ(t) =

[
Θ(t)

ξ̃(t)

]
, (2.101)

for some M4 > 0. This proves part (a) of Theorem 2.2.

For all Ξ, the right-hand side of (2.86) and (2.87) are continuous in Ξ

and t, which implies that the right-hand side of (2.93) is continuous in Ξ and

t. Furthermore, the right-hand side of (2.93) is zero at Ξ = 0. By the LaSalle-

Yoshizawa theorem, (2.93) ensures that ẋ, e and δ converge to zero as t → ∞.

We represent the closed-loop of (x, θ̃) system as a linear time-varying (LTV)

system which is given by

ζ̇ = E(t)ζ + F (t)d, (2.102)

where

E(t) =

[
Acl BξT

γtξB
T
PAcl γtξB

T
PBξT

]
(2.103)

F (t) =

[
BθT B

γtξB
T
PBθT γtξ(B

T
PB + (1 +KB)aTB)

]
(2.104)

ζ =
[
xT , θ̃T

]T
(2.105)

d =
[
δT , e

]T
. (2.106)
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We first show that the equilibrium ζ = 0 of the homogenous part of the LTV

system (2.102) is exponentially stable. Towards that end, we choose the following

Lyapunov function

Vc =
1

2
ζTPcζ, (2.107)

where

Pc =

[
P 0

0 1
γt
I

]
. (2.108)

Taking the derivative of Vc, we get

V̇c =
1

2
ζT

[
Q1 Q2

QT
2 Q3

]
ζ, (2.109)

where

Q1 =AT
clP + PAcl,

Q2 =
(
AT

clPA−1
cl + P

)
BξT ,

Q3 =ξBT
(
A−T

cl P + PA−1
cl

)
BξT .

Substituting (2.7), (2.51)–(2.53) into (2.109), we get

V̇ = −ζT

[
AT

clAcl AT
clBξT

ξBTAcl ξBTBξT

]
ζ. (2.110)

where C(t) is given in (2.55) we get

V̇ =
1

2
ζT
(
ET (t)Pc + PcE(t)

)
ζ

= −ζTC(t)C(t)T ζ. (2.111)

Therefore, it follows that Pc, as defined in (2.108), satisfies the following inequality

ET (t)Pc + PcE(t) + αCT (t)C(t) ≤ 0 for some α > 0.

The equilibrium ζ = 0 of the homogenous part of (2.102) is exponentially

stable if (C(t), E(t)) is a uniformly completely observable (UCO) pair [26]. For

a bounded H(t), the pairs (C(t), E(t)) and (C(t), E(t) + H(t)C(t)T ) have the
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same UCO property [26]. Choosing H(t) =

[
−I

−ξB
T
P

]
, we write the system

corresponding to the pair (C,E + HCT ) as given in (2.59). The state transition

matrix of (2.59) is Φ = I. Therefore, (C,E +HCT ) is a UCO pair if there exist

positive constants α2, α3, ρ such that the observability Gramian satisfies (2.61) for

all t0 ≥ 0. Since ξ is bounded, recalling (2.55), the upper bound of (2.61) is

satisfied. We now prove the lower bound in (2.61). Calculating the integral in

(2.61),

X =

∫ t0+ρ

t0

C(t)CT (t) dt

=

[
AT

clAclρ AT
clB
∫ t0+ρ

t0
ξT dt

∫ t0+ρ

t0
ξ dtBTAcl

∫ t0+ρ

t0
ξBTBξT dt

]
. (2.112)

Let Sh be the Schur complement of AT
clAclρ in X, where

Sh =

∫ t0+ρ

t0

ξBTBξT dt− 1

ρ

∫ t0+ρ

t0

ξ dtBTAclA
−1
cl A

−T
cl AT

clB

∫ t0+ρ

t0

ξT dt

=BTB

(∫ t0+ρ

t0

ξξT dt− 1

ρ

∫ t0+ρ

t0

ξ dt

∫ t0+ρ

t0

ξT dt

)
. (2.113)

Since AT
clAclρ is positive definite, X is positive definite if and only if Sh is positive

definite. Since BTB is a positive scalar, according to Lemma 2.3 there exists

a positive ρ such that for all t0 > 0, Sh > 0. Hence, (C,E + HCT ) is UCO,

which implies that (C,E) is UCO. Therefore, the state transition matrix Φ(t, t0)

corresponding to E(t) in (2.102) satisfies

‖ Φ(t, t0) ‖≤ κ0e
−γ0(t−t0) (2.114)

for some positive constants κ0, γ0. From (2.106), d(t) is bounded and, from (2.104),

F (t) is bounded. Recalling that it has already been established that d(t) goes to

zero, from (2.102) and (2.114) it follows that ζ is bounded and ζ = [xT , θ̃T ]T → 0

as t → ∞. By using (2.97) and the fact that G is Hurwitz, we conclude that ξ̃(t)

converges to zero as t → ∞. Furthermore, thanks to Lemma 2.2, θ̂T (t)ξ(t)−ν(t) →
0 as t → ∞. This proves part (b) of Theorem 2.2. �
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Figure 2.3: Closed loop system’s response for the simulation example where the

system parameters are known and the unknown disturbance is unmatched.

2.2.3 Simulation Results

We illustrate the performance of our controller with a third-order system

with A =

[
0 1

1 3

]
, B =

[
0

1

]
, aT =

[
1 2

]
, bu = bp = 1, the unknown

disturbance ν(t) = 1.2 sin(0.8t+π/4)−0.5 sin(t+π/2) and initial conditions x(0) =[
1 −2.5

]T
, p(0) = 0.5. The control gain K is chosen such that the eigenvalues

of Acl are −3,−4 and c = 0.8. For the update law, we choose γt = γb = 2. Finally,

the controllable pair (G, l) is chosen as G =




0 1 0 0

0 0 1 0

0 0 0 1

−4.37 −12.12 −12.60 −5.80



,

l =




0

0

0

1



and N =




0 0

0 0

0 0

0 1



. From Figures 2.3 and 2.4, one can observe that x(t)

converges to zero and the unknown disturbance is perfectly estimated, as Theorem
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Figure 2.4: Disturbance estimation for the simulation example where the system

parameters are known and the unknown disturbance is unmatched.

2.2 predicts.

2.3 Summary

In the present work we design an adaptive controller by state derivative feed-

back to cancel matched and unmatched unknown sinusoidal disturbances forcing a

linear time-invariant systems. In section 2.1, we consider matched unknown distur-

bance and prove that the closed loop system’s solution x(t) ≡ 0, θ̂(t) ≡ (MS)−Th,

η(t) ≡ GMw(t) is globally uniformly asymptotically stable and locally exponen-

tially stable. In section 2.2, we add input dynamic into the system and make the

input and unknown disturbance unmatched. We prove that the equilibrium of the

closed loop system is stable and the system states and disturbance estimation error

converge to zero as t → ∞. The effectiveness of our controllers is demonstrated

with a numerical example.

This chapter is an adaptation of materials appearing in: H. I. Basturk and

M. Krstic, “Adaptive cancelation of matched unknown sinusoidal disturbances for
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LTI systems by state derivative feedback,”ASME Journal of Dynamic Systems,

Measurement, and Control, vol. 153, paper 014501-2, 2013. and H. I. Basturk

and M. Krstic, “Adaptive backstepping cancelation of unmatched unknown sinu-

soidal disturbances for LTI systems by state derivative feedback,” ASME Dynamic

Systems and Control Conference, 2012.

The dissertation author is the primary investigator and author of this work.



Chapter 3

State Derivative Feedback for

Adaptive Cancellation of

Unmatched Disturbances in

Unknown Strict-Feedback LTI

Systems

We design an adaptive backstepping controller to cancel sinusoidal distur-

bances forcing an unknown linear time-invariant system in controllable canonical

form which is augmented by a linear input subsystem with unknown system pa-

rameters by using only measurement of state-derivatives of the original subsystem

and state of the input subsystem. Since the system parameters are unknown, it

is not possible to use the same disturbance observer which is proposed in Chap-

ter 2. To overcome this problem, we design a linearly parametrized conceptual

observer that uses multiple filters and over-parametrization. Our design is based

on four steps, 1) parametrization of the sinusoidal disturbance as the output of

a known feedback system with an unknown output vector that depends on both

unknown disturbance parameters and unknown plant parameters, 2) design of an

adaptive disturbance observer for both disturbance and its derivative, 3) design

28
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of an adaptive controller for virtual control input, and 4) design final adaptive

controller by using backstepping procedure. We prove that the equilibrium of the

closed-loop adaptive system is stable and state of the considered original subsys-

tem goes to zero as t → ∞ with perfect disturbance estimation. The effectiveness

of the controller is illustrated with a simulation example of a third order system.

This chapter is organized as follows: We state the problem in Section 3.1.

In Section 3.2 we propose an adaptive controller for the case where the system

parameters are unknown and the disturbance is unmatched disturbance by using

a backstepping procedure. The stability of the proof and a numerical example

are given in Section 3.3 and Section 3.4, respectively. Section 3.5 summarizes the

results.

3.1 Problem Statement

We consider the single-input LTI system

ẋ =A0x+B(γT
1 x+ ν + bpp), (3.1)

ṗ =γT
2 x+ b1p+ b2u, (3.2)

where

A0 =

[
0n−1 In−1

0 0Tn−1

]
(3.3)

B =

[
0n−1

1

]
(3.4)

γ1 =[a11, a12, a13, · · · , a1n]T , (3.5)

γ2 =[a21, a22, a23, · · · , a2n]T , (3.6)

with 0n−1 = [0, . . . , 0]T ∈ Rn−1, the state x ∈ Rn, input u ∈ R, and sinusoidal

disturbance ν ∈ R given by

ν(t) =

q∑

i=1

gi sin(ωit+ φi), (3.7)
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where i 6= j ⇒ ωi 6= ωj, ωi ∈ Q+, gi, φi ∈ R. In this problem, the disturbance

ν(t) and the control input u(t) are not matched (i.e., they are unmatched) because

they do not appear in the same equation. The values of b1, b2, bp, γ1 and γ2 are

unknown. The state x(t) and the disturbance ν(t) are not measured but ẋ(t) and

p(t) are measured.

The sinusoidal disturbance ν can be represented as the output of a linear

exosystem,

ẇ = Sw (3.8)

ν = hTw (3.9)

where w ∈ R2q and the choice of S ∈ R2q×2q and h ∈ R2q is not unique. Since ν(t)

is unknown, S and h are also unknown.

We make the following assumptions regarding the plant (3.1)–(3.2) and the

exosystem (3.8)–(3.9):

Assumption 3.1 The sign of a11, bp and b2 are known and |bp| ≥ ς > 0 where ς

is known.

Assumption 3.2 The pair
(
hT , S

)
is observable and the eigenvalues of S are

imaginary, distinct and rational.

Assumption 3.3 q is known.

Assumption 3.4 gi 6= 0 for all i ∈ {1, . . . , q}.

3.2 Main Result–Design and Stability Statement

We design an adaptive controller which estimates and cancels the unmatched

unknown sinusoidal disturbance ν(t) in system (3.1)–(3.2) by using the measure-

ment of ẋ(t) and p(t) for the case where the system parameters are unknown.

The design procedure contains four important parts: parametrization of the sinu-

soidal disturbance, design of an adaptive disturbance observer for both disturbance

and its derivative, design of an adaptive controller for virtual control input p(t)
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by representing the system in reciprocal state space (RSS) form which depends

on switching the state vector with its derivative [32] and design of final adaptive

controller for input u(t) by using backstepping procedure.

3.2.1 Disturbance Observer

The following lemma enables us to represent the unknown sinusoidal dis-

turbance as the output of a linear system whose input is the disturbance itself,

whose state and input matrices are known, and whose output matrix is unknown.

Lemma 3.1 Let G ∈ R2q×2q be a Hurwitz matrix with distinct eigenvalues and let

(G, l) be a controllable pair. Then, ν can be represented as the output of the model

ż = Gz + lν, (3.10)

ν = θTsdż, (3.11)

θTsd = hT (MS)−1, (3.12)

where M is the unique and invertible solution of the Sylvester equation

MS −GM = lhT . (3.13)

Proof This result and its proof are inspired by [39]. To establish (3.10) from (3.8),

consider z = Mw. Differentiating z, we obtain ż = MSw. Using (3.13), we have

ż = MSw = GMw + lhTw. Substituting (3.9) and z = Mw into ż = MSw =

GMw+ lhTw yields (3.10). Substituting w = (MS)−1ż into (3.9), we obtain (3.11)

and (3.12). �

The previous lemma enables us to write the unknown external disturbance

ν as the product of an unknown constant θsd and the vector ż. However, ż is not

accessible, since the signal ν can not be measured. To overcome this problem, we

design a linearly parametrized conceptual observer that uses multiple filters and

over-parametrization.

The following lemma establishes the properties of the observer.
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Lemma 3.2 The inaccessible disturbance ν and ν̇ can be represented in the form

ν =θTsd (η0 +Nẋ) +

n∑

i=1

a1iθ
T
sdηi + bpθ

T
sd (ηp − lp) + θTsdδ, (3.14)

ν̇ =
1

1− θTsdl

(
θTsdG (η0 +Nẋ) +

n∑

i=1

a1iθ
T
sdGηi

+ bpθ
T
sdG (ηp − lp) + θTsdGδ

)
, (3.15)

where 1− θTsdl > 0. The observer filters are given by

η̇i = Gηi − lẋi, 1 ≤ i ≤ n, (3.16)

η̇0 = G (η0 +Nẋ) , (3.17)

ηp = G (ηp − lp) , (3.18)

with N ∈ R2q×n which is given by N = 1
BTB

lBT , where the given N is one of the

many solutions of the equation NB = l and the estimation error δ ∈ Rq obeys the

equation

δ̇ = Gδ. (3.19)

Proof Post-multiplying (3.13) by (MS)−1and using (3.12), we get I − lθTsd =

GMS−1M−1. Using Sylvester’s determinant theorem [45], the fact that detM−1 =

1
detM

and noting that G and S have 2q poles on left half plane and imaginary axis,

respectively, we obtain 1− θTsdl > 0.

Defining estimation error, we get

δ = ż −
(
η0 +Nẋ+

n∑

i=1

a1iηi + bp (ηp − lp)

)
. (3.20)

Differentiating δ with respect to time and in view of (3.1), (3.16)–(3.18) and (3.10)

and using (3.20), (3.10), the fact that B(γT
1 x+ν) = ẋ−Bp−A0x and by noting that

NA0x = 0 and NB = l, we get (3.19). Using (3.11) and (3.20), we obtain (3.14).

Differentiating (3.10), and (3.11) and substituting z̈(t), we get ν̇ = 1
1−θT

sd
l
θTsdGż and

using (3.20) we obtain (3.15). �

The representations (3.14), (3.15) established with Lemmas 3.1 and 3.2,

allows us to represent a time-varying unknown sinusoidal disturbance ν(t) and its
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derivative ν̇(t) as a constant unknown vector multiplied by a known regressor,

plus an unknown exponentially decaying disturbance. Thus, we convert the prob-

lem from cancelation of an unknown sinusoidal disturbance with unknown system

parameters to an adaptive control problem.

