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Abstract
On Conformal Superspace and the One-loop Effective Action in Supergravity
by
Daniel Patrick Butter
Doctor of Philosophy in Physics
University of California, Berkeley
Professor Mary K. Gaillard, Chair

We outline a program for the calculation of the one-loop effective action for generic su-
pergravity theories in superspace. The first step involves the construction of a conformal
superspace (with the conformal algebra as the structure group) to facilitate the algebraic
manipulations necessary to deal with the underlying conformal coupling of chiral matter
to supergravity. Next we show how to expand actions to second order in the fundamental
quantum variables to allow one-loop computations. Finally, we describe how the chiral
loops may be handled by explicitly calculating their divergences and anomalies.
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Chapter 1

Introduction and motivation

Over the last thirty years, supersymmetry has become nearly a cornerstone of
modern research in particle theory. Its many theoretical successes (e.g. a possible resolution
of the hierarchy problem, better gauge coupling unification, some insight into the origin of
dark matter) lead us to confidently expect some superpartners to be detected by the LHC
in the near future. On the other hand, the combination of supersymmetry with gravity
has not solved the latter’s problems. The fundamental divergences and concommitant non-
renormalizability are softened by the presence of supersymmetry but not removed entirely.

Nevertheless quantum effects within supergravity may still give us some insight if
we take the point of view that supergravity is some low energy approximation of an ulti-
mately finite theory — the prime candidate being string theory. We expect then that the
divergences in low energy loops involving supergravity, matter, and gauge fields should be
cancelled by heavy string modes. Certainly, the form of any anomalies of the low energy
theory should be extremely limited, with an effective four dimensional version of the Green-
Schwarz anomaly cancellation mechanism playing some role. These features can be explored
quite directly using standard field theoretic techniques. Indeed, this has been the guiding
principle of the work of Gaillard and collaborators, who over the years have examined these
very features in general N' = 1 supergravity theories using standard techniques [1, 2]. Be-
cause of the sheer complexity of the interactions involved, the standard approach has been
to work in the background field formulation with background fermions turned off, breaking
the background supersymmetry of the theory. There were two reasons for going about it
this way: first, it allowed existing field theory techniques to be applied directly to a super-
symmetric theory while remaining tractable; and second, there were simply no manifestly
supersymmetric methods which could easily handle supergravity coupled to matter.

The goal of this thesis work has been to make supergravity calculations more
tractable while maintaining manifest supersymmetry. The latter requirement is best han-
dled by working in superspace, where the four dimensional manifold of spacetime is extended
to a supermanifold with extra Grassmannian coordinates obeying fermionic statistics (i.e.
they possess an odd grading under multiplication). The algebraic structure of supergrav-
ity on such a space is rather involved; for example, in the standard “old minimal” way
of formulating supergravity coupled to matter, the Einstein-Hilbert and Rarita-Schwinger
actions describing supergravity are mixed with the matter action under supersymmetry.



This thesis is divided into two parts. In part I, we describe the construction of
conformal superspace and demonstrate how to expand rather generic Poincaré invariant
supergravity theories in terms of the unconstrained superfields describing the underlying
conformal structure. The material in this part comes from two previous papers by the
author [3, 4]. In part II, we review how the one-loop effective action for chiral loops may
be constructed and describe methods for calculating its divergences and anomalies within
superspace. The material here also largely comes from a previous published work [5].

We use throughout the superspace notations and conventions of Binetruy, Girardi,
and Grimm [6] (which are a slight modification of those of Wess and Bagger [7]) — with
our own slight modification: we choose the superspace U(1) connection to be Hermitian.
That is, our connection Ajs here is equivalent to —iAps of [6]; similarly, our corresponding
generator A is equivalent to their iA. (The unfortunate coincidence of the generator and
connection names will, we hope, not overly confuse the reader.)



Part 1

Conformal superspace and its
variational structure



Chapter 2

The conformal structure of
superspace

The use of conformal techniques to address supergravity has a long history. Not
all that long after Wess and Zumino discovered the superspace formulation of supergravity
[8], Kaku, Townsend, and van Nieuwenhuizen, along with Ferrara and Grisaru, worked
out the conformal structure of component supergravity and demonstrated that Poincare
supergravity was a gauge-fixed version of conformal supergravity [9]. Howe first proposed
superspace formulations of four-dimensional A/ < 4 conformal supergravities by explicitly
gauging SL(2,C) x U(N) [10]. Work continued on conformal supergravity over the next
few years (an excellent review [11] on the topic was written by Fradkin and Tseytlin)
eventually culminating in the work of Kugo and Uehara, who not only popularized the
conformal compensator approach to supergravity and matter systems [12] but also made
a comprehensive analysis of the component transformation rules and spinorial derivative
structure of N' =1 conformal supergravity [13].

In large part, the results presented in this chapter are a superspace response to
this last work. Here we will take a complementary approach, treating superspace as an
honest supermanifold with a conformal structure. Unlike Howe, we will seek to gauge the
entire superconformal algebra. Prior experience with superspace hints that this approach
would be a foolish one — that the constraints required with a larger structure group would
be more numerous and their evaluation more cumbersome. What we find is the opposite:
the covariant derivatives of conformal supergravity have a Yang-Mills structure, with the
algebra

(Ve Vgt =0, {Va,Vz}=0
{Va,Va} = =2iVaq
{Vﬁ, Vad} = —QiﬁgaWa {VB, Vaa} = _2i€5dWa

where W, are the “gaugino superfields” for the superconformal group. The constraints of
conformal superspace involve setting most of the W, to zero, and the evaluation of these
constraints is no more difficult than in a conventional Yang-Mills theory, leading the non-
vanishing W, to be expressed in terms of the single superfield W,3,. When the theory is



“degauged” to a U (1) Poincaré supergravity, the extra gauge superfields can be reinterpreted
as the familiar superfields R, G, and X,. This is the main result of this work.

It is well known that the various equivalent formalisms of superspace supergravity
— the minimal Poincaré [14], the minimal Kéhler [6], and even the new minimal Poincaré
[15] — are all derivable from a conformal superspace under different gauge-fixing constraints.
We review one way of seeing how this occurs in our approach.

This chapter is divided into three sections. In the first, we present an elementary
review of the structure of global and local symmetry groups as well as the structure of
actions over both the full manifold and submanifolds of such theories. There is no pretense
to completeness or even rigor, but standardizing notation and justifying what exactly a
gauged special conformal transformation is are reasonable justifications for its inclusion. In
the second, we discuss conformal representations of superfields on superspace and construct
the constraints necessary for the existence of such a space. We also give the explicit form
of all the curvatures from solving the Bianchi identities. In the third, we demonstrate
how the auxiliary structure of U(1) superspace is identical to a certain gauge-fixed version
of conformal superspace. In addition, we explicitly construct the superspace of minimal
supergravity, Kéhler supergravity, and new minimal supergravity.

Although the theory discussed here ought to be properly denoted “superconformal
superspace,” this is an awkward term that we would like to avoid. Instead we use “con-
formal” when the subject is superspace. (Similarly, supertranslations on superspace are
simply called translations.) When the component theory is under consideration, we restore
the “super.”

2.1 Geometric preliminaries

2.1.1 The structure of global symmetries

The global structure of the conformal symmetry groups of arbitrary manifolds
(with or without torsion and Grassmann coordinates) benefits from first discussing a simple
example: the conformal group on four dimensional Minkowski (or Euclidean) space.

The conformal group

The flat metric, ds? = dz™dz"1,,, is preserved up to a conformal factor by the
differential generators!

Pa = Oa, (1_~_€.p)xm:xm+£m
1
Map = —Taq0p + Tp0q, (1 + 2wbamab> " =™ -,
d=x-0, (I+Ad) 2™ = 2™ + \a™
ko = 2xa2 - 0 — 220, (I+e-k)a™=a™+2(e-z)z™ — 2%e™ (2.1.1)

!The convention used here for the generators eliminates factors of 7 in group elements while making most
of the generators anti-Hermitian.



The special conformal generator k, can also be thought of as a spatial inversion, followed
by a translation and then another spatial inversion.

These generators are represented on fields by the operators P,, My, D, and K,
with the following algebra:

[Map, Pe] = Patoe — Polae,  [Map, K] = Kambpe — KpNace
[Map, Meq] = mpeMaq — Nac My — MbiMae + NaaMpe
[D, P)) = Po, [D, K, =-K,

[Ka, Py] = 20apD — 2My

where all other commutators vanish. The action of such generators on fields is defined by
their action at the origin. One usually takes for conformally primary fields @,

Po®(0) = 8,8(0), Map®(0) = Sp®(0), D®(0) = AB(0), K,d(0)=0  (2.1.6)

Here S, is a differential rotation matrix appropriate for whatever representation of the
rotation group ® belongs to, A is the conformal scaling dimension, and the vanishing of
K, is called the primary condition. In order to discern the transformation rules at points
beyond the origin, one must make use of the translation operator e** to translate from the
origin. This is formally a Taylor expansion:

B(z) = " PD(0) = B(0) + 2" Pod(0) + %xabeanq)(O) +o.
= ®(0) + 290,2(0) + %xaxbaaabCP(O) +...

The operator P, acts only on the field ®, returning its derivative, and has no action on the
coordinate x, which is here just a parameter. The same is true for the other operators.

If g is any generator of the conformal algebra, the action of g on ®(z) can be
calculated easily by making use of the translation operator:

g®(x) = " Te P gem P ®(0) = () ®(0) (2.1.7)

where §(z) = e P ge® ! is an abbreviated notation for the translated g. It follows that

pa(x) =P, D(I’) =D+ .CEaPa, Mab(iﬂ) = My — x[an]
Ko(2) = Ko + 224D — 20, My, + 22,25 Py — 2° P, (2.1.8)

If these operators are taken to act on a pure function, they reproduce the derivative rep-
resentations (2.1.1). It should be noted that the algebra of the derivative representations
differs by a sign from the algebra of the field representations; the former can be thought of
as a left action on the group manifold with the latter corresponding to a right action which
yields an opposite sign in the commutator.

On a more general field these expansions involve extra terms appropriate for ®’s
representation. For a primary field,

Do(z) = A® +290,2, Mup®(2) = Sap®(x) — 2,052 (2)
K,®(z) = (204A — 22pSyp + 224705 — 2°0,) @(x) (2.1.9)



The algebraic relations are simply applied. For example,
DP,®(z) = [D, P.)®(x) + P, (A + beb) O(z) = (A + 1)P,®(z) + 2* PP, ®(x)

from which one can define the intrinsic scaling dimension of 9,®(x) as A + 1. Similarly can
one determine the behavior of the Lorentz rotation and special conformal generators:

MioPa(w) = (Syed + g3y ) 0a®() = 21p0g0a®(2)
=53.0aP () — 1,00, P () (2.1.10)
Ky Po®(z) = (2npa A — 28pa) () + 225(A + 1)0,P(2)
— 2z, (Sbcéff + na[cég]) 9a®(x) + (22p70c — 2°0p) 0o ® ()
=kpa @ () + (Qbe/ — 22,8y + 2270, — 95281,) 0,P(z) (2.1.11)

Both have precisely the forms expected, where A’ and Sy, are the conformal dimension
and rotation matrix appropriate for 0, ®(x). The only interesting feature is that the spe-
cial conformal generator removes the derivative; at the origin, Ky P,®(0) = kp,(0) =
(215a A — 28p,) ©(0). This same feature is found in the local theory.

The conformal group action we’ve discussed above involves transformations only
on the fields, leaving the coordinate invariant. That is, the action of a differential generator
g is

r—z, ®—=&(x)=>x)+gd(x) (2.1.12)
If we begin with the action S = [ d*r L (with the Lagrangian a function of fields and
perhaps also the coordinate), the action of g is only on the fields:

oL oL
_ 4 hind
0gS = /d x (5@9¢+ 5aa(1)gaa<l>> (2.1.13)
For the case where g = £ - P, one finds g® = £ - 3P and g0,® = £ - 99,P. The term in
ac oL

parentheses is then equivalent to %= — 4=. The first term vanishes as a total derivative;
the second must also vanish, which tells that the Lagrangian cannot contain an explicit
dependence on the coordinate. For the other choices of g, the obvious results are recovered:
the Lagrangian must have A = 4, it must be a Lorentz scalar, and it must be conformally
primary. The simplest conformal action involving a single primary scalar field of dimension
one is £ = ¢p9?¢/2 — a¢*. (The only non-trivial check is to ensure the kinetic term vanishes
at the origin under the action of the special conformal generator.)

The approach outlined above has the feature that it places all the transforma-
tion into the fields themselves. One often finds reference to a formalism where both the
coordinates and the fields transform:

r—2, ®x)— o) (2.1.14)
For example, under translations and finite scalings, one would have

r—2 =x—a, ®x)— d()=>o(x) (2.1.15)
v =2 =e Pz, (x) = () =eA0(2) (2.1.16)



The part of g which acts as a coordinate shift has been moved off the fields and onto the
coordinate explicitly; the remaining action of g can be thought of as a generalized rotation
operation, which vanishes if the field ® is a pure function. The main reason this approach is
employed is that it allows conformal transformations on scalar fields (but only scalar fields)
to be compactly written

~A/4

_ |2 (z). (2.1.17)

poal, 8@) - 0 = |5

where A is the conformal scaling dimension of ¢. Invariance of the action can then be
checked in one step for all the elements of the conformal group. The ¢* term, for exam-
ple, transforms as [ d*zr ¢(z)* — [d*a'¢/(a")* = [d*xJ T 2¢(x)* where J = |02’ /0z|.
Invariance is found for A = 1.

Constant torsion

We will ultimately be concerned with a theory containing torsion, so it is useful
to review the effects torsion induces. Assume the manifold possesses translation generators
P, with nontrivial (but constant) torsion: [P,, Py] = —Cy°P.. All other points z relative
to the priveleged origin are defined by the condition f(z) = e*¥ f(0) for pure functions
f.2 By Taylor’s theorem, the P, in the exponent is playing the same role as J, and so
they are equivalent when evaluated on the function at the origin. However, since the P, do
not commute, the operator ev P acting on a function f(y) does not return f(z + y) since
e Py P o+ el@+y)- P

Now let ® be a field valued on the manifold. All covariant fields ® are simple
representations of the translational isometries, obeying ®(z) = ¢**®(0). There are three
reasonable but inequivalent notions of differentiation, which we denote the normal, left, and
right differentiation:

0

Da®(r) = 5 [e"P®(0)] (2.1.18)
D& (z) = Pe” T ®(0) (2.1.19)
DR d(z) = P P,d(0) (2.1.20)

In each of these definitions, the operation on the left is some sort of derivative on the group
translation element e*? of the general form

D) = ) " (2)0,,, D = e, " (2)0,, (2.1.21)

where 9y, is to be understood as a derivative on the group parameters " and e(L)am(x)
and e(® " (x) are functions of x chosen so that the definitions are satisfied. They are found
most easily by differentiating with respect to x and moving all the P’s to the left or to the
right:

amex.P _ 6(L)mll(m)Pa6x-P7 amem'P — eI-Pe(R)ma(x)Pa

2The index contraction z - P should be understood as £™8,,*P,. We will shortly discover a nontrivial
vierbein arising from the torsion, but it does not appear in the translation group element.



It is interesting to note the group commutation rules of these various derivative
operations, which follow directly from their definitions. The normal differentiation has
trivial commutator, [J,, 0] = 0, since these operations are simply derivatives of their pa-
rameter. Left differentiation is not so straightforward. First consider the product of two
such operations:

DI DM@ (2) = DB Petd = B,DPe*P® = PP, P (2.1.22)
Since D((lL) acts only on the translation generator as a series of derivatives on its parameters,

it passes through the group generators. Here the order of operations has reversed, which
reverses the sign of the commutator:

(D), DN () = [Py, Pale™’® = +Co" DP @ () (2.1.23)

A similar calculation with the right differentiation operators shows that they preserve the
order, and we find

(D, DIND(2) = —Cop* DD () (2.1.24)

The left and right derivatives formally commute with each other since they nat-
urally place their corresponding P, generators on opposite sides of the translation group
element:

DD Py = DM emPPd = Pe" PP = DIV DM e P o (2.1.25)
While each of these is interesting, only the right derivative is translationally co-
variant:
e PDI & (1g) = e Pem P P& = DB (e Fiyy). (2.1.26)
(It is a straightforward exercise to show that the other derivative operations do not obey
this rule unless torsion vanishes.) Therefore we may identify D((LR) = D, as the covariant
derivative, and e, = ¢, as the physical vierbein. It can be easily calculated by noting
em®P, = e *Fo,,e" "
The result is®
a _ a 1 b a l b,.c d a

em” = Om 21' Crp” + 3'1' TCmpCac” + - .. (2127)

where the C’s are understood to all possess Lorentz indices. (That is, the only vierbein in
the expression is on the left hand side, and so this is an explicit, if unclosed, expression for
the vierbein.) The above expansion can be written in a matrix form. Define the function
f(u) = (e* —1)/u; then e = f(zC) where (zC)," = 2°C..b. It follows that the inverse
vierbein can be expanded using the reciprocal:

1 1
e = (1/f(2C))a™ = 6™ + §mbcabm + Exbxc b 1Ca™ (2.1.28)

3This result can be generalized in the presence of local curvatures; see Appendix 2.1.2.
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This relation for the vierbein can be shown to obey €, = enfem?Ca® which shows that
the torsion T,,,,%, in this flat case, is given in the Lorentz frame by the coefficients C“.

The above formalism is necessary in order to describe global supersymmetry in
superspace. Begin with a Grassmann manifold with four bosonic dimensions z® and four
fermionic dimensions % and 6. The translation isometries consist of the bosonic transla-
tions P, and the fermionic ones Q, and Q%, with a torsion term {Qu,Qs} = —2i00a*Ph.
The torsion term here is found in the anticommutator of the fermionic @’s. It is useful
to think of this anticommutator as just a normal commutator but with fermionic objects;
whenever fermionic objects pass through each other, a relative sign is introduced, creating
the anticommutator from a commutator.

A superfield ®(x, 6, 0) is defined by the action at the origin:

(I)(CC, 0, é) — em-P+9Q+9_Qq)

Since P commutes with @ and @, this can be written as ®(z,6,0) = /@+9Qd(z). If we
apply a theta derivative to this superfield, there are two avenues for simplification. One is
to move the ) that is brought down all the way to the left, and the other is to move it all
the way to the right. These two calculations are straightforward and yield

0a®(x,0,0) = 8a69Q+éQ@(x) = (Qa+ iagdg‘j‘Pa) €6Q+éQCI)($)
- (ng + z’agdédpa) o(z,0,0)

and

0a®(z,0,0) = 8aeeQ+§Q<I>(:U) = 9100 (Qa — iagdédPa) o)
- (ng - z’agdédpa) ®(z,0,0)

From these we see immediately that the various derivatives have the form

Do DY) =, —io™,0%0,,, D) =8, +ioc™,6%9,, (2.1.29)

0
00~’
Note that in the literature [7], it is the right derivaive which is D, the supersymmetry-
covariant derivative. The left derivative is often denoted ), and represents the super-
symmetry isometry (it preserves the form of the vierbein), which is different from the

supersymmetry-covariant derivative. We will discuss this further in the general context
2.1.2.

General case

Let G consist of the full set of symmetry transformations acting on fields on the
manifold and H denote the subgroup spanned by all the elements aside from translations.*

“When the operators are defined by their action on the coordinates, one often finds H defined as the
subgroup which leaves the origin invariant. The manifold M can therefore be viewed as the coset space
G/H, which is the starting point of the group manifold approach to this same topic.
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In practice, these normally consist of rotational, conformal, and any Yang-Mills transfor-
mations.

The instrinsic action of G = expg on @ is defined by G®(0), its action at the
origin. The action of GG elsewhere can always be reconstructed using the translations:

Go(z) = Ge* T 0(0) = * PG (x)®(0)

where G () = e7*PGe*P. The product group element e G can be rearranged into a part
depending on P and an element of H:

Go(z) = Ge" T ®(0) = * P Hg(2)®(0) (2.1.30)

where Hg(z) € H. All of the translations have been absorbed in a redefinition of z — 7.
On a pure function f(x) this would give Gf(z) = f(Z), and so & can be thought of as the
action of G induced on z.

The differential version of (2.1.30) can be compactly written

9®(z) = e"Tg(2)2(0) = ™" (£ () Pa + hy(z)) ©(0)

where we have separated g(zx) into a part {, consisting only of translation generators and a
part hg(z) consisting only of generators from #. This formula can be further simplified by
noting the first term involves the covariant derivative:

9®(z) = 5D P(z) + " Ph,®(0) = §gea " Om®(x) + e*Ph,®(0)

The action of g thus induces a shift in the coordinate from z™ to ¥ = 2™ + {7 (x)e. (2).

2.1.2 The structure of local symmetries

In the preceding sections we have discussed the construction of representations of
spacetime symmetry groups which act on fields. There were several unsatisfying elements
to this treatment: we had to choose a preferred point, the origin; there existed two alter-
native methods of describing the transformations, either as just transforming the fields or
transforming the fields and the coordinates; and there was no clear way to generalize to
local transformations.

Each of these objections can be answered by proceeding to a local formulation for
the manifold. Again let ®(z) denote the field ® at the point z on the manifold. Let the
symmetry group G consist of generators X 4. The action of such symmetry transformations
on a field ® is local; they transform the field into other fields at the same spacetime point.
That is, §,®(x) = g4(2)Xa®(z), where g () is the position-dependent transformation.
Here we view X 4 as an operator and the product X ® as a single object. If instead we
view ® as a column vector in its appropriate representation, then X 4® can be identified
as to® where t4 is a matrix appropriate to that representation. The latter objects t4 are
what are normally considered in treatments of Yang-Mills. It should be noted that their
multiplication rule is backwards from that of the operators. That is, X4 Xp® = X (tp®) =
tp X AP = tpt 4P since the operator X 4 passes through the matrix tg. It follows that if the
algebra of the operators is

(X4, XB] = —fas“Xc
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then the algebra of the matrices is [ta,tp] = +fABCtC.

The generators can be decomposed into the translation generators P, (more pre-
cisely, the generators of parallel transport) and the others X,. The existence of purely
scalar, non-constant fields annihilated by X, implies that the commutator of two such gen-
erators cannot give a P. In other words, fs® = 0 by assumption. (Supersymmetry in
normal space violates this assumption since two internal symmetries () anticommute to
give a translation P. This is one advantage of using superspace instead.)

Associated with each generator is a gauge connection W,,,”, which can be similarly
decomposed into the vierbein e,,* and the others h,,%. This decomposition can be written

Wi XA = en® Py + hin2X, (2.1.31)
The nature of the connection is defined by its action on fields:
®(x + dz) = (1 4 dz™ W, A (2) X 4)®(z) (2.1.32)

where ® is a scalar on the manifold but possibly nontrivial in the tangent space. (That is,
it may possess Lorentz indices but no Einstein ones.) This equation is equivalent to

Om®(z) = Wi A X 4®(z) = e Pa®(z) + hp X, () (2.1.33)
which can be read as defining the action of P, as that of the covariant derivative:
em“Pa®(z) = Vi ®(2) = (9 — hin®Xa) ©(2) (2.1.34)

Since the vierbein is generally invertible, P,®(z) = ¢,""V;,®(z) = V,®(x). Since P, is
equivalent to the covariant derivative, the algebra of the P,’s generally develops additional
local elements corresponding to the various curvatures associated with the manifold. That
is, the statement

[Ve, Vp|® = —Ryp A X 4@

becomes a property of the algebra itself, [P., P,| = — Ry X 4. This alteration of the algebra
is the only formal consequence when passing from a global to a local theory. In the language
of the algebra, f3” = Ra™ become structure functions in a local theory and depend on the
value of the connections. We will see shortly how this comes about.

