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Abstract of the Thesis

Nature-Inspired Optimization Techniques Applied to

Antennas for Wireless Communications and Radar

by

Joshua Michael Kovitz

Master of Science in Electrical Engineering

University of California, Los Angeles, 2012

Professor Yahya Rahmat-Samii, Chair

In this work, two nature-inspired optimization techniques, namely Particle Swarm Optimiza-

tion (PSO) and Covariance Matrix Adaptation Evolution Strategy (CMAES), are presented.

Some comparisons are made between the two algorithms in different applications and different

optimization problems. First, a comparison of each algorithm in resource limited problems is

demonstrated using mathematical functions. Next, a comparison is shown between the two algo-

rithms for a real-world antenna design problem for radar systems. In particular, a weather radar

antenna array element is optimized using two different approaches, and some suggestions are

made for antenna designers hoping to implement dual polarized antenna arrays for new use in

weather radar systems. In the last half of this work, the Particle Swarm algorithm is applied to

two other antenna systems. The first application of PSO investigates the use of a smooth contour

septum design in circular waveguide for possible use in high power microwave systems. Simi-

lar antenna performance compared to a stepped septum in circular waveguide is demonstrated

using the Sigmoid function contour. PSO is also applied on two newly proposed reconfigurable

E-shaped patch antenna designs. Two reconfigurability mechanisms are introduced, namely a

polarization (RHCP/LHCP) reconfigurable design and a frequency reconfigurable design. Both

designs are optimized using a simple MEMS circuit model for fast optimization, and possible

bias network implementations are discussed. Wideband patch designs are realized with these

optimizations, and prototypes are fabricated and measured to validate these designs.
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CHAPTER 1

Introduction

The continuous technological advancement of wireless communication and radar systems has

increased the complexity of design constraints as well as performance evaluation for antenna

designs. For practicing engineers there are often two options to deliver a final antenna design

when the classical textbook designs are not sufficient. The first is to develop an antenna using a

canonical shape thereby allowing exact mathematical analysis. This can be quite painstaking and

rigorous, and it is often impossible to solve for non-canonical geometries, therefore limiting its

applicability. The second option is to use trial-and-error techniques, which can be cumbersome

and time-consuming. This approach can often lead to a characterization of the relationship

between the design objectives and its design parameters, which is useful to engineers and can

even aid in developing a theoretical analysis of the antenna structure. Yet, without any a priori

knowledge on the antenna structure and its physical mechanisms, one may need to conduct an

extraordinarily large number of simulations, which can be time consuming. In many cases, there

can exist objectives which may have no easily seen correllation to the design objectives as will

be seen in Chapter 4.

Therefore, in order to address the challenges and requirements presented by these sophisti-

cated electromagnetic systems, there is a need to develop novel antenna design solutions and

strategies. One of the recently emerging approaches that has been proposed to tackle this prob-

lem in a systematic fashion is the amalgamation of nature-inspired optimization techniques with

simulation models which output the performance evaluation for each particular test design. By

combining electromagnetic simulation tools with global optimization techniques, one can reach

an antenna design solution in an autonomous manner. These methods also do not require any a

priori knowledge about the design. Certainly, nature-inspired optimization has been one of the
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forefronts within electromagnetics research due to its widely proven abilities to solve complex

problems that do not lend themselves to simple solutions.

This chapter is devoted to providing a brief motivational overview on the role of antennas in

communication systems and radar. This serves to familiarize the reader with the significance of

antennas in the overall system, thereby emphasizing the importance in conducting optimization.

The next section then discusses the role of optimization within electromagnetics and provides

some optimization examples. We conclude this chapter by defining many of the performance

parameters that are important in optimizations for those that may be less familiar with electro-

magnetics and antenna engineering.

1.1 Motivation

Electromagnetics has given rise to the development of engineering systems over a wide range of

applications. Communication and radar systems are among the leading technologies that have

made a significant impact on society. With worldwide communication now readily available,

one’s local community in the surrounding area has now expanded to a global community, thus

enabling more interaction across cultures. With this new enhancement a multi-cultural society

begins to thrive as people learn more about other cultures that were previously inaccessible.

Commerce is expanded to a global level that is more available to people of all socioeconomic

status. The Internet, an innovative means of communication, has brought about revolutionary

concepts such that it is now commonplace to have conversations with others halfway across the

globe in real time for a low cost. The influence of these relatively newer means of communication

have been far-reaching.

Wireless communication systems have been gaining more popularity due to their added ver-

satility and flexibility. Recent advances in signal processing, microelectronics fabrication, and

microwave system design have permitted the development of wireless systems operating at low

power levels with minimal interference towards other devices under the same infrastructure.

Among these are the cellular phone, WiMAX, WiFi, and 4G LTE systems. Indeed, newly pro-

posed systems such as LTE-advanced aim to support systems with nearly 1 Gb/s downlink and
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Figure 1.1: Depiction of the basic blocks of a wireless communication system

500 Mb/s uplink [1]. These systems could not have been developed without the use of signal

processing, communication theory, and ultimately electromagnetics.

Wireless systems are also implemented for other non-multimedia applications that have aided

in saving lives. Some systems provide a means of communication in distaster areas requiring

immediate attention and help responders pinpoint the location with the most need. The de-

velopment of systems that can operate under harsh conditions or even in remote areas is a

challenging task [2], and several organizations such as UNICEF have created projects to develop

new systems that can increase communications in isolated areas [3]. Others have approached the

problem by developing low altitude balloon-based WiFi systems that are capable of covering a

5.5 km radius [4]. These are only some of the many interesting examples of applications using

wireless communication systems. There still remains a much greater variety of applications that

would take a whole volume of books to cover every possible wireless communication system that

has been developed.

As engineers, we are interested in the technical aspects of the communication system. A

high level block diagram of a duplex wireless communication system is shown in Figure 1.1.

It is often the role of computer engineers, communication engineers, and embedded system

designers to create a user interface to the transceiver. With this interface, one can then either

transmit or receive messages via the wireless communication system. The transceivers within this

system block perform several functions which often include message encoding/decoding, channel

encoding/decoding, error coding, and modulation/demodulation for a digital system [5]. While

the previously mentioned components are key to the success of a communication system, the

propagating electromagnetic wave still serves to carry the message from the transmitter to the
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receiver. Therefore it is extremely important to design properly a system which manipulates the

electromagnetic fields in a way such that the SNR is maximized, thus emphasizing the significance

of a proper antenna design.

A radar system’s primary goal is to identify or characterize objects or materials in a given area

of interest. It accomplishes this in various ways, but the most widely recognized form is through

the measurement of the backscattered fields, or radar cross section (RCS). In the most basic

sense, a radar system transmits electromagnetic waves which impinges upon an object if present.

This object scatters the incident waves, and these scattered fields can be received by a receiving

antenna (bistatic radar) or by the original transmitting antenna (monostatic). This basic system

is depicted in Figure 1.2, where the transmitting antenna radiates an electromagnetic wave and

the receiving antenna measures the backscattered fields. If no object is present (or if the RCS

is small), then the measured fields will be minimal. For military applications, the aim is to

identify possible incoming threats or targets. For scientific and space applications, radars can

provide new scientific data, giving scientists valuable information about world climate, fresh

water supply, sea level, sea-ice mapping, precipitation, and storms.

Several space missions sponsored by the National Aeronautics and Space Administration

(NASA) provide interesting examples of radar applications. One example is CloudSat, a NASA

mission deployed to investigate cloud behavior and its effect on climate. It is equipped with a

94 GHz nadir-looking radar that observes the backscattered radiation from the clouds. With

these measurements scientists believe that they will be able to advance our knowledge on cloud

abundance, structure, and radiative properties. Ultimately this will enable researchers to better
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understand the exchange of solar and thermal energy between the atmosphere, hydrosphere, land

surface, biosphere, and space [6]. Another mission that was joint between NASA in the United

States and the Deutsche Forschungsanstalt fr Luft und Raumfahrt (DLR) in Germany was the

Gravity Recovery and Climate Experiment (GRACE) mission. This mission aimed to finely map

the Earth’s gravitational fields using both a GPS and microwave ranging system. This data can

then be used to study changes in the Earth’s gravity field due to surface and deep currents in

the ocean, variations of mass within the Earth, exchanges between glaciers and the ocean, and

ground water storage on land masses [7, 8]. Some other future and current NASA missions using

radar technologies also include Aquarius [9], Soil Moisture Active Passive (SMAP) [10], and the

Gravity Recovery and Interior Laboratory (GRAIL) mission [11].

From these brief discussions, one can recognize the significance of antennas to wireless com-

munication and radar system performance. It is common for these systems to operate with strict

design specifications on parameters such as high bandwidth and low cross-polarization radiation.

This can make it difficult to meet with standard antenna designs, and therefore new designs are

a must. It is common for the RF feed networks and the antennas to operate at relatively high

frequencies in the 100 MHz to 100 GHz range. Operation at these frequencies necessitates the

use of advanced electromagnetic theory in order to properly characterize the microwave feed

network. The radiative properties of the antenna also require the use of these advanced theories

for analysis. This theoretical framework does not always lead to a solution that is easily identifi-

able, and therefore optimization can be applied to provide a final design solution which provides

optimal performance for the system.

Modern electromagnetic theory is embodied by Maxwell’s equations, which are the charac-

teristic equations that define electromagnetic waves and radiation and are shown in the following
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equations. These equations have been discussed in [12] as well as many other textbooks.

∇× ~E = −∂
~B

∂t
(1.1a)

∇× ~H = ~J +
∂ ~D

∂t
(1.1b)

∇ · ~D = ρ (1.1c)

∇ · ~B = 0 (1.1d)

In Equation 1.1, ~E represents the electric field, ~B is the magnetic flux density, ~H is the magnetic

field, ~J is the electric volume current density, ~D is the electric flux density, and ρ is the electric

charge density. Assuming linear, isotropic, and homogenous media, we also have the constituent

equations given as

~B = µ ~H (1.2a)

~D = ε ~E (1.2b)

where µ is the permeability of the medium and ε is the permittivity of the medium. With equa-

tions 1.1 and 1.2 we have vector partial differential equations in which the variables of interest, ~E

and ~H, are also coupled. From these equations we can observe the analytical challenges inherent

in the analysis of radiating antenna structures. With such complex equations, scientists are often

limited to solve only canonical geometries using exact analysis such as dipole or loop antennas

[13, 14, 15]. At times approximations can be made if the antenna structure only slightly deviates

from these geometries. For the most general structures, researchers forego exact analysis and

utilize numerical algorithms in order to characterize the antenna performance. While numerical

analysis can significantly aid in evaluating the performance of a structure, it cannot provide

exact analysis which relates the geometrical parameters to the antenna performance. Therefore

researchers often resort to trial-and-error techniques in order to find a good design (if one exists).

These trial-and-error techniques can provide a great deal of information to the investigator,

but it can often be quite time-consuming in order to properly search the space with uniformly
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spaced testing points. This technique only works well for cases involving a small number of

parameters, but a different approach is needed for highly dimensional problems involving tens

or hundreds of variables. Figure 1.3 shows how an increase in the dimensionality increases the

number of points to be tested. With highly dimensional problems, the number of test points

increases exponentially, therefore making the overall time required very lengthy. For example,

suppose an antenna design had 5 variables that needed to be given values, and trial-and-error

was used to search the possible solution space. Assuming that 10 points per dimension was

used, then a total of 105 solutions would be tested. A typical simulation time for numerical

electromagnetic simulation tools is on the order of a few minutes, and therefore we assume a 3

minute simulation time for demonstration purposes. The total time needed for the trial-and-error

testing would be 3 × 105 minutes, which translates to roughly 208 days! Note that this is only

for a 5-dimensional problem, which is not necessarily a highly-dimensional problem. Imagine

the length of time for a 25-dimensional or even 100-dimensional problem. The length of time

needed to search the solution space uniformly could be well beyond one’s lifetime, which can

hinder further research.

In this context, optimization can offer a significant advantage for these types of design prob-

lems where no a priori knowledge is given. The primary difference between an optimization

versus trial-and-error techniques is that the optimization guides the new points to be tested
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based on previous performance evaluation. This knowledge can significantly reduce the amount

of time to get to a good solution, and there exist many different types of optimization techniques

discussed in Section 1.2 which use this information in different ways. Many times a design has a

specific requirement that indirectly relates to the more common antenna performance parame-

ters. These parameters may be non-intuitive and might not provide a clear relationship between

the design parameters and the non-intuitive objective. In many cases designs have multiple cri-

terion to meet, and this can make it difficult for designers to decide between certain solutions.

This case is often refered to as a multi-objective optimization problem and are quite challenging

to find a final design. For these reasons, one might choose optimization over trial-and-error and

exact analysis.

1.2 Optimization in Electromagnetics

It should be emphasized that optimization is not a numerical solver for electromagnetics prob-

lems. It cannot be applied to solve Maxwell’s equations for an arbitrary problem. Rather, it can

be used in conjuction with other solvers that employ numerical techniques to solve Maxwell’s

equations such as the Method of Moments (MoM) [16, 17, 18], the Finite Element Method (FEM)

[19, 20, 21], or the Finite-Difference-Time Domain (FDTD) method [22, 23, 24]. Each of these

algorithms have their shortcomings as well as advantages over the others, but a discussion on

the topics in numerical electromagnetics is out of the scope of this thesis. Instead, we approach

design problems with the black box assumption; these algorithms have already been well estab-

lished for computing antenna parameters of interest in the optimization and no further details

are necessary for the construction of the optimization run. There may be some occasional dis-

cussions on the choice of numerical algorithm due to speed considerations, but this will usually

be the farthest extent of our discussion on these algorithms.

Some researchers have presented numerical techniques involving nature-inspired optimiza-

tion having the appearance of a numerical solver for Maxwell’s equations, but this impression is

not the most accurate one. These new techniques involving nature-inspired optimizers provide

simplified models of antennas using infinitesimal dipole models [25]. They can provide a fast
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analytical alternative in comparison to the techniques previously mentioned, and many param-

eters which may have been difficult to simulate are now achievable at low computational cost.

This technique has been applied to design problems for aperiodic arrays [26] as well as MIMO

systems [27]. The approach is to place infinitesimal dipoles in the same volume containing the

antenna. The near fields along an observation plane are assumed to have been computed by

a MoM simulator for the original antenna of interest. An optimizer is then used to find the

coefficients of the dipoles and their locations in space by comparing the near field data given by

MoM and the dipole near fields. While this might suggest that it is another approach to solving

far-fields/near-fields of an antenna, the approach’s use of optimization is more reminiscent of

solving inverse problems L [f ] = g, where the source vector f is found by optimization tech-

niques. If the dipoles’ location is also being optimized then both the operator L and the source

vector f are being optimized to finally equate to the simulated observation vector g, and this

operation conducted by the optimization algorithm has the same function as a matrix inversion,

which is still a difficult problem to solve. This hereby reinforces our original statement that these

optimization techniques do not solve Maxwell’s equations but rather can be used as tools in the

process.

By necessity we incorporate these techniques (MoM, FEM, FDTD) into the optimization

algorithm in order to link Maxwell’s equations to the optimizer. Figure 1.4 demonstrates the

typical work flow for an electromagnetic optimizer. The steps below give a foundation for devel-

oping an optimization run for a given design [28]. Steps 1-3 are encompassed by the Establish

parameters box, and steps 4-5 are embodied by the three box cycle which continues until the

design meets the objectives. Note that the bird, people population, and DNA strands are often

logos representing the Particle Swarm Optimization (PSO), Evolutionary Strategies (ES), and

Genetic Algorithms (GA) techniques, which are popular nature-inspired techniques for electro-

magnetics applications.

1. Defining the optimization problem. The first step in the optimization is to define

the problem, which can involve defining the antenna topology as well as the parameters of

interest. These parameters can vary from application to application, and Section 1.3 will

discuss more on the various aspects of antennas that are of interest. At this step, many

assumptions can be made which can greatly enhance the convergence of the optimization,
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Figure 1.4: Typical flowchart for an optimization algorithm for electromagnetic design prob-
lems

and it is the antenna designer’s task to minimize the number of variables to optimize. For

instance, one could use a completely generalized topology defined by pixels, but this rep-

resents a highly multidimensional binary optimization problem which is extremely difficult

to optimize. These types of runs are only encouraged when high performance demands are

required and no topology demonstrates adequacy. Sometimes these optimizations are used

because of their generality, and it can demonstrate limits for possible applications.

2. Defining the algorithm parameters. Many optimization techniques have intrinsic pa-

rameters that must be specified in order to proceed. Some of these can be solution space

boundaries, mutation operators, particle velocities, and many others. Researchers in the

evolutionary computation field have been working to develop codes where the intrinsic

parameters are predefined (or are adaptive) and do not require any user input. Other

techniques still require these parameters, and thus this step still remains an important one

in an optimization.
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3. Define a fitness function. In order to optimize a design, one must characterize the pa-

rameter(s) of interest that are important in the design specifications. In the optimization

community, this is known as either a cost function or fitness function, and it represents a

performance measurement. For multi-objective optimizations, this can be represented by a

vector function, and for single-objective optimizations this is represented by a scalar func-

tion. In general, multi-objective optimizations can take longer than their single-objective

counterparts, and therefore one can use a linear transformation, f = ~wTg ~g, to make a

multi-objective optimization a single-objective one. In this equation, f represents the fit-

ness function, ~wTg is the weighting vector which properly weights the optimization goals,

and ~g is a vector representing the goals (parameters) of interest in the optimization.

4. Initialize test points. There are different techniques on how to initialize the test solu-

tions, and most nature-inspired optimization techniques randomly generate starting points

based on a given solution space. Some use uniformly distributed initialization points

whereas others might use gaussian distributed initialization points. Derivative-based meth-

ods typically require some a priori knowledge which places the test points near the global

optima, otherwise the algorithm might converge upon local optima.

5. Systematically search the solution space. This step and its substeps distinguish each

algorithm from the others. This section defines how each algorithm uses the previous points

to choose for the next iteration. Nature-inspired optimizers typically generate the next set

of test points by a randomly generated shift in space with the distribution controlled

by previous observations. Gradient based methods typically are directed towards zero-

derivative points from quadratic approximations given by a Hessian matrix.

(a) Evaluate the fitness function. The fitness function for each testing point is com-

puted by numerical techniques (MoM, FEM, FDTD) and then output as a single

number (single-objective) or as a vector (multi-objective). This is often the most

time-consuming component depending on the antenna geometry of interest. If there

are additional engineering constraints, then these are sometimes incorporated into the

fitness function by adding penalty functions [29].

(b) Test convergence criterion. There are many stop criterion for optimization. A simple

one that is often used is a maximum number of iterations. One can either stop

the optimization if the performance parameters satisfy the criterion desired or if the

optimization shows no significant progress over the past few iterations. For the latter,

a certain tolerance δ is often provided, and the optimizer stops when the fitness does

not change by more than δ over a certain number of iterations.

(c) Select the next values to be tested. Choosing the next solutions to be tested is always

dictated by the optimization algorithm. For this particular thesis, we will go over

two nature-inspired optimization algorithms, and Chapter 2 will discuss the details

on how these two algorithms choose the next points.
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The flowchart in Figure 1.4 and the generalized steps shown above provide only a high level

understanding to the optimization process as a whole. With this big picture in mind, we can

proceed to discuss the details of each step in the proceeding chapters. We also see from this

generalized framework that it is rather straightforward to apply optimization to antenna designs.

Once we have a numerical model that accurately outputs the desired antenna parameters, we can

establish a program interface which connects the numerical solver to the optimizer as shown in

Figure 1.5. The red connections depicted represent the optimizer providing the design variable

values to the simulation tool, and the cyan colored arrows represent the output data being given

to the optimizer for the computation of the fitness. Once this connection is made then one can

proceed forward with the optimization.

There are infinitely many applications where optimization could improve designs for elec-

tromagnetic systems, and it also has a rich history leading up to the use of nature-inspired

optimization techniques. Optimization has played a major role in electromagnetics, and in the

early days the standard gradient based techniques such as the generalized Newton-Rhapson or

the Steepest Descent techniques were primarily used [30]. Other techniques which did not re-

quire derivatives include the nonlinear simplex method and the pattern search technique [30].

Several examples of common optimization problems in electromagnetics during the 1960-1970s

include microwave circuit design [31] and antenna array design [32]. Of course these are only a

few representative examples of applications using classical optimization techniques, and by no

means is this list exhaustive. In Chapter 2 there will be a further discussion on the categoriza-

tion of the different optimization techniques. One of the first published uses of nature-inspired

algorithms in electromagnetics began with the use of Simulated Annealing (SA) in 1983 for

image reconstruction in coded-aperture imaging and its following applications to optical image
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reconstruction [33, 34, 35]. Later these techniques were applied to microwave imaging in 1991

[36]. Nature-inspired optimization techniques started being applied to antenna design problems

when SA was used in the design of correlation antenna arrays [37] in 1988. Around the same

time, Evolutionary Strategies (ES) was being applied in 1989-90 to the design of magnets used

in Nuclear Magnetic Resonance applications [38, 39, 40]. Research in nature-inspired optimiza-

tion for antenna applications lay dormant for a few years until Genetic Algorithms (GA) was

introduced to the electromagnetics community in its application to broadband, lightweight mi-

crowave absorber [41] in 1993. After this awakening, a few significant papers were written on

the application of GA to general electromagnetics problems [42, 43, 44].

This began the era where nature-inspired optimization techniques were gradually accepted

into the electromagnetics community as a viable option to provide final antenna design solutions,

and many other techniques have been introduced other than SA and GA since then. At this

present time, it would be impractical to list all applications that have been researched in the

literature. Therefore, the following bullets provide several major areas to which researchers have

applied nature-inspired optimization algorithms.

• Antenna array nulling [45, 46]

• Thinned arrays [47, 48]

• Ultra-Wideband (UWB) antennas [49, 50]

• Reflector Shaping [51, 52]

• Yagi-Uda antennas [53, 54]

• Radar absorbing material (RAM), microwave absorbers [41, 48, 55]

• Pixelated patch antennas [56, 48]

• Frequency selective surfaces (FSS) [57, 58]

• Antennas for wireless communications [59, 60]

This list provides a brief glimpse into many of the applications which optimization has aided

researchers in electromagnetics, and there exist many other projects which would take many
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book volumes to list. Yet, there still remain many new exciting discoveries yet to be made

through the application of optimization towards electromagnetic problems.

1.3 Performance Evaluation in Antenna Design

It is important to remember that the most time consuming component in the optimization algo-

rithms (and even in the trial-and-error technique) is the fitness function evaluation. The fitness

function defines the link between the physical system and the optimizer, and it describes the per-

formance of a given design with a single number (single objective) or a vector (multi-objective).

This function represents the performance for a given set of parameter values, and one must de-

velop a fitness function that allows the optimizer to distinguish better designs from unsuitable

ones [28]. Therefore, it is imperative to understand the antenna performance characteristics.

Otherwise an erroneous understanding can lead to designs that do not meet the specifications

desired. It is also the case that a good understanding of the antenna properties can lead one to

develop performance evaluation functions which can be less time-consuming. This can be done

by a clever formulation or by an assumption which holds for a particular design.

In wireless communication systems, the antenna link and electromagnetic wave propagation

represents the system channel, as shown in Figure 1.1. Therefore, the primary goal is to maximize

this link despite the poor quality of typical wireless channels. Typically the parameters of

interest to the system designers include the operational frequency, bandwidth, and the expected

received signal-to-noise (SNR) ratio at the receiver. From the system perspective, the operational

carrier frequency is typically determined by the spectrum allocated to that system and often is

a predetermined value. The system bandwidth directly affects the available data rate, and the

maximum bandwidth in the available frequency band is typically desired. The received SNR

directly determines the bit error rate (BER), which in most cases decreases as the SNR increases

[5, 61]. By decreasing the BER, one can achieve less communication errors and better overall

system performance, which is the general goal of the systems engineer.

For many antenna designs, there is a bi-directional relationship between the parameters and

the antenna design. For instance, the operational frequency typically determines the smallest
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antenna dimensions possible from the classical antenna design perspective. For a given frequency

f , the antenna design dimensions are often near λ/2, where λ = c/f is the wavelength in the

antenna medium and c is the speed of light. In the reverse sense, one can find the operational

frequency of an antenna design for a given resonant dimension ` ≈ λ/2. To this end, a knowledge

of one parameter will typically dictate the other’s value.

The SNR is often the most important parameter that guides the antenna designer, and

electromagnetic theory must be utilized to characterize the communication link that results

from a given design. For line-of-sight (LOS) applications where the electromagnetic radiation

from the transmitter has a clear unobstructed path to the receiver, this can be done using the

Friis transmission equation as shown below [15].

Pr
Pin

=

(
λ

4πr

)2

Gabs,t (φt, θt)Gabs,r (φr, θr) |ρ̂t · ρ̂r|2 (1.3)

In this equation we can find the ratio of the power received by the load, Pr, to the power input

to the antenna, Pin. This ratio is defined by the Friis equation above and can be computed

with the knowledge of the free space wavelength λ, the distance r between the antennas, the

receiving antenna’s absolute gain Gabs,r, the transmitting antenna’s absolute gain Gabs,t [15], and

the polarization loss factor (PLF) |ρ̂t · ρ̂r|2. This is depicted by the antennas in Figure 1.6.

It should be noted that this equation is only valid for free space, but it can be used as an

rough approximation to the antenna connectivity in the case where ground (often represented by

a lossy dielectric [62]) and other objects are included in the scenario. Objects such as the ground

can often be modeled as simple scattering structures, and a geometrical optics and geometrical

theory of diffraction approach can be used to compute the interference and total signal level

at a particular point. Despite the improvement in accuracy that this technique provides, it is

extremely environment dependent, and even slight changes can alter the results. One could

always optimize for the most typical scenarios encountered, but from the optimization viewpoint

this technique is far too profuse for consideration. Rather, one could approach this problem

by optimizing the system parameters that can improve the signal level for the average scenario.

One begins from this perspective by asking what parameters in equation 1.3 could improve the
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signal accordingly for a given arrangement of objects as well as antenna position and orientation.

The parameters λ and Pin are often dictated by the system regulations and assigned frequency

band, and the PLF (|ρ̂r · ρ̂t|2) and the distance r are defined by the given antenna positions

and orientation. The only parameters left for optimization are the absolute gains, Gabs,r (φr, θr)

and Gabs,t (φt, θt), and it has been standard practice in the antenna engineering community to

optimize the absolute gain for the best guaranteed performance on the average.

At this point we will only focus on one antenna at a time for optimization purposes. The

absolute gain for an antenna can be broken down into several major components as shown in

the equation below [15].

Gabs(φ, θ) = ecd
(
1− |Γ|2

)
D(φ, θ) (1.4)

Here ecd represents the conductor-dielectric efficiency which represents the power lost to losses

in the conductor or dielectric materials. The term Γ represents the impedance matching of the

antenna given by

Γ =
Zin − Z0

Zin + Z0

(1.5)
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where Zin is the antenna input impedance and Z0 is the characteristic impedance of the tran-

mission line providing electromagnetic power to the antenna [15]. This quantifies the magnitude

of the reflected waves which appear in order to satisfy the impedance boundary condition at the

load. These reflected waves represent losses in the power transmitted by the antenna with the

term (1− |Γ|2) [63]. The last term in equation 1.4 is D(φ, θ), which is the antenna directivity

in the (φ, θ) direction. The antenna directivity describes the amount of power is radiated in a

particular direction in comparison to an isotropic antenna, which radiates equally in all direc-

tions. This provides a number which describes the nature of the radiation for that particular

antenna for all angles in the spherical space (φ ∈ [0, 2π], θ ∈ [0, π]). The quantities D0 and G0,abs

commonly refer to the maximum directivity and absolute gain, respectively, and this notation

will be used throughout this thesis. The maximums provide useful information about the radia-

tion pattern in one number. More specifically, it specifies whether the antenna radiates in a few

particular directions or more uniformly over the entire spherical space. We will often refer to

ecd, Γ, and Zin as the antenna port parameters (or specifications), and Gabs(φ, θ) and D(φ, θ) are

referred to as radiation parameters. This may be confusing since the absolute gain incorporates

both port and radiation parameters, but this is a common notation since Gabs is simply the

directivity scaled by its overall efficiency.

Each of these components have a unique dependence on frequency, and it is important to

understand this relationship to frequency in order to obtain a useful criterion for antenna band-

width. Antenna bandwidth can be stated in terms of the various components listed above, and

in general bandwidth can be specified by all sorts of antenna parameters. The quote below from

C. A. Balanis describes this rather well.

The bandwidth of an antenna is defined as the range of frequencies within which the perfor-
mance of the antenna, with respect to some characteristic, conforms to a specified standard.
The bandwidth can be considered to be the range of frequencies, on either side of a center
frequency (usually the resonance frequency for a dipole), where the antenna characteristics
(such as input impedance, pattern, beamwidth, polarization, side lobe level, gain, beam di-
rection, radiation efficiency) are within an acceptable value of those at the center frequency.

C. A. Balanis, Antenna Theory: Analysis and Design [15]

For many antenna designs, the impedance bandwidth typically defines the antenna’s upper
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and lower limits of operation and is often the most restrictive bandwidth among the other

components. Impedance bandwidth refers to the bandwidth in which the reflection coefficient is

Γ < 0.316. This reflection coefficient is often provided using a decibel scale, which is computed

by the following.

ΓdB = 20 log10 |Γ| (1.6)

In the dB scale, the impedance bandwidth is then guided by the ΓdB < −10 dB rule of thumb.

Using the formula (1− |Γ|2), a reflection coefficient ΓdB = −10 dB implies that roughly 90% of

the power is accepted by the antenna . It should be noted that hereafter the subscript dB will

be dropped and will be implied by the units provided for the rest of the thesis.

As stated in the quote from Balanis, the bandwidth can be restricted by other parameters

as well including polarization, radiation efficiency, directivity, etc. However, for certain com-

putational electromagnetics programs, such as the High Frequency Structure Simulator (HFSS)

tool [64], it can be computationally expensive to calculate any far-field parameters such as axial

ratio or directivity versus frequency. Therefore, one tries to avoid these as much as possible

in the fitness function evaluation. Yet, there are times where these parameters are required to

meet a specification, and one must incorporate them into the fitness function. Some examples

include antennas with wide impedance bandwidths whose radiation patterns can change ver-

sus frequency. Since the directivity directly affects the final power received as seen in equation

1.3 and 1.4, one must account for the directivity in that particular direction versus frequency,

therefore one would include this in their fitness function.

Of the three components seen in equation 1.4, the impedance matching is almost always

incorporated into the fitness functions. For antennas in wireless communications, the radiation

pattern is not as much a concern as the impedance bandwidth and antenna radiation efficiency.

In radar applications, the radiation pattern can be just as important as the impedance matching.

In a nutshell, it is extremely important that all information concerning the scattered fields is

extracted properly, and this requires good radiation and port characteristics. The conductor-

dielectric efficiency is often not of high concern, and this term is typically above 90% unless

lossy materials are present. As we can see from the discussion above, our primary concern will
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be the impedance matching and the radiation patterns of the design antenna, and these are the

parameters on which we will focus in the optimization problems. The next chapters will provide

several illustrative and illuminating examples of antenna design optimizations which utilize either

port parameters, radiation parameters, or a mixture of both.

1.4 Outline of Work

In this thesis, two nature-inspired algorithms will be introduced and compared, and several op-

timization problems will be solved using these techniques. Figure 1.7 provides an illustration of

the work flow in this document. First some brief background is given in this particular chapter

(Chapter 1) with the goal to introduce the subject of optimization within the electromagnet-

ics context and give a brief history on the many possible applications of antenna designs for

communication systems and radar. Some of the parameters of interest to the antenna designer

are also explained from the connectivity perspective using the well known Friis equation. These

parameters will then be used in conjunction with numerical solvers in order to characterize the

fitness a given design.

The next chapter will begin by defining the optimization framework to be used for the design

problems. It provides definitions for the common terms to be used in connection with the

global optimizers and describing the problem in general. The Particle Swarm Optimization

and Covariance Matrix Adaptation algorithms will then be described, and some pseudocode is

provided for a better picture on the implementation of the two algorithms. The last sections will

discuss the additional features required for constrained optimization problems and also discuss

the idea of convergence applied towards the nature-inspired algorithms.

Chapters 3 and 4 will compare the two algorithms for several different types of optimiza-

tion problems. First, a comparison will be made using mathematical fitness functions which

allow a quick simulation because the fitness function evaluation is computationally inexpensive.

However, the optimization will be done in a resource limited setting, where the number of itera-

tions/function evaluations is limited. An antenna array problem will also be provided in order to

compare these two problems using an electromagnetics problem whose fitness can be evaluated
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quickly. The goal of this array problem is to minimize the sidelobe level in the sidelobe region

by using a non-uniform array. In Chapter 4, the typical parameters in a dual polarize weather

radar system are introduced and described, and the connection between the radar performance

evaluation and the antenna parameters is given. Two different optimization formulas are used

and each algorithm is used to optimize each type. In this chapter there are four optimization

runs total, and comparison of the algorithms as well as the optimization formulation is provided.

Two septum designs are optimized using PSO in Chapter 5. The first is a standard stepped

septum design commonly seen in the literature. A smoothed septum design using the Sigmoid

function is also introduced for possible use in high power applications. These are both chal-

lenging highly dimensional optimization problems, and PSO is applied to provide good antenna

performance over a specified frequency band in terms of the parameters discussed in Section 1.3.