3.2.2 Reciprocal State-Space Representation

Reciprocal state space representation is a beneficial platform for state deriva-

tive feedback control design. Substituting (3.14) into (3.1) and representing the

system in RSS form, we obtain

x =AT
0 ẋ+B

1

̺

(
bpẋn − γ1ẋ− θTt ηt − βT

1pηp − θT1 δ − p
)

(3.21)

where

̺ =
a11

bp (1− θTsdl)
(3.22)

bp =
1

bp
(3.23)

γ1 =
1

bp (1− θTsdl)
A0γ1 (3.24)

θ1 =
1

bp (1− θTsdl)
θsd (3.25)

β1p =
1

(1− θTsdl)
θsd (3.26)

θt =
[
θT1 , a11θ

T
1 , . . . , a1nθ

T
1

]T
, (3.27)

with ηt =
[
ηT0 , η

T
1 , . . . , η

T
n

]T
. Substituting (3.21) into (3.2), we get

ṗ = γT
p ϕ− θT2 δ +

1

b2
u, (3.28)
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where

ϕ =
[
ẋT , p, ηTt , η

T
p

]T
, (3.29)

γp =

[
γ2, b1 −

a21
̺
,−θT2 ,−a11θ

T
2 , . . . ,−a1nθ

T
2 ,−bpθ

T
2

]
, (3.30)

b2 =
1

b2
, (3.31)

θ2 =
a21
a11

θsd, (3.32)

γ2 =

[
−a21a12

a11
+ a22,−

a21a13
a11

+ a23,−
a21a14
a11

+ a24,

· · · ,−a21a1n
a11

+ a2n,
a21
a11

(
1− θTsdl

)]T
. (3.33)

In order to handle unmatched uncertainty, we apply a backstepping design [22].

Firstly, we design a control law for virtual input p(t). Then an error term is

defined to represent the difference between actual p(t) and its desired value. The

error term is given by

e(t) = p−
(
− (Rγ̂1)

T ẋ+ b̂pẋn − ˆ̺Kẋ− θ̂Tt ηt − β̂T
1pηp

)
, (3.34)

where R = diag{I(n−1)×(n−1), 0} and the control gain K ∈ R1×n is chosen so that
(
AT

0 +BK
)
is Hurwitz with the positive definite matrix P which is a solution of

the matrix equation

(AT
0 +BK)TP + P (AT

0 +BK) = −4I. (3.35)

Since the controllability matrix of the pair (AT
0 , B), Co =

[
B AT

0B . . . (AT )n−1B
]
=

In×n, it is possible to find a control gain K so that
(
AT

0 +BK
)
is Hurwitz and

solve (3.35) for a positive definite matrix P . Besides, the details of pole placement

by direct state-derivative feedback and controllability features of reciprocal state

space form are given in [48]. Finally, we convert (x, p) system to (x, e) system and

design an adaptive controller for input u(t).

In the next section, we give the main result and the stability statement.
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3.2.3 Main Controller and Stability Statement

The adaptive controller for system (3.1), (3.2), (3.8), (3.9) is given by

u =
b̂2

1− b̂p(b̂p − ˆ̺kn)
u, (3.36)

where kn is the nth element of the control gain K,

u =γ̂T
3

(
b̂p − ˆ̺kn

)
ϕ− γ̂T

p ϕ+
˙̂
bpẋn −

(
γ̂T
1 + ˆ̺K

)
A0ẋ

−
(
˙̂γT
1 R + ˙̺̂K − ˆ̺B

T
P
)
ẋ− ˙̂

θTt ηt − θ̂Tt η̇t

− ˙̂
βT
1pηp − β̂T

1pη̇p −
((

b̂p − ˆ̺kn

)2
+ c

)
e, (3.37)

with c > 0. We use projection operator to avoid singularity in (3.36). The update

laws are given by

˙̂γ1 = −κγ1sgn(bpa11)ẋB
T
P ẋ, κγ1 > 0, (3.38)

˙̂γp = κγpϕe, κγp > 0, (3.39)

˙̂γ3 = −κγ3ϕ
(
b̂p − ˆ̺kn

)
e, κγ3 > 0, (3.40)

˙̂
b2 = −κb2sgn(b2)ue, κb2 > 0, (3.41)

˙̂
θt = −κθ1sgn(bpa11)ηtB

T
P ẋ, κθt > 0, (3.42)

˙̂
β1p = −κβ1psgn(bpa11)ηpB

T
P ẋ, κβ1p > 0, (3.43)

˙̺̂ = −κ̺eB
T
P ẋ, κ̺ > 0, (3.44)

˙̂
bp =

{
τbp, b̂psgn(bp) > ς or τbpsgn(bp) ≥ 0

0, b̂psgn(bp) ≤ ς and τbpsgn(bp) < 0
, (3.45)




˙̂
bp

˙̺̂


 =





τbp,̺, sgn(bp)(b̂p − ˆ̺kn) >
1
ς

or PT τbp,̺ ≤ 0

(
I − Γ PPT

PTΓP

)
τbp,̺, sgn(bp)(b̂p − ˆ̺kn) ≤ 1

ς

and PT τbp,̺ > 0,

(3.46)
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where

τbp =− κbp
sgn(b2)

(
b̂p − ˆ̺kn

)
ue, κbp

> 0, (3.47)

τbp,̺ =κbp,̺

[
sgn(̺)ẋnB

T
P ẋ

−sgn(̺)KẋB
T
P ẋ

]
, κbp,̺ > 0, (3.48)

P =
[
−sgn(bp) knsgn(bp)

]T
, (3.49)

Γ belongs to the set of all positive definite symmetric 2×2 matrices and the positive

matrix P is given in (3.35).

Going forward, the symbol ˜ denotes estimation error between actual value

of a plant parameter and its estimate. For combinations of plant parameters,

estimation errors are denoted by

˜̺(t) =
(
1− θTsdl

)
bp

a11
− ˆ̺(t), (3.50)

γ̃3(t) =
[
γT
1 + bpγ

T
2 +

1

(1− θTsdl)

(
θTsdGN

)
, θT3 , a11θ

T
3 , . . . , a1nθ

T
3 , bpθ

T
3

]T
− γ̂3(t),

(3.51)

with θ3(t) =

(
1

(1−θT
sd
l)
GT − bpa21

a11
I2q

)
θsd and η̃0(t) denotes the signal,

η̃p(t) =bpηp(t) + η0 − ηp(t), (3.52)

where ηp(t) =
t∫
0

eG(t−τ)Glν(τ)dτ . Finally, defining

Θ1(t) =[xT (t), γ̃T
1 (t), γ̃

T
p (t), γ̃

T
3 (t), b̃2(t), η

T
t (t), δ

T (t), θ̃Tt (t), β̃
T
1p, ˜̺(t)]T , (3.53)

we can now state our Theorem.

Theorem 3.1 Consider the closed-loop system consisting of the plant (3.1), (3.2)

forced by the unknown sinusoidal disturbance (3.8), the disturbance observer (3.16),

(3.17), (3.18) and the adaptive controller (3.36), (3.38)–(3.46). Under Assump-

tions 3.1–3.3, the following holds:

(a) The equilibrium Θ1 = 0, η̃p = 0, ˜̺= b̃p = b̃p = e = 0 is stable,
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(b) For all initial conditions sgn(bp)b̂p(0) > ς, (b̂p(0)− ˆ̺(0)kn)sgn(bp) >
1
ς
, ˆ̺(0), p(0)

∈ R,Θ1(0) ∈ R(4+6q)n+16q+4, ηp(0) ∈ R2q and all w(0) ∈ R2q such that Assump-

tion 3.4 holds, the signals e(t), x(t), η0, ηt(t), β̃1p(t),
ν(t)

bp
− β̂T

1p(t)ηp(t), δ(t), η̃p(t)

converge to zero as t → ∞.

3.3 Stability Proof

The following lemma is used in the proof of the part b of Theorem 3.1.

Lemma 3.3 Let x1(t) ∈ R be a bounded signal and ẋ1(t) ∈ R be square integrable,
∫∞

0
ẋ2
1 dt ≤ M1, for some M1 > 0. Then there exists ρ > 0 such that for all t0 ≥ 0,

the following holds

Qp(ρ, t0) =

∫ t0+ρ

t0

ξ(t)ξ
T
(t) dt− 1

ρ

∫ t0+ρ

t0

ξ(t) dt

∫ t0+ρ

t0

ξ
T
(t) dt > 0, (3.54)

where

ξ = ηp +
1

bp
ξ̃(t), (3.55)

with

ξ̃(t) =

(
η0 +

n∑

i=1

a1iηi + lbp(1− θTsdl)γ
T
1 ẋ+ δ

)
. (3.56)

Proof Using (3.10), (3.12), (3.20), (3.24) and by noting that N = lBT and ẋn −
bpp = γT

1 x+ ν, we obtain ηp =
1
bp
Gz− l a11

bp
x1− 1

bp
ξ̃. Substituting ηp into (3.55), we

get

ξ = ξ − l
a11

bp
x1, (3.57)

where ξ = 1
bp
Gz. Since G has distinct eigenvalues and is Hurwitz, it is diagonaliz-

able. Using a Jordan decomposition of the matrix G, we can write G = LΛL−1.

By solving (3.10) for z(t) as given in Lemma 2.3, we obtain

ξ(τ) = L
(
eΛτCc +Ψ(τ)

)
, (3.58)
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where Cc = L−1ξ(0)−Ψ(0), l = L−1Gl 1
bp

and Ψ ∈ R2q is a vector whose jth row is

q∑

i=1

ljgi
λ2
j + ω2

i

(
λj sin(ωiτ + φi)− ωi cos(ωiτ + φi)

)
. (3.59)

Since ν is a sufficiently rich signal order of 2q and (G, l) is a controllable

pair, G is full rank and bp 6= 0, ξ is persistently exciting [18]. Therefore, there exist

positive ρ∗ and α0 such that for all ρ > ρ∗ and t0 ≥ 0 the following holds

∫ t0+ρ

t0

ξ(t)ξT (t) dt ≥ ρα0I. (3.60)

Under Assumption 3.2, the frequencies of ν can be represented as

ωi =
num(ωi)

den(ωi)
, num(ωi), den(ωi) ∈ Z+, i = 1 . . . q.

Then ρ that is given by

ρ =ϑlcm (num(ω1), ..., num(ωq))× lcm (den(ω1), ..., den(ωq)) 2π > ρ∗, (3.61)

where lcm is the abbreviation of the least common multiple, satisfies (3.60) if

ϑ ∈ Z+ is chosen sufficiently large for given ρ∗ and ω1, . . . , ωq. Since Ψ(t) defined

by (3.59) has a period ρ and incorporates only zero-mean functions, it follows that

∫ t0+ρ

t0

Ψ(t) dt = 0. (3.62)

Substituting (3.57), (3.58)–(3.62) into (3.54) and using integration by parts

, we obtain

Qp(ρ, t0) ≥ LΠLT , (3.63)

where

Π =ρα0I −
1

ρ

(
Γ(ρ)ΓT (ρ) + Γ(ρ)l̃T

∫ t0+ρ

t0

x1(t) dt+ l̃ΓT (ρ)

∫ t0+ρ

t0

x1(t) dt

)

− Ψ̃T (t0, ρ)− Ψ̃(t0, ρ) + l̃l̃T
∫ t0+ρ

t0

x2
1(t) dt−

1

ρ
l̃l̃T
(∫ t0+ρ

t0

x1(t) dt

)2

, (3.64)
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with α0 = α0/λmax{LLT }, l̃ = a11
bp
L−1l,

ΓT (ρ) =
[
c1e

λ1t0
(
eλ1ρ − 1

)
. . . c2qe

λ2qt0
(
eλ2qρ − 1

) ]
, (3.65)

Ψ̃T (t0, ρ) =
(
Λ−1eΛ(t0+ρ)Cc +Ψ(t0 + ρ)

)
x1(t0 + ρ)−

(
Λ−1eΛt0Cc +Ψ(t0)

)
x1(t0)

−
∫ t0+ρ

t0

(
Λ−1eΛtCc +Ψ(t)

)
ẋ1(t) dt

)
l̃T (3.66)

where Ψ(t) ∈ R2q is the vector whose jth row is

q∑

i=1

− ljgi
λ2
j + ω2

i

(
λj

ωi
cos(ωit+ φi) + sin(ωit+ φi)

)
, (3.67)

and ci denotes the ith row of the vector Cc/λi.

Since L is full rank, Qp satisfies the inequality (3.54) if µTΠµ > 0 for all

nonzero µ ∈ R2q. Using (3.64), the Cauchy-Schwarz inequality and by noting that

λi < 0, |
(
eλiρ − 1

)
| ≤ 1, x1(t) is bounded and

∫∞

0
ẋ2
1 dt ≤ M1 , we have

µTΠµ ≥√
ρ

(
(
√
ρα0 −

1

ρ3/2
Cc)

(
µ2
1 + . . .+ µ2

2q

)
− 2|l̃Tµ|

×
√

M1 sup
t0≤t<∞

µ2(t)

)
−|l̃Tµ|Γ (3.68)

where

Γ = sup
t0≤t<∞

|x1(t)|
(
|µ1c1|eλ1t0 + . . .+ |µ2qc2q|eλ2qt0

)

+ 2

(
|µ(t0)x1(t0)|+ sup

t0≤t<∞
|µ(t)x1(t)|

)
, (3.69)

with µ(t) = µT
(
Λ−1eΛtCc +Ψ(t)

)
and Cc = c21e

2λ1t0 + . . .+ c22qe
2λ2qt0 .

Since
√
ρα0

(
µ2
1 + . . .+ µ2

2q

)
− 2|l̃Tµ|

√
M1 sup

t0≤t<∞
µ2(t) is positive and in-

creasing for ρ > 4

|l̃Tµ|2M1 sup
t0≤t<∞

µ2(t)

α2
0(µ2

1
+...+µ2

2q)
2 and 1

ρ3/2

(
µ2
1 + . . .+ µ2

2q

)
Cc is monotonically

decreasing with respect to ρ and Γ is constant for all fixed t0, one can find a ρ

using (3.61) such that for all t0 ≥ 0, (3.54) holds. �
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Proof of Theorem 3.1: The stability of the equilibrium of the closed-loop

system is established with the use of Lyapunov function

V =
1

2
xTPx+

1

2|̺|

(
1

κbp,̺

(˜̺2 + b̃2p) +
1

κγ1

γ̃T
1 γ̃1 +

1

κθt

θ̃Tt θ̃t +
1

κβ1p

β̃T
1pβ̃1p

)

+
1

2
e2 +

1

κ2γp

γ̃T
p γ̃p +

1

κ̺

˜̺2 + 1

κγ3

γ̃T
3 γ̃3 +

1

2|b2|


 b̃22
κb2

+
b̃
2

p

κbp




+
1

2εη

(
ηT0 PGη0 +

n∑

i=1

ηTi PGηi

)
+

εδ
2
δTPGδ, (3.70)

where the positive definite matrix PG which is a solution of the matrix equation

GTPG + PGG = −2I and

εδ =
1

̺2
λmax{θ1B

T
PPBθT1 }+

a221
a211

λmax{θsdθTsd}

+ λmax{θ3θT3 }, (3.71)

εη =lTPGPGl. (3.72)

Taking the time derivative of V and using the property of the projection operator,

−b̃p
˙̂
bp ≤ −b̃pτbp, sgn(b2)b̂p ≥ ς > 0 and −[̃bp, ˜̺][ ˙̂bp, ˙̺̂]T ≤ −[̃bp, ˜̺]τbp,̺, sgn(bp)(b̂p −

ˆ̺kn) ≥ 1
ς
> 0 [22, Appendix E] and Young’s inequality for the cross terms, we

obtain

V̇ ≤ −1

2
ẋT ẋ− ce2 − 1

2εη

n∑

i=0

ηTi ηi −
εδ
2
δT δ. (3.73)

Using (3.73), we conclude

V (t) ≤ V (0). (3.74)

Defining

Θ(t) =[ΘT
1 (t), b̃p(t), b̃p(t), ˜̺(t), e(t)]T , (3.75)

and using (3.70) and (3.74), we get

|Θ(t)|2 ≤ M2|Θ(0)|2, (3.76)
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for some M2 > 0. Taking the derivative of (3.52) and using (3.17) and the fact

that ẋn − bpp = γT
1 x+ ν, we get

˙̃ηp(t) = Gη̃p +GlγT
1 x. (3.77)

Since G is Hurwitz, using (3.77), we have

|η̃p(t)| ≤ M3e
−α1t|η̃p(0)|+M4 sup

τ∈[0,t]

|x(τ)| (3.78)

for some M3,M4, α1 > 0. By using (3.76) and (3.78), we obtain

|η̃p(t)| ≤ M3|η̃p(0)|+M4

√
M2|Θ(0)|. (3.79)

By using (3.76) and (3.79), we obtain
∣∣∣∣
[
ΘT (t), η̃Tp (t)

]T ∣∣∣∣ ≤ M5

∣∣∣∣
[
ΘT (t), η̃Tp (t)

]T ∣∣∣∣ , (3.80)

for some M5 > 0. This proves part (a) of Theorem 3.1.

