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Demographic connectivity is vital to sustaining metapopulations yet often

changes dramatically through time due to variation in the production and

dispersal of offspring. However, the relative importance of variation in

fecundity and dispersal in determining the connectivity and dynamics of

metapopulations is poorly understood due to the paucity of comprehensive

spatio-temporal data on these processes for most species. We quantified con-

nectivity in metapopulations of a marine foundation species (giant kelp

Macrocystis pyrifera) across 11 years and approximately 900 km of coastline

by estimating population fecundity with satellite imagery and propagule

dispersal using a high-resolution ocean circulation model. By varying the

temporal complexity of different connectivity measures and comparing

their ability to explain observed extinction–colonization dynamics, we dis-

covered that fluctuations in population fecundity, rather than fluctuations

in dispersal, are the dominant driver of variation in connectivity and contrib-

ute substantially to metapopulation recovery and persistence. Thus, for

species with high variability in reproductive output and modest variability

in dispersal (most plants, many animals), connectivity measures ignoring

fluctuations in fecundity may overestimate connectivity and likelihoods of

persistence, limiting their value for understanding and conserving meta-

populations. However, we demonstrate how connectivity measures can

be simplified while retaining utility, validating a practical solution for

data-limited systems.
1. Introduction
The dynamics of spatially structured metapopulations are fundamentally gov-

erned by the degree to which local populations are demographically connected

through migration [1]. Therefore, understanding why demographic connec-

tivity varies over space and time, and how this variation affects population

dynamics are central goals in ecology and its applications in conservation, eco-

system management and epidemiology [1–5]. Great progress has been made in

understanding the role of spatial variation in metapopulations (e.g. the influ-

ence of landscape features), but much less is known about the causes and

consequences of temporal variation in connectivity [2,6,7], despite theoretical

predictions that time-averaged connectivity patterns may be insufficient for

understanding metapopulation dynamics [8–10].

Demographic connectivity may fluctuate due to variation in several pro-

cesses, including the production of offspring and their dispersal (net

movement from a natal location; [11]). This is entirely true for metapopulations

of sessile and sedentary species (e.g. plants and many animals) whose dispersal

is restricted to propagules (e.g. eggs, larvae, seeds, spores). For these species,

connectivity can be structured by changes in the production of propagules
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[7,12] and variation in abiotic and biotic transport processes

that influence propagule dispersal, such as the movement

of water, wind or animal vectors [12,13]. However, while

both the production and dispersal of propagules among

local populations can fluctuate dramatically, there is limited

empirical evidence demonstrating the relative importance of

these two processes in structuring demographic connectivity

and local dynamics in metapopulations. Recently, there has

been debate over the drivers and importance of connectivity

fluctuations in marine metapopulations, where planktonic

propagules can be subject to large temporal variability in

stochastic oceanographic dispersal [7,9,13–20].

The paucity of spatially and temporally comprehensive

data on offspring production and dispersal has led most

metapopulation studies to rely on simplifying assumptions

about how connectivity varies over time [1,2,21–23]. Early

investigations of terrestrial and marine metapopulations typi-

cally assumed temporally constant quantities of emigrants

(e.g. using patch area as a proxy for reproductive output)

and dispersal probabilities (e.g. Euclidean distances between

patches). Where these assumptions proved unreliable

(reviewed in [21,22]), time-series data of patch occupancy

have been used as simple time-varying scalars of emigrant

abundance [1,24]. However, empirical evaluations of the

assumptions underlying these widespread models are

scarce due to the difficulties of exhaustively measuring emi-

grant abundance and dispersal [25]. Understanding the

causes and significance of fluctuations in connectivity is

especially valuable for plants, which despite having large

influences on biodiversity and ecosystem function remain

understudied as metapopulations [26–28].
In light of these gaps in knowledge, we developed a