In Chapter 6, the E-shaped patch antenna concept is introduced and two possible reconfigurable

E-shaped patch antennas are shown. A simple MEMS circuit model is given to simulate the

performance of the reconfigurable antenna using MEMS switches. PSO is applied to both an-

tenna designs to optimize the antenna performance. Bias network solutions are also provided to

demonstrate the full implementation of the MEMS reconfigurable E-shaped patch antenna.
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CHAPTER 2

Nature-Inspired Optimization Techniques

The general nonlinear programming problem can be stated by

Optimize f(~x), ~x ∈ RN

Subject to ~g(~x) ≤ 0 (2.1)

where the function f(·) is the fitness function, ~x is the design variable vector, and ~g(~x) are possible

constraint equations [65]. This mathematical problem is often seen in many scientific circles, and

therefore its widespread applicability has stirred interest in many different communities. Over

the past few decades there have been many approaches proposed for solving this problem, but

to this date there has been no such algorithm that is able to solve every problem. The classical

techniques are quite useful in solving this problem, and they converge rapidly onto the optima.

One of the primary issues is that they often require the fitness function gradient, which may not

be available. These techniques are also highly dependent on their initialization [65]. Typically

these techniques will converge onto the optimum in the neighborhood of their initial test point.

This may or may not be the global optimum, and therefore one must have a priori knowledge of

the fitness function in order to have global convergence with these techniques. These techniques

are often termed local optimization techniques due to their likelihood to find local optima. On

the other hand, nature-inspired optimization techniques are placed in the category of global

optimizers. They often mimic particular operations observed in nature, hence the name. They

also are classified as stochastic optimization techniques due to their use of random numbers

within the algorithm, which aids them in conducting a global search. These nature-inspired

optimization techniques have gained interest due to their demonstrated robustness for the global
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optimization problem in many different research areas. It has only been recently that they have

become popular in the microwave and antenna engineering community.

The explosive growth of computing technology and the development of numerical methods in

electromagnetics has enabled the use of these nature-inspired optimization techniques to provide

final antenna design solutions. Naturally, one might ask what their advantages are in comparison

to trial-and-error techniques and the classical optimization techniques such as Newton’s method

or the simplex technique. The typical advantages that these techniques provide are given in the

following:

• Derivatives are not required

• Naturally suited for parallel processing

• Converge on a global extrema

• Both continuous or discrete parameters can be used

• A priori knowledge of the fitness function topology is not necessary

• Highly multi-dimensional and multi-objective problems can be solved

In electromagnetic problems the fitness functions are typically multimodal, non-differentiable,

highly dimensional, non-convex, nonlinear, discontinuous, and ill-conditioned, which make the

problem difficult for any optimization technique. Unimodal functions typically have one optimum

point where ∇f = 0, whereas multimodal problems can have a multitude of local optima. These

multimodal functions can be quite difficult to optimize globally, and many techniques can have

issues of premature convergence where the optimizer settles on a local optimum as opposed to

the global optimum. Functions such as the 2-dimensional Rosenbrock function are unimodal

[66], while other functions such as the Griewank function are multimodal [67]. A 2D version of

these functions are plotted in Figure 2.1. As illustrated, there are many more local minima and

maxima for the multimodal case whereas there exists only one minimum in the unimodal case.

More detail on these functions will be provided in Chapter 3.

While the Rosenbrock function happens to be unimodal, it is still a difficult problem to
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Figure 2.1: Illustration in the differences between Unimodal and Multimodal functions for
optimization

solve due to the narrow ridge-like topology. This condition is often known as an ill-conditioned

optimization problem, where the Hessian matrix has a high condition number [68]. For many

problems, an ill-conditioned Hessian matrix implies that the gradient does not supply enough

information to predict the location of the optimum. This can make it difficult for gradient

based algorithms which depend solely on the gradient of the function. Even further, most fitness

functions are non-differentiable and make it even more difficult on gradient based optimization

techniques to find the global optimum. Therefore, these nature-inspired techniques have become

popular among many different research fronts, especially electromagnetics. In order to overcome

these issues, the nature-inspired algorithms often have two phases: global optimization versus

local optimization. The whole search space must be properly sampled if the algorithm is to

find the global optima. Without a good global optimization phase, the optimizer will likely

converge to a local optimum point as opposed to a global optimum. Once the full search space

has been properly sampled, the algorithm starts decreasing the amount of change given in the

next test point compared to the last iteration. By decreasing these step sizes, the optimizer is

effectively performing a fine search among the local area. This is the point where most of the

test points are in the neighborhood of the global optimum. The transition between global versus

local optimization is typically smooth; there does not exist a threshold in which the optimizer

suddenly switches over to local optimization. Each algorithm has its own way of shifting from a

global to a local one, and each have their own advantages. The main difficulty for the algorithm
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is in finding the best parameters which work for all fitness function topologies, and many years

of research has been spent in developing the most robust optimization algorithm by fine-tuning

their intrinsic parameters. Some researchers have also discussed the possibility of hybridizing the

global optimizers with the classical (local) optimization techniques in order to exploit the rapid

convergence of the classical techniques when the optimization run is in the local optimization

stage.

Since a few algorithms will be discussed throughout this thesis, a proper terminology must be

established. Therefore we provide the following list of terms below which we will use to describe

certain aspects of the optimization problem shown at the beginning of this chapter.

Intrinsic Parameters

Parameters that are used by the optimization algorithm and characterize the algorithm’s

performance and convergence. This includes parameters that change throughout the opti-

mization run as well as those that remain constant.

Design Variables

These are the N variables that characterize the antenna design geometry that is being

optimized (e.g. the length and width of a simple patch antenna). Each set of values for

the design values represents a possible design, and we will be representing this with the

design vector ~x.

Design Boundaries

For bounded optimization techniques, one must provide the lower and upper bounds of

each design variable. These bounds are denoted by the ~xmin and ~xmax variables.

Design Constraints

For many optimization problems, constraints are required in order to abstain from simulat-

ing physically unrealizable solutions. Constraints may also be given as part of a specifica-

tion and therefore must be incorporated into the optimization algorithm. These constraint

equations are denoted by ~g(~x) ≤ 0 as seen in the problem definition and are discussed more

in detail in Section 2.3.

Solution Coordinates

This is a N -dimensional coordinate system whose components are the design variables. For

example, the length, width, and height of a patch antenna are represented by the 3-tuple

(L,W, h) which is the location in the solution coordinate system.

Solution Space

The solution space is a N -dimensional hypercube in the solution coordinate system which

is defined by the limits of each design variable. This is only applicable to bounded opti-
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mization techniques. For unbounded algorithms, the solution space is infinitely large. For

most bounded optimization techniques, no solution outside of the solution space will be

tested. This space will be denoted mathematically as the set S = {~x|~xmin ≤ ~x ≤ ~xmax}.

Feasible Space

While the design boundaries define the solution space S, the design constraints define the

feasible space F ⊆ S. This is defined as the space where the design constraints are satisfied,

i.e. F = {~x |~g(~x) ≤ 0, ~xmin ≤ ~x ≤ ~xmax}. More detail will be given in Section 2.3.

Fitness Function

As mentioned previously in Section 1.2, the fitness function defines the link between the

antenna system and the optimizer. This function maps the quality and performance into a

single number which allows the optimizer to decide whether a given design is better than

others.

Penalty Function

This term is introduced into the fitness function in order to account for constraints or for

boundaries. The constraint penalty function will be denoted at pc(~x) and the boundary

penalty function will be denoted as pb(~x). These are also discussed more in detail in

Section 2.3.

This given terminology will be used throughout the rest of the text in order to remove any

ambiguities. It should be noted that not all optimizations have constraints ~g(~x), and they are

referred to as unconstrained optimization problems. However, if constraints are included then

the problem is designated as a constrained optimization problem.

The idea of constraints is slightly different than that of bounded optimization techniques.

Some techniques such as Particle Swarm Optimization require upper (~xmax) and lower (~xmin)

boundaries on the design variables. These are denoted as bounded optimization techniques. The

other case are those that do not require upper and lower boundaries, which are the unbounded

optimization techniques. While bounded techniques are limited to the specified solution space,

it is often the case in electromagnetic optimization problems that boundaries are provided by

the nature of the problem. Therefore, the global optimum within those boundaries is the only

one of interest because other possible optimum points outside the solution space are unusable

designs.

Multi-objective optimization is also a topic of interest in the optimization community, and

this presents an even more difficult optimization problem. In the case of multi-objectives, a
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Figure 2.2: A short list of different optimization algorithms and their classification

vector is returned rather than a single number. This characterization makes it more complex

to characterize better designs from others. For multi-objective problems a final set of superior

designs, or Pareto front, is provided as the final output of the optimizer. The Pareto front

concept allows designers to make a choice when faced with multi-objective designs. The only

issue with multi-objective optimization is that it can take a significant amount of time to solve

in comparison to its single-objective counterpart. Therefore, our approach to the optimization

problems in this thesis are to wrap the multi-objectives into one fitness function by

f(~x) =
P∑
p=1

αpfp(~x) (2.2)

where f(·) is the final fitness function, fp(·) is the pth objective, and αp is the proportionality

constants. The only difficulty in this approach is to find the appropriate weights αp,∀p ∈

1, . . . , P . There is no hard and fast rule to provide these coefficients, and our approach has been

to equate the ratio of each weight to the ratio of the expected average values of the objectives.

This will be demonstrated in later chapters.

Some of the first nature-inspired optimization algorithms were first investigated in the 1960’s,

which included Genetic Algorithms, Evolutionary Strategies, and Evolutionary Programming.
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Since then, many more algorithms have been proposed, and these algorithms are shown in Figure

2.2. Some of these have their merits, and the techniques Particle Swarm Optimization (PSO)

and Evolutionary Strategies (ES) will be covered in this thesis. More specifically, the Covariance

Matrix Adaptation Evolutionary Strategies (CMAES) will be examined in detail. Afterwards,

a detailed discussion on constrained optimization problems will be given. The convergence of

nature-inspired optimization techniques will be covered, and then this chapter will close with

implementation of these algorithms.

2.1 Particle Swarm Optimization (PSO)

While many nature-inspired optimization techniques have been proposed to the scientific com-

munity, most of these algorithms rely on the use of complicated operators (or mechanisms) which

mimic naturally occuring processes. However, the Particle Swarm Optimization (PSO) technique

uses very simple operators. In particular, PSO exploits the power of social interactions as its

primary operator, and the use of this mechanism lends to an inherent algorithmic simplicity.

This simplicity implies that only a minimal number of intrinsic parameters need to be defined

by the user. The recommended values for the fastest and guaranteed global convergence are

also typically more obvious. For PSO, no a priori knowledge of the fitness function landscape

is necessary to have global convergence, and therefore one does not have to choose arbitrary

values for its intrinsic parameters. This and its widely proven use in electromagnetics problems

make PSO one of the leading candidates for global optimization techniques in electromagnetics

applications.

Many scientists have made observations and experimental models aiming to predict the social

behavior of large groups of animals seen in nature. The most prominent groups include bird

flocks and bee swarms. Russell and Eberhart, among many other scientists, tried to develop

working models that would graphically demonstrate similar properties to the dynamics of a bird

flock formation [69]. Their revolutionary idea came when implementing a model for a bird flock

which incorporated two forces acting on each individual in the flock. Both of these forces are

derived from the individual’s memory, which includes a memory of the best point visited by
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that particular individual as well as a memory of the best point visited by the whole bird flock.

The first force drove each individual back to its own best observed point, and this has often

been termed the cognizant drive. The second drives each individual to the best seen point of

the flock, which has been termed the social drive. These driving forces are depicted in Figure

2.3. In the figure, each marked point shows the visited points for each bird. Note that the

motion of the birds is simulated by finite jumps in space. In other words, the birds are shifted

by randomized increments such that its flight (and tested points) are not continuous lines but

rather points in space. The figure also provides the location of each birds own best personally

visited point (pBest) and the best visited point of the flock (gBest) with blue circles and green

stars, respectively. One may ask what characteristic defines one point better than another and

how do these simulated birds know the difference. In their simulation they used the function

f (x, y) =

√
(x− xfood)2 +

√
(y − yfood)2 (2.3)

in order for each bird (or agent) to evaluate its current position (x, y) in space. The (xfood, yfood)

point represents the location of food that the birds are flying towards. They did this to simulate

a bird flock being driven towards food without prior knowledge of its location. For bird 4, one

can see its total velocity ~vtotal decomposed into the two driving forces. The vector ~vp points

towards bird 4’s previously best visited point, and ~vg points towards the best visited point

of the flock. By combining these two vectors, one can see that it redirects bird 4 to explore

new appealing territory. Russell and Eberhart started their experiments with the intention to

model a bird flock’s movement, but in the end they had discovered a remarkable technique that

seemed to optimize general nonlinear functions such as the one in equation 2.3. Interestingly, the

authors chose the name Particle Swarm Optimization because the group reflected more swarm-

like characteristics with each individual moving in a quasi-random fashion. Therefore, the group

of individuals is typically referred to as the swarm. Also, the term particle (or agent) is often

used to describe the individuals in the swarm due to their point-like nature which retains velocity

and acceleration.

From observations made to describe this social behavior, it has been conjectured that the
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Figure 2.3: A graphical depiction of Kennedy and Eberhart’s original simulation model which
inspired Particle Swarm Optimization

collective intelligence of the swarm directs them towards the most prominent feeding location.

With the gradual acceptance of these conclusions, one might be able to apply these social inter-

actions to more general nonlinear, multimodal, and even non-differentiable functions. Research

since the original discovery in 1995 towards progressing the algorithm has skyrocketed due to

its proven use in many types of problems. Later, this algorithm was formally introduced to

the electromagnetics and antenna community in 2004 [70]. That particular paper explained the

PSO algorithm using a bee swarm metaphor, which is another well-used analogy seen in the

literature. Since this time, many students within the Antenna Research, Analysis, and Mea-

surement laboratory at UCLA have researched different applications of PSO [51, 71] as well as

comparisons to other algorithms, such as GA. There have been much improvements to the PSO

algorithm in recent years, but this particular optimization technique is still in its infancy and

there exists many more areas of exciting research in its improvement. There now exist several

popular variations of PSO which can handle different types of problems encountered. The next
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subsection will cover the algorithms for the standard Real-valued PSO (RPSO) technique for

continuous parameters. Recommended intrinsic parameter values will also be provided for the

reader’s benefit.

2.1.1 Real-valued Particle Swarm Optimization

The defining equations and thought process for this version of PSO are the most natural, and

this is an improved version of the original algorithm presented in [69]. We will use the same

terminology of the Section 2.1 and follow suit from its explanations. Each particle in the swarm

has an associated velocity, location in the solution coordinate system, personal best visited

location (~p), and global best visited location (~g). As stated previously, each particle in the

swarm has two memories: a cognizant memory and a social memory which are affiliated with

the ~p and the ~g vectors, respectively. Naturally, each particle would like to revisit the area near

its previously best seen point. However, the particle is also aware of the best seen point of the

swarm and is torn between the two locations. This is reflected in the equations

~vk+1
i = wk~vki + c1~r

k
1,i ◦

(
~pki − ~xki

)
+ c2~r

k
2,i ◦

(
~gki − ~xki

)
(2.4)

~xk+1
i = ~xki + ~vk+1

i ∆t (2.5)

where equation 2.4 defines the velocity of particle i at iteration k+ 1 and equation 2.5 describes

the position of particle i at iteration k + 1. It also should be noted that the binary operation

~a ◦ ~b in equation 2.4 represents the element-wise vector multiplication for ~a,~b ∈ RN . We list

out the definitions of each component below and provide a simple description of each intrinsic

parameter.

~vk+1
i The N -dimensional velocity vector of particle i at iteration k + 1. This represents the

speed at which particle i is traveling in the solution coordinate system. As the particles

progress in the optimization, the velocity will decrease on average in order to facilitate

local exploration.

~xk+1
i The N -dimensional position vector of particle i at iteration k+1. The values of this vector

literally represent the values of the design variables being optimized, and the final gBest

vector ~g represents the final design values of the optimization.
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wk The inertial weight. By forcing the particle to continue along its previous trajectory, this

weighting factor forces the particle to overshoot its target. It perpetuates each particle’s

original velocity similarly to inertia observed in physics. With a large inertia weight, the

particle is forced to explore the surrounding area which promotes more global exploration

of the solution space, while a smaller inertial weight allows the particle to make finer

adjustments, promoting more local exploration of the solution space [72, 73, 74].

c1 The nostalgia weight. This is the weight of proportionality which drives the particle to

return to its pBest location ~p. Increasing this relative to c2 results in a swarm of isolated

individuals which have little social interaction, and the end result is quick stagnation [69].

c2 The social weight. This weight controls each particle’s drive to explore regions where other

particle’s have had success. Increasing this relative to c1 motivates the particles to explore

the areas of their neighbors, which in turn can result in premature local convergence.

~rk1,i, ~r
k
2,i N -dimensional random vectors. These parameters manifest the stochastic nature of

PSO, and each component of the N -dimensional vector has a uniform distribution from

[0, 1].

∆t The finite time step. In order to describe the new position of a particle with constant

velocity, one must have knowledge of the time travelled. This is included in equation

2.5 as a formality such that the equation would appear similarly to those in elementary

mechanics describing particle trajectories. In the literature, it is standard to set ∆t = 1

[70]. Changing its value simply scales the velocity, and the other velocity parameters should

be scaled accordingly in order to have a similar performance if one so desires to change

this parameter.

These intrinsic parameters are critical to determine the convergence performance for PSO ap-

plied to general multimodal optimization problems. If not set correctly, then it is possible that

premature convergence upon a local optimum will ensure, and this is to be avoided at all costs.

Table 2.1 provides the recommended values for every parameter in PSO. There are other pa-

rameters not mentioned in the definition list above due to their exclusion in equations 2.4 and

2.5. One parameter is swarm size, and this parameter is typically recommended to be at least

equal to the number of dimensions N . There has not been much research devoted to character-

izing the best choice of swarm size, but a few sources have reported good performance with this

guideline [75]. Another parameter that needs to be set is the maximum number of iterations

imax. In order to have the inertial weight linearly decrease from 0.9 to 0.4, one must provide

imax, as seen in the formula in Table 2.1. We recommend imax = 500 iterations as a starting

point for typical optimization problems in electromagnetics. For extremely multimodal problems
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Table 2.1: Recommended Values for the Intrinsic Parameters of PSO when used in Electro-
magnetics problems

PSO Parameter Recommended Values

c1 2.0
c2 2.0

Swarm Size (N, 2N)
∆t 1.0

Max Iterations (imax) 500

wk 0.9− 0.5
(

i
imax

)
~vmax

1
2

(~xmax − ~xmin)

or highly-dimensional problems, it may be recommended to use more iterations. Lastly, vmax is

used to clip the particle velocity if it gets too high. This ensures that particles do not fly out

of the solution space by an extremely large distance. It is interesting to note that the original

algorithms before 1998 used vmax in order to ensure global convergence, and much smaller values

were used in order to tune the performance of PSO. However, it was later found that by linearly

decreasing wk one could generalize vmax, which was difficult to tune, to all problems by simply

setting vmax to half the solution space [74].

There have been many different variations of PSO proposed, but many of them either do not

improve performance or they detract from it. Some examples of possible variations tested include

a momentum-less PSO where the inertial weight is set to zero, but this example reportedly had

poor results [69]. Another style of PSO used a local best instead of a global best, where each

particle would remember the best seen position by their immediate neighbors. This provided

good results and seemed more resistant to local optima in comparison to the original versions.

However this version also took much more time to converge [76]. There has been much more

extensive research into improving PSO by adding other operators onto it [77], but the original

algorithm still prevails as the most simple and most applicable to all optimization problems.

The pseudocode for the original algorithm is given in Figure 2.4 for a better understanding of

the full algorithm.

In Figure 2.4, we begin by initializing the particles in the solution space by assigning them a

random location with a uniform distribution from [xmin, xmax]. Their velocities are also randomly
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Initialize particle positions

Initialize particle velocities

For i = 1 to imax

  For m = 1 to Swarm Size

    Evaluate boundary conditions on xm

    If f(xm) < f(pBestm) then pBestm = xm

End For

For m = 1 to Swarm Size

    If f(xm) < f(gBest) then gBest = xm

  For m = 1 to Swarm Size

      Update particle m's nth velocity component vm,n

    End For

      Update particle m's nth position component xm,n

  End For

      Evaluate particle m's fitness f(xm)

    If xm valid then

    End If

    Else

      f(xm) = 1e20

  Set f(pBestm) = 1e20

End For

Return gBest

1
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Pseudocode describing the Real-valued Particle Swarm Algorithm

      If |vm,n| > Vmax,n then vm,n = Vmax,n*sgn(vm,n)

    For n = 1 to N

23

24

  End For

25

Figure 2.4: Pseudocode implementation of the Real-valued Particle Swarm Optimization
technique which minimizes the fitness function

assigned with a uniform distribution from [−~vmax,+~vmax]. Since this is a minimization problem,

we set the initial fitness for each particle extremely high. Ideally, we would set it at ∞, but this

number is not storable in finite sized memory and therefore is set to a high number, 1020.

The next step is to evaluate whether each particle is within the given limits [~xmin, ~xmax]. If

not, there exist several different boundary conditions to keep the particle within these appropri-

ate boundaries. These conditions are often necessary to avoid physically unrealizable systems

or to avoid physically insignificant systems. Some examples might include patch antenna with a

negative width or a patch antenna where the probe feed does not connect to the patch antenna.

These systems either have no meaning or might even force errors in the simulation tools. There-

fore they must be avoided by imposing these boundary conditions. The most typical boundary

conditions are demonstrated in Figure 2.5, and this includes the absorbing, reflecting, damping,
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Figure 2.5: Boundary conditions applied to a two-dimensional problem

and invisible boundary conditions. Out of these conditions, the invisible boundary condition has

been recommended due to its demonstrated ability to converge upon the global optima for the

general optimization problems [70].

The RPSO boundary conditions have often been separated into two categories: restricted

and unrestricted boundary conditions. The restricted boundary conditions contain all particles

within the solution space by manipulating their position and velocity, while the unrestricted

conditions allow the particle to fly out of the solution space but assign a bad fitness to those

particles. The absorbing, reflecting, and damping cases are all considered restricted boundary

conditions because they keep the particle within the solution space, as seen in Figure 2.5. The

invisible boundary condition allows the particle to fly outside the solution space but sets the

fitness value for that point at a particularly high number, e.g. 1020. For certain cases where

the global optimum is located near the solution space edge, these boundary conditions can also

decelerate the convergence upon the global optima as shown in [78]. If the global optimum is

located near the edge of the solution space, then using the invisible boundary condition may slow

down the convergence due to a large number of particles flying outside the solution space. There
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have been other boundary conditions investigated for the standard PSO algorithm including

hybrid boundaries such as the invisible reflecting and the invisible damping boundary condition

[78], but these are not as popular as the four shown above in Figure 2.5.

The pseudocode shown in Figure 2.4 is configured such that it can handle the implementation

of any of the boundary conditions. If one of the restricted boundary conditions is chosen, then

the boundary evaluation alters the position and velocity accordingly. If the invisible boundary

condition is used, then the particle is considered invalid which forces the algorithm to assign a

high fitness to the particle. With this organization one can apply any of the aforementioned

boundary conditions.

The next step in the pseudocode updates the pBest and gBest if the newly tested point has

a better fitness than the current locations. The last block of pseudocode goes through the whole

swarm to update the nth velocity component of particle m using equation 2.4. If a particular

component goes above the nth component of the velocity threshold ~vmax,n, then the velocity

magnitude is set to ~vmax,n and the direction is that of the original velocity. We use this velocity

to find the new location of particle m, where equation 2.5 is used (assuming ∆t = 1).

2.2 Covariance Matrix Adaptation Evolutionary Strategies (CMAES)

The Covariance Matrix Adaptation Evolutionary Strategies (CMAES) technique lies under the

umbrella of Evolutionary Strategies (ES), which has a rich history in its development. ES

was one of the frontrunners in the early developments of Evolutionary Computation (EC), i.e.

nature-inspired optimization. Its development began in the 1960’s when working to design bodies

with minimal drag per volume [79]. When designing a 2D joint plate in turbulent air flow, the

researchers demonstrated that this stochastic procedure outperformed the classical optimization

techniques [80]. With those exciting results, researchers went on to further develop the ES

technique.

As with PSO, the Evolutionary Strategies technique also takes a heuristic approach to opti-

mization. The Evolutionary Strategies works by evolving a population of individuals, where each
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A parent population is initialized

An offspring population is created from recombination and 

mutation applied to parent population

A new parental population is generated through selection 

(either comma type or plus type)

After repeating steps 2 and 3 until a stop condition is met, a final 

evolved superior population is given

Figure 2.6: Basic evolutionary concept behind Evolutionary Strategies

iteration represents one generation. As time approaches infinity the population will evolve to the

most optimal individuals, as shown in Figure 2.6. New generations are born through operators

known as recombination and mutation. ES also makes use of the evolutionary idea of survival of

the fittest, and this is accomplished through the use of a selection operator. The most typical ES

technique employs the use of Gaussian distributed random numbers to spawn new members of

the population. For CMAES, this distribution can adapt its mean and covariance matrix based

on its previous experience, and this adaptation has been claimed to enhance the performance to

a faster convergence rate than other nature-inspired optimization techniques.

We begin to shed light on the details of ES by first briefly introducing the terminology often

used. Over the course of this text, we have been referring to the parameters inherent to the

algorithm as intrinsic parameters. ES further categorizes this into endogenous parameters and

exogenous parameters which are described below.

Endogenous Parameters

The endogenous parameters control statistical properties of the genetic operators (muta-

tion/selection) and can change throughout the optimization run.

Exogenous Parameters

Exogenous parameters are kept constant in a run and they control the size of parent/offspring

populations, mixing number, as well as selection type.
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One primary difference between the two parameters are that the endogenous parameters are often

encoded within each of the individuals, while the exogenous parameters are encoded into the

algorithm as a whole. For CMAES, most of the parameters tend to be exogenous in comparison

to other flavors of ES, but these are common ideas within the realm of evolution strategies.

In general, the ES approach has been more mathematically oriented in comparison to other

techniques such as PSO, and we will retain the mathematical formalism while still trying to

maintain accessibility to the reader. Previously, we had stated that the ES algorithm evolves a

population until a final superior generation has been found. At iteration i there are two popu-

lations: a parent and an offspring population, to which we will refer by βip and βio, respectively.

The parent population is made up of µ individuals aim with m ∈ 1, 2, · · · , µ. The offspring pop-

ulation is made up of λ individuals bi` where ` ∈ 1, 2, · · · , λ. Therefore, both populations can be

described as the set of its constituents.

βip =
{
ai1, a

i
2, · · · , aiµ

}
(2.6a)

βio =
{
bi1, b

i
2, · · · , biλ

}
(2.6b)

Each individual (both parent and offspring) are represented by their design values ~xm, fitness

value f(~xm), and their endogenous parameters sm. Therefore aim = {~xim, f(~xim), sim}.

For ES, the three main operations performed on the population guide it towards the supe-

rior locations in the solution coordinate system. These three operators include recombination,

mutation, and selection, which have similar characteristics to the operators seen in Genetic Al-

gorithms (GA). In the most basic sense, recombination shares the information of a given set of

ρ parents (there can be more than two parents), and its ultimate goal is to conserve the good

components of the parents. Mutation is the primary source of any variation in the parameters,

and changing the scale of mutation either allows for a global search or a more refined search.

Lastly, selection directs the population towards the more promising regions in the solution space.

Selection implements the survival-of-the-fittest by choosing the µ best individuals [80].

There are many different ways to envision the movements of the population as they travel

through the solution coordinates. The population centroid 〈~x〉 has often been used in the past to

38



describe the whereabouts and general location of the population [80]. CMAES goes a step further

and adjusts the population by shifting its mean and adapting the Gaussian covariance matrix

throughout the optimization run. At a given iteration i, the location of the mth individual is

given by the Gaussian distribution

~xim ∼ N (〈~x〉i, (σi)2Ci) ∼ 〈~x〉i + σiBiDiN (0, I) (2.7)

where σi is often denoted as the step size, Ci ∈ RN×N is the covariance matrix of the Gaussian

distribution, Bi ∈ RN×N is the matrix of eigenvectors corresponding to Ci, and Di ∈ RN×N is

the diagonalized matrix whose elements are the square root of the eigenvalues of Ci [81]. The

corresponding eigendecomposition of the covariance matrix C is given by

C = BD2BT . (2.8)

At first glance, this representation may seem very abstract, and some interpretation is required in

order to fully understand this representation. In order to simplify the explanation, let us assume

that C = I,∀i. Now a closer examination of equation 2.7 shows that there are only two variables

to control: 〈~x〉i and σ. The variable 〈~x〉i controls the center of the Gaussian distribution while

σ controls the spread of the distribution.

As a simple illustration of CMAES, we depict the movement of a population as it samples

the space in Figure 2.7. We randomly start with an initial 〈~x〉0 and then initialize the other

particles based on a given σ0. The black colored dots represent initialized individuals at i =

0, and the lighter colors represent the progression in iterations. The next centroid 〈~x〉i+1 is

chosen to be equal to the best individual of the offspring population βio, and we arbitrarily set

σi+1 = 0.8σi. The circles demonstrate the isocontours of the Gaussian distribution at iteration

i. This simple algorithm resembles a pattern search algorithm, and of course is not the most

suitable optimization algorithm. However, it provides a pictorial understanding on some of

these parameters involved. It should be noted that the CMAES algorithm encompasses a much

more complicated adaptation process, and it is not only limited to hyperspherical Gaussian
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f(x,y) = 144.0

f(x,y) = 36.0

f(x,y) = 324.0

x

y

Figure 2.7: Ellipsoidal function f(x, y) = (x/3)2 +y2 being optimized with a simple best-child
evolution strategy. This is a simplified algorithm to explain CMAES.

distributions. In fact, CMAES is able to manipulate the distribution such that the isocontours

would form rotated N -dimensional hyperellipses in the solution space in order to accelerate the

convergence by using a full covariance matrix C. Now that the concepts, objects, and operations

in CMAES have been explained, the focus will shift towards the ES procedure of optimization.

We will proceed in the same order as Figure 2.6. We begin with the initialization of the parent

population β0
p . It must be emphasized that the Evolution Strategies technique is an unbounded

optimization algorithm; it does not require upper and lower bounds on the design parameters.

With this in mind, there are two approaches to the initialization given below [82].

1. Bounded approach. Many times in electromagnetics we would still prefer to keep the

optimization within certain bounds in order to avoid physically unrealizable systems or

repeated solutions which can occur for symmetric systems or in periodic fitness functions.

Therefore, we initialize the parent population randomly with the distribution at the user’s

discretion. This distribution might have more weight towards a certain region if some a

priori knowledge is given about the fitness function.

2. Unbounded approach. For more generality, one may avoid a bounded initialization

approach, and begin the optimization by providing specified starting point ~x0. The user

also provides a ~Σ vector which defines the initial variances of the Gaussian distributions.

One individual is assigned this position ~x0, and the other µ − 1 individuals are assigned

mutated versions of the ~x0 as given by the following.

~x0
m = ~x0 + σBDN (0, I), ∀m ∈ 2, 3, . . . , µ (2.9)

where σ, B, and D are the same as in equation 2.7 and N (0, I) is the N dimensional
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zero-mean unit-variance Gaussian distribution.

The initialization approach that we take in our implementation of CMAES is a hybrid between

the two and was recommended in [81, 83]. The hybrid approach starts by generating the initial

population centroid 〈~x〉0 with a random position. Since, we do not assume any a priori knowledge

of the fitness function for our optimization problems in this thesis, we use a uniform distribution

for each component of 〈~x〉0 with ~xmin and ~xmax as our lower and upper bounds. The last part

to define is the covariance matrix C of the Gaussian distribution. Typically, a good initial

distribution will include the global extrema within ±3σi + 〈x〉0i for every dimension, where σi

is the standard deviation of the initial Gaussian distribution [83]. Therefore, since we assume

that the global extrema is located within the hypercube defined by ~xmax and ~xmin, we assign the

following parameters [81].

σ0 = max
i∈N̄

(
~xmax − ~xmin

3

)
(2.10a)

B = I (2.10b)

D = diag

(
~xmax − ~xmin

σ0

)
(2.10c)

The diag(·) function represents the assignment of the diagonal elements to the vector elements

within the parentheses. The distribution is now completely defined, and we can generate the λ

offspring for iteration 0 using this distribution. It has also been recommended to use

λ = 4 + b3 · ln(N)c (2.11a)

µ = bλ/2c (2.11b)

to start as a minimum population to optimize the fitness function [81, 84]. In cases of extremely

multimodal functions, a higher offspring size may be required. Therefore, step 1 in Figure 2.6

has been accomplished. A new parent and a new offspring generation β1
o is to be generated. The

steps that proceed are repeated until a terminating condition is reached.

Selection is the operator which provides the parent population βp from the existing popula-
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tions. It is a deterministic operator, and simply takes the µ best individuals based on their fitness

from some specified population. In ES there have been two common types of selection: plus-type

which is often represented by (µ + λ)-ES and comma-type which is represented by (µ, λ). The

(µ + λ)-ES applies selection to both the parent population βip and the offspring population βio

to form the new parent population βi+1
p . In this algorithm it would be possible for certain in-

dividuals to live throughout the entire optimization run without dying, and this has often been

referred to as elitism [80]. The (µ, λ)-ES only applies selection to the offspring population βio to

create the new parent population βi+1
p . Obviously, one stipulation in the comma-selection is that

λ > µ, and it has been commented that this selection method is less susceptible to local optima

while suffering slower convergence [79, 80, 82]. CMAES most often utilizes the (µ, λ) strategy,

and it applies both selection and recombination in one operation.