Under a gauge transformation, 0y, (d,®) = (6ngA)XA<I> + WmA5gXA<I>, where
X 4® is considered a single object, leading to the gauge transformation of the connections,

SgWin® = Omg™ + Wi B o€ fop. (2.1.35)

A finite gauge transformation is found by exponentiating an element of the algebra.
That is, for an element G = exp(g), ®(z) — ?'(z) = G(x)P(z). Here G is understood as
a power series expansion in g = ¢”t4 where the matrices ¢4 act only on the fields ®. The
relation (2.1.33) can also be straightforwardly integrated using a path-ordered exponential
in the matrix language:

®(z) = Pexp (/: WAtA> D (o). (2.1.36)

0

5P, is the operator which was frequently denoted II, in older literature, the kinematic momentum, as
opposed to the canonical momentum.
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This equation is strongly reminiscent of a Wilson line, but extended to the full symmetry
group of the tangent space. It can be compactly written ®(x) = U(z,x0)®P(x9) where
U(x,x0) is the path-ordered exponential. A derivative yields 9, ®(z) = W, t4®(z) =
W (X a®)(x). Under a gauge transformation,

d(z) = G(2)®(x), Ulz,z0) = U'(z,20) = G(2)U (2, 20)G(20) (2.1.37)

The integrated rule for the connections can be found by considering x vanishingly near to
Zo.

W(z) = W (z) = -GdG™t + GWG™! (2.1.38)

In order for the relation (2.1.36) to be path-independent, any path beginning and
ending on the same point must vanish, U(z,x) = 0. This is equivalent to the condition
that the formal gauge curvature F4 = dW4 — WBW¢ fCBA vanishes. It serves not as a
restriction but as a definition of the covariant curvatures R. An explicit calculation of F
using [P, Py] = — R X 4 yields

1
RA = aw# — ebhef A — 51#}# fa™t (2.1.39)

as the relation between the covariant curvature (what we normally mean when we say the
“curvature”) and the gauge fields.
Under a P-gauge transformation, the vierbein varies as a covariant Lie derivative:

5P(£)ema = 3m§a + bebma - gbhmgfgba
= §”Vnem“ + amgnen“ (2.1.40)

where £ = £%,". One recovers the normal Lie derivative by making corresponding gauge
transformations involving the gauge connections:

Leen® = {5P(5mema) 4 S (€™ ) }ema = 60(E)em® = E"Onem® + OmEen®  (2.1.41)

This rule can be generalized to any function with Einstein indices. Thus a gauge trans-
formation with gauge parameter "W, is equivalent to a Lie derivative on the field in
question. This is precisely the behavior expected of a diffeomorphism.

Jacobi and Bianchi identities

The generators X4 must obey the Jacobi identity:
0= [Xc, [Xp, Xal] + [Xa, [Xc, XB]| + [XB, [Xa, Xc]] (2.1.42)

Assuming this is obeyed for the global theory, the consequences for the local theory are
simple to derive. Only terms involving the curvatures will differ, so only two classes of

5This is the reverse of the usual approach, where one simply defines the covariant derivative and then
calculates the curvatures. The condition F = 0 is then nothing more profound than the commuting of the
coordinate derivatives.
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Jacobi identity must be checked: those with two P’s and a generator of H and those with
three P’s. Taking

0 = [Xg, [Pe, B)] + [Py, [Xa, Pe]] + [Pe, [Py, X]] (2.1.43)
one finds
XqRap™ = —Ro" fra® — fu Rpy™ — fg[cifib]A (2.1.44)
The term involving two f’s can be eliminated using the global Jacobi identity, giving”
XqRa™ = —AR" fra® — fa . ARm” (2.1.45)

where ARA represents the difference between the curvature in the local theory and in the
global theory; in the cases we’ve discussed, the only curvature in the global theory is the
constant torsion tensor C, so ARp% = R, but AR, = T% — Cp®.

The case of the three P’s is also interesting. The rules found there correspond to
the Bianchi identities for the covariant derivative. They read

0= Z (Vchba + Tdchfba + Rdcifiba> (2.1.46)
[dcb]

0= Z (VdRch + Tdchbe + Rdcifibg) (2.1.47)
[dcb]

Gauge invariant actions over the manifold

An action S in four dimensions is the integral of a Lagrangian density L£(x) over
the manifold using the general coordinate invariant measure d*ze. The invariance of the
action under a non-translational symmetry g2 relates the transformation rule of £ to that
of e:

0gS = /d4x€(5g£+ Sgem e L) = /d4$€(ngb£+gbfbaa£) (2.1.48)

One concludes XL = — f,,“L as a condition for invariance. One can now check invariance
under a translational symmetry g* = &%, using £V, = "V,

5pS = / diz e (eb“gmvmenbz + O™ L + gmvmﬁ) = / d 20, (€mel) =0 (2.1.49)

This is nothing more than the statement that dp is equivalent to a general coordinate
transformation followed by gauge transformations, under which the action is inert.
A good example of the local approach is again offered by the conformal group in
four dimensions. The non-vanishing part of the conformal algebra is
[Map, Pe] = Patipe — Polac,  [Mab, K] = Katbe — KpTac
[Map, Mea] = MeMad — NacMba — Mo Mac + Tad Mbc
[D,Pa] = P, [D7Ka] =-K,
(Ko, Py] = 2n0pD — 2Myy (2.1.50)

"This transformation rule can also be derived from the definition of the R’s in terms of the gauge
connections, but the above is the more straightforward path.
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Coupled to each of these generators is a gauge field,
1
Wy = em®P, + §wmbaMab + b D 4 [ K, (2.1.51)

such that the action of P, on physical fields is the covariant derivative; the other generators
are defined by their intrinsic behavior:

Pod =V,®, Myp®=S8,® D®=Ad K,d=0 (2.1.52)

(If @ possesses any Einstein indices, we separate them out with the vierbein and treat only
the Lorentz-indexed field as the actual ®.) The difference between this and the approach
discussed in the global theory is that these are the behaviors of the generators at all points
on the manifold. The algebra of the generators allows one to calculate the transformation
behavior of any covariant derivative of ® by using the algebra. For example,

DV,® = DP,® = (A + 1)V, (2.1.53)
KyVod = KyPo® = (20 A — 28,) @ (2.1.54)
Mo Va® = MycPa® = Sy + nugef)) Va® (2.1.55)

Each of these generators acts locally with no derivative of its parameter.

The above relations can also be checked using the explicit definition of the co-
variant derivative. For that calculation, one would need the transformation of the gauge
connections. For completeness, consider the arbitrary gauge parameter

1
A X4 = EPa+ 50" Moy + AD + 'K, (2.1.56)

Under a gauge transformation with such a parameter, the gauge connections transform as

S (N)em?® = OpmE® + Ewmp® + E%y + 0%y — Aep® (2.1.57)
Sa(N)wp® = 0,0 + 0w, 4 — 2¢lbf, 0l — 9elbe, ] (2.1.58)
5 (M)by, = O\ + 26 frna — 2€%€ma (2.1.59)
6 (N) fn® = Ome® 4 €wmp® — by 4 0% frny + A fim® (2.1.60)

Using these definitions, one can check, for example, that dx(€)V,® = (2eaA - 2eb8ba) P
which agrees with the result from the algebra.
If an action S in conformally invariant, the Lagrangian must obey (using XL =
*fbaaﬁ)
DL =4L, Myl =0, K,L=0 (2.1.61)

just as in the global case. Take as an example the standard ¢* theory. It is interesting
to note that the conventional way of writing the kinetic term, V,¢V,¢, is not actually
inert under the special conformal transformations. Rather, one needs to use the covariant
d’Alembertian (V?V,) to give a gauge-invariant action:

S = / d*ze <;¢V“Va¢ — a¢4> (2.1.62)
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It is straightforward to check that this action is inert under all the gauge transformations.
A more interesting question is to ask how the kinetic action differs from the conventional
form. A convenient starting point is the identity

Om (g™ PV ) =V (€€ MOV D) + [P Ky (eea™pV ) (2.1.63)

which follows since the expression in the parentheses is invariant under every gauge trans-
formation except the special conformal one. The above expression can be easily evaluated
to give

O (eeamPVEP) = e (va(wacp) F Ty, %V + 2 fa%?) (2.1.64)

This allows one to integrate the action by parts:

S = / d*z e (;wava(p — a¢4> = / dz e <—;va¢va¢ — %Tba%v% — fa%* — a¢4>

(2.1.65)
The trace of the torsion tensor usually vanishes in physically interesting theories, but the
term involving the K-gauge field f,,* is physically of interest. In common theories of
conformal gravity, it is related to the Ricci tensor and its trace is proportional to the Ricci
scalar. In such theories, the Lagrangian above can be gauge fixed to yield the Einstein-
Hilbert Lagrangian. (The quartic, if present, would give a cosmological constant.)

Global representations from local ones

We have discussed two ways of implementing the spacetime symmetry group on
the fields. The first involved a selection of a privileged point, the origin, at which we
defined the intrinsic behavior of the fields; the behavior elsewhere was then calculated by
composing the group element with the translation element. The action of group elements
was taken not only on the fields but also on the translation element, leading to non-trivial
transformation rules for the fields away from the origin. The second way involved defining
gauge connection 1-forms everywhere; no privileged point was needed, nor was there any
discussion of moving points on the manifold. The advantage of this latter formulation was
that it was trivial to implement local group transformations. The global structure should
be represented by the local one when restricted to global gauge transformations.

Begin with a vanishing H-connection and a P-connection as defined in (2.1.27)
relative to some origin point 0. Construct a gauge transformation g(x) which takes the
value g at the origin but elsewhere is such as to keep the connections invariant. That is,
g(x) obeys

0=30;Wim™ = 0mg™ + em3 for™ (2.1.66)

This equation can be integrated to give j(z) = e > get® " where x - P = 2™6,,°P,. To
prove this is correct, recall that to first order in &, 1+ £™e,, %P, = e e+ P Tt follows
then that

_gmembngCbA _ [f], gmembe} _ e—a:~Pg€(ac+§)~P _ e—x~Pe(a:+§)'Pe—x-Pgea;~P

€—x~Pg€(oc+$)~P + e—(:c+£)~Pg€x~P _9

_ gmamgA
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where the last two equalities hold only to first order in . This gauge transformation, g(z),
is the transformation discussed in the global approach.

The general form of the locally invariant action S = [ d*ze L obeying X,L =
— fva” L implies that the globally invariant form must also have that form. In particular the
global measure must be d*z e where e is nontrivial in the case of a sufficiently complicated
(but constant) torsion. (This is not normally an issue since even global supersymmetry
has E = 1.) To prove this requirement, consider the global action S = [ d*z e L. Under
a global gauge transformation g, the measure is invariant and the Lagrangian changes as
oL = gQXQ£+ §’P,L. We can first replace ngb S — [pa" and then equate that quantity to
ea™Omg®+ 3° fra® using the differential equation for §. Finally note that §°P,L = §%e, ™0 L
and we find

0L = €™ (Omd) L + §° foa" L + G OmL = €™ O (G°L) + §° fra"L (2.1.67)

Here by fp,“ we mean the trace of the torsion tensor, equivalently written Cp,® or Tp,”
(these are identical in the global theory). The first term can be integrated by parts (if the
measure is e) to cancel the second, rendering the action invariant.

The g¢’s discussed here represent the isometries of the flat space — the transforma-
tions which leave invariant the form of the connections. Of particular interest is the case
where g = g®P,. There we find that § = g*P, (no H bits are generated since the commu-
tator of two P’s is another P in the flat, ungauged space), with the interesting property
that g® preserves the form of the vierbein. These are precisely the translation isometries of
the space; that is, they are the diffeomorphisms which preserve the vierbein. We may write
them as a coordinate transformation:

" = 2™+ g%, e* —e*, Dy, — D, (2.1.68)

Recall that the vierbein used here was the one associated with right differentiation. The
action of left differentiation was an isometry which preserved the form of the vierbein 1-
form e®* and the right derivative operator D,. We have recovered this isometry above; it
represents the general form of the translation isometry of a flat space with torsion.

Normal gauge

In general relativity, there exists a preferred gauge for the metric, the choice of
Riemann normal coordinates, which expands the metric in terms of the curvature and
derivatives thereof. Similarly in Yang-Mills theories, there exists a preferred gauge, the
Fock-Schwinger gauge, which gives the gauge connection in terms of the gauge curvature
and derivatives thereof. It is possible to generalize both of these conditions to the sort of
theory discussed here.

Recall that a field at a point z is related to the field at a fixed point z¢ by a Taylor
expansion:

¢(z) = exp ((z — z9) - 0) ¢(x0)
= ¢(20) + (z — 20)" Omo(x0) + %(w —20)"(x — 20)"0nOmp(20) +...  (2.1.69)
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On the other hand, the parallel transport of the field from xy with parameter y is

d(z0;y) = exp (y* Pa) ¢(0)

= ¢(z0) + y*Vag(wo) + %yaybvbvaﬁb(ﬂﬂo) +... (2.1.70)

One can choose a gauge such that these coincide for x = y+ x¢ for scalar fields; this general-
izes Riemann normal coordinates for non-Riemannian geometries (for example, those with
torsion). The further choice that these should coincide for all fields leads to a generalization
of Fock-Schwinger gauge.

In principle, one can equate these series term-by-term to determine the gauge
fields. A slightly simpler method is to note that e d—he2X, »¢ is the covariant derivative;
therefore one may equate

eam<y>35m exp (5 Pa) 6(z0) — hally) exp (4° Pa) Xyb(20) — exp (5*Py) Pad(zo)  (2.1.71)

This can be rearranged to

ajmey.P(ﬁ(xO) = emaey.PPa(ﬁ(xO) + hmb(y)ey'PXQ(ﬁ(:Eg)
= e¥Pe, " Pagp(w0) + 4P hi(y) Xy (20) (2.1.72)

a

where we have defined é,,* and h,,2 by conjugation with e¥*. Multiplying by an overall

factor gives

e_y.Pajmey'PQﬁ(wo) = &m" Pag(@0) + hin®(y) Xpo(0) (2.1.73)

The term on the left can be straightforwardly evaluated term by term:

. . 1 1 1
e VP, VP =9, + P, + 5[pmyapa] + 5L;PPT,L — ZLS,PPm +...

= O+ P+ gl)j'Qm(j) (2.1.74)

where Ly.pf = [y* Py, f] = y*[Pu, f] and Qun(j) = L;PPm. In this expansion the y® are to
be treated as group parameters, inert under the action of the generators, and the explicit
derivative 0, is with respect to the y only. One may formally solve for the gauge fields by
defining

~ a a - _1j al,;
€m :6m+z(§+)1)|Qm (])

hn® = f} D 0,k) (2.1.75)
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where we have expanded Q.,, = Q" P, + meXb. Then conjugating by the group element
exp(y - P) generates the actual gauge fields:®

‘= G+
= (1Y &1
j=1 k=0

Note that the conjugation generates covariant derivatives of the listed terms; for example,
L,pQn(j) = y’VyQ.m%(5). All indices on the right hand side of these equations should be
understood as Lorentz indices.

Since curvatures transform covariantly, the factor of "7 %L’; p in both of the
above expressions serves only to replace the curvatures by their power series expansion in
y. Therefore, we instead can write

a_ g0 m®(7) (2.1.77)
=3 @) (2.1.78)
=

where Q contain y-dependence both explicitly and implicitly. Assuming that torsion van-
ishes and the only curvatures are Lorentz and Yang-Mills, we find

Qm (1) =

Qm(2) = —V ]'—ym‘i'Rymy a

Qm(3) = =V Fym + 2Vy Rymy“Po + Rymy" Foy

Qm(4) = =V Fym + 3V Rymy“Pa + 3Vy Rymy " Fuy + Rymy"V y Foy — Rymy" Royy* Pa

These are sufficient to determine all of the connections to fourth order in y. It is easy to
see that this gauge obeys

YV =y Op,. (2.1.79)

We note that this definition of normal coordinates generalizes both Riemann nor-
mal coordinates and Fock-Schwinger gauge for an abelian gauge theory. It is the simplest
Lorentz invariant gauge one may define where the connections are power series in the cur-
vatures. Non-Lorentz invariant gauges can be derived by rearranging the exponential in
(2.1.70). A generalized temporal gauge (ho = 0,e9® = 6p®) would correspond to defining

®(y) = exp(y'P;) exp(y’Py)®(0)

In this gauge the temporal components are trivial, but the spatial components are rather
more complicated.

For a complementary (and more rigorous) treatment of normal coordinates, we
refer the reader to the recent papers [16, 17] and the references therein.

8In the case where there are no curvatures except for constant torsion, the above reduce to hn,% = 0 and
em® given by (2.1.27). Normal gauge is the appropriate generalization.
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Gauge invariant actions over submanifolds

In the case of global supersymmetry, we know that it is natural to consider not only
integrals over the entire superspace of coordinates (z,,8) but also integrals over a chiral
superspace of coordinates (y,6) where y = x + ifcf. It is natural to think of the chiral
superspace as lying on a submanifold characterized by a constant value of §. Then change
in coordinates from z to ¥ is naturally understood, since in those coordinates D% = 9% and
so chiral superfields (those annihilated by D®) naturally live on such a submanifold.

Let us take this point of view seriously and derive some useful results about actions
on submanifolds. We will assume that the space under consideration is purely bosonic so
that our geometric intuition can be trusted. Let the full manifold M be D-dimensional
on which we may define the parallel transport operators P4, where A = 1,...,D. Let P
be decomposed as Py = (Py, Ps) wherea=1,..., 9 and ¢ =9 + 1,...,D. We will use
Gothic indices a to denote the submanifold tangent space indices. Our object of interest
is a submanifold 97 of dimension ® defined so that P; annihilates the functions naturally
integrated over 9.

This can be made more concrete by choosing coordinates z™ = (3™,0/") so that
9 is parametrized by 3™ with constant 6%; we will assume ## = 0 for definiteness, but
any constant will do. In this way the coordinates on M can be related nicely to the
coordinates on 91.° Then the condition that P, annihilates the natural integrands on
I means P; = 0/00% when acting on pure functions, or, equivalently, that 9t lies at a
constant slice of 6”. This choice of coordinates has the benefit of simplifying calculations
while unfortunately forcing a breakdown in manifest general coordinate invariance on M;
equivalently, this forces one to choose a certain P-gauge. We will therefore avoid making
this explicit assumption until it is absolutely necessary.

Recall that an invariant integral on the whole manifold M is

S:/ El/\EQ/\.../\EDV:/dDzEV (2.1.80)
M

where E = det(E MA) and V is an appropriate integrand to make the action gauge invariant.
We have already shown that invariance under the non-translation symmetries H requires
0,V = —gt fo 44, while invariance under P follows from general coordinate invariance. An
invariant integral over 91 can be very similarly defined:

6:/ El/\EZ/\.../\E@W:/ 51A52A...A59W:/d®;,sw, (2.1.81)
m m

where £ = det(Ey,") is the volume measure and W is an appropriate integrand. The subvier-
bein form £° is taken to be identical to E® when restricted to the manifold 9.1 Invariance
of this integral under the action of H requires d,W = —g® foa"W. (Note the trace of the
structure constant is over the submanifold’s Lorentz indices.) However, since the integral
is over a submanifold, it is not obviously taken into itself under P-gauge transformations.

90f course 0 here is to be understood as a bosonic coordinate at the moment.
1071 the special coordinates where 9t corresponds to = 0, the vierbein obeys E;%lom = 0. This condition
is equivalent to the conditions £* = E%|ogn = d3™En".
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We check first the requirement of Py invariance, which means essentially that such
actions should not depend on the constant value of 6§ used to define 9t. The action varies
as

0=0:6 = /di’;,g (dedmb&,mW + gdvdw) . (2.1.82)

(The term &,™ represents the inverse of the subvierbein. It does not necessarily correspond
to Ep™, since the inverse of a submatrix is not necessarily the submatrix of the inverse
unless certain requirements are placed on the coordinates 3 being used for the submanifold,
or equivalently, the gauge choice for the vierbein.) Each term should vanish separately.
Requiring the second term to vanish enforces the covariant constancy of W in the direction of
P,. Requiring consistency of V4W = 0 with the algebra gives several additional constraints:

0= [Va, V3IW = —T, s VW + R £ f "W (2.1.83)
0= [Xo, VyIW =~ [’ VW + [ "W (2.1.84)

(The second commutator vanishes since VX, W = =V fap®W = 0.) From this simple

result we learn TdBC = fQB‘ = 0 as well as Rdﬂgf@a = fgﬁgf@b = 0. The other term in the
variation of the subaction gives two new terms which must vanish:

Tom E™ = Tias "B E™ + T

The first of these, Tdﬂ-,bEmﬁSbm = 0, is already a condition for the existence of a covariantly
constant W. The second, Ty,° = 0, amounts to an additional constraint on the space.!!
Next we check P, invariance of the subaction. One finds

0=06:6= / ;& (vmgasamw + TP E™ W + £°‘VaW) . (2.1.85)
Integrating the first term by parts gives
0=20,6= / d°3 & (—g“é’amvmw + VW — O o P E™W + §“Tam[’é’b‘“W> (2.1.86)
Invariance holds under the same set of conditions. For example,

EVaW = ENEnPVEW = EMER® VoW = VW

since W is covariantly constant with respect to P; and EnY is equivalent to Enl. A similar
argument demontrates the cancellation of the torsion terms.
The constraints we have found are:

Tag" =0, fo" =0
Rdggfgab = 07 fgggfgab =0
T’ =0

"These constraints are stricter than necessary. One could choose that VaW = —Tam°E,™ W, as opposed
to requiring each term to separately vanish. We have chosen to separate them in the way we have since
it makes sense that the conditions we want should be simple conditions on W, like chirality, and simple
conditions on the geometry, like vanishing of certain torsions, as opposed to something more complicated
relating the two.
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The next question to consider is whether integrals over a manifold M can be
related to integrals over the submanifold 9, and vice-versa. We will deal with M — 9N
first and then consider the reverse.

Case 1: M — M

Consider the integration of a function V over the whole manifold: | M dPzEV. We
would like to decompose it into an integral of some other function W over the sub-
manifold 9. The most straightforward way to do this is to adopt the coordinates
(equivalently, choose the P-gauge) so that z™ = (3™, 0%) and 90 corresponds to 6 = 0.
Note that it is rather trivial to choose E;*|on = 0; it can be shown that the conditions
we derived for the invariance of the subactions over 9t allow us to extend this condi-
tion over all of M."?We then can assume a gauge choice where E;" = 0 everywhere,
as well as the additional requirements hﬂb foa® = 0. These two conditions mean that
VaW = 0 is equivalent to 9;W = 0. Given these, one may easily show that £ is itself
independent of 6:

OpE = OB Eq" = VB Ey" = Tjn"E" = 0 (2.1.87)

This is important since the gauge choice for the vierbein implies £ = & ¥, where
Y = det(£,%). Then E separates into a part (£) independent of # and another ()
which is an appropriate density in 6.

