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ABSTRACT OF THE THESIS

Prediction of Inertial Confinement Fusion Chamber Gas Evolution

using Multi-species Computational Fluid Dynamics

by

Robert Scott Martin

Masters of Science in Engineering Sciences (Aerospace Engineering)

University of California, San Diego, 2007

Farrokh Najmabadi, Chair

Inertial confinement fusion is one of two primary approaches to the pro-

duction of fusion energy for power generation. Due to the high cost of experimen-

tation for large scale systems such as Laser Inertial Fusion Energy (Laser IFE), the

ability to accurately simulate the expected performance using properly validated

models is of critical importance.

The evolution of the chamber environment from target injection through

the generation of fusion energy is a critical issue for the success of Laser IFE.

In the research presented, the output of a radiation hydrodynamics code is used

as the initial condition for evolving the chamber gas dynamics up until a subse-

quent target injection. To perform these simulations, our group has developed a

2D/3D-Axisymmetric Navier-Stokes fluids code that includes an additional radia-

tion source term. The work presented here has been to extend this code to include

the effects of multiple gas species and higher order mechanisms such as diffusion

from the Dufour and Soret effects.

vii



Validation of the numerical method is demonstrated in the case of sepa-

ration of Helium and Xenon gas in a shock wave. It is also shown that the code

uses reasonably accurate transport coefficients for He:Xe mixtures based on curve

fits produced by the ChemKin preprocessor. Numerical simulations of the Laser

IFE configuration using the augmented system track the mixing of the Xe gas in

the chamber with cold Xe gas from jets on the wall. Simulations using cold He:Xe

mixture jets of varying composition are also investigated.
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Chapter I

Introduction

I.A Background

Inertial and magnetic confinement fusion are the two primary approaches

to the production of fusion energy for power generation. For laser inertial fusion

energy (Laser IFE), an array of intense lasers symmetrically and directly illumi-

nates a cryogenic target of hydrogen isotopes that has been injected into a vacuum

chamber. The target is compressed and heated to undergo thermonuclear burn.

The energy released by the target is recovered by the chamber wall and converted

into electricity. This process is repeated 5-10 times per second. Due to the high

cost of experimentation for large scale systems such as Laser IFE, the ability to

accurately simulate the expected performance using properly validated models has

never before been so vital.

Though current IFE designs include minimal chamber pressure, a small

amount of gas remains within the chamber to act as a buffer for the intense energy

burst resulting from the fusion burn. Because of its superior ability to absorb

x-rays and re-emit radiation, Xenon gas was selected as this buffer gas. The evolu-

tion of the chamber environment from target injection to the generation of fusion

energy is a critical issue for the success of IFE. In the research presented, the out-

put from “BUCKY”, a radiation hydrodynamics code which simulates the target

1
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implosion and fusion energy release, is used as the initial condition for evolving

the chamber gas dynamics from 0.0005s-0.1s. To perform these simulations, our

group has developed a 2D/3D-Axiisymetric Navier-Stokes code with an additional

radiation source term. The code uses a second order Godunov method on a uni-

form adaptively refined mesh with an embedded boundary. The current work has

been to extend this code to include the effects of multiple gas species and higher

order mechanisms such as diffusion from the Dufour and Soret effects.

I.B Physical Setting

I.B.1 Continuum Approximation

Before developing the fluid equations in the subsequent sections, it is

important to investigate the validity of the continuum approximation in the pro-

posed application of Laser IFE. To achieve this goal, the Knudsen number seen in

Equation I.1 must first be defined. In this equation, λmfp is the mean free path as

defined in Equation I.2 from Reference [24] and L is a characteristic length scale of

the boundaries. A flow is called “free-molecular flow” if K = 1. If this is the case,

statistical mechanics rather than continuum mechanics should be used to describe

the fluid dynamics of the system.

In the initial output from “BUCKY” using pure Xenon background gas

at a density corresponding to 50 milli-torr pressure at 0oC, the maximum mean

free path is 2.15cm near the center of a 10m chamber. The Knudsen number

of 0.00215 indicates that, despite the low chamber density, continuum mechanics

may still be used on the chamber.

The details of the flowfield around smaller scale features such as the 1m

wide beam lines would be more in question, but the flowfield is originally uniform

and symmetric near the walls with a mean free path 14 times smaller. The 2.15cm

mean free path is the result of very low density region in the chamber center created

by the fusion burn. The features of the flowfield therefore remain large where the
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mean free path is large.

However, for a 4mm diameter IFE target, the 2.15cm mean free path

corresponds to a Knudsen number of 5.38. Even after 100ms, the Knudsen number

for the target remains a relatively high 0.9 in some parts of the chamber. This

implies that, though the continuum treatment for the full chamber and even beam

lines is reasonable, it should not be applied to the target.

K =
λmfp

L
(I.1)

λmfp =
µ

ρ

√
πm

2kT
(I.2)

I.B.2 Conservation Equations

Because basic particle collisions conserve mass, momentum and energy,

these quantities are preserved for the sum of all possible collisions within a fluid.

The fluid equations are the result of integrating these conserved quantities as

the moments m, mvi, and 1
2
mv2 against the Boltzmann equation, Equation I.3,

as shown in Equation I.4 where Q(vi) represents these moments. The resulting

equations per unit volume for each of the conserved quantities respectively yields

Equations I.5 - I.7 as outlined in Chapter IX of Vincenti, [24]. In all of these

equations, the overbar notation refers to an average over the distribution function

as shown in Equation I.8. Indices i, j, k refer summation notation over spacial

dimensions and indices q, r, s refer to gas species numbered from 1− S.

∂

∂t
(nf(vi)) + vj

∂

∂xj

(nf(vi)) +
∂

∂vj

(Fjnf(vi)) =

{
∂

∂t
(nf(vi))

}

coll

(I.3)

∫ ∞

−∞
Q(vi)

[
∂(nf)

∂t
+ vj

∂(nf)

∂xj

+
∂(Fjnf)

∂vj

]
dvi =

∫ ∞

−∞
Q(vi)

[{
∂(nf)

∂t

}

coll

]
dvi (I.4)
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∂ρ

∂t
+

∂

∂xj

[ρvj] = 0 (I.5)

∂

∂t
[ρvi] +

∂

∂xj

[ρvivj] = ρFi (I.6)

1

2

∂

∂t
[ρv2] +

1

2

∂

∂xj

[ρvjv2] = ρFjvj (I.7)

Q ≡
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
Q(vi)fdv1dv2dv3 (I.8)

With proper definitions for the pressure, stress tensor, heat flux vec-

tor, temperature, and total specific energy these equations reduce to the familiar

Navier-Stokes equations for flows sufficiently close to local equilibrium. When

these equations are extended to multiple species, collision integrals for the interac-

tions between the species must be included. However, when the moments of mass,

momentum, and energy are taken, the equations can again be simplified because

the quantities are conserved in collisions. The resulting set of equations include

species conservation, total momentum conservation, and total energy conservation

as shown in Equations I.10-I.12 subject to definitions in Equation I.9.

ρv0i ≡
S∑

s=1

ρs(vi)s (I.9)

Vi ≡ vi − v0i

3

2
kT =

1

n

S∑
s=1

1

2
nsms(V 2)s

p ≡
S∑

s=1

ps = nkT

τij ≡
S∑

s=1

(τij)s

qi ≡
S∑

s=1

(qi)s

et ≡ e +
1

2
v2

0 = cvT +
1

2
v2

0
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∂

∂t
[ρs] +

∂

∂xj

[ρsv0j + ρs(V j)s] = 0 (I.10)

∂

∂t
[ρv0i] +

∂

∂xj

[Pδij + ρv0iv0j] =
∂τij

∂xj

+
S∑

s=1

ρs(Fi)s (I.11)

∂

∂t
[ρet] +

∂

∂xj

[v0j(P + ρet)] =
∂

∂xj

[τkjv0k − qj] +
S∑

s=1

ρs(Fsjvj)s (I.12)

Diffusion

The concept of diffusion velocity is the result of considering the mass

average bulk velocity separate from the random noise. This random noise is in fact

closely tied to the concept of temperature as shown in the preceeding definitions.