Once the new parent population βi+1
p is created, recombination can be applied on its con-

stituents in order to generate a new offspring population βi+1
o . Recombination takes certain

information from the parent population in order to create a new offspring population. For a

new offspring individual bi+1
m , a set of ρ individuals from βi+1

p are chosen to use as parents. The

parameter ρ is often denoted when declaring the ES algorithm by (µ/ρ + λ) or (µ/ρ, λ). The

recombination operation is then applied to the parent individuals in order to create bi+1
m . The

typical ES programs have either applied discrete recombination or intermediate recombination.

In the discrete recombination, the offspring randomly chooses components from the ρ parents for

new design parameter values. In intermediate recombination, each component of the offspring’s

~x vector is assigned the arithmetic mean of the ρ parents [79, 80]. However, in CMAES recom-

bination takes place through the assignment of the new population centroid 〈~x〉i+1. First the λ

offspring of βio are sorted by fitness from lowest (m = 1) to highest (m = λ). The the centroid

is updated by the assignment

〈~x〉i+1 =

µ∑
m=1

wm~x
i
m (2.12)
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Figure 2.8: Plot of the weights for finding the new population centroid 〈~x〉i+1 using equa-
tion 2.13

where the weights are assigned the following values.

wm =
log2(µ+ 0.5)− log2(m)∑µ
n=1 (log2(µ+ 0.5)− log2(j))

(2.13)

In our previous simple example, we had found the mean by assigning it the same position

as the best offspring location, but these update equations are weighted averages of the µ best

performing offspring. It should be noted that the weights are distributed such that
∑µ

1 wm = 1.

Figure 2.8 plots some values for the cases where µ = 5, 10, 15 in order to demonstrate some

properties of these weights. Our expectation is that the best individuals are weighted most

heavily, and indeed Figure 2.8 confirms our expectations. The weight decreases as the index m

increases because the fitness worsens as m increases, thereby placing more emphasis on the better

individuals. Equation 2.13 applies both selection and recombination to the offspring population

βio. Selection is done by the truncation of all other individuals; the summation only includes the

first µ individuals and is independent of the others. Since equation 2.13 also takes the weighted

average of the individuals, it has been termed as a weighted intermediate recombination [83].

At this stage, the new centroid has been accounted for, but the covariance matrix still must

be updated. There are a few other terms that must be defined in order to proceed. They are
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given in the formulas below [81, 84].

µeff =

(
‖~w‖1

‖~w‖2

)2

=

(
µ∑

m=1

w2
m

)−1

(2.14a)

cσ =
µeff + 2

N + µeff + 3
(2.14b)

dσ = 1 + 2 max

(
0,

√
µeff − 1

N + 1

)
+ cσ (2.14c)

cc =
4

N + 4
(2.14d)

ccov =
2

µeff (N +
√

2)2
+

(
1− 1

µeff

)
min

(
1,

2µeff − 1

(N + 2)2 + µeff

)
(2.14e)

None of these parameters change during the course of the optimization run, and furthermore

they only depend on N and µ. The parameters are extremely complicated and are used to

enable CMAES for a variety of different applications. The variance effective selection mass

µeff is used to normalize the covariance matrix, and it also represents the effective number of

offspring that account for the newly generated mean. The parameters cσ and dσ are known as

the step-size learning rate and the step-size damping factor, respectively. These two factors are

used to control the changes in step size based on a given number of dimensions N and parent

population size µ. The next parameter cc controls the amount of historical information that is

retained when adjusting the covariance matrix C. The variable ccov controls the rate of change

for the covariance matrix [81, 84].

The next step is to find the next generation’s step size σi+1 and covariance matrix Ci+1. The

first step to find the new step size begins by computing the conjugate evolution path ~pσ, which

keeps track of the distance traveled by the population centroid.

~pi+1
σ = (1− cσ)~piσ +

√
cσ(2− cσ)

µeff
σg

(Ci)−1/2
(
〈~x〉i+1 − 〈~x〉i

)
(2.15a)

σi+1 = σi exp

(
cσ
dσ

(
‖~pi+1

σ ‖
E {‖N (0, I)‖}

− 1

))
(2.15b)

Since B and D are known, the computation of (Ci)−1/2 lends easily to the simplified form
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C−1/2 = BD−1BT . Since D is a diagonal matrix, its inverse is rather simple as given by

D−1 =


1
d11

0 0

0
. . . 0

0 0 1
dnn

 (2.16)

which is much easier to compute in comparison to the inverse. The last term requiring further

discussion in equation 2.15b is E {‖N (0, I)‖}, which is the expected value of the euclidean vector

norm of a normally distributed random vector. Its can be calculated by

E {‖N (0, I)‖} =

√
2Γ
(
N+1

2

)
Γ
(
N
2

) ≈
√
N

(
1− 1

4N
+

1

21N2

)
(2.17)

This term provides a reference in order to scale the step size σi+1 upwards or downwards. The

last component needed is the covariance matrix of the new generation’s Gaussian distribution.

Computation of the covariance matrix Ci+1 follows likewise as shown by

~pi+1
c = (1− cc)~pic +

√
cc(2− cc)

µeff
σg

(
〈~x〉i+1 − 〈~x〉i

)
(2.18a)

Ci+1 = (1− ccov)Ci +
ccov
µeff

~pi+1
c (~pi+1

c )T

+

(
1− 1

µeff

)
ccov

(σi)2

µ∑
m=1

(
~xi+1
m − 〈~x〉i

) (
~xi+1
m − 〈~x〉i

)T
(2.18b)

which utilizes the variables defined in equation 2.14. These formulas have been designed such

that CMAES will optimize a wide range of problems, and equation 2.18b has two major update

terms. The covariance Ci+1 inherently is an update from previous history, hence the first term

involving the previous iteration’s covariance matrix Ci. The second term involves the evolution

path vector ~pi+1
c and has been termed the rank one update. This update elongates the covariance

matrix along the path that the mean has traveled. A longer distance traveled by the mean

〈~x〉i+1−〈~x〉i inherently implies a bigger change in the covariance matrix update. The last term has

been denoted as the rank-µ update, and this particular term re-orients the Gaussian distribution

in order to move toward the direction of the function minimum as well as elongate the ellipse
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% Initialize the distribution parameters

  For m = 1 to 

    Generate child with

    Evaluate mth child fitness f(xm)

  Compute the new

  Compute the new

  If f(x1) < f(bestPosition) then bestPosition = x1

Return bestPosition
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  End For
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Pseudocode describing the Covariance Matrix Adaptation Evolutionary Strategies

End For
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Figure 2.9: Pseudocode implementation of the Covariance Matrix Adaptation Evolution
Strategy technique which minimizes the fitness function

towards the direction of travel [81, 84]. It should be noted also that the ~xi+1
m terms refer to the

parents of the new generation βi+1
p , which were the fittest selection from the child generation βio.

The offspring mean however corresponds to that of βio, which may be counterintuitive. However

it was demonstrated in [81] that this mean 〈~x〉i produces the correctly directed ellipse in order

to predict the location of the function minimum based on the points sampled. In fact, it has also

been shown that the covariance matrix roughly approximates the inverse Hessian function for

different fitness functions [84, 68]. By using this estimate, the Gaussian distribution is therefore

directed towards those points with a predicted zero gradient.

The pseudocode for the CMAES algorithm is shown in Figure 2.9. The previous discussions

have already provided some information most of the steps, and this provides an easy-to-follow

summary of all the steps. The only minor point that was not discussed was the initialization

of the conjugate evolution path and the evolution path. As shown in the pseudocode, these

parameters are both initialized to zero by ~p 0
σ = 0 and ~p 0

c = 0 on line 2. Line 1 is simply a

comment and should be ignored. In this implementation, the best point seen thus far in the
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Table 2.2: Recommended values for the CMAES technique

CMAES Parameter Recommended Values

λ 4 + b3 ln(N)c
µ bλ/2c
σ0 max(~xmax − ~xmin)/3

optimization run is stored in a variable (array) named bestPosition. This variable is the final

output in this pseudocode implementation as the final values for the design parameters.

In this section, a brief introduction to the concept of Evolutionary Strategies was given, and

an implementation of the CMAES version was provided. This algorithm was developed not

only to improve convergence over other competing techniques but also to minimize the number

of parameters defined by the user. Recommended values for those parameters are given in

Table 2.2. As seen from the discussion, this algorithm has been historically more analytical and

mathematical in nature in comparison to other techniques such as PSO. It also has been claimed

to have improved convergence, and in this thesis we will compare this new technique to verify

these claims.

2.3 Applications in Constrained Optimization Problems

Many design problems in engineering often have physical limitations which imply some type of

constraints. These design constraints are often due to space or weight limitations as well other

various performance issues. Constraints often come in the form of inequalities and constraint

equations [85]. Without a proper formulation, the optimization problem can become increasingly

difficult due to the limited search space. Therefore these components deserve some attention

when working to optimize several classes of antenna optimization problems.

In the beginning of this chapter, the terms bounded optimization techniques and constrained

optimization problems were introduced and delineated. While these terms describe two different

pieces of the optimization story, we use these terms boundary and constraint to describe two dif-

ferent types of inequalities. This dichotomy distinguishes between components that are necessary
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in bounded optimization techniques and those that are applied to all optimization techniques.

The inequalities that form the hypercube termed the solution space are given as

~xmax ≤ ~x ≤ ~xmin (2.19)

where ~xmax and ~xmin form the edges of the solution space. As seen in the previous sections, these

boundaries are required in PSO, while in CMAES and ES they are supplementary because they

are unbounded optimization techniques. An unbounded approach has been applied to many types

of problems and provides more generality to the optimization problem. However most antenna

design problems have physical upper and lower limits on their dimensions. Therefore these

boundaries will be included in the algorithm through various methods in this thesis. Constraints

are slightly different inequalities involving more than one design parameter. Using a generalized

notation as seen in [85, 86], these constraints can be written as

~g(~x) ≤ 0 (2.20)

which captures both types of inequalities through gi(~x) ≤ 0 and −gi(~x) ≤ 0. It is general enough

to include equalities h(~x) = 0 as well by defining gi(~x) = h(~x) and gi+1(~x) = −h(~x) to finally

use as gi(~x) ≤ 0 and gi+1(~x) ≤ 0. To summarize, these constraints require attention for both

bounded and unbounded optimization techniques. However, the boundaries are only required for

bounded optimization techniques.

Some terminology has become standard in literature [87, 88, 89, 90] to describe the regions

within the solution space S. The feasible region F can be defined as

F = {~x |~g(~x) ≤ 0, ~xmin ≤ ~x ≤ ~xmax} (2.21)

which can be described as the set of points in the solution space which satisfy the constraints,

and hence F ⊆ S. Note also that another region is the infeasible region I ⊆ S, which can

be defined by I = S ∩ F . The region outside of the hypercube will simply be referred to the

out-of-bounds region S. These regions can be visualized for both two and three dimensional
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Figure 2.10: Visualization of the Feasible and Infeasible regions

spaces as seen in Figure 2.10.

There are a variety of methods that incorporate the constraints into the optimizer. One

technique that has been suggested changes the algorithm’s initialization [91] in order to force

the initial points to be located within F . This was originally proposed for use in PSO, but this

idea could be extended to other algorithms such as GA or CMAES. Others have used used the

constraint equations as other fitness parameters in a multi-objective optimization environment.

The authors then applied a multi-objective version of PSO to the optimization problem. Another

method used for GA as well as other Evolutionary Techniques add a penalty function into

the fitness function [87, 88, 86]. This in turn converts the constrained optimization into an

unconstrained one. Using this approach, another term pc(~x) is simply added onto the original

fitness function as

f(~x) = f0(~x) + pc(~x) (2.22)

where f0(~x) is the term which describes the fitness of the antenna alone, i.e. the original fitness

function. For many of the optimization runs used in this thesis, the constraint penalty function

pc(~x) =


0 if ~x ∈ F

1020 if ~x /∈ F
(2.23)

49



is used, which simply increases the fitness to a large number if outside the feasible region. This

may not always be the best penalty function because it does not provide any information as to

the location of the feasible region. Others actually implement the constraint equations gi(~x) into

pc(~x) [89], and this has been preferred because it can help guide the optimizer towards F . We

use the stepped penalty approach for ease of implementation, and it fits naturally into PSO since

this has the same appearance as the invisible condition. It should also be pointed out that one

advantage of penalty functions is that they can be applied to every technique, and therefore they

form a widely usable approach in handling constraints. The stepped constraint penalty function

was applied to the optimization problems involving either PSO or CMAES in this thesis.

CMAES and other unbounded techniques also have to incorporate the design boundaries

~xmax and ~xmin into their algorithm. Whenever running CMAES for optimization problems we

incorporate another boundary penalty function pb(~x). The newly expanded fitness function f(~x)

would then become

f(~x) = f0(~x) + pc(~x) + pb(~x) (2.24)

where pb(~x) incorporates the boundaries of the design. A recommended boundary penalty func-

tion has been given by

pb(~x) =


0 if ~x ∈ S

‖~x− ~xctr‖ if ~x /∈ S
(2.25)

where ~xctr is the center of the hypercube given by ~xctr = (~xmin+~xmax)/2. By adding this penalty

function, the CMAES algorithm naturally is drawn to the solution space S. Without this added

penalty function, the population of individuals is free to roam at any point in space, and this

can be undesirable. Again it is emphasized that this does not have to be done for PSO because

they are bounded algorithms and incorporate the design limits ~xmin and ~xmax using its boundary

conditions. Therefore pb(~x) = 0 for the PSO technique.

When constraints are introduced into an optimization, it becomes increasingly difficult for
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optimizer to find the feasible region. In fact, the difficulty increases as the number of dimensions

increases. Since the search space is limited by the constraints, the probability that the next test

point will fall in S is dependent on the number of dimensions N . This can be demonstrated with

a simple probability exercise. If we assume the distribution of the next test point is uniform

throughout the solution space, and then the probability that the next test point will fall in the

feasible space is the ratio of the volume of F to the volume of S. If we further assume for

simplicity that the region F is a hypercube with sides ∆si,∀i ∈ 1, . . . , N then the probability is

simplified to the ratio of each side of the two hypercubes as

P{~x ∈ F} =

∫
F · · ·

∫
F dx1 · · · dxN∫

S · · ·
∫
S dx1 · · · dxN

=
∆s1 · · ·∆sN
∆x1 · · ·∆xN

(2.26)

where ∆xi = xmax,i − xmin,i. We observe that the ratio ∆si/∆xi = pi ≤ 1, due to F ⊆ S. This

implies that for greater dimensions, the probability either decreases or stays equal due to the

product of another since p ≤ 1. In general the distribution of the next test point is not uniform,

but this helps visualize the difficulty that the constraints place on the optimizer. From this we

can see the importance and the challenge that a constrained optimization problem places on

the designer and therefore it must be considered in the algorithm in order to guarantee good

convergence.

2.4 Convergence Analysis using Mathematical Functions

Convergence is always an important issue when discussing optimization methods, and one of

the theoretical advantages of the classical optimization techniques is that one can prove their

convergence. By analytically demonstrating their convergence, one can also compare how fast

they converge towards the optima. However, analytical proofs on the rate of convergence are

not typically available with the stochastic optimization algorithms, and convergence towards the

global optimum in some cases is impossible to prove. Some have claimed to prove that certain
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techniques, such as Evolution Strategies, have a given convergence

P
{

lim
i→∞

f(~xi) = f ∗
}

= 1 (2.27)

where f ∗ is the global optima value for a given fitness function [79]. However, this does not

describe the speed at which an algorithm will find the global optima. Even a completely random

search of the search space will eventually find the global optimum after ∞ iterations. Other

researchers have demonstrated parameters related to convergence such as the probability of a

successful mutation analytically for specific optimization problems [79]. Again this does not prove

its convergence for all problems. Therefore this does not provide much worth for convergence

purposes other than some insight on the best values for the intrinsic parameters of a given

algorithm.

However, the lack of these proofs does not necessarily take away from their value in global

optimization problems, and their usefulness has been proven in a wide range of applications

and research projects. Indeed, the nature-inspired algorithms are not always guaranteed global

convergence, but researchers have observed that these techniques demonstrate good global con-

vergence on the average case. It is obvious that the pure random search would eventually find

the global optima, and these techniques lie somewhere in between a pure random search and

their more analytical gradient-based counterparts. They simply exploit the history of points

with good fitness and adapt the next testing points’ distribution in order to emphasize the areas

with good history.

Therefore many researchers have resorted to comparison of these techniques by applying them

to several different types of mathematical functions. Some are unimodal and ill-conditioned while

others are highly multimodal. It is necessary to compare a wide variety of different functions

in order to test their performance. In this section we wanted to introduce this concept as well

as the typical curves seen in these optimizations. For example, the two dimensional Schwefel
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Table 2.3: Intrinsic Parameters Used to Optimize the 2D Schwefel Function

PSO Parameter Values Used

c1 2.0
c2 2.0

Swarm Size 4
∆t 1.0

Max Iterations (imax) 2000

wk 0.9− 0.5
(

i
imax

)
~vmax

1
2

(~xmax − ~xmin)

function is given in Figure 2.11. This function can be defined as

fschwefel(~x) = 418.9828872724339 ·N −
N∑
i=1

xi sin(
√
|xi|) (2.28)

which has a global minimum at xi = 420.96874636,∀i ∈ 1, . . . , N [92]. This optimization is

typically quite difficult for the PSO algorithm, which can fall prey to many of the Schwefel

function’s local minima. An optimization run using PSO was applied to the two-dimensional

Schwefel function, and the results of the optimization run are also shown in 2.11. The solution

space boundaries are [−500, 500]n, and the intrinsic parameters for the PSO algorithm used in

this run are shown in Table 2.3. We applied more iterations than the recommended values given

in Table 2.1 because the Schwefel function is relatively fast to compute. In electromagnetics

problems, this is not usually the case, and therefore less iterations are recommended (usually

around 500) in order to obtain a solution within a reasonable amount of time. There are two

plots that show the results of the optimization run. In Figure 2.11b, two curves are given: the

average fitness and the global best fitness for one run. This is a typical plot seen for PSO, and

the global best fitness is nothing more than a plot of the fitness evaluation at gBest f(~xig) for

iteration i. The average fitness is simply the average fitness of every particle (or individual) at

iteration i given by

favg =
1

M

M∑
m=1

f(~xim) (2.29)
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where M is either equal to the Swarm Size (PSO) or λ (CMAES). Now the data seen in Figure

2.11b are only for 1 run, while the Figure 2.11c shows the global best fitness for all 50 runs in

one plot. In order to prove that an algorithm is robust, it is often required that one demonstrate

its effectiveness for several independent runs. In many cases people provide a 50-run average in

order to demonstrate the algorithm’s performance, but this may not be effective because some

runs might have converged upon a local optima prematurely as seen in Figure 2.11c. The values

between the premature runs and the optimized runs are different by several orders of magnitude,

and thus any averaging would force the averaged value to be equal to the premature values.

Therefore this is not always the best way to depict this information and should be avoided

unless no premature runs exist. This is why the transparent plot shown in Figure 2.11c provides

a better picture; one can see the results for all runs in one plot. The darker lines occur when

more than one curve sits atop one another. For this optimization, 17 runs converged prematurely,

while the other 33 runs found the global optimum at x∗i = 420.96874636,∀i ∈ 1, . . . , N . It should

be noted that this function should have a value of zero at ~x∗, but the value calculated at ~x∗ is

roughly 4.55 × 10−13 due to some truncation errors. Lastly, we show several different methods

for calculating the average convergence over 50 runs in Figure 2.12. The problematic method

is shown in Figure 2.12b, where the premature curves take over the converged runs. Another

proposed way to plot the average convergence is by excluding the premature curves from the

average as shown in Figure 2.12c. This provides a good picture that demonstrates the average

curve of a PSO run for the Schwefel function and is compared to the 50 run plot in Figure 2.12d.

In summary, convergence is a difficult thing to prove for every problem in the world of

stochastic global optimizers. Therefore comparison between different techniques is made by

examining their convergence for a library of functions. The Schwefel function was provided as an

example, and several representative curves were explained. These curves will be quite commonly

used throughout this thesis to discuss the convergence of a particular run, and some explanation

was needed in order to proceed. While global convergence may not be guaranteed for every run

in these algorithms, they provide good convergence on the average case scenario.
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2.5 Implementation

The algorithms for both PSO and CMAES are quite simple to finally implement into a program,

and several program interfaces were designed in order for the algorithms to communicate with

the electromagnetic solvers. The numerical engines that were used throughout this work include

HFSS and IE3D. The algorithms for both PSO and CMAES were implemented in Matlab due

to its ease in implementation as well as versatility. The baseline CMAES code was also provided

by Prof. A. Hoorfar [93] and was further edited. Some of the optimization runs for PSO and

HFSS used a VB-scripts implementation, and more on this will be discussed for those particular

optimization runs. These codes were run on a server equipped with two quad-core Intel Xeon

2.5 GHz Processors with 32 GB of RAM. Most of the optimization runs in this thesis used a

serial computation configuration, where each test point was calculated one-at-a-time.

These algorithms also lend to easy parallelization of the code in order to drastically reduce

computation time. By assigning k nodes to evaluate the fitness function, the algorithm experi-

ences a near-linear increase in speed. Clearly the situation where every particle (or children for

CMAES) has a designated node represents the fastest and most efficient possible implementation

of the nodes, but this is not the only configuration to implement the parallel solution. For this

algorithm, there is a small amount of sequential code (roughly 0.1% to 1%), and therefore one

can predict the process acceleration by Amdahls Law, which is given by

A (np) =
np

1 + (np − 1)f
(2.30)

where A represents the acceleration (or speedup) of the program, np is the number of nodes (or

processors) used, and f is the sequential fraction of the code. Since f is approximately zero in

all practical applications, one can see that a linear increase in acceleration can occur by using

parallelized coding. One can also implement this algorithm as a multi-threaded program on one

computer, but the speedup is not linear in comparison to using independent processors for the

computation. Our code also incorporated multi-threaded capabilities for the later runs, and only

some of the optimization runs use this for program acceleration.
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The program implemented for CMAES and PSO has many added functionalities. First, it can

work with any provided external fitness function. In order to run a non-Matlab function, a Matlab

function interface must be created in order to output the correct fitness value. The functionality

in Matlab streamlines the process so that little effort must be used to create these interfaces.

Once a fitness function has been developed, the program starts with the default recommended

values as given in the previous tables 2.1 and 2.2. If other values for these parameters are desired

then the user can change the first few lines of code in order to implement those changes. Once

completed, the user can run the full global optimization on the desired fitness function and find

a solution.
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CHAPTER 3

Comparison Between PSO and CMAES

With the proliferation of evolutionary computing, it becomes difficult to choose between different

algorithms for a particular optimization problem. It becomes even more difficult in scenarios

where no a priori knowledge on the fitness function topology is given, which happens to be the

case in most electromagnetics applications. Many of the algorithms have their own inherent ad-

vantages, and it remains difficult to provide any concrete mathematical evidence of convergence.

As discussed in Section 2.4, the primary way that researchers make comparisons is by conducting

optimization tests on a library of mathematical functions.

This chapter will be devoted to a comparison between CMAES and PSO for several dif-

ferent problems involving analytical mathematical functions. This provides a relatively faster

methodology for comparison since mathematical functions typically take a relatively short time

to evaluate. The first section will focus on a comparison of typical mathematical functions

common to the evolutionary computation field. The last section will compare abilities of each

algorithm in antenna array problems, which have been a standard electromagnetics optimization

problem in literature.

3.1 Mathematical Function Comparison

In order to make a full comparison between the two algorithms, many different types of functions

should be considered. In order to provide general observations on these algorithms, one must test

several different types of functions. In this way one can conclude whether a certain algorithm has

certain deficiencies for a certain type of problem. Below is a list qualities that we are considering

in our tests.
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Table 3.1: Benchmark Testing Functions

Name Function Solution Space

Sphere fsph(~x) = ‖~x‖2 [−100, 100]n

Rosenbrock fros(~x) =
∑N

n=2

[
(1− xi−1)2 + 100(xi − x2

i−1)2
]

[−10, 10]n

Cigar fcig(~x) = x2
1 +

∑N
n=2(1000xi)

2 [−5, 5]n

Rastrigin fras(~x) = 10N +
∑N

n=1(x2
n − 10 cos(2πxn)) [−5, 5]n

Griewank fgr(~x) = 1
4000

∑N
n=1 x

2
n −

∏N
n=1 cos(xn/

√
n) + 1 [−600, 600]n

Schwefel1 fsch(~x) = csch ·N −
∑N

n=1 xn sin(
√
|xn|) [−500, 500]n

• Multimodal

• Unimodal

• High dimensionality

• Low dimensionality

• Ill-conditioned

• Well-conditioned

There are many other facets of the fitness functions that could also be considered, and this list

does not include all characteristics for brevity. Table 3.1 shows the test functions to be considered

in this section. In order to test the effect of dimensionality on the algorithms, N = 50 and N = 5

is chosen for each function. Some of the test functions have been known to be easier to optimize

for higher dimensions, such as the Griewank function. This may seem counter-intuitive, but a

demonstration was provided in [67].

The sphere function and the cigar function are both unimodal functions, and the sphere

is quite simple to optimize. The difficulty with the cigar function is that it forms a narrow

ridge problem that is ill-conditioned [94]. The rest of the functions listed in Table 3.1 are

1The value for csch = 418.9828872724339
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Table 3.2: PSO Intrinsic Parameters for N = 50

PSO Parameter Values Used

c1 2.0
c2 2.0

Swarm Size 100
∆t 1.0

Max Iterations (imax) 2000
Boundary Condition Invisible

wk 0.9− 0.5
(

i
imax

)
~vmax

1
2

(~xmax − ~xmin)

Table 3.3: CMAES Intrinsic Parameters for N = 50

CMAES Parameter Values Used

λ 15
µ 7
σ0 max(~xmax − ~xmin)/3

all multimodal functions. The Rosenbrock function is typically known as a moderately ill-

conditioned unimodal function for two dimensions, but for higher dimensions there can exist

more than one extremum [66]. In summary, we hope to achieve all the characteristics listed in

order to make a proper comparison between PSO and CMAES.

Figure 3.1 shows each function for two dimensions, and this can provide a better under-

standing of the fitness function topology of each function. Most of the functions have a global

minimum at ~x = 0, except for the Rosenbrock and the Schwefel functions, which have a global

optimum at ~x = [1, . . . , 1] and ~x = [420.96874636, . . . , 420.96874636], respectively. Note that

these problems represent unconstrained optimization problems. No constraints on the optimizer

have been imposed and therefore it is free to search the whole solution space S. In order to make

a fair comparison between PSO and CMAES, a boundary penalty function pb(~x) was applied

for the CMAES runs. This ensures that CMAES only searches the specified solution space S as

opposed to an infinite space.

61



x
y

f(
x,
y)

-10

0

10
-10

0

10

0

100

200

(a) Sphere Function

x
y

f(
x,
y)

-2

0

2
-2

0

2

0

2000

4000

(b) Rosenbrock Function

x
y

f(
x,

y)

-1

0

1
-1

0

1

0

5

10

15

× 10
5

(c) Cigar Function

x
y

f(
x,
y)

-5

0

5
-5

0

5

0

50

100

(d) Rastrigin Function

x
y

f(
x,
y)

-10

0

10
-10

0

10

0

1

2

3

(e) Griewank Function

x
y

f(
x,
y)

-500

0

500
-500

0

500

0

1000

2000

(f) Schwefel Function

Figure 3.1: Two dimensional versions of the six testing functions
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The first case optimized using PSO and CMAES uses N = 50 for each test function. The pa-

rameters for each algorithm are shown in Tables 3.2 and 3.3. The averaged global best results are

provided in Figures 3.2 and Figures 3.3. The first figure shows the results versus iteration while

the second shows the comparison versus function evaluation. When making these comparisons,

one must also consider the convergence versus function evaluations. In electromagnetics this is

more important than the number of iterations because the function evaluation is computationally

costly. This is also important in this comparison because a different number of evaluations was

used between the two algorithms. For PSO, 100 function evaluations happen at each iteration

(unless particles fall outside the boundaries), whereas only 15 function evaluations are performed

per iteration for CMAES. Therefore both types of plots are used in order to compare these two

algorithms fairly. For the PSO optimizations, the number of function evaluations totals 200,000,

while for CMAES the total number of function evaluations is 30,000. The last note to make is

that the stopping criterion was a maximum number of iterations, which was set at imax = 2000.

These things should be taken into consideration for this comparison.

A few points should be understood when making this comparison. First, our interest is

primarily to compare these two functions for cases with a relatively small number of evaluations.

This means both that the search population sizes as well as the total number of iterations will

be small. A minimal number of particles (individuals) were used for each algorithm, and the

number of iterations was set to 2000 as a compromise between a thorough search versus a realistic

number of function evaluations for electromagnetic problems. Other researchers have even used

up to 104 individuals and 500 · N iterations for different test problems [92]. Increasing these

better guarantee convergence for a given problem, but this thesis is focused on optimization in

a time and resource limited setting since our interest is for electromagnetics.

The choice to use a smaller number of evaluations can force nearly all runs to converge

prematurely, especially for a large number of dimensions. Therefore most of the optimization

runs did not converge upon the global optimum, but rather on some local optimum. While this

draws away from guaranteeing the global optimality of the design, the designers are still happy if

the final design meets the desired specifications. As discussed in Section 2.4, any outliers which

have significantly higher fitness (at least two orders of magnitude higher) are excluded from the
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Figure 3.2: Optimization results when N = 50 versus iterations for the mathematical test
functions
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(d) Rastrigin Function
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Figure 3.3: Optimization results when N = 50 versus function evaluations for the mathemat-
ical test functions
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average, and the number of runs excluded are written in the plot for both algorithms.

The CMAES algorithm appears to demonstrate excellent performance and rapidly converges

upon the optimal point of the sphere function. PSO also converges upon the point, but has

some difficulty in fine tuning the design parameters. In other words, PSO lacks somewhat in

the local optimization stage in comparison to the CMAES algorithm. However, The plot scale

can be somewhat deceiving, and it should be noted that the PSO algorithm still performed well

for this particular problem. On the average it was able to achieve a value near 10−7, which is a

significant improvement from its initialization point which had a fitness near 108.

Both the sphere and cigar function represent unimodal functions, and similar performance

is seen in both problems. Similarly to the sphere function, CMAES quickly converged upon

the global maximum within a small number of iterations. PSO also converged upon the global

optimum and was slower than CMAES to reach a low value. Again, this demonstrates PSO’s lack

of ability to fine tune its parameters in the local optimization stage. The Rosenbrock function is

a multimodal function for higher dimensions, but it is only moderately multimodal in that the

number of local optimal are small in comparison to other functions [66]. With this in mind, it

makes sense to see comparable performance for the Rosenbrock case as well. CMAES proves to

converge extremely quickly upon the global optima, and this type of moderately ill-conditioned

problem is one of its specialties. PSO, however, took a longer amount of function evaluations to

achieve the same function value as CMAES, but it was still able to achieve significantly better

fitness (in comparison to its initialization) regardless of the function’s known difficulties.

Overall, we see that CMAES appears to rapidly decrease the fitness function, but for multi-

modal functions it quickly falls into a local optimum. PSO is observed to make slower progression

but is able to overcome some of the local optima and get a lower fitness overall. The Schwefel

function is a difficult multimodal optimization problem to solve for high dimensions with limited

resources. It has been shown that the CMAES algorithm can optimize this function for higher

dimensions with 95% probability of finding the global extremum if a much larger population size

is used [92]. CMAES may be able to better overcome some of the local optima by increasing the

population sizes to a comparable size used by PSO.
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Table 3.4: PSO Intrinsic Parameters for N = 5

PSO Parameter Values Used

c1 2.0
c2 2.0

Swarm Size 10
∆t 1.0

Max Iterations (imax) 2000
Boundary Condition Invisible

wk 0.9− 0.5
(

i
imax

)
~vmax

1
2

(~xmax − ~xmin)

Table 3.5: CMAES Intrinsic Parameters for N = 5

CMAES Parameter Values Used

λ 8
µ 4
σ0 max(~xmax − ~xmin)/3

The next comparison to be investigated is the case of 5 dimensions (N = 5). We use the

intrinsic parameters listed in Tables 3.4 and 3.5, which are similar to the ones previously, except

for the population sizes. The same termination criterion was used as well, stopping the runs

at 2000 iterations. As seen in the two tables, the population sizes are smaller in comparison to

the 50 dimensional case. This is because the choice of swarm size (λ for CMAES) is linearly

(logarithmically) dependent on the number of dimensions N .

Similar features are observed in the lower dimensional problems when compared to those of

higher dimensions. Both PSO and CMAES converged to a very small number for the sphere and

cigar function. Again, PSO was slower in finding the global minimum and then fine tuning the

parameters. Better final fitness values are seen in comparison to the same functions at higher

dimensions. This is expected since the optimizers have an easier time searching a lower number

of dimensions. In the Rosenbrock function, PSO does not find the global optimum, whereas

CMAES gets close to the global optimum. There were a few times where CMAES would get

stuck in a local optimum, and these were excluded from the average data. One interesting

feature seen in the Rosenbrock optimization is the threshold that CMAES seems to run into
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Figure 3.4: Optimization results when N = 5 versus iterations for the mathematical test
functions
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Figure 3.5: Optimization results when N = 5 versus function evaluations for the mathemat-
ical test functions
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once it hits a fitness value around 10−30. This may be due to possible numerical errors that

cause the optimizer to get stuck as opposed to continuing towards zero.