Under these assumptions, we find

/dDzEV:/ i3 P[V] (2.1.88)
M m
where

PV] Z/ddéEV (2.1.89)

Note that P[V] is covariantly constant with respect to P for a quite trivial reason: by
construction, P[V] is independent of 6 and so 9;P[V] = 0 in a gauge where 95 = V.
This operation can be extended to any gauge by first evaluating it in the special gauge
used here and then transforming to the desired gauge using §,P[V] = —g2fp"P[V].

Case 2: M —- M
In principle an integral over a submanifold 9t can be defined by an integral over the
whole manifold M using an appropriate delta function A.. Then

/d©3£W:/ dPzEWA, (2.1.90)
m M

That both sides remain gauge invariant under H implies 6,A, = —gQ fkddAc. The
simplest way to describe the constraints is to choose the coordinates z to decompose

12The construction will be given when needed for the explicit case of N' = 1 superspace.
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as zM = (3™, 0") where the submanifold 9 lives at #” = 0. In this special gauge, A..

takes the simple form

5(9)
A, = —~. 2.1.91
. (21.91)
This is not the only such A. that will work; an entire family is permissible, of the
form x
Ar= ——. 2.1.92

The choice X = (5d(§) reproduces the simplest example. If, however, P[1] is a simple
enough object, the choice X = 1 becomes extremely attractive. 13

That both of these results should hold implies

D _ D _ D
/Md zEV—/md 357?[V]—/Md 2 EPVIA, (2.1.93)

Since A, can be placed in the form X/P[X], the equivalence of the first and third forms
implies P is a self-adjoint operation under the full integration.

While it is self-adjoint, P is not actually a projector, as it is not idempotent (that
is, P? # P). The true projector (in the special gauge) is II, which is defined by

] = /dde‘i VA.. (2.1.94)

This formula is a very complicated way of saying a simple thing: II[V] is formally identical
(in this gauge) to V|s_, provided we use the simplest A.. The advantage of the more
cumbersome form X/P[X] is that it can be extended to any other gauge since the gauge
transformation properties of the various objects are well-defined.™

2.2 Conformal superspace

In the ensuing section we describe the gauge structure, geometric constraints, and
curvatures of conformal superspace, which is defined as an N/ = 1 superspace with the
structure group of the superconformal algebra. We discuss representations of that algebra,
invariant actions and chiral submanifold actions. As usual, constraints must be imposed
to eliminate unwanted fields; we will discuss their construction and solution. But the first
place to start is at the component level, where conformal supergravity is well-known and
its properties well-established.

13The above construction applies very nicely to Poincaré supergravity, where if one chooses X = 1, one
finds A = 1/2R.

14 Applying this to the case of Poincaré supergravity, one finds P = 7%(52 —8R) and IT = ,i(ﬁQ —8R).
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2.2.1 Conformal supergravity at the component level

Conformal supergravity at the component level begins with the extension of the
Poincaré to the super-Poincaré algebra by the addition of fermionic internal symmetries
Q.. These anticommute to give spacetime translations:

{Qa, Qa} = —2i0g,Pa (2.2.1)
The rest of the super-Poincaré algebra is

[Map, Mea] = e Mag — NaeMpa — MbaMac + NadMpe
[Maba Pc] = PaT/bc - anac

[Map, Q4] = (0ar)2” Qs (2.2.2)

The bosonic part of the algebra can be extended to include the conformal algebra. This
requires the introduction of the conformal scaling!® operator D and the special conformal
operator K,, which loosely speaking can be understood as a translation conjugated by
inversions. A brief review of the conformal algebra is given in Section 2.1.1.

These two generators can be added to the super-Poincaré algebra provided one also
includes two new operators, the fermionic special conformal operator S, (and its conjugate
S%) and the chiral rotation operator A. (This last generator is the U(1) R-symmetry.) It
should be noted that the special conformal generators possess the same Lorentz transforma-
tion properties as the corresponding translation and supersymmetry generators, but have
opposite weights under scalings and chiral rotations:

DR =P [D,Qul=5Qu, [D,Q%] = Q"
D, K,] = —K,, [D,S.]= —%Sa, [D, 5% = —%S*d

[4,Qu] = —iQa, [A,Q%] = +iQ"
(A, Sa] = +iSa, [A, 59 = —i5%
[Map, K] = Kanpe — KpTac
[May, Sy] = (Uab)'yﬁsﬁ (2.2.3)

The special conformal generators have an algebra among each other that is similar to the
supersymmetry algebra:

{Sa,Sa} = +2i0% K, (2.2.4)

Finally, the commutators of the special conformal generators with the translation and su-

15This operation is often called “dilatation.”
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persymmetry generators are

[Kaa Pb] = 277abD — 2M gy,

[Ka: Qa] = 10,5, [Ka, Q%] = ig57 Sy
[Sas Pa] = i0,,4Q°,  [5%, Pa] = i55°Q;
{Sa,Qp} =2Deng — 2Mo3 — 3iAeqg
{59 Q°} = 2De® — 24P 4 3i AP (2.2.5)
All other commutators vanish. _
We have made use of the convenient shorthand M,g = (abae)aﬁMab and M =

(51’“6)‘5‘3 M,p. These are projections of the Lorentz generator; Mg rotates undotted spinors
while M rotates dotted spinors. For example,

[Mag, Qy] = —Qapy — Qpeay
[Mag, Q5] =0
[Mags Piy3)] = —Posesy — Ppicay

where P(5) = Peols. The canonical decomposition of a vector into dotted and undotted

spinors is accomplished via contraction with a sigma matrix.

Conformal supergravity in four dimensions is the gauge theory of the above alge-
bra. The connection forms W,,4 can be collected with their generators X4 into the total
connection form

1 1
W = em®P, + iwmﬂQg + mebaMab + b D+ Ap A+ Ko + fn®S, (2.2.6)

Here a denotes both spinor chiralities (o and &) and the spinor summation convention is
that of [7]. In the local theory, the generator P, is identified as the covariant derivative
when acting on a covariant field.'® The algebra of the P, among themselves is altered by
the introduction of curvatures. One finds on a covariant field ®

[Pa, Pb](I) = [Va, Vb]@ = —Rabq) (2.2.7)
where the curvatures are

1
an = nmapa + TanQg + §anbaMab + Han + anA + R(K)nmaKa + R(S)nmgsg
(2.2.8)

Here we are using T;,,,% as the supersymmetry curvature (anticipating that in superspace
this will become part of the torsion), H and F' as the curvatures associated with scalings and
chiral rotations, and R(K) and R(S) as the curvatures associated with special conformal and
fermionic special conformal transformations. (The curvatures — with Lorentz form indices

16 A covariant field ® transforms as gD = gAXA<I>. This is linear in ® and involves no derivatives of the
parameter gA.
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— are also covariant fields in the sense that a curvature transforms into another curvature.)
The construction of a local gauge theory from a generic global theory is detailed in Section
2.1.2.

Constraints are imposed on these curvatures in such a way as to eliminate the spin
connection w,,”* and the special conformal connections f,,% and f,,% in terms of the other
fields. This procedure is summarized in the review literature [11] but the details do not
concern us here.

The transformation rules of the various gauge fields are straightforward to cal-
culate and are given in [11]. For our purposes, the only ones which will matter are the
supersymmetry transformations of the unconstrained fields:

Sqem” = i(E0"Ym — Pmaf) (2.2.9)
0QYm™ = 2Vmg® (2.2.10)

0Qbm = 2fm*&a (2.2.11)

g Am = =3ifn*Ea + 3i fmal® (2.2.12)

The derivative V,, is covariant with respect to spin, scalings, and chiral rotations and £
is assumed to transform with opposite scaling and chiral weights as Q. The gravitino
transformation rule is especially simple.

It is also useful to record the transformation rules of chiral matter coupled to
conformal supergravity. For the chiral multiplet ® = (¢, v, F),

¢ = V280, Sqip = V2EF +iV20°V,ed, 6F = iv2(65°Va) (2:2.13)

which is identical to the supersymmetry algebra except for the replacement of the regular
derivative with the covariant one.

These sets of component transformation rules must be reproduced at the superfield
level once we move to superspace; this will help us to find the proper constraints on the
curvatures in superspace.

2.2.2 Conformal superspace and representations of the algebra

N = 1 superspace is a manifold combining four-dimensional Minkowski coordi-
nates 2™ with four Grassmann coordinates 6%, 64 into a single supermanifold with co-
ordinate zM = (mm,H",éﬂ). The superconformal algebra can be represented as a set of
transformations on these coordinates. In differential form they read [18]

Pa =0, Qo =00—1(057€)00s, §*=0%—i(00%)%D,
Map = —x[aﬁb] + 00,09 + é&ab({?g
1 1. _
d=2x"0, + 598@ + 5989‘, a = —100y + 1005
Sq = _292804 + i(l’b — iCb)(Ubag)a — (a;b + iCb)(Qaca'be)aac
s* = =20%0% + i(wy +iG) (5009)* — (w1 — i) (0T c0b€)* Do

ko = 2$a($ . 8) — xzaa — QCa(C . 8) + C28a — (xb + ’iCb)(eUaa'bag) — (l‘b — Z'Cb)(éa'aabag)
(2.2.14)



27

where (¢ = §0%0. These operators can be found in several ways. The most straightforward is
to write down the supersymmetry line element ds?> = (dma +i00dd + ié&“d@) and require
that it be preserved up to a conformal factor. This yields the coordinate representations
we have given above. The elements pqg, ga, §%, May and a preserve the line element exactly;
the others, d, kq, So and 5% preserve it only up to a conformal factor.

The field representation possesses the same algebra as the coordinate represen-
tation but with the opposite sign. We will be most interested in the field representation,
which is the only sensible approach when the symmetry is made a local one.

As it will be useful to collect terms in a way which makes manifest the super-
symmetry, we will denote by P4 the set of generators P,, Q., and Q%; P, represents the
super-translation generator on superspace. Similarly, the special conformal generators may
be collected into a single K 4. The algebra as in Section 2.1 can then be written

[D, PA] = )\(A)PA, [A, PA] = —iw(A)PA
[D,KA} = —-AA)K 4, [A,KA] = +iw(A)K 4
[Pa, Pp] = —Cap®Pe, [Ka, Kp] = Cap®Kc

- . 1 1
[KA,PB] = +20apD — 2Map + 3iAnapw(A) — §KCCCBA — EPCCCAB (2.2.15)

The commutators and other objects are to be understood as carrying an implicit grading,
which we briefly discuss in Appendix C.
The various objects defined above are

Py = (Pa7Qaan)v Ky = (Ka,Sa,Sd)
Map = (Map, Mag, M)

6)7 ﬁAB = ("7ab7 +€oz,37 +€d6) (2216)
where mixed objects such as M,z and 7, are defined to be zero. Note that nap = (—)AnAB;
this will be the origin of graded signs (—)# in subsequent formulae.

We also have the flat-space torsion tensor

NAB = (nab7 —€ap) _ﬁd

9 (~C B s _ _ L _
CupC = —Cp,C = 2i(c%)," if A=a,B = B,C=c (2.2.17)
0 otherwise
as well as the numerical coefficients
1 if A=a

/\(A)_{é if A=a,a

0 if A=a
w(A) = +1 if A=« (2.2.18)

-1 if A=¢a

The tensor C, like all explicitly supersymmetric objects, possesses an implicit grading.'”
The matrix nap is used to raise and lower indices; nap is its transpose, and is equivalent
to nap(—)?, the sign coming from the implicit grading.

T That is, we interpret its antisymmetry condition to mean Cabc = fC’baC but Cagc = +C’gac. The
implicit grading works by appending an extra sign whenever two fermionic objects (fields, indices, etc.) are
permuted past each other.
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The main limitation of this form is that the would-be super-rotation generator

My p is highly constrained: only My, is independent. My, vanishes, and M,g is just a

left-handed projection of M. Nevertheless, we may write its commutator with P4 in the
elegant form

[MABa Pc] = PA77BC — PB"7AC (2.2.19)

where it is to be understood that the A, B, and C are all of the same type and the implicit
grading is understood.

The representation theory of fields under the conformal group is discussed in [19]
as well as in Section 2.1.1 and is rather straightforward. The only difference from Poincaré
representations is that we require primary fields ® to have constant conformal weight under
D and to be annihilated by the special conformal generator K.

We may extend that discussion to the superconformal group with little effort. Let
® be a primary superfield. It may or may not possess Lorentz indices, but we will suppress
them for notational elegance. The action of the superconformal group is

Pud = VD, Myd = S,®
DO = A®, AdD = ijwd
Ka®=0 (2.2.20)

The action of P4 is the statement that the translation generator acts as the covariant
derivative. The matrix S is appropriate for whatever representation of the Lorentz algebra
® belongs to. A and w represent its conformal and chiral weights.

Primary chiral superfields

The superconformal algebra by itself does not itself tell us anything more about
an arbitrary superfield than the conformal algebra tells us in spacetime. The advantage
comes when restrictions are imposed. For example, the most important theoretical and
phenomenological superfields are chiral ones. These obey a constraint V&® = 0, where
again we are suppressing Lorentz indices which ® may possess. Requiring this to be super-
conformally invariant leads to a nontrivial condition on &:

0={S* VP}® = 9P (2D + 3iA)® — 2M¥P P = P (2A — 3w)® — 2MPD  (2.2.21)

The first term is antisymmetric in the indices, the second is symmetric. Therefore each must
vanish separately. The first tells us 2A = 3w, that is, the U(1) weight and scaling dimension
of the field ® have a fixed ratio. The second term tells us that ®, when decomposed into
irreducible spinors, contains no dotted indices, since M%? acts only on these. Thus, ®,,
®,3, and ®,p, are valid chiral superfields, but <I>(a/3-,) = Ua/écq’c is not. (We will use the
notation (ad) to denote a vector index contracted with a sigma matrix.)

Primary gauge vector superfields

The next most important superfield is the gauge vector superfield V. It is related
to the chiral superfield W, by W, = P[V,V] where P is the chiral projection operator.'®

181t is convention in literature to call this object the “projection” operator even though it is not truly a
projection operator, since P? # P. We denote II as the actual projection operator where it matters.
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In flat supersymmetry this condition reads W, = —iDzDaV where D4 is the flat space
covariant derivative; we will assume without (yet) a proof that this expression holds in the
case of a nontrivial geometry simply by replacing Dy with V4. If we demand that W,
be primary in addition to V being primary, we can deduce a nontrivial condition on V.
The primary condition is actually three: the vanishing of K, S, and S on W,. Since the
anti-commutator of S and S yields K, we only need to check that S and S vanish. Consider

S first:
0= —4SsW, = V>V, V = V2S5V, V = V2 (2Dego — 2Mp, — 3iAega) V

Since V is real, its chiral weight vanishes. Furthermore, it is a scalar so M annihilates it.
We are left with the condition DV = 0, that is V must have conformal dimension zero.
This forces W, to have conformal dimension 3/2, which is sensible since it must possess the
gaugino as its lowest component. The check that S# also annihilates W, is straightforward;
no further constraints are required. It therefore follows that W, is conformally primary
precisely when V' has conformal dimension zero.

Primary F-term superfields

The last special case we will discuss is where V' is a superfield and we demand that
its chiral projection U = P[V] is primary. (This is of interest since if V' is a D-term then U
is the corresponding F-term.) Generalizing the flat space result gives U = —%@QV (which
we will show is the case later). We assume that V' is primary with conformal weight A and
chiral weight w. Then the primariness of U reduces to checking that S annihilates U, since
it is clear that S annihilates U. This is a simple exercise:

458U = —{8P VNV V — V{58, VY
=~ (2D — 2175 13147 ) V4V — Vi (2D — 2058 4 3147 ) v
= (8 — 4A + 6w)VPV
It follows that 2A — 3w = 4 is the condition on V so that U is primary. If we also require
that the antichiral projection of V' be primary, then we would find 2A + 3w = 4, concluding

that w = 0 and A = 2. This latter case is most important since we will see if V' is a D-term
action, then U is the F-term action equivalent to V.

2.2.3 Local superconformal symmetry

A space of local symmetries includes a rule for parallel transport, which allows one
to compare group elements at neighboring points. One demands that the supertranslation
generators P4 act as parallel transport operators with the supervierbein Ej* as their
corresponding gauge field. For each of the other generators X 4, one also introduces a gauge
field WMA:

1
Wy X4 = EyAPy+ 5m/wmb + ByD + Ay A+ futKa (2.2.22)
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In practice, it is useful to decompose the algebra into the generators of parallel transport
and the other generators, which annihilate pure functions (i.e. scalar primary fields with
vanishing chiral and scaling weights). We denote the latter group as H, its generators by
Xq, and its gauge fields by hps%. In this manner, the total gauge connection is simply

Wi X4 = ExfA Py + ha®X, (2.2.23)
The action of the generators on fields is defined by
Sa(EMWAX )P = LD (2.2.24)
For fields lacking Einstein indices, this reduces to the simpler
EMWyAX 0 = Moy (2.2.25)

Since the action of the non-translation generators is defined already, this defines the action
of P4. One finds the standard definition of the covariant derivative

EAP4® = MV ® = M (9pr — har®X,) @ (2.2.26)
If ® possesses an Einstein index, then an additional transformation rule for that index is
required. For example, on the vierbien,

5p(&)En® = ENVNEy® + 0pN En (2.2.27)

this rule can be used to define dp on any other Einstein tensor.

The algebraic structure of conformal superspace is identical to the flat case except
for the introduction of curvatures to the [P, P] commutator. We include here the results
quoted in the most supersymmetric languaug;e:19

[Pa, Pg) = —Tap®Pc — —RAB “Meg — HapD — FapA — R(K)ap“Kc
Mgy, Meq] = — NacMpd — MbaMac + NadMpc
[D, P4l =+ ( )PA
[A, Ps]l = —iw(A) Py
(K4, Kp] = +Cap° K¢
[D, Ka] = —A(A)Ka
[A KA] +iw ( )KA
- . 1 1
[KA, PB] = +277ABD —2Map + 32A77ABLU(A) — §KCCCBA — §PCCCAB (2.2.28)

19We have adopted the notation R(K)a B¢ for the special conformal curvature. One could similarly write

Rap as R(M)ap® but we have chosen to use the conventional name for the Lorentz curvature.
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2.2.4 Invariant superconformal actions

Superspace actions fall into two types. The first is the D-type Lagrangian, involv-
ing an integration over the full Grassmannian manifold. The local action reads

SD:/ﬁ%erz/J%&HEV (2.2.29)

Here e = det(e,,®) is the normal four dimensional measure factor, while E = det(Ep*)
is the appropriate generalization for a D-term.? (Setting £ = e = 1 retrieves the global
action.) Invariance requires X,V = —(—)? fy44V, which amounts to

DV =2V, AV =0, M,V =0,
K,V =0, S,V=0, SV=0

V' must have scaling dimension two; its chiral weight must vanish; it must be a Lorentz
scalar; it must be superconformally primary. One should also in general check the action
of Py, Qu, and Q% to ensure that it is translation invariant and supersymmetric. Each of
these gives a set of derivative operations; since the entire space is integrated over, each of
these vanishes. (A review of this material was presented in Section 2.1.2.)

The second Lagrangian of concern is the F-type, which involves an integration over
the chiral submanifold 9t corresponding to = 0 (or to any other constant @ slice):

Sp = /d4:c e Lp = /d4x 0 EW (2.2.30)

(We will for brevity’s sake write only the chiral part; but in physical theories one must of
course include the antichiral part.) The chiral measure £ is to be understood as det(FEp")
where m is the Einstein index over the chiral coordinates y and § and a = (a, ). This is a
loose definition since the chiral y and 6 need to be better defined. (Section 2.1.2 contains a
brief discussion of this.)

For this action to be invariant under the non-translation part of the gauge group,
W must obey

DW =3W, AW =2W, MuW =0
KW =0, S,W=0, SW =0

For invariance under P, @, and @), W must be chiral, V4W = 0. In addition, consistency
of this result (ie. {V4,Vz}W = 0) leads to the following conditions on torsions and
curvatures:
T :=T., = H 22.F = 2.2
ap = Lap =0, d5+§ dﬁ'—o (2.2.31)
These constraints are invariant under the action of H, as is expected, and should be under-
stood as the minimal set of constraints for a conformal superspace.

20This determinant becomes a super-determinant when the implicit grading is taken into account
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2.2.5 Constraints

Since every superfield contains 16 independent components, the number of degrees
of freedom represented by unconstrained gauge fields is staggering. The vierbein E3;4 alone
consists of 64 superfields, each possessing 16 independent components for a total of 1024
component fields. This problem can be circumvented by the imposition of certain constraints
in superspace, followed by solving the Bianchi identities subject to these constraints. Con-
formal superspace must reduce to a Poincaré superspace upon the breaking of the conformal
symmetry, so the constraints on its geometry ought to be more severe than those normally
imposed. We will guess the constraints necessary by identifying the properties we would
like to have. If this overconstrains the theory, so be it; the Bianchi identities will tell us if
this occurs.

Perhaps the most fundamental constraint is the existence of chiral primary super-
fields, the absence of which would render any superspace theory practically useless. The
chiral requirement, V;® = 0, implies that the anticommutator {V, VB]@ vanishes. (We
have suppressed any Lorentz indices which ® may possess.) This commutator in turn gives
the following constraints:
2i
3
(The complex conjugates are implied for the existence of anti-chiral superfields.) All of
these conditions except the last we already knew; the last is required if chiral superfields
with undotted spinor indices (such as W, and W,g,) should exist.

If we consider the component level behavior, more constraints may be deduced.
The component conformal supergravity multiplet for a chiral matter scalar, ¢, possesses
the same transformation laws as in flat supersymmetry, only with the regular derivative
replaced by a covariant one:

b = V28, i = V2AF + V20V, 0oF = ivV2(65°V o)) (2.2.33)

T.:,C=T.

. Y — .
ap = Tap' =0, Hapt

«,

Fu3=0, Ry =0 (2.2.32)

These equations can be interpreted as superspace formulae with the superfields ¢, = %Vaqﬁ
and F = —%V%Z), and the formal definition of 6g = £V, + £4VY. Requiring that this
variation dg act on each of the superfields as indicated by the component transformation
rules leads to a number of further constraints on the superspace curvatures:

Tog? = T30 = Tw" =0, T,;¢=2i0" (2.2.34)

Other more complicated conditions are also implied, but they end up being satisfied auto-
matically by the Bianchi identities, so we do not bother listing them here in detail.

We can further restrict the superspace structure by requiring the component trans-
formation laws for the gravitino, U(1) gauge field, and scaling gauge field to behave as in
component conformal supergravity. For example, the gravitino ought to transform under
supersymmetry into a covariant derivative of the supersymmetry parameter, 6gvm, = 2V,,¢,
without the need for any explicit auxiliary fields as in (2.2.10). Since we already know the
transformation law for the gravitino is

0QEm® = Vin€® + B T + B €450 (2.2.35)
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we are left to conclude Ts.% = 0. (These are the torsion components which in the minimal
multiplet give the superfields R and G. whose lowest components are the supergravity
auxiliaries M and by,.) A similar analysis using the U(1) and scaling gauge fields using
(2.2.11) and (2.2.12) tells us Fg. = Hg. = 0.