For multi-species fluid dynamics, the species average diffusion velocity, (V i)s, is

defined in Equation I.13 by summing over Ns molecules of class s. For this reason,

though the density weighted sum of species average diffusion velocities,
∑S

s ρsVis,

is zero by definition, the individual species average diffusion velocities are not

necessarily. In fact, resulting from imbalances in the random velocities for different

classes of molecules, these diffusion velocities result in the classical concept of

Fickian diffusion due to concentration gradients as well as higher order phenomena

such as thermal diffusion resulting from different sound speeds in molecules of

different mass.

Vis = (V i)s =
1

Ns

Ns∑
n=1

mnVni (I.13)

An equation for the diffusion velocity, Vis, can be written in terms of a

generalized concentration gradient vector, dis, and temperature gradient as shown

in Equation I.14. The form of the generalized concentration gradient is shown

in Equation I.15. The diffusion velocities depend on multi-species diffusion co-

efficients, Dsr, and coefficients of thermal diffusion, DT
s . These coefficients can

be derived using a Chapman-Enskog expansion of the Boltzmann equation in So-
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nine polynomials as shown in Reference [13]. Equations I.16 and I.17 give the

multi-species diffusion coefficient and coefficient of thermal diffusion respectively.

Because of the orthogonality of the Sonine polynomials, the resulting

expressions for the diffusion coefficients depend only upon one Sonine expansion

coefficient each, c
(r,s)
s0 (ξ) and as0(ξ). However, the value of the expansion coefficients

is dependant on the number of terms taken in the expansion, ξ. For multi-species

diffusion, taking ξ = 1 is sufficient, but for thermal diffusion, ξ must be greater

than or equal to 2 for the coefficient to be nonzero.

The Sonine polynomial expansion depends on the true distribution func-

tion being reasonably represented by perturbations from equilibrium in the Sonine

polynomials. This requires that averages be taken over a sufficient number of col-

lisions as to ensure the validity through the central limit theorem. This results in

a strengthening of the continuum constraint on the Knudsen number. However,

as long as the fluid properties only vary slightly over 10s of mean free paths, the

results are likely to be reasonably valid.

The Sonine expansion coefficients may be evaluated by solving sets of

linear equations that use tabulated collision integral data, Ω
(m,n)
sr for specified po-

tential representations of the molecules such as the Jones (6-12) potential. This

approach has some limitations such as the Jones potential being spherical and

therefore unable to fully represent polyatomic gases. Hirschfelder, Curtiss, and

Bird, Reference [13], also show a method of converting binary diffusion coefficients

to multi-species diffusion coefficients as shown in Equations I.19 and I.21 where

F sr is the cofactor of Fsr in the determinant of |F | as shown in Equation I.20.

In Equation I.19, Dsr is the diffusion coefficient for a binary mixture. Using this

approach, experimental data based on binary diffusion can be used when available

and the system can be completed if necessary using the estimated coefficients.

Rather than reporting the thermal diffusion coefficient directly, most ex-

perimental data available uses the thermal diffusion ratio, kT , as defined in Equa-

tion I.18 for binary mixture AB. This is because classical examples of thermal
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diffusion are typically performed in binary, incompressible, steady state settings

where kT is more natural. However, because the IFE system has strong thermal

gradients, an investigation into the relative contribution of the effect needs to be

done. As explained later in the implementation section, the concept of the ther-

mal diffusion ratio is used in the case of a light gas diffusing through a heavier gas

mixture as a first approximation to thermal diffusion.

Vis =

(
n2

nsρ

) S∑
r=1

mrDsrdir −
1

nsms

DT
s

∂ ln T

∂xi

(I.14)

dis =
∂

∂xi

(ns

n

)
+

(
ns

n
− nsms

ρ

)
∂ ln p

∂xi

−
(

nsms

Pρ

) [
ρ

ms

Fis −
S∑

r=1

nrFir

]
(I.15)

Drs(ξ) =
ρns

2nmr

√
2kT

ms

c
(r,s)
s0 (ξ) (I.16)

DT
s (ξ) =

nsms

2

√
2kT

ms

as0(ξ) (I.17)

kT =
ρ

n2mAmB

DT
A

DAB

(I.18)

Fsr =

{
ns

ρDsr(1)
+

S∑

q=1,q 6=r

nqmq

ρmiDsq(1)

}
(1− δsr) (I.19)
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F sr = (−1)s+r

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

F11 · · · F1,r−1 F1,r+1 · · · F1ν

· · · ·
· · · ·
· · · ·

Fs−1,1 · · · Fs−1,r−1 Fs−1,r+1 · · · Fs−1,ν

Fs+1,1 · · · Fs+1,r−1 Fs+1,r+1 · · · Fs+1,ν

· · · ·
· · · ·
· · · ·

Fν,1 · · · Fν,r−1 Fν,r+1 · · · Fν,ν

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(I.20)

Dsr(1) =
F sr − F ss

mr|F | (I.21)

Shear

The viscous forces on the gas come into the momentum and energy equa-

tions through the shear tensor, τij. For a multi-species gas, the shear tensor has

the form shown in Equation I.22. In the equation, µ is the coefficient of viscosity,

S is the stress tensor, and κ is the coefficient of bulk viscosity.

The bulk viscosity is zero for all monatomic gases as it has to do with

the rate of transfer of kinetic energy to the internal energy states. For polyatomic

gasses, the equation for the bulk viscosity requires relaxation times for the energy

transfer to the internal degrees of freedom.

Reference [13] provide a means of calculating the coefficient of viscosity

similar to that of calculating the diffusion coefficients from the Enskog expansion.

The resulting expression for the coefficient is shown in Equation I.23.In this equa-

tion, bs0 is another Sonine expansion coefficient. Like the multi-species diffusion

coefficient, ξ = 1 is sufficient to calculate the viscosity coefficient to a reasonable
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accuracy.

τij = −2µSij + (
2

3
µ− κ

∂v0k

∂xk

δij (I.22)

µ(ξ) =
1

2
kT

S∑
s=1

nsbs0(ξ) (I.23)

Heat Flux

The heat flux vector can also be evaluated using the techniques of Refer-

ence [13]. The resulting equation is shown in Equation I.24. In the equation, the

diffusion velocities, Vis, coefficient of thermal diffusion, DT
s , and generalized con-

centration gradient, dis, defined earlier are again used. In addition, the coefficient

of thermal conductivity, λ0 is used as defined in Equation I.25. In this equation,

as1 is yet another of the Sonine expansion coefficients.

Equations I.24 and I.25 show heat fluxes in terms of λ0, but λ0 is not

the normal definition of thermal conductivity. Equation I.26 from Reference [13],

shows the heat flux in terms of the normal λ. Equation I.27, show the relationship

between λ and λ0. Though this looks like a complication, using the heat flux vector

in this form allows for direct comparison between analytical and experimentally

reported values for λ.

This form of the heat flux vector does not include radiation contributions

already present in the code. The heat flux vector was also derived for a monatomic

gas. Hirschfelder, Curtis, and Bird do derive the equations for polyatomic gas

mixtures, but these corrections have not yet been included in the formulation.

qi =
5

2
kT

∑
s

nsVis − λ0
∂T

∂xi

− nkT

S∑
s=1

1

nsms

DT
s dis (I.24)

λ0(ξ) = −5

4
k

∑
s

ns

√
2kT

ms

as1(ξ) (I.25)
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qi =
5

2
kT

∑
s

nsVis − λ
∂T

∂xi

− kT

n

S∑
r,s=1

nsD
T
r

mrDrs

(Vir − Vis) (I.26)

λ = λ0 − k

2n

S∑
r,s=1

nrns

Drs

[
DT

r

nrmr

− DT
s

nsms

]
(I.27)



Chapter II

Implementation

II.A Numerical Methods

A derivation of the numerical method used in the IFE simulations follows.