We write the closed-loop system in the following form

ẋ =Ã−1x+ Ã−1B
1

̺

(
θ̃Tt ηt +

1

bp
β̃T
1p

(
η̃p − η0 + ηp

)
+ e+ θT1 δ

)
, (3.81)

where Ã = AT
0 +B

(
1
̺

(
γ̃T
1 + b̃pB

T +K ˆ̺
))

. From (3.3), (3.4), (3.24) and by noting

that B =
[
1, 0n−1

]T
, we get

det(Ã) = (−1)n+1

(
1

̺

(
1

bp
− (b̂p − ˆ̺kn

))
. (3.82)

From (3.82) it follows that, for all Ξ such that sgn(bp)(b̂p − ˆ̺kn) ≥ 1
ς
> 0, the

right-hand side of (3.81) is continuous in Ξ and t, which implies that the right-

hand side of (3.73) is continuous in Ξ and t. Furthermore, the right-hand side of

(3.73) is zero at Ξ = 0. By the LaSalle-Yoshizawa theorem, (3.73) ensures that

ẋ, e, η0, . . . , ηn and δ converge to zero as t → ∞.

By adding ±κβ1p
sgn(̺)

bp
ξ̃(t)B

T
P ẋ and ± 1

bp̺
Bβ̃T

1pξ̃(t) to (3.43) and (3.81) re-

spectively, we represent the close-loop of (x, β̃1p) system as a linear-time varying

(LTV) system which is given by

ζ̇ = E(t)ζ + F (t)d, (3.83)
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where

E(t) =

[
Acl

1
̺
Bξ

T

κβ1psgn(̺)ξB
T
PAcl

κβ1p

|̺|
ξB

T
PBξ

T

]
(3.84)

F (t) =

[
f1 f2 f3

1
̺
B

f0f1 f0f2 f0f3
κθ1

|̺|
ξB

T
PB

]
(3.85)

d =
[
ẋT , ηTt δT , e

]T
(3.86)

ζ =
[
xT , β̃T

1p

]T
(3.87)

with f0 ∈ R2q×n, f1 ∈ Rn×n, f2 ∈ Rn×2q(n+1), f3 ∈ Rn×2q are given by

f0 =
κβ1p

sgn(̺)
ξB

T
P (3.88)

f1 =
1

̺
B(˜̺K + γ̃T

1 + b̃pB
T − 1

bp
β̃T
1plbp(1− θ

T

1 l)γ
T
1 ), (3.89)

f2 =
1

̺
B

(
θ̃Tt − 1

bp

[
β̃T
1p, a11β̃

T
1p, . . . , a1nβ̃

T
1p

])
, (3.90)

f3 =
1

̺
B(θT1 − 1

bp
β̃T
1p), (3.91)

with Acl = (AT
0 +BK)−1 and B = AclB.

We first show that the equilibrium ζ = 0 of the homogenous part of the LTV

system (3.83) is exponentially stable. Towards that end, we choose the following

Lyapunov function

Vc =
1

2
ζTPcζ, (3.92)

where

Pc = diag{P, 1

|̺|κβ1p

I2q×2q}. (3.93)

Taking the derivative of Vc and using (3.35), we get

V̇c = −2ζTC(t)CT (t)ζ, (3.94)

where

CT (t) =
[
Acl

1
̺
Bξ

T
]
. (3.95)
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Therefore, it follows that Pc, satisfies the following inequality

ET (t)Pc + PcE(t) + αCT (t)C(t) ≤ 0, (3.96)

for some α > 0. The equilibrium ζ = 0 of the homogenous part of (3.83) is

exponentially stable if (C(t), E(t)) is a uniformly completely observable (UCO)

pair [26]. For a bounded H(t), the pairs (C(t), E(t)) and (C(t), E(t)+H(t)C(t)T )

have the same UCO property [26]. Choosing H(t) =
[
−I, −κβ1psgn(̺)PBξ

T
]T

,

we write the system corresponding to the pair (C,E +HCT ) as

Ẏ = 0 (3.97)

y = CT (t)Y. (3.98)

The state transition matrix of (3.97) is Φ = I. Therefore, (C,E+HCT ) is a UCO

pair if there exist positive constants α2, α3, ρ such that the observability Gramian

satisfies

α2I ≥
∫ t0+ρ

t0

C(t)CT (t) dt ≥ α3I, (3.99)

for all t0 ≥ 0. Since ξ is bounded, recalling (3.95), the upper bound of (3.99) is

satisfied. We now prove the lower bound in (3.99). Calculating the integral in

(3.99), we get

X =

[
AT

clAclρ
1
̺
AT

clB
∫ t0+ρ

t0
ξ
T
dt

1
̺

∫ t0+ρ

t0
ξ dtBTAcl

1
̺2

∫ t0+ρ

t0
ξBTBξ

T
dt

]
. (3.100)

Let Sh be the Schur complement of AT
clAclρ in X, where

Sh =
BTB

̺2

(∫ t0+ρ

t0

ξξ
T
dt− 1

ρ

∫ t0+ρ

t0

ξ dt

∫ t0+ρ

t0

ξ
T
dt

)
. (3.101)

Using (3.73) and (3.74) and calculating the integral, we obtain

∫ ∞

0

ẋ2
1(t) dt ≤ 2 (V (0)− V (∞)) ≤ M1 (3.102)

for some M1 > 0. Since AT
clAclρ is positive definite, X is positive definite if and

only if Sh is positive definite. Since BTB
̺2

is a positive scalar, using boundedness
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of Ξ(t) and (3.102), according to Lemma 3.3 there exists a positive ρ such that

for all t0 ≥ 0, Sh > 0. Hence, (C,E + HCT ) is UCO, which implies that (C,E)

is UCO. Therefore, the state transition matrix Φ(t, t0) corresponding to E(t) in

(3.83) satisfies ‖ Φ(t, t0) ‖≤ κ0e
−γ0(t−t0), for some positive constants κ0, γ0. From

the boundedness of Ξ(t) and ηp, it follows from (3.81) that ẋ(t) is bounded. From

(3.86), d(t) is bounded and, from (3.85), F (t) is bounded. Recalling that it has

already been established that d(t) goes to zero, from (3.83) and the property of

Φ(t, t0), it follows that ζ is bounded and ζ = [xT , β̃T
1p]

T → 0 as t → ∞. By using

(3.77) and the fact that G is Hurwitz and x(t) converges to zero, we conclude that

η̃p(t) converges to zero as t → ∞. Furthermore, using (3.12), (3.14), (3.26), (3.34)

and by noting that d(t) → 0, β̂1p(t) → 1
1−θT

sd
l
θsd we obtain

(
θTsd +

θT
sd
l

1−θT
sd
l
θTsd

)
ηp(t) →

1
bp
ν(t). Recalling β̂1p(t) → 1

1−θT
sd
l
θsd and θTsdl is scalar, we obtain β̂T

1pηp(t) → 1
bp
ν(t).

This proves part (b) of Theorem 3.1. �

3.4 Simulation Results

We illustrate the performance of our controller with a third-order sys-

tem with γT
1 =

[
1 3

]
, γT

2 =
[
1 2

]
, bp = b1 = 2, b2 = 1, the unknown

disturbance ν(t) = 1.2 sin(0.8t + π/4) − 0.5 sin(t + π/2) and initial conditions

x(0) =
[
2 −2.5

]T
, p(0) = 0.5. The control gain K is chosen such that the eigen-

values of Acl are −0.5,−0.25 and c = 10. We set all update gains to 1 except κγ1 =

3. Finally, the controllable pair (G, l) is chosen as l =
[
0, 0, 0, 1

]T
, G =

[
03 I3

0 0T3

]
+ l
[
−4.37 −12.12 −12.60 −5.80

]
. From Figures 3.1 and 3.2, one

can observe that x(t) and 1
bp
ν(t)−β̂T

1pηp(t) converge to zero as Theorem 3.1 predicts.

3.5 Summary

In the present work we design an adaptive backstepping controller by using

state derivative of the system and state of the input subsystem to cancel unmatched

unknown sinusoidal disturbances forcing an LTI system with unknown parameters.
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Figure 3.1: Closed loop system’s response for the simulation example where the

system parameters are unknown and the unknown disturbance is unmatched.

We prove that the equilibrium of the closed loop system is stable and the state of

the considered error system (x, e) goes to zero as t → ∞ with perfect disturbance

estimation. The effectiveness of our controller is demonstrated with a numerical

example.

This chapter is an adaptation of material appearing in: H. I. Basturk and

M. Krstic, “Adaptive backstepping cancelation of unmatched unknown sinusoidal

disturbances for unknown LTI systems by state derivative feedback,” IEEE Con-

ference on Decision and Control, 2012.

The dissertation author is the primary investigator and author of this work.



46

0 20 40 60 80 100 120

−1

−0.5

0

0.5

1

1.5

Time(s)

 

 
ν(t)/bp

β̂T
1pηp(t)

Figure 3.2: Disturbance estimation for the simulation example where the system

parameters are unknown and the unknown disturbance is unmatched.



Chapter 4

Adaptive Wave Cancelation by

Acceleration Feedback for

Ramp-Connected Air

Cushion-Actuated Surface Effect

Ships

We solve here the problem of cargo transfer in high sea states over a ramp

from a large, medium-speed, roll-on/roll-off (LMSR) vessel to a smaller connector

vessel of a surface effect ship (SES) type. We design an air cushion actuated

controller to estimate and cancel the wave disturbance and stabilize the heave of the

SES via heave acceleration feedback with actuation of the louver area for the case

where the hydrodynamic and other parameters of the SES are not known a priori

and the pressure dynamics of the air-cushion contains nonlinearly parameterized

unknown terms to provide a safer environment for cargo transfer. We demonstrate

the effect of our control design in simulations in a time-domain seakeeping code,

named AEGIR.

This chapter is organized as follows: We introduce the mathematical model

of the heave and air cushion dynamics of an SES in Section 4.1. Design of the

47
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controller and stability proof of the closed loop system are given in Section 4.2. In

Section 4.3, we present the parameters of the ships and simulation platform. The

results are discussed in Section 4.4.

4.1 Mathematical Model of System Dynamics

4.1.1 SES Heave Model

Following [37], we consider the linear model of the heave dynamics (decou-

pled from pitch) for control design purpose. The model is given by

(m+ A33) ζ̈3(t) +B33ζ̇3(t) + C33ζ3(t)− AcPc = F e
3 (t), (4.1)

where ζ3 represents the heave, Pc is the air cushion pressure. Ac is area of the air

cushion and m is the mass of the ship. Hydrodynamic (added-mass), radiation

damping coefficients and hydrostatic (restoring) term for heave are represented

as A33, B33, C33 respectively. F e
3 is hydrodynamic excitation force. For single fre-

quency wave, it is given by

F e
3 (t) = Ke

3 sin(ωet + φ), (4.2)

with

Ke
3 = 2gekd

sin kL
2

kL
2

(C33 − ωωeA33 + φ) , (4.3)

where d and L are the draft and length of the side hulls. g, ω, φ, k are the ampli-

tude, frequency, phase and number of the wave respectively. ωe is the encounter

frequency which is represented by ωe = ω−kU cos(χ) where U and χ are the craft

speed and heading angle, respectively. In the adaptive control design, the draft of

the side hulls, d, is assumed to be constant.

4.1.2 Pressure dynamics for single chamber air-cushion

Assuming the uniform pressure distribution in the air cushion, the global

continuity equation for mass flow into and out of the cushion can be written as

qin(t)− qout(t) =
d

dt
(ρc(t)Vc(t)) (4.4)
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where qin(t) is the air flow into the air cushion from the lift fan system, qout(t) is

the air flow out of the air cushion due to the louver system, Vc(t) is the cushion

volume, ρc(t) is the density of the air at the pressure Pc(t).

Assuming the basic thermodynamic variation in the air cushion is adiabatic,

we represent pressure-density relationship as

ρc(t) =
ρc0

P
1/γ
c0

(Pc(t))
1/γ , (4.5)

where γ is the ratio of specific heat of air, and ρc0 is the density of the air at the

equilibrium pressure Pc0. Differentiating (4.5) with respect to time t, we reach the

expression for the time derivative of air density as

ρ̇c(t) =
ρc0

γP
1/γ
c0

(Pc(t))
1/γ−1 Ṗc(t). (4.6)

The volume of the air cushion is given by

Vc(t) = Ac(h0 + ζ3(t))− V0(t), (4.7)

where h0 is the air cushion height at equilibrium and V0(t) is the wave volume

pumping disturbance. For single frequency wave, it is given by

V0(t) = K0 sin(ωe(t) + φ), (4.8)

where

K0 = Acg
sin(kL

2
)

kL
2

, (4.9)

for regular head sea waves in [2], [25].

Assuming no dynamic response, the fan characteristic curve can be repre-

sented by

qin(t) = ρc(t)

(
Q0 +

∂Q

∂P
|Pc0 (Pc(t)− Pc0)

)
, (4.10)

where Q0 is the equilibrium air flow rate of fan when Pc(t) = Pc0 and
∂Q
∂P

|Pc0 is the

corresponding linear fan slope about the ship equilibrium operating point Q0 and

Pc0 [2]. The air flow out of the air cushion by louver system is given by

qout = ρc(t)cn

√
2(Pc(t)− Pa)

ρc0
Al, (4.11)
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Figure 4.1: Illustration of the chamber of the air cushion of a surface effect ship.

The symbol AL denotes louver area which is used as the control input.

where Pa is the atmospheric pressure, cn is the orifice coefficient varying between

0.61 and 1 and Al is the leakage area of the louver system [2].

Using (4.4)–(4.11), we get

Ṗc(t) =
P c(t)

Vc(t)
, (4.12)

where

P c =γPc

(
Q0 +

∂Q

∂P
|Pc0 (Pc(t)− Pc0)− Acζ̇3(t) + V̇0(t)− cn

√
2(Pc(t)− Pa)

ρc0
Al

)
.

(4.13)

The louver area, Al, is considered as the control input of the system. The chamber

of the air cushion is illustrated in Figure 4.1. It is hard to design an adaptive

controller for the given pressure model, since it contains nonlinearly parameterized

unknown term Vc(t). However we achieve to handle this significant challenge,

without linearizing the model, by using the physical property of the volume, Vc(t)

which is always positive, Vc(t) > 0.

4.2 Control Design for Heave

In this section, we design an adaptive backstepping controller by using the

measurement of heave rate and acceleration of the ship and air-cushion pressure

for the case where the system parameters are not known. The objective of the con-

troller is to stabilize the heave of the craft in the presence of sea wave disturbances
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ship dynamics + hydrodynamics

cushion dynamics
(adiabatic gas)

air flow

power

wave
disturbance

fan
map

louver
map

wave
disturbance

(inside cushion)

louver area
(control input)

cushion pressure

Figure 4.2: The structure of the control problem. The overall system consists of

two dynamics, wave disturbances, fan and louver maps.

by the actuation of louver area. The structure of the control problem is given in

Figure 4.2.