framework to evaluate how temporal variation in propagule

production and dispersal determine demographic connec-

tivity and structure metapopulation dynamics. We applied

this framework to the giant kelp Macrocystis pyrifera, a

marine plant (sensu [29]) that forms the foundation of diverse

and productive subtidal forests in temperate coastal ecosys-

tems worldwide [30]. Giant kelp is ideal for plant

metapopulation studies because populations are patchy

[30–33]; linked by the passive dispersal of spores through

ocean currents, analogous to wind dispersal of seeds

[31,32,34–36]; spatially asynchronous [37]; and experience

frequent local extinctions and colonizations [31,32], facilitat-

ing the application of patch-occupancy metapopulation

models [1]. Giant kelp has a short generation time (approxi-

mately 1 or more per year), high population turnover, and

undergoes rapid population growth during suitable con-

ditions [30]. Moreover, because giant kelp forms a canopy

that floats at the ocean’s surface, aerial and satellite imagery

can be used to estimate spatially comprehensive, long-term

population dynamics [31,32,38–40]. We quantified demo-

graphic connectivity in a large and environmentally

heterogeneous [32,39,41] metapopulation system of 469

giant kelp patches spanning nearly 900 km of coastline in

southern California, USA (figure 1), by combining 11 years

of population fecundity estimates from satellite-based,

diver-calibrated giant kelp surveys and propagule dispersal

estimates from a high-resolution, spatio-temporally explicit

ocean circulation model. We used these data to calculate a

series of connectivity measures that differed in the temporal

complexity of fecundity and dispersal estimates (e.g. time-

varying versus time-averaged; table 1). We determined how
fluctuations in fecundity and dispersal affect variation in con-

nectivity and influence metapopulation dynamics by

comparing the ability of different connectivity measures to

explain observed local extinctions and colonizations. Using

the same approach, we assessed the degree to which connec-

tivity measures can be simplified while retaining practical

utility in basic and applied metapopulation research.
2. Methods
(a) Study system
The giant kelp Macrocystis pyrifera is a fast-growing marine alga

that forms dense, highly productive forests on shallow subtidal

reefs in temperate seas worldwide [30]. Giant kelp sporophytes

(the large, habitat-forming stage) consist of a holdfast anchored

to the seafloor, a bundle of buoyant vegetative fronds extending

to the ocean’s surface, and spore-producing reproductive blades

(sporophylls) near the base. We focused on giant kelp populations

across approximately 880 km of coastline in southern California,

USA, encompassing the mainland (Point Purisima to San Diego)

and eight Channel Islands (figure 1). Giant kelp populations in

this region are restricted by the availability of shallow (5–30 m)

subtidal hard substrata (i.e. rocky reefs) that are patchily distribu-

ted along the coastline within a larger matrix of unsuitable sandy

habitat [30–33,40]. Local populations of giant kelp are demo-

graphically linked by microscopic spores that are produced

and released throughout the year by mature sporophytes and pas-

sively dispersed by ocean currents [31,34–36,42]. Demographic

connectivity is typically limited to several kilometres due to rela-

tively short durations of spore dispersal (hours to days) and

high spore densities required for post-settlement fertilization

(greater than 1 spore mm22; [31,34–36,43]). Owing to environ-

mental and demographic stochasticity, local abundances of giant

kelp are highly dynamic [30,39,44] with frequent extinctions

and colonizations [31,32]. However, probabilities of giant kelp

colonization and persistence are mediated by patch size and

connectivity [31,32].

(b) Estimations of abundance, patch dynamics
and fecundity

The floating surface canopy formed by giant kelp can be

measured by satellite-based remote sensing [38]. Therefore, we

estimated the biomass density (kg wet mass m22) of the surface

canopy across the region using 30-m resolution multispectral

Landsat 5 Thematic Mapper and Landsat 7 Enhanced Thematic

Mapper Plus satellite imagery taken at least every 16 days from

1984 to 2015 (details in [38]). Briefly, we estimated giant kelp

canopy cover from atmospherically corrected, radiometrically

standardized Landsat reflectance data using multiple end-

member spectral mixture analysis and correlated canopy cover

estimates with diver measurements of canopy biomass. Landsat

estimates of canopy biomass density were used as a proxy for

population size because they are highly correlated with the den-

sity of mature giant kelp sporophytes ( p , 0.001, r2 ¼ 0.85; [37]).