The algorithm presented is an extension of the work of Dragojlovic and Najmabadi

in Reference [7]. This finite-volume algorithm for the Navier-Stokes equations

uses a discrete conservative update based on a time-explicit Godunov method

for inviscid fluxes and a two-step Runge-Kutta update for viscous fluxes. It also

incorporates a nonuniform boundary embedded in a uniform cartesian mesh. For

further details of this algorithm such as the embedded boundary, the reader should

consult Reference [17].

Conservation Form

In order to accurately simulate fluid flow, it is helpful to rewrite the

Navier-Stokes Equations I.5-I.7 in terms of conservative variables and fluxes as

shown in Equation II.1. In the equation, U is the state vector, ¯̄FI is the inviscid

flux dyadic, ¯̄FV is the viscous flux dyadic, and S is the source term from effects

such as body forces.

11
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∂U

∂t
+

∂

∂xi

[
¯̄FI − ¯̄FV

]
= S (II.1)

U =





ρ

ρ~v

ρet





¯̄FI =





ρ~v

p ¯̄I + ρ~v~v

(p + ρet)~v





¯̄FV =





~0

¯̄τ

~v · ¯̄τ + k∇T





The multi-species equations developed here extend this conservation form

of the equations by adding s−1 species conservation equations to the set where s is

the number of species in the fluid. The last species governing equation is redundant

with the others and the overall continuity equation and is therefore neglected from

the system. This combination is preferred over using s species governing equations

without the continuity equation because the continuity equation is an expression of

the conservation of mass whereas if chemical reactions are included the individual

species governing equations are not necessarily conservative. Solving the continuity

equation also requires fewer operations.

U =





ρ

ρ~v0

ρet

ρ1

·
·
·

ρs−1





¯̄Fi =





ρ~v0

p ¯̄I + ρ~v0~v0

(p + ρet)~v0

ρ1

(
~v0 + ~V1

)

·
·
·

ρs−1

(
~v0 + ~Vs−1

)





¯̄Fv =





~0

¯̄τ

~v0 · ¯̄τ + k∇T − 5
2
kT

∑
s ns

~Vs

~0

·
·
·
~0





(II.2)

However in practice, the full set of s species conservation equations were

calculated and projected back onto the mass conservative manifold using equation

II.3 to ensure consistent treatment of all the species. The differential equations

are also actually solved in their weak form as shown in Equation II.4. Because the



13

equations are in conservative form, only information about the fluxes on the cell

boundaries in time and space as well as any volumetric source terms in time are

needed to calculate the cell averaged state variables for all time.

ρs = ρs
ρ∑S

r=1 ρr

(II.3)

∫

Ω

∂U

∂t
dΩ +

∫

∂Ω

[ ¯̄FI − ¯̄FV ] · ~n dA =

∫

Ω

SdΩ (II.4)

In the codes, the inviscid portion of the fluxes are solved first using an

explicit linearization shown in Equation II.5. The multidimensional flux is con-

sidered as a sum of fluxes resulting from solving 1D Riemann problems in the

coordinate directions forward in time. In the weak from, this can be seen as an

assumption that the contribution to the fluxes result only from the jump normal

to the computational cell face. According to Reference [22], this is a reasonable

approximation as long as the grid is nearly orthogonal. In Equation II.5, L and

R are the left and right eigenvectors and Λ is the diagonal matrix of eigenvalues

such that LΛR is equal to the flux Jacobian ∂ ¯̄FI

∂U
. Because R = L−1 and R and

L are constant with respect to t and x within the linearization, pre-multiplication

of Equation II.5 by R yields Equation II.6 where W = RU . Because Λ is diago-

nal, this then yields a set of q decoupled scalar equations as shown in II.7 where

summation notation is not implied. Figure II.1 shows a graphical representation

of this hyperbolic portion of the problem for a sample representative configuration

solved forward in time in one dimension.

∂U

∂t
+

∂ ¯̄FI

∂x
=

∂U

∂t
+

∂ ¯̄FI

∂U

∂U

∂x
=

∂U

∂t
+ [LΛR]

∂U

∂x
= 0 (II.5)

R
∂U

∂t
+ R[LΛR]

∂U

∂x
=

∂[RU ]

∂t
+ IΛ

∂[RU ]

∂x
=

∂W

∂t
+ Λ

∂W

∂x
= 0 (II.6)

∂wq

∂t
+ λq

∂wq

∂x
= 0 (II.7)
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For the multi-species versions of the Riemann solvers presented, the equa-

tion for the maximum time step, Equation II.8, remains the same as in the original

single species versions. This constraint is commonly referred to as the CFL con-

dition. In the equation, λ refers to the eigenvalues of the fluid equations. The

maximum eigenvalue corresponds to the maximum rate at which information can

propagate across a numerical cell. By limiting the time step as shown, disturbances

cannot propagate across more than one numerical cell per time step. Because of

the additional species governing equations, s − 1 more eigenvalues are included

when compared to the single species versions. Though these eigenvalues can be

seen in Equation II.14 in the section on Roe’s scheme, they are the same for both

Riemann solvers. As mentioned earlier, in practice eigenvalues for all s species

diffusion velocities are included in the time step limitation to ensure symmetry.

Though the diffusion velocities depend on the states of the neighboring cells, be-

cause of the explicit linearization, it is not unreasonable for time steps limited by

the CFL condition.

dt ≤ dx

|λ|max

(II.8)

The reason that a constant diffusion velocity across a timestep can be used

is that the diffusion velocity is approximately proportional to the mean thermal

velocity, mean free path, and a small constant due to the collision integral. For

the spacial gradients to be physically meaningful, they must be taken as averages

over several mean free paths. This makes the diffusion velocity approximately

proportional to a small constant times the sound speed. Though this view is

complicated in mixtures of species with significantly different masses, it is not

unreasonable to imagine that, at the limit of maximum diffusion, the particles

should not diffuse faster than their average thermal velocity using this model.

This line of thought leads directly to the concept of flux limiters. As

mentioned in Reference [16], because the multi-species equations are derived for

near equilibrium conditions, they can produce erroneously large fluxes for plasma
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and strong shock-waves. This is because the continuum approximation is no longer

valid for these conditions. However as mentioned in Reference [24], though the flow

structures of sizes on the order of mean free paths may be incorrect for Navier-

Stokes, this does not mean that the macro scale flow properties are incorrect be-

cause the equations are conservative. More on this topic can be found in the shock

broadening validation section.

For these reasons a flux limiter for the multi-species mass and energy

fluxes in the code was also investigated. The flux limiter was of the form suggested

in Reference [16] and shown in Equations II.9 and II.10 where vth corresponds to

the thermal velocity. The thermal velocity is proportional to the sound speed up

to a small constant as shown in Reference [24]. To ensure a smooth transition

between normal and flux limited regions, an ad-hoc tan−1 transformation was

applied as shown in Equation II.11. Figure II.2 shows a comparison between the

original flux, F0, and the limited flux, Fs for the tan−1 flux limiter. Though the

limited flux necessarily deviates from the original flux, the important features are

that the original and limited flux are tangent near zero flux and the limited flux

asymptotically approaches the maximum flux at ±∞.
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Figure II.1: Multi-species Riemann problem

Fs,max = ρsvth,s (II.9)
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Fρe,max =
P

(γ − 1)
vth (II.10)

F =
Fmax

π/2
tan−1

(
π/2

F0

Fmax

)
(II.11)
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Roe’s Scheme

Roe’s scheme is a popular approximate Riemann solver for Godunov’s

method [15]. Though the primary code used for the Inertial Fusion Energy cham-

ber studies uses a more complicated Riemann solver for inviscid flux calculation,

the mathematical analysis of fluid characteristics for the multi-species equations

necessary to derive Roe’s scheme helps justify the selection of multi-species fluxes

used in the primary code.