For the multimodal functions, the results were not as clear in comparison to the higher

dimensions. These are still quite difficult topologies to navigate at lower dimensions. In the

Rastrigin function, PSO seems to dominate over CMAES in performance, but it is also important

to remember that the number of outliers excluded from the average is also quite large. Therefore

the PSO algorithm has less chance of achieving the results that it accomplished in the other

runs. CMAES did not perform as well as expected for the Rastrigin function, and all results

were similar to those shown in Figure 3.5d. A similar performance is experienced for the Griewank

and Schwefel function; CMAES seems to have some issues with getting stuck at local optima for

the multimodal problems. For these last two problems, PSO is able to reduce the function value

but also gets stuck in a local optima similar to CMAES. In order to overcome these problems

one might use a larger population. In [92], an offspring population size of roughly λ = 400 was

implemented to ensure a 95% probability that the CMAES would converge for the Griewank

function of 5 dimensions. This is generally the same for PSO as well, where increasing the

swarm size helps overcome local optima.

Overall, good performance has been demonstrated for both algorithms, although a few func-

tions proved challenging enough to force them to a premature convergence. The goal was to

simulate and compare their performance in a time and resource limited setting. In a real-world

electromagnetics application, the fitness function evaluation can take as long 30 minutes, and the

overall optimization time can accrue quite rapidly with those computational speeds. Therefore

we used the lowest recommended population sizes and a low number of iterations in order to

minimize the total number of function evaluations. In general, CMAES was observed to achieve

a more rapid convergence in comparison to PSO, however it was also prone to fall prey to local

optima. While PSO did converge at a slower rate, there were a few problems where it overcame

the local optima and found the global optima or it found a local optima closer to the global one.

It is interesting to see a similar performance between PSO and CMAES even though the PSO

algorithm is simplistic in comparison to CMAES.
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3.2 Nonuniform Antenna Array Optimization

Antenna array design has been a standard problem seen in the electromagnetics community,

and it happens to be a perfect test problem for optimization algorithms because array problems

are real-world applications and their performance can often be computed quickly. Their rapid

calculation owes to the fact that an array of antennas can be viewed as a superposition of

isotropic point sources, and the interference created between the radiated waves can manipulate

the radiation pattern into a desired shape. With the assumption that an array of antennas acts

as a superposition of point sources and the assumption that the antenna elements have exactly

the same radiation, the array radiation pattern can be calculated by

~Etot (θ, φ) = ~E` (θ, φ) · AF (θ, φ) (3.1)

where ~Etot (θ, φ) is the total far-field electric field radiation in the (θ, φ) direction, ~E` (θ, φ) is the

far-field electric field radiation for a single element, and AF (θ, φ) is the array factor. For an

antenna array, the only factor that will change is the array factor, and this happens to be easily

computable using mathematical formulas [15].

There are many types of problems for arrays which have primarily been solved by global

optimization algorithms, and a common type is aperiodic array design. Aperiodic arrays have

been previously employed to minimize the sidelobe level and even place nulls in certain specified

locations as an alternative to controlling the amplitude and phase of each element [95]. The

element location is much easier to control tolerances and to predict in comparison to controlling

each element’s phase and amplitude, which can be different than expected due to unforeseen

coupling. In general there are two methods of achieving aperiodicity: nonuniform arrays and

thinned arrays. In the first, the number of elements is kept constant and the inner elements are

moved about in order to achieve the desired goal. The outer elements are kept stationary in

order to maintain the same directivity regardless of the inner element position. This would be

a real-valued optimization where the design variables are continuous real numbers. The second

type is achieved by placing M elements uniformly throughout the space and turning each element
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z

d2 d3 d4 d5 d6d2d3d4d5d6 d1

Figure 3.6: Geometry used for the symmetrical nonuniform antenna array to be optimized
with PSO and CMAES. The outer elements are located at x = ±2.75λ0 and the other element
positions are to be optimized

ON or OFF. The ON state implies that the element is included in the array, and the OFF state

implies the contrary. The thinned array approach is a discrete (or binary) optimization.

Since the focus remains on real-valued algorithms, the nonuniform array approach will be

taken. Both PSO and CMAES will be applied to a symmetric 12 element array as seen in Figure

3.6. This array problem is similar to that in [75], except that a 12 element array is optimized over

a larger overall distance. For this optimization, the goal is to reduce the sidelobe level (SLL) for

the given SLL region, i.e. outside of the main lobe region. Since the array is symmetric, there

are only five design variables to optimize, and the outer elements are positioned at ±2.75λ0 so

that the total array size will remain at 5.5λ0. In order to avoid a large number of constraints

inequalities, the distance between each elements are optimized, which is an alternative to the

approach used in [75]. The solution space is limited to

di ∈ (.25λ0, 2.75λ0), i ∈ {1, 2, 3, 4, 5} (3.2)

where di is the distance in wavelengths between adjacents nodes. Since patch antennas are

typically around 0.5λ0/
√
εr, the lower limit of 0.25λ0 was employed to guaratee a sufficient

distance between elements while allowing the search space to be extensive.

A constraint must be enforced in order to ensure that new elements are located outside of
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Table 3.6: PSO Intrinsic Parameters for the Nonuniform Array Optimization

PSO Parameter Values Used

c1 2.0
c2 2.0

Swarm Size 10
∆t 1.0

Max Iterations (imax) 500
Boundary Condition Invisible

wk 0.9− 0.5
(

i
imax

)
~vmax

1
2

(~xmax − ~xmin)

the maximum dimensions given for the array. Therefore, the only constraint needed in this

formulation is given by

d1

2
+

5∑
i=2

di ≤ 2.75λ0 (3.3)

which ensures that none of the elements fall outside of the designated space |x| ≤ 2.75λ0. This

provides for a simpler and more compact formulation. These account for all the geometrical

constraints in the problem, and the intrinsic parameters used in PSO and CMAES are shown in

Tables 3.6 and 3.7, where the typical values for electromagnetics problems are used.

The fitness function must now be developed. The primary goal is to lower the SLL of the

array by changing the interelement spacings. This provides for a relatively simple fitness function

given by

f(~x) = max (20 log |AF (θ)|) , ∀θ in sidelobe region (3.4)

where the array factor AF for a symmetric 12 element array is given by

AF (θ) =
6∑
i=1

cos (2πxi cos(θ))

=
5∑
i=1

cos (2πxi cos(θ)) + cos (2π · 2.75 cos(θ)) . (3.5)
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Table 3.7: CMAES Intrinsic Parameters for the Nonuniform Array Optimization

CMAES Parameter Values Used

λ 8
µ 4
σ0 max(~xmax − ~xmin)/3

The last equality in equation 3.5 was made due to the outer elements being set at a distance

of ±2.75λ0. With the fitness function defined in equation 3.4, the optimizer will be minimizing

the maximum SLL found in the sidelobe region. The maximum SLL represents the worst case

scenario, and this often is termed a minimax optimization which guarantees the SLL output

throughout the entire sidelobe region. It is also important to note the definition of sidelobe

region. In this problem, the sidelobe region is defined as the points not including the main lobe.

This can be more formally defined as R = {θ : 0 ≤ θ ≤ θn ∪ (180◦ − θn) ≤ θ ≤ 180◦}, where

the angle θn is defined as the first null found by decreasing from 90◦, which is the location of

the main beam. The first null seen below 90◦ and above 90◦ will be the same distance from 90◦

since the array is symmetric. These points are found by searching for the closest zero-derivative

points on the plot.

In order to make a proper comparison, two penalty functions must be incorporated for the

CMAES algorithm. This is to ensure that CMAES searches the same feasbile space F as the

PSO algorithm. Otherwise, it may be possible that CMAES will test designs that are to be

avoided. The penalty functions implemented into the CMAES algorithm are listed below.

pb(~x) =


0 if ~x ∈ S

105 + 1000‖~x− ~xmax+~xmin

2
‖2 if ~x /∈ S

(3.6a)

pc(~x) =


0 if ~x ∈ F

105 + 100
(
d1

2
+
∑5

i=2 di − 2.75
)

if ~x /∈ F
(3.6b)

The boundary penalty function pb(~x) first adds a high penalty 105 in order to encourage CMAES

to search in other areas. It also adds the sphere function which is centered at the solution space
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center. Without this term, CMAES will keep expanding its variances until the optimization

finishes. This has been confirmed experimentally, and therefore the last term has been added

onto the penalty function as recommended by [83]. This helps guide the optimizer towards the

search solution space S. The constraint penalty function pc(~x) adds a penalty 105. The other

term in pc(~x) is simply 100g1(~x), where g1(~x) is the constraint function given in equation 3.3.

Similarly to the parabolic term in equation 3.6a, this term provides some guidance towards the

feasible space F as recommended by [85]. Without this term, the optimizer has difficulty finding

the feasible solution space since the fitness function is a constant within the space ~x ∈ S∩~x /∈ F .

Just to reemphasize, the final fitness function for the CMAES optimization run was given by

fC(~x) = f(~x) + pb(~x) + pc(~x) (3.7)

where fC(~x) is the fitness function evaluated by the CMAES optimizer. This function is only

used in the CMAES optimizer and not the PSO optimizer.

The two algorithms were applied to the optimization problem, and the convergence results are

shown in Figure 3.7a and 3.7b. In 3.7c, the final array pattern is shown using the final CMAES

design parameters given in Table 3.8. There is almost no noticeable difference between the two

patterns, and this is expected since the final design values are so close. These final designs

provided excellent results and also compared well with the results shown in [75]. The maximum

SLL seen in both designs are -20.79 dB in the PSO design and -20.9 dB in the CMAES design.

A slight decrease from the results in [75] are to be expected since more elements are being used.

The final design locations are depicted in Figure 3.8, where a uniform array as a reference to

compare to the optimized design. Only the CMAES design is shown in this figure because the

designs would be right on top of each other. Since this roughly represents both final designs it

has been termed the optimized array. From this figure and Table 3.8 it can be observed that the

interelement spacing gradually increases for elements farther away from the array center. This

is similar to the idea of weighting the center element amplitudes higher than the outer elements,

which is often used in Chebyshev arrays in order to minimize the SLL to a certain level for

periodically spaced elements. Indeed, the SLL is distributed uniformly throughout the region,
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Table 3.8: Final Design Values provided by CMAES and PSO in the Nonuniform array
optimization

d1 d2 d3 d4 d5

PSO 0.37477 0.40296 0.41518 0.46320 0.58083

CMAES 0.36921 0.41676 0.41091 0.46920 0.57328
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Figure 3.7: Comparison of optimization results between PSO and CMAES for the nonuniform
array with 12 elements
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Uniform Array

Optimized Array

Figure 3.8: Final design geometry provided from CMAES. The resulting design from PSO is
almost identical to the one depicted. A 12 element uniform array with λ0/2 element spacing is
also shown in gray as a reference.

which another characteristic similar to the Chebyshev arrays [15].

Overall, it appears that both CMAES and PSO performed well and produced nearly identical

designs. It becomes a little more difficult to make any conclusive claims since each technique

found the feasible space F at different iterations. CMAES may have found this region by the

help of the penalty functions. However, CMAES still demonstrates faster convergence upon the

same optimum when using the the first iteration which test solutions in F . It rapidly minimized

the fitness, whereas PSO took some time to fine-tune the search space.
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CHAPTER 4

Optimization of Polarimetric Radar Systems

Weather radar is the secret weapon in the current meteorologist’s arsenal and is used to make

more confident predictions about the next weather events. There are many different types of

weather radar systems, each having their own unique set of advantages and abilities. In particu-

lar, the dual polarization weather radar has stirred recent interest due to its added capabilities.

By adding another linear polarization, more features of precipitation and the weather can be

detected. With these additional benefits, meteorologists can make better predictions on the

amounts of precipitation. This can also help provide hydrologists the information to make ac-

curate estimates in stream flow forecasts and for river flooding in emergency weather situations

as well as water management. Dual polarization radar has also been known to provide better

discrimination between precipitation types, such as hail and rain [96, 97]. These new potential

improvements have generated new attraction, and currently a new dual polarization weather

radar system is being built to upgrade the current systems in the U.S. [98].

A basic weather radar radiates electromagnetic pulses and measures the backscattered fields

from the precipitation as shown in Figure 4.1. Polarimetric radars are more general because

they obtain backscattered information for two different polarizations. In one system, each wave

is generated at separate times and measured at separate times, which is similar to the depiction

in Figure 4.1. Other systems can operate by transmitting both polarizations simultaneously

and receiving both backscattered signals simultaneously [96, 99]. These have often been termed

alternate and simultaneous transmit modes [99], and each have their distinct advantages and

disadvantages.

The backscattered fields from the precipitation are often characterized by the backscattering
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Figure 4.1: Illustration of the basic polarimetric weather radar used to measure properties of
the precipitation

matrix S, where

S =

Shh Shv

Svh Svv

 (4.1)

and the first and second subscript denotes the transmitted and received polarization, respectively.

Each of the matrix elements are complex numbers, and the phase and magnitude both have

important implications on the measurements. The magnitude is often used as a measure of the

radar cross sectional area and is highly correlated to the size of rain droplets. The phase can

provide information about distance traveled as well as some characteristics on the rain rate. Some

of the features that are detectable from dual polarization weather radars using this scattering

matrix are given in the following list.

Vertical Reflectivity

This is the vertically polarized backscattered power observed when the vertical polarization

is transmitted. It is often denoted by Zv = 〈|Svv|2〉.

Horizontal Reflectivity

This is the horizontally polarized backscattered power observed when the horizontal po-

larization is transmitted. It is often denoted by Zh = 〈|Shh|2〉.

Differential Reflectivity

This is the ratio of the horizontal backscattered power to the vertical backscattered power.
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This can be used to describe the elongation of the raindrops in the horizontal direction,

which directly relates to the raindrops’ size [100, 101]. It is often denoted by Zdr = Zh/Zv.

Copolar Correlation Coefficient

This is the measure of the correlation between the horizontal and vertical backscattered

fields. This parameter can be used to identify hail and mixed precipitation scenarios [102].

It is typically denoted by ρhv = |〈S∗hhSvv〉|/
√
ZhZv.

Cross-Polar Reflectivity

This is the horizontally polarized backscattered power observed when a vertically polarized

wave is transmitted. Likewise, it is also the vertically polarized backscattered power when

a horizontally polarized wave is transmitted. This is often denoted by Zx = 〈|Svh|2〉.

Each of these parameters provide some unique information about the weather, and there has

been a widespread effort to characterize weather conditions based on these parameters. Out of

this research came several models (or functions) based on previous evidence that can predict

weather conditions such as rain rate among other things. While there are a few other measure

parameters used to describe the current weather status, these are the primary ones that are of

importance to the antenna designers.

In this chapter, the focus is to investigate the best configuration of a possible array element

which would be implemented in a cylindrical array. This array configuration has been proposed

as a possible design solution for a new weather radar system to be implemented in the near

future [103]. There are several parameters of interest to the weather radar designers, and are

often termed the bias weighting factors (BWF’s). These are to be minimized in order to have

better weather prediction [104]. It can be shown that these parameters relate highly to the

cross polarization levels in the antenna, and it is not yet known whether decreasing the cross

polarization levels for specific cuts in the radiation pattern gives rise to the minimum of the

BWF’s. As will be shown in the next section, the BWF’s depend on both the amplitude and

phase of the far-field radiation, and therefore these parameters become unclear as to their best

value. As a first investigation, this will test whether an optimization of the cross polarization

levels is equivalent to the minimization of the BWF’s. Another aspect of this chapter is to test

the effectiveness of CMAES in real-world antenna applications, and both CMAES and PSO are

utilized as the optimization algorithm for these particular optimizations.
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4.1 Antennas for Polarimetric Radar Systems

When implementing these radar systems in practice, errors can occur in many different areas.

The primary assumption made when taking these radar measurements is that no coupling exists

between each polarization within the antenna and RF system. If a vertically polarized wave

was incident upon the antenna, then the expectation is that only the corresponding port would

receive the signal. However, cross-polarized radiation and coupling between the two ports are

challenges that must be overcome in order to ensure good polarization isolation. In a typical

compact antenna system with dual polarization, two lines (which could be either microstrip lines

or coaxial feeds) connect to the two different polarization ports. Obviously, if the two lines have

strong coupling then some of the signal for a particular polarization will appear at the other port,

thus creating a false presence of the other polarization. This type of coupling can be difficult to

overcome in antenna designs where the lines feeding the antenna for two different polarizations

are in close proximity.

While transmission line coupling is one challenge that must be overcome in the system design,

another important component is the radiation pattern, which can create coupling between both

polarizations even if the transmission lines are completely isolated. The terms copolar and

crosspolar fields refer to the desired and undesired polarized fields, respectively, and there are a

few different ways to define the polarization vector over the spherical space (φ, θ) [105]. There

are several different definitions of cross polarization in the literature. For example, one choice

of reference polarization is given by Ludwig’s 2nd cross polarization definition [106], and the

copolar and crosspolar fields are shown in Figure 4.2. If the main lobe of the radiation pattern

faces the X direction and the antenna has Y directed currents, the copolar reference unit vector

would be φ̂, whereas the cross polarization reference unit vector would be θ̂ for this particular

coordinate system. These vectors provide a reference direction to define the copol and crosspol

fields for a given direction (φ, θ).

The presence of cross polarized radiation can cause errors in the different weather measure-

ment parameters defined above, and one critical parameter that can be affected is the differential

reflectivity, Zdr. Since the antenna patterns are reciprocal, i.e. the receive and transmit patterns
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Figure 4.2: Ludwig’s 2nd definition of copolarized (red vectors) and cross polarized (blue
vectors) radiation from an antenna having a main lobe in the X direction with Y-directed
currents

are the same, any crosspolar radiation observed in the radiation pattern implies that leakage

will come from the undesired polarization. Investigations have been made in order to quantify

the Zdr errors associated with the isolation between the associated ports as well as the radiation

pattern. Any sort of bias present in Zdr can cause errors in the rain rate calculation. Therefore,

the Zdr bias, often denoted by δZdr, is desired to be minimized in order to alleviate any possible

errors [104]. In order to minimize this bias the following bias weighting factors (BWF)1 must be

minimized [106].

Whv =

∫
π

0

∫
π

−π
(Fhh(θ, φ))2 F ∗hh(θ, φ)F ∗hv(θ, φ) sin θdφdθ∫

π

0

∫
π

−π
|Fhh(θ, φ)|4 sin θdφdθ

(4.2a)

W4 =

∫
π

0

∫
π

−π
|Fhh(θ, φ)|2 |Fhv(θ, φ)|2 sin θdφdθ∫
π

0

∫
π

−π
|Fhh(θ, φ)|4 sin θdφdθ

(4.2b)

The bias weighting factor Whv is related to δZdr for an antenna with a cross polarization lobe

1The original formulation for Whv presented in [104] has a slightly different form than presented in this work.
However the authors had assumed that the copolar radiation would radiate with uniform phase at all the points
on the spherical space (φ, θ). In practice, this assumption does not hold true and therefore this equation was
altered per communication with Dr. Guifu Zhang.

82



Figure 4.3: Stacked patch antenna configuration for possible use in weather radar systems

that is coaxial to the copolar fields. This type of pattern is often termed a single lobe crosspolar

pattern. The bias weighting factor W4 is related to the bias in differential reflectivity due to an

antenna with four lobes in its crosspolar radiation pattern, and it is assumed that these lobes

are asymmetric in phase [104]. The terms Fhh(θ, φ) and Fhv(θ, φ) correspond to the copolar and

crosspolar radiation patterns, respectively. These formulas are also independent of the radiation

pattern normalization, and therefore a normalized pattern can be applied with the same results

as any other scaled pattern. The copolar and crosspolar radiation terms are denoted by Eco(θ, φ)

and Ex(θ, φ), respectively.

Clearly, the equations shown in equation 4.2 are dependent upon the cross polarized fields,

and BWF reduction can be achieved by reducing the total cross polarized fields seen throughout

the entire spherical space. Minimizing the overall cross polarized fields throughout the entire

radiation sphere is quite difficult and non-intuitive. In general, antenna engineers have much

more experience working with the radiation patterns and minimizing the cross polarization in the

principle cuts in the radiation pattern, i.e. φ = 0, 45◦, 90◦, 135◦. However, it is not clear whether

an optimization of the fields in these cuts would minimize the BWF’s in general, especially since

the phase of the far-field pattern is also included in the calculation. Therefore, two separate

optimizations can be compared to determine the differences in optimizing the BWF’s versus

optimizing the cross polarized radiation in the principle cuts as a first investigation. If the two

optimizations have comparable results, then this validates the principle cut method of optimizing

the fields in the principle planes to achieve a minimum for W4 and Whv.

The stacked patch antenna shown in Figure 4.3 is chosen as an example antenna due to its

possibility for low cross polarized radiation and wide bandwidth [107]. These particular antennas

are quite suitable for use as elements in the new cylindrical phased arrays proposed for use in
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Figure 4.4: Exploded view of the stacked patch used in the optimization

weather radars [103]. Note that this particular example does not achieve dual polarization as

needed in polarimetric radar, but the goal of this optimization is to minimize the crosspolar fields,

which does not require that the antenna under investigation be dual polarized. An exploded

view of the stacked patch configuration showing the layers is given in Figure 4.4. The upper and

lower substrate are chosen to be Rogers Duroid 5880 since it is commercially inexpensive, and

this substrate has a permittivity of εr = 2.2. The highest available height for this substrate was

125 mil (or 3.175mm), and this height was chosen for maximum bandwidth. In order to make

the cross polarization performance equivalent for both polarizations, the patches are chosen to

be made square, hence both sides being equal to Lu and L`. As shown in both Figures 4.3 and

4.4, a coaxial probe is connected to the middle layer a distance fd away from the edge of the

lower patch. This leaves only the lower patch length L`, the upper patch length Lu, and the feed

distance from the edge fd for the optimization.

The organization of the optimization runs is given as follows. First, both PSO and CMAES

will be applied to the stacked patch separately in order to minimize the cross polarized fields in

the main cuts as well as ensuring good impedance matching. After the optimization, the radiation

patterns and finally the BWF’s will be computed for the two optimized designs. Next, PSO and

CMAES will be applied to the same stacked patch antenna using a different fitness function
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which incorporates the BWF’s, Whv and W4. Comparisons will be made about both algorithms’

convergence, and the final design performance from both algorithms will be compared. Once all

these runs have been demonstrated, a final comparison will shed light onto possible differences

between these two different approaches to optimize the BWF’s. The last section of this chapter

will also shed light on the meaning of these integrals and suggest recommendations to antenna

engineers for future designs in weather radar applications.

4.2 Optimization of Cross Polarized Fields

4.2.1 Optimization Problem Development

The first optimization applies both PSO and CMAES to minimize the cross polarized fields in

the principle pattern cuts, as well as minimize the impedance matching of the antenna over the

required band, 2.7-3.0 GHz. The coordinate system must be properly defined in order to have

any discussion on the crosspolar fields, which is shown in Figure 4.5. In order to distinguish this

optimization from the other, this optimization will be denoted as the cross polarization fields

optimization (XPFO). This optimization will utilize the more common 3rd definition of cross

polarization by Ludwig [105], whose reference vectors are given as

îco = sin(φ)θ̂ + cos(φ)φ̂ (4.3a)

îx = cos(φ)θ̂ − sin(φ)φ̂ (4.3b)

where îco and îx are the unit vectors pointing in the copolar and the crosspolar field directions,

respectively. Note that these reference vectors are given for an antenna with y-directed currents,

as shown in Figure 4.5. The principle cuts in the radiation pattern often include the φ =

0◦, 45◦, 90◦, and 135◦ cuts. The φ = 0◦ and the φ = 90◦ cuts are considered the H-plane and

the E-plane, respectively, for this geometry and coordinate system. The cross polarization level
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Figure 4.5: Coordinate system used for measuring the crosspolar fields in the cross polarized
field optimization (XPFO)

(xpol level) for a given cut φ0 is often given as

Xp(φ0) = max
θ∈[−π,π]

(
EdB
x (θ, φ0)

)
−max

θ,φ

(
EdB
co (θ, φ)

)
(4.4)

where Xp(φ0) is the xpol level for the φ0 cut, EdB
x is the cross polarized field in dB, and EdB

co

is the copolar fields in dB. The angle θ is applied over the range [−π, π], which is typically not

the range set for θ in the spherical coordinate system. This is purely a shorthand notation for

denoting a full circular cut in the spherical space with the more common notation (φ, θ) and

(φ+ π, θ),∀θ ∈ [0, π]. These patterns are calculated for only one specific frequency, and in order

to represent the fields over the desired bandwidth (2.7 - 3.0 GHz), these fields are computed for

only 2.85 GHz.

Both the xpol levels in the principle cuts and the impedance matching are the primary

concerns for the final antenna design. In order to incorporate these features into the optimization,

they must be included in the fitness function, which can be written as

f(~x) = βmax
f∈F

(
SdB11

)
+ α1Xp(0

◦) + 2α2Xp(45◦) + α3Xp(90◦) (4.5)
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Table 4.1: Average Values for Design Objectives

Parameter Average Value

max (S11) -10 dB

Xp(0
◦) -15 dB

Xp(45◦) -12.5 dB

Xp(90◦) -25 dB

where SdB11 represents the reflection coefficient in dB, and f ∈ F represents a frequency f within

the set F = {2.7 GHz - 3.0 GHz}. The cut φ = 135◦ was not included in the fitness function,

because Xp(45◦) = Xp(135◦) due to the symmetry of the antenna. Therefore the weight has

been doubled in equation 4.7. The next step is to find the best weighting coefficients αi. To

accomplish this, one can use either a priori knowledge of the average values observed or assume

no prior knowledge and weight the coefficients by their values desired (e.g. S11 = −10 dB).

Since stacked patch antennas are well documented in literature, some a priori knowledge was

used to determine these coefficients. Other researchers within the UCLA Antenna Research,

Analysis, and Measurement (ARAM) lab had also conducted prior investigations with stacked

patch antennas and provided recommendations as to their average value observed [108], which

are shown in Table 4.1. Since the crosspolar terms are somewhat dependent, the coefficients are

set to α1 = α2 = α3 = 1. The concern when weighting the objectives are that one extremely

different parameter may have a very low/high value in comparison to the others. This also comes

from the argument that there are only two objectives: lower xpol level in principle cuts and lower

the impedance matching. The summation of the xpol levels represents a scaled averaging of the

four cuts. Therefore, one can equate the averages such that these two objectives have equal

weight in the fitness function. This can be done by writing

β〈max
f∈F

(
SdB11

)
〉 = α1〈Xp(0

◦)〉+ 2α2〈Xp(45◦)〉+ α3〈Xp(90◦)〉 (4.6)

where the 〈·〉 implies the average value of the parameter within. With the values given in Table
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4.1 and the previously assigned weights αi, one can find the following relation.

−10β = −25− 2(12.5)− 15→ β ≈ 6 (4.7)

Therefore this weighted averaging provides the final weights needed in the fitness function. Now

the fitness function can be written in its entirety.

f(~x) = 6 max
f∈F

(
SdB11

)
+Xp(0

◦) + 2Xp(45◦) +Xp(90◦) (4.8)

This fitness function is computed using full wave electromagnetic simulation tools, and HFSS

was chosen in particular to simulate this antenna. This allows a full characterization of the

antenna performance, whose results should be comparable to the results observed in a practical

implementation.

With the fitness function now defined, the only components left to define are the solution

space and any constraints required. Due to the design simplicity, the solution space is relatively

easy to define, and the upper and lower bounds are

Lu = [10mm, 60mm] (4.9a)

L` = [10mm, 60mm] (4.9b)

fd = [1mm, 30mm] (4.9c)

where the upper limits for each patch length were chosen to be slightly smaller than the size of

the Duroid substrate. The lower limits were chosen as a compromise between a limited and wide

solution space. The lower limits for fd was set to 1mm in order to avoid a feed that crossed the

patch edge due to the finite radius of the feed. Symmetry of the patch was exploited in order to

limit the solution space in terms of the upper limit of fd, and therefore the limit was set to half

of the largest length possible of the patch. This does not always guarantee that the feed will be
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Table 4.2: PSO Intrinsic Parameters for XPFO

PSO Parameter Values Used

c1 2.0
c2 2.0

Swarm Size 6
∆t 1.0

Max Iterations (imax) 500
Boundary Condition Invisible

wk 0.9− 0.5
(

i
imax

)
~vmax

1
2

(~xmax − ~xmin)

Table 4.3: CMAES Intrinsic Parameters for XPFO

CMAES Parameter Values Used

λ 7
µ 3
σ0 max(~xmax − ~xmin)/3

connected to the lower patch, and therefore an additional constraint

fd ≤
L`
2

(4.10)

must be enforced in order to keep the feed within the the patch as well as avoid similar solutions

coming from symmetry. This concludes the optimization formulation and all necessary aspects

have been defined.

4.2.2 PSO and CMAES Results and Comparison

Both PSO and CMAES are now applied to the optimization problem described in the previous

section. The original RPSO algorithm was used with the intrinsic algorithm parameters shown

in Table 4.2. All the recommended values given in Section 2.1.1 were used for this run. The

CMAES algorithm described in Section 2.2 was also applied to this optimization problem for

the sake of comparison in a real-world application utilizing a full-wave electromagnetic solver.

This algorithm also utilized the recommended parameters given in Section 2.2 and are shown in
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Table 4.3. In order to apply the CMAES algorithm to the stacked patch, penalty functions also

had to be provided. The functions

pc(~x) =


0 if ~x ∈ F

105 if ~x /∈ F
(4.11a)

pb(~x) =


0 if ~x ∈ S

105 + 100‖~x− ~xmax+~xmin

2
‖ if ~x /∈ S

(4.11b)

were applied in order to force the optimizer towards the feasible region F . Note that this

constraint penalty function does not incorporate any of the constraints as functions. This is due

to the fact that this is a rather simple constrained optimization problem with a minimal number of

constraints. Therefore a complicated constraint penalty function was unnecessary. The CMAES

algorithm had also been tested without the penalty functions, and the algorithm failed to find

F for every run tested. This goes to show that the penalty functions are a requirement in the

CMAES algorithm. The final fitness functions for the CMAES and PSO algorithm are given by

fC(~x) = f(~x) + pc(~x) + pb(~x) (4.12a)

fP (~x) = f(~x) + pc(~x) (4.12b)

where fC(~x) is the fitness function optimized by CMAES and the function fP (~x) is the fitness

function optimized by the PSO algorithm. Note that the constraint penalty equation had to be

enforced in order to ensure that the PSO algorithm would avoid the infeasible region I. Now the

PSO algorithm only requires the use of the constraint penalty function because it accounts for

the solution space boundaries by its boundary conditions. The CMAES algorithm however must

incorporate the boundary penalty function because it is an unbounded optimization algorithm,

as discussed in Section 2.3. The functions fC(~x) and fP (~x) represent the implemented fitness

function optimized by the PSO and CMAES algorithms, respectively.

Both algorithms demonstrated good results in their separate optimizations. The convergence

plots for both the PSO and the CMAES runs are shown in Figure 4.6. Both algorithms showed
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Table 4.4: Final Design Values provided by CMAES and PSO in the XPFO

L` (mm) Lu (mm) fd (mm)

PSO 31.812 30.121 6.085

CMAES 31.877 29.965 5.977

0 100 200 300 400 500
−200

−150

−100

−50

0

Iteration

F
itn

es
s 

E
va

lu
at

io
n

 

 

Global Best Fitness
Average Fitness

(a) PSO Convergence

0 100 200 300 400 500
−200

−150

−100

−50

0

Iteration

F
itn

es
s 

E
va

lu
at

io
n

 

 

Global Best Fitness
Average Fitness

(b) CMAES Convergence

Figure 4.6: Convergence for the XPFO problem

rapid convergence upon the global optima, although the CMAES algorithm found its final design

slightly faster than PSO around the 100th iteration. PSO found a good design (not the final)

by the 140th iteration which demonstrated comparable performance to the final design. The

final design values given by both optimization runs are given in Table 4.4. Their affinity is

fairly remarkable, and the fact that two completely different algorithms found a similar solution

reinforces the global optimality of the design.

The antenna performance should also be shown in order to make the final comparison between

the PSO and the CMAES optimization runs. The final fitness values were approximately -189.2

and -189.0 for the PSO and the CMAES algorithms, respectively. Therefore, the fitness for

only the PSO design will be demonstrated due to their similarities. The impedance matching is

shown for the final PSO design in Figure 4.7. The shaded region highlights the frequency band

of interest, namely 2.7-3.0 GHz. The S11 response of the final design demonstrates satisfactory

performance (S11 ≤ −10 dB) in the region of interest. In a stacked patch antenna, the wideband

performance is achieved by the addition of another coupled patch above the primary driven
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Table 4.5: Pattern Characteristics of the XPFO Final Design

Parameter Observed value

Directivity 7.97 dB

Max Xpol -16.8 dB

Whv -33.39 dB

W4 -19.75 dB

patch, and the dual resonance feature in the S11 response is expected. By introducing this

coupled patch, one can increase the overall impedance bandwidth.

The other results of interest are the radiation patterns, which are plotted in Figure 4.8.