Defining patches of local populations is pivotal to the con-

struction of spatially realistic metapopulation models, but is

often based on arbitrary rules that can agglomerate distinct adja-

cent subpopulations into ‘megapatches’ [1,33]. Instead of using

traditional approaches (e.g. habitat contiguity) that inadequately

characterize giant kelp patches and population dynamics in

southern California [33], we delineated giant kelp patches

using a method that avoids the consolidation of adjacent, inde-

pendently fluctuating local populations into megapatches and

accounts for the fact that giant kelp is patchily distributed

across a range of depths irrespective of underlying patchiness



34.5

la
tit

ud
e 

(°
N

)

longitude (°W)

34.0

33.5

33.0

120 119 118 117

Figure 1. Map of the study domain in southern California, USA. Points indicate the centroids of giant kelp patches (n ¼ 469; not to scale). Polygons depict
boundaries of cells in the ocean circulation model used to estimate the dispersal of giant kelp spores among patches.
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in reef habitat. Briefly, we used a network theory modularity

approach to optimally cluster Landsat pixels into patches based

on suitable habitat area (defined as the composite area of all

pixels containing giant kelp at least five times from 1984 to

2011) and the spatial synchrony of canopy biomass (1984–

2011; details in [33]). Using this technique, we delineated 469

patches in the study region (figure 1) ranging in size from

0.09–402.93 ha (median ¼ 14.13 ha). The average distance

between a patch and its nearest neighbouring patch was 1.1 km

(range ¼ 0.06–4.3 km; centroid-to-centroid over-water distance).

Although each Landsat sensor captures an image of a given

area at least every 16 days, cloud cover creates unequal numbers

of canopy observations over time and space. To standardize

sampling, we calculated mean canopy biomass within each

patch for two semesters each year (January–June and July–

December; mean number of measurements per semester ¼

7.3+3.1 [s.d.]; range ¼ 1–15). To characterize patch dynamics,

we determined giant kelp occupancy (canopy biomass . 0) for

each semester and classified a patch as extinct when canopy bio-

mass was undetected for at least one semester because plants

typically grow to the surface within six months [44]. We classi-

fied a patch as persistent when it was occupied for two or

more successive semesters. We restricted our analysis of patch

dynamics to an 11-year (22-semester) period from 1996 to 2007

during which we could estimate giant kelp spore dispersal (see

below).

We estimated patch fecundity from canopy biomass by

developing a relationship between the diver-measured density

of giant kelp spore-bearing tissue (i.e. sorus area per reef area)

and the Landsat estimate of canopy biomass density using data

collected across 5 years at the San Clemente Artificial Reef,

located offshore of San Clemente, California, USA (figure 2; see

details in electronic supplementary material, appendix S1; [45]).

We fit this relationship using a zero-intercept regression that

assumed no fecundity in extinct patches, as well as a non-zero-

intercept regression to accommodate the possibility of spore

production by subsurface adult kelp in patches classified as

extinct due to a lack of kelp canopy (see electronic supplemen-

tary material, appendix S1). All of our results were extremely

robust to differences in these assumptions (see electronic sup-

plementary material, appendix S2 and table S1) and hence we

assumed no fecundity in extinct patches for our analyses. We

adjusted fecundity to account for seasonal variation in bio-

mass-specific fecundity (i.e. fecundity per frond; see electronic

supplementary material, appendix S1, and [42]). Using the 95%

confidence interval (CI) of the estimated fit (figure 2), we
found that our results were highly robust to uncertainty in the