Both Riemann solvers are based on similar assumptions and produced

nearly identical results with a sufficiently fine grid for the 1D validation cases.

However, the Roe’s scheme implemented in the 1D code was missing the sonic

entropy fix mentioned in Reference [15] and would therefore likely cause erroneous

results in the case of a sonic rarefaction wave.

In implementing Roe’s scheme, first the left and right states at the cell

face were calculated. In order to achieve higher order accuracy, neighboring val-

ues were used to linearly project the states through the cell center to the face.

However because this projection can lead to instability particularly with strong

discontinuities, a minmod slope limiter was used. Reference [15] contains a section

describing this and other slope-limiters in detail. This projection limits the face

state variables such that they never exceed the range of the neighboring cell state

variables.

The conservation equations are rewritten through the Jacobian of the flux

as seen in equation II.12. For the multi-species code in 1D, the Jacobian, ∂F
∂U

, is an

[ 3 + (s− 1)× 3 + (s− 1)] matrix. Because the diffusion velocities are complicated

functions of the state variables, they are assumed to be approximately constant

across the time step resulting in a purely explicit update.

The resulting Jacobian and eigenvalues with this and the perfect gas

assumption are shown in Equation II.13. Once the eigenvalues, shown in Equation

II.14, are known, the left and right eigenvector matrices can easily be derived and

are shown in Equation II.15. In Roe’s scheme, the Riemann problem for the flux
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at the cell face, i + 1
2
, is decomposed into positive and negative direction waves

using these eigenvalues and eigenvectors as shown in Equation II.16.

∂U

∂t
+

∂F

∂U

∂U

∂x
= 0 (II.12)

∂F

∂U
=
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(II.13)

λ =
[

v0, v0 + c, v0 − c, v0 + V1, v0 + V..., v0 + Vs−1

]
(II.14)
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Fi+ 1
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=
1

2

{
Fi + Fi+1 − [L̂][|Iλ̂|][R̂](Ui+1 − Ui)

}
(II.16)



19

In Equation II.16, the hat symbol denotes that the eigenvalues and eigen-

vectors are calculated using a special “Roe-averaged state” weighted by Equation

II.17. These relations in Equation II.18 are obtained by ensuring that Equation

II.22 is satisfied. In the equation, ht refers to the total specific enthalpy as defined

in Equation II.21.

The absolute value in Equation II.16 is effectively up-winding for variables

that result from decomposing the state based on the fluid characteristic lines.

Further information on Roe’s scheme is available in Reference [22].

It is important to note that satisfaction of Equation II.22 for the species

conservation equations results in an equation for face species density that is singu-

lar when the left and right species densities are equal. This is a result of neglecting

the diffusion velocity dependence on energy in the linearization of diffusion veloc-

ity. This deviation results in only partial upwinding in the species conservation

equations. With these approximations, the face species density may be defined

as in Equation II.20 in the analogous manner as the mixture face density. The

diffusion velocities can then calculated for the face using the cell center values for

needed gradients.

Ri+ 1
2

=

√
ρi+1

ρi

(II.17)

ρ̂i+ 1
2

= Ri+ 1
2
ρi

v̂i+ 1
2

=
Ri+ 1

2
vi+1 + vi

1 + Ri+ 1
2

(ĥt)i+ 1
2

=
Ri+ 1

2
(ht)i+1 + (ht)i

1 + Ri+ 1
2

(II.18)

Ss,i+ 1
2

=

√
ρs,i+1

ρs,i

(II.19)
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ρ̂s,i+ 1
2

= Ss,i+ 1
2
ρs,i

v̂s,i+ 1
2

=
Ss,i+ 1

2
vi+1 + vi

1 + Ss,i+ 1
2

(II.20)

ht = h +
1

2
v2 = cpT +

1

2
v2 (II.21)

Fi+1 − Fi = [L̂][Iλ̂][R̂](Ui+1 − Ui) (II.22)
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Higher Order Godunov Method

The algorithm for solving the inviscid fluxes on which the IFE chamber

code used in Reference [7] was built is a second order Godunov method. The

technique used for the multi-species code follows that of Reference [7] closely. A

basic explanation of the Godunov method for Euler equations can be found in

Reference [15]. The Riemann solver implemented in the IFE chamber code is

based the work of Colella in References [5] and [6].

To achieve higher order spacial accuracy, the algorithm uses slopes as

developed in Reference [5]. The face states are calculated using a single step of the

hybrid Glimm-Godunov approximate Riemann solver developed in the Appendix

of Reference [6]. In particular, Equations II.23 and II.24 are used to determine the

pressure and velocity between the u± c sonic characteristics.

p∗,0 =
CLpR + CRpL + CLCR(uL − uR)

CL + CR

(II.23)

u∗ =
WLuL + WRuR + (pL − pR)

WL + WR

(II.24)

WL,R(p∗) = CL,R

√
1 +

γ + 1

2γ

p∗ − pL,R

pL,R

(II.25)

CL,R = ρL,RcL,R =
√

γpL,RρL,R (II.26)

Unlike Roe’s scheme, this approach correctly handles the case in which

a the cell face lies within a rarefaction wave. Figure II.3 shows a view of the

Riemann problem in such a configuration. In Roe’s scheme, the rarefaction wave

is just treated as another shock with an average velocity and sound speed.

The continuity and momentum equations appear identical to the origi-

nal equations for the IFE chamber code. The continuity equation is uninfluenced

by the multi-species formulation, and the momentum equation is only influenced
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Figure II.3: Riemann problem with rarefaction wave

through the effect of composition on the transport coefficients. The energy equa-

tion has an added term due to the heat flux carried by the diffusion velocity. This

extra heat flux is included with the advective heat flux.

The flux for the species conservation equations were calculated in an

analogous manner to the continuity equation. As with the continuity equation, a

predictor step is first used to estimate the state variables at time tn + 1
2
∆t at the

cell centers. The multi-species algorithm includes the individual species densities

in these estimates. The corrector step then uses the state at tn + 1
2
∆t to calculate

the advective fluxes on the cell faces from time tn to time tn+1 used to update

the flowfield. However for the species conservation, the face state is determined

by the sign of the bulk velocity plus the corresponding diffusion velocity rather

than just the bulk velocity. This is the appropriate choice because the Riemann

characteristic for the species conservation from the Jacobian of the flux is v0 + Vs.

Once the state at the face has been determined, the fluxes are calculated

as described in Equation II.2. The mass and bulk momentum flux terms are

calculated as they were with the original IFE chamber code. The energy flux is

first calculated exactly as in the original method, and then diffusion energy flux is

added. Finally, the conservative species flux, ρs(v0 + Vs), is calculated using the

cell face values as well as the cell centered left and right states when derivatives

are needed.
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II.B Transport Coefficients

For both numerical models, viscosity, thermal conductivity, thermal dif-

fusion, and binary diffusion coefficients were calculated at each cell using temper-

ature curve fits extracted from the preprocessor output of the Reactor Design’s

ChemKin software package. The ChemKin theory manual[18] gives further details

of the techniques used which are closely related to the development from the theory

section.

Xenon was not included in the basic chemical database of ChemKin.