The patterns observed are fairly typical of rectangular patch antennas, with most of the energy

propagating towards the +z direction. Symmetrical patterns are also observed for φ = 0, and

the φ = 45◦ and the φ = 135◦ patterns are the same due to the patch symmetry. Negligible xpol

levels are observed for the E-plane (φ = 90◦) which is common because of typical geometrical

symmetry seen in stacked patch designs. The maximum xpol level is observed in the φ = 45◦, 135◦

planes, which was observed to be roughly -16.8 dB lower than the maximum directivity in the

boresight direction (θ = 0, φ = 0). Other various radiation characteristics of the final design

are listed in Table 4.5. The BWF’s were also calculated for the final antenna design given, and

their values are shown in Table 4.5. Note that the BWF’s were computed using Ludwig’s second

definition of cross polarized radiation, as shown in Figure 4.2. The coordinate system shown

in Figure 4.9 was used to compute them rather than the coordinate system shown in Figure

4.5. The values were computed using equations 4.2a and 4.2b and were converted into dB using

10 log |Whv| and 10 log |W4|.
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Figure 4.7: S11 response for the final PSO design (similar characteristics are observed with
the CMAES design)
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(b) φ = 45◦
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(c) φ = 90◦
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Figure 4.8: Radiation patterns of the final optimized stacked patch antenna design in the
principle planes
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4.3 Direct Optimization of Bias Weighting Factors

4.3.1 Optimization Problem Development

While the optimization of the cross polarization can lead to good designs providing a lower Whv

and W4 in general, it is unclear whether these final designs provide the lowest values possible.

Therefore, a comparison is made by optimizing the same stacked patch antenna as the previous

optimizations with a different fitness function that focuses on the BWF’s. This optimization

is denoted as the Bias Weighting Factor Optimization (BWFO). The optimization has many

identical characteristics as the previous optimization, and therefore it would be unnecessary to

re-explain each similar characteristic. The boundary conditions and the constraints are kept the

same and are listed below for convenience.

Lu = [10mm, 60mm] (4.13a)

L` = [10mm, 60mm] (4.13b)

fd = [1mm, 30mm] (4.13c)

fd ≤
L`
2

(4.14)

The primary difference is in the fitness function, which must incorporate the BWF’s in some

manner in order for the optimizer to distinguish designs with better BWF performance. The

impedance matching must also be included in order to ensure good port performance. This can

be accomplished by incorporating both of these objectives in a weighted fitness function having

multiple objectives. Using the weighted objective approach, one can write the fitness function

as

f(~x) = βmax
f∈F

(
SdB11

)
+ α110 log |Whv|+ α210 log |W4| (4.15)

where SdB11 is in dB form while the BWF’s, Whv and W4, are on a magnitude scale. Note that

94



10 log(·) is applied to the BWF’s since they represent a power-like value [106]. It should also be

noted that a stacked patch antenna is often classified as an antenna having a four lobe crosspolar

pattern, which would imply that onlyW4 is applicable to this antenna since theoreticallyWhv → 0

for antennas with these asymmetries. However, this is not the case with practical realizations of a

stacked patch antenna, and even simulations will reflect an asymmetric crosspolar pattern which

will have some finite value for Whv. Both parameters are equally important as an objective of

the optimization. Therefore, both parameters should be used to quantify the cross polarization

performance of the antenna in relation to the differential reflectivity bias δZdr, and both are

incorporated into the fitness function as shown in equation 4.15.

The next item to be addressed is the proper weighting of each objective in order that the op-

timizer minimize each one equally. A similar approach to the average weight equalization shown

in the previous section is used to weight each of these parameters. The average values expected

of each of these parameters for typical designs are shown in Table 4.6 [108]. These average values

Table 4.6: Average Values for Design Objectives in the BWFO runs

Parameter Average Value

max (S11) -10 dB

10 log |Whv| -30 dB

10 log |W4| -20 dB

provide some rough estimate on the numerical values to be expected with each parameter. These

values may be somewhat different than the actual observation from the optimization, but this

provides a systematic weighting procedure based on a small amount of prior experience. With

these average values observed, the weights can be found by

β〈max
f∈F

(
SdB11

)
〉 = α1〈10 log |Whv|〉 = α2〈10 log |W4|〉 (4.16)

where the average values 〈·〉 are equated for each parameter. There are an infinite number of

ways to solve these equations, and the value β is arbitrarily set to β = 1. With this, the other

two parameters are found to be α1 = 1/3 and α2 = 1/2. This now allows each parameter to be
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Figure 4.9: Coordinate system used for determining the crosspolar fields in the bias weighting
factor optimization (BWFO)

equally weighted in the fitness function, which can be fully written as

f(~x) = max
f∈F

(
SdB11

)
+

1

3
10 log |Whv|+

1

2
10 log |W4| (4.17)

Every design to be tested is simulated within a full electromagnetic solver, HFSS, and the

radiated field data is extracted in order to finally evaluate the integrals seen in equations 4.2a

and 4.2b. For these parameters, Ludwig’s second definition of cross polarization was used to

define the copolar and crosspolar reference vectors. This however requires a slightly different

coordinate system, which is shown in Figure 4.9. The choice of coordinate system is somewhat

arbitrary, and simplifications can be made if a proper choice is made. By using the coordinate

system in Figure 4.9, the reference vectors can be easily set to

îco = φ̂ (4.18a)

îx = θ̂ (4.18b)

using Ludwig’s 2nd definition of cross polarization [105]. One last item that must be addressed is

the penalty function used in the CMAES optimization. These are also identical to the previous
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optimization and can be written as

pc(~x) =


0 if ~x ∈ F

105 if ~x /∈ F
(4.19a)

pb(~x) =


0 if ~x ∈ S

105 + 100‖~x− ~xmax+~xmin

2
‖ if ~x /∈ S

(4.19b)

where the final fitness function for CMAES is given as

fC(~x) = f(~x) + pc(~x) + pb(~x) (4.20)

where the function fC(~x) represents the fitness function which is optimized by the CMAES

algorithm. While the CMAES algorithm optimizes the given fitness function fC(~x), the PSO

algorithm optimizes the function

fP (~x) = f(~x) + pc(~x) (4.21)

in a separate optimization, where fP (~x) is the implemented fitness function optimized by PSO.

As discussed in Section 2.3, the PSO algorithm can exclude the boundary penalty function pb(~x)

because it already incorporates the boundary conditions. With this all necessary aspects have

been properly formulated and the two algorithms can be applied to the optimization problem.

4.3.2 PSO and CMAES Results and Comparison

The fitness function shown in the previous section incorporates the BWF parameters which are

non-intuitive parameters that may have multiple local optima and whose global optimum is

not easily described. Therefore, this represents a difficult optimization in which the fitness can

be highly nonlinear and multimodal. The standard PSO technique was applied to the BWF

optimization problem with no further modifications to the algorithm described in Section 2.1.1.

The parameters for the PSO algorithm used in the BWFO problem are shown in Table 4.7. The
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Table 4.7: PSO Intrinsic Parameters for BWFO

PSO Parameter Values Used

c1 2.0
c2 2.0

Swarm Size 6
∆t 1.0

Max Iterations (imax) 500
Boundary Condition Invisible

wk 0.9− 0.5
(

i
imax

)
~vmax

1
2

(~xmax − ~xmin)

Table 4.8: CMAES Intrinsic Parameters for BWFO

CMAES Parameter Values Used

λ 7
µ 3
σ0 max(~xmax − ~xmin)/3

CMAES algorithm discussed in Section 2.2 was also applied to this problem for comparative

purposes, and its parameters used for this problem are shown in Table 4.8.

PSO and CMAES demonstrated good convergence for the fitness function given in the pre-

vious section. Their convergence results are shown in Figure 4.10. Both algorithms started with

roughly the same fitness value, and both were able to bring the fitness down to approximately

f(~x) = −35, which is a considerable improvement over the initial points tested. The CMAES

algorithm again seems to optimize the function slightly faster than PSO, but some interesting

features can also be observed from these convergence plots. First, a considerable drop in fit-

ness is observed late in the optimization run. This can either imply that the fitness function

is ill-conditioned and the algorithm is converging slowly towards the optimum, or it can imply

that the fitness function is sensitive to small changes in the design variables. It could also imply

that the fitness function is discontinuous, but this is not the case since each parameter used in

the fitness function and their linear combinations behave fairly well with respect to the design

variables. It turns out that one of the BWF’s is quite sensitive to any small changes in the design

variables, and this can cause sudden changes in fitness seen in the convergence plots. More on
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Table 4.9: Final Design Values provided by CMAES and PSO in the BWFO

L` (mm) Lu (mm) fd (mm)

PSO 31.885 30.056 5.630

CMAES 31.994 30.072 3.687
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Figure 4.10: Convergence for the BWFO problem

this will be explained in the following section. This also explains why the average fitness jumps

up and down for the CMAES optimization. The neighborhood which has similar fitness to the

global best seen in the CMAES optimization is small, therefore the average fitness jumps up and

down because the algorithm can generate points outside of the neighborhood.

The final design values are shown in Table 4.9. Both have fairly comparable values, and

strong similarity can be seen for the lengths of the two patches. This is expected because the

resonances of the patch are strongly correlated to the patch lengths, and the resonances must be

properly placed in order to obtain the wideband response required for this application. The feed

distance from the edge shows some discrepancies between the two final designs and most likely

is the cause of the difference of f(~xcmaes) = −36.21 versus f(~xpso) = −35.50 for the CMAES

and PSO final designs, respectively. Since there are fairly substantial differences between both

designs, the design performance of both final designs will be shown for completeness.

The final design performance is summarized in Figures 4.11 and 4.12. The S11 response for

the final PSO and CMAES designs are plotted in Figure 4.11, and the shaded region represents
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Figure 4.11: S11 response for the final PSO and CMAES designs
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Figure 4.12: Radiation patterns of the final optimized stacked patch antenna designs in the
principle planes
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Table 4.10: Pattern Characteristics of the BWFO Final Designs

Parameter PSO value CMAES value

Directivity 8.03 dB 8.02 dB

Max Xpol -17.03 dB -17.6 dB

Whv -40.49 dB -51.25 dB

W4 -19.90 dB -20.33 dB

the frequency band of interest, 2.7-3.0 GHz. Some fairly significant differences are observed

between the two designs in the curves, and this can be attributed to the change in feed probe

location in the CMAES design. Even slight shifts in the probe can alter the impedance match

for a given frequency. The CMAES design is closer to the probe edge than the PSO final design,

which can indicate that a higher input impedance is observed at the antenna input port due

to the currents approaching zero near the edge. The reason that CMAES pinpointed this final

design as opposed to the design found by PSO is that the Whv parameter was significantly

larger in magnitude compared to the final PSO design. These values for Whv and W4 are

shown in Table 4.10 along with other pattern characteristics. As can be seen from Table 4.10,

Whv = −51.25 dB for the CMAES in comparison to Whv = −40.49 dB for the PSO final design.

This decrease in Whv outweighed the advantage of the lower S11 observed by the PSO design.

This demonstrates one of the disadvantages of a single valued weighted-objective fitness function,

where one objective can outweigh another important objective. This is also why the weights can

be critical in distinguishing some designs from others. One way to avoid this is through the

implementation of max(Whv,−35) in the fitness function in order to cap the value at a certain

minimum number. However, this can further complicate the fitness function development.

Overall, similar characteristics between the two final designs are still observed in the radiation

patterns shown in Figure 4.12. As shown in the table, the directivities are nearly identical. The

copolar radiation patterns also show strong similarities. These radiation patterns in Figure 4.12

use Ludwig’s 3rd definition of cross polarization, and the coordinate system shown in Figure 4.5
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is used to create the radiation pattern cuts. There are some slight differences observed in the

crosspolar radiation including their maximum values. The difference between the maximum xpol

levels account for the differences in the BWF’s, where a lower W4 and Whv are observed for the

CMAES design. While lower xpol levels can decrease these parameters in general, the phase of

the fields can also be critical in their reduction, and therefore this is not the only cause for their

decrease.

As demonstrated from the results, both algorithms performed well in this optimization run.

Both PSO and CMAES found a good solution that either satisfied or nearly satisfied the criterion.

CMAES found a design that did not meet the -10 dB criterion for impedance matching within

the desired frequency band, however it did discover a design with better overall fitness that

provided a better Whv and W4. This may have been due to CMAES better ability to finely

search the local space once the optimization shifts towards a local one. All in all, similar results

are demonstrated by both algorithms on the optimization of the BWF’s.

4.4 Some Final Comparisons and Discussion

In the previous sections, some comparison was made between the two different algorithms, PSO

and CMAES. However a side by side comparison between the two fitness function approaches

has not been fully shown. This final comparison provides some insight as to the best approach to

optimize and design antennas for weather radar applications in the future with regards to mini-

mizing their error. This error comes from an imperfect isolation between the two polarizations

which is quantified as δZdr, which is the error in the differential reflectivity Zdr. The antenna

performance is related to the δZdr by the bias weighting factors

Whv =

∫
π

0

∫
π

−π
(Fhh(θ, φ))2 F ∗hh(θ, φ)F ∗hv(θ, φ) sin θdφdθ∫

π

0

∫
π

−π
|Fhh(θ, φ)|4 sin θdφdθ

(4.22a)

W4 =

∫
π

0

∫
π

−π
|Fhh(θ, φ)|2 |Fhv(θ, φ)|2 sin θdφdθ∫
π

0

∫
π

−π
|Fhh(θ, φ)|4 sin θdφdθ

(4.22b)
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Table 4.11: Final Design Values provided by PSO in the Optimization Runs

L` (mm) Lu (mm) fd (mm)

XPFO 31.812 30.121 6.085

BWFO 31.885 30.056 5.630

Table 4.12: Pattern Characteristics of the BWFO Final Designs

Parameter BWFO XPFO

Directivity 8.03 dB 7.97 dB

Max Xpol -17.03 dB -16.8 dB

Whv -40.49 dB -33.39 dB

W4 -19.90 dB -19.75 dB

where the functions Fhh(θ, φ) and the Fhv(θ, φ) represent the copolar and crosspolar fields ra-

diated by the antenna. These formulas can be fairly complex in nature, and it is difficult to

pinpoint the best way to minimize these parameters. Our approach was to optimize the antenna

with two different objectives in two separate optimizations as a first investigation.

The first optimization was designed to minimize the crosspolar radiation in the principle cuts.

This mimics an antenna designer trying to minimize the fields in these cuts, which is typically

done by antenna designers when minimizing the cross polarization. The second optimization

was designed to directly minimize the BWF’s, and the BWF’s were incorporated into the fitness

function. For simplicity sake, only the final designs given by PSO will be compared. Their final

design variable results are shown in Table 4.11. A comparison of their S11 response and their

radiation patterns are shown in Figures 4.13 and 4.14.

The final design values in Table 4.11 show a fairly strong agreement, although a slight change

in the feed distance fd is observed. Therefore similar input impedance performance is expected

as demonstrated in Figure 4.13. The shaded region shows the region of frequency operation
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Figure 4.13: S11 response for the final PSO and CMAES designs
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Figure 4.14: Comparison of the radiation patterns at 2.85 GHz for the final optimized stacked
patch antenna designs of the two different optimization approaches
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intended for the radar system, which is located at 2.7 - 3.0 GHz. Both optimization runs show

satisfactory S11 (≤ −10 dB) in this region of interest. The radiation patterns are plotted in

Figure 4.14 using Ludwig’s 3rd definition of cross polarization as well as the coordinate system

shown in Figure 4.5. Both the copolar and the crosspolar fields show very similar radiation

patterns, which is somewhat expected since their final design values are so similar. This affinity

leads to a fairly comparable W4 for their final design, as shown in Table 4.12. However their Whv

shows some significant discrepancies, therefore a closer investigation into these integrals may be

needed in order to explain these similarities and differences.

One can start by rewriting the terms in the integrals for the BWF’s in a more understandable

manner. The W4 integral remains the same as given by

W4 =

∫
π

0

∫
π

−π
|Fhh(θ, φ)|2 |Fhv(θ, φ)|2 sin θdφdθ∫
π

0

∫
π

−π
|Fhh(θ, φ)|4 sin θdφdθ

(4.23)

and for Whv, the integral can be written as

Whv =

∫
π

0

∫
π

−π
(Fhh(θ, φ))2 F ∗hh(θ, φ)F ∗hv(θ, φ) sin θdφdθ∫

π

0

∫
π

−π
|Fhh(θ, φ)|4 sin θdφdθ

=

∫
π

0

∫
π

−π
|Fhh(θ, φ)|3 |Fhv(θ, φ)| ejΦhh(θ,φ)−jΦhv(θ,φ) sin θdφdθ∫

π

0

∫
π

−π
|Fhh(θ, φ)|4 sin θdφdθ

(4.24)

where Φhh(θ, φ) and Φhv(θ, φ) are the phase of the copolar and crosspolar radiation patterns for

a given point (θ, φ) in the spherical space. With the terms described under the integral by their

phase and magnitude, one can begin to explain the observations made in the previous values for

the BWF’s. We note that the W4 did not change very drastically, and this is expected because

the terms under the integral are only dependent on the field magnitude. As shown in Figure

4.14, the magnitudes between the two radiation patterns are quite similar, and therefore no large

change should be expected in the integral. For the Whv integral, the phase comes into the picture,

and a slight change in phase can account for big changes in Whv, even though the magnitudes
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are relatively similar. The integral can be further expanded into the numerical summation

Whv =

∫
π

0

∫
π

−π
|Fhh(θ, φ)|3 |Fhv(θ, φ)| ejΦhh(θ,φ)−jΦhv(θ,φ) sin θdφdθ∫

π

0

∫
π

−π
|Fhh(θ, φ)|4 sin θdφdθ

≈
∑M

i

∑N
j |Fhh(θ, φ)|3 |Fhv(θ, φ)| ejΦhh(θ,φ)−jΦhv(θ,φ) sin θ∑M

i

∑N
j |Fhh(θ, φ)|4 sin θ

(4.25)

assuming that the same ∆φ and ∆θ was used for both integrals in the numerator and denom-

inator. Now in order to find the integral that accounts for the large change, both integrals are

recalculated for the two different cases. For the XPF optimization, the magnitude of the integral

can be calculated by

∣∣∣∣∣
M∑
i

N∑
j

|Fhh(θ, φ)|3 |Fhv(θ, φ)| ejΦhh(θ,φ)−jΦhv(θ,φ) sin θ

∣∣∣∣∣ ≈ 26.76 (4.26a)

M∑
i

N∑
j

|Fhh(θ, φ)|4 sin θ ≈ 5.00× 104 (4.26b)

where (θ, φ) are sampled over the entire spherical space. For the BWF optimization, the integral

can be calculated by

∣∣∣∣∣
M∑
i

N∑
j

|Fhh(θ, φ)|3 |Fhv(θ, φ)| ejΦhh(θ,φ)−jΦhv(θ,φ) sin θ

∣∣∣∣∣ ≈ 4.44 (4.27a)

M∑
i

N∑
j

|Fhh(θ, φ)|4 sin θ ≈ 4.98× 104 (4.27b)

One can see from the following two calculations that the integral in the denominator is nearly

identical between the two optimized designs. This is expected because only the magnitude is

used, and the copolar magnitudes were nearly identical between the two design radiation patterns.

The integral in the numerator, however, shows an increase by almost a full magnitude for the

XPFO case. Therefore, this integral accounts for the drastic change in the Whv, and explains

why such a high discrepancy between the designs exists. The phase must also be taken into

account whenever considering these integrals, and any slight changes in the phase can contribute
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to a large increase in Whv.

This investigation has shed some insight on the behavior of the two bias weighting factors,

W4 and Whv. Both of these terms help predict the error that will be encountered for the de-

signed antenna. Among the two factors, W4 appears to be more stable, meaning that any slight

deviations in the fields will not cause large changes in the end result. The factor Whv appears

to be highly dependent on both the phase and magnitude of the fields. This implies that there

may be a minimum value for this parameter where its value does not have any meaning. For

instance, if a Whv of -50 dB is predicted by simulation, there is an extremely low probability

that a measured result would show a similar value. This is due to the fact that both simulation

and measurement are prone to errors in both the magnitude and phase. If only a slight variation

in the phase (or in the magnitude) causes such as a large change, then it is reasonable to expect

that a large change will occur between the simulation and measurement due to possible varia-

tions observed between the two results. Ultimately both parameters are important in the final

prediction of the weather radar performance, and caution must be exercised when predicting the

antenna performance based on the Whv parameter for very small values.

As a final note, it should be seen that both optimizations produced fairly similar results,

and this implies that an optimization of the crosspolar fields seems to place the design in the

right direction for best BWF performance. While this may be the case for small aperture

antennas, such as patch antennas, more investigation must be conducted for antennas with a

larger aperture. These antennas can have much more variation in their crosspolar and copolar

fields, and therefore an optimization of the crosspolar fields in their principle cuts may not be

sufficient to guarantee low values for Whv and W4. However, for smaller aperture antennas with

slowly changing field magnitudes, the crosspolar field optimization is the most natural approach,

and this procedure can be used as a first order technique for minimizing the BWF’s.
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CHAPTER 5

Smooth Contour Septums for High Power Microwave

Systems

Circular polarized (CP) radiation can be highly desirable for many antenna applications. A

circularly polarized wave can be decomposed into two different linear polarizations with a 90◦

phase shift, and this alleviates losses due to improper antenna orientation and fading when using

one CP antenna with another linear antenna. If one linear polarization experiences more fading,

the system can still rely on the link provided by the other linear polarization. Some common

examples of systems providing coverage with CP antennas are GPS [109, 110] and handset

antennas for communications [111]. Circular polarized horn antenna systems are another class

of CP antennas which are widely used as feeds in reflector antenna systems. Their applications

include satellite communications, deep-space telemetry, and radio astronomy. The feed antennas

are often the most restricting component of the whole reflector antenna system, and proper

design can lead to good performance. Therefore they are both an important component and a

difficult one to design.

The metallic horn antenna is fed by a metallic waveguide whose cross-section is usually

circular or rectangular, having the appearance of a circular or rectangular pipe. In their most

typical form, these horn antennas produce a linear polarization, and therefore some system

complexity must be added in order to create a CP horn antenna. Several techniques that

are used in the industry include an orthogonal mode transducer (OMT) which is a three port

device capable of controlling the TE10 and the TE01 modes independently in a connected square

waveguide. This system can suffer from design complexity due to the size of the OMT and

the connected microwave network [112, 113]. Another technique that has gained popularity in
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Figure 5.1: Reflector antenna system using circular polarization duplex

industry is the use of a septum, as shown in Figure 5.2, which creates a circularly polarized

wave from a linearly polarized (LP) wave. Depending on the orientation of the septum, one

port will produce right-handed circular polarization (RHCP) at the output port if excited, and

left-handed circular polarization (LHCP) will be generated when the other port is excited. These

microwave devices provide a compact design solution for use in two way communication systems.

Many systems can be polarization-duplexed, e.g. the transmission are sent as RHCP waves and

the received signal is LHCP waves [114] as shown in Figure 5.1. One of the first septum designs

had used a slanted septum in order to achieve a CP wave [115]. The stepped septum as seen

in Figure 5.2 was later introduced [116] and is currently the standard for most horn antennas.

Excellent circularity, impedance matching, and isolation can be achieved with these types of

structures [116, 117].

Our goal in this chapter is to optimize the septum structure for good impedance matching

and axial ratio with Particle Swarm Optimization in order to explore more possible capabilities

with the septum. We then focus on smoothed septums which eliminate the sharp corners of the
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Figure 5.2: Septum polarizer within a circular waveguide cross section

step septum. These sharp corners inevitably cause air breakdown for high power applications

and are preferred to be avoided. The smoothing is accomplished through the use of the sigmoid

function, which is also formally introduced. The sigmoid septum is then optimized using PSO

for good impedance matching and axial ratio over narrow and wide bandwidths.

5.1 Septum Design and Current Issues

The stepped septum design as shown in Figure 5.2 has seen widespread use in many different

applications, and it is most commonly placed in designs using square waveguide [116] or circular

waveguide [117]. In order to obtain a CP wave, one only excites fields in the upper or lower

portion of the waveguide. This can be accomplished using waveguide to coaxial adapters, which

are not shown in Figure 5.2 but are still a critical component in the design. The modes excited

in either the top or bottom portion of the waveguide can be decomposed into an even and odd

mode. In [116] this even-mode/odd-mode analysis was shown, and it provides an understanding

on how each mode (TE10 and TE01) is generated by the excitation of port 1 or 2. The even

mode excitation is responsible for the generation of the TE10 mode for a rectangular waveguide,

while the odd mode excitation creates the TE01 mode in the rectangular waveguide. A graphic

visualization of these even/odd modes for the rectangular waveguide was presented using HFSS

[118]. It was demonstrated using HFSS that an even mode would produce a vertically polarized
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Figure 5.3: Decomposition of the port 1 and port 2 excitation into the even and odd modes,
which are responsible for generating the TE11 as well as the rotated TE′11, respectively

wave while the odd mode would create a horizontally polarized field. For a circular waveguide the

mode distribution will be different than the rectangular waveguide. In this type of cross section,

the dominant mode is the TE11 mode, and this mode can exist with any arbitrary rotation

since the waveguide is circularly symmetric [63]. Just as with the rectangular waveguide, the

circular waveguide septum has its even and odd modes as shown in Figure 5.3, which generate

a TE11 mode whose vectors are normal to the septum and a rotated TE11 mode whose vectors

are parallel to the septum, respectively. We will designated this rotated TE11 mode as TE′11 for

dinstinction later on.

The key with septums is that the steps (or contour) are designed such that both modes have

equal magnitudes and are 90◦ out of phase. With these characteristics a circularly polarized

wave is created, and the septum can be easily connected to a horn antenna in order to provide

CP radiation. However, the design of the step or the contour is not as straightforward. In [116]

a stepped septum design with good impedance matching performance was found through trial-

and-error, and a dielectric loading block was placed in the waveguide in order to compensate for

non-orthogonal phase differences over a wide bandwidth. Albertsen and Skov-Madsen analyzed

compact septums with the Wiener-Hopf technique combined with Galerkin’s method [119]. In

order to achieve an orthogonal phase difference, they introduced notches into the plate rather
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than using a stepped approach, which allowed a more compact design. However, this design only

showed good results for narrowband applications. Others have investigated thick stepped sep-

tums and stepped-thickness stepped septums using Evolution Strategies [120]. In their analysis

they had used a mode-matching technique orginally proposed in [121], which splits the septum

into sections of ridge waveguide and applies mode-matching to each section. With their analysis

and investigation, they proposed some guidelines for the design of wideband septum designs.

Dielectric septums have also been recently introduced as another alternative to the conventional

metallic septum [122]. A few other notable projects using septums to achieve good axial ratio

performance can be found in [114, 123, 117, 124].

While these designs have shown excellent results, one main disadvantage in their design is the

use of sharp corners for the stepped septums. Since a sharp corner (and also discontinuities in

curvature) can give rise to field singularities, the power handling capabilities of these devices can

be severly limited. Much of the research in High Power Microwave (HPM) systems has focused

on other design aspects instead of the septum. As a first step to the investigation, a smooth

contour septum using the sigmoid function is proposed for possible use. The septum will be

optimized for impedance matching and axial ratio performance in order to determine whether a

smooth contour is possible for septum applications. Our investigation also wanted to determine

if there are other features that can be exploited from the curved septums in comparison to the

traditional stepped septums.

The septum design under investigation is shown in Figure 5.4, which is a scaled version of the

septum design seen in [117] for operation in C-band at 5.8 GHz. The first section (not shown) is a

waveguide to coaxial adapter used to connect a 50 Ohm coaxial line to the waveguide. The next

section is the septum, which is either a stepped septum or a sigmoid septum. The last section

is the circular horn used to radiate the CP fields. Now, there are several ways to approach

the design problem. One can use a modular approach where the waveguide to coaxial adapter,

septum, and horn antenna are designed separately, and this can allow for a faster optimization

since each piece can be designed separately. However, electromagnetic coupling between each

component is not incorporated in the approach, and these effects may take away from good

performance in the final design. The other approach would be to include the entire antenna
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Figure 5.4: Septum and circular horn design; the design to the left uses the sigmoid function
and the one to the right uses a stepped septum

structure in order to account for any coupling between elements. While this may take a longer

amount of time to optimize, the final design will be ready immediately after the optimization is

finished.

We shall proceed by introducing the sigmoid function and some its various properties of

interest. Once the sigmoid contour is described, then the optimization problem will be properly

formulated for both the stepped septum and the sigmoid septum. The final designs provided

by the optimization will then be compared in order to make some conclusions about possible

properties of the smoothed septum versus the stepped septum.

5.2 Sigmoid Function and Its Properties

The sigmoid function is well-known in the statistical and solid state physics research areas by the

Fermi-Dirac distribution [125]. However, our use of the function is simply to define the contour

of the septum. One version of the sigmoid function can be defined by

S(x) =
H

1 + exp
(

4(L−x)
HC

) (5.1)
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Figure 5.5: Sigmoid function and its Taylor expansion about the point x = L

where H defines the height of the sigmoid, L defines the position of the sigmoid midpoint where

S(L) = H/2, and 1/C defines the slope of the sigmoid at the midpoint. Note that this is not the

most standard definition of the sigmoid function, but this representation was chosen in order to

control the parameters such as the slope, height, and position of the sigmoid more effectively.

The first-order Taylor expansion of S(x) about the point x = L is given by the following.

S ′(x) =
4 exp

(
4(L−x)
HC

)
C
(

1 + exp
(

4(L−x)
HC

))2 =
sech2

(
2(L−x)
HC

)
C

(5.2a)

S(x) ≈ S(L) + S ′(L)(x− L) =
H

2
+

1

C
(x− L) (5.2b)

Clearly, the parameter 1/C controls the slope independently and L controls the midpoint loca-

tion of the sigmoid, as depicted in Figure 5.5. Another consequence from this equation is that

H is the height of the sigmoid. This may not be as intuitive from the other parameters, but

since the point x = L is the location where the sigmoid function reaches half its height, i.e.

S(L) = 0.5S(x)|x→∞ = H/2, the height is then defined by H. Overall, this choice of represen-

tation allows a clear visualization of the sigmoid function and which parameters control these

aspects. Several different sigmoid curves were plotted in Figure 5.6 in order to demonstrate how

each of these parameters shapes the sigmoid function.

The sigmoid function is also able to realize the step function by setting C = 0, which makes
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(b) Varying the height H
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Figure 5.6: The effect of each parameter on the sigmoid function

the slope infinite. This is an important aspect of the sigmoid function which is exploited in the

optimization. It is not well-known whether a smooth contour may have better performance than

the stepped septums, and the optimizer will demonstrate which curve is superior by the result of

the optimization. If the stepped septum truly has better performance than a smoothed septum,

then a stepped septum should result from the optimization. If the opposite occurs then new

curves may need to be investigated in the septum design area for possible design improvements.

Another feature of interest is the curvature of the sigmoid function. The curvature of a planar

curve within the x and y coordinates can be computed using

κ(t) =
|~r ′ × ~r ′′|
|~r ′|3

(5.3)

where ~r is the parameterized coordinate vector (x(t), y(t), z(t)) describing the sigmoid function.

In this particular example, ~r = (t, S(t), 0), since the curve is planar and does not change position
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Figure 5.7: The effect of each parameter on the curvature of the sigmoid function

in z. It can be shown that this leads to

κ(t) =
S ′′(t)

(1 + S ′(t)2)3/2
=

4C tanh
(

2(L−t)
CH

)
sech2

(
2(L−t)
CH

)
H
(
C2 + sech4

(
2(L−t)
CH

))3/2
(5.4)

where t is the parameter of each component and κ is the curvature of the function. In high

power applications, a sharp change or discontinuity in the curvature are the primary cause in

breakdown and high electric field concentrations. This is avoided by the sigmoid function, where

the curvature is continuous for all x. It should be noted that a high curvature is still achievable

by the sigmoid function, allowing the optimizer to choose the curvature that provides the best

design. As shown in Figure 5.6 and 5.7, this occurs as C approaches zero, where the step function

is achieved with the sigmoid function. The continuity of κ versus x is shown in Figure 5.7 as well

as the effect of the height and slope on κ(t). It is observed that the curvature increases as both

C and H decreases. These curves are expected from our previous observations. As the sigmoid

function approaches the step function (C → 0), the curve gradually becomes sharper. Once the

step function is reached, both the derivative and second derivative have singularities at x = L,

which typically implies that the curvature is discontinuous or even infinite. The relationship

between the curvature and the height H is somewhat counterintuitive, but the quickest way

to understand this is through the original sigmoid function in equation 5.1. As H → 0, the

function also becomes more like a step function, even though its height tends to zero. The H
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in the exponential function forces this transition as H approaches zero. This is a compromise

in our choice of representation, and this is not as critical as the proper control of the sigmoid

function in order to simplify the constraints in the optimization as seen in the next section.

There are plenty of different shapes that are sigmoidal in nature, e.g. the arctangent function,

however the choice to use the sigmoid function was not arbitrary by any means. The sigmoid

function is convenient due to its exponential decay properties: the function approaches a constant

value relatively quickly outside of the region L ± 0.75CH. At these points the function is

within 5% of the final value which it approaches at ±∞, i.e. S(L + 0.75CH) = 0.953H and

S(L − 0.75CH) = 0.474H. This is useful because no other changes must be made in order to

force the contour to exist in a given region.

In order to create a similar contour to the stepped septum, a summation of sigmoids are used

in order to create the sigmoid contour on the septum. The summation

sc(x) =
P∑
i=1

Si(x) =
P∑
i=1

Hi

1 + exp
(

4(Li−x)
HiCi

) (5.5)

will be used to define this contour, where sc(x) is the septum contour, P is the number of sigmoid

steps, and the ith sigmoid Si(x) with its parameters Li, Hi, and Ci. Each sigmoid function Si(x)

can change its parameters to create a general shaped contour which can still achieve the original

stepped septum shape by setting Ci = 0, ∀i ∈ 1, . . . , P . A general four-sigmoid curve is shown

in Figure 5.8.

5.3 Formulation of the Optimization Problem

5.3.1 Stepped Septum Optimization

As usual, the optimization must be formally defined in order to proceed forward with the design.