One can continue in this manner to bootstrap constraints which seem reasonable.
The ones discussed above are nearly sufficient to completely determine a minimal superspace
formulation of conformal supergravity. It turns out only one additional constraint is needed:
R(K)a5% = 0 and its conjugate.

We summarize here the constraints we take. For torsion we have

A A
Ty =T 5" =0
a _ o _a
Tvﬁ = 22075
Tgt =T =0
T =0 (2.2.36)

These define all torsion except for T.,* and T,,® which remain undetermined. For the
Lorentz curvature, we have

Rag™ =R, ;" = R;;* =0 (2.2.37)
For the chiral curvature,
Fop =Fup = Faﬁ' =0
Fop=Fap =0 (2.2.38)

Similarly for the scaling curvature:

Hup=Haop = H; =0
Hop = Hgp =0 (2.2.39)

For the special conformal curvature, we take

R(K)as® = R(K) ;¢ = R(K)_;% =0 (2.2.40)
This set of conditions for the curvatures is especially interesting for one particular
reason: it includes the condition R,3 = 0 for all curvatures ezcept for torsion, where we

choose the flat result T BC = 21'0; 5 This is consistent with making the following demands

on the fermionic covariant derivatives:2!
{Va, Vgt ={Va, V5} =0 (2.2.41)
{Va, VB} = —21’VQB (2.2.42)

The first of these implies the existence of a gauge choice where V, = 0, and the second
implies the conjugate; the third implies that no gauge exists where both these conditions
hold. Moreover, in flat supersymmetry, the chiral projector P is proportional to D?. The
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condition that it should be V? in conformal supergravity is equivalent to the constraints
{Va,Vs} = {Vd,VB} =0.

These constraints may at first glance seem exceedingly restrictive, certainly more
so than those assumed in deriving Poincaré supergravity. It helps to recall that each of
these objects, the torsion and the other curvatures, are internally more complicated than
their non-conformal cousins due to the presence of the extra gauge fields. We will find
that it is these fields, in particular those associated with the special conformal generators,
which allow us to reconstruct normal Poincaré supergravity with its relaxed constraints
after gauge fixing.

2.2.6 Jacobi and Bianchi identities

The discussion of the Jacobi and Bianchi identities in an arbitrary theory is given
in 2.1.2 and merely needs to be specialized here. The Jacobi identity serves to define the
gauge transformation properties of the curvatures:

D Top® = (A(C) + A(B) — A(A)) Tep™
D R(K)op™ = (A(C) + A(B) + A(A)) R(K)cr
D Rpc®* = (A(D) + A(C)) Rpc™*
D Fps = (A(B) 4+ A(A)) Fpa
D Hpa = (A(B) + A(A)) Hpa (2.2.43)

(With the exception of the K-curvature, these are entirely straightforward.) The U(1)
transformations are similarly simple:

ATop? = —i (w(C) +w(B) — w(A)) Tep?
AR(K)cp® = —i (w(C) +w(B) +w(A)) R(K)cp
A RpcP4 = —i (w(D) + w(C)) RpcP4
A Fps=—i(w(B)+w(A)) Fga
AHpa=—i(w(B)+ w(A)) Hga (2.2.44)

2IThese conditions alone are probably sufficient to define a conformal superspace with dynamical spin
connection and torsion as well as their superpartners; we conjecture that the extra constraints are to eliminate
the spin connection and its associated multiplet but as yet are unaware of any direct evidence for this.
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The transformations under K 4 are, however, less than obvious:??

1 1
Kp Tep® = §ATCBFCADF + §CFD[CATB]FA
D l p
Kp Hep = —(—)"2ATcBp + 50 plcHpr
. 1
Kp Fop = —3iw(D)ATcpp + 5CFD[CFB]F

1 1
Kp R(K)CBA = R(K)CBFCFDA + §CFD[CR(K)B}FA — iATCBFCFAD

— )\(D)HCB5DA + iw(D)FCB5DA + RCBDA

% (KD RCBa’a> M,y = 2ATo g Map — %CF picRE Y My (2.2.45)
The notation [C'B] in the above denotes graded antisymmetrization of the respective in-
dices. The rule for the Lorentz curvature has been left in a form with the explicit Lorentz
generators since they are not independent of each other. Since K 4 is in a sense the inverse
of Py, these rules are like inverted Bianchi identities, and they provide a nontrivial check
of consistency once the curvatures are specified.

We do not list explicitly the Lorentz transformation rules for the curvatures since
each transforms as its indices indicate.

Invariance under parallel transports is equivalent to checking the Bianchi identities.
These are significantly more complicated:

0= Z VpFep + TDCFFFB — 3iR(K)DCBw(B)

(DCB]
0= > VpHop+Tpc" Hrp — 2R(K)pes(—)”
[DCB
. 1
0= Z VpTop™ + Tpe Trp® — Rpop™ + MA)Hpcdp™ + iw(A)Fpedp” — §R(K)DCFCFAB

[DCB]

1
0= Z VpR(K)cpa + Tpct R(K)ppa — iR(K)DCFCBAF
(DCB

1 .
0= Z VrERpcga + TFDHRHCBa — QR(K)FD{%(ace)d’a} + 2R(K)FD{,8 €a}s (2.2.46)
(FDC)

The sum over [DC B] denotes a sum over graded cyclic permutations of those indices. Also,
the notation {} on indices denotes symmetrization; for example, X(,Ysy = XoYp + Y3 X,.
(The last identity involving the Lorentz curvature has been projected to the left-handed
part of the Lorentz group. The right-handed part is found by complex conjugation.)

22Note that gradings arising from the order of the indices have been left off for simplicity of notation. To
replace them, note the order of the indices on the left side of the equation and add appropriate gradings to
arrive at the same order. Also, contracted indices must be placed next to each other with the raised index on
the left. For example, in the first line, the order of indices on the left is DCBA. If we replace the gradings,

we would have KD TCBA —_ %ATCBFcADF(_)AF+D(A+F+B+C) 4 %CFDCATBFA(_)F(D-FC-FB)
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As in [7] the constraints we have chosen restrict our gauge potentials; we must
ensure that the Bianchi identities are satisfied in order for these constraints to be valid.
Though our constraints are stronger than in [7], our curvatures and Bianchi identities are
more numerous. We avoid recounting the derivation in detail here (see Appendix A for
that) and merely quote the result: every curvature either vanishes or is expressed in terms
of a single chiral superfield W,g,. It obeys

3 .
DWeug, = §Wa57, AWapy = iWagy, KaWagy =0 (2.2.47)

That is, W, possesses the same scaling and U (1) weights as it does in Poincaré supergrav-
ity and is conformally primary. Furthermore, it is constrained by its own Bianchi identity

V7 VoW =~V VOW, g (2.2.48)
The results for the curvatures follow below.

Torsion

The conformal torsion two-form is defined in terms of the gauge connections:
1
T4 = dEA + M(A)EAB — iw(A)EAA + EPpp? — 5CACBEBfC (2.2.49)

We group the various components in terms of their scaling dimension.

e Dimension 0

T4% =0, T =0 (2.2.50)
7,5 = —2i(0%),” (2.2.51)

e Dimension 1/2
T =0, Typ*=0 (2.2.52)

e Dimension 1

T =0, Ty =0 (2.2.53)
Topo =0, T*=0 (2.2.54)
Tt =0 (2.2.55)

e Dimension 3/2
Tp" ~ T(’Y"Y)(BB)Q = —|-26,.YBW%3Q (2.2.56)
Teba Tiysiya = —268Wo 54 (2.2.57)
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Lorentz curvature

The conformal Lorentz curvature two-form is
RY = g + ¢ — 2B fU — 4P o (o%¢) 05 — 4B fo(5"€) % (2.2.58)

The notation [b...a] denotes antisymmetrization of those indices; for example, XYy =
XpY, — X Y.
Because the form is valued in the Lorentz group, it may be canonically decomposed:

ba

Rpc™ ~ Rpeggyaa) = 2€altposa = 2€salipcge (2.2.59)
It is simplest to express the curvature results in terms of these components.

e Dimension 1

Rsypa =0, Ré’de =0 (2.2.60)
Ris50 =0, Ry, =0 (2.2.61)
Ryypa =0, Rgip4=0 (2.2.62)
e Dimension 3/2
Ry go = 00 Re(y3) 35 = i€y W4 (2.2.63)
R5(’Y“’Y),@a =0, RS(W)ga = —41.65;YW7,30¢ (2.2.64)

e Dimension 2

1
R (58)(vi)Ba = +268¢X61@a R Z Z €55VoWhra

(67) (Ba)
= +657V{5Wa}5,y (2.2.65)
1 L
L : Rvand
R 5) (v = _QEMXs@a REACR! Z Z 5V Wisa
(6%) (B&)

The totally symmetric symbol x is itself the spinorial curl of the superfield W'

1

X51[ia - Z(véw’yﬁa + V»yW&,Ba + V5W,y§a + VO‘W’YBJ) (2267)
1 T T = -

X‘;@é‘ = Z(VSWW%‘ + V’VWSBQ + VBW#M + VdWﬁB(S) (2.2.68)
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Scaling and U(1) curvatures

The conformal field strengths for scalings and chiral rotations are

H = dB + 2E"F5(-)" (2.2.69)
F = dA+ 3iE" Fow(A) (2.2.70)

e Dimension 1
Hyy = Fyy =0 (2.2.71)
Hgy =I5y =0 (2.2.72)
Hy, = Fy =0 (2.2.73)

e Dimension 3/2

Hyyyy) = Fuiyy) =0 (2.2.74)
Hy(yy) = Faiyy) =0 (2.2.75)

e Dimension 2
Hep ~ Hipgypp) = Q%ﬁ'ﬁvﬁ - 2%}% (2.2.76)
Fop ~ Foyap = 265858 = 2605F (2.2.77)

The components H and F are themselves related to the spinorial divergence of the
superfield W:

4i - ~

VW, g0 = gFﬁa = +2H3, (2.2.78)
. 4i - .

VIW, 5 = 5 Fae = 28, (2.2.79)

Special conformal curvature

The special conformal curvatures are
1 1
R(K)" = df* = NA) B +iw(A) fAA+ [Pop? + S CAP foBp + S [P [ Cop?

We will group them by their form indices.

e Fermion/fermion

R(K)ypa =0, R(K) 5, =0, R(K)p, =0 (2.2.80)
R(K)ypa =0, R(K) 3, =0, R(K),,=0 (2.2.82)
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e Fermion/boson

R(K)a(ﬁﬁ)'y =0, R(K)a(gﬁ'):y =0 (2.2.83)
R(K) 5 = +i€asVoWgsr RUK) g5, = +ieas Vo Was, (2.2.84)

. — _9; R : — 9. T W
R(K)o(g5)(vs) = 2168V 1 W 50 BE)sg)(y5) = ~2i€aVoiW sy (2:2.85)
e Boson/boson

i i
R(K)Cb,u = _gqucbv R(K)Cb[t = +§vﬂFCb (2.2.86)
: e VAV O — e ¢
R(K) (14)86)(0c) = —68V4Va"Wigs — €,5V7V7aWosa (2.2.87)

where the chiral curvature F;, has been used for notational simplicity.

2.2.7 Chiral projectors and component actions

One can use the details of Section 2.1.2, specifically equation (2.1.89) to construct
an explicit form for the chiral projector in conformal superspace:

P[V] = /dQG_Z 1% (2.2.88)

where ¥ is the superdeterminant constructed out of E*4 in the gauge where E,,4 and E.s
vanish. Let us explicitly construct the vierbein (and other connections) in this gauge.
Recall that the variation of the connections W4 is

SaWhA = 9l gA + WEB4C fop?. (2.2.89)

The gauge parameter ¢” is a superfield and so has a larger parameter space than what
survives at the component level. In principle, every 6 and #-dependent part of ¢” can
be exhausted to put the connections in a desirable form without affecting the component
Lagrangian. We will here use the §-dependence of g4 to fix W#4 to a specific form. (This
will correspond to a chiral version of Wess-Zumino gauge. Later on we shall fix the 6-
dependence.)

Let g% = éﬂgﬂA + %gzng where the functions g4 and gg‘ depend on z and 6 but
not 6. It is immediately clear by inspection of the gauge transformation law that g"4 can
be chosen to fix the gauge W”A]gzo = 64 meaning the vierbein is gauged to 6%4 at lowest
component and all other gauge fields set to zero. The gauge connection §-expansion then
becomes

. . _ 1. -
WHA = §iA 4 g, WA 4 592W5A (2.2.90)

for fields W4 and Wz" A Which depend on only = and €. The remaining gauge parameter
g§4 can be used to eliminate the antisymmetric part of W¥#4  leaving W¥AA = WA,
This exhausts our f-dependent gauge freedom. The curvatures then uniquely determine
the remaining bits of the connection. By taking the definition of the curvature R and
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projecting to § = 0, one finds W4 = %R"ﬂA]gZO. The remaining component of W is
determined by taking the derivative of the curvature formula and projecting to ¢ = 0. One
finds WQ“A = —%VdeﬂA]gzo - %Ra”bedAb:O. This gives the formula

, , 1. .. 1. . 1 - I
WHhA = §haA 4 5edR‘lW‘|9—:(] — 692WRWA‘9=0 - 502}2@@ £ 50 (2.2.91)
Within conformal superspace, all of the #-dependent terms vanish, giving
ERA = §RA - pia — (2.2.92)

Therefore, the chiral projector is simply defined as
25 1 v leo

where the last equality follows due to the simplicity of the connections in this gauge. Since
the left and right sides of this equation transform the same way under gauge transformations,
their equality in this special gauge implies their equality in any.

Since the result is suspiciously simple, we should check that this approach works
for minimal supergravity where the chiral projector is known to be not so simple. There
the vierbein should take the general form

. . 1 - .
EAA = ghA _ EGQRJQ £ 50 (2.2.94)

since the relevant torsion components vanish. The only curvature in Poincaré superspace is
the Lorentz curvature, and it is straightforward to evaluate the term appearing here. One
finds

ERA = §iA _ 5hAGZR (2.2.95)

for the vierbein (as well as a non-vanishing spin connection which we will ignore since it
turns out not to matter). The chiral projection formula becomes

PV] = / d*0(1+26°R)V = 2RV — %aﬂaﬂv = —%(?2 —8R)V (2.2.96)

Here the spin connection is not zero but it contributes nothing when V2 acts on a field
without dotted indices, and so V? in this gauge is as simple in Poincaré superspace as it is
in conformal superspace.

In either formalism, the conversion from a D to an F-term proceeds straightfor-
wardly. Using (2.1.88), we find

/ d'zd'0EV = / d'zd’0E PIV). (2.2.97)

where the second integration is understood to occur at § = 0. Although the operations
above were performed in a specific § gauge, the final results have been written in a gauge-
invariant manner. In fact, since the gauge-fixing procedure undertaken had no effect on the
fields at @ = 0, the right-hand side of the above equation must be independent of our gauge
choices.
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F-term integrations

We have shown that any D-term can be written as an F-term. It is still necessary
to evaluate the component Lagrangian corresponding to an F-term. A chiral integral has
the form

/d4x d?0EW, (2.2.98)

an integral over the superspace slice where § = 0. W is a chiral superfield transforming
under the gauge group in order to leave the full action invariant.

We can evaluate this integral by the method of gauge-fixing, much like how we
derived the D to F integral conversion formula. The first step is to use the #-dependent
part of the gauge transformations to fix the connections.? In a way entirely analogous to
what we did in the previous section, we may choose?*

1 1 1
WA = 6,4 + 59%&#1“\920 - gezvaRaﬂArgzo + 5925{#0@ Foalo—o- (2.2.99)

by exhausting the remaining #-dependence of g*. Here the projection to § = 0 has also
already been done, so we will avoid indicating it explicitly.
In conformal superspace, this expression is extremely simple. It gives

EA=6, h2=0 (2.2.100)

The F-term integration then becomes
4. 12 1 H 1 12 1 1z
Lp= [ dzd0eW = —Zea oW — 58 ed, W — 1(8 oue)W (2.2.101)

The first term is rather simple. In our gauge choice, it is easy to see that V¢V, W =
0%0,W when 0 = § = 0. The other terms are usually constructed in the literature from
supersymmetric completion of this term; here we will evaluate them directly in this gauge.
For example,

8,u€ = e(a,uEma)eam = e(amEua + T,uma)eam =0+ CTNBaEmﬁeam = ie(a“@/_)a)u (22102)

where we have used F,*| = 0 as well as the torsion constraint 7,z = T.3* = 0. This allows
us to evaluate the second term of Lp; we find ie(1q8,)*VaW/2 (since 0,W = VW at
6 = 6 = 0 in this gauge.)

The remaining third term is slightly more complicated. One begins with

M0e = (T, Enea™) (2.2.103)

231t is useful to note that whether or not we gauge-fixed the f-dependent part of the connections is
irrelevant for evaluating an F-term as its integral occurs at § = 0.

24This last gauge-fixing has an interesting effect on 6. Their Einstein index is now effectively a Lorentz
index, since every Lorentz rotation which would alter the vierbein must be countered by a P-gauge (or
coordinate) transformation. The 0’s are therefore the same as the © variables of [7]. Their F-terms are
written [ d?©& where © is equivalent to @ and their £ is half of ours when we go to this gauge.
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The outer spinorial derivative acts on each term in parentheses except the torsion (which is
constant). From differentiating e, we find the term e(¢,5%%y). From the inverse vierbein,
one gets —e(¥,5°0%)y). From the gravitino one finds no additional terms. This leads to

M"0ye = de(aa i) (2.2.104)

which gives the chiral Lagrangian
1 e - -
Lp= /d29€W =e (—4VO‘VQW + %(%@)“VQW — (¢aaab1j}b)W> (2.2.105)

where the projection to # = § = 0 is implicit.
Again, we may repeat this process for Poincaré superspace. One finds

EA =064 -06,1°R (2.2.106)
and for the F-term
= 1 1 1 _
Lp= / d’0e(1+20°R)W = —€0" W — S0"ed, W — £(0"0,e)W + 2RW  (2.2.107)
The first and second terms are evaluated as before. The third gains an extra contribution

of —16eR from (2.2.103) when the spinorial derivative hits the gravitino. This gives the
chiral Lagrangian

1 - - - _
Lp= /d295W =e <—4VO‘VQW + %(waﬁa)o‘VQW — (Y0 ) W + 6RW> (2.2.108)
where the projection to # = 6 = 0 is implicit.

D-term integrations

Within conformal superspace, the F-term component Lagrangian is

/5 -
Lp= /d2«9€ W=e (F + “2[(7/}a5'ap) - (%6“”%)1/1/) (2.2.109)
where
F 1V2W| d Ly W (2.2.110)
= —— an o = —=Va 2.
4 P V2

A D-term can be divided into two terms, one evaluated via a chiral integration and the
other via an antichiral integration in order to give a manifestly Hermitean action:

1 1 L
/d40EV: 2/d295U+2/d295U (2.2.111)
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where U = —%?ZV and U = —%VQV are the chiral and antichiral projections of V. These

two F-terms can then be evaluated using the F-term formula giving the general D-term
formula

1 _V2 RN 1 _
Lp = /d40EV =e (2(F+ F) +i (VaGp + thao®p) — 5(%%1)%)[] - Q(Tﬁaﬂabwb)U)
(2.2.112)
where
U= _162V| F= iVQWW and po = 1y V3V (2.2.113)
-4 T T 16 ’ Y42 o

The fields F' are actually not quite independent fields. In terms of the D-term of V', they
are

. .
F =D+ VYV %vcvc (2.2.114)

_ 1 ;
F=D+ VNV~ %vcvc (2.2.115)

where?®
D S l & w24
D= VVV,V = Ve VPViV (2.2.116)
1 . _

Vo= —558(Va, ValV (2.2.117)

The imaginary part of the fields F' and F is the divergence of the vector component of V.
When evaluating a D-term integral, it is occasionally useful to use the fields D rather than
F.

2.2.8 Kahler structure of conformal superspace of chiral superfields

It turns out that the conformal superspace of an arbitrary set of scalar chiral
superfields possesses a simple Kéahler structure due to its relation to the Kahler manifold
CpP™.

Suppose we are furnished with a set of chiral primary superfields ®; where I =
0,1,...,n. Our action consists in general of a D-term and an F-term which respectively
take the forms

Lp= —3/d40EZ(q>,,<i>,), Lp= /d295p(<1>1) (2.2.118)

25 As in normal superspace, one must be careful to note that V. is covariant even with respect to supersym-
metry. That is, Ve = ec™ (Vin — 20m®Va) = €™ (Om — 3%m*Va — hm®X,) where a denotes both spinor
indices. In fact, were we to treat supersymmetry as a gauge theory in normal space with internal symmetry
operators () which happened to include translations in their algebra, we would denote %wmg as the gauge
field associated with the generator Qo. Then the above formula is simply the covariant derivative. There
is a further mild complication in conformal superspace: V. will include the gauge action of S,; therefore,
a superconformal covariant derivative includes not only terms higher in the multiplet (due to @), but also
terms lower in the multiplet (due to S).
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where Z is some real non-negative function of the fields with A(Z) = 2 and P is some
chiral function with A(P) = 3 and w(P) = 2. (The assumption of non-negativity of Z
is ultimately for stability of the underlying Einstein-Hilbert term. The factor of 3 is for
convenience.) We can take the ®; as parametrizing some complex manifold. In order for
Z to have a nonzero scaling weight, at least one of the ®; must have A; # 0. We will
assume without loss of generality that this is ®¢ (by renaming the fields if necessary) and
that Ag = 1 (by redefining ®y — (®g)'/20 if necessary).

It is then possible to trade the fields ®; with j > 1 for projective fields §; which
have zero weight. (The simplest way of doing this is by defining &; = ®;/ chA 7.) Since
the fields &; have vanishing scaling weight, the fields Z and P in this parametrization are
restricted in their form to

Z = ®gdgexp (—K/3), P =W (2.2.119)

where K = K (&;,¢;) is some real function of the projective fields and W = W(&;) is some
26 (The choice of this definition for real K is possible only if Z is assumed
to be non-negative.) It is obvious that both Z and P, viewed as functions of the complex
manifold spanned by the ®;, are independent of the projective representation chosen. A
different representation is induced on the projective coordinates by the mapping

chiral function.

by — Poexp(F/3), K- K+F+F, Woelfw (2.2.120)

where F' = F'(&;) is a holomorphic function of the projective parameters. (For example, trad-
ing ®( for ®; as the field to project with is accomplished by choosing F' = 3log(®1/®g) =
3log(&1).) The above transformation law is simply a Kéhler transformation, and the man-
ifold under discussion is the complex projective space CP™, a simple example of a Kahler
manifold.