The decoupled heave dynamics can be represented in the state-space form

as follows

ẋ = A0x+B
(
a1x1 + a2x2 + F

e

3 + bpPc

)
, (4.14)

where

A0 =

[
0 1

0 0

]
, (4.15)

B =
[
0 1

]T
, (4.16)
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x =
[
ζ3, ζ̇3

]T
, (4.17)

a1 =− C33

m+ A33

(4.18)

a2 =− B33

m+ A33

(4.19)

F
e

3 =
F e
3

m+ A33

(4.20)

bp =
Ac

m+ A33

. (4.21)

4.2.1 Disturbance Representation

The sinusoidal disturbances (4.8) and (4.20) can be represented as the out-

put of a linear exosystem,

ẇ =Sw (4.22)

F
e

3 =hTw, (4.23)

V0 =K0
m+ A33

Ke
3

hTw, (4.24)

where w ∈ R2 and the choice of S ∈ R2×2 and h ∈ R2 is not unique. However, the

pairs (S, h) is assumed to be observable. Since F
e

3 and V0 are unknown, h and S

are also unknown.

Using Lemma 3.1 and Lemma 3.2, the inaccessible disturbances F
e

3, V0 and

their time derivatives Ḟ
e

3, V̇0 can be represented in the form

F
e

3 =θ
T

e (η0 +Nẋ) +
2∑

i=1

aiθ
T

e ηi + bpθ
T

e (ηp − lPc) + θ
T

e δ, (4.25)

V0 =θ
T

0 (η0 +Nẋ) +
2∑

i=1

aiθ
T

0 ηi + bpθ
T

0 (ηp − lPc) + θ
T

0 δ, (4.26)

Ḟ
e

3 =
1

1− θ
T

e l

(
θ
T

e G (η0 +Nẋ) +

2∑

i=1

aiθ
T

e Gηi + bpθ
T

e G (ηp − lPc) + θ
T

e Gδ

)
, (4.27)

V̇0 =
1

1− θ
T

e l

(
θ
T

0G (η0 +Nẋ) +

2∑

i=1

aiθ
T

0Gηi + bpθ
T

0G (ηp − lPc) + θ
T

0Gδ

)
, (4.28)



53

where

η̇i = Gηi − lẋi, for i = 1, 2, (4.29)

η̇0 = G (η0 +Nẋ) , (4.30)

η̇p = G (ηp − lPc) . (4.31)

N is a 2 × 2 matrix which is given by N = 1
BTB

lBT . The given N is one of the

many solutions of the equation NB = l. δ ∈ R2 obeys the equation

δ̇ = Gδ. (4.32)

4.2.2 Reciprocal State Space Representation

The reciprocal state space (RSS) representation depends on switching the

state vector with its derivative [32]. Thus, one can design a controller by utilizing

the state derivatives instead of states. Substituting the developed representation

of F
e

3, (4.25), into (4.14), we get

x =AT
0 ẋ+B

1

̺

(
bpẋ2 − a2ẋ1 − θTe η0 −

2∑

i=1

βT
1iηi − βT

1pηp − Pc − θTe δ

)
(4.33)

where

B =
[
1 0

]T
, (4.34)

̺ =
a1

bp

(
1− θ

T

e l
) , (4.35)

bp =
1

bp
, (4.36)

a2 =
a2

bp

(
1− θ

T

e l
) , (4.37)

θe =
1

bp

(
1− θ

T

e l
)θe, (4.38)

β1i =
ai

bp

(
1− θ

T

e l
)θe, (4.39)

β1p =
1(

1− θ
T

e l
)θe. (4.40)
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Using (4.18), (4.21) and noting that 1 − θ
T

e l > 0, area of the air-cushion Ac,

hydrodynamic, A33, and hydrostatic, C33 terms are positive, we obtain sgn(̺) =

−1 and sgn(bp) = 1. For the adaptive control design, we assume that the high

frequency gain bp > ς > 0. From a physical point of view, ς can be determined

with rough knowledge of the dimensions and the mass of the catamaran.

4.2.3 Adaptive Backstepping Control Design

The representations (4.25)–(4.28) established with Lemmas 3.1 and 3.2, al-

lows us to represent the time-varying unknown sinusoidal disturbances and their

derivative as a constant unknown vector multiplied by a known regressor, plus an

unknown exponentially decaying disturbance. Thus, we convert the problem from

cancelation of an unknown sinusoidal disturbance with unknown system parame-

ters to an adaptive control problem. Since the system (4.33), (4.12) has unmatched

parametric uncertainties, we apply adaptive backstepping method to design a con-

trol law.

In adaptive backstepping method, we first find the desired value of the air

cushion pressure to stabilize the heave of the surface effect ship. Considering the

air-cushion pressure, Pc, as the virtual controller, desired pressure value is given

by

Pdesired =− ˆ̺Kẋ− â2ẋ1 + b̂pẋ2 − θ̂Te η0 −
2∑

i=1

β̂T
1iηi − β̂T

1pηp, (4.41)

where the control gain K ∈ R1×2 =
[
k1 k2

]
is chosen so that

(
AT

0 +BK
)
is

Hurwitz and the positive definite matrix R is a solution of the matrix equation

(AT
0 +BK)TR +R(AT

0 +BK) = −4I. (4.42)

The deviation of Pc from its desired value, Pdesired is written as

e(t) = Pc(t)− Pdesired(t). (4.43)

Substituting (4.43) into (4.33) and taking the time derivative of e(t), we convert
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(x, Pc) system to (x, e) system,

x =
(
AT

0 +BK
)
ẋ +B

1

̺

(
b̃pẋ2 − ã2ẋ1 − ˜̺Kẋ− θ̃Te η0 −

2∑

i=1

β̃T
1iηi − β̃T

1pηp

− e− θTe δ
)
, (4.44)

ė(t) =
(
˙̺̂k1 + ˙̂a2

)
ẋ1 +

(
ˆ̺k1 + â2 + ˙̺̂k2 − ˙̂

bp

)
ẋ2 +

˙̂
θTe η0 + θ̂Te η̇0

+

2∑

i=1

(
˙̂
βT
1iηi + β̂T

1iη̇i

)
+

˙̂
βT
1pηp + β̂T

1pη̇p −ΘT
e Ξe −

(
b̂p − ˆ̺k2

) 1

1− θ
T

e l
θ
T

e Gδ

+
(
1−

(
b̂p − ˆ̺k2

)
bp

) P c

Vc
(4.45)

where

Θe =
[
a1, a2 +

1

1−θ
T
e l
θ
T

e Gl, 1

1−θ
T
e l
θ
T

e G, a1

1−θ
T
e l
θ
T

e G, a2

1−θ
T
e l
θ
T

e G, bp

1−θ
T
e l
θ
T

e G
]T

(4.46)

Ξe =
(
b̂p − ˆ̺k2

) [
ẋ1, ẋ2, ηT0 , ηT1 , ηT2 , (ηp − lPc)

T
]T

, (4.47)

b̃p =bp − b̂p, (4.48)

ã2 =a2 − â2, (4.49)

˜̺=̺− ˆ̺, (4.50)

θ̃e =θe − θ̂e, (4.51)

β̃1i =β1i − β̂1i, (4.52)

β̃1p =β1p − β̂1p. (4.53)

The air-cushion pressure dynamics, (4.12), contains nonlinearly parameterized

term, Vc, and unmeasured heave, x1 = ζ3. We write x1 in terms of heave rate,

heave acceleration, air-cushion pressure, the derived representation of F
e

3 and sub-

stitute it into the model. Furthermore, we can use the volume of the air-cushion,

Vc, in the Lyapunov analysis since it is positive and its derivative, V̇c, can be

represented in terms of measured signals, constant unknown terms with known

regressors and exponentially decaying term by using (4.27). We use Vce
2 instead

of usual choice, e2, in our Lyapunov function in order to achieve a linearly pa-

rameterized expression in the time derivative of Lyapunov function. This choice

increases the unknown terms and causes the over parametrization.
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We assume the measurements of the heave rate and acceleration of the ship

to be available for feedback loop throughout the analysis. However, the data from

integrated heave accelerometers need to be filtered or processed before using them

for control. It is important to have unbiased heave acceleration to avoid drift

in parameter estimations and estimate heave rate properly. Although the type

of a method employed to eliminate bias depends on the features of the sensor, a

high pass filter with appropriate parameters will typically suffice. Heave rate for

feedback can be obtained by filtering unbiased heave acceleration with a bandpass

filter (a low pass filter in conjunction with a high pass filter). Other sensing and

filtering options are also possible to obtain heave rate and acceleration for specific

applications.

Remark 4.1 The proposed controller is designed based on system dynamics (4.1),

(4.12) with disturbance models (4.2), (4.8) by assuming that the measurements are

accurate and precise. Although the simulation platform which we implement our

controller, provides a reliable environment to test the robustness of the controller

with respect to some unmodeled system and disturbance dynamics such as cou-

pling with other modes, irregular waves and different heading angles, there are

still various other effects (measurement noise, wind disturbance, ...) which are

not considered in the design and simulation but may be encountered in a prac-

tice. These effects may cause drift in parameter estimations which may harm the

stability of the equilibrium of the closed loop system. The destabilizing effects

of bounded disturbances and of a class of dynamic uncertainties may be counter-

acted by using simple modifications that involve leakage, dead-zone, projection,

and dynamic normalization as given in [26]. We do not add these modifications to

our design and analysis. However one can select an appropriate modification for

certain application conditions and implement it to the proposed controller.

The adaptive controller for surface effect ship is given by

Al =
b̂u(

1− b̂p

(
b̂p − ˆ̺k2

))√
2 (Pc(t)− Pa)

u (4.54)
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with

u =− ˆ̺ẋTRB + Θ̂T
dVc

ΞdVc + Θ̂ėVcΞėVc + Θ̂PcΞPc + Θ̂bpPc
ΞPc

(
b̂p − ˆ̺k2

)
+ Ξδ + ce,

(4.55)

with c > 2 and the regressors

ΞdVc =e
[
ẋ1, (η0 +Nẋ)T , ηT1 ηT2 , (ηp − lPc)

T
]T

, (4.56)

ΞėVc =
[
ξde, ΞT

e , ξdeẋ1, ΞT
e ẋ1, ξdeẋ2, ΞT

e ẋ2, ξdeη
T
0 l1, ΞT

e η
T
0 l1, ξdeη

T
0 l2,

ΞT
e η

T
0 l2, ξdeη

T
1 l1, ΞT

e η
T
1 l1, ξdeη

T
1 l2, ΞT

e η
T
1 l2, ξdeη

T
2 l1, ΞT

e η
T
2 l1,

ξdeη
T
2 l2, ΞT

e η
T
2 l2, ξdeη

T
p l1, ΞT

e η
T
p l1, ξdeη

T
p l2, ΞT

e η
T
p l2, ξdePc, ΞT

e Pc

]T
,

(4.57)

ΞPc =Pc

[
1, Pc, ẋ1, (η0 +Nẋ)T , ηT1 , ηT2 , ηTp

]T
, (4.58)

where l1 =
[
1, 0

]T
, l2 = B and

Ξδ =
1

2

(
b̂p − ˆ̺k2

)2 [
3, ẋ2

1, ẋ2
2, ηT0 η0, ηT1 η1, ηT2 η2, ηTp ηp, P 2

c

]T
, (4.59)

ξde =
(
˙̺̂k1 + ˙̂a2

)
ẋ1 +

(
ˆ̺k1 + â2 + ˙̺̂k2 − ˙̂

bp

)
ẋ2 +

˙̂
θTe η0 + θ̂Te η̇0 +

2∑

i=1

(
˙̂
βT
1iηi + β̂T

1iη̇i

)

+
˙̂
βT
1pηp + β̂T

1pη̇p. (4.60)
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The update laws are given by

˙̂a2 =− κa2sgn(̺)ẋ1B
T
Rẋ, κa2 > 0, (4.61)

˙̂
θe =− κθesgn(̺)η0B

T
Rẋ, κθe > 0, (4.62)

˙̂
β1i =− κβ1i

sgn(̺)ηiB
T
Rẋ, κβ1i

> 0, (4.63)

˙̂
β1p =− κβ1psgn(̺)ηpB

T
Rẋ, κβ1p > 0, (4.64)

˙̂
bu =− κbuue, κbu > 0, (4.65)

˙̺̂ =− κ̺eẋ
TRB, κ̺ > 0, (4.66)

˙̂
ΘdVc =κΘdVc

ΞdVce, κΘdVc
> 0, (4.67)

˙̂
ΘėVc =κΘėVc

ΞėVce, κΘėVc
> 0, (4.68)

˙̂
ΘPc =κΘPc

ΞPce, κΘPc
> 0, (4.69)

˙̂
ΘbpPc

=κΘbpPc
ΞbpPc

(
b̂p − ˆ̺k2

)
e, κΘbpPc

> 0, (4.70)

˙̂
bp =

{
τbp , b̂psgn(bp) > ς or τbpsgn(bp) ≥ 0

0, b̂psgn(bp) ≤ ς and τbpsgn(bp) < 0
, (4.71)




˙̂
bp

˙̺̂


 =






τbp,̺, sgn(bp)(b̂p − ˆ̺kn) >
1
ς

or PT τbp,̺ ≤ 0

(
I − Γ RRT

RTΓR

)
τbp,̺, sgn(bp)(b̂p − ˆ̺kn) ≤ 1

ς

and RT τbp,̺ > 0,

(4.72)

where

τbp =κbp

(
b̂p − ˆ̺kn

)
Al

√
2 (Pc(t)− Pa)e, κbp

> 0 (4.73)

τbp,̺ =κbp,̺

[
sgn(̺)ẋnB

T
Rẋ

−sgn(̺)KẋB
T
Rẋ

]
, κbp,̺ > 0, (4.74)

R =
[
−sgn(bp) k2sgn(bp)

]T
, (4.75)

and Γ belongs to the set of all positive definite symmetric 2× 2 matrices.

We first define the signals needed in the analysis and state a theorem de-

scribing our main stability result. Then we prove the theorem using a technical
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lemmas in next section. Estimation errors of the unknown parameters are denoted

by

˜̺ =1

̺
− ˆ̺, (4.76)

b̃u =bu − b̂u, (4.77)

b̃p =bp − b̂p, (4.78)

Θ̃dVc =ΘdVc − Θ̂dVc , (4.79)

Θ̃ėVc =ΘėVc − Θ̂ėVc , (4.80)

Θ̃Pc =ΘPc − Θ̂Pc , (4.81)

Θ̃bpPc
=ΘbpPc

− Θ̂bpPc
, (4.82)

where

bu =
cn√
ρc0

, (4.83)

ΘdVc =
[
Ac − 1

1−θ
T
e l
θ
T

0G − a1

1−θ
T
e l
θ
T

0G − a2

1−θ
T
e l
θ
T

0G − bp

1−θ
T
e l
θ
T

0G
]T

, (4.84)

ΘPc =γ
[
Q0 − ∂Q

∂Pc
Pc0,

∂Q
∂Pc

− bp

1−θ
T
e l
θ
T

0Gl, −Ac,
1

1−θ
T
e l
θ
T

0G, a1

1−θ
T
e l
θ
T

0G,

a2

1−θ
T
e l
θ
T

0G, bp

1−θ
T
e l
θ
T

0G
]T

, (4.85)

ΘėVc =
[
Ach0, Ach0Θ

T
e , −a1

Ac

a2
, −a1

Ac

a2
ΘT

e , (1− θ
T

e l)
Ac

a1
− θT0 l,(

(1− θ
T

e l)
Ac

a1
− θT0 l

)
ΘT

e , θ
T

e0l1, θ
T

e0l1Θ
T
e , θ

T

e0l2, θ
T

e0l2Θ
T
e ,

−a1θ
T

e0l1, −a1θ
T

e0l1Θ
T
e , −a1θ

T

e0l2, −a1θ
T

e0l2Θ
T
e ,

−a2θ
T

e0l1, −a2θ
T

e0l1Θ
T
e , −a2θ

T

e0l2, −a2θ
T

e0l2Θ
T
e ,

−bpθ
T

e0l1, −bpθ
T

e0l1Θ
T
e , −bpθ

T

e0l2, −bpθ
T

e0l2Θ
T
e ,

−bp

(
Ac

a1
(1− θ

T

e l)− θ
T

0 l
)
, −bp

(
Ac

a1
(1− θ

T

e l)− θ
T

0 l
)
ΘT

e

]T
, (4.86)

ΘbpPc
=bpΘPc , (4.87)

with θe0 = −
(

Ac

a1
θe + θ0

)
and η̃p(t) denotes the signal,

η̃p(t) =bpηp(t) + η0 − ηp(t), (4.88)
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where

ηp(t) =

t∫

0

eG(t−τ)Glν(τ)dτ. (4.89)

Theorem 4.1 Consider the closed-loop system consisting of the plant (4.1), (4.12)

forced by the unknown sinusoidal wave disturbances (4.22), (4.23) the disturbance

observer (4.29), (4.30), (4.31) and the adaptive controller (4.54), (4.61)–(4.72).