This optimization focuses specifically on the septum design. Therefore the only design parameters

that will be provided to the optimizer will be the coefficients shown in the previous section. A

top view of the overall horn and waveguide geometry to be used in the simulations is shown in
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Figure 5.8: Sigmoid summation to represent the septum contour

Figure 5.9, and the values for each dimension are provided in Table 5.1. These values were found

based on a frequency scaled version of the horn seen in [117], which was originally designed to

operate at 1.296 GHz. The design values in the table are given both in wavelengths1 λ0 as well

as in cm. Both the sigmoid and the stepped septums are traced in order to show their placement

within the waveguide in Figure 5.9. These figures demonstrate a possible design configuration

and are not the final optimized septum designs. The final optimized designs may have a different

appearance and location.

We first apply optimization to the stepped septum, which is attained by setting Ci =

0, ∀i ∈ 1, . . . , P , assuming that there are P steps. A five step septum design is provided

for visualization in Figure 5.10. For this particular configuration, the number of steps P , is de-

termined by the number of parameters needed to completely specify the step dimensions. As seen

in Figure 5.10, there are five length (L) parameters and five height (H) parameters. Therefore

this is termed the 5-step septum, and this vocabulary will be used throughout the rest of this

chapter. The L, C, and H parameters represent the design variables of this problem, and now

the solution space must be defined. We define the solution space with the following assumptions.

The first is that the H parameters must satisfy the constraint
∑
Hi = H, as seen in Figure 5.10

where H = W1 − T = 4.04cm. Equality constraints are very difficult if not impossible to meet

when generating a random vector for H1, . . . , HP . Therefore we remove one of the variables from

1At 5.8 GHz, the free space wavelength λ0 = 5.17241cm
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Table 5.1: Design Specifications for both the Stepped and Sigmoid Septum designs in terms
of free space wavelength λ0 at 5.8 GHz

Parameter Length (λ0) Length (cm) Parameter Length (λ0) Length (cm)

V1 2.4581λ0 12.714 W1 0.7949λ0 4.112

V2 0.5223λ0 2.702 W2 1.3167λ0 6.811

V3 1.3167λ0 6.811 Wp 0.2665λ0 1.378

T 0.0614λ0 0.318

Figure 5.9: Top view of the stepped (dashed) and sigmoid (solid) septums
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Figure 5.10: Stepped septum design for the 5-step case

the optimization by defining

HP = H −
P−1∑
i=1

Hi (5.6)

which will always satisfy the equality constraint. From this there will only be P −1 of the height

variables in the optimization.

During the preliminary investigation of the septum it was discovered that, for a reasonably

sized septum, the overall placement of the septum within the waveguide did not drastically affect

its overall performance. Once the overall shape of the septum was known, a shift by ∆L to each

L parameter did not cause any adverse effects. Therefore, in order to eliminate the multi-optima

scenario, the parameter L1 was set to the lowest possible value before any effects were noticed

when testing another design given in [117]. This also allows the septum to have the widest design

range possible. The value was set to

L1 = 1.793cm (5.7)

and the only parameters left to find are L2, . . . , LP . For the stepped septum designs, the number

of dimensions in the solution space are N = 2(P − 1). For the stepped septum, the design

variables will be denoted as ~L = [L2, . . . , LP ] and ~H = [H1, . . . , HP−1], and the optimization

design variable vector is ~x = [~L, ~H].
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The solution space can now be defined by the following

Hi = [0, 4.04cm], ∀i ∈ 1, . . . , P − 1 (5.8)

Li = [1.793cm, 9.973cm], ∀i ∈ 2, . . . , P (5.9)

where the upper limit for each height variable Hi is given by the total waveguide height H =

4.04cm. The lower limit for the length parameters Li is given by the value set for L1, since none

of the lengths should be at a position lower than the first step. The upper limit for the length

parameters Li comes from a limit on the closeness to the probe feed. This limit minimizes any

possible designs which may depend heavily on the probe geometry and its exact location. These

limits force the optimizer to test designs which only occupy the specified maximum design area

as shown in Figure 5.11. The feasible space F must also be defined in order to fully characterize

the solution space to be tested. The constraints present in this optimization are

HP = H −
P−1∑
i=1

Hi ≤ 4.04cm (5.10)

HP = H −
P−1∑
i=1

Hi ≥ 0 (5.11)

Li ≥ Li−1, ∀i ∈ 2, . . . , P (5.12)

where the first two constraints ensure that the last step is also within the same value range as

the other heights, i.e. 0 ≤ HP ≤ 4.04cm, and the last P − 1 constraints ensures non-repeated

designs. Depending on the configuration of the septum design within the commercial solver, the

last conditions are also necessary to ensure non-overlapping steps.

Since this optimization problems represents a highly dimensional optimization problem with

complex constraints, a constraint penalty function may not be the most efficient solution. There-

fore, we approached this problem by initializing all test solutions within the feasible space F .

This was done in the usual sense by initializing each particle with a uniform distribution within

the solution space S. If a particle’s location fell outside of F then the particle would be reinitial-

ized using the same uniform distribution. While this may take a while longer at the beginning,
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Figure 5.11: Maximum space that could be possibly occupied by the septum design (using
the max/min value for Li)

this is a straightforward approach to ensure that all particles begin in F . The approach for this

initialization is documented in [91].

The primary goal in this design is to minimize the impedance matching S11 and the overall

axial ratio (AR) of the radiated fields from the horn. The axial ratio is a figure of merit when

discussing the circularity of circularly polarized fields. For a pure CP wave, the tip of the electric

field vector will trace out a circle both as time and space changes, as shown in Figure 5.12. For

an elliptically polarized wave (an impure CP wave), the tip of the electric field vector traces out

an ellipse, which have two axes of different lengths. The axial ratio quantifies the circularity of

the wave by the ratio of the major to minor axis. Therefore, the AR varies from 1 < AR <∞,

with AR = 1 being the best value, which represents a pure CP wave whose major and minor axes

are equal. Many times the dB scale is used by computing ARdB = 20 log(AR), and an EM wave

is classified as a CP wave if ARdB < 3 dB. With the knowledge of the field vector magnitude

and phase, the AR is fairly straightforward to compute with the formulas provided in [12].

The only difficulty is that the AR is quite time-consuming to compute versus frequency using

many of the commercial electromagnetic solvers available, and therefore some assumptions must

be made in order to reduce the computational burden. One assumption that can be made is that

the axial ratio does not increase very drastically over a wide angular range. For horn/septum

combinations, this is a fairly reasonable assumption and does not pose any problems. This

assumption allows us to use the AR at the boresight direction (the direction normal to the horn

antenna aperture) as a representation of the overall radiated fields. Therefore the fitness function
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(a) Left-handed CP

(b) Right-handed CP

Figure 5.12: Visualization of a circularly polarized wave (Adapted from the Wikimedia Com-
mons files given in [126, 127])

chosen for this optimization is given by

f(~x) = α1 max
fi∈F

(VSWR|f=fi) + α2 max
fi∈F

(AR|f=fi) (5.13)

where ~x = [ ~H, ~L], fi ∈ F is one testing frequency point fi within the set of frequencies F , the

VSWR is the voltage standing wave ratio, and AR is the axial ratio in a magnitude scale. The

set of frequencies used for this stepped septum optimization is

F = {5.075, 5.317, 5.558, 5.800, 6.042, 6.283, 6.525} (5.14)

The VSWR is another port parameter that describes the impedance matching on a different
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scale. The VSWR is defined by the equation

VSWR =
1 + |Γ|
1− |Γ|

(5.15)

where Γ is the reflection coefficient in a magnitude scale. The VSWR was used in this fitness

function because its scale is 1 ≤ VSWR ≤ ∞, which is comparable to the AR scale. As can be

seen from the function, the VSWR decreases as the reflection coefficient magnitude |Γ| = |S11|

decreases. In Section 1.3, it was shown that a good value for the reflection coefficient was

|Γ| = −10 dB. A close value for VSWR that corresponds to this upper bound is VSWR = 2.

For the AR, 3 dB is often used as a benchmark, and in a magnitude scale that translates to

AR =
√

2.

This represents a multiobjective function which is wrapped into one fitness function, where

one objective is to minimize the reflection coefficient and the other is to minimize the AR.

No a priori knowledge is known about the fitness function, and recommendations for setting

the weights αi for each objective in the fitness function f(~x) becomes unclear. One possible

approach to find the best choice of weights can be done by equating their threshold values. Since

the theshold values were 2 and
√

2 for VSWR and AR, respectively, the weights assignment

results from

α1VSWRt = 2α1 = α2ARt =
√

2α2 →
α2

α1

=
√

2 (5.16)

where VSWRt and ARt are the threshold values for the VSWR and AR, respectively. The above

equation implies that α2 =
√

2 if we make the arbitrary assignment that α1 = 1. With these

choices the fitness function can be written as

f(~x) = max
fi∈F

(VSWR|f=fi) +
√

2 max
fi∈F

(AR|f=fi) (5.17)

This weighting scheme may not always be the most optimal, but it represents a systematic and

intuitive approach to generating a set of weights for a weighted multiobjective to single objective

mapping scheme without any a priori knowledge of the design. The goal in this optimization is
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to minimize this given function.

One point to note is the use of the max function in equation 5.13. This is often known as

a minimax optimization problem, where the goal of the optimizer is to minimize the maximum

value [75]. By using this representation, the worst case scenario in the band of interest is being

optimized. These are extremely suitable for problems where the user has some understanding

about the maximum bandwidth of the structure. However, this function is not a good repre-

sentation in problems that explore the limits of devices. For instance, if the bandwidth was set

incredibly high (200% of the center frequency), the optimization would return meaningless de-

signs because the worst case scenario will never be optimized. In these cases it would be advisable

to start an optimization using other classes of fitness functions. Other options include the sum

function, where the VSWR/AR at multiple frequencies are added together. This however loses

the guarantee of good performance throughout the frequency band of interest, since this function

represents the average value of the points scaled by the number of points used. Optimizing the

average does in general provide some useful information, but it is usually encouraged to use the

minimax approach. We use this approach since we have a rough idea on the bandwidth of the

structure.

This covers the required aspects in the optimization of the stepped septum design. The algo-

rithm used for this optimization problem is RPSO, with a slight modification to the initialization

of the particles as documented in [91]. The initialization algorithm forces the particles to start

their search within the feasible solution space F . In order to provide many degrees of freedom,

the number of steps is chosen to be P = 6, which makes this a six-step septum optimization.

The parameters for the PSO algorithm can be found in Table 5.2, which were used for this

optimization problem.

The convergence of the six-step septum optimization is shown in Figure 5.13. With the given

fitness function from equation 5.13, the best possible value could occur when VSWR = 1 and

AR = 1. Using equation 5.13, this would produce a value at f(~xbest) = 1 +
√

2 ≈ 2.414. The

best value seen at iteration 500 is 2.858, which is close to this value. At this iteration, the

fitness function value can be broken down into VSWR = 1.085 and AR = 1.254 at boresight.
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Table 5.2: PSO Intrinsic Parameters for the Stepped Septum Optimization using Six Steps

PSO Parameter Values Used

c1 2.0
c2 2.0

Swarm Size 19
∆t 1.0

Max Iterations (imax) 500
Boundary Condition Invisible

wk 0.9− 0.5
(

i
imax

)
~vmax

1
2

(~xmax − ~xmin)
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Figure 5.13: Convergence of the six-stepped septum
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Figure 5.14: Scaled drawing of the final optimized six-step septum design
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Table 5.3: Final Design Values from the Stepped Septum Optimization

Parameter Value (cm) Parameter Value (cm)

H1 0.555 L1 1.793

H2 0.582 L2 3.662

H3 0.612 L3 5.172

H4 0.322 L4 6.160

H5 1.015 L5 7.096

H6 1.026 L6 7.567

This translates into a value of S11 = −27.79 dB and AR = 1.966 dB. Note that the average

fitness settles down to a value near the global optimum, which can demonstrate that the design

maintains good performance despite any small changes to the parameters. It is also interesting

to observe the spikes in the average fitness until the end of the optimization. This often happens

for complex constrained optimization problems, where the constraints form a difficult landscape

to navigate for the particles. If the particles are outside the boundary then they are assigned

a high fitness, e.g. 1020, and this explains why the spikes can rise to a very high number and

then fall back down to the region plotted. The final values for the six step septum are shown in

Table 5.3, and a scaled drawing of the final design is shown in Figure 5.14.

With the design provided from the optimization, the ultimate interest is in the overall an-

tenna performance. The design shown in Table 5.3 was simulated, and the antenna performance

is depicted in Figure 5.15. The simulated design has the geometry as shown in Figures 5.9 and

5.14, and the probe feed was used to simulate this final design performance shown in Figure 5.15

in order to demonstrate a practical implementation. The impedance matching is shown in Fig-

ure 5.15, and good impedance matching can be seen over the whole plot. Less than -15 dB is

observed over the entire region, which is quite exceptional for many applications. Some appli-

cations may require an impedance matching less -20 dB for high performance systems, and a

different fitness function with a smaller bandwidth may be applied in order to achieve this. The

isolation also demonstrates good performance with levels less than -15 dB for the frequencies

shown, even though isolation was not incorporated into fitness function. For communication
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Figure 5.15: Performance of the optimized stepped septum design

systems using the CP duplex configuration, this isolation may be further optimized by incorpo-

rating it into the fitness function. The last and possibly one of the most important performance

aspects is the axial ratio, which is plotted in Figure 5.15c and 5.15d. The plot shown in Fig-

ure 5.15c depicts the AR performance in the boresight direction versus frequency. Good AR

performance is often classified by AR < 3 dB, and this is also observed over the frequencies

shown in the plot. Some applications may require better circularity with AR < 0.5 dB, and this

can be achieved by optimizing over a narrow bandwidth. Overall, good circularity is observed

over a wide bandwidth (roughly 27.5%). The AR is also plotted versus angle for 5.8 GHz in

Figure 5.15d, and good performance can be observed over a wide angular region. The coordinate

system used for plotting the AR versus angle is shown in Figure 5.14 as the coordinate system

(xr, yr, zr). The angles φ and θ are defined in the usual manner for spherical coordinate sys-
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Figure 5.16: Scaled drawing of an oversized sigmoid function within a waveguide for H1 = H,
L1 = L/2, and C1 = 10

tems. The performance versus angle confirms the original assumption made that optimizing the

boresight (θ = 0) axial ratio would optimize the overall performance for a wide angular region.

5.3.2 Sigmoid Septum Optimization

Much of the formulation of the sigmoid septum optimization is identical to the stepped septum,

and we will simply restate the similar qualities and provide an explanation for any new features.

Since Ci 6= 0, many of the assumptions made in the prior formulation are no longer valid. When

the contour is more sigmoidal, it has been observed that the location of the sigmoid septum will

have some effects on the overall performance, especially since the sigmoidal curves are longer

in length in comparison to the stepped septums in general. This led us to include L1 in the

optimization. With this the ~L vector is defined by ~L = [L1, . . . , LP ]. The H vector remains the

same since there are no changes made in the height designation.

The only parameter that remains to be discussed is the ~C vector, which provides the slope

for each sigmoid function Si(x). In order to allow the optimizer to achieve the step function (if

it has better fitness than the stepped function), the value of Ci = 0 must be attainable, and

therefore this will be the lower limit on the slope constants. The best suggestion for the upper

limit on Ci is not as clear as the lower limit, and therefore we make a recommendation based

on some properties of the sigmoid function. Obviously, an upper limit of Ci = ∞ is not very

practical, as it produces a simple constant valued function at 1/2. Even relatively low values of

Ci can cause problems in the septum context. For example, take a sigmoid whose height is H

(the total height of the waveguide), whose position is in the middle of the waveguide, and whose
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Figure 5.17: Scaled drawing of the worst case sigmoid allowable within the septum design
area where H1 = H, L1 = L/2, and C1 = L/2H

slope Ci = 10. This sigmoid is shown within the waveguide in Figure 5.16. We can see that

the sigmoid is oversized for these dimensions, and it does not form a smooth connection to the

waveguide wall on both the right and left sides. These types of designs are undesirable, but this

aids in developing an upper bound for the constants Ci.

In order to limit the optimizer from exploring undesirable designs of this nature, an upper

limit should be place on the slope constants for the sigmoidal functions Si(x). The approach

we take in deriving this upper limit uses the slopes of the Taylor series expansion. The worst

case scenario happens when the height of one sigmoid is equal to its maximum possible value

Hi = Hmax = H. This case requires a longer distance to approach a given threshold ∆f which

tells the commercial electromagnetic solvers that the interface is flush with the waveguide wall.

In order to guarantee that a centered sigmoid would be flush to the waveguide walls, the length

was set to half of the septum design area (L/2). This would allow the sigmoid function to reduce

to S(0) = 0.02H at the right and S(L) = 0.98H on the left, which can be easily smoothened out

to make the contour flush with the waveguide. Therefore, the upper limit on Ci was given as

Ci ≤
L

2H
(5.18)

which is depicted in Figure 5.17. It is observed that the sigmoid is not guaranteed to always be

flush with the waveguide walls, and the upper limit also does account for the cases where the

sigmoid is located near the edge. In this case there still might be an undesirable discontinuity

at the ends of the sigmoid septum design area. These cases are avoided using other explicit
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constraints designed to ensure a certain tolerance at the edges of the septum design area. At

this point we have fully defined the solution space S, and we have most of the components in

the optimization problem.

This optimization uses the same fitness function in order to minimize the impedance matching

and axial ratio of the overall design. The sigmoidal septum contour optimization problem can

then be formulated as

Minimize f(~x), ~x ∈ S

Given HP ≤ 4.04cm (5.19)

HP ≥ 0 (5.20)

Li ≥ Li−1, ∀i ∈ 2, . . . , P (5.21)

S(0) < 0.005cm (5.22)

S(L)−H > 0.005cm (5.23)

where the first three constraints have been discussed in the stepped septum section and the

last two constraints ensure that the tolerance between the waveguide wall and the septum edges

form a complete divider between the bottom and top half of the septum. Otherwise gaps and

discontinuities will ensue in the design, which are undesirable. To reiterate, the solution space

S for this problem is given by

Hi = [0, 4.04cm], ∀i ∈ 1, . . . , P − 1 (5.24)

Li = [0, 10.3448cm], ∀i ∈ 1, . . . , P (5.25)

Ci = [0, 1.25], ∀i ∈ 1, . . . , P (5.26)

where the upper limit on the Ci is given by L/2H ≈ 1.25. The fitness function given in equa-

tion 5.19 is the same fitness function seen in equation 5.13, where the impedance matching and

the axial ratio are being minimized over a similar band to the stepped septum. Again, the PSO

algorithm is applied to this optimization problem, and its intrinsic parameters used in the run
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Table 5.4: Final Design Values from the Stepped Septum Optimization

Parameter Value (cm) Parameter Value (cm) Parameter Value

H1 0.631 L1 0.916 C1 0.1044

H2 0.546 L2 3.139 C2 0.5295

H3 0.448 L3 4.798 C3 1.1451

H4 0.343 L4 6.074 C4 0.4353

H5 0.103 L5 7.558 C5 1.0937

H6 1.969 L6 7.919 C6 0.4681

are shown in Table 5.5. This feasible space F is even more difficult to initialize and navigate the

particles than the stepped septum optimization. Therefore the initialization scheme used in [91]

was implemented in this optimization. The convergence results are shown in Figure 5.18. For

the six sigmoid septum, there are 17 design variables to be optimized, a swarm size of 33 parti-

cles was chosen for the optimization. This represents a highly dimensional optimization problem

which can take a long time to reach convergence due to the large swarm size. Since each iteration

takes quite some time to evaluate, a termination criterion was implemented which stopped the

optimizer after stagnation was observed. The plotted convergence shows the first 400 iterations

of this run. Note also that the average convergence did not meet the global best curve because

the feasible solution space F was difficult to stay within. The particles were assigned a high

fitness value if they were outside of the feasible region F . Another reason why the average fitness

curve did not meet the global best curve is due to the commonly high fitness value of several

outliers in the swarm. Even though these outliers would be located within F , their fitness would

be extremely high because the VSWR and AR can take on very high values (up to ∞), which

would skew the average fitness away from the global best. This is another cause that did not

allow the average fitness to settle towards the global best at the 400th iteration.

The final optimized design is shown in Figure 5.19. It is interesting to see that a mixture of

both sharp and smooth sigmoids are present on the optimized contour. This may suggest that

sharp edges are necessary to meet impedance matching and axial ratio requirements. Lastly, the

six-sigmoid optimization converted the six-sigmoid into a five-sigmoid septum, as can be seen
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Table 5.5: PSO Intrinsic Parameters for the Sigmoid Septum Optimization using 6 Sigmoids

PSO Parameter Values Used

c1 2.0
c2 2.0

Swarm Size 33
∆t 1.0

Max Iterations (imax) 500
Boundary Condition Invisible

wk 0.9− 0.5
(

i
imax

)
~vmax
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Figure 5.18: Convergence of the six-sigmoid septum
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Figure 5.19: Scaled drawing of the final optimized six-sigmoid septum design
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Figure 5.20: Performance of the optimized sigmoid septum design

by counting the number of sigmoids in Figure 5.19. It was able to achieve this by placing both

sigmoids close to one another, and the leftmost sigmoid in Figure 5.19 is actually two sigmoids

placed close together. Overall, there are many interesting features seen in the results of this

optimization.

The antenna performance for the final sigmoid septum shown in Table 5.4 is given in Fig-

ure 5.20. The sigmoid septum design provides a good impedance match as shown in Figure 5.20a,

with S11 < −15 dB achieved for most of the band. The final design also incorporates good iso-

lation performance with the isolation less than -15 dB over the entire plot. Again, if better

performance is required then a smaller bandwidth should be chosen to optimize. The AR for

the sigmoid design is observed to be less than 3 dB over the entire band shown. Note that

the sigmoid septum can even provide less than 0.5 dB AR for the region 5.5-6.0 GHz, which is
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roughly 8% bandwidth at 5.75 GHz. This is a decently wide bandwidth with excellent perfor-

mance for CP applications. The angular data for the AR performance is also shown for 5.8 GHz

in Figure 5.20d, where a fairly large angular region within ±60◦ demonstrates good circularity.

The two curves correspond to the principal cuts using the (xr, yr, zr) coordinate system shown

in Figure 5.19.

In this section, a sigmoid septum was introduced for possible use in high power microwave

systems, and PSO was applied to discover whether good performance could be realized with

such a design. It also helped in answering the question on whether sharp edges are required

for good septum performance. The sigmoid function is able to realize the step function, and

PSO had the option to use a stepped design versus a smooth curve design. The final design

shown in Figure 5.19 showed both smooth and sharp curves. Since the sigmoid design shows

good performance with a mixture of sharp edges and smooth edges, one can conclude that sharp

edges are not mandatory for good performance. However, more investigation is needed in order

to find whether there exist any distinct advantages of the smooth surfaces in terms of antenna

performance.

5.4 Final Design Comparison

As a final investigation, the two final designs from the optimizations are compared in terms

of their respective antenna performance. The subfigures in Figure 5.21 provide a side by side

comparison of the performance of both designs. First, it can be noted that the sigmoid septum

has a slightly increased impedance matching in comparison to the stepped septum. It is possible

that either the smoothed edges or the slanted contours are responsible in this increase, and a

further investigation into the sigmoid septum is needed in order to determine the reasons why

these are experienced. The isolation performance is quite comparable between both designs, and

it is interesting to observe many similarities that both curves share. As seen in Figure 5.21, the

sigmoid septum provides better axial ratio than the stepped septum for the given region near

5.75 GHz. However, the sigmoid septum has a large spike in AR for higher frequencies which may

be undesirable for applications requiring a broad bandwidth with a high degree of circularity.
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Figure 5.21: Comparison of the performance of the optimized stepped septum design and the
optimized sigmoid septum design

Both designs show a similar angular performance, although the stepped septum has a smaller

angular region where AR < 3 dB. This may be due to the fact that the AR towards boresight

(θ = 0) is larger than the sigmoid septum. Overall, the performance of both the sigmoid and

the stepped septum designs are quite comparable with some slight differences in the S11 and the

AR.

The septum is able to provide a high quality of circularity with a simple passive structure

that is fairly easy to fabricate. The stepped septum and the sigmoid septum were both intro-

duced as possible candidates for the creation of CP waves from a linear excitation in feed horn

applications. To the author’s best knowledge, this is the first time that a stepped septum has

been optimized within a full circular horn apparatus using PSO, and a final design has been
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obtained directly from the optimization without the need for any further design. The sigmoid

septum was investigated as a new septum candidate that might be used in high power appli-

cations. The sigmoid septum was also optimized with PSO in a similar manner as the stepped

septum, although the sigmoid septum posed a much more difficult optimization problem with

higher dimensionality. This preliminary investigation focused on testing whether the sigmoid

septum could provide comparable or better performance in comparison to the stepped septum.

As shown in the previous discussion, the final sigmoid septum offers a comparable antenna per-

formance, however there are no overwhelming antenna performance advantages of the sigmoid

septum over the stepped septum. Since the sigmoid septum may be more difficult to fabricate,

it might not be the most suitable for the typical wireless communications application. However,

more investigation is required in order to determine whether better designs might exist using this

platform for different applications (and hence different fitness functions). Further investigation

will also be taken in quantifying its power handling advantage over the stepped septums, which

is one distinct advantage of the sigmoid septum.
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CHAPTER 6

MEMS Reconfigurable E-Shaped Patch Antennas

The wireless communication environment often suffers from adverse effects such as multipath,

interference, and fading. Each of these effects can be detrimental on the overall system and are

difficult to combat. One methodology that has become popular among the wireless community is

the use of multiple antennas in order to increase the so-called antenna diversity. By introducing

multiple antennas with different characteristics, the probability that one may work properly is

increased in a general sense. Of course, the inner workings of these antenna systems are much

more complex than this simple analogy. These multiple antenna systems may give rise to a larger

system altogether, which can be difficult to manage. The added size of the antenna system can

also be quite cumbersome, and therefore this might not always be the best approach to alleviating

some of these issues.

Although the multiple antenna technique has found widespread acceptance throughout many

research communities, new methodologies have begun to gain popularity within the antenna

engineering community. Another technique to overcome some of the difficulties encountered in

wireless systems is through the use of reconfigurable antennas. The definition of a reconfigurable

antenna is given from the following quote from J. T. Bernhard.

Reconfigurability, when used in the context of antennas, is the capacity to change an in-
dividual radiator’s fundamental operating characteristics through electrical, mechanical, or
other means. Thus, under this definition, the traditional phasing of signals between ele-
ments in an array to achieve beam forming and beam steering does not make the antenna
‘reconfigurable’ because the antenna’s basic operating characteristics remain unchanged in
this case

J. T. Bernhard, Reconfigurable Antennas [128]

These reconfigurable antennas can often be placed in three primary categories: frequency recon-
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figurable, polarization reconfigurable, and radiation pattern reconfigurable [128]. Reconfigurable

antennas can overcome challenges inherent in multiple antenna scenarios by replacing all anten-

nas with different functionalities with one antenna having the same functionality. The use of

reconfigurable antennas alleviates the antenna’s isolation and space requirements. While diver-

sity is not maintained, these reconfigurable antennas can alter their characteristics in order to

make the system more robust. For instance, a frequency reconfigurable antenna would be able

to combat frequency selective fading [129] by changing its operational frequency. It might also

reduce the interference from a given angle by shifting a null in the radiation pattern towards

the direction of the interferer. There exist a wide variety of applications where reconfigurable

antennas might be used to make a system more robust.

This chapter will examine some possible wideband reconfigurable antennas using a special

patch antenna commonly known as the E-shaped patch antenna [130]. An introduction to the

E-shaped patch antenna will be given as well as its performance in comparison to some of its

competitors. Next, a MEMS switch model and its implementation will be discussed in order

to add reconfigurability to the E-shaped patch antenna. Then two possible reconfigurable E-

shaped patch antennas will be discussed, namely a polarization reconfigurable E-shaped patch

antenna and a frequency reconfigurable E-shaped patch antenna. Lastly, the bias network for

the switches must be implemented into the E-shaped design, and the chapter will be concluded

by demonstrating the bias networks for a full implementation of the reconfigurable E-shaped

patch antenna.

6.1 Introduction to E-Shaped Patch Antennas

Patch antennas have a widespread use due to their ease of implementation and manufacturing.

Their low profile allows them to be versatile for use in a wide range of applications. Their design

also fits into a planar microstrip topology, which makes it straightforward to integrate into a

microstrip circuit. In the array context, simple feeding structures can be easily created using

microstrip lines to feed each array element. Some common applications for their use can be found

in mobile handsets, GPS receivers, conformal antennas, as well as low profile, high gain antenna
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(a) Side View

Ground Plane

(b) Perspective View

Figure 6.1: Demonstration of the simplicity of a coaxial probe-fed rectangular patch

arrays. A common rectangular patch antenna fed with a coaxial probe is shown in Figure 6.1 to

demonstrate their simplicity and low profile.

Some disadvantages of patch antennas include a low bandwidth and high cross polarization.

However, these can be alleviated with the proper redirection of the patch currents as well as

other clever techniques. The bandwidth can discussed in the context of the typical input cir-

cuit representation of the patch antenna [131] shown in Figure 6.2, where Lp is the probe feed

inductance and R, L, and C form the tank circuit representing the cavity model of the patch

antenna. In general, the bandwidth of patch antennas can be increased by increasing the sub-

strate height, but eventually a point will be reached where the probe inductance Lp can cause

an impedance mismatch for the circuit. There are several techniques to avoid or compensate for

this inductance. A stacked patch antenna configuration [132], which was discussed in Chapter

4, avoids this by using a driven patch and a coupled patch, thereby using a shorter probe feed.

By shortening the probe feed, a smaller inductance is seen at the input port. The upper patch

couples to the driven patch in an effort to provide another resonant frequency, which can ex-

tend the bandwidth. While this design avoids the probe inductance by using another layer, a
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Figure 6.2: Circuit model of the patch input port

multilayered antenna can have its own challenges in manufacturing and alignment.

Another technique to overcome the probe inductance is through the use of an L-shaped probe

[133]. The L-shaped probe-fed antenna antenna utilizes an L-shaped probe that is capacitively

coupled to the patch and overcomes the probe inductance by introducing some series capacitance

seen at the input port. This design is able to get roughly 27% to 35% bandwidth with fairly

high gain, which is comparable to other antennas in its class. However, this patch antenna can

be somewhat tricky to fabricate and requires either a three dimensional manufacturing approach

or a multilayered approach in order to construct it. This increases the cost and complexity

for manufacturing, making it a less attractive candidate. This design also does not pose any

straightforward possibilities for implementation as a simple reconfigurable antenna.

Another clever technique that has gained wide attention in the antenna community is the

use of slots to extend the impedance bandwidth. The most popular are the U-slotted antenna

[134, 135] and the E-shaped patch antenna [130, 136]. The inclusion of these slots can provide

some compensation for the probe inductance in order to improve matching. These slots also

introduce another mode by redirecting the currents to realize a new lower resonant frequency.

Both of these effects combined can provide an incredibly wide bandwidth for a patch antenna.

Recently, a thorough investigation meticulously compared the performance of both the E-shaped

patch and the U-slotted patch in terms of their bandwidth, cross polarization, and overall size

[137]. With this study and others, it has been shown that approximately 24% up to 45%
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bandwidth can be achieved with the U-slotted patch antenna. The E-shaped patch antenna

is able to achieve a comparable bandwidth with reports showing anywhere from 25% to 34%.

These antennas are also easy to manufacture due to their single layer and single feed designs. In

comparison to other alternatives, these two antenna types can be easily designed and built for

many applications. Both topologies are drawn in Figure 6.3, where the U-slot and the E-shape

can be clearly seen from the patch antenna shapes.

(a) U-Slotted Patch (b) E-Shaped Patch

Figure 6.3: Top view of the U-slotted and the E-shaped patch antenna topologies

The principle behind their wideband nature is similar, where the currents are manipulated

in such a way that two different frequencies resonate within the device. For the upper frequency

mode, also called the patch mode, the resonant frequency is guided by the length of the patch.

The currents for this mode on the E-shaped patch are shown in Figure 6.4b. This is the typical

current distribution on a rectangular patch without the slots. The slots introduce another

mode, the E-shaped mode, which forces the currents to meander around the slots. This current

distribution is depicted in Figure 6.4a, where the resonant length is guided by the patch length

and the dimensions of the slot. Both the E-shaped and U-slot antenna operate with the same

principle of adding a new resonant mode.

This investigation will examine possible implementations of these slotted antennas as recon-

figurable antennas. Reconfigurability may be possible by changing the slot dimensions, since

these dimensions can have an appreciable effect on the resonant frequency. As will be discussed

in Sections 6.3 and 6.4, reconfigurability can be achieved by changing the effective dimensions

of the slots. This can be accomplished by shorting the slot with a switch. Both Figure 6.3 and
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(a) Lower Frequency Mode (b) Higher Frequency Mode

Figure 6.4: Depiction of the possible resonant modes that can occur in the E-shaped patch
antenna

6.4 show that the E-shaped patch has clear access to both of the slots. This allows for a simple

implementation of the bias network required to control the switches. The U-slotted patch has

slots which are confined within the patch and can make it difficult to connect any sort of bias

line on the same layer as the patch antenna. Therefore, the E-shaped patch antenna provides a

more convenient design for reconfigurability, and only this antenna will be further investigated.