fecundity–canopy biomass relationship (see electronic sup-

plementary material, appendix S2).
(c) Estimation of spore dispersal
To estimate dynamic, asymmetrical dispersal of giant kelp spores

among patches, we employed Lagrangian particle simulations

using solutions from a high-resolution (1 km horizontal), three-

dimensional, spatio-temporally explicit ocean circulation model

(Regional Oceanic Modeling System, ROMS; see model construc-

tion in [46–48] and validation in [48–50]). ROMS solutions for

the Southern California Bight are available from 1996 to 2007,

which restricted the time period of our analysis. Briefly, we

released 63 000 particles every 12 h at 5–30 m depth from 135

near-shore ROMS connectivity cells (figure 1) and used the

resulting trajectories to estimate monthly water-parcel connec-

tivity as the minimum mean transit time connecting source and

destination ROMS cells (details in [41,51]). To match the tem-

poral resolution of giant kelp patch dynamics, we averaged

monthly water-parcel connectivity estimates for each semester.

Because the giant kelp patches in the study region are smaller

than the ROMS connectivity cells (nominal alongshore

distance ¼ 8 km; figure 1), minimum transport times between

any two giant kelp patches cannot not be calculated without

making assumptions. Thus, we assumed minimum transport

times between giant kelp patches are proportional to minimum

transport times between ROMS cells and the alongshore distance

between giant kelp patches (see electronic supplementary

material, appendix S1).

The ROMS calculated transport times do not account for the

loss of giant kelp spores occurring during dispersal due to mor-

tality or settlement in areas between source and recipient

patches. Laboratory experiments suggest that giant kelp spores

have limited periods of effective settlement competency (less

than approx. 5 days; [52]). We assumed a proportional spore

loss rate of 0.9 d– 1; however, we found that our results were

highly robust to uncertainty in this parameter for a wide range

of tested spore loss rates (0.5 to 0.99 d– 1; electronic supplemen-

tary material, appendix S2 and figures S1 and S2). Our

modelled distances of spore dispersal probabilities (electronic

supplementary material, figures S3 and S4) were consistent

with in situ dispersal measurements [31,35], population genetic

estimates [43] and earlier hydrodynamic and oceanographic

models of giant kelp spore dispersal [32,34–36].



Table 1. Summary of connectivity measures and results of model comparisons (see Methods for detailed descriptions). AIC model comparisons are described by
the number of model parameters (k) and AIC values, and ranked by AIC differences (Di).

model

description of connectivity measure AIC model comparison

fecundity estimation
dispersal
estimation formula k AIC Di rank

0 — — — 5 7187.7 93.5 7

1 time-averaged without

occupancy data

time-averaged C j,t ¼
P

i=j
�F ið1� mÞ�dij 6 7177.3 83.0 6

2 time-averaged without

occupancy data

time-varying C j,t ¼
P

i=j
�F ið1� mÞdij,t 6 7175.0 80.8 5

3 time-averaged with

occupancy data

time-averaged C j,t ¼
P

i=j
�F i Oi,tð1� mÞ�dij 6 7143.0 48.7 4

4 time-averaged with

occupancy data

time-varying C j,t ¼
P

i=j
�F i Oi,tð1� mÞdij,t 6 7130.9 36.6 3

5 time-varying time-averaged C j,t ¼
P

i=j Fi,tð1� mÞ�dij 6 7107.9 13.6 2

6 time-varying time-varying C j,t ¼
P

i=j Fi,tð1� mÞdij,t 6 7094.3 0 1
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(d) Measures of demographic connectivity
We varied the temporal complexity of source patch fecundity