The two actions then take the form

Lp= —3/d49E oe KB®,, Lp= /d295 dEW (2.2.121)

where W is chiral and K is real. The factor of e %/3 is reminiscent of ¢" for a theory with

an internal U(1)x symmetry; this U(1)x is gauged not by an independent gauge multiplet
but by the other chiral fields. We may make the U(1)x more manifest in the following
manner. Define a new complex superfield ¥y by

Uy =e K6y, Ty=e K6, (2.2.122)
under which the actions become

—3/d40E T, /d2<95 K2

268ince ®p has scaling weight 1 and chiral weight 2/3 (their ratio is fixed at 3/2 for any primary chiral
superfield) P has the correct scaling and chiral weights for an F-term.
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The new field Uy and effective superpotential e®/2W are the only objects (besides K') which
transform under Kahler transformations:

Wy — exp (—l—élmF) Uy, W — exp <—;ImF> U (2.2.123)
eBPW = exp (—ilmF) X2W,  eXPW — exp (+iImF) /2w (2.2.124)

We normalize the generator of Kahler transformations, k, by requiring the above Kahler
transformation to correspond to exp (—ImF k/2). In this way the Kéhler weights of ¥( and
e/2W are set to be —2/3 and 2, respectively:

2
kWo = —i Uy, k eK2W = +2ieK/2W

(Note that eX/2W is chiral from the point of view of the Kahler covariant derivative, which
carries a Ké&hler connection.) This normalization is purely a matter of convention; it is
chosen so that e®/2IW possesses the same Kihler and U(1) weights.

The Kahler covariant derivative then takes the form

vE) = v - Ak (2.2.125)

where k is the generator of the Kéhler transformations. The Kéhler connection A is defined
in terms of the Kéahler potential K:

Ay = 4oV K, Ay = —2ViK
1 1
1

< [Va. Val K (2.2.126)

7
Ang = §<VaAd + VdAa) =
(In these formulae, the function K is a primary scalar superfield and is therefore invariant
under all the generators of the superconformal algebra.) The definition of A, is conven-

tional; it is chosen so that {V&K), Vg()} = —2;v®)

ad
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2.3 Degauging to Poincaré

Poincaré superspace lacks the explicit scaling and conformal symmetries enjoyed
by conformal superspace. It may also, depending on the flavor of supergravity chosen, lack
the U(1) R-symmetry. Converting conformal supergravity to one of the flavors of Poincaré
supergravity must then involve some measure of gauge-fixing. We will demonstrate how
this is accomplished by first reducing the conformal multiplet to a theory with an explicit
U(1) symmetry and a nonlinearly realized conformal symmetry. To guide our path, we first
review in broad strokes how it works without supersymmetry, the details of which can be
found in [11].

2.3.1 Review: Conformal gravity and the Einstein-Hilbert Lagrangian

Conformal gravity consists of the following gauge connections:

Wi = em®Py + %wmb“Mab +bmD + f®K, (2.3.1)
We will denote by R the curvatures of the conformal theory and by R the Poincaré curva-
tures. One usually takes the constraint of vanishing conformal torsion (which is equivalent
to vanishing Poincaré torsion) to determine the spin connection w,"®
bein and the scaling gauge field b,,. One also would like to express the special conformal
gauge field f,* in terms of other fields; this can be done by taking the conformal Ricci

in terms of the vier-

tensor to vanish, Rmnb“eb” = 0. Having done so, one finds
a 1 a 1 a
fm = _1 Rm - éem R (232)

where R = Rpmnt®e" is the Poincaré Ricci tensor and R = R,,%,™ the Poincaré Ricci
scalar. One further, for simplicity, usually adopts the K-gauge choice b,, = 0. (This is
possible since 0 (€)b,, = —2e,,%, allows one to gauge b, away.)

Having made these constraints and gauge choices, one then examines the simplest
conformal action for a scalar field ¢ with A = 1:

L= SOVIVab = VIV — LT 9V — [ (233)

(We have integrated the covariant d’Alembertian by parts.) The torsion term vanishes by
assumption. The term involving V,¢ also vanishes if we fix the remaining D-gauge by
gauging ¢ to the constant ¢g:

Vapo = eamam¢0 =0

(There is no scaling connection in the above expression since b,, = 0 has been chosen as
our K-gauge.) This leaves for the Lagrangian

1 1
7L = S0V Vago = —fa"$) = + ;RS (2.3.4)

This is almost the Einstein-Hilbert term —R /2 (in units where the reduced Planck mass is
unity). We need only start with the wrong sign for the kinetic term and then choose ¢ = 6.
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If we had started with a complex gauge field ¢, the Lagrangian would have been
eI = VIV, = —V* Vo — 2£,% |0 (2.3.5)

We may gauge |¢| = ¢o but not the phase of ¢, which we shall denote w. This gives
1
e IL = ¢*VIV,p = —p20"wOpw + ERQS% (2.3.6)

Gauging ¢2 = 3 and choosing to flip the sign of the Lagrangian gives back the Einstein-
Hilbert term; unfortunately this also leaves an unstable kinetic term for w. A model with
an additional gauged U(1) symmetry would be able to dispense with this phase. The
superconformal algebra has such a symmetry, and we will find it is the supersymmetric
version of this model with a complex ¢ which reproduces the minimal version of Poincaré
supergravity.

2.3.2 U(1) superspace

In conformal gravity, the scaling gauge field b, was the only field that transformed
under the special conformal symmetry; moreover, this symmetry was precisely enough to
allow the choice b,, = 0. The latter property is also enjoyed in the superconformal case,
even though not every other field is K-inert. It is here that we begin our gauge fixing

procedure.
Recall that under the action of K4 with parameter €4, 6x By = —2eEpra(—)%
If we choose et = n™ Ej4(—)%, then we find 6 Byr = —2ny and we can freely choose the

gauge B = 0. The generator D then drops out of the covariant derivative. We also have
chosen a gauge for K4 and so we ought not to consider K4 a symmetry any longer. We
denote this by the breakdown of the conformally covariant derivative V to the Poincaré
derivative D.

Since K 4 is no longer considered a symmetry, the fields fy;* are now auxiliary. In
order to analyze the various properties of these objects, we must make use of the conformal
curvatures. Most of these (torsion, Lorentz, and U(1)) can be viewed as the Poincaré
versions with additional terms arising from the conformal gauge fields. The remaining
ones (special conformal and scaling) have no Poincaré versions and so give pure constraints
among the various fields fy;?. After examining all the conformal constraints we will show
that they reduce to the Poincaré constraints with precisely the auxiliary fields of U(1)
superspace.

For reference, we give here the relations among the various objects in the gauge
where B = 0. For the conformal/Poincaré curvatures,

Fpa = Fpa+3ifgaw(A) — 3ifapw(B) (2.3.7)
y 1
Tep® =Tep™ + §f[CDCDAB} (2.3.8)

RpcP® = Rpc?® +201p" foy (e0 )™ + 20,p 1 fy ™} () (2.3.9)
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For the purely conformal curvatures,
Hpa =2fpa(—)" —2fap(—) (2.3.10)

N 1 1

R(K)cp™ = Dicfp® + Tes” fo + if[CDCB]AD - if[CDfB}FCFDA (2.3.11)
The covariant derivative appearing in R(K) is Poincaré. fy;? is understood to transform as
a Lorentz vector on the index A and to possess a scaling weight of A\(A) and a U(1) weight of
—w(A). (These latter two weights mean fy;4 transforms oppositely under scalings and the
U(1) as Ejp?.) In the above and subsequent formulae, we will use the combination fp4 =
Ep™ fr?, which possesses scaling and U(1) weights of A(4) + A(B) and —(w(A) + w(B)),
respectively.

Constraint analysis

We shall start with the scaling curvature:
Hpa = (dB)pa+2fpa(=)" — 2fap(-)"

Since B has been gauged away, the constraints on the Hp4 give constraints on the fields
fMA. These are:

F[Ba =0 = fﬁa = _faﬂ = _EBaR (2312)
¥ 1

The above serve as definitions of the fields R and G.. The complex conjugation properties
of the above identities tell us R = Rt and G, = (G.). The scaling weights of these objects
are A(R) = A(R) = 2 and A(G,) = 2; the U(1) weights are w(R) = —w(R) = 2 and
w(Ge) = 0.

The next set of constraints to analyze are those of the U(1) curvature. Recall
Fpa = Fpa+3ifpaw(A) — 3ifapw(B)

which leads to

Foa=0 = Fs, =0 (2.3.16)
Fio =0 = Fz, =0 (2.3.17)
Fgo =0 = Fp = 6ifgs = —3iGaa (2.3.18)
Fpa =0 = Fp, = —3ifga (2.3.19)
F3,=0 = F3, = +3ify, (2.3.20)

Now consider the torsion. Noting that

. 1
Tep” =Top™ + 5 Fe”Cpy (2.3.21)
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one can see the only torsions which differ between the conformal and Poincaré cases are
those with A fermionic and either C' or B (or both) bosonic. Thus the constraints on the

conformal torsions pass unchanged for the fermion/fermion form indices:

T,yﬁA =0 = T,ygA =0

A
¥8

a o
3 =0 = Twﬁ =0

~c

A
0 = TW =0

C

Po.a _ o a. o __ 9 a
T“/ﬂ —220%3 — TWﬁ —21075

For the fermion/boson form indices, it is only slightly more complicated:

T =0 = Tospa = Hesalyg
T;yba =0 = T"y(ﬁ,é")a = —2i6,.y66/3aR
Ty =0 = Tp*=0

Tf‘yba =0 = T;yba =0

v

9]

Ty =0 = Tu* =0.

The Lorentz curvature is quite simple to analyze:

RMBO& =0 = Rsyga = 4€s861a + €sa6yp) R
Rg 5,=0 = Ry 4, =0

Ripa =0 = Rgip, =0

ééw‘a =0 = Ry.5, = 4esp65a + €556 R
Rsipo =0 = Rsypa = —€55Gas — €5aGps
Rys =0 = Ry.pq = —€:5Gsa — €5aGy)

The remaining curvatures are:
Ba =0 = DR =0
1
K)ypa =0 = fye) + fora) = =3P Gpra
R(K)ysa =0 = Dy fay(a0) = +2iG ra€p50 2

9 1 . =
R(K) ;=0 = f’y(a,@) — 2f0¢(’¥5) = §D’7Gaﬁ — Zﬁ'ya,DBR

o ? _ 1
BE) 50 =0 = Jiopraa) = 3P18Spyaa) T 26a¢3a RE + 5G0pCa

The only other torsion constraint was T.,,® = 0, which gives the same constraint on the
Poincaré torsion

(2.3.30)
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(We have used the spinor notation f.ga) = frc 05 as well as f(ﬁ/;")(aa) = foa 0l 025") The

first condition indicates that R is an antichiral superfield; its complex conjugate tells that
R is chiral. The second and fourth equations can be combined to yield

. 1 _
3ifp(ac) = +§DﬁGad + DoGpa + €paDaR (2.3.42)

as well as its conjugate

4 1
3ZfB(ad) = —i’Dﬁ'Gad — DdGa/j’ — Eﬁ'd'DQR. (2.3.43)

This result can be substituted into the third equation, yielding
D?G. = 4iD.R, D’G.= —4iD.R (2.3.44)

The result given for fg, allows the determination of Fj,:

. 3 _
Fi(aa) = =3ifp(0a) = =5 PpGaa — €paXa (2.3.45)
. 3
Fiac) = +31f30a) = ~5PpCGac — €35Xa (2.3.46)
where .
= By . X.=D.FP _ DB .
X5 =DsR-D’Gyy, Xy=DyR- DGy (2.3.47)

just as in U(1) superspace. Furthermore, (2.3.44) implies (after some algebra) the chirality
of X,:
DeXo =0, DaXe=0 (2.3.48)

Finally the fourth R(K) constraint gives

i g
a6y aa) =5 P18 g1 (ac) T 26805 IR + 5 G0 5Gpa

1 1 1
= — E[Dﬂapﬁ']Gad — épﬁDdGa/B + EDBDaGﬁd
1 _o _ 1
_ EEBdGBQ(DQR + 'DQR) + 2€Bd€ﬁaRR + iGaBng (2.3.49)

The special conformal gauge field fg* is now entirely specified in terms of superfields R
and G..

It is worth pausing a moment to take stock of our position. We have now checked
that every constraint taken in conformal superspace reproduces (in the B = 0 gauge) a
known result in U(1) superspace; in particular, we have reproduced among our relations
the constraint structure of U(1) superspace. Since the U(1) constraints uniquely specify
U (1) superspace, the gauge B = 0 of our constrained conformal superspace must correspond
to the standard U(1) superspace. All further checks are merely tests of consistency.
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Some consistency checks

e Torsion
The only torsion components we have not yet discussed are those which we did not
constrain: T,<. These also differ between conformal and Poincaré theories. Using

T =T + if[céﬁg]a

one finds
T = +2e. W, DGy + 2. X DeGor b 2eX
() (BR)a = T2€55Wypa T €ap 3Gy + geﬁ"‘y v | —€ay | PyGgs + 56%3 8
(2.3.50)
2 2
Temsma = ~2608Wipa T €ap | PG+ 36Xy | — € | DyGgp + 368X
(2.3.51)

This is equivalent to the corresponding formulae in Egs. (B-2.12)-(B-2.18) of [6]; there-
fore, the torsion of U(1) supergravity is equivalent to the B = 0 gauge of conformal
superspace.

e Lorentz curvatures
The Lorentz curvatures in their canonically decomposed form are

RpcP® = Rpc?® +201p" foy " (e0 ) ®™ + 20,01 fo ™} () (2.3.52)

The case of purely fermionic form indices has already been dealt with. Turn next to
the fermion/boson case:

Rs(y4)8a = Ro(iysa + Y (—€valsay) + 2658 atyy) (2.3.53)
Ba

Noting that RJ(W) 3o = 0 and inserting the explicit expression for fg(aq), one finds
, 1 1 _
Ré(’y"y)ﬁa = 41 Z 5657D5Ga:y + §€5ﬂD,yGa:y — €5g€va Dy R (2.3.54)
Ba

as in U (1) superspace [6]. The other Lorentz curvature term we need to calculate is

Riyiypa = Lo(vippa T ; (84 €va

= —4265,},W75a + Z €va <6'D5Gg;y + gDA/GBS + 365,.}1'Z)5R>
Ba

. . 1 1
= —4@65,-}/W75a +1 Z €va <2D5Gg;y + 365;YX5>
Ba
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which is also as in U(1) superspace [6].
At the dimension 2 level, results are a bit more interesting. Using (2.3.9), one finds

9

Rs5)(vsa = Fod)aipa T Z (f((s(s)(m €ya — f(yﬁ)(55)€5a> (2.3.55)

Recall that

R(as)(w)ga = +2651X5"Lﬁ/a - 657 Z Z 65,87) Weya (2.3.56)
(67) (
where .
XsyBa = Z(D(sWWga + Dy Wsga + DsWasa + DaWaas).

We would like to show that (2.3.55) reduces to

R55)(ipa = F2€655 X078 — 2€6v€ 46 V5450 (2.3.57)
where
X6vBa = Xovpa T (€556va + €5a6yp)X (2.3.58)
1
Ursia = § 20X (GssGos — 5[Ps.D516a) 2359)
Y Ba
1 2 N2 D 1 « & 1 ad _
X =5 (D*R+D*R) + £[D%, DGas — 5G**Gaa + 2RR (2.3.60)

This is a straightforward (albeit tiresome) check. Some intermediate results help:

.9 _ _po
> Jira” = ~P Wopa (2.3.61)
Z Z Fe5)00%) = Hsspa (2.3.62)
5y Ba

fop)*? = 4x (2.3.63)

which allow the complete expression of the f terms from (2.3.55) in terms of the
relevant Poincaré quantities. For example, (2.3.61) allows for the cancellation of the
similar D¢W¢5a terms in (2.3.56); the remaining terms involving ¢ and x combine
with X5, to give the Poincaré Lorentz curvature.

Scaling and U(1) curvatures
The only U(1) curvature we haven’t discussed yet is Fp,, but this is the same in both
conformal and Poincaré theories. We have

= 2¢.

38578 = 2648854

s

where D?W s, = %ﬁ' Ba- This is exactly as in [6] (aside from the extra factor of 7).
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For the scaling curvature,
Hyiyap) = 2654Hvs = 2605Hs

where D¢W¢ga = +21L~Iga. This is easily checked explicitly. Since H(

. Y(BB)
2f(,8,3)(ad) — 2f(ad)(66)’ it follows that

_ 1 , 1
_ 1 o Lpey
Hya = =5 D fiaia” = +3P"Wosa:

Ba

as needed.

e Special conformal curvatures
These are by far the most complicated expressions remaining to check. The ones
remaining for us to examine are R(K),p4 and R(K)xa, which amount to five extra
checks to perform. These give no extra insight or relations beyond those we already
have, so we will avoid evaluating them explicitly here.

Conformal symmetry of U(1) superspace

If U(1) superspace is indeed a gauge-fixed version of a fully conformal superspace,
then it must permit some form of scale transformation. This must be more than that of Howe
and Tucker [20] since those authors were restricted to a chiral parameter in order to preserve
the minimal torsion constraints. In fact, an unrestricted transformation does exist. Binetruy
et al. [6] showed that the minimal matter coupling e~ %/3 could be absorbed into the frame
of the vierbein provided the minimal superspace structure was enlarged to include a U(1)

superconnection. This can be understood as an unconstrained scale transformation.?”
They postulated a transformation for the vierbein
EVA = EyPxpt (2.3.64)
with a parameter Xz of the form
XX X Xpa
Xt = 0 6°X 0 (2.3.65)
0 0 By X
where
X% = %(eab)adiflﬁd(xm, Xpo = %(e&b)do‘X’llDa(XX) (2.3.66)

is required to preserve torsion constraints. Otherwise, the factors X and X are totally
unconstrained. By investigating the constraints of U(1) superspace, they found the required

2"Enlarging the structure group is not the only way to do this. Instead, one may choose fewer torsion
constraints in Poincaré supergravity, which allow the superfield T, in addition to R, Wag, and G.. See for
example [21] or [22].
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transformation rules of the superfields

R = (X)? <R _ ;(XX)—Q@Q(XXP) (2.3.67)
G = (XX)) (Gad [ Dy log(XX) + Ya}_fd> (2.3.68)
aB'y (XX) (X)ilwaﬂ’}’ (2369)

where Y4 = Dalog(X X). Although they restricted to the case where the U(1) connection
was initially zero, it is simple to extend to the case of a non-vanishing initial connection:

1
AM AM—Z2ZM— %EMQY + ?;EMaYa+ 2E aaYY (2370)

where Zy; = Oy log(X/X). Without loss of generality, the superfields X and X can be
written

X =exp(—A/2+iQ), X =exp(—A/2—iQ), (2.3.71)

for real superfields €2 and A. The infinitesimal transformation rules are

SEm® = —AEp° (2.3.72)

0E,,* = <—A + zQ) eam) aDYA (2.3.73)

JR=(A+2IQ)R % (2.3.74)

5o = AGla + %[Da, DalA (2.3.75)

Wapy = <3A + ZQ) Wagy (2.3.76)
3 « 3 a

0Apy = O + EM DA — EMaD A (2.3.77)

(Of the fields in the supervierbein, we have listed only those corresponding to the graviton
and the gravitino. The other components of the supervierbein also transform, but they
are unphysical so we’ll ignore them for simplicity.) The above set of transformation rules
is quite interesting. For the most part, they have the form of scale (A) and chiral ()
transformations, with A as the gauge field for the chiral transformations; however, for
every term other than F,,%, Wyg,, and Auq, there are modifications which depend on the
derivative of the scale parameter A.

These extra modifications can be viewed as requirements forced by the torsion
and curvature constraints of U(1) superspace, but they can also be viewed as having a
deeper geometrical origin. Our claim was that U(1) superspace is a gauge-fixed version of
conformal superspace. This is straightforward to see. The variation of the field By; under
D and K transformations is

0By = Oy A — 2By eq(—)?
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where ¢ is the parameter for K transformations and A that of D. If we demand that
Bp; = 0 remain fixed, then every scale transformation must be accompanied by a K-
transformation with €4 = (—)G%D AA. Tt is this corresponding K-transformation which
generates the additional derivatives of A.

Consider first the vierbein. Under a K-transformation, S Eyd = %EMCGBCABC,
which corresponds to

ok En® =0

Y { iy
O En® = —ZGBO'E”Q = §DBAUT’Bna
for the graviton and gravitino, reproducing the additional terms exactly. Take the U(1)

connection next. Under a K-transformation, dx Ay = —Siw(A)EMAeA. Plugging in for e
we find

SicAns = %w(A)EMADAA

as expected.
The fields R and Gaﬁ are a bit more complicated. Recall that they are them-
selves related to the K-gauge fields by de = %BR and faﬁ- = _GaB/2' The rule for the

transformation of fM,(-} is 5KfMB = DMEB — iEMﬁeBB which corresponds to

) 1
5KGO¢B = DQDBA + ZDaBA = i[Da’ D,B]A

For R, using 5de5 = edB@ZA/Zl gives
Sk R =D?A/4

These are precisely the extra terms enforced by the torsion constraints.
Finally, note that W3, is a chiral primary superfield; thus it is inert under K and
so has no extra terms.

2.3.3 Old minimal supergravity

We break the explicit scale invariance of the superspace theory by following as
closely as possible the non-supersymmetric case. There a compensating matter field ®
was introduced with unit scaling weight. The D-gauge was then used to scale ® to a
constant, explicitly breaking the scale invariance and collapsing the kinetic Lagrangian into
the Einstein-Hilbert term.

An analogous procedure can be undertaken in superspace. We must make use of
a compensating superfield, and the simplest one is a chiral field. We denote it ®(, assume
it to have a scaling weight of A(®y) = 1 (and therefore a chiral weight of w(®g) = 2/3).
The kinetic multiplet for ®¢ is just the superspace D-term

—3/E DoPg (2.3.78)
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(Here and in the following we use”over the measure to denote when we are in the conformal
frame where the gauge is unfixed.) We would like to gauge &y = 1. That converts the kinetic
action into the supervolume, which reproduces the supersymmetrized Einstein-Hilbert term.

First let us note some things. After gauge-fixing ®¢ to a constant, we are left with
an issue of consistency, the equation of chirality for ®:

0
0= Vado = <Dd ~ By — ;Ad> o (2.3.79)

We have explicitly used all of the K-gauge to fix B = 0. When ®( is gauged to a constant,
Ag = 0 follows. A corresponding analysis with ®q leads us to conclude A, vanishes as well.
Using Fos = (dA)as = —3iGaa, one can immediately deduce A, = —%Gad. The U(1)
symmetry is broken; the bosonic component of A has become the auxiliary field G..

The superfield R also ultimately has an origin in the unfixed gauge. Recall that
the F-term of the field 3 was defined using the conformal superspace derivatives. We must

convert these to Poincaré derivatives, giving, after gauge-fixing ®( to a constant,
|- Lo 3 >
F = —Zv oy = -1 (D? — 8R) ®p = 2R®y (2.3.80)

The anti-chiral superfield R is itself nothing more than the F-term of the chiral compensator,
which is a well-known result. 28

The chiral compensator and super-Weyl transformations

The normal approach to conformal supergravity [23] makes use of a chiral field
®dg, introduced as a book-keeping device, whose bosonic component is used to fix the nor-
malization of the Einstein-Hilbert term while the rest of the components are set to zero.
This is completely analogous to the theory discussed above, except in those formulations
the compensator is fixed at the component level. This theory also possesses a residual
“super-Weyl” symmetry.