6.2 Development of a Simple MEMS Model

The basic E-shaped patch antenna topology has been shown, and the dimensions will be provided

in Sections 6.3 and 6.4. The next step is to characterize the switch which enables the antenna re-

configurability. Currently, the most popular devices in microwave switching technology include

varactors, PIN diodes, and MEMS (Microelectromechanical Systems) switches, and these de-

vices are frequently implemented in reconfigurable antennas. Among these three different types,

MEMS switches have gained more popularity among the antenna and microwave communities

due to their low insertion loss, good impedance matching, and high isolation. MEMS are also

potentially able to avoid nonlinearities and intermodulation effects in comparison to the other

switches [138]. Therefore, MEMS switches were chosen for this design in order to minimize these

losses, which can decrease the antenna’s dielectric-conductor efficiency discussed in Section 1.3.

A MEMS switch is a three-terminal device which can act as a switch operating from DC

143



Gate

DrainSource

Switch OFF State

(a) OFF State

Switch ON State

Gate

DrainSource

(b) ON State

Figure 6.5: Simple illustration of a MEMS switch

to microwave frequencies (up to 20GHz). The three terminals are often denoted as the Source,

Gate, and Drain. Once a voltage (higher than the threshold voltage) is applied between the gate

and the source, the static electrical force can bring down the cantilever beam to connect the

Source and Drain. This represents the ON state for the MEMS switch. The threshold voltage

for typical commercial MEMS switches is usually around 90 volts. When the voltage is well

below the threshold then high isolation between the Source and Drain can be achieved, which

represents the OFF state. The MEMS switch that was used in the reconfigurable E-shaped patch

antenna design was a Radant MEMS RMSW100HP switch [139].

With the type of switch chosen, the next task is to chose a method to incorporate its presence

in the antenna for optimization purposes. In the optimization run, the antenna simulation can

be critical to obtaining a working design in a reasonable amount of time. One should always be

cognizant on the simulation time for a particular structure. If one simulation takes up to 1 hour,

then the total optimization may take several thousand hours, which is quite unreasonable in a

practical setting. Therefore, one must consider any alternatives which provide enough complexity

to properly model the switch but are computationally inexpensive. There are several options

when modeling the MEMS switches, which can be categorized into the following list.
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Ideal Switch Model

The ideal switch model assumes that the MEMS switch acts as a simple ON/OFF switch,

with no internal effects accounted for. With this model, the OFF case is represented by

an open circuit, and the ON case is represented by a short circuit (or a PEC connection).

Simple Circuit Model

With the circuit model of the MEMS switches, the OFF case is simulated with a capacitive

connection between the two nodes. The ON case is then simulated as a resistive connection

between the two terminals due to the contact resistance of the cantilever beam. More

complicated circuit models exist to account for other features of the MEMS switch, but

these can be difficult to model within electromagnetics simulators.

MEMS Full Model

One can simulate the full electromagnetic model of the MEMS switch by incorporating all

of its geometrical features. This includes a silicon substrate as well as some representative

transmission lines. In the OFF position, the transmission lines form an open connection. In

the ON position the transmission lines are connected metallically. This full model is based

on the model shown in [140], where parametric studies were used to match the simulation

with measurements.

Each of these models are depicted in Figure 6.6. The level of complexity in the MEMS model

increases from the top to the bottom. The ideal switch represents the easiest implementation

of the MEMS switch and would most likely have the fastest simulation time. The circuit model

involves slightly more complexity in its representation, but it does not represent a drastic increase

in computational time. The only disadvantage of this model is that the internal parameters C

and R are not easily measured, and any shift in these values might cause drastic changes in

performance. This depends on the input port’s sensitivity to any changes in capacitance or

resistance which comes internal to the MEMS switch. The last possible implementation of the

MEMS switch for simulation purposes is to use the full MEMS model, shown in Figure 6.6c. The

geometry of the MEMS switch is given in [140], and this design has demonstrated good agreement

with measurements in the past. One major hindrance in analyzing a MEMS reconfigurable

antenna with the full MEMS switch model is that each simulation requires nearly 1-2 hours

to provide all necessary information needed to evaluate its fitness. This is unacceptable for

optimizations which typically analyze over 4000 simulations, and this precludes any use of the

full MEMS model for optimization purposes. Therefore a decision must be made between the

ideal switch model and the simple circuit model.
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(a) Ideal Switch Model

MEMS OFF MEMS ON

C R

(b) Simple Circuit Model

MEMS ONMEMS OFF

(c) Full MEMS Model

Figure 6.6: Several possible implementations of the MEMS model within a full wave electro-
magnetics simulator
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An investigation was conducted on the accuracy of the ideal switch model in comparison

to a measurement with MEMS switches. More discrepancies are expected for the OFF case in

comparison to the ON case. This owes to the low internal resistance values typically seen for

the MEMS switches, which is on the order of R = 0.7Ω [141]. Since the resistance is fairly

close to the ideal case of a short circuit, the discrepancies between the ideal switch and the

actual MEMS model should be minimal. However, the OFF state provides more opportunities

for disagreement, and therefore only the OFF state will be considered in this investigation to

properly model the MEMS switches.

Several design optimizations were conducted to test whether a simple ideal switch model

provided the necessary amount of information to properly model all characteristics of the MEMS

switch in the OFF state. The details of the optimizations will be excluded in order to keep the

focus on the MEMS switch model. A preliminary optimization which used a similar strategy

described in Section 6.4 implemented the ideal switch model shown in Figure 6.6a into the

frequency reconfigurable E-shaped patch antenna. Once the design was optimized to provide

a dual frequency band performance, a measurement of the ideal case was used to verify the

ideal switch model worked using ideal switch measurements. Ideal switches were implemented

by applying copper tape to effectively short the bars in the E-shaped slot for the ON state. The

OFF state was measured using an ideal switch with an open circuit, as shown in Figure 6.8b.

The S11 response is shown in Figure 6.7 which compares the simulation and measurement. Both

demonstrate good agreement, which implies that the optimization found a good design using

ideal switches. This is not necessarily the case when MEMS switches are applied to the same

design.

The next step aims to determine whether any discrepancies exist between the ideal switch

model and the measured MEMS switch performance for the OFF case. In order to make this

comparison, MEMS switches are then implemented into the same design seen in Figures 6.7

and 6.8. The MEMS switches were glued to the pads and then the source and drain terminals

were wirebonded to the E-shaped patch structure as shown in Figure 6.10. Since bias lines

had not been developed at those stages, the gate was not wirebonded, and this should not

cause any detrimental effects because MEMS provide a high isolation between the gate and the
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Figure 6.7: S11 comparison of the ideal case between simulation and measurement
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(a) Ideal Switch simulation models
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Perspective View

(b) Ideal Switch fabricated designs

Figure 6.8: Fabricated antennas and simulation topology to measure the ideal switch case

148



1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4
−40

−35

−30

−25

−20

−15

−10

−5

0

Frequency (GHz)

S
11

 (
dB

)

 

 

Ideal Switch
Wirebonded MEMS

Figure 6.9: S11 comparison of the ideal switch measurement versus the wirebonded MEMS
implementation

Close-up of MEMS Switch Wirebonded MEMS Switches

Figure 6.10: Implementation of the MEMS switches into the E-shaped patch antenna opti-
mized with the ideal switch model
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drain/source. The S11 was then measured with the wirebonded MEMS implementation shown

in Figure 6.10, and the performance is shown in comparison to the ideal switch case with no

MEMS switches in Figure 6.9. From this figure, the performance of the design with the MEMS

switches has drastic changes in comparison to that of the ideal switch case.

Obviously, this poor agreement between the two models indicates that the ideal switch model

would be inadequate for optimization purposes. In order to arrive at a good practical design,

it is imperative that the model for a reconfigurable antenna using MEMS switches predicts its

performance to an acceptable degree. These results prompted further investigation in order

to account for these disagreements and ultimately provide a better model. We approached

this by simulating slightly more complicated circuit models to test whether they provide better

agreement with the measurement. A simple model for the OFF case includes both an inductor

to account for the wirebonds and a capacitor to account for any parasitic coupling between

the drain and the source [141]. Since HFSS, the electromagnetic software used for simulation

purposes, was able to model wirebonds, the model that was tested used both wirebonds and

a capacitive impedance to model the internal capacitance of the MEMS switch. This is shown

in Figure 6.12b, where the wirebonds connect to an impedance surface replicating a capacitor.

This model showed excellent agreement with the simulation using the full MEMS model and the

measurement of the final design with MEMS switches. The comparison of the measurement with

these two simulations are shown in Figure 6.11, where most of the features are demonstrated by

both the full MEMS model and the circuit model.

The results from these measurements brought about several observations for modeling the

MEMS switches. First, the internal capacitance can alter the performance quite considerably,

even with a small capacitance of 80 pF. This makes sense when comparing the impedance of this

capacitor at these frequencies, which can be given by |ZC | = (ωC)−1 ≈ 800Ω at 2.5 GHz, which

may not be best represented as an open circuit. From this investigation, it was concluded that

this internal capacitance was the primary cause for the major discrepancies in the OFF state.

Second, any simulations must account for this capacitance in order to provide good agreement

between simulation and measurement. Both the circuit model and the full MEMS model account

for this internal capacitance in their models while the ideal switch model does not. Lastly, the
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Figure 6.11: Comparison of the S11 from the wirebonded MEMS measurement with the full
MEMS model and the circuit model using C = 80pF

(a) Full MEMS model

C

(b) Circuit model using wire-
bonds and a capacitor

Figure 6.12: Models for comparison to the measured wirebonded MEMS performance
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C

(a) OFF State, C = 80pF

R

(b) ON State, R = 0.7Ω

Figure 6.13: Circuit model used in the optimization for the reconfigurable E-shaped patch
antenna

simple circuit model provides good agreement even though it represents a first order approach

to simulating the MEMS switch. While more research needs to be accomplished in order to

better characterize the internal effects of the MEMS switch, this model seems to provide the

best of all worlds. It accurately predicts the performance of the antenna design while also being

computationally efficient. This can make it more attractive for design purposes than the full

MEMS model.

Overall, the experiments and results provide good insight into the best approach for simulat-

ing the reconfigurable E-shaped patch antenna using MEMS switches in the optimization. The

final circuit design used in the optimization are shown in 6.13, where the ON state is represented

by a small resistance and the OFF state is represented by a capacitor. With this investiga-

tion, the simulated performance of the reconfigurable E-shaped patch antenna should be well

predicted by the simulator in the optimization process. In Sections 6.3 and 6.4, there will be

two reconfigurable antennas that will be developed. The first is a RHCP/LHCP switchable an-

tenna whose polarization can be altered. The next design shows the development of a frequency

reconfigurable E-shaped patch antenna. Both of these designs will be optimized by the PSO

algorithm.
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6.3 Circular Polarization Reconfigurable E-Shaped Patch

With the proliferation of cognitive radio and wireless communications, there is a growing need to

develop wideband circularly polarized antennas. Within the broad scope of wireless communi-

cations, circularly polarized systems can offer many advantages over linearly polarized systems.

It has been shown in previous work that circularly polarized wireless systems gain improvement

by mitigating multipath signals [142, 143]. These multipath signals change from right-handed

to left-handed polarization (or vice-versa) after a reflection from a surface, and with this new

polarization these signals are nearly unabsorbed by the receiving antenna. Circular polarization

also adds polarization flexibility for receiving antennas which may be either linearly polarized

or circularly polarized. While this may reduce polarization efficiency in the case of linear polar-

ization, one can guarantee good signal strength with a low dependence on antenna orientation.

The CP design strategy has been used in many existing systems including GPS and RFID.

One might be able to maximize polarization efficiency through the use of a circularly polarized

receiving antenna, but if the wrong polarization is used then there is a risk for further reduced

signal strength. System designers will typically prefer to avoid this due to a higher probability

for poor signal quality. However, this problem can be completely removed with the development

of a polarization reconfigurable antenna which can switch between RHCP and LHCP. With this

added flexibility, one can ensure that the system can maintain a good signal quality in many

various scenarios. This antenna is also useful in non line of sight (non-LOS) applications where

the reflected wave may have an orthogonal polarization. By switching between CP polarizations,

one can guarantee good polarization efficiency in the adverse environments seen in wireless

systems.

6.3.1 Concept Design

Wideband circularly polarized patch antennas are often difficult to achieve, and for many designs

the axial ratio (AR)-impedance bandwidth is only a few percent. There exist several techniques

for single layer single feed designs achieving CP. One method involves placing the probe feed

along the diagonal of a nearly square patch [131] or placing tabs on an elliptical patch [15].
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Figure 6.14: Asymmetric slots in the E-shaped patch antenna creates a wideband CP antenna

Other techniques cut opposite corners of a square patch and place the feed similarly to the

linearly polarized case [15]. However, these techniques often produce a bandwidth less than 1%.

Multifeed and multilayer configurations also exist, but these designs require more complicated

fabrication techniques [15] and are still limited by the impedance bandwidth. Newly proposed

techniques using slotted patches antennas are a promising alternative, and wide bandwidths

have been recently obtained [144, 145]. Recent research in microstrip patch antenna technology

has shown that wideband circular polarization is achievable with the E-shaped patch antenna

platform. This can be accomplished by using asymmetric slots in the E-shape, as shown in

Figure 6.14. In the standard E-shaped patch antenna design, the patch has primarily y-directed

currents, which implies a linearly polarized antenna. As discussed in [145], these asymmetric slots

allow the creation of x-directed currents of nearly equal magnitude to the y-directed currents.

With the proper geometry, one can obtain x-directed currents with both equal magnitude and

quadrature phase. However, finding the best geometry is quite challenging and non-intuitive.

Clearly, creating an asymmetry in the slots is required in order to obtain good AR and

impedance matching performance. This design, however, only creates one polarization, which is

either RHCP or LHCP. Theoretically, reconfigurability can be achieved if the slot asymmetry

could be flipped dynamically. In other words, one could achieve polarization reconfigurability

(RHCP/LHCP) by changing the effective slot dimensions in real time. Our proposed design
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Figure 6.15: LHCP/RHCP reconfigurability implemented into the E-shaped patch design

attempts to effectively change the slot dimensions by placing MEMS switches within the slots as

shown in Figure 6.15. The polarization reconfigurable E-shaped antenna would be able to achieve

the LHCP radiation with the top switch on and bottom switch off. The RHCP mode could also be

excited by switching the slot asymmetry, i.e. reversing the polarity of the switches. Ultimately,

this design combines the wideband nature of the E-shaped patch antenna with reconfigurability

in order to provide a highly versatile CP patch antenna.

The final implementation of the circularly polarized E-shaped patch antenna is shown in

Figure 6.16. The MEMS switches are also included in the figure, however the bias lines are not

included in the optimization procedure. The reconfigurable E-shaped patch was implemented in

a multilayer fashion in order to facilitate simple and accurate fabrication with photolithography.

This methodology was employed in order to retain the accuracy of photolithography (used on

the Rogers Duroid layer) while increasing bandwidth by using an effective substrate permittivity

of εr ≈ 1. We can assume that the patch antenna will act similar to an air filled substrate, since

most of the volume is occupied by the foam substrate which has a relative permittivity close

to unity. The geometry used in this design is similar to the E-shaped patch antenna seen in

[59], where a wideband and dual-band E-shaped patch are optimized. As seen in Figure 6.16,

there are seven variables to optimize, which can be a difficult optimization problem especially

when the fitness function is highly multimodal and nonlinear. The next section will discuss the

formulation of the optimization problem and then conclude with some results.
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(a) Perspective View with Design Variables. Note that the ground plane will have dimen-
sions 200mm x 200mm.
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Figure 6.16: Reconfigurable E-shaped patch implementation for polarization reconfigurability
using MEMS switches
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6.3.2 Applying Particle Swarm Optimization

With the antenna design and the design variables clearly defined, we proceed to define the

components needed in the optimization algorithm. The design in Figure 6.16 is similar to the

design in [59], and good results were demonstrated for both designs optimized. Similar boundary

conditions are applied to the reconfigurable CP design, where the boundaries are given by

L ∈ (30, 96) mm (6.1a)

W ∈ (30, 96) mm (6.1b)

Ls ∈ (0, 96) mm (6.1c)

Ps ∈ (0, 48) mm (6.1d)

Ws ∈ (0, 48) mm (6.1e)

fd ∈ (−48, 48) mm (6.1f)

` ∈ (0, 96) mm (6.1g)

In these boundaries, L is the length of the patch, W is the width of the patch, Ls is the slot

length, Ws is the slot width, Ps is the slot position, fd is the x position of the feed, and ` is the

position of the MEMS bars. This design allows a wide variation of designs and does not restrict

other possible designs in any way. The constraints must also be included in the optimization

and are shown below.

L− Ls > 5mm (6.2a)

Ps −
Ws

2
> 2.5mm (6.2b)

W

2
−
(
Ps +

Ws

2

)
> 5mm (6.2c)

|fd| <
L

2
(6.2d)

Ls − ` > 5mm (6.2e)
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These equations are formulated to avoid designs which do not maintain the E-shaped design

or are not of any interest. The constraints also avoid designs that may pose any challenges

in fabrication. For example, in equation 6.2a, setting the inequality to be greater than 5mm

forces the section of the E-shaped patch above the slots to have width greater than 5mm. By

doing this, a design with extremely thin bars is avoided which may cause increased sensitivity to

any fabrication errors. The second constraint equation circumvents any possible designs which

remove the inner section to which the probe feed is connected. The third constraint does not

allow the slots to eliminate the outer bars by forcing the slots to be within the E-shaped patch.

The fourth equation confines the probe feed location within the E-shaped patch dimensions. The

fifth equation ensures that the MEMS bars are always attached to the patch. Figure 6.17 depicts

each constraint and demonstrates an example of a violation for each equation. If all equations

in 6.2a-e were written in the form gi(~x) ≤ 0, then there would be six constraints equations total,

since equation 6.2d can be split into two inequalities. This is not only a highly dimensional

optimization problem, but it is also a highly constrained optimization. Both of these properties

make this optimization more difficult.

With the geometrical aspects of the optimization defined, the only part left to define is

the fitness function for the CP reconfigurable E-shaped patch antenna. This design aims to

achieve good impedance matching and good circularly polarized radiation. Similar to the septum

optimization in Chapter 5, we assume that the antenna will maintain good AR performance over

a wide angular range and therefore will use only the boresight AR (the direction normal to the

patch antenna) to measure the antenna’s circularity. Since research on this particular antenna

is fairly recent, the upper limit on the AR-S11 bandwidth is not yet known. This bandwidth is

defined as the region in which the antenna demonstrates good performance with S11 < −10 dB

and AR < 3 dB. Therefore, the fitness function should include three primary terms: S11, AR, and

AR-S11 bandwidth. Since the bandwidth is currently unknown, this makes it difficult to predict

the frequency band to determine the worst S11 performance. This bandwidth approach allows

the use of one static evaluation frequency to be included in the fitness function. The frequency

was chosen as 2.4 GHz, which is a common frequency band used for WLAN and other various

wireless applications. A single objective fitness function incorporating each of these objectives
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(a) L− Ls ≯ 5mm (b) Ps − Ws

2 ≯ 2.5mm

(c) W
2 −

(
Ps + Ws

2

)
≯ 5mm (d) |fd| ≮ L

2

(e) Ls − ` ≯ 5mm

Figure 6.17: Possible designs which violate a constraint. It is desired to avoid these designs
due to possible fabrication issues or to avoid distortions to the E-shaped design
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can be written as

f(~x) = α1 S11|f=2.4GHz + α2 AR|f=2.4GHz − α3BWMHz (6.3)

where S11|f=2.4GHz is the S11 at 2.4 GHz in a magnitude scale, AR|f=2.4GHz is the AR at 2.4

GHz in a magnitude scale, and BWMHz is the AR-S11 bandwidth in MHz. Since the optimizer

has been written for minimization problems, the negative sign for the BWMHz term allows the

minimization algorithm to maximum this term by increasing its magnitude.

Of course, the S11 and AR are not only evaluated for this particular frequency. In order to

find the AR-S11 bandwidth, both the S11 and AR must be evaluated at multiple frequencies in

order to determine the upper and lower frequencies which determine its bandwidth according

to S11 < −10 dB and AR < 3 dB. Including the bandwidth is a different approach from using

the max function seen in Chapter 5 for the sigmoid septum. Using this type of fitness function

allows the optimizer to explore new designs without restricting its focus to one frequency band.

If the fitness function used a max function similar to the fitness functions in Chapter 5, then

there may be no guarantee that the best design would have the most bandwidth. The fitness

function in equation 6.3 hopes to maximize this bandwidth.

Next, the weights αi must be determined in order to balance the objectives equally. The

average values expected for each objective in the design are shown in Table 6.1. These values

come from some a priori knowledge of the E-shaped patch designs. An average value of S11 =

0.3162 = −10dB is written since 2.4 GHz will not necessarily be guaranteed to have the best

performance over the entire bandwidth. Using this value expects the worst possible case scenario

where S11 = −10 dB at 2.4 GHz. The same argument is also given for the axial ratio, where

the worst case scenario is assumed by using AR = 1.414 = 3 dB. The bandwidth assumes an

average value of 50 MHz, which represents a 2% bandwidth at 2.4 GHz. While this bandwidth

may be small in comparison to the results reported in [145], a smaller bandwidth may be seen

on average. It is fairly reasonable to assume that the CP E-shaped would be able to achieve this

bandwidth since other single layer single feed CP designs are able to achieve a similar bandwidth.

Using these average values, each of the weights can be found by roughly equating the average
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Table 6.1: Average Values for Design Objectives

Parameter Average Value

S11|f=2.4GHz 0.3162

AR|f=2.4GHz 1.414

BWMHz 50 MHz

value of each parameter. This leads to

α1〈S11|f=2.4GHz〉 = α2〈AR|f=2.4GHz〉 (6.4)

where 〈·〉 represents the average value. Setting α2 = 1 leads to finding α1 ≈ 4. The bandwidth

term represents a peculiarity in the averaging scheme due to the negative sign. Another aspect

that is different about the BW term is that it is set to zero when S11|f=2.4GHz > 0.3162 and

AR|f=2.4GHz > 1.414, and equating the average may not be the most appropriate method for

determining the weight. More emphasis should be placed on the BW term, since this term is of

most importance. Therefore a larger average value of the term α3BWMHz must be used while

still keeping the term at roughly the same magnitude at the first two terms. Therefore a value

of α3 = 1/10 is proposed for use in the fitness function in order to maintain this balance. With

the weights now chosen, the final implemented fitness function can be written as

f(~x) = 4 S11|f=2.4GHz + AR|f=2.4GHz −
1

10
BWMHz (6.5)

which is evaluated for one state of the switches. Only one simulation is required since both

states will have similar S11 and AR performance due to the geometrical symmetry. The switch

states create the asymmetry required to generate CP waves, and reversing these states provides

a design with roughly (if not exactly) the same performance for one state versus another state.

Since constraints were also involved with this optimization, a penalty function pc(~x) must be
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Table 6.2: PSO Intrinsic Parameters for the RHCP/LHCP Reconfigurable E-shaped patch
antenna design optimization

PSO Parameter Values Used

c1 2.0
c2 2.0

Swarm Size 16
∆t 1.0

Max Iterations (imax) 500
Boundary Condition Invisible

wk 0.9− 0.5
(

i
imax

)
~vmax

1
2

(~xmax − ~xmin)

introduced. For this particular problem, a stepped value penalty function written as

pc(~x) =


0 if ~x ∈ F

105 if ~x /∈ F
(6.6)

was included within the PSO optimization implementation, and the final fitness function opti-

mized by PSO was given as

fP (~x) = f(~x) + pc(~x) (6.7)

where fP (~x) is the fitness function implemented for PSO to optimize. The PSO algorithm was

then applied to the model shown in Figure 6.16 using the final implementation of the simple

MEMS circuit model shown in Figure 6.13. The PSO intrinsic parameters used for the CP E-

shaped patch optimization are shown in Table 6.2. The only modification made to the original

algorithm discussed in Section 2.1.1 was that a seed was applied to this optimization run by

setting one of the particle’s initial position to the seed location. This seed was taken from a

previous optimization run using the ideal switch model. This previous run on the CP E-shaped

patch demonstrated good performance, and their results are reported in [146, 147]. The final

design reported in [146] was used as the seed.

162



6.3.3 Results and Measurements

Among the optimizations conducted in this thesis, this was among one of the lengthiest runs in

terms of time. This is due to the lengthy computational time required for calculating the axial

ratio versus frequency. In order to provide some acceleration in computing equation 6.7 , the AR

was only computed for 2.4 GHz unless both bandwidth conditions (S11 < 0.3162 and AR < 1.414)

were met. The AR and S11 were calculated versus frequency once the S11 and the AR were

below these thresholds. The algorithm would then find the bandwidth by performing a step

search for the frequency where these thresholds were crossed. Once the thresholds were crossed,

the frequencies would be calculated by interpolation. One simulation requiring a bandwidth

simulation could take up to 30 minutes, and this led to extremely lengthy optimization runs.

The convergence is shown in Figure 6.18 for this optimization run. The entire time required for

this optimization was nearly 4 weeks, which indeed is quite a long time for one optimization run.

This lengthy amount of time necessitates the use of a good optimization tool such as PSO.

Several features can be observed from this plot. First, only 115 simulations were used in the

optimization. This is because a special termination condition had been applied in the case that

an extraordinary amount of bandwidth was obtained. The termination condition would stop the

optimizer if the simulated bandwidth was above 400 MHz in order to avoid any higher order

modes within the E-shaped patch from being excited. These higher order modes can have a

tendency to degrade the performance at non-boresight angles. The optimization would continue

to run for a few more iterations to search the space for points with better impedance matching

or AR. This optimization stopped at roughly 110 iterations.

Next, it can be seen that the global fitness is fairly constant for the first 100 iterations, and

this is due to the challenge that a constrained optimization space poses for navigation purposes.

The average fitness is in agreement with this postulation, where an average fitness higher than the

upper limit of the plot represents an iteration where all particles were outside of F . The average

fitness curve shows that the swarm was frequently outside of the constrained space. Hence, it

was difficult to maintain a position within F due to its complex boundaries. The average fitness

begins to approach the global best fitness towards the end of the run, which indicates that most
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Table 6.3: Final Design Values from the CP E-shaped Patch Optimization

Parameter Value (mm)

L 44.955

W 89.029

Ls 35.990

Ws 9.251

Ps 7.466

fd 10.458

` 15.059
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Figure 6.18: Convergence of the CP E-shaped patch design optimization

of the particles were finding points within F . It also demonstrates that most of the particles

were near the neighborhood of the global best point observed.

While there may be other existing designs with possibly higher bandwidths, it was decided

to investigate this design further before continuing the optimization. The final bandwidth pro-

vided by the simulation was nearly 510 MHz, which is roughly a 21% AR-S11 bandwidth. A

bandwidth this large certainly was not anticipated, and further investigation was conducted on

this particular design. This is quite a considerable bandwidth improvement in comparison to the

reported AR-S11 bandwidth of 9.27% given in [145] and is considered very wideband for a single

layer single feed CP patch antenna. The final design values for the CP reconfigurable E-shaped

patch antenna are shown in Table 6.3.
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Figure 6.19: Comparison of the impedance matching performance for the CP E-shaped patch
antenna between the circuit simulation model, full MEMS simulation model, and a measurement
of a fabricated CP E-shaped patch antenna with wirebonded MEMS shown in Figure 6.20

(a) S11 measurement (b) Pattern measurement

Figure 6.20: Fabricated CP E-shaped patch antenna with wirebonded MEMS switches for
port and radiation pattern measurements
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These design values compared similarly to those reported in [145], which had a height of

10mm and operated in the 2.4-2.5 GHz frequency range. The most notable difference is that the

patch width W was considerably wider by roughly 13mm. The slot dimensions are also somewhat

different, and these dimensions are often the most critical in terms of performance. Therefore,

the final design brought by PSO may have given the improvement over the design presented

in [145]. It is also possible that this design experiences better bandwidth performance due to

the slight modification to the patch antenna topology in [145], which used unequal length slots.

However, in this design a set of bars force the slots to be unequal, and this may have performance

advantages. The design shown in Table 6.3 was simulated using both the circuit model and

the full MEMS model, and the S11 performance is shown in Figure 6.19. The experimental

configuration for the S11 measurement is depicted in Figure 6.20a. The circuit simulation predict

good performance from 2.15-2.69 GHz, which is roughly 540 MHz bandwidth. However the

measurements shows some slight disagreement with respect to the circuit model and the full

MEMS model simulations. This can be attributed to the approximate nature to these models as

well as fabrication errors which are common to multilayer structures. Each of these errors can

potentially increase the impedance mismatch observed. Meanwhile, the measured design still

exhibits adequate performance that is still acceptable in many cases.

For the CP reconfigurable E-shaped patch antenna, the radiation pattern measurement is

just as critical as the impedance matching. These quantify the circularity of the radiation by

means of the boresight AR, which is plotted in Figure 6.21. The measurement is compared to the

circuit model and full MEMS model simulations, and fairly good agreement is observed between

the curves. According to the simulation, the model predicts a circularly polarized wave (AR

< 3 dB) for the frequencies 2.18-2.70 GHz using the circuit model. The two bandwidths would

therefore intersect in the frequency region 2.18-2.69 GHz, which provides nearly 510 MHz AR-S11

bandwidth as discussed previously. However, the measurement exhibits some slight disagreement

from the simulated results, and the AR band is given by 2.150-2.525 GHz, which gives a 375

MHz (15.6%) bandwidth. Some of the discrepancies can be expected when comparing results

from an approximate MEMS versus an actual measurement. Other errors can be attributed to

possible scattered waves and misalignment within the anechoic chamber used for measurement.
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Figure 6.21: Comparison of the axial ratio for the CP E-shaped patch antenna between the
circuit simulation model, full MEMS simulation model, and a wirebonded MEMS measurement
shown in Figure 6.20b
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(a) E-plane (φ = 90◦)
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(b) H-plane (φ = 0◦)

Figure 6.22: Principal patterns for the fabricated RHCP/LHCP reconfigurable E-shaped
patch antenna with wirebonded MEMS switches at 2.45 GHz. Its directivity is D0 = 8.34 dB.
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The radiation patterns for the CP E-shaped patch are given in Figure 6.22, and only the principal

planes (E-plane and H-plane) are shown for brevity. The radiation patterns remain fairly constant

versus frequency in the given bandwidth, and therefore allows this concise representation of the

antenna radiation performance. Note how the nulls in the cross polarization pattern are not

aligned between the simulation and measurement. This could indicate possible misalignments

in the chamber which account for any increases observed in the AR measurement. Overall, the

radiation patterns show a fairly wide beamwidth as expected in CP patches, and the radiation

patterns are fairly typical of CP patches which exhibit no symmetry.

In summary, the CP E-Shaped patch antenna concept was introduced, and an implementation

of reconfigurability has been built into the antenna to allow it to switch from RHCP to LHCP. The

PSO algorithm was applied to extend the AR-S11 bandwidth further than previously reported

bandwidths. The final design has been demonstrated and verified through measurements and

simulations. The only piece that must be implemented to finalize this design are the bias networks

to control the MEMS switches, which are discussed in Section 6.5.

6.4 Frequency Reconfigurable E-Shaped Patch

Versatility and adaptability in wireless systems has been a research topic that has stirred interest

in multiple scientific circles, including the antenna systems community. Frequency reconfigura-

bility is the ability to alter the antenna’s frequency of operation, where the antenna is either

impedance matched or has a certain required gain. One of the primary uses of this can be for the

replacement of large multi-antenna systems where each antenna has its own independent use.

With the use of frequency reconfigurable antennas, one can replace the complex multi-antenna

systems with just one antenna, where each frequency bandwidth can be achieved by a certain

switch state. This eliminates the requirement to design high isolation antenna systems, which

can be a challenging design problem. It also helps to meet size and weight requirements, since

only one antenna may be used to represent multiple antennas. Frequency reconfigurable anten-

nas may also become an important research subject for use in possible wireless systems such as

cognitive radio. With the fairly recent proposal of cognitive radio, adaptive and intelligent sys-
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tem research has become a popular research subject. A large amount of research has been spent

in solving many problems dealing with the communications aspects of a cognitive radio, such

as infrastructure, free spectrum detection, resource allocation, and interference minimization

[148, 149]. However there has only been a limited amount of research in the antenna commu-

nity to provide design solutions in the cognitive radio context [150, 151, 152]. Overall, there

exist many system applications for frequency reconfigurable antennas to provide extra system

versatility or reduce the system size.

Frequency reconfigurable antennas are typically implemented by shifting the resonance of the

antenna, where the resonant frequency is often defined by a particular length of the antenna.

This resonance can be shifted in a variety of different ways. One method could be to alter the

resonant length of the antenna via the use of switches [153, 154]. Mechanically changing the

antenna structure has also been implemented using actuation to alter a patch antenna’s structure

[155, 156]. Another technique used to alter the resonant frequency can be accomplished by

altering the reactive loading upon an antenna. A slot-loaded patch antenna is a great example,

and there have been a variety of different patch antenna structures which have had celebrated

success in providing frequency reconfigurability [157, 158].

This frequency reconfigurable E-shaped patch antenna design can be classified in the third

category of slot-loaded reconfigurable patch antennas. Frequency reconfigurability is achieved

by changing the effective dimensions of the slots which load the patch to create the E-shaped

patch. To the author’s best knowledge, there has only been one other proposed reconfigurable

E-shaped patch antenna design given in [159]. This antenna design utilizes PIN diodes in order

to achieve two E-shaped states, where the resonant frequency is shifted by reconfiguring to a

larger E-shaped design. However, this design requires many more switches (roughly 17 switches)

than the proposed design in this section, which only requires two switches.