(three levels) and dispersal (two levels) in a factorial design to

calculate six distinct measures of connectivity (table 1). In gen-

eral, we estimated the demographic connectivity of a

population at patch j during semester t (Cj,t) as

C j,t ¼
X

i=j
Fi,tð1 – mÞdij,t ,

where Fi,t is the estimated fecundity of the population at patch i
during semester t and m is the daily proportional spore loss rate,

which is compounded according to dij,t, the modelled transport

time for spores dispersing from patch i to patch j in semester t
(for n total patches in which i = j ). We approximated the relative

quantity of spores for patch i using three levels of increasing

complexity: time-averaged (over all semesters from 1996 to

2007) fecundity of patch i (�Fi), in which there is no information

about whether patch i is occupied (and thus a potential source

of spores) in a given semester; time-averaged fecundity of

patch i scaled using occupancy time series data to exclude extinct

patches that cannot be sources of spores (i.e. the product of �Fi

and Oi,t, the occupancy [0 or 1] of patch i in semester t); and

time-varying patch fecundity (Fi,t) using all available data (i.e.

explicit patch fecundity estimates for each semester from 1996

to 2007). Similarly, the dispersal from patch i to patch j was

either time-averaged (1996–2007; �dij) or time-varying (dij,t).

(e) Model specification, validation and evaluation
We specified a series of regression models to quantify the influ-

ence of each connectivity measure on probabilities of patch

extinction and colonization. Response data were binomial

(patch occupancy¼ 0 or 1), clustered due to repeated measure-

ments from each patch (intraclass correlation¼ 0.2), temporally

autocorrelated between successive semesters (i.e. first-order auto-

regressive; electronic supplementary material, figure S5), and

spatially autocorrelated among patches (electronic supplementary

material, figure S6). Therefore, we used binomial generalized

linear mixed-effects models (GLMMs; logit link function) with

random intercepts conditional on each semester and patch

[53–56], which eliminated problems of spatio-temporal autocor-

relation and satisfied the assumption of independent model

residuals (electronic supplementary material, figures S5 and S6).
For each connectivity measure, we specified a separate

GLMM to predict patch occupancy as a function of that connec-

tivity measure, occupancy in the prior semester [54–56], and

patch size (natural log of patch area; [1]), because larger patches

are less likely to go extinct and more likely to be colonized [32].

We log-transformed (ln[x þ 1]) all connectivity measures to

satisfy linearity with the log odds of patch occupancy [56,57], a

procedure typical in metapopulation models [1]. Because giant

kelp sporophytes generally take six to nine months to mature

to canopy-forming sporophytes following spore settlement [44],

we predicted patch occupancy based on a one-semester lag in

connectivity (models based on longer lags were less predictive).

We also specified a null GLMM predicting patch occupancy

based only on occupancy in the prior semester and patch size

(model 0; table 1). Prior to all analyses, we standardized predic-

tors to allow for direct comparisons of effect sizes and ensured

that data conformed to all model assumptions (electronic sup-

plementary material, appendix S1). In addition to modelling

metapopulation dynamics over the full time series (1996–2007),

we fit models to subsets of the data focused on the highly

destructive 1997–1998 El Niño and the subsequent recovery

from this regional disturbance (1998–2000; [32]).

We evaluated connectivity measures based on comparisons of

model goodness-of-fit and standardized regression coefficients.

We analysed GLMMs in R 3.2.5 [58] using the package ‘lme4’

1.1–12 [59] with maximum-likelihood estimation by the Laplace

approximation [57]. For each model, we performed model-based

parametric bootstraps (n ¼ 1000 randomizations) to estimate

95% CIs around coefficient estimates and determined the signifi-

cance of fixed predictors by the Wald likelihood-ratio (LR)

x2-test [54,57]. We assessed model fit using Akaike’s information

criterion (AIC) and ranked models based on AIC differences (Di;

for model i versus the best model, Di ¼ AICi 2 AICmin; [54,57]).
3. Results
(a) Patch dynamics
Over the 11-year (22-semester) time series, we observed 5903

extinction or persistence events (in 441 of 469 total patches)

of which 893 were extinctions (relative frequency¼ 0.15).
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Likewise, we observed3946 colonization/failure-of-colonization

events (in 430 patches) of which 891 were colonizations (relative

frequency ¼ 0.23). In total, 39 patches (8.3%) were highly persist-

ent and failed to go extinct, 26 patches (5.5%) were unoccupied

and failed to be colonized, and the remaining 404 patches

(86.1%) went extinct or were colonized at least once over the

duration of the study.