Though it was later discovered that ChemKin included another thermodynamic

database with Xenon from the JANAF tables, the information needed to aug-

ment the basic chemical database provides insight into the information needed for

the ChemKin preprocessor. The values for Xenon’s Leonard-Jones potential were

taken from Appendix Table I-A of Hirschfelder, Curtiss, and Bird [13]. The curve-

fits for the thermodynamic data of Xenon came from NASA/TP-1999-208523 [10].

Though the JANAF data was valid on a larger temperature range, the thermody-

namic data for Xenon was nearly identical from both the NASA and the JANAF

data. Much more information about the ChemKin preprocessor inputs and outputs

can be found in the ChemKin input manual[19].

The mixture average viscosity and thermal conductivity are produced

using the curve fits for pure species viscosity and thermal conductivity and the

semi-empirical Equations II.27 and II.29 from Reference [3] and [18]. This is a

tradeoff of accuracy for significantly reduced computational complexity. In the

validation section, comparison is made between these curve fit values and experi-

mental data.

µ =
S∑

s=1

Xsµs∑S
r=1 XrΦsr

(II.27)

Φsr =
1√
8

(
1 +

ms

mr

)− 1
2

[
1 +

(
µs

µr

) 1
2
(

mr

ms

) 1
4

]2

(II.28)



24

λ =
1

2

(
S∑

s=1

Xsλs +
1∑S

s=1 Xsλs

)
(II.29)

Equation I.14 requires the ordinary multicomponent species diffusion co-

efficients. Rather than solving Equation I.21 for these coefficients, the ChemKin

manual defines a mixture average diffusion coefficient shown in Equation II.30

such that the diffusion velocity can be calculated using Equation II.31 instead of

Equation I.14.

Dsm =
1− Ys∑S

r=1 r 6=s Xs/Drs

(II.30)

Vis = − n

ns

Dsmdis −
DT

s

ρs

∂lnT

∂xi

(II.31)

Though newer versions of ChemKin depend on full multi-species thermal

diffusion coefficients as used in Equations I.14 and II.31, a simplified approximate

method is also included for backwards compatibility. The simplified method uses

Equation II.32 for the thermal diffusion term of the diffusion velocity where the

thermal diffusion ratio, Θs, is of the form shown in Equation II.33. The thermal

diffusion factor, ksr(t), is reduced to a curve fit dependent only on temperature.

The formula given in Equation II.33 is an extension of the concept of the binary

thermal diffusion ratio to multi-species applications. In the case of binary mix-

tures, it can be shown that Θs reduces to kT as defined in Equation I.18. In this

case, Equation II.32 is also equivalent to Equation I.14. When more species are

considered, this method becomes an estimate for the thermal diffusion of a light

species within a heavier mixture. For this reason, ChemKin only provides ksr(t)

for species pairs with mass ratios greater than five.

Vis = − n

ns

Dsmdis −
DsmΘs

Xs

∂lnT

∂xi

(II.32)

Θs =
S∑

r 6=s

ksr(T )XrXs (II.33)



Chapter III

Validation

The validation of the multi-species algorithm consists of two sections. In

the first, comparison is made between experimental values and numerical estimates

for the composition dependence of the transport coefficients. The second section

shows the effect of the diffusion velocities on the shape of shock waves.

III.A Transport Coefficients

Comparison is made between tabulated experimental data and numerical

estimates for viscosity and thermal conductivity across the range of compositions

for Helium-Xenon gas mixtures. Experimental values for these coefficients were

tabulated in Reference [23]. Thermal diffusion ratios are also compared to values

from Reference [1]. Finally in Table III.A, the binary diffusion coefficients for the

He:Xe system from the application are compared to analytical and experimental

values.

The largest discrepancy appears in the thermal diffusion ratio. Because

ksr(t) is independent of composition, the equation necessarily produces parabolic

thermal diffusion ratios when plotted against number fraction. Reference [1] also

includes experimental data for Xe:Ar thermal diffusion ratios that are closer to

parabolic suggesting that the asymmetry may be a result of the large Xe:He mass

ratio. The ChemKin theory manual mentions that this method of calculating ther-

25
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Table III.1: Reference and Application Binary Diffusion Coefficients at 1 Atm

Gas Pair T(K) Analytical D, (cm2/s) Experimental D Application D
He:He 300 1.700 [14] 1.681
He:Xe 303 0.604 [21] 0.600 [21] 0.540
Xe:Xe 300.5 0.0571 [13] 0.0576 ± 0.0009 [13] 0.05594

mal diffusion is considerably less accurate than the full multicomponent method

now used in their application, but due to the complexity and expense of the full

multicomponent method, this approximation is used to provide initial indication

of the importance of including thermal diffusion in the IFE target application.



27

1.9E-5

2.0E-5

2.1E-5

2.2E-5

2.3E-5

2.4E-5

2.5E-5

2.6E-5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Mole Fraction Xenon, XXe

V
is

co
si

ty
, µµ µµ

 (
N

s/
m

2 )

Experiment
Analytical

Figure III.1: Viscosity by Composition for He:Xe Mixture
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Figure III.2: Thermal Conductivity by Composition for He:Xe Mixture
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III.B Shock Broadening

In order to validate the numerical methods, comparison is made between

experimental and simulation data for the composition dependence across a shock-

wave for a mixture of noble gasses. The experimental data available shows the

shock broadening and mixture separation for a mixture Helium and Xenon gas at

two different Mach numbers.

The reason that the composition varies across the shockwave is inherently

due to the Dufour and Soret effects. Though typically the Soret effect is considered

with respect to instability in buoyancy driven flows, the tendency for lighter gasses

to diffuse up temperature gradients is present within the shock as well. The strong

temperature and pressure gradients within the shock drive these phenomena to

actually work against the standard Fickian diffusion term and cause the gas to

become less uniformly mixed. Because the energy is partitioned equally between

the Helium and Xenon atoms, the Helium atoms move on average
√

mXe/mHe

faster. This results in Helium atoms crossing the discontinuity from further up-

stream. The Xenon atoms also have more momentum and therefore take longer for

their directional pre-shock velocity to randomize into thermal noise. The multi-

species formulation is capable of capturing the continuum representation of some of

these effects as long as the gasses do not deviate far from equilibrium distribution

functions.

III.B.1 Study Conditions

The experimental values were obtained from the work of Herczynski, Tar-

czynski, and Walenta[12]. These experiments were performed in a shock tube using

an electron gun and laser differential interferometer to measure the composition

across the shock. The experiments were performed with Helium-Xenon gas mix-

tures with percent composition by number fraction rather than by mass fraction.

At 3% Xenon number fraction, the mass fraction is approximately 50% Xenon and
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50% Helium.

One and two-dimensional multi-species Navier Stokes codes based on the

development in the previous sections were used to simulate the shock structure for

the conditions in Reference [12]. The simulation results are shown in Figures III.4

and III.5 for Mach 1.54 and Mach 4.38 respectively. In the figures, the flow is from

left to right across the shock.

The simulation length scale results were nondimensionalized using the

mean free paths listed in Reference [12]. The densities were normalized according

to Equation III.1 as was the data in Reference [12]. In the equation, L and R

subscripts refer to the state at the left and right edge of the numerical domain

respectively. The discrepancy between the numerical and experimental value near

the start and end of Figure III.4 might be an artifact due to this normalization.

The experiment may have defined the left and right states based on the apparent

start and end of the shock rather than the states further up and downstream.

The one-dimensional implementation was incorporated into the existing

algorithm for the two-dimensional explicit time-stepping compressible code used

for IFE chamber gas simulation. Because this code uses a spatially split flux

calculation, adding the effects of the multi-species diffusion consisted of simply

calculating the diffusion velocities and corresponding fluxes on the cell faces for

both directions. The curves plotted from the 2D codes were extracted from the

centerline of the computational domain parallel to the flow.