The next sections will provide some background on the frequency reconfigurable (FR) E-

shaped patch antenna. PSO will be applied to achieve a wideband reconfigurability for this

design using a similar approach as the CP reconfigurable E-shaped patch antenna. The final

results of the optimization and measurements will then be provided to conclude this section.
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Figure 6.23: Depiction of the slot modes and the effect of changing slot dimensions on the
resonant frequency

6.4.1 Physical Principles

As discussed in Section 6.1, the E-shaped patch antenna has two primary modes of operation:

the patch mode and the E-shaped mode. The patch mode resonance can be predicted by the

patch length ` depicted in Figure 6.23, which at resonance is roughly half the guided wavelength

λg within the substrate. The E-shaped mode has currents that meander around the slots, and its

resonance is roughly guided by the length that would be travelled by the current. These are only

rough insights on the resonance condition within the E-shaped patch, and their exist much more

complicated models that better predict the resonant frequencies of this design. However, these

first order models provide insight into possible implementations of frequency reconfigurability

into the E-shaped patch antenna design.

A closer look at the E-shaped patch mode shows that the resonant frequency is highly de-

pendent on the slot dimensions. A wider and longer slot would extend the overall path length

traveled by the current, which would lower the resonant frequency of the E-shaped patch mode.

A shorter or thinner slot would accomplish the opposite; it would increase the resonant frequency

of this mode. Another E-shaped design is shown in Figure 6.23c in order to demonstrate this

concept. When comparing the two designs in Figure 6.23b and 6.23c, one can see that the over-

all length traveled by the currents is shorter for the Figure 6.23c, which would imply that the
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resonant frequency would be higher for this design.

These observations lead to an intriguing question on possible reconfigurability. What if the

slot dimensions could be dynamically changed in real-time? By changing the slot dimensions, it

can be seen that the resonant frequency of the E-shaped mode would be shifted. In particular, if

the slots were shortened using switches, then one could theoretically shift this resonant frequency

in order to obtain frequency reconfigurability. Therefore, a frequency reconfigurable E-shaped

patch antenna design is proposed based on the concept of dynamically changing the slot dimen-

sions. This can be realized by placing two switches within the slots. The OFF case represents

the normal E-shaped patch case, where the original performance would be observed. The ON

case represents the new case where both slots are effectively shortened by turning the switches

on. This is the premise of the FR E-shaped patch antenna design, and good performance must

be obtained for the two different states in terms of impedance matching.

The FR E-shaped patch concept was implemented on a similar platform used for the CP

reconfigurable E-shaped patch. The schematic is shown in Figure 6.24, where the same multilayer

structure is given. The primary difference between this design versus the one shown in Figure 6.16

is that the ground plane is the same size as the duroid layer. This provides a more compact design

and can be done since the pattern measurements are not as sensitive with linear polarization in

comparison to the CP design. The MEMS switches are also implemented in the same fashion

as in the CP reconfigurable case. However, the MEMS switches are either both turned OFF or

both turned ON, and they create a symmetric antenna structure. The MEMS switches in the CP

antenna are opposite, where one is turned off and the other is on in order to create the asymmetry

needed for creating CP radiation. This design shown is also the design that is used in conjunction

with the MEMS circuit model for optimization purposes. Since the design is symmetric, one can

also apply a symmetry boundary condition in order to reduce the computational burden of the

simulation.
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(a) Perspective View with Design Variables. Note that the ground plane will have dimen-
sions 120mm x 100mm.
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(b) Side View

Figure 6.24: Reconfigurable E-shaped patch implementation for frequency reconfigurability
using MEMS switches
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6.4.2 Optimization for Wideband Designs

The optimization of the FR E-shaped patch design has many similar characteristics to the

optimization applied to the CP reconfigurable E-shaped patch design. Therefore a summary of

the similar aspects will be recapped briefly and the equations rewritten for clarity. First, the

boundary conditions for the FR E-shaped design are identical to those of the CP design and are

shown in the following list.

L ∈ (30, 96) mm (6.8a)

W ∈ (30, 96) mm (6.8b)

Ls ∈ (0, 96) mm (6.8c)

Ps ∈ (0, 48) mm (6.8d)

Ws ∈ (0, 48) mm (6.8e)

fd ∈ (−48, 48) mm (6.8f)

` ∈ (0, 96) mm (6.8g)

Each variable represents the same aspect as in the CP design and are given the same range of

values. The design constraints are also identical, as seen by

L− Ls > 5mm (6.9a)

Ps −
Ws

2
> 2.5mm (6.9b)

W

2
−
(
Ps +

Ws

2

)
> 5mm (6.9c)

|fd| <
L

2
(6.9d)

Ls − ` > 5mm (6.9e)

These constraints are provided to avoid the same problematic designs as shown in Figure 6.17

shown in Section 6.3.2. The equations 6.8 and 6.9 define the solution space S and the feasible

space F , and therefore account for all geometrical aspects of the optimization process.
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The following step aims to define the fitness function for this optimization, which will be

different than the CP design optimization. In this frequency reconfigurable design, both possible

states must be optimized rather than just one. Therefore, two simulations are required in order

to evaluate a given set of geometrical parameters. One simulation outputs the performance for

the OFF state (where both switches are off), and the other outputs the performance for the ON

state. Assuming that the directivity is fairly constant in the band of interest, one can solely

optimize the impedance matching in order to provide better connectivity on the average case

scenario. The fitness function should then distinguish designs having a good impedance match

over the band of interest from those which do not. A methodology that has shown good results

is the minimax approach as shown in Chapter 5. This is incorporated in the fitness function

f(~x) = α1 max
f∈Foff

S11,off + α2 max
f∈Fon

S11,on + α3

∣∣∣∣max
f∈Foff

S11,off − max
f∈Fon

S11,on

∣∣∣∣ (6.10)

where the term maxS11,off represents the worst case S11 in dB for the band Foff when the MEMS

switches are in the OFF case. The term maxS11,on represents the worst case S11 in dB for the

band Fon when the MEMS switches are in the ON state. After some investigation, the bands

Foff = (2.0, 2.6) GHz (6.11a)

Fon = (2.6, 3.2) GHz (6.11b)

were chosen for the optimization due to the antenna geometry and the possible bandwidth

expected from this design. The optimization will attempt to minimize this fitness function, and

therefore it will minimize the sum of the worst S11 values for the two states. However, these

two terms alone do not best represent the optimization problem, for there may be cases where

the fitness function would output small values for designs that are not necessarily better than

others. One must ensure that both objectives are optimized rather than just one alone. Using

the shorthand Smax
11,off = maxf∈Foff

S11,off and Smax
11,on = maxf∈Fon S11,on, consider the following two
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cases assuming that αi = 1:

Smax
11,off = −20 dB

Smax
11,on = −20 dB

 → Smax
11,off + Smax

11,on = −40 (6.12a)

Smax
11,off = −40 dB

Smax
11,on = 0 dB

 → Smax
11,off + Smax

11,on = −40 (6.12b)

In the first case shown by equation 6.12a, both states have the worst S11 = −20 dB, which

implies that good performance is observed for both bands. The second case in equation 6.12b

shows the worst S11 = −40 dB for the OFF state, but the ON state has the worst S11 = 0 dB,

which implies that not all frequencies satisfies the criterion S11 < −10 dB for the ON state. Yet,

the addition of the two terms is equal for both cases as shown in equation 6.12. This implies

that both designs have equal fitness and are therefore equivalent in performance. This statement

is false however since the second case has an S11 > −10 dB. Therefore an additional term in

the fitness function is needed. The term |Smax
11,off−Smax

11,on| hopes to negate this effect and properly

distinguish good designs from poor ones. These two cases are added again using this extra term

and assuming that αi = 1.

Smax
11,off = −20 dB

Smax
11,on = −20 dB

 → Smax
11,off + Smax

11,on + |Smax
11,off − Smax

11,on| = −40 (6.13a)

Smax
11,off = −40 dB

Smax
11,on = 0 dB

 → Smax
11,off + Smax

11,on + |Smax
11,off − Smax

11,on| = 0 (6.13b)

Again, the optimization algorithm attempts to minimize the fitness function, and therefore it

will try to make this absolute subtraction term have a value closer to zero. Hence, this term

compares the relative difference between both bands and forces them to be similar. By doing so,

it alleviates the problem shown in equation 6.12.

The weights in the fitness function must be set in order to proceed with the optimization.

Luckily, each of the S11 terms will have roughly the same average value and therefore the weights

α1 = α2 = 1 can be chosen. Since, the absolute subtraction term will have an average of zero,
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Table 6.4: PSO Intrinsic Parameters for the Frequency Reconfigurable E-shaped patch an-
tenna design optimization

PSO Parameter Values Used

c1 2.0
c2 2.0

Swarm Size 14
∆t 1.0

Max Iterations (imax) 500
Boundary Condition Invisible

wk 0.9− 0.5
(

i
imax

)
~vmax

1
2

(~xmax − ~xmin)

the averaging technique does not provide a clear suggestion for the value of α3. Therefore, the

value is arbitrarily set to α3 = 1 since the magnitude will be roughly the same when the two

bands have some differences. With these choices, the fitness function can be finally written as

f(~x) = max
f∈Foff

S11,off + max
f∈Fon

S11,on +

∣∣∣∣max
f∈Foff

S11,off − max
f∈Fon

S11,on

∣∣∣∣ (6.14)

Lastly, the same penalty function for the CP reconfigurable optimization run was utilized in this

run, and the function was written as

pc(~x) =


0 if ~x ∈ F

105 if ~x /∈ F
(6.15)

and was implemented into the fitness function by

fP (~x) = f(~x) + pc(~x) (6.16)

where fP (~x) represents the function which PSO optimizes.

All required aspects for this optimization have been defined, and PSO was applied in order

to minimize the given fitness function with the intrinsic parameters shown in Table 6.4. This

optimization used the model provided in Figure 6.24 in conjunction with the simple MEMS
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circuit model in order to finally simulate the performance of the FR E-shaped patch antenna.

Two simulations are computed in order to simulate the ON and OFF cases. However, the

simulations are not very computationally expensive since only the port parameters are used in

the fitness function.

6.4.3 Final Designs

The optimization run was quite successful in finding a design that provided the performance

desired in the bands of interest. The fitness function had a well defined frequency band, and

therefore the computation of the fitness function was quite simple. First, the simulation model

was simulated and all frequency data obtained for the two switch states and frequency bands.

Then a max function was implemented by comparing all S11 values within the frequency band

and finding the maximum value. Once the maximum is found for each band/state, the values

are then substituted into equation 6.16. Since half-symmetry was exploited, the average time

was reduced to a minimal 2-3 minutes, leading to a function evaluation time of approximately 5

minutes. If every design provided by PSO was simulated, then this would result in roughly 24

days for a full optimization of 500 iterations. However, not all designs are simulated since there

can be many that are out of the boundaries or that do not satisfy the constraints. The total

time for this particular optimization run was roughly 23 days.

The convergence plot is given in Figure 6.25, where both the average and global best fitness

are plotted. PSO was somewhat slow in finding a design that met the -10 dB S11 criterion, but it

did find a design near 350 iterations. This is the point where the global best fitness crosses the -20

mark, which implies that both states have a maximum S11 < −10 dB, which meets the desired

criterion for those bands. Several other features to this optimization can be observed from this

convergence plot. First, the given feasible space F is quite tricky to navigate as evidenced by

the sharp spikes seen in the beginning of the optimization. Further into the optimization all of

the particles make it into the feasible region, where they navigated the space to find the global

best minimum. We also see that the average fitness approaches the value of the global best near

the end of the optimization. This is often the point where the inertial weight has decreased to
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Table 6.5: Final Design Values from the FR E-shaped Patch Optimization

Parameter Value (mm)

L 44.299

W 95.870

Ls 28.580

Ws 11.436

Ps 13.100

fd 18.664

` 4.882
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Figure 6.25: Convergence of the frequency reconfigurable E-shaped patch design optimization

a point where most (if not all) of the particles are searching the local neighborhood around the

gBest point. This can therefore imply that the design can maintain good performance even with

some slight variations in the design variables, since the average fitness is similar to the global

best fitness.

Even though this constrained optimization was quite difficult, PSO found a design that met

the required design criterion. The final design values are provided in Table 6.5. From this table,

one can see that a wide patch antenna must be used in order to achieve a FR E-shaped patch

antenna. This width W is slightly less than one wavelength at 2.4 GHz, which can be considered

somewhat large for a patch antenna. The length is still near our expectations and is quite similar

to the one found in the CP optimization run, as shown in Table 6.3. The slot dimensions are
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fairly common for the wideband E-shaped patch designs. One major difference between this

design and the CP reconfigurable design is the switch bar placement within the slot. For the CP

reconfigurable design, the bars are placed nearly halfway into the slots, leading to a value nearly

at ` ≈ Ls/2. For this design, the bars are placed very close to the bars that form the E-shape,

which implies a small value of `, as shown in Table 6.5.

The design shown in Table 6.5 was both simulated and measured with a fabricated design

and wirebonded MEMS switches. The S11 performance for both states is plotted in Figure

6.26 and compared between the circuit simulation model, the full MEMS simulation model,

and the measurement. The blue curves correspond to the OFF state, and the green curves

correspond to the ON state. The measured prototype is shown in Figure 6.27a, and a close-up

view of the implemented MEMS switch is shown in Figure 6.27b. It should be noted that in the

measurement, two prototypes were made to measure each state of the antenna design, since no

bias lines were present to switch the MEMS switches. Radant MEMS offers a Thru-Line version

of their Radant MEMS RMSW100HP switch [139], and this was utilized to measure the ON

state of the antenna. The MEMS switch shown in the close-up figure is the OFF state switch,

which is represented by the standard Radant MEMS RMSW100HP switch. Good agreement is

observed by all curves on the plot, especially for the OFF case. In the ON case there is slightly

more disagreement, and the measurement slightly goes over the -10 dB mark. Nevertheless, this

demonstrates the concept of the frequency reconfigurable E-shaped patch antenna.

The radiation patterns of the FR E-shaped patch antenna were also measured and are plotted

in Figure 6.28. Note that the frequency was 2.55 GHz, which implies that the OFF state must

be used for the measurement. Good agreement is also seen between the measurement and the

simulation, which uses the circuit model for the radiation patterns. In the E-plane, a slightly

larger amount of cross polarization was detected, and this may be due to possible diffractions or

misalignments within the UCLA anechoic chamber. This is also noted for the boresight direction

in the H-plane plot, where a high cross polarization is observed rather than a null. However,

these patterns in general show fairly good agreement between simulation and measurement and

overall the patterns match the standard characteristics of a typical rectangular patch antenna.
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Figure 6.26: Comparison of the impedance matching performance for the frequency reconfig-
urable E-shaped patch antenna between the circuit simulation model, full MEMS simulation
model, and a fabricated E-shaped patch antenna with wirebonded MEMS shown in Figure 6.27

(a) S11 measurement (b) Close up of MEMS switch

Figure 6.27: Fabricated frequency reconfigurable E-shaped patch antenna with wirebonded
MEMS switches

180



  −30   −20   −10   0 dB

30

−150

60

−120

90−90

120

−60

150

−30

180

0

 

 Simulation Copol
Simulated Xpol
Measured CoPol
Measured Xpol

(a) E-plane (φ = 90◦)
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Figure 6.28: Simulated (circuit model) and measured frequency reconfigurable E-shaped
patch antenna patterns at 2.55 GHz in the principle planes. The directivity D0 = 10.57 dB for
this frequency.

In summary, the results of the optimization are very pleasing, and the optimizer provided

a final design which fit the criterion in the bands provided. Much of the agreement between

the simulation and the measurement can be attributed to the circuit model. These final imple-

mentations demonstrate the use and power of the simple circuit model in the effort to optimize

these MEMS reconfigurable E-shaped patches. Much of the work was spent in finally achieving

good agreement between the simulation model and measurement. The final design presented a

marvelous boost in effective usable bandwidth for the FR E-shaped patch antenna. E-shaped

patches typically demonstrate roughly 31% bandwidth, as discussed previously in Section 6.1,

and the final FR design showed roughly 1.25 GHz bandwidth, which is roughly 48% bandwidth.

This nearly doubles the previously achievable bandwidth while utilizing nearly the same volume,

and this can be considered a difficult achievement which can have many different applications.

6.5 Bias Network Development

As with any electrically controlled switch, a bias line to control the switch must be implemented

in order for the reconfigurable antenna design to have any practical use. The design and imple-

mentation of the bias lines is typically done as an afterthought due to their limited interaction

with the RF performance. However, if stronger interactions are anticipated, then many clever

181



techniques can be used in order to connect the bias lines for the proper biasing of the antenna

and the RF switch. For example, the use of a quarter wavelength stub was used in [158] in

order to short the patch antenna to DC ground while not affecting the performance of the patch

antenna. An integrated bias network was implemented into the patch antenna using capacitively

coupled lines in order to provide access to the patch slot while allowing the RF current to travel

on its normal path. Unfortunately, this methodology is not applicable to the E-shaped patch

antenna due to its wideband characteristics.

We will use the following approach in order to develop a bias network design solution. First,

we used the ideal switch model in order to test any possible designs using measurements. This

avoided the costly and wasteful use of MEMS switches. The ideal switch E-shaped model was

discussed in Section 6.2 and assumes that the MEMS switches operate as either ideal shorts or

ideal open circuits (which in not the case in reality). Nonetheless, this design still operates rather

well when operating without MEMS switches wirebonded, which is why it provides a great deal

of information with regard to the implementation of the bias network. Another important point

is that only the results for the OFF case are presented in this section for brevity. The ON case

can be achieved either by fabricating the ideal switch design or by placing copper tape across

the bars in order to provide a short circuit. In this manner, achieving a good design for the OFF

case will also imply achieving a good design for the ON case.

As a first implementation, metal lines are placed into the ideal switch design, where the

metal lines would have clear access to bias the MEMS switches if placed on the pads. The

S11 performance comparison is shown in Figure 6.29, where three cases are investigated. They

include a simulation without any sort of bias lines included, a simulation with metal lines 45mm

long included, and a measurement with the same metal lines. Each of these cases are depicted

in the same order in Figure 6.30. The S11 response observed for the simulation without any

bias lines is expected, where good S11 < −10 dB performance is achieved throughout the 2.0-

2.7 GHz frequency band. However, both the simulation and the measurement which incorporate

the metal bias lines show a drastic performance change in the design, and this is unacceptable

for a final design implementation. The impedance matching performance is almost completely

ruined for the band of interest, and therefore this design solution could not be used for the final
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Figure 6.29: Comparison of the impedance matching performance for the simulation with no
bias lines, the simulation with metallic lines included, and the measurement with metallic lines
included as depicted in Figure 6.30
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Figure 6.30: Simulated and fabricated models to test metallic bias networks
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implementation.

This certainly was not the expectation for this design, and it forced a further examination into

possible reasons to explain this phenomenon and pinpoint the situation to avoid. One immediate

observation is that the length of these given lines provides a resonant frequency (half wavelength)

near 3 GHz, which may induce some strong coupling between the line and the E-shape patch.

Although the resonance is not exactly at a frequency within the band, the near resonance effects

may still be substantial, and therefore more experiments must be conducted. One method to

investigate this observation further is a test of the dependence of the S11 performance on the

line length. Therefore, a line with variable length was placed in the HFSS simulation in order

to simulate these effects. The line length was varied from 5mm to 45mm in intervals of 10mm,

and Figure 6.32 depicts the simulation model. The S11 performance for each length of line is

provided in Figure 6.31. The original E-shaped simulation model without the line corresponds

to the case where d = 0mm.

The first and most obvious observation from this plot is that the S11 is indeed dependent

on the length of the line. It seems that the impedance matching is relatively unaffected by

the presence of the line for lengths lower than or equal to 25mm. Above these values, the S11

becomes notably different, and therefore any lengths above 25mm are not recommended in order

to maintain the performance of the E-shaped antenna. This also shows that the lines under

25mm are relatively invisible to the RF waves, possibly due to the non-resonance condition.

However, this does not improve the situation because a connection is needed in order to provide

a bias to the MEMS switch. Since it may be possible that the coupling between the bias lines and

the patch is strongest when the lines are in resonance, the bias line investigation shifts its focus

towards finding methods for breaking a line resonance at the RF frequencies but maintaining a

DC connection. The space is also limited due to the slot geometry, and therefore passive tuning

stubs and low pass filter design are out of the question.

One might be able to break the near-resonance condition by adding loss to the bias line

network. The next part of this investigation looked into the possibility for implementing resistors

or inductors into the design. This could be accomplished by splitting the bias line into small
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Figure 6.31: Comparison of the effect of line length, shown in Figure 6.32, on S11 performance
in order to determine whether a resonant line causes the impedance mismatch

Figure 6.32: Simulation model used to determine the dependence of S11 on the length, d, of
the bias line
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sections with gaps between each section. The gap scenario represents the ultimate scenario with

infinite resistance, however it is also unknown whether a structure with multiple lines of length

d would cause problems. It was demonstrated that a 5mm line would not cause any problems

in Figure 6.31, but this does not imply that an array of these objects within the slot would not

have adverse effects. Therefore the lines with gaps and the case without lines are compared in

Figure 6.34. The bias network with multiple sections of bias line is shown in Figure 6.33a.

There seems to be little interaction between the patch and the bias line with gaps, which

implies that the near-resonance condition has been broken for this bias network. Overall, the

performance between the case without any lines and the case incorporating a line with gaps

is nearly indistinguishable. Since this design was successful in breaking the near-resonance

condition, another design with perfect 10 kΩ resistors are placed in the gaps in order to provide

the DC connectivity to the MEMS switches. Perfect resistors represent the ideal case where

only a resistance is seen across the terminals of a resistors. However, this may not be the case

since a surface-mount technology (SMT) resistor is used for a practical implementation. The

SMT resistor chips are most often modeled with a series inductance and a terminal to terminal

capacitance. This model shows that the impedance of the resistor degrades after a certain

frequency and either increases or decreases indefinitely [160]. The case with 10 kΩ resistors is

then simulated and the results are also shown in Figure 6.34, and an illustration of the resistors

in place is shown on Figure 6.33b. Again, perfect agreement is observed between the resistor

bias line and the case without lines. This is good news, since it demonstrates that the resonance

condition can be broken while still providing a DC connection to the MEMS switches. Even

though 10-100 kΩ is a large amount of DC resistance, the MEMS switches typically are actuated

by voltage rather than by current. In other words, the input impedance of the MEMS switch

is typically on the order of 100-1000 MΩ. Therefore, a line impedance of 80 kΩ is negligible

in comparison, and only a small portion of the voltage will be lost to the line. It should be

noted that one may be able to accomplish the same task using inductors, which would have very

little DC loss. The only issue encountered with this approach was that the required inductance

needed for good performance was at least 15 µH, which is not commercially available with a

self-resonant frequency (SRF) higher than 3 GHz. Therefore, an inductor design would not be
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(a) Bias line with gaps
(open circuit)

With 10kOhm 

Resistors

5mm

(b) Bias line with perfect
10kΩ resistors

Figure 6.33: Simulation models to compare a bias line with gaps (open circuit) and 10 kΩ
resistors filling the gaps
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Figure 6.34: Comparison of the S11 performance for the simulation with no bias lines, the
simulation with metallic lines with gaps shown in Figure 6.33a, and the simulation with resistors
shown in 6.33b
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possible unless commercial technology changes in the near future.

The bias network design which allowed a DC connection and broke the near-resonance con-

dition using resistors was prototyped to ensure that the design was plausible and maintained the

same performance in comparison to the design without bias lines. The prototype is shown in

Figure 6.35, where 8-10 kΩ resistors are implemented via solder for each bias line. The connec-

tion was tested using an ohmmeter, and a reading of 80 kΩ was measured, which implied that

the connection between each resistor was solid. A measurement of the S11 for several different

cases ensued, and the cases compared in Figure 6.36 include simulations and measurements for

the bias line with gaps case and the bias line with resistors case. Note that the E-shaped patch

was measured before the resistors were soldered onto the bias lines, and therefore there were

two measurements: a design with bias lines having gaps and a design with resistors. There are

some discrepancies observed between the simulation and measurement for the bias line with gaps

and for the bias line with resistors. However, the best plots to compare are the two simulation

scenarios and the two measurement scenarios. Clearly, adding the resistors in the simulation

and in the measurement design showed no significant changes in their S11 plot. With both the

simulation and the measurement results, one can conclude that the resistor bias line is a possible

choice of bias network which can be fully implemented into the E-shaped patch design platform

with good performance.

Another approach that one may take is the use of highly resistive lines, which we will denote

as lossy bias lines for clarity. These are quite popular and have been implemented in systems

where micro-fabrication facilities are available. Typically, the designs reported in literature have

used TiW lines [161] or even Silicon Chrome (SiCr) lines [162], both of which have a high DC

resistance. In the case of the SiCr lines, the total impedance of the line was 500 kΩ. Yet, these

micro-fabrication techniques were not available to our lab at the time, and other avenues were

explored in order to implement this technique. After some research, a conductive ink was found to

provide the required DC resistance for our application, and it would be fairly easy to implement

onto the E-shaped patch using a brush. The conductive paint was a PELCO Isopropanol Based

Graphite Based Paint distributed by Ted Pella, Inc [163]. This paint provides approximately

2400 Ω/sq for a thickness of 1 mil (25 µm), which is the approximate thickness on average for
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Figure 6.35: Fabricated E-shaped patch antenna with metallic bias lines connected by 8 SMT
10 kΩ resistors, where the total line resistance should be roughly 80 kΩ
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Figure 6.36: Comparison of the impedance matching performance simulation and measure-
ment results for 2 cases: the E-shaped patch design with metallic bias lines having gaps and
the same design with 10 kΩ resistors filling gaps
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a brush coated application of the paint. This resistance nicely fit with our requirement for high

resistance and was also fairly inexpensive. Using supplies around the lab, stencils were created

in order to apply the paint via brush onto the Rogers Duroid substrate.

As a test of these lossy lines, an experiment using the same ideal switch E-shaped patch

design was fabricated. The design without the lossy bias lines is shown in Figure 6.38b, where

four pads are included to for use with the bias line. Before applying the conductive ink, this

design was measured as a reference measurement without the lossy lines. Next, the lossy lines

were applied to the design using the stencils to trace out the lines. After applying, the ink must

cure for 30 minutes in order fully bond to the substrate and to dry completely. The final absolute

resistance was roughly 200 kΩ for both lines, which provides the necessary resistance to appear

invisible to the RF but allows a DC connection. The final design with the conductive ink is

shown in Figure 6.38c. The S11 measurements and simulations are shown in Figure 6.37. The

simulation and measurement without lines show some discrepancy, but this is somewhat expected

due to errors in fabrication common to multilayer structures. However, the general trend shows

good agreement between the two. Even further, very good agreement between the measurement

without lines and the measurement with the lossy lines is observed. This demonstrates that the

lossy lines have a minimal effect on the design in comparison to its performance without the bias

lines, and therefore are a viable option for bias lines. This may even be a preferred option due to

its ease in application. The resistor bias line tends to be quite messy and challenging to solder

SMT chips at extremely small sizes.

In summary, the bias lines represent another challenge to the E-shaped patch design that

is typically taken for granted in the reconfigurable antenna research area. The length of the

bias lines was the primary factor which degraded the E-shaped performance with the presence

of metallic bias lines. Therefore other clever techniques had to be sought. Two viable options

were investigated: a resistor bias line structure and a lossy bias line network. Both provide good

performance, but the lossy line approach may be superior because it is less challenging to fabricate

in comparison to the resistor networks. Overall, these results demonstrate the implementation of

the bias lines into the design and ultimately this demonstrates the full practical implementation

of both reconfigurable E-shaped patch antenna designs.
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Figure 6.37: Comparison of the impedance matching performance for the simulation with no
bias lines (Figure 6.38a), the measurement without bias lines (Figure 6.38b), and the measure-
ment with lossy lines included (Figure 6.38c)
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Figure 6.38: Simulated and fabricated models to test lossy bias line networks
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6.6 Further Discussion

The E-shaped patch antenna has been a widely celebrated patch antenna design which can pro-

vide a wideband performance with a simple methodology. In this chapter, two new reconfigurable

E-shaped patch antenna designs have been presented: a RHCP/LHCP reconfigurable E-shaped

patch and a frequency reconfigurable E-shaped patch antenna. PSO was applied to both designs

in order to optimize performance according to the particular antenna. The final designs, simula-

tions, and measurements proved that PSO did an excellent job in finding good design solutions.

The final CP E-shaped patch antenna provided a AR-S11 bandwidth of roughly 15.6%, which

is quite high for a CP patch antenna in its class. The FR E-shaped patch antenna was able

to nearly double its bandwidth from 31% to 48%, by adding the new state which altered the

dimensions of the slot. Overall, both designs provided good results.

One consideration that is hoped to achieve in the future is the implementation of every

component discussed in this chapter into one fully functional E-shaped patch design. This

design would have the ability to switch between linear polarization to circular polarization, and

it could switch from one frequency to another. In other words, it would have two switches where

all four states were usable states in order to take full advantage of all reconfigurability currently

available to the E-shaped patch design. This may turn out to be more difficult than it looks

because the two designs shown in this chapter had inherently different characteristics. As noted

previously, the MEMS bar position within the slots was one of the key dimensions that was

different between the two. For the CP reconfigurable antenna, the bars were placed at roughly

` ≈ Ls/2. However, the bars on the FR patch antenna were closer to the other bars which form

the E-shape. This may pose problems in trying to find a compromise between each design in

order to realize the full picture, but it is still hopeful that this type of design could be achieved.
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CHAPTER 7

Conclusions

Indeed, nature-inspired optimization techniques provide a unique tool that can find good

designs where other algorithms often fail. They are still newly developed algorithms, and much

more research has been going on to improve the various techniques. A discussion was given to

provide some background on the role of optimization within the discipline of electromagnetics and

antenna engineering. The parameters of interest for optimization of antenna designs were then

described based on the idea of improving the antenna link for the average case scenario. In this

work, the Particle Swarm Optimization (PSO) and the Covariance Matrix Adaptation Evolution

Strategy (CMAES) algorithms were introduced as possible candidates for use in antenna design

optimization, and definitions were provided for every aspect of the optimization formulation.

The two algorithms were compared in terms of convergence, efficiency, and robustness. They

were first compared by the optimization of several mathematical fitness functions. The goal of

this optimization was to provide some insight on their convergence in resource limited settings

for different types functions which have qualities often seen in electromagnetics applications.

Both techniques showed good convergence which provided significantly better fitness. In gen-

eral, CMAES showed faster convergence than PSO for many of the functions, and required a

significantly less number of function evaluations for the optimization due to a smaller population

size. There were also some functions that were difficult to optimize, and the multimodal problems

often posed a challenge to both algorithms. There were a few cases where PSO demonstrated

better robustness by achieving better fitness value at the end of the run.

The next comparison was conducted on a standard array problem to minimize the sidelobe

level using a non-uniform array technique. Both techniques found nearly identical design solu-

tions which provided a minimal SLL in the sidelobe region. Both were able to converge upon
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a solution within the given amount of iterations, however CMAES approached the final solu-

tion faster than PSO for this particular problem, which took some time to fine-tune the design

parameters.

A weather radar antenna was optimized to improve its dual polarization performance for the

context of dual polarized weather radar systems, which has been the forefront of research in

atmospheric radar technology. This provided a simple but challenging real-world optimization

problem to compare PSO and CMAES. Two different optimization formulations were discussed

in the context of providing equivalent optimization results. Both PSO and CMAES demonstrated

good results for both optimization problems, however the CMAES algorithm had some trouble

with the minimization of the S11 for the specified frequency band for one run. The difference

in the optimization of the cross polarization in the principle planes (φ = 0, 45, 90, 135◦ planes)

versus the direct optimization of the bias weighting factors was also discussed. From the results

it was concluded that for small antennas a minimization of the crosspolar fields in the principle

planes is fairly equivalent to the direct optimization of the bias weighting factors.

The next two chapters then provided two other antenna designs which were optimized by

PSO. In Chapter 5, both a stepped septum and a sigmoid septum were introduced for use within

a circular waveguide horn. The role of these septums was to produce a circular polarization

from a linear one in order to radiate highly circular waves. The optimization was designed to

minimize the impedance matching and axial ratio over a specified band. These designs proved

to be a challenging optimization problem in which PSO was able to reduce the fitness. Both

designs were evaluated via simulations and showed similar performance, although there were

areas where each design performed better than the other.

The last chapter investigated possible reconfigurable antenna designs for E-shaped patch an-

tennas for use in wireless applications or even cognitive radio. The E-shaped patch antenna

concept was introduced, and then a simple MEMS circuit model was provided for rapid op-

timization. First, a polarization reconfigurable (RHCP/LHCP) E-shaped patch antenna was

introduced, and its design was optimized using PSO. Next, a frequency reconfigurable E-shaped

patch antenna design was optimized also using PSO. Good design performance was realized by
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both designs. The bias network design proved to be another challenging problem due to resonant

coupling, however a final design solution was provided in order to practically implement either

reconfigurable E-shaped patch design.

This work was yet another demonstration of the wide applicability of nature-inspired op-

timization techniques to a practical discipline interested in obtaining a final design solution.

Even though the fitness functions are often ill-conditioned, multimodal, and nonlinear, the al-

gorithms demonstrated fast convergence for the problems discussed in resource limited settings.

Both techniques (PSO and CMAES) have also been discussed in terms of their applicability to

antenna design problems, and each have their advantages. Ultimately, it is important to keep

current with the newly proposed algorithms within the evolutionary computation field, and col-

laboration between researchers in microwave engineering as well as evolutionary computation is

highly encouraged in order to incorporate the needs of practical design optimization problems.
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