Begin with a model where the only field with scaling or chiral weight is the compen-
sator ®g. It must therefore be employed to make the conformal D— and F-terms invariant.
These take the form

Lp= /d40 E oDy V, Lp= /d20 EdFW (2.3.81)

Although V and W are generic real and chiral superfields of vanishing scaling and chiral
weights, they possess a residual symmetry:

By — Bpe?=, V o e Y Wy o 05y (2.3.82)

where ¥ is a chiral field of vanishing scaling and chiral weights. If we work in the gauge
where &y = 1, the above redefinition of the chiral compensator must be compensated by

281t can be shown (see for example [6]) that the theory above, with a remnant U(1) field, can be converted
to the theory of Wess and Bagger, where the U(1) connection is entirely absent, by a simple modification of
the torsion components.
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an honest conformal transformation with a rescaling A = —% — 3 and a U(1) rotation
Q = Z(X - ). This combined redefinition and conformal transformation is the super-Weyl
transformation of Howe and Tucker [20] which preserves the form of the minimal Poincaré
torsion constraints. V' transforms as a real super-Weyl field with weight 2, W as a chiral
super-Weyl field of weight 3, and the superdeterminant of the vierbein, F, as a real super-
Weyl field with weight —2. (The transformation rules on the superfields R, G, the graviton,
and gravitino can be derived from (2.3.72)-(2.3.76).)

The conformal transformations discussed in this article must be contrasted with
these super-Weyl transformations. The former are unconstrained in superspace; the latter
are highly constrained in superspace (the ¥ must be chiral) but correspond to unconstrained
superconformal transformations at the component level.

Integral relations between various formulations

We have several types of integrals (D- and F-terms, gauge fixed and unfixed) that
describe the same physics, and we should demonstrate how they are related to each other.
The F-term action in conformal superspace can be rewritten

y 1 < oo [ PP
/d20 EQSW =—- /d29 EV? (00) (2.3.83)
4 F
where I/ = —in‘i)o- (The equivalency follows since the only non-chiral term in the paren-
theses is @y, whose derivatives are cancelled by the denominator.) This is equivalent to a
D-term: — - s
1 - PO W o O DWW
—— [ dPEV | —2— ) = /d49 E—0— 2.3.84
4 / < F F ( )

Now we gauge ®¢ to one. This leaves the inverse of the F-component of ®g, but this is
nothing more than the chiral field R. Thus we find the following set of equalities:

/d2eéq>gw—/d29s W—;/d‘*eiw (2.3.85)
The term on the left is the expression for the chiral F-term in the presence of a conformal
multiplet. The term in the middle is the chiral F-term after conformal gauge-fixing. The
term on the right is the form of the chiral F-term used in [6]. Since the difference between
the first and third terms is just a gauge-fixing, it should make no difference when we fix
the gauge. Therefore if we were to evaluate the first term completely within conformal
superspace and then gauge-fix, we would necessarily arrive at the same answer as the term
on the right.??
To address the D-term, first note that in conformal superspace one can easily

290ne may also note that the rather curious form of 1/2R as the term converting from an F' to a D-term can
be understood as a delta function. In particular, using the result of Apppendix 2.1.2, the chiral delta function
is of a general form A. = X/P[X]. For the case of X = 1, this gives A, = —1/1(D? — 8R)(1) = 1/2R.
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convert a D to an F-term:
oo 9 _ 1 _ . _ 1
/d49 E ®yd, V = /d2<9 ED (FV — §vdq>ovav — ¢o4v2v>
29 & 5 Py & o 5 1 o2
= [ d?0& [ 2RD D,V — ?vd%v V- <1>0<1>01v 1%4 (2.3.86)

(Here V' has zero scaling weight.) Now, let us gauge fix ®y to unity and equate the first
and final steps. We find

1 _
/d49EV = —4/d29 E(D* —8R)V (2.3.87)

This tells us that the proper way in Poincaré superspace to convert a D to an F-term is
through the use of the chiral Poincaré projector. This is actually quite intuitive if we use
our other F' to D-term conversion formula:

1 _ 1 E _
/d49EV = /d295 (D* —8R)V = 8/d40 = (D* - 8R)V (2.3.88)

The equality of the first and third terms follows by integration by parts in Poincaré super-
30
space.

2.3.4 Kahler supergravity

A general set of chiral fields coupled to conformal supergravity generically has D
and F-terms

Lp= —3/d49E o KB®,,  Lp= /d29£‘ dEW (2.3.89)

for chiral primary superfield &y with A = 1 and w = 2/3. K is real and W is chiral,
both with vanishing scale and chiral weights. The actions are invariant under a Kéahler
transformation

K—-K+F+F (2.3.90)
By — Boe /3, By — DoetF/3 (2.3.91)
Woe W, Woe fw (2.3.92)

Here the superfields F and F are chiral /antichiral respectively. K is a real function of Kihler
chiral matter fields ¢ and & with vanishing conformal weight, and W is a function of only
the chiral ones ¢%. In the language of complex manifolds, W is a holomorphic function and
K a real function. The transformation fields F and F are, respectively, holomorphic and
antiholomorphic functions of the chiral and anti-chiral Kéhler matter fields. Note that the
Kahler transformation has no effect a priori on the supergravity sector.

3%Note the significance of these steps. Within conformal superspace as in flat supersymmetry, one can
convert from a D to an F-term, but the reverse is not an easily defined operation. Upon gauge-fixing to
minimal Poincaré superspace, we gain the field R which allows us to do so.
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There are two straightforward ways to accomplish a conformal gauge fixing. The
first is to gauge ®( to one. As the Kahler transformations alter ®g, a corresponding con-
formal transformation must compensate every Kéahler transforation. This is the well-known
Howe-Tucker transformation [20], which when combined with the given Kéhler transforma-
tions of K and W render the D and F-terms invariant. Unfortunately, the D-term action
then yields a non-canonical Einstein-Hilbert term. There are two traditional methods for
dealing with this. One may rescale fields at the component level in a quite complicated
fashion; this is the path taken in [7]. One may also leave @y unscaled until the very end of
the calculation; this is the chiral compensator approach popularized by Kugo and Uehara
[23].

A newer method is that of Binetruy et al. [6]. They demonstrated that enlarging
to U(1) superspace from a minimal Poincaré superspace allowed an arbitrary super-Weyl
transformation to absorb the factor e %/3 into E. From our point of view, their approach
has a very simple interpretation. Rather than scale &3 = 1, choose the gauge ®¢ = eK/6,
The equation of chirality then reads 0 = DyPy = Ds®o — %Adq)o which implies A; =
—1DaK. The antichirality of ®q similarly implies A, = ;Do K. The Poincaré constraint
Foo = —3iGog then gives Ang. The entire connection is given in terms of K and Gag:

Ay = 42D K, Ay = —2DyK
4 4
3 1
Aad — _§Gaé¢ + g[Da, Da]K (2393)
The imaginary part of the Kéhler transformation now plays the role of the U (1) R-symmetry;
the real part is equivalent to a super-Weyl transformation and corresponds to a rescaling
of (I)o.
Alternatively, one may absorb the Kéahler potential into the fields ®g to define
Kéhler-covariant fields ¥y as in (2.2.122). Then the gauge choice Wy = 1 gives

2 2i
0=vy, = —éAd + ngd — Ay = Ag (2.3.94)
where A, is the U(1) connection and A; = —4DgK is the Kéhler connection. We arrive

at the same result as (2.3.93). The gauge ¥y = 1 breaks one combination of the U(1) and
Kéhler symmetries, leaving the combination where the U(1) and Kéhler transform together.
Therefore, an effective transformation on the matter fields (the Kéhler transformation) has
been extended to the entire frame of superspace (by merging it with the U(1) R-symmetry).

2.3.5 New minimal supergravity

In both of the prior cases, we have used the simplest superfield, a chiral one with
eight components, to gauge fix to Poincaré supergravity. Needless to say this is not the
only choice. Another minimal choice would be a linear multiplet, which also contains eight
components. We begin with a real linear superfield L, obeying

V2L =V?L =0 (2.3.95)
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From the superconformal algebra, we know that L must possess a scaling weight of A(L) = 2
and, by reality, a vanishing U(1) weight. This latter feature will leave the U(1) gauge
symmetry unaffected by the gauge-fixing procedure.

Before fixing the gauge L = 1, one important feature of the linear multiplet must be
discussed. Due to the linearity constraint, [V2, V2L = 0, which implies V[V, V4]L = 0
— the divergence of the vector component of L vanishes. In global supersymmetry, this
implies the vector component is the dual of a three-form, but in supergravity this statement
is modified by terms involving the gravitino. The simplest way to derive this behavior is
to consider the two-form potential Bjsy, whose three-form field strength H = dB obeys a
Bianchi identity, dH = 0. Following [21] and [6], one chooses H to obey the constraints

0= Hypo = Hypa = H., (2.3.96)

Then as a consequence of the Bianchi identities, one can show that
H,yﬂ-“ = 22’0ng (2.3.97)
Hopo = 2(000)1 VL, Hpy = 2(Gpa)" q-ﬁ% (2.3.98)
Hepy = €cpa®AgL (2.3.99)

where L is a linear superfield and where we have defined
1 _

AoaLl = —§[Va, ValL. (2.3.100)

It follows that the dual of the three form is

1 ; _ _ )
i€ Homt = €a” AL — S o) L+ (0™ )V L (15" ;YL
1
— iemm@aang (2.3.101)

Let us now gauge fix L = 1. The equations of linearity become, in Poincaré
superspace, B B
(D* ~8R)L = (D* —8R)L =0 (2.3.102)

Since L is a constant, the only way this can be satisfied is if R = R = 0. From the relations
relating R to G, this necessarily implies D.G¢ = 0. Noting that

—2An6L = [Va, V4]L = [Dy, Da]L — 4G s L (2.3.103)

and that both D, L and DsL vanish (we have gauged B to zero, and the U(1) connection
appears in neither expression since L has no chiral weight), we derive that

AL =2G, (2.3.104)

in the gauge where L = 1. It follows that

| : .
e G = 3™ Dbyt + %ep”mf(wnamw) (2.3.105)
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where b,y denotes the bosonic lowest component By,|.

The bosonic two-form b,,, corresponds to three real bosonic components (after
accounting for its gauge invariance). The superfield R vanishes so no component field M is
generated. However, the U(1) symmetry has not been broken, and so we will have in our
off-shell spectrum the bosonic field A,,, which is the gauge field of the chiral gauge symmetry,
giving three bosonic components. As in the (old) minimal model, we have introduced six
extra bosonic degrees of freedom to close the supergravity algebra off-shell.

The immediate candidate for the simplest D-term action is

/d49 EL (2.3.106)
However, using the D to F conversion in conformal superspace, this becomes
o 1 _
/d40 EL=—7 /d29 EVAL=0. (2.3.107)

The linearity condition tells us that this simple integral vanishes. This immediately implies
(after gauging L to one) that in the new minimal Poincaré superspace the integral of the
supervolume vanishes: [ d*0 E = 0. This is a well-known property of the new minimal
model, and nothing more meaningful than the fact that R = 0 [24].

To derive the form of the new minimal supergravity action, we will use a duality
transform (as discussed in [25]) to transform a chiral compensator to a linear one. The
properly normalized Einstein-Hilbert action is derivable from

—3/d49E DDy (2.3.108)
after fixing the gauge &7 = 1. This action can in turn be derived from the first-order action
—3/d49E (X — Llog(X/®00)) (2.3.109)

where L is a linear superfield, X is an arbitrary real superfield of scaling weight 2, and @
is some chiral superfield of scaling weight 1. (Although the theory seems to depend on @y,
this is illusory since the components of ® are modified by the redefinition ®; — ®gef’? for
chiral F under which the first-order action is invariant.) Since a linear superfield L can be
written as L = V¥V2Q,, +h.c. for , with A =1/2 and w = —1, an action of the form LZ
has an L equation of motion which sets Z = S + S for chiral field S of vanishing conformal
weight. Thus varying L gives X = ®o®g, up to chiral and antichiral fields which can be
absorbed into a redefinition of ®y. This in turn restores the original action. On the other
hand, we may vary X to conclude X = L, which gives the action

—3/d40E (L — Llog(L/®¢®¢)) = /d40E LVg (2.3.110)
where we have defined Vi = 3log(L/®o®o) and dropped the term linear in L since a linear

superfield has vanishing D-term. Vg is a scalar field with vanishing conformal and chiral
weights, although it does possess a symmetry Vg — Vg — F — F with chiral field F.
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The prior gauge choice ®; = ®; = 1 which gave a properly normalized Einstein-
Hilbert term here corresponds to L = 1. Choosing this gauge gives the simple action
f d*0 E Vi where Vi = —3 log(‘IDOCIDO). It is fairly simple to see now what sort of object
Vg is. Since we have gauge-fixed the scale symmetry in addition to fixing B = 0, the
structure group of our space differs only from Poincaré supergravity by the presence of a
U(1) R-symmetry. These fields ®y and ®( are covariantly chiral with respect to a deriva-
tive containing the corresponding U(1) connection. Any U(1) theory of covariantly chiral
superfields ® (Ds® = 0) may be related to a theory with Einstein chiral superfields ¢
(Dyod = EgM 0y ¢) and a U(1) prepotential V,

P — q@eiV/ 36
By choosing F' appropriately, one may eliminate ¢, arriving at Vg = V.

While this is the simplest explanation for what Vg is, it is somewhat unsatisfying
since throughout this chapter we have avoided discussing prepotentials. To arrive at the
some point by a rather more circuitous route, one begins by partially fixing the U(1) gauge
which at the moment is still a full superfield symmetry. We choose ®; = ®g; that is, set
their relative phase to zero. The symmetry &y — ®pef/3 must be compensated with a
chiral rotation with parameter §) = i(F — F). We have now fixed the unconstrained U(1)
parameter to the imaginary part of a chiral parameter, and we see immediately that Vg
transforms suspiciously as if it were the prepotential of such a chiral version of R-symmetry.
If we evaluate the spinorial derivatives of Vg, we find this is exactly so. Begin with

1 Dy ®
DoV = —3—Da®y = —3—2-0 4 2i 4,
Dy Dy

and then note that since as functions ®y = @,

_ % - 2
DBy = D@y = — — A, By = —§ZAQCI>0

3
where we have used the chirality condition of ®y. It follows that
Do Vi = 4iA,, DaVrs = —4iAs. (2.3.111)

VR plays here the role of the U(1) R-symmetry prepotential, and so the term f d*0 E Vg is
nothing more than the U(1) Fayet-Iliopoulos term.

From our point of view, evaluating the D-term of Vg is particularly easy. One
considers Vg in its original form involving ®. One can evaluate the D-term component
Lagrangian directly. After integrating a number of terms by parts, one arrives at3!

1 j i
et / @' B Vi =5D"Xa = £ (6n0™)a X" = S (hm0™)* Xa
§ c _ b, p . _pnmd T
+(Ap + 56p°Ge) X (—AG ey + i (Ynomipr) (2.3.112)

The combination A, + %epch can be thought of as the U(1) connection if one chooses
to define the bosonic derivative so that F,; vanishes. (Recall that Fs = —3iGa4 in our
convention.)

31The calculation of this total expression can be simplified by noting that any terms which shift under the
chiral transformation of ®, such as D, log @, must have vanishing coefficients.
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Using the definition for the lowest component of G, one finds
e ! /d49E Vg :%Daxa - %(wmam)dxd - %(@mam)axa
—PMmAL gepCGc)anbme (2.3.113)
The Einstein-Hilbert action will be contained within D% X, and the Rarita-Schwinger action
within the terms involving X, and X¢. The remaining term, while involving the gauge

potential A, directly, is gauge invariant when integrated by parts.
Recall that D*X,, is as defined in U(1) superspace [6] and obeys the equality

o — 2 2 _
D’R+ DR = —gRbab" — D" Xa +4G"Gq + 32RR
Since R = 0, this equation serves to define
1

= 3R~ i(hodT*) — i(fyoaT™) - %ekfmnamamy?n +3G°G,

Using (¢mo™X) = —2(Ymo™a®T,,) and its conjugate, it is straightforward to derive

1 1 - 1 _
el / d*0E Vg = — SR+ 5&“”(%@%%) — — M (Yo Dpybn) — €7 AL Db

2
where 3
A=A, + Zem“Gm
and D' is defined with A’ as its U(1) connection. (This latter definition corresponds to
choosing Fo4 = —%Gad in defining the bosonic derivative.)

In pure new minimal supergravity, the equation of motion of the two-form enforces
the A’ connection to (at least locally) be pure gauge, A’ = d\. The A’ equation of motion
on the other hand gives

0= 6k€mn (aébmn + “p@a—m'&n)

Aside from the coupling of the gravitino to the field A’, the auxiliary sector is that of a
simple abelian BF model with topological action [ b A dA’ and no propagating degrees of
freedom.

New minimal supergravity coupled to matter

For reference, we include here the simplest couplings of new minimal supergravity
to chiral matter of vanishing U(1)g charge. (This last condition forbids a superpotential,
so these models are quite simple ones.) One can derive these by performing a duality
transformation from the Kéhler multiplet, where Wy is covariantly chiral with respect to
a U(1)g. The modification consists simply of exchanging ®y with ¥q in the definition of
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VR, which essentially shifts Vi to Vg + K. The kinetic matter coupling of new minimal
supergravity is then

/d49E K (2.3.114)

as in global supersymmetry. Evaluating this is straightforward. One simply replaces X,
and A,, associated with Vi with X/ and AX. Provided we make the definitions

1~ 1 5=
XK = —§DQDQK, XK = _§D2Dd[{ (2.3.115)
and
K 1 a i « i D&
one finds
1 . ) - 1
/ 0B K =~ DX + %(waXK) + %(wﬁXK) + 5 A Dby (2.3.117)

Unlike in old minimal supergravity, the presence of a Kahler potential does not lead to extra
additions to the Einstein-Hilbert term. This is known to be altered when the chiral matter
carries a U(1)g charge (see for example [26]).
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Chapter 3

The variational structure of
conformal superspace

3.1 Introduction

The background approach to quantization has a long pedigree in superspace ap-
proaches to supergravity. The foundational work of Grisaru and Siegel [27] (extended later
by Grisaru and Zanon [28] to include off-shell background fields) showed how to expand old
minimal Poincaré supergravity in terms of fundamental quantum variations about a classical
background, but they restricted their consideration to old minimal supergravity alone. This
is difficult enough to do given the constrained supergeometry, and its quantization requires
the introduction of not only Fadeev-Popov ghosts but also ghosts for ghosts, Nielsen-Kallosh
ghosts [29], and “hidden” ghosts [30] which a casual application of the Fadeev-Popov proce-
dure might miss. The on-shell one-loop gauge-fixed quantum Lagrangian was found which
allows certain simple calculations as well as the construction of covariant Feynman rules to
handle more general theories perturbatively. This story is by now textbook material [25].

However, the calculation of even one-loop effects involving not only supergravity
but also chiral matter and gauge fields has to our knowledge never been comprehensively
undertaken in superspace. Part of this is undoubtedly the difficulty in dealing with not only
the constrained structure of supergravity in superspace but also the Brans-Dicke coupling
of chiral matter to the superspace Einstein-Hilbert term. In a purely Poincaré approach,
this last feature requires either a component space Weyl rescaling [7] or the introduction
of U(1) superspace and a superfield Weyl rescaling [6]. In this respect, it is almost more
straightforward to work at the component level and then to extract superspace results from
the component ones. A conformal approach at the superfield level seems a more feasible
method, and that is the approach we take here.

In order to deal ultimately with the conformal coupling of the canonical Kéahler
potential in the Einstein-Hilbert term, we have shown how, in the previous chapter, to
extend the structure group of Poincaré superspace to include the superconformal group.
The new conformally covariant derivatives possess an algebra which is identical to that of
gauge theories: their curvatures are expressed in terms of “gaugino” superfields W, and
W valued in the superconformal group, which obey a generalized chirality condition (3.2.2)
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as well as a Bianchi identity (3.2.3). The selection of a number of curvature constraints
eliminate most of the these superfields, and the ones which remain may all be described by
the single chiral superfield W, the chiral spinor field strength of conformal supergravity.
The conformally covariant derivatives and their curvatures all transform covariantly under
the superconformal algebra, which simplifies the calculation of superscale transformations
considerably.

Were it not for the constraints on the W,, the structure of the theory would be
quite easy to solve. In analogy with Yang-Mills, one would expect unconstrained prepo-
tentials V4, one for each member of the superconformal algebra. The constraints on the
curvatures clearly must eliminate most of these prepotentials since a large volume of lit-
erature (see for example the textbooks [25, 22] as well as the original work [31]) shows
that the fundamental quanta of old minimal Poincaré supergravity are the superfields
HM = (H™ H M Hp) and a chiral compensator o, with a gauge invariance allowing one
to algebraically eliminate H* and H;. We will not attempt to solve the constraints on the
full prepotentials here. Rather, as our interest is in performing one-loop calculations in a
classical background, we will focus on calculating the allowed deformations of the prepo-
tentials which preserve the curvature constraints. The degrees of freedom must, of course,
be the same in either approach.

This chapter is composed of three sections. In the first, we establish that the
theory, like Yang-Mills, is defined in terms of prepotentials. We study arbitrary first order
deformations of the prepotentials and solve for the form that leave the constraints invariant
to first order. In the second section, we consider two physical actions, one involving the
arbitrary coupling of chiral superfields to supergravity and the other involving the minimal
linear compensator model with a K&hler potential. We construct their first order variations
in terms of their fundamental quanta about a classical background and demonstrate that
they possess a common structure. In the third section, we proceed to second order and
present the second order variation of the action for both models, which is sufficient (after
gauge fixing) for one-loop computations.

3.2 Prepotential formulation of conformal superspace

The algebra of the conformally covariant derivatives are

{Va, Vﬂ} =0, {Va, VB} =0
{Va,Va} =—2iVys
{Vﬁ, Vaal} = —2iega W, {VB’ Vaa} = —Qieﬂ'dWa (3.2.1)

where W, are the “gaugino superfields” for the superconformal group. These superfields
are covariantly chiral in the sense that

{vda WO&} = 07 {Va)Wd} =0 (322)
and obey the Bianchi identity
{V* Wa} = {Va, W} (3.2.3)
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The structure is clearly reminiscent of Yang-Mills, except for two differences: the gauge
generators Xp do not commute with the covariant derivatives ([Xp, V4] # 0), and most
of the W,, are constrained to vanish. The combination of the constraints and the Bianchi
identities then allow one to solve for the non-vanishing W, all in terms of the single chiral
superfield Wz,.

The structure of the covariant derivatives of conformal supergravity allows a so-
lution in terms of prepotentials that is identical in its structure to that of gauge theories.
For example, (3.2.1) implies the existence of a chiral (+) and an antichiral (-) gauge where

Vi) =9t =7ver!, V() =0, =TV, T (3.2.4)
where T and T represent the superconformal gauge transformations taking us from an
arbitrary gauge to the two special ones. Inverting these formulae gives

Vo=T710,T, V4=T104T (3.2.5)

which serve to encode the details of the connections in an arbitrary gauge in terms of a
complex gauge prepotential 7.