(b) Metapopulation processes structuring patch
dynamics

For all models, increases in connectivity increased the prob-

ability of patch colonization and decreased the probability

of local extinction ( p , 0.001; figure 3; electronic supplemen-

tary material, table S2). Consistent with theory [1] and prior

studies of giant kelp [32,39,40], patch size and occupancy in

the prior six-month period (i.e. semester) were positively

associated with likelihoods of colonization and persistence

( p , 0.001; figure 3; electronic supplementary material,

table S2).

(c) Comparisons of connectivity measures
Increases in the temporal complexity of fecundity and disper-

sal estimates were associated with improvements to model

fit (table 1) and increases in the standardized effect of connec-

tivity on patch occupancy (figure 4; electronic supplementary

material, table S2). However, the temporal complexity of

fecundity was more important than that of dispersal. When

holding the method of dispersal estimation constant,

models with time-varying fecundity estimates fit the data

much better (table 1) and had 31–104% larger connectivity

effect sizes than models with time-averaged fecundity esti-

mates with or without occupancy data (compare models

5–6 versus 1–4 in figure 4). On the other hand, when holding

the method of fecundity estimation constant, models with

time-varying dispersal estimates saw relatively modest

improvements to fit (table 1) and slight changes in connec-

tivity effect sizes (–5% to þ9%) compared with models

with time-averaged dispersal estimates (compare models 1

versus 2, 3 versus 4, and 5 versus 6 in figure 4). Adding
patch-occupancy data to time-averaged fecundity estimates

greatly improved model fit (table 1) and increased connec-

tivity effect sizes by 36–56% (compare models 1 versus 3

and 2 versus 4 in figure 4). The best model used a connec-

tivity measure with time-varying fecundity and dispersal

(model 6; figures 3 and 4 and table 1; electronic supplemen-

tary material, table S2). Results of analyses using data

restricted to the 1997–1998 El Niño and its subsequent recov-

ery (1998–2000) were similar to those using the full time

series (1996–2007) in that models with time-varying fecund-

ity estimates fit the data better (Di ¼ 2.6–9.9) and had larger

connectivity effect sizes (þ6% to þ20%) than those with time-

averaged fecundity estimates, and models with time-varying

dispersal differed only slightly from their time-averaged

counterparts (Di ¼ 0.4–4.7; effect size differences ¼ 1–8%).
4. Discussion
Recent interest in the temporal dynamics of metapopulations

has sparked debate about the causes of fluctuations in

demographic connectivity and the consequences for meta-

population dynamics [7,9,13–20]. Concurrently, the search

for practical measures of demographic connectivity to under-

stand and conserve metapopulations has led to disagreement

about the degree to which temporal dynamics should be sim-

plified [21–25]. Using estimates of population fecundity and

propagule dispersal over an unprecedented range in space

(two to three orders of magnitude larger than typical disper-

sal distances; [31,34–36]) and time (approx. 11 generations;

[30]), we found that variation in demographic connectivity

among local populations of giant kelp in southern California

was governed primarily by fluctuations in source population

fecundity and to a lesser degree by fluctuations in propagule

dispersal (figure 4 and table 1). Increasing demographic con-

nectivity diminished the risk of local extinction and improved

the likelihood of subsequent patch colonization (figure 3).