Under the assumptions the following holds:

(a) The equilibrium Θ̃Vc = 0, Θ̃dVc = 0, Θ̃Pc = Θ̃bpPc
= 0, x = 0, η0 = η1 = η2 = δ =

θ̃e = β̃11 = β̃12 = β̃1p = 0, ã2 = ˜̺= ρ̃ = b̃u = b̃p = b̃p = e = 0 is stable.

(b) For all initial conditions sgn(bp)b̂p(0) > ς, (b̂p(0)− ˆ̺(0)k2)sgn(bp) >
1
ς
, â1(0),

ˆ̺(0), b̂u(0), p(0), x(0) ∈ R2, η1(0) ∈ R2, η2(0) ∈ R2, η0(0) ∈ R2, ηp(0) ∈ R2, θ̂1 ∈
R2, β̂11(0) ∈ R2, β̂12(0) ∈ R2, β̂1p(0) ∈ R2, Θ̂dVc(0) ∈ R9, Θ̂ėVc(0) ∈ R132, Θ̂Pc(0),

Θ̂bpPc
(0) ∈ R11 for which Vc(t) is positive for all time, the signals e(t), x(t), η0,

η1(t), η2(t), β̃1p(t),
F

e
3

bp
− β̂T

1p(t)ηp(t), δ(t), η̃p(t) are bounded and converge to zero

as t → ∞.

4.2.4 Stability Proof

Proof of Theorem 4.1: The stability of the equilibrium of the closed-loop

system is established with the use of Lyapunov function

V =
1

2
xTRx+

1

2
Vce

2 +
1

2|̺|

(
1

κbp,̺

(˜̺2 + b̃2p) +
1

κa2

ã22 +
1

κθe

θ̃Te θ̃e +
2∑

i=1

1

κβ1i

β̃T
1iβ̃1i

+
1

κβ1p

β̃T
1pβ̃1p

)
+

1

2κ̺

˜̺2 + 1

2bu

(
1

κbu

b̃2u +
1

κbp

b̃
2

p

)
+

1

2κΘdVc

Θ̃T
dVc

Θ̃dVc

+
1

2κΘėVc

Θ̃T
ėVc

Θ̃ėVc +
1

2κΘPc

Θ̃T
Pc
Θ̃Pc +

1

2κΘbpPc

Θ̃T
bpPc

Θ̃bpPc
+

εδ
2
δTRGδ

+
1

2εη

(
ηT0 RGη0 +

n∑

i=1

ηTi RGηi

)
+

εδ2

2

(
δTRGδ

)2
, (4.90)

where the positive definite matrix R is a solution of the matrix equation

GTRG +RGG =− 2I, (4.91)
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with

εδ =
1

̺2
λmax{θeB

T
RRBθ

T

e }+
1

(1− θ
T

e l)
2
× λmax{GT θ0θ

T

0G}, (4.92)

εδ2 =
1

λmin{RG}

((
(Ach0)

4 +

(
Aca2
a1

)4

+ (1 + b
4

p)

(
Ac

1− θ
T

e l

a1
− θ

T

0 l

)4

+ (1 + a41 + a42 + b
4

p)



((

Ac

a1
θe + θ0

)T

l1

)4

+

((
Ac

a1
θe + θ0

)T

l2

)4





× 1

(1− θ
T

e l)
4
λ2
max{GT θ

T

e θeG}+
(
1 +

1

(1− θ
T

e l)
4

)
λ2
max{GTθ

T

0 θ0G}, (4.93)

εη =λmax{lTRGRG}. (4.94)

Taking the time derivative of V and using the property of the projection operator,

−b̃p
˙̂
bp ≤ −b̃pτbp, sgn(b2)b̂p ≥ ς > 0 and −[̃bp, ˜̺][ ˙̂bp, ˙̺̂]T ≤ −[̃bp, ˜̺]τbp,̺, sgn(bp)(b̂p −

ˆ̺kn) ≥ 1
ς
> 0 [22, Appendix E] and Young’s inequality for the cross terms, we

obtain

V̇ ≤ −1

2
ẋT ẋ− (c− 2)e2 − 1

2εη

2∑

i=0

ηTi ηi −
εδ
2
δT δ. (4.95)

Using (4.95), we conclude

V (t) ≤ V (0). (4.96)

Defining

Υ(t) =[xT (t), e(t), ã2(t), b̃
T

p (t), ˜̺T (t), ˜̺(t), b̃u(t), b̃3(t), θ̃Te (t), β̃11(t)
T , β̃12(t)

T , β̃1p(t)
T ,

η0(t)
T , ηT1 (t), η

T
2 (t), δ

T (t), Θ̃T
dVc

(t), Θ̃T
ėVc

(t), Θ̃T
pc(t), Θ̃

T
bpVc

(t)]T , (4.97)

and using (4.90) and (4.96), we get

|Υ(t)|2 ≤ M2|Υ(0)|2, (4.98)

for some M2 > 0. Taking the derivative of (4.88) and using (4.30), (4.89) and the

fact that ẋ2 − bpPc = a1x1 + a2x2 + F
e

3, we get

˙̃ηp(t) = Gη̃p +Gl (a1x1 + a2x2) . (4.99)
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Since G is Hurwitz, using (4.99), we have

|η̃p(t)| ≤ M3e
−α1t|η̃p(0)|+M4 sup

τ∈[0,t]

|x(τ)| (4.100)

for some M3,M4, α1 > 0. By using (4.98) and (4.100), we obtain

|η̃p(t)| ≤ M3|η̃p(0)|+M4

√
M2|Υ(0)|. (4.101)

By using (4.98) and (4.101), we obtain

|Υ(t)| ≤ M5|Υ(0)|, (4.102)

where

Υ(t) =
[
Υ

T
(t), η̃Tp (t)

]T
, (4.103)

for some M5 > 0. This proves part (a) of Theorem 4.1.

We write the closed-loop system in the following form

ẋ =Ã−1x+ Ã−1B
1

̺

(
θ̃Te η0 +

n∑

i=1

β̃T
1iηi +

1

bp
β̃T
1p

(
η̃p − η0 + ηp

)
+ e + θTe δ

)
, (4.104)

where

Ã = AT
0 +B

(
1

̺

[(
ã2 0

]T
+ b̃pB

T +K ˆ̺

))
. (4.105)

From (4.15), (4.16), (4.105) and by noting that B =
[
1, 0

]T
, we get

det(Ã) = −
(
1

̺

(
1

bp
− (b̂p − ˆ̺k2

))
. (4.106)

From (4.106) it follows that, for all Υ such that sgn(bp)(b̂p − ˆ̺kn) ≥ 1
ς
> 0 and

Vc(t) > 0, the right-hand side of (4.104) is continuous in Υ and t, which implies

that the right-hand side of (4.95) is continuous in Υ and t. Furthermore, the right-

hand side of (4.95) is zero at Υ = 0. By the LaSalle-Yoshizawa theorem, (4.95)

ensures that ẋ, e, η0, η1, η2 and δ converge to zero as t → ∞.

By adding ±κβ1p
sgn(̺)

bp
ξ̃(t)B

T
P ẋ and ± 1

bp̺
Bβ̃T

1pξ̃(t) to (4.64) and (4.104) re-

spectively, we represent the close-loop of (x, β̃1p) system as a linear-time varying

(LTV) system which is given by

ζ̇ = E(t)ζ + F (t)d, (4.107)
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where

E(t) =

[
Acl

1
̺
Bξ

T

κβ1psgn(̺)ξB
T
PAcl

κβ1p

|̺|
ξB

T
PBξ

T

]
(4.108)

F (t) =

[
f11 f12 f13 f14 f15

1
̺
B

f21 ff12 ff13 ff14 ff15
1
̺
fB

]
(4.109)

d =
[
ẋT , ηT0 ηT1 , ηT2 , δT , e

]T
(4.110)

ζ =
[
xT , β̃T

1p

]T
(4.111)

with f =
κβ1p

sgn(̺)
ξB

T
P and f21, f11, f12, f13, f14, f15 ∈ R2×2 are given by

f11 =
1

̺
B
(
˜̺K +

[
ã2 0

]

+b̃pB
T − 1

bp
β̃T
1plbp(1− θ

T

1 l)
[
a2 0

])
, (4.112)

f12 =
1

̺
B(θ̃Te − 1

bp
β̃T
1p), (4.113)

f13 =
1

̺
B(β̃T

11 −
a1

bp
β̃T
1p), (4.114)

f14 =
1

̺
B(β̃T

12 −
a2

bp
β̃T
1p), (4.115)

f15 =
1

̺
B(θT1 − 1

bp
β̃T
1p), (4.116)

f21 =ff11 −
κβ1psgn(̺)

bp
ξ̃(t)B

T
P, (4.117)

with Acl = (AT
0 + BK)−1 and B = AclB. We first show that the equilibrium

ζ = 0 of the homogenous part of the LTV system (4.107) is exponentially stable.

Towards that end, we choose the following Lyapunov function

VLTV =
1

2
ζTRLTV ζ, (4.118)

where

RLTV = diag{R,
1

|̺|κβ1p

I2×2} (4.119)

Taking the derivative of VLTV and using (4.42), we get

V̇LTV = −2ζTC(t)CT (t)ζ, (4.120)
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where

CT (t) =
[
Acl

1
̺
Bξ

T
]
. (4.121)

Therefore, it follows that RLTV , as defined in (4.119), satisfies the following in-

equality

ET (t)RLTV +RLTVE(t) + αCT (t)C(t) ≤ 0 (4.122)

for some α > 0.

The equilibrium ζ = 0 of the homogenous part of (4.107) is exponentially

stable if (C(t), E(t)) is a uniformly completely observable (UCO) pair [26]. For a

bounded H(t), the pairs (C(t), E(t)) and (C(t), E(t) +H(t)C(t)T ) have the same

UCO property [26]. Choosing H(t) =
[
−I, −κβ1psgn(̺)RBξ

T
]T

, we write the

system corresponding to the pair (C,E +HCT ) as

Ẏ = 0 (4.123)

y = CT (t)Y. (4.124)

The state transition matrix of (4.123) is Φ = I. Therefore, (C,E+HCT ) is a UCO

pair if there exist positive constants α2, α3, ρ such that the observability Gramian

satisfies

α2I ≥
∫ t0+ρ

t0

C(t)CT (t) dt ≥ α3I, (4.125)

for all t0 ≥ 0. Since ξ is bounded, recalling (4.121), the upper bound of (4.125)

is satisfied. We now prove the lower bound in (4.125). Calculating the integral in

(4.125), we get

X =

[
AT

clAclρ
1
̺
AT

clB
∫ t0+ρ

t0
ξ
T
dt

1
̺

∫ t0+ρ

t0
ξ dtBTAcl

1
̺2

∫ t0+ρ

t0
ξBTBξ

T
dt

]
. (4.126)

Let Sh be the Schur complement of AT
clAclρ in X, where

Sh =
BTB

̺2

(∫ t0+ρ

t0

ξξ
T
dt− 1

ρ

∫ t0+ρ

t0

ξ dt

∫ t0+ρ

t0

ξ
T
dt

)
. (4.127)

Using (4.95) and (4.96) and calculating the integral, we obtain
∫ ∞

0

ẋ2
1(t) dt ≤ 2 (V (0)− V (∞)) ≤ M1 (4.128)
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for some M1 > 0. Since AT
clAclρ is positive definite, X is positive definite if and

only if Sh is positive definite. Since BTB
̺2

is a positive scalar, using boundedness

of Υ(t) and (4.128), according to Lemma 3.3 there exists a positive ρ such that

for all t0 ≥ 0, Sh > 0. Hence, (C,E + HCT ) is UCO, which implies that (C,E)

is UCO. Therefore, the state transition matrix Φ(t, t0) corresponding to E(t) in

(4.107) satisfies

‖ Φ(t, t0) ‖≤ κ0e
−γ0(t−t0) (4.129)

for some positive constants κ0, γ0. From the boundedness of Υ(t) and ηp(t), it

follows from (4.104) that ẋ(t) is bounded. From (4.110), d(t) is bounded and,

from (4.109), F (t) is bounded. Recalling that it has already been established that

d(t) goes to zero, from (4.107) and (4.129) it follows that ζ is bounded and ζ =

[xT , β̃T
1p]

T → 0 as t → ∞. By using (4.99) and the fact that G is Hurwitz and x(t)

converges to zero, we conclude that η̃p(t) converges to zero as t → ∞. Furthermore,

using (4.25), (4.40), (4.43), (4.53) and by noting that d(t) → 0, β̂1p(t) → 1

1−θ
T
e l
θe,

we obtain
(
θ
T

e + θ
T
e l

1−θ
T
e l
θ
T

e

)
ηp(t) → 1

bp
F

e

3(t). Recalling β̂1p(t) → 1

1−θ
T
e l
θe and θ

T

e l is

scalar, we obtain β̂T
1pηp(t) → 1

bp
F

e

3(t). This proves part (b) of Theorem 4.1. �

4.3 Simulation

We use time-domain sea-keeping code AEGIR provided by Navatek/APS, to

solve hydrodynamic forcing imparted to vessels [7]. The general inputs of AEGIR

for the simulation are 3D CAD models and parameters of the vessels, connection

type and configuration of the ships and finally wave model with heading angle. In

the scenario, the cargo is transferred from Large, Medium-Speed Roll-on/Roll-off

(LMSR) type cargo ship which is illustrated as a mono hull to a surface effect ship

with two hulls, over a connected ramp. The Rhino CAD program is used to model

hulls of the surface effect ship and LMSR. CAD models are given in Figure 4.3.

Since the current software doesn’t contain the air cushion model, we add it with

the designed controller during simulation by using MATLAB interface code.
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Figure 4.3: 3D Rhino model of hulls of large, medium-speed, roll-on/roll-off

(LMSR) and surface effect ship (SES).

LMSRT-Craft

Figure 4.4: Top view of a bow to stern configuration. Bow of an SES is connected

to stern of an LMSR by a ramp.

4.3.1 Configuration and Parameters

The vessel parameters are shown in Table 4.1. The ramp has two hinges

that only allow pitch at each pivot point and is assumed to be massless and rigid.

The length of the ramp is 90 ft. We assume the cargo transfer is performed in

the bow to stern configuration as it is illustrated in Figure 4.4. We use a 1600

HP fan and approximately %15 of the deck are is considered as the louver in the

simulations.