As seen in Figures III.4 and III.5, the resulting shock composition agree

well between the one and two-dimensional version. Both the one and two-dimensional

codes showed better agreement to experimental data for the Mach 1.54 case than

for the Mach 4.38 case. This result is not unexpected and explained in further

detail in the following section.

ρ̂ =
ρ− ρL

ρR − ρL

(III.1)
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III.B.2 Strengths and limitations

As discussed in Chapter 10 of Vincenti and Kruger [24], because the

Navier-Stokes equations are fundamentally based on a an expansion around equi-

librium, their results are expected to deviate from experimental values for strong

shock-waves. For this reason, Reference [24] mentions methods that try to ac-

count for non-equilibrium distribution functions such as Mott-Smith and BGK for

estimating shock thickness of stronger shocks. However, comparisons with experi-

mental data suggest Navier-Stokes performs better than what would be expected

from a purely theoretical standpoint.

III.B.3 Shockwave Comparison

As seen in Figure III.4, all the simulations including the flux limited case

match the experimental data and each other at Mach 1.54 quite well. Figure III.5

shows that the simulation starts to capture some of the general trends such as

shock width and composition separation for the strong shock. The simulations fail

to capture the internal structure of the strong shock-wave such as the “hump” in

the shock-wave.

Along with the experimental data, a theoretical model was included in

Herczynski, Tarczynski,and Walenta[12]. Their model used a variational model

to approximate the Boltzmann equation directly. They captured the “hump” in

the shock-wave, but their model resulted in no separation at the beginning of

the shock-wave along with quantitatively inaccurate shock composition and width

values. Their theoretical model showed a large temperature overshoot in the heavy

component of the mixture near the hump.

The Navier-Stokes type derivation used in the simulations of this paper

depends on nearly instantaneous energy relaxation between the components be-

cause the distribution functions are assumed to be perturbations to the Maxwellian

distribution when the Chapman-Enskog expansion is performed. The simulations

therefore necessarily cannot capture a temperature overshoot in one component
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because the instantaneous energy relaxation corresponds to equal temperatures

for all the components. This most likely explains the lack of a “hump” in the

simulations. Unfortunately, Herczynski, Tarczynski, and Walenta were unable to

generated a temperature profile experimentally to confirm the overshoot.

At the Mach 4.38, the simulations predict that the heavier component

accelerates at the beginning of the shock producing a drop in the density that

is not found in the experimental data. This effect was also found by Sherman

[20] using a completely different numerical method for solving the multi-species

Navier-Stokes equations.

The Mott-Smith and BGK models were developed in an attempt to cal-

culate the shape of strong shock-waves more accurately. The BGK model predicts

a velocity drop that begins much further upstream from the shock-wave[24]. If the

BGK profile was the underlying shape instead of the Navier-Stokes solution, this

early deceleration of the profile would help the simulation match the experimental

data better. Unfortunately, the BGK model employs an iterative solution to a

set of integro-differential equations and would be much more difficult to extend to

multiple dimensions

The flux limited Mach 4.38 case differs significantly from the other Mach

4.38 cases. In particular, the flux limited case reduces the early acceleration of

the heavier component. This suggests that the cause of this fictitious acceleration

is likely the result of diffusion velocities unrealistically large for the theoretical

model. The Xenon acceleration may actually result from the requirement that the

weighted sum of diffusion velocities be zero in this formulation.

For the intended application of IFE chamber gas simulation, the internal

structure of very strong shocks is not of great importance. These simulations are

primarily intended to indicate that the addition of the multi-species effects are

properly calibrated and to indicate the mechanism through which the formulation

breaks down. Features such as broadened shock width and the ability to track

the effects of composition on transport coefficients are more relevant. The results
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indicate that applying the multi-species continuum model to fluid structures on

the scale of tens of mean free paths is not unreasonable for situations in which

the fluid remains close to local equilibrium. A more robust treatment of other

non-equilibrium effects such as ionization and radiation are much more likely to

effect results than extension to accurately reflect strong shock structure.



Chapter IV

Application

IV.A IFE Chamber Gas

Viable Inertial Fusion Energy (IFE) power production requires the effi-

cient absorption of short and intense energy pulses in rapid succession within the

reaction chamber. Between target injections, trace chamber gas is used as a buffer

to absorb and reradiate these intense energy bursts to limit the peak impulse on

the chamber walls. However, this chamber gas must relax to conditions that allow

for target survival during subsequent injections.

Figure IV.1 shows the volume averaged temperature for a typical poten-

tial IFE chamber design. The volume average for temperature is defined in the

“Cold Jets” subsection. For this and the remaining cases, a simple 10m radius

axisymmetric half height cylinder was used as the numerical domain. The radia-

tion hydrodynamics code “BUCKY” was used for the target implosion to produce

the initial conditions for the fluid code because the fluid code does not have the

capability to perform the fusion burn calculations. As mentioned in the continuum

approximation section, “BUCKY” used an initial chamber density corresponding

to 50 milli-torr pressure at room temperature. All times stated are based on the

fluid code’s clock starting at the end of the “BUCKY” case used as initial condi-

tions. The time from “BUCKY” for the initial conditions is an additional 0.5ms.

34
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Further details of the equivalent baseline case can be seen in the work Dragojlovic

and Najmabadi in Reference [9].

Despite a rapid temperature drop for the first few milliseconds, from

approximately 10-100ms the chamber temperature remains relatively constant at

approximately 3000K. Though the majority of the energy is radiated to the walls,

techniques for quickly reducing the remaining gas temperature could increase the

overall system efficiency. Such techniques could also potentially lessen chamber

vacuum requirements. Lower vacuum requirements would thereby reduce vacuum

pumping complexity and expense and also reduce the peak instantaneous heat flux

on the walls.
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Figure IV.1: IFE chamber temperature without cold jets



36

IV.A.1 Cold Jets

The potential of using cold gas jets to enhance mixing and to lower the

average chamber temperature is investigated in this section. Because the temper-

ature could be reduced to an arbitrarily low level with a large enough cold gas

input, the relative level of mixing for various configurations is of greater impor-

tance. Along with a zero jet control, cases were run with one to three jets included

on the top and side walls of the numerical domain. Three different jet densities

were also investigated for each set of jets. In all the cases, the temperature and

velocity of the jet inlet were set to the choke conditions for a room temperature

gas isentropically accelerated to Mach 1.

The temperature change is based on Equation IV.1 for choked flow from

Reference [2] resulting in a jet temperature of 223.5 K down from 298 K. In the

equation, T0 is the reservoir temperature and T ∗ is the choked temperature. The

temperature then sets the sound speed. A mass flux sufficient to result in final

temperatures similar to the wall temperature of 973 K was then selected. A jet

pressure was also selected to ensure that jet remained sonic into the chamber at

peak chamber gas pressure on the wall. This specified the jet density and finally

jet width. Three other lower jet pressures were then selected based on densities of

2/3 and 4/9 the original density.

Three different jet configurations were then selected. The position of the

jet centers are shown in Figure IV.2. The width of the jets were selected so that

the total energy and mass injected into the system would be approximately equal

for all the cases. For all the cases, the jets were started at 10ms and stopped at

20ms. The chamber gas was then allowed to evolve until 100ms.

T ∗

T0

=
2

γ + 1
(IV.1)

It is important to note that the extent to which such a system could be

implemented depends on the vacuum pumping capacity. Injecting gas into the

chamber requires a pressure gradient such that the total chamber pressure and
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energy density are increased. Though the chamber gas temperature is decreased,

it is at the expense of the vacuum. Whether the chamber gas energy density or

temperature is more relevant to target survival depends on whether the heat flux to

the target is dominated by radiative or fluid mechanical processes. Further details

on target survivability can be found in Reference [4]. However, inclusion of these

jets could only be implemented in steady state with a corresponding increase in

vacuum pumping capacity. Though the effects of vacuum pumping capacity were

beyond the scope of this study, it is assumed that the vacuum and jet systems

would be designed to compensate for the increased pressure and hence energy

density due to the jets, should such a system be implemented. For this reason, the

final chamber gas temperature was selected to be of primary interest.