It is clear that the special gauges T' and T are ill-defined up to transformations of
the form

T—CT, T—CT (3.2.6)

where C is chiral ([04,C] = 0) and C is antichiral ([0y,C] = 0). In addition, they transform
under gauge transformations as

T TG, T—-TG! (3.2.7)

Putting these two transformations together gives a combined gauge/chiral transformation
of the form

T—CTG™, T—CTG™! (3.2.8)

It is convenient to define the object U = TT~!, which represents the gauge trans-

formation from the chiral to the antichiral gauge. That is, v = UVE4+)U —1. Applying

this formula and its inverse in the cases where the covariant derivative is simple leads to
v =08, V) =vo, Ut
Vi = 9,U, v =0, (3.2.9)

U is invariant under the full gauge transformations but transforms under chiral gauge trans-
formations as

U—CUuc™. (3.2.10)

A (covariantly) chiral superfield ® is a superfield constrained to obey V;® = 0.
This is not in practice a difficult constraint to satisfy. In the chiral gauge, we define the
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conventionally chiral superfield ¢ by ¢ = &), The chirality condition is then simply the
analytic statement that ¢ = ¢(x, ) is independent of . In any other gauge, we have

d=T"1oH) =171y (3.2.11)

While & transforms under a gauge transformation as & — G®, the conventionally chiral
¢ transforms as ¢ — C¢ where C' is the chiral gauge transformation parameter. One may
make an analogous statement about antichiral superfields:

of =T 19t =714 (3.2.12)
Under a gauge transformation, ® and &' transform covariantly while ¢ and ¢ transform as
¢ — Co, ¢— Co (3.2.13)

The canonical kinetic action for ® can be rewritten in terms of the conventionally
chiral superfields

/E<I>T<I> = /E(T_lgz_ﬁ)(T_lgb) (3.2.14)

Since the action is gauge-invariant (provided ® is of scaling dimension A = 1), we may
perform a gauge transformation with parameter G = T'; this gives

/E¢(TT1¢) = /E¢(U¢) (3.2.15)

The equality of the above two statements is formally equivalent to 77 = T~ where trans-
position is understood as moving the gauge generator off one term and onto another. (An
integration by parts, of course, has the same property.) One may use this to adopt a
notation where the kinetic term is written as

otd = U (3.2.16)

where U may be understood as acting either to the right (as U) or to the left (as U™1!).
It is often useful to work in a Hermitian gauge. We denote such a gauge by (0); it
is easily found by interpolating between the chiral and antichiral gauges:

vO = y-129,0v2, v = U201/ (3.2.17)

We note that it is often useful to represent U in an exponential form. We choose
to define the superfield V4 by

U = exp(—2iVAX ) (3.2.18)

Under this definition, V4 is Hermitian and represents the superconformal analogue of the
gauge prepotential. If the constraints (3.2.1) were the sole constraints on the geometry, the
prepotentials V4 would be unconstrained. However, certain of the gaugino superfields W,
are constrained to vanish, which serves to implicitly define some of the V4 in terms of the
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others. Experience in Poincaré geometry tells us that VV* is the unconstrained object out
of which the others are defined.! We will not be concerned, however, with presenting a full
solution of the constraints. Rather, as we are more concerned with one loop calculations
around a classical background, we will seek to construct the V4 associated with the quantum
deformations themselves.

3.2.1 Quantum deformations of conformal geometry

The standard recipe for quantum calculations in supergravity involves splitting the
geometry into a background geometry and quantum fluctuations about that background.
Since the gauge connections are encoded in T and T (and thereby in U), splitting the former
into a background and quantum contribution is accomplished by doing the same with the
latter. The method of splitting we will adopt is

T—TTy, T—TIg (3.2.19)
which corresponds to
Vo= T5'VaTg, Va— T, 'VaTg. (3.2.20)

The new covariant derivatives can then be constructed perturbatively out of the old ones.
Similarly, chiral superfields transform under these variations as

T, & T,'P (3.2.21)

The prepotentials transform under the combined chiral and supergauge transfor-
mations as

TTg — CTTQG_I, TTQ — CTTQG_I. (3.2.22)

Just as in the component case, the gauge transformation can be interpreted as either a
background or a quantum transformation. As a background transformation, we take T and
T to transform as

T—CTG™, T —CTG™. (3.2.23)
and the quantum prepotentials to transform homogeneously
To — GTpG™, Tg— GToG™ (3.2.24)

In practice, we will leave the background gauge unspecified; indeed, we will attempt to
maintain background gauge covariance at all times.
As a quantum transformation, 7" is invariant and T transforms as

Ty — CQTQGél, TQ — C_'QTQGél (3.2.25)

'In the literature, V* is usually replaced with H™ and would be defined from the above with the coor-
dinate derivative Oas replacing the covariant V4 in the set of generators.
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where Cg = T='CT and C’Q = T~ 1CT are chiral and antichiral operators, obeying respec-
tively

0= [Va, Col = [V*, Cq] (3.2.26)

Henceforth, we will be concerned only with quantum transformations. The supergauge
freedom of G can be eliminated by choosing to work in quantum chiral, antichiral, or
Hermitian gauge.

We prefer to work in a gauge which maintains manifest Hermiticity at all times,
though it may occasionally be more cumbersome, so we choose the last of these gauges. To
go to quantum Hermitian gauge, one takes G = TélUé/z = TélUél/2 where Ug = Z/_’QTél.
This yields Ty = Ué 1 2, To = Uqlz/ 2, giving

r —-1/2 +1/2 r +1/2 ) —-1/2
Vi, =Uo PV UG, Vi = U5V, (3.2.27)

for the covariant derivatives and
1/2 = —1/2x
o =Uy’e, ¥ =U,""% (3.2.28)
for the chiral and antichiral superfields. The residual gauge transformation acts on Ug as
Uqg — CoUqgCq' (3.2.29)

Quantum chiral gauge consists of making the quantum gauge choice Ty = 1,
TQ = Ug. In this approach, V4 remains unchanged under quantum deformations of the
geometry and so chiral superfields remain unchanged. Quantum antichiral gauge is analo-
gously constructued.

It is worth noting the relation between Ug and U’ in background Hermitian gauge:

U =TT =TToT,' T = TUT™ = UVUQU'/? (3.2.30)

3.2.2 Conformally covariant quantum prepotentials
The perturbative quantum prepotentials are the Hermitian superfields V' defined
by?
Ug = exp (—QiVBVB - 2@VQXQ) (3.2.31)
To maintain general covariance, we have chosen to parametrize the quantum prepotentials
in terms of the background covariant derivatives V p rather than the coordinate derivatives.

The factor of —2 is conventional and the i is so that the superfields VZ have the obvious
Hermiticity conditions — for example,

(VO =Vl (v =V (3.2.32)

ZNotational consistency would demand that the V’s be subscripted with @’s to denote that they are
quantum prepotentials. Since we will never again mention the background prepotentials, it is easier to
suppress the @ for a less cluttered notation.
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These superfields are chosen to transform under the action of the group generators
as

XA = -vC et (3.2.33)

where A and C run over all indices and fop? are the structure constants as defined previ-
ously. We thus have a conformally covariant set of quantum prepotentials.

For the generators D and A, the V'’s transform contravariantly as their index
indicates. Thus V¢ (like e,,*) has scaling and U (1) g weights (A, w) = (—1,0), V¢ (like ¢,,“)
has weights (—1/2,+1), but V(K)* has weights (+1/2, —1). For the Lorentz generators, the
V’s transform as their indices indicate. Only special conformal transformation properties
are not obvious. Recall the action of K on a group element g = (§,w, A, w,€) is

1 1
Kpeh = —§CBAC§C, §(KBWdC)Mcd = —2¢%Mep
KpA = —-2(—)B¢p, Kpw= —3itpw(B)

Kpet = ~AA)Asp™ + iw(A)wip? +wp? + € Cop? — %§CCCAB(_)BA (3.2.34)

Since the prepotentials are group elements, they must have these same transformation
properties, and since the special conformal generator acts quite like an antiderivative, these
formulae encapsulate a good deal of information. By inspection, one can easily see that
only V¢ is conformally primary. This isn’t too great of a surprise, since the prepotential of
conformal supergravity is a real superfield H", and V¢ is its obvious quantum variation.
All other objects should in principle be given as derivatives of V' or otherwise be pure gauge
artifacts. Using the special conformal transformation rules, it is possible to rewrite each of
the prepotentials as derivatives of V¢ plus some remaining conformally primary object.
As an example, note that V% obeys

SV = VP SpV = KV =0

This is easily solved by .
o _E . q.boc V2
Ve = 8V B | VA Vi

where V' is some conformally primary superfield. The other conditions are not all nearly
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S0 easy to solve, but the answer is straightforward to check. One finds

Ve = —évévwS + Ve (3.2.35)
Vi = —éwvm + Ve (3.2.36)
V(D) = %vcvc + %vava + %vdvd + V(D)
= ivcvc + %vaffa + %vdf/d + V(D) (3.2.37)
V(A) = %Acvc _ %(vava _ VAV 4 T (4)
= +éACVC — %(vaf/a — VeV +V(A) (3.2.38)

1 i 4 -
V(M)ga = +5V(aVay + VOV (Va5 + V(M) 0

1_ - i 1 D -
= +5VigVay + EWv{ﬁva}é — gvmv% + V(M)ga (3.2.39)
1 i -
V(M) g = +5V (3Vay = §v¢v{ﬁvd}¢ + V(M)
1o - i 1 Ny
= +5ViVay — 1—6V¢V{5Vd}¢ + ngv% + V(M) (3.2.40)

where we have defined
[Va, Va] = —2A04 (3.2.41)

These prepotential formulae will be the most useful to us. We have given them both in
terms of the conformally non-primary V¢ and the primary Ve, The other tilded objects
are similarly primary.

For completeness, we include also the special conformal prepotentials, which are a
little messier and which we will not have a great deal of use for in what follows:

Vv _ylery Clgdv vy Avtv vty Ly v vt T
(K)o = 8 “ 4 “e 96 ¢ 24 BB (K)a
_ 1V2ff 1v¢v V.4 V.2 ¢ 1 BB |
+§ a= 7 o ¢+96 é " +48C{BVC¥}BD + V(K)o (3.242)
VIK) — 1192y, _ L V4 LY, 4 v VB 4 TR
(K)a 8v g 4v¢va + 96v VoVse + 24VaV/35V + V(K)q4

= -I-éVQVa - iwvdvqﬁ + %VWQVM + %V{Bvd}ﬁvﬂﬂ +V(K)s (3.243)
The objects V(K), are not themselves fully primary, but are related to V (D), V(A), and
V(M)g4 by the action of Sg. When these latter objects vanish, V (K), is itself primary.
In addition, when we consider Yang-Mills theories, we will also need the prepo-
tential X", the Yang-Mills prepotential associated with the Yang-Mills generator X,. It is
naturally conformally primary.
We emphasize that the separation we have made above is entirely dictated by

conformality concerns; the tilded objects we have introduced are defined by the above
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equations. We will very quickly find that they are constrained to be pure gauge artifacts.
To demonstrate this, we require two new pieces of information: the form of the chiral gauge
transformations and the first-order solution of the supergravity constraints.

3.2.3 Chiral gauge transformations

In choosing to work in quantum Hermitian gauge, we have exhausted the full
supergroup gauge transformation, but the chiral transformations remain. Recall they are
given by

Uq — CoUgCy! (3.2.44)

where C( obeys a chirality condition, [V¢, Cg] = 0. If we define Ug = exp(—2iV), Co =
exp(—2iA), and Cg = exp(—2iA), then the above transformation rule is equivalent (for
infinitesimal A) to

SV =A+A—i[V,A - Al +0O(V? (3.2.45)

Writing A = €4V 4 + %wb“Mab +AD+wA+eBKpg, we can solve for the conditions
that these various parameters must obey:

aa = —Vala, &a= %62[101’ §a = arbitrary
30 7

—— V%4 + =o(D
4v o+ 2¢( )

1 .
Wap = §v{dfﬁ}v WaB = _22L7W’YO@3 + ¢(M)aﬂ

A= 2V +0(D), w=

[0}

. .
=5V, €= +%L¢V7W7¢a (K e €laa) = HILOV Woga + Vst (K)a
(3.2.46)

In the above formulae {df} denotes the (unnormalized) symmetric sum &3 + Bé. The
superfields ¢(D) and ¢(M),p are chiral, ¢(K), is complex linear, & is arbitrary, but none
of these four is primary. L, is both primary and arbitrary. As with the prepotentials,
we may rewrite the non-primary operators as derivatives of primary ones plus some new
primary object. Doing so gives

l
8

A=~V — LVIVHL 4 G(D), w= SV + VLA 4 g(D)
PR TR T T ey YA T

S = —Valas a=5VLa, &= —5VsVal’+

«Q

1 . i = -
Wap = 5Vialsy Wap = —2L Wiag = 72V ViaLgy + 6(M)ag (3.247)

We have not included the terms corresponding to e(K') since they are fairly messy and we
don’t actually have much use for these specific formulae in what follows.

The useful part of the above formulae is to note the correspondence between the
tilded gauge objects and the tilded prepotentials. For example, if we could show that V(K )a
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were constrained to be complex linear, then it is a pure gauge artifact, cancelling against
Y(K)q. Similarly, if we could show that V(M).s were chiral, we could cancel it against
@(M)qp. Clearly V; already corresponds to &;. To eliminate V(D) and V(A), we would
need to show that they can be related to the appropriate sum (or difference) of a chiral and
an antichiral field — in this case, QNS(D) and its conjugate. Provided these constraints can be
enforced, the theory becomes one entirely of V.

We should check that the number of degrees of freedom work out. V¢ itself consists
of 32 bosonic and 32 fermionic degrees of freedom. The gauge degree of freedom L,
however, also seems to have 32432 components. The solution to this puzzle is that L,
has weight (—3/2,—1) which has precisely the ratio necessary to accomodate a primary
chiral superfield. We will find in physical models, in fact, that L, itself possesses a gauge
symmetry of L, — Ls + ¢o, where ¢, has 8+8 components. Since it is a second order
gauge degree of freedom (i.e. a gauge degree of freedom for a gauge degree of freedom),
these components contribute positively to the counting. Put more simply,

32432 (32+32—(8+8)) =8+8

which is the right number for conformal supergravity. It is interesting that the physical
degrees of freedom of conformal supergravity coincide with those of a chiral spinor.
For completeness, we also include the Yang-Mills variation:

A" =iLPWg" + A" (3.2.48)

where A" is chiral. Note that because we have included ¥ with the supergravity prepo-
tentials, its chiral gauge variation includes a term coming from supergravity, in addition to
the usual chiral superfield.

3.2.4 First-order constraint solution

We next turn to the task of solving the supergravity constraints to first order.
Because conformal supergravity is characterized by conventional constraints as in super
Yang-Mills, the curvatures are entirely described by “gaugino” superfields W, which are
given by the commutators

[VO”VBB] = —2ieagWy, [Vd,vﬂg] = _2i€déwﬁ (3.2.49)

These are superfields which obey a chirality condition, {V4, W} = 0. The constraints of
conformal supergravity involve imposing Wy (P)B = W,(D) = W,(A) = 0. From these it
follows that W, (M)?Y = 0 and W, (K )s = 0 and that all the remaining curvatures can be

expressed in terms of the single chiral superfield Wz, .
The chiral superfield W, can be defined by

8Wa = [V, {V*, Va}] = +2i[V*, Vo] (3.2.50)

Varying this object to first order involves varying each of the covariant derivatives on the
right side. The easiest way to handle this is to adopt a chiral quantum gauge where we force
all of the quantum variation onto V, and leave V4 unchanged. If the gaugino superfield
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vanishes in this gauge, it vanishes in any gauge, including quantum Hermitian gauge. (This
is equivalent to doing the variation in Hermitian gauge and then performing a quantum
prepotential-dependent gauge transformation.)

Thus,

6.Vo = [2iV,Va], 0.V4=0 (3.2.51)

where the subscript ¢ denotes that the quantum gauge is chiral.
Note first that the Hermitian quantum variation of V, is

6V = [iV,Va] = —HoP Xp = —H,PVp — Qu(M) — AuD —woA — J,P K (3.2.52)
where
H,P = +iV, VP —iv (M), - %V(D)aﬁa — V(A)dz"
H,5=+iVaVj
Hagpp) = +iVaV(gp) +d€asVy

( )
( )
( )
( )
Ay = +iVa V(D) + 2iV (K)q (3.2.57)
( )
( )
( )
( )

Qo(M) = +iVPRpo (M) + iV, V(M) 4 2iV (K)? Mg, 3.2.56
wa = FiVLV(A) + 3V (K), 3.2.58
JP = +iV, V(K)P 3.2.59
Jos = +iVaV(K) 4+ iV Rea(K) 5+ V(K),5 3.2.60

(

Jol = +iVaV(K)? + VR (K)®
In the chiral gauge we are using, the variation of V, is simply twice this:
0.V = —2H,PVp —2H,2X, (3.2.62)
The variation of the bosonic derivative is rather easy to calculate in chiral gauge. One finds
0:Vaa = —iVaHo P Xp — iVaHoEX) — 2H. V ge + HopayW’ + iHo fo® Xp  (3.2.63)
OW is then given by
40W, = — V2H,PXp + 4iV 4 H, V 5°
+ (207 H,y g + 8Hag ) WP
+ (2VaHot — Hotfea) 2P Xp (3.2.64)

We begin the analysis by considering the constraints imposed on the prepotentials
by Wa(P) = 0. These amount to two conditions, which we write as

V2H 53 = 8iV 3Hap (3.2.65)

8Jai = —V2Has — Valha — 20V awe + 2V Qg 54 (3.2.66)
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The second of these amounts to a definition of V(K )as, on which Jyue linearly depends.
(There is a third condition that we haven’t listed which is a trivial consequence of the first.)
Choosing W, (D) and W, (A) to vanish amount to the condition

_ 2 _
V2A, = —gv%a (3.2.67)

All other conditions on the W,’s follow from these three.
The third condition, (3.2.67), is the easiest to immediately evaluate. Using the
above definitions for A, and w, leads to

0=V? (iVaV(D) — gvaV(A) + 4iV (K )a>

Inserting the definitions of the V’s in terms of the V’s, we discover a nice surprise. The
above condition reduces to

0= %2 <Naf/(D) - gvaf/(A) + 4iV(K)a> (3.2.68)

The first condition, (3.2.65), is the next easiest to check. Again using the V’s we
can conclude that

0=V3V(M)ga (3.2.69)

0=V, (;V(D) + V(A)) (3.2.70)

The first of these implies that f/(M )Ba is chiral and therefore pure gauge: it is in one-to-one
correspondence with its chiral gauge parameter ¢(M)g,. We can therefore choose V(M) to
vanish. The second equation implies that

V(D) — 2iV(A) = 2¢(D)

Together with its conjugate, this implies that V(D) and V(A) are the real and imaginary
parts of a chiral superfield qE(D) Since this also precisely overlaps with their gauge degrees
of freedom, we can similarly choose V(D) and V(A) to vanish.

This last point is an important one. In a theory with a conformal compensator ®(
of unit scaling dimension and matter fields ®° of vanishing scaling dimension, the quanta
of @ are indistinguishable from the chiral degree of freedom &(D) Both have an equally
valid claim to be the chiral quanta which together with V¢ make up the quanta of Poincaré
supergravity, while the other is the pure gauge degree of freedom. From our point of view,
it is almost always more sensible to remove qg(D) immediately. If desired, it can be restored
by undoing the chiral scale transformation.

Whether or not we choose to eliminate ¢(D), the condition that V(D) and V(A)
are made up of a sum and a difference of a chiral and an antichiral superfield together with
(3.2.68) implies that

VIV (K) =0 (3.2.71)
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This means that V(K )a is a complex linear superfield and so it too is in perfect correspon-
dence with its gauge degree of freedom and so can be taken to vanish.
We return now to the second condition, (3.2.66). This boils down to

1

ApViag, 2.72
3 pVi (3.2.72)

V(K)ag = =iVaV (K)a = iVaV (K)o + VaV?Va + Vo V2V +
where we have defined
ApVas = VPV2V 5 Vos + 16WW*BQVQB + 16W,7 7V, Vg (3.2.73)

One can show that ApV, is Hermitian.
Before moving on, we note here the chiral variation of the conformal supergravity
field strength in the chiral gauge where V(D), V(M), and V(A) vanish:

6cWa,3'y = Z %?QVQSQV,BV,W; (3274)
(o)

We have discovered how to use the Yang-Mills-like features of the conformal su-
pergravity algebra to extract the geometric quanta at first order. We turn next to some
specific physical models.

3.3 Two physical models at first order

3.3.1 Linear compensator model

Although we will be most concerned with an arbitrary chiral model, we will first
consider a simpler model. The minimally coupled linear compensator model with a Kahler
potential consists of a D-term action of two terms

S =5q+ Sk. (3.3.1)

The Einstein-Hilbert term is contained within the first term
S¢ = /ELVR = 3/ELlog(L/<1>0<I>0) (3.3.2)

where L is the linear compensator and ®g is a chiral superfield of scaling dimension 1, whose
presence is almost solely to make the argument of the logarithm conformally invariant, as
a redefinition

by — 6A<I>0

for chiral A leaves the action invariant due to the linearity condition of L. In the gauge
where L = 1, this has the form of a Fayet-Iliopoulos term for the supergravity U(1)x.
The coupling of chiral matter to the theory is contained within the second term

Sic = / ELK (3.3.3)
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where K is the Kéhler potential, a dimension zero Hermitian function of chiral and antichiral
superfields which possesses a symmetry

K—K+F+F, (3.3.4)

also a consequence of the linearity of L.

We could also include Fayet-Iliopoulos terms for Yang-Mills fields by introducing
them as [ ELTrV where V is the gauge prepotential. In fact, one can likewise view Sx as
essentially being the FI term for a U(1)x symmetry. One would then naturally combine all
these to give the single term

—S/ELlog (@06—<K+V>/3<T>O/L) (3.3.5)

which can be understood as a sum of the FI terms for the Yang-Mills, Kéhler, and U(1)g
gauge sectors. We will exclude from our discussion Yang-Mills FI terms and treat the
supergravity and Kahler sectors separately.

In order to proceed, we need to determine the transformation of the various quan-
tities. We will work in the gauge where V(D) = V(A) = V(M) = V(K) = 0. The
non-primary object V* we will leave for the moment unfixed and specify a gauge for it
later.

The first order variation of F is

6E = H*, + H,* + H%,
= —3iVOV, + 3iVaVe — A VP — 4V (A) =0 (3.3.6)

This is an initially surprising result, but it is owed to our working in a conformal theory.
For example, in a component four dimensional theory, the first order variation of /g is the
trace of the graviton perturbation, which is the conformal mode of the graviton. We could
set the scaling gauge in such a theory by forcing the conformal mode to vanish. This is
something of a shell game, however, since the conformal mode of the graviton is essentially
the same object as the conformal compensator in such a theory. In the current theory, the
role of the “conformal mode” of the graviton will be taken up by the linear compensator
(and later the chiral compensator) and so E = 0 here.