4.3.2 Sea States and Wave Modeling for Simulation

A sea state (SS) is used to represent the general condition of an ocean with

respect to wind waves and swell at a certain location and moment. A sea state is

characterized by statistics, including the wave height, period, and power spectrum.

Table 4.2 gives observed relevant values for various sea states.

AEGIR uses a series of sine inputs provided by the user to represent a



67

Table 4.1: The vessel parameters of the surface effect ship (SES) and large,

medium-speed, roll-on/roll-off (LMSR).

LMSR SES
Length(ft) 1190 250
Beam(ft) 220 70
Weight(tons) 81, 700 820
Roll Gyradius(ft) 40 15
Pitch Gyradius(ft) 200 50
Yaw Gyradius(ft) 200 50

typical wave pattern which requires heading angle for each sine wave and wave

height, Hwave, which is given by,

Hwave(x, t) =
N∑

i=1

Ai sin(ωit+ ki(Ut− x) + φi). (4.130)

While many models exist to produce these sine waves, we use the Pierson-Moskowitz

spectrum for fully developed wave conditions. The power for a given wave fre-

quency is given by

Sp(ω) =
g28.1× 10−3

ω5
exp

[
−βwind

(ω0

ω

)]
, (4.131)

in [27] where g is gravity, ω0 = g
U19.5

with U19.5 being the wind speed 19.5 meter

above sea level and βwind is function of the wind speed generating the waves. The

peak frequency is the dominant frequency over a range of frequencies comprising

the wave front. The peak frequency, ωp, can be easily determined by setting the

derivative of the spectrum with respect to the frequencies equal to zero. This

approach gives us ωp = ω0

(
4βwind

5

)1/4
. ω0 is solved from ωp specified by the profile

used. The wind dependent value of βwind can be calculated from its dependence on

significant wave height, Hs. Since the problem specifies the fully developed wave

characteristics, it allows us to use the given formula, βwind = 3.11
H2

sω0
, to calculate

its value [27]. Lastly, the spectrum is broken down into a series of sine waves

to calculate the corresponding amplitude for each frequency. This is done by

relating the area under a portion of the power spectrum to an amplitude related

to the frequency at that portion of the spectrum. For the simulation, we break
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Table 4.2: Description of sea states from 2 to 4 in terms of important wave and

wind values.

Wind Sea Wave Average Aver. Wave
Speed(Kts) State Height(ft) Period(s) Length(ft)

10 2 2 3 26
15 3 4 4 52.5
19 4 7 5 92

the spectrum down into 100 components and representing the area between each

frequency from 0 to 3 rad/sec, in steps of 0.03 with a single sine wave and using

the rectangular method to solve for integral area gives

Ai = 2
√
Sp (ω0 + 0.03i) 0.03 i = 1, . . . , 100. (4.132)

Adding a random phase, φi, between 0 and 2π and using the average wavelength

to calculate wave number completes the requirements for the wave decomposition

into sine waves. The corresponding values are added to a table and imported

into AEGIR. The wave output and further wave-wave interactions are all handled

internally within AEGIR.

4.4 Results

We implement the developed adaptive controller to our simulation platform

by using AEGIR/MATLAB interface. Since we use Lyapunov function in the

design of the controller and stability proof of the closed loop system, the perfect

estimation of the disturbance is achieved only in the closed loop system with

actuator which is not saturated. In Figure 4.6, we give the simulation result

of the wave disturbance in heave with its estimation multiplied by correct value

of bp without restricting the louver area. One can observe that the controller

achieves to estimate the wave disturbance perfectly in SS4 for the wave model

which contains 100 distinct frequencies, although the controller is designed for

only single frequency wave disturbance. This feature of the controller can be

explained by using adaptive control theory and examining the simulation result.
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ship dynamics + hydrodynamics

cushion dynamics
(adiabatic gas)

air flow

wave
disturbance

fan
map

louver
map

wave
disturbance

(inside cushion)

louver area
(control input)

cushion pressure

(control input)

power

Figure 4.5: The structure of the control problem for simultaneous input actuation.

The fan and louver system are used simultaneously to regulate air-flow rate.

Despite of 100 distinct frequencies in the wave model, the wave disturbance has

a dominant frequency at around 0.18Hz due to the characteristics of SS4 as given

in Table 4.2. On the other hand, because of the superposition of the sine waves,

some fluctuations in the amplitude of the disturbance are observed. While the

adaptation of β1p is handling this variation, the output of the designed filter, ηp

captures the slowly varying frequency in time. Thus, we achieve to estimate the

disturbance almost perfectly by using 8th-order filter for the case where it contains

100 distinct frequencies, instead of using a 800th-order filter.

We run three simulations without control in SS4, SS3 and SS2 in head seas.

In the fourth simulation, the controller is turned on after 300 seconds in SS4 and

the louver area is saturated at 2500ft2. The results of the simulations are given in

Figures 4.7–4.9.
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From Figures 4.7(a) and 4.7(c), one can observe that the controller achieves

good reduction for smaller waves. However, there are limitations in damping larger

positive waves due to the restricted louver area. Although the controller opens all

the louvers and uses the maximum control effort for the case when a large wave

hits, it is still not enough to reduce the pressure inside the air cushion and provide

sufficient damping. Thus, large positive wave lifts SES with the pressure inside the

air-cushion. Comparing the results of uncontrolled case in SS3 and SS2 given in

Figures 4.7(b) and 4.7(d), the controller is able to reduce the effects of SS4 waves

to those of a vessel in SS3 and SS2 waves. In other words, the control has the effect

as if the sea has calmed from wave height of 7 ft to 2 ft. We present the relative

vertical motion of the ramp edges connected to the SES and LMSR in Figure 4.9.

As it is observed, the controller achieves significant reduction in ramp oscillation.

We also test the controller for heading angle 200 degrees (bow seas) in SS4 and

give the response of heave in Figure 4.10.

Heave of SES, excess pressure inside the air-cushion and the louver area

between 662-680 seconds are given in Figure 4.8. Although the controller opens

all available louver area at around 663 and 671 seconds when a high positive wave

starts lifting the ship, it is not enough to damp all the effect of the wave disturbance

in heave due to the limited louver area. In order to overcome this problem, we

make a minor modification in the air-cushion model. We assume the revelation

per minute (rpm) of the fan to be actuated by the controller and the fan to be able

to turn in a reverse direction. The structure of the modified control problem is

shown in Figure 4.5. Although it is hard to apply in a real model, it is important

to see the improvement in the simulations. Since the rpm and the air-flow rate of

the fan are directly proportional, we modify the pressure model (4.12) as follows

Ṗc(t) =
γPc)

Vc(t)

(
−Acζ̇3(t) + V̇0(t)− u

)
, (4.133)

with

u = −α

(
Q0 +

∂Q

∂P
|Pc0 (Pc(t)− Pc0)

)
+ cn

√
2(Pc(t)− Pa)

ρc0
Al, (4.134)

where α represents rpm coefficient. We assume Q0,
∂Q
∂P

|Pc0, cn, ρc0 to be known.

We also modify the controller for the model (4.133) considering u as the input.
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The rpm controller enters into an activity when the louver area Al is saturated.

We also implement an amplitude and rate saturation for rpm coefficient and run

simulations. The comparison of the heave is given in Figure 4.11. The values of

Al and α are given in Figure 4.12. As it is observed from figures, including the fan

into the control law improves the performance of the controller for the case where

a high positive wave hit the catamaran and starts lifting the hulls.

4.5 Conclusion

We design an air cushion actuated controller to estimate and cancel the

wave disturbance and stabilize the heave of the SES and reduce the oscillation of

the ramp which connects LMSR and SES each other to perform cargo transfer.

We assume that heave rate, heave acceleration and the pressure itself are available

for measurement and the all system parameters are uncertain. We use the louver

area as the main actuator of the system to regulate the air-flow rate into the air-

cushion. The developed controller achieves to significant reduction in smaller waves

but there are limitations for larger positive waves due to the restricted louver area.

We demonstrate the effect of our control design on the oscillation of ramp and

heave of SES for the side by side configuration in simulations, using a time-domain

seakeeping code, named AEGIR.

This chapter is an adaptation of material appearing in:H. I. Basturk and M.

Krstic, “Adaptive wave cancelation by acceleration feedback for ramp-connected

air-cushion actuated surface effect ships,”Automatica, to appear.

The dissertation author is the primary investigator and author of this work.
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(a) The wave disturbance which effects SES in heave and

its estimation in SS4.
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Figure 4.6: The wave disturbance estimation in heave in SS4. Figure 4.6(a) shows

the wave disturbance and its estimation. Figure 4.6(b) presents the error between

actual wave disturbance and its estimation
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(b) Heave of SES in SS3 without control.
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(c) Heave of SES in SS4 without control.
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Figure 4.7: Heave of SES for different sea states with and without control in head

seas. Figure 4.7(a) presents the heave of SES when the controller is turned on at

300 seconds.
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Figure 4.8: Heave, excess pressure inside the air-cushion and louver area of SES

between 662 - 680 seconds.
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edge at LMSR in SS4, the controller is turned on at 300 seconds.
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controller is turned on at 300 seconds.
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Louver area and rpm coefficient are saturated at 0, 2500ft2 and −3, 3, respectively.



Chapter 5

Simultaneous Heave and Pitch

Control of Two-Chamber

Air-Cushion Surface Effect Ship

We consider here a two-chamber air-cushion SES. We design an air cushion

actuated controller to regulate the heave and pitch of the SES simultaneously via

acceleration feedback with actuation of the louver area for the case where the

system parameters are not known. We also develop an tracking algorithm to keep

the ramp stable during the cargo transfer in bow to stern configuration. The effect

of our control design is demonstrated in the same simulations platform as the one

presented in Chapter 4.

This chapter is organized as follows: We introduce the mathematical model

of the pitch and two-chamber air cushion dynamics of an SES in Section 5.1. Design

of the controller and stability properties of the closed loop system are given in

Section 5.2. In Section 5.3, we present the design of the tracking algorithm. The

simulation and results are given in Section 5.4.

79
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5.1 Mathematical Model of System Dynamics

5.1.1 SES Pitch Model

Similar to Section 4.1.1, following [37], we consider the linear model of the

pitch dynamics (decoupled from heave) for control design purpose. The model is

given by

(I55 + A55) ζ̈5(t) +B55ζ̇5(t) + C55ζ5(t)−AcPd
L

2
= F e

5 (t), (5.1)

where ζ5 represents the pitch, Pd is the air cushion pressure difference between

two chambers. Ac and L area area and length of the air cushion, respectively. I55

is the moment of inertia around y-axis. Hydrodynamic (added-mass), radiation

damping coefficients and hydrostatic (restoring) term for heave are represented

as A55, B55, C55, respectively. F e
5 is hydrodynamic excitation force. For single

frequency wave, it is given by

F e
5 (t) = Ke

5 cos(ωet+ φ), (5.2)

with

Ke
5 = 2gekd

((
1

k
cos

kL

2
− 2

k2L
sin

kL

2

)
(C33 − ωωeA33 + φ)− Uω

sin kL
2

kL
2

A33

)
,

(5.3)

where d is the draft of the side hulls. g, ω, φ, k are the amplitude, frequency,

phase and number of the wave respectively. ωe is the encounter frequency which is

represented by ωe = ω−kU cos(χ) where U and χ are the craft speed and heading

angle, respectively. In our adaptive control design, the draft of the side hulls, d, is

assumed to be constant.

5.1.2 Pressure dynamics for two chambers air-cushion

Considering a two-chamber air-cushion model shown in Figure 5.1, following

the procedure given in Section 4.1.2 and assuming sin(ζ5) ∼= ζ5, cos(ζ5) ∼= 1, we

obtain

Ṗci(t) =
P ci(t)

Vci(t)
, (5.4)
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Figure 5.1: Illustration of a two-chamber air-cushion model. The symbol A1L

and A2L denotes louver area which is used as the control input.

where

P ci(t) =γ

(
− Ac

2
ζ̇3Pci + V̇0Pci − (−1)i

AcL

8
ζ̇5Pci − ui

)
, (5.5)

Vci(t) =
Ac

2

(
(h0 + ζ3) + (−1)i

L

4
ζ5

)
− V0. (5.6)

with

ui = −αi

(
Q0Pci +

∂Q

∂P
|Pc0 (Pci(t)− Pc0)Pci

)
+ cn

√
2

ρc0

√
(Pci − Pa)PciAli (5.7)

where i ∈ [1, 2] denotes the chamber number. We assume Q0,
∂Q
∂P

|Pc0, cn, ρc0 to be

known.

It is possible to control heave and pitch simultaneously for two-chamber

air cushion model. The pressure difference between two chambers causes moment

with respect to y axis and it is used to control pitch. Similarly, the heave of the

surface effect ship is controlled by total pressure. Although the pressure model

(5.4) is used in simulations, we assume the volume of the chambers, Vc1(t) and

Vc2(t) to be equal and constant to obtain the dynamics of pressure difference and

total pressure for control design.

Assuming Vc1
∼= Vc2

∼= Vt, we get

Ṗt(t) =
2γ

Vt

(
− Ac

2
ζ̇3Pt + V̇0Pt −

AcL

8
ζ̇5Pd − ut

)
, (5.8)

Ṗd(t) =
2γ

Vt

(
− Ac

2
ζ̇3Pd + V̇0Pd −

AcL

8
ζ̇5Pt − ud

)
, (5.9)
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where

Pt = Pc1 + Pc2, (5.10)

Pd = Pc2 − Pc1, (5.11)

ut = u1 + u2, (5.12)

ud = u2 − u1. (5.13)

5.2 Simultaneous Control Design for Heave and

Pitch

We follow a similar but not exactly same procedure as given in Section 4.2 to

design a controller in this section. The main difference is the assumption which is

mentioned in the previous section, regarding the volume of the cushion chambers.

Unlike the control design in Section 4.2, we assume the volume of the chambers to

be equal and constant for control design. Firstly, we design a controller for pitch

by considering ud as our main actuator.

The decoupled pitch dynamics can be represented in the state-space form

as follows

ẋp = A0xp +B
(
ap1xp1 + ap1x2 + F

e

5 + bdPd

)
, (5.14)

where

xp =
[
ζ5, ζ̇5

]T
, (5.15)

ap1 =− C55

I55 + A55

(5.16)

ap2 =− B55

I55 + A55

(5.17)

F
e

5 =
F e
5

I55 + A55

(5.18)

bd =
AcL

2 (I55 + A55)
, (5.19)

A0 and B are given in (4.15) and (4.16), respectively. Using Lemmas 3.1 and 3.2,

the inaccessible disturbances F
e

5 and its time derivatives Ḟ
e

5 can be represented in
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the form

F
e

5 =θ
T

pe (ηp0 +Nẋp) +

2∑

i=1

apiθ
T

peηpi + bdθ
T

pe (ηpp − lPd) + θ
T

peδp, (5.20)

Ḟ
e

5 =
1

1− θ
T

pel

(
θ
T

peG (ηp0 +Nẋp) +

2∑

i=1

apiθ
T

peGηpi + bdθ
T

peG (ηpp − lPd) + θ
T

peGδp

)
,

(5.21)

where

η̇pi = Gηpi − lẋpi, for i = 1, 2, (5.22)

η̇p0 = G (ηp0 +Nẋp) , (5.23)

η̇pp = G (ηpp − lPd) . (5.24)

N is a 2 × 2 matrix which is given by N = 1
BTB

lBT . The given N is one of the

many solutions of the equation NB = l. δp ∈ R2 obeys the equation

δ̇p = Gδp. (5.25)

Substituting (5.20) into (5.14) and representing the system in (RSS) form we get

xp =AT
0 ẋp +B

1

̺p

(
bdẋp2 − ap2ẋp1 − θTpeηp0 −

2∑

i=1

βT
piηpi − βT

ppηpp − Pd − θTpeδp

)

(5.26)

where

̺p =
ap1

bd

(
1− θ

T

pel
) , (5.27)

bd =
1

bd
, (5.28)

ap2 =
ap2

bd

(
1− θ

T

pel
) , (5.29)

θpe =
1

bd

(
1− θ

T

pel
)θpe, (5.30)

βpi =
api

bp

(
1− θ

T

pel
)θpe, (5.31)

βpp =
1(

1− θ
T

e l
)θe. (5.32)
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Using (5.16), (5.19) and noting that 1 − θ
T

pel > 0, area of the air-cushion Ac,

hydrodynamic, A55, and hydrostatic, C55 terms are positive, we obtain sgn(̺p) =

−1 and sgn(bd) = 1. For the adaptive control design, we assume that the high

frequency gain bd > ςp > 0. From a physical point of view, ςp can be determined

with rough knowledge of the dimensions and the inertia of the catamaran.