In order to quantify the extent to which the jets thermally mix with

the pre-existing chamber gas, comparison was made between the mass averaged

and volume averaged temperatures. If the two gasses are completely mixed, the

mass and volume averaged temperatures should be the same. If not, the hot low

density gas that was originally in the chamber should be over-represented in the

volume average. Equations IV.2 and IV.5 show how the mass and volume average

temperatures respectively are calculated. Equation IV.6 gives an expression used

for the normalized thermal mixing residual. In this equation, zero corresponds to

perfect mixing.

Tm =

∫∫∫
Γ
ρ[eint]rdrdzdθ

c̄v

∫∫∫
Γ
ρrdrdzdθ

(IV.2)

c̄v =
3

2

R

m̄
(IV.3)

m̄ =

∑S
s=1 ms

∫∫∫
Γ
nsrdrdzdθ∫∫∫

Γ
n rdrdzdθ

(IV.4)

Tv =

∫∫∫
Γ
[eint/cv]rdrdzdθ∫∫∫

Γ
rdrdzdθ

(IV.5)
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Table IV.1: Normalized thermal mixing residual across range of jet number and

density

ηT 1 Jet 2 Jets 3 Jets

ρ0 1.054 0.559 0.359
2/3ρ0 1.052 0.558 0.412
4/9ρ0 0.910 0.619 0.472

ηT =
Tv − Tm

Tm

(IV.6)

Table IV.A.1 shows the the normalized thermal mixing residual for the

nine different jet cases.

In general, the thermal mixing residual is decreased with more smaller

higher density jets. Though the temperature and therefore choked velocity is the

same for all of the cases, the higher density jets correspond to higher pressure.

This causes the higher density jet gas to accelerate supersonically and cool upon

entering the target chamber. This also results in more vigorous mixing of the hot

and cold gasses within the chamber. The only discrepancy from the trend of denser

jets corresponding to better thermal mixing is found in the lowest density one jet

case. This is likely due to overall delayed mixing due to the large jet size in all of

the one jet cases.

Figure IV.3 shows the time history of the difference between the volume

average temperatures for the medium and low density cases, denoted T2 and T3,

compared to the high density case, denoted T1, for each number of jets. Values

below zero correspond to volume average temperatures below those of the highest

density case. The figure shows that for all the cases, lower density jets initially

produce cooler volume averaged temperatures than their higher density counter-

parts. This is reasonable because the lower density cases have wider choke points

to accommodate the same mass and energy fluxes. This results in a larger volume

of low temperature jet gas as it enters the chamber. However later on in the sim-
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ulation, the enhanced mixing reverses this original trend. Because the jets in the

one jet cases are so large, this reversal has not yet occurred in the simulation time

interval.
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Figure IV.3: Time history of volume average temperature difference for medium

and low density jets versus high density jets. The gray lines highlight the general

trends discussed in the text.

Total and local volume averaged jet mass fraction was also calculated to

help quantify physical mixing. Equations IV.7 and IV.8 show the corresponding

equations. These quantities should also be equal if the jet gas is completely mixed

with the chamber gas. This results in Equation IV.9 for the normalized physical

mixing residual. Table IV.A.1 shows the corresponding final normalized physical
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Table IV.2: Normalized physical mixing residual across range of jet number and

density

ηY 1 Jet 2 Jets 3 Jets

ρ0 0.25 0.126 0.079
2/3ρ0 0.26 0.125 0.093
4/9ρ0 0.24 0.148 0.116

mixing residuals. Again, zero would correspond to a complete mixing.

Ȳt =

∫∫∫
Γ
ρjetrdrdzdθ∫∫∫
Γ
ρrdrdzdθ

(IV.7)

Ȳv =

∫∫∫

Γ

ρjet

ρ
rdrdzdθ (IV.8)

ηY =
Ȳt − Ȳv

Ȳt

(IV.9)

In the case of physical mixing, the trend of more jets promoting better

mixing is again present, but higher pressure does not seem to promote better

mixing. This is likely a result of relatively rapid thermal diffusion. Because the

particles can exchange energy during a collision, the energy diffuses faster than the

time it takes for the particles to randomly walk.

Figures IV.4 and IV.5 show the time histories of the jet mass fractions

either by number of jets or jet density. In the figures, the upper lines correspond to

the composition for a uniformly mixed chamber. This shows that despite slightly

different mass fluxes due to numerical cell geometry, the average composition is

nearly identical for the nine cases. The spaces between the upper and lower curves

correspond to the deviation from uniform composition.

Comparing Figures IV.4 and IV.5 demonstrates the dramatically stronger

contribution of number of jets than jet density to the final chamber composition.

In Figure IV.4, each of the plots contain composition curves for different density

jets with the same number of jets for each plot. In this figure, the three different
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density composition curves nearly completely overlap. Figure IV.5 has the same

data with the curves grouped by jet density instead of number of jets. This again

shows that the number of jets plays a considerably larger role than jet density for

physical mixing.
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Figure IV.4: Time history of jet mass fraction by number of jets. Upper curves

are total and lower curves are volume averaged.

It is interesting to note the slight decrease in volume average jet mass

fraction slightly after the jet has been turned off. It is particularly apparent from

approximately 25-45ms in the 1 jet cases. This is most likely caused by the collision

of jets from the top and side. As the jets collide, the density of the gas increases

resulting in lower volume averaged jet mass fractions despite the mixing occurring

on the edges of the plumes. Figure IV.6 shows the gas densities immediately before
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and during the collisions for the one jet high density case.

Based on the maximum compression of the jets colliding at 35ms, or

15ms after the jets are turned off, for the 1 jet high density case, the 2 and 3 jet

cases would be expected to reach maximum compression at around 27.5ms and

25ms respectively due to the chamber geometry. These estimates correspond well

to local minimums seen in Figure IV.4. Though the 3 jet case appears to only have

an inflection point at 25ms, the mass fraction does in fact decrease approximately

0.01% before continuing upward. It is also not unexpected that the decrease would

be more minor with the 3 jet cases simply because only a third of the total jet

mass is involved in the collision at that time.

Figure IV.6: Density before and during jet collision for one high density jet case.

IV.A.2 He:Xe mixed jets

Injecting cold Helium-Xenon mixtures instead of pure cold Xenon is an-

other way to decrease chamber equilibration time. Including Helium not only

increases mixture average sound speed and thermal conductivity, but Helium will

also thermally diffuse up temperature gradients in Helium-Xenon mixtures due

to the “normal” Soret effect [11]. The energy of the hot gas is then partitioned

between more particles further facilitating thermal equilibration.

All of the mixed jet cases are initially based on the “ρ0” pure Xenon
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3 jet configuration because it provided the best results from the cold jet cases.

Table IV.A.2 shows the jet compositions required for the specified sound speed

increase for the set of mixture cases run. The jet port width was also divided

by the sound speed increase so that the mass or energy fluxes would match those

of the pure Xenon case. Tables IV.A.2 and IV.4 show the properties for the six

mixture cases run when compared to the three jet original density pure Xenon case

that produced the best mixing of the pure Xenon cases. Jet mass and energy were

normalized using the mass of the chamber gas and the total energy in the chamber

at 10ms when the jets were started. As with the pure Xenon cases, all jets used

a temperature of 223.5K and choke conditions. Tables IV.A.2 and IV.4 also show

the final mass and volume averaged temperatures.