Given the robustness of our findings across a large and envir-

onmentally heterogeneous region [32,39,41], our conclusions

likely apply broadly to metapopulations of giant kelp else-

where and may extend to other species with similar

demographic and dispersal traits.
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numbers in table 1.
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Our results clarify the mechanisms structuring giant kelp

metapopulation dynamics and offer three general con-

clusions: (i) for metapopulations of species with highly

variable population fecundity and relatively modest variation

in dispersal (e.g. most vascular and non-vascular plants,

many animals; [12,13]), changes in the reproductive output

of local populations may be the dominant driver of demo-

graphic connectivity and contribute substantially to the

recovery and persistence of local populations. (ii) Connectivity

measures that ignore fluctuations in reproductive output (e.g.

using habitat area as a proxy for time-averaged fecundity)

may have limited utility for understanding metapopulation

dynamics in many species, especially short-dispersing plants

and sedentary animals. (iii) Combining time-averaged metrics

of reproductive output with patch-occupancy time-series data

produces a measure of demographic connectivity that can

greatly improve the performance of metapopulation models

(see models 3–4; table 1 and figure 4) and may be more feas-

ible to measure in many systems. This latter result bolsters the

typically untested assumptions underlying many empirical

metapopulation studies [1,21–25] and validates a practical

solution for approximating demographic connectivity where

it is impractical to accurately estimate the fecundity of each

local population through time.

(a) Causes and consequences of variation in
demographic connectivity

Temporal variability in dispersal appears to play a lesser role

in structuring variation in demographic connectivity and

metapopulation dynamics of giant kelp than suggested by

studies of species with longer dispersal durations

[6–10,14,18]. The relatively limited dispersal duration of

giant kelp spores (hours to a few days; [31,34–36]) reduced

the influence of temporal variation in oceanographic trans-

port, resulting in relatively small fluctuations in spore

dispersal distances (mean temporal coefficient of variation,

CVt ¼ 0.15+0.05 [s.d.]) but very large fluctuations in

patch-scale spore production (CVt ¼ 0.95+ 0.38) over the

spatio-temporal scales relevant to metapopulation dynamics.

This finding reinforces prior work suggesting that the
dynamics and fecundity of source populations are important

to connectivity in metapopulations [16,19,60] and bolsters

earlier giant kelp metapopulation studies that assumed

time-averaged dispersal patterns [32,40].

Our findings for giant kelp likely apply broadly to plant

metapopulations in terrestrial, freshwater and marine eco-

systems because fluctuations in the population fecundity of

many plants are large relative to temporal variation in the

vectors that disperse their propagules [12,61,62]. For

example, demographic connectivity in metapopulations of

species with wind-dispersed seeds may be controlled by

fecundity and post-dispersal processes because fluctuations

in wind primarily regulate rare, long-distance dispersal

and have little influence on the shorter distances over

which the vast majority of seeds disperse [12,63]. By contrast,

metapopulations of species with relatively long dispersal

durations [17,20], high survival of dispersing offspring,

strong seasonality in reproductive output [7,16,18] or mul-

tiple important mechanisms of dispersal may be very

sensitive to the temporal dynamics of dispersal vectors.

While giant kelp has the potential for long-distance dispersal

through fecund sporophytes that are dislodged and set adrift

[64], this vector likely does not play a dominant role in

demographic connectivity and metapopulation dynamics

because drifting plants contain a relatively small spore

source and are highly transitory over suitable habitat [31].

Thus, patch recovery by this method would most likely

occur gradually over time as populations expand from a rela-

tively small number of initial colonists, which contrasts

starkly with the rapid and widespread recovery of patches

observed in our time series [32]. Long-distance dispersal

via giant kelp drifters may play a more prominent role in

genetic connectivity and biogeographic expansion.

Post-settlement processes also likely structure temporal

variation in demographic connectivity. For example, density-

dependent mortality (e.g. due to competition or predation)

likely dampen the effect of fluctuations in dispersal and

fecundity on demographic connectivity in giant kelp [65,66]

and many other plant species [12] by constraining recruitment.