As given in Section 4.2.3, in adaptive backstepping method, we first define

the desired value of the pressure difference between two chambers to stabilize the

pitch of the surface effect ship. Considering Pd as the virtual controller, desired

pressure difference value is given by

Pd desired =− ˆ̺pKẋp − âp2ẋp1 + b̂dẋp2 − θ̂Tpeηp0 −
2∑

i=1

β̂T
piηpi − β̂T

ppηpp, (5.33)

where the control gain K ∈ R1×2 =
[
k1 k2

]
is chosen so that

(
AT

0 +BK
)
is

Hurwitz and the positive definite matrix R is a solution of the matrix equation

(AT
0 +BK)TR +R(AT

0 +BK) = −4I. (5.34)

The deviation of Pd from its desired value, Pd desired is written as

ep(t) = Pd(t)− Pd desired(t). (5.35)

Substituting (5.35) into (5.26), taking the time derivative of ep(t), using (5.21)

and assuming Vt to be constant, we convert (xp, Pd) system to (xp, ep) system, as

follows

xp =
(
AT

0 +BK
)
ẋp +B

1

̺ p

(
b̃dẋp2 − ãp2ẋp1 − ˜̺pKẋp − θ̃Tpeηp0 −

2∑

i=1

β̃T
piηpi

− β̃T
ppηpp − ep − θTpeδp

)
, (5.36)

ėp(t) =ΠT
pΦp + dTdp + ξpe −ΘT

peΞpe − θ
T

peδp −
(
1−

(
b̂d − ˆ̺pk2

)
bd

) ud

bud
, (5.37)
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where

Πp =
2γ

Vt

[
−Ac

2
, AcL

8

]T
, (5.38)

Φp =
[
ẋh1Pd, ẋp1Pt

]T
, (5.39)

θ
T

pe =
1

1− θ
T

pel
θ
T

peGl, (5.40)

Θpe =
[
ap1, ap2 + θ

T

pe, θ
T

pe, ap1θ
T

pe, ap2θ
T

pe, bpθ
T

pe

]T
, (5.41)

Ξpe =
(
b̂d − ˆ̺pk2

) [
ẋp1, ẋp2, ηTp0, ηTp1, ηT[2, (ηpp − lPd)

T
]T

, (5.42)

d =
[
V̇0, V̇0bd

]T
, (5.43)

dp =
[
Pd, −

(
b̂d − ˆ̺pk2

)
Pd

]T
, (5.44)

ξpe =
(
˙̺̂
pk1 + ˙̂ap2

)
ẋp1 +

(
ˆ̺pk1 + âp2 + ˙̂

p̺k2 −
˙̂
bd

)
ẋp2 +

˙̂
θTpeηp0 + θ̂Tpeη̇p0

+
2∑

i=1

(
˙̂
βT
piηpi + β̂T

piη̇pi

)
+

˙̂
βT
ppηpp + β̂T

ppη̇pp, (5.45)

bud =
Vt

2γ
, (5.46)

with

xh =
[
ζ3, ζ̇3

]
. (5.47)

The adaptive controller for ud is given by

ud =
b̂ud(

1− b̂d

(
b̂d − ˆ̺dk2

))ud, (5.48)

with

ud =− ˆ̺
pẋ

T
pRB − Θ̂T

peΞpe + ξpe + Π̂T
pΦp +

(
cp + κdpd

T
p dp +

(
b̂d − ˆ̺pk2

)2)
ep,

(5.49)

with cp > 2.
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The update laws are given by

˙̂ap2 =− κap2sgn(̺p)ẋp1B
T
Rẋp, κap2 > 0, (5.50)

˙̂
θpe =− κθpesgn(̺p)ηp0B

T
Rẋp, κθpe > 0, (5.51)

˙̂
βpi =− κβpi

sgn(̺p)ηpiB
T
Rẋp, κβpi

> 0, (5.52)

˙̂
βpp =− κβppsgn(̺p)ηppB

T
Rẋp, κβpp > 0, (5.53)

˙̂
bud =− κbududep, κbud > 0, (5.54)

˙̺̂
p =− κ̺pepẋ

T
pRB, κ̺p > 0, (5.55)

˙̂
Θpe =κΘpeΞpeep, κΘpe > 0, (5.56)

˙̂
Πp =κΠpΦpep, κΦp > 0, (5.57)

˙̂
bd =

{
τbd, b̂dsgn(bd) > ςp or τbdsgn(bd) ≥ 0

0, b̂dsgn(bd) ≤ ςp and τbdsgn(bd) < 0
, (5.58)




˙̂
bd

˙̺̂
p


 =





τbd,̺p, sgn(bd)(b̂d − ˆ̺pk2) >
1
ςp

or RT τbd,̺p ≤ 0

(
I − Γ RRT

RTΓR

)
τbd,̺p, sgn(bd)(b̂d − ˆ̺pk2) ≤ 1

ςp

and RT τbd,̺p > 0,

(5.59)

where

τbp =κbd

(
b̂d − ˆ̺pk2

)
udep, κbd

> 0 (5.60)

τbd,̺p =κbd,̺p

[
sgn(̺p)ẋp2B

T
Rẋp

−sgn(̺p)KẋpB
T
Rẋp

]
, κbd,̺p > 0, (5.61)

R =
[
−sgn(bd) k2sgn(bd)

]T
, (5.62)

and Γ belongs to the set of all positive definite symmetric 2 × 2 matrices. The

stability of the equilibrium of the closed loop system is shown by considering the
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following Lyapunov function,

V =
1

2

(
xT
pRxp + e2p

)
+

1

2|̺p|

(
1

κap2

ã2p2 +
1

κθpe

θ̃Tpeθ̃pe +
1

κβpi

2∑

i=1

β̃T
piβ̃pi +

1

κβpp

β̃T
ppβ̃pp

+
1

κ̺p

˜̺2p +
1

κbd

b̃2d

)
+

1

κbd

b̃
2

d +
1

κ̺p

˜̺2
p +

1

κΘpe

Θ̃T
peΘ̃pe +

1

κΠp

Π̃T
p Π̃p

+
1

2εη

(
ηTp0PGηp0 +

2∑

i=1

ηTpiPGηpi

)
+

εδ
2
δTp PGδp, (5.63)

where

GTPG + PGG =− 2I, (5.64)

εδ =
1

̺2
λmax{θpeB

T
PPBθTpe}+ λmax{θpeθ

T

pe}, (5.65)

εη =lTPGPGl. (5.66)

Taking the time derivative of V and using the following property of the pro-

jection operator, −b̃d
˙̂
bd ≤ −b̃dτbd , sgn(bd)b̂d ≥ ς > 0 and −[̃bd, ˜̺p][ ˙̂bd, ˙̺̂p]T ≤

−[̃bd, ˜̺p]τbd,̺p, sgn(bd)(b̂d− ˆ̺pk2) ≥ 1
ς
> 0 [22, Appendix E] and Young’s inequality

for the cross terms, we obtain

V̇ ≤ −1

2
ẋT
p ẋp − cpe

2
p −

1

2εη

2∑

i=0

ηTi ηi +
dTp dp

4κdp

. (5.67)

Defining Ξp =
[
ẋT , ep, ηT0 , ηT1 , ηT2

]T
, V̇ is negative whenever |Ξp| > dTp dp

2κdp
.

Since dp is bounded, we conclude that V̇ is negative outside the compact residual set

R =
{
Ξp : |Ξp| ≤ ‖dp‖∞

2κdp

}
. Recalling, the closed loop system (x, ep) is continuous in

all states, dp and t, which implies that the right-hand side of (5.67) is continuous

in all states, dp and t. That guarantees global uniform boundedness of x(t), ep(t)

and the parameter estimations.

Following the same procedure The adaptive controller for ut is given by

ut =
b̂ut(

1− b̂t

(
b̂t − ˆ̺hk2

))ut, (5.68)

with

ut =− ˆ̺
hẋ

T
hRB − Θ̂T

heΞhe + ξhe + Π̂T
hΦh +

(
ch + κdhd

T
hdh +

(
b̂t − ˆ̺hk2

)2)
eh,

(5.69)
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with cp > 2.

The update laws are given by

˙̂ah2 =− κah2sgn(̺h)ẋh1B
T
Rẋh, κah2 > 0, (5.70)

˙̂
θhe =− κθhesgn(̺h)ηh0B

T
Rẋh, κθhe > 0, (5.71)

˙̂
βhi =− κβhi

sgn(̺h)ηhiB
T
Rẋh, κβhi

> 0, (5.72)

˙̂
βhp =− κβhp

sgn(̺h)ηhpB
T
Rẋh, κβhp

> 0, (5.73)

˙̂
but =− κbutudeh, κbut > 0, (5.74)

˙̺̂
t =− κ̺hehẋ

T
hRB, κ̺h > 0, (5.75)

˙̂
Θhe =κΘhe

Ξheeh, κΘhe
> 0, (5.76)

˙̂
Πh =κΠh

Φheh, κΦh
> 0, (5.77)

˙̂
bt =

{
τbt , b̂tsgn(bt) > ςh or τbtsgn(bt) ≥ 0

0, b̂tsgn(bt) ≤ ςh and τbtsgn(bt) < 0
, (5.78)




˙̂
bt

˙̺̂
h


 =






τbt,̺h, sgn(bt)(b̂t − ˆ̺tk2) >
1
ςh

or RT τbt,̺h ≤ 0

(
I − Γ RRT

RTΓR

)
τbt,̺h, sgn(bt)(b̂t − ˆ̺hk2) ≤ 1

ςh

and RT τbt,̺h > 0,

(5.79)

where

τbt =κbt

(
b̂t − ˆ̺tk2

)
uteh, κbt

> 0 (5.80)

τbt,̺h =κbt,̺h

[
sgn(̺t)ẋh2B

T
Rẋh

−sgn(̺h)KẋhB
T
Rẋh

]
, κbt,̺h > 0, (5.81)
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with

ep =Pt −
(
− ˆ̺hKẋh − âh2ẋh1 + b̂tẋh2 − θ̂Theηh0 −

2∑

i=1

β̂T
hiηhi − β̂T

hpηhp

)
, (5.82)

Φp =
[
ẋh1Pt, ẋp1Pd

]T
, (5.83)

Ξhe =
(
b̂t − ˆ̺hk2

) [
ẋh1, ẋh2, ηTh0, ηTh1, ηTh2, (ηhp − lPt)

T
]T

, (5.84)

dh =
[
Pt, −

(
b̂t − ˆ̺hk2

)
Pt
]T

, (5.85)

ξhe =
(
˙̺̂
hk1 + ˙̂ah2

)
ẋh1 +

(
ˆ̺hk1 + âh2 + ˙̂

h̺k2 −
˙̂
bt

)
ẋh2 +

˙̂
θTheηh0 + θ̂Theη̇h0

+

2∑

i=1

(
˙̂
βT
hiηhi + β̂T

hiη̇hi

)
+

˙̂
βT
hpηhp + β̂T

hpη̇hp. (5.86)

The filters for wave disturbance observer in heave is given by

η̇hi =Gηhi − lẋhi, for i = 1, 2, (5.87)

η̇h0 =G (ηh0 +Nẋh) , (5.88)

η̇hp =G (ηhp − lPt) . (5.89)

Using (5.12) and (5.13), the control signals for the air flow rates of each chamber

are given by

u1 =
ut − ud

2
, (5.90)

u2 =
ut + ud

2
, (5.91)

5.3 Adaptive Ramp Pitch Control in Bow to

Stern Configuration

The side view of a bow to stern configuration is illustrated in Figure 5.2.

We design an adaptive control algorithm to make the bow of T-Craft, A, track

the stern of LMSR, B. Thus, the oscillation of the ramp is reduced. In this case,

we assume the position, the velocity and the acceleration of T-Craft and LMSR

to be measured. The reference heave and pitch which T-Craft needs to track, is

given as rh = ζLMSR
33 − doffset and rp = LLMSR

LT−Craft
ζLMSR
55 where doffset is the vertical
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T-Craft LMSRRamp
A

B

Figure 5.2: Side view of a bow to stern configuration. Bow of an SES, A, is

connected to stern of an LMSR, B, by a ramp.

constant distance between T-Craft and LMSR in calm water, L represents length

of the vehicles and ζLMSR
33 , ζLMSR

55 are heave and pitch of LMSR, respectively.

We give the design procedure only for pitch mode since it is trivial to obtain

a tracking algorithm by following the same procedure. Using the result given in

[38], we represent F
e

5 as follows

1

bd
F

e

5 = ΘT
p−TCξp−TC + θTp δp−TC, (5.92)

where θp = hTM−1 and

Θp−TC =
[

1
bd
θTp ,

ap1
bd
θTp ,

ap2
bd
θTp , θTs

]T
, (5.93)

ξp−TC =
[
(η0p−TC +Nxp)

T , ηT1p−TC, ηT2p−TC, ηTPp−TC

]T
, (5.94)

with

η̇ip−TC = Gηip−TC − lxpi, for i = 1, 2, (5.95)

η̇0p−TC = G (η0p−TC +Nxp) , (5.96)

η̇up−TC = Gηup−TC − lPd., (5.97)

and δp−TC obeys, δ̇s−TLB = Gδp−TC. Defining an error signal between the pitch of

T-Craft and the reference pitch as zp = ζT−Craft
55 − rp and using (5.14), we obtain

żp = A0zp +B
1

bd

(
γTxp + F

e

5 + Pd − bdr̈p
)
, (5.98)

where bd = 1
bd
, γ =

[
ap1
bd
,

ap2
bd

]T
Substituting (5.92) into (5.98), and using the

backstepping design procedure, the adaptive controller for input ud(t) is given by

ud = b̂udud, (5.99)
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where

ud =b̂dz
T
p Psesp + Π̂T

pΦp − ˙̂
bdKszp +

˙̂
ΘT

p−TCξp−TC + ˙̂γTxp − b̂dk1zp2

+ Θ̂T
p−TC

[
η̇T0p−TC, η̇T1p−TC, η̇T2p−TC, η̇TPp−TC

]
+ âp1xp2

−
(
b̂dk2 − θ̂Ts l − âp2

)
Θ̂

T

ΞΘ + b̂dk2r̈p − ˙̂
bdr̈p − b̂d

...
r p

+

(
cp +

(
b̂dk2 − θ̂Ts l − âp2

)2
κδ + κV0

P 2
d

)
esp. (5.100)

and the update laws are given by

˙̂
Θp−TC(t) = κΘsgn(bd)ξp−TC(t)B

TPszp(t), κΘ > 0, (5.101)

˙̂γ(t) = κγsgn(bd)xp(t)B
TPszp(t), κΘ > 0, (5.102)

˙̂
bd(t) = −κbdsgn(bd) (Kzp + r̈p)B

TPszp(t), κbd > 0, (5.103)