Figure IV.8 shows the evolution of composition for a typical mixed jet

case at 20ms intervals. Figure IV.7 shows the corresponding evolution of the pure

Xenon jet case. The plots in Figure IV.8 correspond to the energy flux matched

case with jet gas sound speed at 150% that of the pure Xenon case. The first

indication of thermal diffusion is seen in the 20ms plots as an orange smudge

around the jet structures when compared to the sharp boundary of the pure Xenon

case. As the jet Helium differentially diffuses into the hot chamber Xenon, areas of

brighter green are eventually visible around the jet fluid structures. In general, the

pure Xenon case maintains much sharper boundaries between the jet and chamber

gases resulting in stripes as the gases twist around each other. The other obvious

difference between the two cases is the difference between how far the jets have

propagated into the chamber at 20ms due to the sound speed difference.

Figures IV.9 and IV.10 compare the composition of the six mixture cases

at 20ms and 100ms respectively. They use the same color scale for number fraction

as in Figures IV.8 and IV.7. In the figures, the energy flux matched cases are on

the left while the mass flux matched cases are on the right. In the 20ms figure, the

reduction of jet mass for the energy flux matched cases is particularly obvious for

the 200% Xenon sound speed cases. For the energy flux matched cases, the higher
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Table IV.3: He:Xe Jet Mixture Properties
Sound Speed 125% 150% 200%

M̄/MXe 0.64 0.444 0.25
XXe 0.63 0.43 0.23
YXe 0.982 0.961 0.906

Table IV.4: Fixed Mass He:Xe Jet Cases versus Baseline Cases

Fixed Variable None Both Mass Mass Mass
Sound Speed - 100% 125% 150% 200%

∆Mj/Mc 0.00 6.48 6.33 6.50 6.39
∆Ej/Ec,t=10ms 0.00 0.59 0.90 1.33 2.32

Tf,m(K) 2987 745 616 550 505
Tf,v(K) 3074 1013 955 641 539

Table IV.5: Fixed Energy He:Xe Jet Cases versus Baseline Cases

Fixed Variable None Both Energy Energy Energy
Sound Speed - 100% 125% 150% 200%

∆Mj/Mc 0.00 6.48 4.05 2.89 1.60
∆Ej/Ec,t=10ms 0.00 0.59 0.57 0.59 0.58

Tf,m(K) 2987 745 760 788 789
Tf,v(K) 3074 1013 1174 896 826

sound speeds correspond to further penetration into the chamber gas, but also a

narrowing of the jets. For the 100ms figure, the plots show that the energy flux

matched cases leave a region of bright red pure chamber Xenon whereas the mass

flux matched cases appear to be completely mixed. The increase in jet energy in

these cases enable the gas mixing to reach completion.

Table IV.A.2 shows the normalized thermal mixing residual for the mixed

jet cases as defined for the pure jets. It is interesting to note that the residual is

higher than the pure Xenon case for sound speeds of 125% that of pure Xenon.

This is the result of a reduction in final mass average temperature more than an

increase in final volume average temperature.

Only the energy fixed case at 125% sound speed ended with a higher
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Figure IV.7: Mixture Number Fractions, Pure Xenon Jet Case
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Figure IV.8: Mixture Number Fractions, 150% Xenon Sound Speed Jets, Energy
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Figure IV.9: Mixture number fractions at 20ms for energy and mass flux matched

cases. The left column corresponds to energy flux matched and the right column

corresponds to mass flux matched. The rows are 125%, 150%, and 200% pure

Xenon sound speed from top to bottom.
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Figure IV.10: Mixture number fractions at 100ms for energy and mass flux

matched cases. The left column corresponds to energy flux matched and the right

column corresponds to mass flux matched. The rows are 125%, 150%, and 200%

pure Xenon sound speed from top to bottom.
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Table IV.6: Normalized thermal mixing residual for mass and energy fixed jets

across sound speeds

ηT 100% 125% 150% 200%

Mass Fixed 0.359 0.548 0.164 0.066
Energy Fixed 0.359 0.545 0.138 0.047

volume average temperature than the pure Xenon case as shown in Table IV.4.

Figures IV.11 and IV.12 show the volume average temperature for fixed mass and

fixed energy jet cases respectively. Similar to the lower density cases for pure

Xenon jets, the 125% Energy fixed case starts lower than the pure Xenon case but

eventually the two cross. This is not unexpected because the Energy fixed cases

include less mass and momentum within the jet. What is more surprising is the

effectiveness of the Energy fixed case at 200% sound speed. With a jet mass of

only 1.6 times that of the chamber gas, the volume average temperature can be

reduced down to 826K from 3074K as shown in the included “No Jets” case. In

the figures, the thin horizontal lines are the final mass average temperatures for the

corresponding cases. They are included to show the volume average temperatures

approaching these temperatures approximately asymptotically.

The definition of volume and mass average temperatures may be less ap-

propriate for cases with Helium because regions with a higher number fraction

Helium would be both colder and lower density. Assuming the pressure and tem-

perature in the chamber relaxes faster than composition, the areas of high Helium

concentration would be overrepresented by the volume average. However as seen

in Figure IV.10, the higher fraction Helium cases have fewer fine scale structures

indicating more complete mixing.

The temperature reduction using only 1.6 times the chamber gas mass

would be less dramatic in steady state if the chamber gas remained a significant

fraction of Helium between target injections. If the vacuum system reduced the

number density in the chamber to the same level as before the first target, the
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subsequent chamber gas mass would be considerably less because of the residual

Helium in the mixture. For further progress to be made at evaluating steady state

performance, results from “BUCKY” for a range of initial chamber gas composi-

tions as well as the inclusion of reference design vacuum systems would be crucial.
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Figure IV.11: Fixed mass jet mixture volume average temperature versus final

mass average temperature and no jet volume average temperature.
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Figure IV.12: Fixed energy jet mixture volume average temperature versus final

mass average temperature and no jet volume average temperature.



Chapter V

Conclusion

These preliminary results indicate that a significant reduction in chamber

temperature may be obtained through the use of cold gas jets. This temperature

reduction may be expedited with the inclusion of a small mass fraction of Helium.

Several smaller higher density jets are also preferable to larger lower density jets.

These results indicate that cold jets could be important method of enabling more

rapid repetition rates and economically feasible reactors.

In order for this work to continue, the vacuum pumping capacity must

be incorporated to ensure that the system could be used in steady state. The true

effect of including cold jets on target tracking and survival is also dependent on

final temperature, energy density, and velocity in a complex manner. The rela-

tive contributions of radiative and convective heat transfer as well as a turbulent

velocity field must be considered to ensure a viable reference design.

Regardless of whether jets are included or not, an investigation into the ef-

fects of multi-species chamber gas should also be performed using radiation hydro-

dynamics codes such as “BUCKY”. As shown in reference [8], Xenon was selected

due its superiority to both Helium and deuterium as the chamber gas because of its

better radiative performance. Without at least a small flux of pure Xenon, target

waste products will eventually accumulate to significant levels within the chamber

if a reactor is run at steady state. However, the Xenon mass flux required to main-
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tain the chamber composition, though necessarily at least several times the mass

flux of target material, would still be much smaller than the mass flux of the cold

jets investigated here. Even with active cleaning of the chamber gas, some trace

steady state levels of other gasses are inevitable. This is why it is important to

ensure if and at what level these other gasses are detrimental to Xenon’s radiative

performance.

Though the Soret effect as applied obviously produces variations in the

fluid composition particularly visible as bright green spots in Figure IV.8, further

work should be done to isolate its relative contribution to the mixing and thermal

relaxation of the chamber.

The extension of the fluid code also lays the groundwork for other future

applications such as tracking ions as separate species. The multi-species framework

would also be applicable in a broad range of fluids research including combustion

and hypersonics.
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