Year-round reproduction [42] may further diminish the impor-

tance of dispersal fluctuations to giant kelp metapopulation
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dynamics. Similarly, persistent latent stages (e.g. dormant

seeds) can effectively average connectivity patterns over time

and thereby reduce the demographic importance of variation

in dispersal and fecundity [12,27,28]. This is unlikely in giant

kelp, however, because its early life-history stages suffer high

mortality rates [66–68] and the vast majority of recruitment

results from recently settled spores [69]. However, additional

research is needed to evaluate the importance of latent early

life-history stages on giant kelp metapopulation dynamics.

In addition to considering post-settlement processes, esti-

mates of demographic connectivity and predictions of

metapopulation dynamics may be improved by incorporat-

ing information on environmental and genetic factors that

influence survival, fecundity, dispersal and recruitment. As

in many terrestrial plants [12], the production, recruitment

and survival of giant kelp propagules are mediated by the

availability of resources (i.e. nutrients and light; [30,42,67])

and the degree of inbreeding [70]. We found that our results

were consistent among periods of typical environmental con-

ditions, widespread catastrophic loss (i.e. the 1997–1998 El

Niño), and subsequent recovery (i.e. 1998–2000). Future

studies may help resolve disagreements about the relative

importance of environmental variation, survival, fecundity,

dispersal and post-settlement processes in metapopulations

by systematic consideration of the intrinsic and extrinsic pro-

cesses influencing connectivity from adult reproduction

through recruitment [20].

Temporally explicit data on population fecundity are

often impractical to obtain and thus rarely incorporated

into connectivity estimates in metapopulation studies [1,2].

However, our findings indicate that a simplified connectivity

measure that combines information about the typical number

of offspring produced by a local population (e.g. time-

averaged patch fecundity) with time series of patch occupancy

can greatly improve the fit of metapopulation models. This

result complements and extends the conclusion shared by sev-

eral recent studies that patch-occupancy information is key to

improving the performance of connectivity measures for

metapopulations of epiphytic lichens [71] and mosses [72],

terrestrial invertebrates [22,23], amphibians and reptiles [22].

Fortunately, our findings suggest a practical and relatively

efficient solution similar to stochastic patch-occupancy

models that are already in use for some metapopulations

[1,21–25]. To our knowledge, our study is among the first

to empirically confirm these theoretical predictions, strength-

ening the assumptions underlying many earlier empirical

studies [1,24]. However, these conclusions need to be vali-

dated in other systems and in plants in particular [26–28].

The flexible framework that we developed for this study

can be readily adapted to address basic and applied chal-

lenges in other metapopulation systems with different

species traits and data availability.
(b) Implications for conservation
Our results indicate that ignoring fluctuations in fecundity

can over- or underestimate demographic connectivity and

the likelihoods of population recovery and persistence in

metapopulations. This finding highlights the need for conser-

vation and ecosystem management efforts to consider the

importance of variation in connectivity and the factors that

underlie it. For example, the potential for protected area net-

works to fulfil design objectives may depend greatly on

temporal variation in population fecundity, dispersal, recruit-

ment and survival of target species [2]. Similarly, optimal

control of biological invasions [3], containment of infectious

diseases [4] or facilitation of species range shifts under climate

change [5] may differ if spread rates are dominated by vari-

ation in reproductive output as opposed to dispersal. In

fragmented landscapes, determining the causes and conse-

quences of variation in connectivity will help identify local

populations that contribute disproportionately to metapopu-

lation dynamics, such as those that are highly resilient to

extinction, frequently rescue or recolonize other populations,

form critical demographic or genetic links, or harbour high

genetic diversity. For metapopulations of plants and seden-

tary animals, efforts focused on increasing the size,

persistence and reproductive success of source populations

are likely to have the greatest impact on enhancing connec-

tivity and improving population recovery and persistence.

Such efforts directed towards metapopulations of foundation

species that underpin entire ecosystems, such as giant kelp,

are likely to pay great dividends for the conservation of bio-

diversity and the management of ecosystem structure and

function.
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