˙̂
Πp(t) = κΠΦp(t)esp(t), κΠ > 0, (5.104)

˙̂
bd(t) = κbd

zTp PBesp(t), κbd
> 0, (5.105)

˙̂
Θ(t) = −κΘΞΘesp(t), κΠ > 0, (5.106)

˙̂
bud(t) = −κbududesp(t), κbud > 0, (5.107)

where

esp = Pd −
(
b̂d (Kszp + r̈p)− ˙̂

ΘT
p−TCξp−TC(t)B

TPs − γTxp

)
, (5.108)

ΞΘ =
[
xT
p , ξTp−TC, Pd

]T
, (5.109)

with the positive definite matrix Ps which is a solution of the matrix equation

(A0 +BKs)
TPs + Ps(A0 +Ks) = −2I. (5.110)

Similarly, the adaptive controller for ut is given by

ut = b̂utut, (5.111)
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where

ut =b̂tz
T
t Psesh + Π̂T

hΦh − ˙̂
btKszh +

˙̂
ΘT

h−TCξh−TC + ˙̂
hγ
Txh − b̂tk1zh2

+ Θ̂T
h−TC

[
η̇T0h−TC, η̇T1h−TC, η̇T2h−TC, η̇TPh−TC

]
+ âh1xh2

−
(
b̂tk2 − θ̂Ts l − âh2

)
Θ̂h

T

ΞΘh
+ b̂tk2r̈h − ˙̂

btr̈h − b̂t
...
r h

+

(
ch +

(
b̂tk2 − θ̂Ts l − âh2

)2
κδ + κV0

P 2
t

)
esh. (5.112)

and the update laws are given by

˙̂
Θh−TC(t) = κΘsgn(bt)ξh−TC(t)B

TPszh(t), κΘ > 0, (5.113)

˙̂γh(t) = κγh
sgn(bt)xh(t)B

TPszh(t), κΘ > 0, (5.114)

˙̂
bt(t) = −κbtsgn(bt) (Kzh + r̈h)B

TPszh(t), κbh > 0, (5.115)

˙̂
Πh(t) = κΠΦh(t)esh(t), κΠ > 0, (5.116)

˙̂
bt(t) = κbt

zTh PBesh(t), κbt
> 0, (5.117)

˙̂
Θh(t) = −κΘh

ΞΘh
esh(t), κΠ > 0, (5.118)

˙̂
but(t) = −κbututesh(t), κbut > 0, (5.119)

where

esh = Pt −
(
b̂t (Kszh + r̈h)− ˙̂

ΘT
h−TCξh−TC(t)B

TPs − γT
hxh

)
, (5.120)

ΞΘ =
[
xT
h , ξTh−TC, Pt

]T
. (5.121)

The air flow rates of each chamber are derived by using (5.90) and (5.91).

5.4 Results

We implement the two-chamber air-cushion model and designed controller

into the same simulation platform as introduced in Section 4.3. The pitch and

heave of SES are given in Figures 5.3 and 5.4. As it is observed, the controller

achieves to stabilize the pitch and the heave simultaneously. The values of Al1 and

α1 are given in Figure 5.5.
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Figure 5.3: Pitch of SES in SS4 with and without controller. The controller is

turned on at 250 seconds.
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Figure 5.4: Heave of SES in SS4 with and without controller. The controller is

turned on at 250 seconds.



95

600 620 640 660 680 700

0

500

1000

Time (sec)

L
ou

ve
r

A
re

a
(f

t2
)

 

 
Louver (Al

1
)

600 620 640 660 680 700
−4

−2

0

2

4

Time (sec)

R
P

M
co

eff
.

-
α

1

 

 
RPM Coeff. (α

1
)

Figure 5.5: Louver area, A1L, and rpm coefficient, α1, of the chamber one of SES

between 600–700 seconds. Louver area, A1L, and rpm coefficient, α1, are saturated

at 0, 1250ft2 and −3, 3, respectively.
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Figure 5.6: Simulation results for tracking algorithm by state feedback. Both

with and without control results are shown. The developed tracking algorithm

provides significant stability on the ramp.



Chapter 6

Implementation of the Developed

Controller on a Scale Model

Surface Effect Ship

We implement here our developed controller to a scale model SES which

is designed at National Technical University of Athens and is brought to Florida

Atlantic University at Boca Raton, FL. We have collaborated the hydrodynamic

research group which is directed by Prof. Manhar Dhanak. The experiments have

been done with the help of Michael Kindel and Quintin Du Plessis from Florida

Atlantic University. We perform several experiments in a wave tank at FAU to test

the performance of the controller. It is shown that the experiment results which

we have obtained are consistent with the developed theory.

This chapter is organized as follows: We introduce the scale model SES

in Section 6.1. Design of the controller with a dead-zone modification is given in

Section 6.2. In Section 6.3, we present the experiment set-up and the result.

6.1 Scale Model SES - AirCat

A scale model SES, named AirCat, is developed for the purpose of a beacon

approach project at the National Technical University of Athens and is brought

to Florida Atlantic University at Boca Raton, FL. The basic AirCat equipment

97
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Table 6.1: Dimensions of the scale model SES, named AirCat are given in mil-

limeter (mm) .

Length overall 1210 mm
Length between perpendiculars 1030 mm
Breadth 400 mm
Depth 135 mm

consists of; hull-superstructure, rubber skirt, air-blower system. The dimension of

the model is given in Table 6.1

Different views of AirCat are given in Figure 6.1. Air cushion of AirCat

with side hulls and rubber skirts are shown in Figure 6.1(d). As shown in Figure

6.1(a), AirCat contains a system box with a blower system and a pressure sensor.

The details of the system box is shown in Figure 6.2.

The hull and superstructure is made by epoxy rein reinforced with fiberglass.

The material used to construct rubber skirt is a flexible foam material. There are

several supporting struts and mounts which help to fit the skirt in the proper way.

The air-blower system of AirCat consists of an electric motor foxed onto stationary

fan blades, a rotational fan and a duct. The motor with two fans is assembled to

the duct. We implement a 40A NAVY motor driver which is used to amplify

pulse-width modulation signal from a µC and regulate a motor’s angular rate.

The installed micro-controlled (µC) belongs to ARM7 family, and more

specifically, is LPC2388 from NXP Semiconductors. The µC is placed on a KEIL

MCB2300 development board. An inertial measurement unit (IMU) is a complex

sensor that consists of multiple sensors and a µC which collects data from various

sensors. The selected IMU is a VN-100 from VectorNav. It provides 3-axis linear

accelerations and 3-axis angular rates. A differential pressure sensor SDP2000-L

from Senirion with a range 0− −3500Pa and resolution of ±1Pa is placed in the

system box to measure the pressure of the air-cushion chamber. Two rechargeable

battery packs of NiMH cells are installed to the model to provide necessary energy

to the system. One pack is connected to the micro-controller and the other one is

used to drive the blower system.
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Blower

System Box

(a) Top view of AirCat (b) General view of AirCat

(c) Side view of AirCat (d) Air cushion of AirCat

Figure 6.1: Top view with blower and system box, side view and general view of

AirCat are presented with air-cushion at the bottom.

6.2 Control Design

6.2.1 Controller

We consider a linear model for pressure to design a controller for AirCat.

Following [2] and [11], the air-cushion pressure dynamics are given by

Ṗc = −ρ0A0

Cc
ζ̇3 −

1

CcRL
Pc +

1

Cc
q (6.1)

where ρ0, V0, P0 are the initial values of air density, volume and pressure of the

air-cushion, respectively and Cc =
ρ0V0

P0
. The term RL is air resistance of hulls and

skirts. It represents the air leakage from air cushion. The input q represents mass
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IMU

Pressure Sensor

Figure 6.2: System box of AirCat. It has microcontroller inside with sensors and

actuator driver. The box is placed in the scale model.

air flow rate in to the cushion. In our scale model, the main input is duty cycle.

Thus, q can be represented by coefficient as follows q = bbloweru where u is the duty

cycle of the DC motor driver.

Using heave dynamics given in (4.1) and air-cushion pressure dynamics

(6.1), we obtain following state-space model,

ẋ =A0x+B
(
a11x1 + a12x2 + ν(t) + bpp

)
, (6.2)

ṗ =a21x2 + b1p+ b2u, (6.3)
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where

a21 =− ρ0A0

Cc

, (6.4)

b1 =− 1

CcRL

, (6.5)

b2 =
bblower
Cc

, (6.6)

A0 =

[
0 1

0 0

]
, B =

[
0

1

]
, x =

[
x1

x2

]
and x1, x2, p, ν and u correspond to

heave, heave rate, pressure, wave disturbance and duty cycle of the blower system

respectively. Wave disturbance is given by

ν(t) = g sin(ωt+ φ), (6.7)

We make the following assumptions regarding the plant

Assumption 6.1 a11, a12, a21, b1, b2, bp are unknown.

Assumption 6.2 a11 < 0, bp, b2 > 0 and |bp| ≥ ς > 0.

Assumption 6.3 x and ν are not measured but ẋ are measured.

Using the control design given in Chapter 3, the adaptive controller for system

(6.2), (6.3) with disturbance ν(t) is given by

u =
b̂2

1− b̂p(b̂p − ˆ̺kn)
u, (6.8)

where kn is the second element of the control gain K ∈ R1×2 which is chosen so

that
(
AT

0 +BK
)
is Hurwitz and the positive definite matrix P is a solution of the

matrix equation (AT
0 + BK)TP + P (AT

0 + BK) = −4I, with B =
[
1, 0n−1

]T
,

and

u =γ̂T
3

(
b̂p − ˆ̺k2

)
ϕ− γ̂T

p ϕ+
˙̂
bpẋ2 −

(
γ̂T
1 + ˆ̺K

)
A0ẋ−

(
˙̂γT
1 R + ˙̺̂K − ˆ̺B

T
P
)
ẋ

− ˙̂
θTt ηt − θ̂Tt η̇t −

˙̂
βT
1pηp − β̂T

1pη̇p −
((

b̂p − ˆ̺k2

)2
+ c

)
e, (6.9)
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with c > 0, R = diag{1, 0}. and

e(t) = p−
(
− (Rγ̂1)

T ẋ+ b̂pẋ2 − ˆ̺Kẋ− θ̂Tt ηt − β̂T
1pηp

)
. (6.10)

We use projection operator to avoid singularity in (6.8). The update laws are given

by

˙̂γ1 = −κγ1sgn(bpa11)ẋB
T
P ẋ, κγ1 > 0, (6.11)

˙̂γp = κγpϕe, κγp > 0, (6.12)

˙̂γ3 = −κγ3ϕ
(
b̂p − ˆ̺k2

)
e, κγ3 > 0, (6.13)

˙̂
b2 = −κb2sgn(b2)ue, κb2 > 0, (6.14)

˙̂
θt = −κθ1sgn(bpa11)ηtB

T
P ẋ, κθt > 0, (6.15)

˙̂
β1p = −κβ1psgn(bpa11)ηpB

T
P ẋ, κβ1p > 0, (6.16)

˙̺̂ = −κ̺eB
T
P ẋ, κ̺ > 0, (6.17)

˙̂
bp =

{
τbp, b̂psgn(bp) > ς or τbpsgn(bp) ≥ 0

0, b̂psgn(bp) ≤ ς and τbpsgn(bp) < 0
, (6.18)




˙̂
bp

˙̺̂


 =






τbp,̺, sgn(bp)(b̂p − ˆ̺k2) >
1
ς

or PT τbp,̺ ≤ 0

(
I − Γ PPT

PTΓP

)
τbp,̺, sgn(bp)(b̂p − ˆ̺k2) ≤ 1

ς

and PT τbp,̺ > 0,

(6.19)

where

τbp =− κbp
sgn(b2)

(
b̂p − ˆ̺k2

)
ue, κbp

> 0, (6.20)

τbp,̺ =κbp,̺

[
sgn(̺)ẋnB

T
P ẋ

−sgn(̺)KẋB
T
P ẋ

]
, κbp,̺ > 0, (6.21)

P =
[
−sgn(bp) knsgn(bp)

]T
, (6.22)

ϕ =
[
ẋT , p, ηTt , η

T
p

]T
, (6.23)

with ηt =
[
ηT0 , η

T
1 , . . . , η

T
n

]T
and Γ belongs to the set of all positive definite sym-
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metric 2× 2 matrices. The observer filters are given by

η̇i = Gηi − lẋi, 1 ≤ i ≤ 2, (6.24)

η̇0 = G (η0 +Nẋ) , (6.25)

ηp = G (ηp − lp) , (6.26)

where G ∈ R2×2 is a Hurwitz matrix with distinct eigenvalues, (G, l) is a control-

lable pair and N = 1
BTB

lBT .

6.2.2 Dead-Zone Modification

As it is discussed in Remark 4.1, in order to maintain stability in case of

existence of unmodeled uncertainties and measurement noise, there are various

modification is proposed in [26]. We consider a dead-zone modification to counter-

attack the destabilizing effects of bounded disturbances and of a class of dynamic

uncertainties. We modify the update laws by using continuous dead zone.

The modified robust update laws for γ1 and γp are given by

γ̇1 =− κγ1sgn(bpa11)ẋ
(
B

T
P ẋ+ gx

)
, (6.27)

γ̇p =κγpϕ (e+ ge) , (6.28)

where

gx =





gx0 if B
T
P ẋ < −gx0

−gx0 if B
T
P ẋ > gx0

−B
T
P ẋ if |BT

P ẋ| ≤ gx0

, (6.29)

ge =





ge0 if e < −ge0

−ge0 if e > ge0

−e if |e| ≤ ge0

. (6.30)

The modification is applied to all update laws given in (6.11)–(6.19). The values

for gx0 and ge0 depend on the size of the uncertainties. The principal idea behind

the dead zone is to monitor the size of the estimation error and adapt only when

the estimation error is large relative to the modeling error [26]. The updating stops



104

if |e| and |BT
P ẋ| less than predefined values ge0 and gx0, respectively. Since the

update law does not trust the measured values and treat them as noise.

By using a dead-zone modification, we loose the convergence of the signals.

However, we are able to maintain the stability of the equilibrium in spite of bounded

disturbances and dynamic uncertainties.

6.3 Experiment Setup and Results

The designed adaptive controller is implemented to a Matlab code on a

PC. The communication between PC and µC is established through serial ports.

AirCat is placed in a wave tank which is shown in Figures 6.3 and 6.4. The wave

tank is first developed as a laboratory arrangement for a surface wave study at

Florida Atlantic University. The tank is 77 cm deep, 77 cm wide and 767 cm

long. A mechanism which generates imperfect sinusoidal wave patterns with 0–

3 cm range of wave amplitude and 7–13 rad/sec range of circular frequency, is

placed at one end of the tank. In order to prevent the reflection of waves, an

attenuator is developed and placed to the other end of the tank. The heave rate

of AirCat for feedback is obtained by filtering unbiased heave acceleration which

is measured by IMU, with a bandpass filter (a low pass filter in conjunction with

a high pass filter). The overall experiment setup is illustrated in Figure 6.5. Time

and frequency domain heave results are given in Figures 6.6 and 6.7, respectively.
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Figure 6.3: Picture of the wave tank located in Hydrodynamic Lab at Florida

Atlantic University.

Figure 6.4: Picture of the AirCat taken in the wave tank while heading to the

wave generator.
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Figure 6.5: Illustration of the experiment setup located in Hydrodynamic Lab at

Florida Atlantic University.
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Figure 6.6: Heave of AirCat in the wave tank. The controller is turned on at 40

seconds.
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Figure 6.7: Heave response of AirCat in frequency domain. First figure in the plot

represents the response heave when the control is off (0-40 sec), the second figure

represents the steady state response of heave when the controller is on (100-250

sec).
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