The first order variation of a chiral superfield ® of scaling dimension A and U(1)g
weight 2A /3 is given in Hermitian gauge by

60 = —iVBXp® + 6,9

Y
= —iVP® — VPV, d — i (V(D) + ;V(A)> AD —iY"X, D+ (3.3.7)

where we define §.® = n as the variation in chiral gauge.
We next note that L may be written

L=V, + V402 (3.3.8)
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in terms of chiral primary superfields ®,, of weight (3/2,1). The variation of V*®,, is given
by

§(VODa) = — iV (V3VoD,) +iV 5 (VIVED,) — Ay(VOVED,) + 2V T,

1 .
+ ivdv%quh) + VY(0,Dq)

— XV, — 2i(VE") X, P, (3.3.9)
Assuming ¥, to be a gauge singlet, we can write the variation of L as
0L = L —iVP(VsL) +iV5(VPL) — Ay(VL) (3.3.10)
where
L=V~ <5c<1>a — i?z(vdaéa)) +h.c. = Vo4 + h.c. (3.3.11)

Mo is a weight (3/2,1) chiral primary superfield, which we have defined to depend on both
0.P, and its conjugate in order to simplify the formula.
After several integrations by parts, one can show that

6Sq = / E (EVR —2VPA,L + ;’LvadvaLvdL> (3.3.12)
We may define a new weight (0,0) primary superfield G}, by
_liaia g 3 L= _LV2A, 12
Gy = 2L AL 12 VollVoL = —L"7*ApL (3.3.13)
So that
35S = / E (EVR - 4LVbi> (3.3.14)

One can similarly work out the structure of Si. Skipping details (the most difficult
of which is an integration by parts) one finds

58K = / EL (Kn + K + VUK, + ETKT> n / ELK (3.3.15)

where
Kog = K5V @'V @ (3.3.16)
K, = —iK; X, ® +iK; X, & (3.3.17)

Both K, and K, are conformally primary.
Combining these two variations gives

58 = / B [LV? (4G, + Ky) + LYK, + LK + LKp + L(Ve + K)]  (33.18)

This is a surprisingly compact expression. When L is gauged to 1, G becomes the Poincaré
superfield of the same name and represents the pure supergravity contribution to the energy-
momentum tensor. K represents the matter contribution to the energy-momentum tensor,
and K, is the matter contribution to the gauge current.
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Gauge invariance of the linear compensator model

The first feature we should observe about our linear compensator model is that at
first order it is independent of V' and Vj,. This is certainly sensible since these are gauge
degrees of freedom and should certainly not have any equations of motion associated with
themselves.

The dynamical theory would seem to consist of V¢ and 3" — the Hermitian super-
fields associated with the graviton and gauge multiplets — as well as the matter superfield
n' and 77 and the linear compensator variation £. We recall that V¢ transforms under the
quantum chiral gauge transformation as

Vi = VaLa — Vala (3.3.19)

Under the L, transformation, a chiral superfield transforms as

P = Cod® (3.3.20)
Differentially, this reads
on = 2iAP = 2V, + 21V, @ + 21AAD — %wACI) + 2iA" X, D (3.3.21)
where A is the scaling dimension of ®. Plugging in the values for superfields, we find
on = —EW (LOV 4 ®) — %(WVBL/;)Q + 2iA" X, ® (3.3.22)
The gauge superfield X" transforms as
65" = A"+ A" + iLPW] +iL ;W5 (3.3.23)
The quantum linear compensator varies as
6L = EVQ?Z(LQL) + h.c. (3.3.24)

Note that this last expression depends on @, only implicitly via L.
One can check that the first-order action is invariant under this first-order shift in
the quantum superfields, as it must be by construction.

3.3.2 Arbitrary chiral model

The minimal linear compensator model is notable for the clean decoupling of the
gravitational and matter terms of the action, which gives a corresonding decoupling of
their contributions to the gravitational current. The arbitrary chiral model will not be so
immediately simple to evaluate, but we will find its first order variation shares the same
features.

The chiral model classically dual to the minimal linear compensator model with a
Kahler potential K is

S = —3/E<I>0<I>0 e K/3 (3.3.25)
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This action encapsulates not only the pure gravity effects (denoted S¢ in the linear model)
but also kinetic matter terms (denoted Sk). Here ®¢ is a weight (1,2/3) conformally
primary chiral superfield and K is as before a Hermitian function of weight (0,0) chiral and
antichiral superfields. A canonically normalized Einstein-Hilbert term is found in the gauge
@0@0 = eK/?’.

The above D-term is a special case of a more general theory involving an arbitrary
set of chiral superfields of arbitrary weights,

§— -3 / EZ=-3[7], (3.3.26)

We have introduced the shorthand that [ |p denotes integration of its argument over the
full superspace. We can similarly define [ ]p as integration over the chiral submanifold
of superspace. In this expression, Z is a gauge invariant Hermitian superfield of scale
dimension two construced from the chiral superfields ®* and their conjugates. The factor of
-3 is necessary so that the gauge Z = 1 gives a canonical Einstein-Hilbert term. The proof
of this is straightforward. Using the scaling and U(1)g weights of Z,

DZ =27 = Z;\i®' + Z;A;8
3i

—GAZ = 0= ZiA — Z;A59)

and that the Einstein-Hilbert term is contained within
~3[Zlp = =3 |Z;PV +...| = -3Z;PPV +... = —32;007 + ..
F

where P = —V?/4, P = —V?/4 and O are superconformal. That O is superconformal
means it contains R /6 weighted by the scaling dimension of the field on which it acts, and
so it is easy to see that the Einstein-Hilbert term is

1 - VA
=3[Z|p > _iRZjAj(I)J = —573

The gauge Z = 1 then corresponds to a canonical Einstein-Hilbert term.
Since ' = 0, we concern ourselves only with the first order variation of Z:

8Z =Zi(n' — V) + Z;(if +iVP)
=2 + Z5P —iZiST X, @+ i 25T X, B — i Z; VOV + i Z;VOV, 8
— VOV LZ +iVeVIZ + %V(A)Z (3.3.27)
Plugging in the value of V(A) gives
82 =Zi + Z:iP — iZ; S X, ' + i 255 X, BT — iZ;VOV, @+ i Z5VOV, B

+iVa(VOZ) —iVHVaZ) — %AbeZ (3.3.28)
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The two terms in the last line which appear to vanish as total derivatives actually
do not. To see why, note that the actual statement of a vanishing total derivative involves
only the coordinate derivative:

0= 0m(EEMV®Z) =V (EEMVOZ) + hy’ Xy (EEMVZ)

The term involving the connection usually vanishes by gauge invariance; however, in this
case V% is not conformally invariant (though the other terms in the parentheses are), and
so the second term yields

EfacSU(VOZ) = E (=ifacV*Z)
Evaluating the first term yields
E(Va(VYZ) + Top"vVeZ)
The trace of the torsion tensor vanishes, which leads to the identity
iVa(VOZ) = —faaVZ +t.d.

Integrating by parts on the A,V? term gives the same explicit connections but with the

opposite sign, yielding

38 = —3Zm' — 3Z;iP + 3iZ;X" X, 0 — 3iZ;57 X, B + V° (AbZ + 302V, @ — 3izjvb<i>5>
(3.3.29)

There are several annoying features of this expression. One is that the terms involving
V' are not individually conformally invariant. Another is that in the linear compensator
model, we had a clear factor of L out front of all the terms which we could gauge to one.
Here we would like to gauge Z = 1 to arrive at the supergravity of Binetruy, Girardi, and
Grimm [6], but none of the terms possess an explicit Z out front. We can deal with both
of these issues by the following field redefinition:

= —3logZ (3.3.30)

K is a superfield which transforms non-linearly under a conformal transformation. If we
choose Z = ®oPoe /3, we see that this K is essentially the same object as the canonical
Kaéhler potential:

K=K- SIOg((I)()(i)())

The advantage of this definition is that we may now rewrite §.S as

S =7 (lcmi G + XK, 4+ VP (—4Gy + ICb)) (3.3.31)

where we have defined
Gy = 2PNy 727112 (3.3.32)
Kaa = K5Va®'V4 87 (3.3.33)

K = —ilCi X, &' + ik; X, (3.3.34)
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If we choose Z = ®oPge /3, then we find
. = 3 3n
wzz<m#+Kﬂuimg+W04@+Kw—7”—"? (3.3.35)

and the chiral first-order action is superficially the same as the linear one except for the
exchange of the £ sector for the 7y sector and the exchange of the L compensator for Z.
The importance of this observation is that it simplifies the task of finding the
second-order action for both of these theories. Rather than treating each individually, we
can focus on their common features and only worry about where they specifically differ.
Let us consider several other terms that we might like to include in both of these
models.

3.3.3 Superpotential terms

A superpotential term is a chiral action Sp defined as
Sp:/5P+hQ (3.3.36)

where P is some chiral superfield of weight (3,2). For the simplest chiral compensator
model, P = (P%W where W is the object one normally calls the superpotential. Because
we're interested in linear compensator models as well as the general chiral model, we will
use the more generic name P to denote this F-term superfield Lagrangian.

Since the superpotential terms involve purely chiral and antichiral actions, we can
use the quantum chiral and antichiral gauges to describe them. We note that

5. = H%, + H% =0 (3.3.37)

in quantum chiral gauge, so only the chiral variation of the integrand remains. The variation
of the superpotential term is then simply

5£p:/53#+h0 (3.3.38)
implying that the superpotential plays no rule in the pure conformal supergravity equations

of motion. (That it plays a role in Poincaré supergravity arises because of the presence of
the chiral compensator.)

3.3.4 Yang-Mills terms

The Yang-Mills term we will consider is
1
A%M:4/Sﬂmwﬂﬁ+ho (3.3.39)

where f.s is a holomorphic covariant gauge coupling. In the simplest of cases, frs = 0rs,
but we will for the moment allow for a more generic holomorphic coupling.
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As before, one finds quantum chiral gauge the simplest for the chiral action. Using
1= 1= gy
6 g = VAV S — SV (vaﬁ-wﬁf) (3.3.40)
as well as

6cf7“s = frs,ini (3.3.41)

one immediately finds

1 . ] _ 1 _ .
5Sy n = / g <4 Fraaf! WO W,* — % FrsWOTV2V, 58 — g fTSWaTVZ(VaBW55)> +he.

1 ' j 1 iy
— / £ (4 fm,inZWMWf) + / E (; frs W VaZ® + 2 fmvmwwww)> T he.
(3.3.42)

There is the possibility of introducing the Yang-Mills interactions by requiring the
linear compensator L to obey the modified linearity conditions

V2L = 2kTe(WOW,), V2L = 2kTr(WaW?)

Then Yang-Mills interactions can be made part of the structure of superspace when the
compensator is gauged to 1. This tends to introduce non-holomorphic gauge couplings.
We will avoid this possibility for now and restrain ourselves to the normal holomorphic
Yang-Mills terms.

3.3.5 Generic first-order structure

We summarize the generic structure that the arbitrary chiral model and the mini-
mal linear compensator models possess. The common part of the first order action consists
of a sum of four terms. They are:

(68)6 = [-4XV'Gy| (3.3.43)

(68)x = [X(vbzcb FYTK, K+ ﬁleg)] N (3.3.44)

0Sp = [nZPZ]F + h.c. (3.3.45)

68y =V Va + Vil p + [0V p + [7V5] (3.3.46)
where X is the compensator (L or Z) and

Gy = —X'2A, X712 (3.3.47)

Koo = K;5Va®'Ve®/ (3.3.48)

Ky = —iKi X, @ + ik; X, & (3.3.49)

Vi = % FroiWOT Wy (3.3.50)

Vaa = —(frs + [rs) Wa' Wa* (3.3.51)

V= —%va (frsWa®) + hec. (3.3.52)
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We will find use to denote G,; = frs + frs. Then the last two equations above may be
written

yad = _GrsWaTst

Vr = =2 (VG )Wa® = S(VaGro) WO = £ G VoW,

using VOW," = VW9,
The equations of motion amount to

0=—-4XGy+ XKp+ (3.3.53)

0=K,+Yr (3.3.54)
1._

0= —1v2(X/CZ-) +P+ Y (3.3.55)

For the linear compensator model, there is the additional term
08, = [L(Vr+ K)]p (3.3.56)
along with that model’s equation of motion
0=V?Vo(Vg + K) = V2VYVg + K) (3.3.57)

which implies that Vg = —K up to the real part of a chiral superfield.

The structure we have identified here is actually more general than this treatment
indicates. The same features persist in arbitrary models involving any number of linear and
chiral superfields. A brief discussion of the first order variation of an arbitrarily coupled
linear superfield is given in Appendix E.

3.4 Going to second order

In order to construct a one-loop effective action, we require the action to second
order in the quantum deformations. The simplest way to do this is a sort of bootstrap:
vary our first order expression again to first order.

However, doing so immediately tends to produce a nasty set of terms involving
many derivatives of the compensator X for the graviton’s action. The reason is easy to see:
the action for the graviton is hidden within the action for the compensator. In addition
to a term XV*0OV,, there would be a host of terms involving derivatives of X needed in
order to make this expression invariant under special conformal transformations. One way
to simplify this would be to eliminate many of these terms by choosing a gauge where X
is constant and then degauging to Poincaré derivatives. Unfortunately this sacrifices the
conformal invariance of the classical action before quantization has even taken place. A
better approach would be to introduce conformally invariant derivatives, with respect to
which X is covariantly constant. These would compactly encode the many terms involving
derivatives of X in conformally invariant combinations. It is to this construction that we
now turn.
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3.4.1 A brief interlude: conformally invariant (or compensated) deriva-
tives

Definition

In the preceding discussion, we introduced the conformally primary superfield
G which was defined in terms of the dimension 2 compensator X. When X is gauged
to unity and the conformally covariant derivatives are themselves “degauged”, the object
—XY2A,X1/2 reduces simply to the Poincaré superfield Gy, but the existence of this
conformally primary combination means we may identify the equivalent of G} even in the
conformal theory. We may similarly identify other Poincaré equivalents and thereby perform
something very much like a degauging while still maintaining the underlying conformal
invariance.

We begin with X, a primary Hermitian superfield with A = 2 and w = 0. Define
U = log X so that under scalings, U transforms nonlinearly into a constant, here DU = 2.
Then we define the compensator-associated derivatives as

1 1 3i
Do = Va = 5VaUD = SV UMz, + ZZVQUA (3.4.1)

. . 1 . 1 ;. 31
DY =VY - _VOUD — -V . UMP* - “veU A 3.4.2
\V, 2v 2v5 1 \V (3.4.2)

These new derivatives are constructed so that when they act on a conformally primary
object, the result is conformally primary.

We are not the first to construct these objects. Kugo and Uehara, in their treat-
ment of conformal supergravity [13], constructed these operators almost immediately out of
the covariant derivatives, dubbing these the u-associated derivatives, where u denoted the
compensator being used. Their motivation seemed to be the desire for operators that would
act on conformally primary superfields to generate more conformally primary superfields.
In that sense, these new operators are special conformal invariant rather than covariant.

The purely undotted objects have a new algebra

11

1 _
{Ds, Do} = 5 (V2U + VUV, U) Mg, = 5 XVZXMﬁa = —4RMg3, (3.4.3)
Similarly,
(D, D%} = —4RMP4 (3.4.4)
where we have defined
__ Loy, r=—Ltvex (3.4.5)
To8X T T 8X o

From these definitions, R possesses scaling and U(1)r weights (A, w) = (1,+2) and R the
weights (1,—2). It is straightforward to show that in the limit where we gauge fix X to
unity, these R’s become the R’s of Poincare supergravity. However, these versions are more
useful since they are also conformally invariant by nature of the fact that the new covariant
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derivatives are themselves conformally invariant. Furthermore, one may show that they are
chiral with respect to the new derivatives:

DR =0, D,R=0. (3.4.6)

It is straightforward to guess the form of the analogues of G, and X,. Demanding
that the definition of G, match when X is fixed to unity (and also be conformally invariant)
gives

1 1 1
Goa = =1 [V, Va]U + 1 VaUVaU = 5Xl/?[va, Va]X1/2 (3.4.7)
which is as we have defined it before. Defining X, as Do R — DG leads to
32 i _ 3o2ua
X0 = gv VU, X%= gv veU (3.4.8)

which is conformally invariant automatically.
We briefly pause to note the following features. If X = ®Pge /3,

1 1, -
X, = —§V2VQK = —g(DZ — 8R)Do K

as in Kahler U(1) supergravity. Similarly, if X = L, then R = 0 as in new minimal
supergravity.
We next define the bosonic derivative D4 by the anti-commutator

{Da, DY} = ~2iDo® — AGP* Mo + MG, s M7 + 3iAG,5A (3.4.9)

We have introduced into this definition a parameter A which parametrizes how much of
the various bosonic connections of D, is stored in the additional “curvatures” on the right
hand side. A = 1 corresponds to the standard U(1) supergravity of Binetruy, Girardi, and
Grimm [6] and what is achieved by straightforwardly degauging from conformal to Poincare
supergravity (as in Section 2.3). A = 0 corresponds to a redefinition of that theory so that
the aw curvatures are trivial. (This is the choice made in [25] and [22].) The latter has the
simplest-looking curvatures overall, but it introduces a nonzero torsion 7., proportional
to the dual of GG, which leads to a bosonic Riemann curvature tensor lacking the common
symmetries and with an auxiliary superfield hiding within the spin connection. For this
reason A = 0 seems to be ill-suited for component calculations; however, for the pure
superfield manipulations we perform here, it leads to a simpler algebra for the covariant
derivatives. The two definitions are completely equivalent, of course, and differ only in the
definition of the bosonic connections.
These definitions lead to

. . ; . . 1 . 3 . 3N
D, =V, — %vaUpa _ %vaUDa — 5vaaUD + <+8[Va,va}U + 2Gao‘) A
i i\ y i iX g
VoV U — 2G| MPY + [ ——VAVAU + =GP\ M 4.1
+< 1 VaViU 2Ga5> +< VIV + 6 ) B (3.4.10)
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The newly-defined curvatures are straightforward to work out. For the bosonic-
fermionic curvatures,

T sppa = _2i67563dR (3.4.11)
Ty sp)a = NG, gepa — 20(1 = )G 5645 (3.4.12)
A
Fgaa) = _iDﬁGaa — €gaXa (3.4.13)
. i\ ] _
Rd(’y"y)ﬂa = Z lE&VDﬁGa»‘y + 5D5G576’ya — ZEgﬁe,yaD,yR (3'4_14)
Ba
. A
Rs(yippa = Y€y Wips + Zﬁva [ e X5+ 5 D5, } (3.4.15)

Note that these curvatures simplify a fair amount by choosing A = 0.
The bosonic torsions are

1 1 1
Tip6)aa) Dy = —2€5aWpay D" — 5€44 DR Doy — €33 X(8Pay — 5€8aD3Gap, D7
(3.4.16)
1 1
Tigiyaas D" = ~268aWies D7 + 5630 DyR Doy + GegaX 5Da) +3 556 D8Gays D
(3.4.17)
T55)(ac) Pe = —2i(1 = M) GpaD,5 + 2i(1 = NG ,5Dga (3.4.18)

Note the last torsion vanishes for A = 1.
The part of the Riemann tensor acting on spinor indices is

1 1 1 1, _
§R(55)(adwz\/[¢7 =4 Z (2D5WQ¢WM7¢ + EDﬁXvMW - §D RMp,, + 2RRMa6>

Ba
1 A i
*Elga’D{BD G¢d}M - ?D G M¢a + 9 DaaG ngg
A2 A2
— ngaG M¢a + G G aMgyp
1
+ 5()\2 — NesGygGP O Mpq (3.4.19)

The other half can be found by Hermitian conjugation.
The remaining U(1) curvature is

I 3/\

Z. .
Bhas) = ~ 5 P Claa — 38aPiXar — 165D Xa) (3.4.20)

Again note the simplifications which occur for the choice A = 0.



89

Deformation

The compensated derivatives (for A = 0) can be compactly written as
1 A | s
Dy = Vo + Z(vBU){SB,Qa}, DY =V 4 Z(vBU){sﬁ, Q%}
Das = 5{Da, Da}

provided we restrict them to only act on conformally primary objects. It is in this form
that it is easiest to demonstrate that if ¥ is primary, so is D, ¥ where ¥ possesses arbitrary
weights and Lorentz indices.

We have previously argued that to first order the spinor derivatives vary (in Her-
mitian quantum gauge) as 6V, = [iV, V,] and 0V4 = [—iV, V4], where we had expanded

V=VAV, + VX,

It follows then that the compensated spinor derivatives should vary as
1
0Dy = iV, Vo] + 1 ([iV,Vg]U + VgoU) {S3, Qa}
1
= [iV, Da] + Zvﬁ (—iVU 4 5U){Ss, Qu} (3.4.21)

where we have substituted D for V in the commutator. Note that (—iVU + 6U) is con-
formally primary of dimension zero, and so we may replace the V? acting on it with D5,
Further simplifications arise if we choose to expand V in terms of the compensated derivative
rather than the covariant derivative:

V =VAV,+ VX, = VA D, + VY X,

One may check that the V"’s are now conformally primary objects. In particular, it is easy
to show (by considering the variation of a chiral superfield of vanishing weight for example)
that

vie=ye ye=ye (3.4.22)

where V'® = —%D q;V"i’a + V'®. Then provided we define a theory entirely in terms of

V@ and V?, we can make use of these conformally invariant derivatives when we calculate
deformations of the quantum theory.

Henceforth we suppress the primes and trade the conformally covariant prepoten-
tials for the conformally invariant (or compensated) ones. One can show that

V(D) = %vab + %DQVQ + %ded + V(D) (3.4.23)
V(A) = —iAbvb + VG, — %DQVQ + %ded +V(4) (3.4.24)
V(M)ga = %D{BVQ} + éD‘fﬁD{ﬁVa}d5 + %v{a d;Gﬁ}é +V(M)ga (3.4.25)
V(M)gs = %D{Bvd} - émp{ﬁ-vw - %V{Q¢Gﬂ~} o+ V(M) (3.4.26)
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Note the forms are quite similar to what we had in (3.2.35), except for the appearance

of the new superfield G. We have also introduced the conformally invariant operator
Ao = —1[Da, Da).
Since U obeys DU = 0, it follows that

1
0Dy = [iV, Do) + Zvﬁ (=2iV(D) + 6U){Ss, Qa} (3.4.27)
from which we may derive the variations of each of the spinor connections. We find

Hop = iDo Vi — iVTnes — iV (M)ag + %V(D)eag + V(A)eas

H,, = iDaV, —iV°T,
1
Ao = LD, (51)
2
. .3 3i
o = 1DaV () = iV*Fop = SDV(D) = S DodU

_ 1
Qu(M) = iDo V(M) 4 4iRVP Mgy — iV Roy(M) — iDPV (D) Mgy, + §D5(5UMBQ (3.4.28)
and for their conjugates

Hdg = *iDdVB + chTdcﬂ

. e . /)
Hd‘ = _ZDdVB +1V Tdcﬁ + ZV(M)&B + §V(D)€a6 — V(A)Ed/ga
Hd(,@,ﬁ") = —iDdVBB + 4V56d5
1

Wy = —iDdV(A) + ’iVdeb - ngV(D) + %’DQ(SU

Q% (M) = —iD*V(M) — 4iRV;MP* + iV, R** (M) +iD;V (D) M"* + §D55UM5°‘
(3.4.29)

The variation of the bosonic derivatives is straightforward to work out from the
above results. Using these, one may for example work out the variations of the superfields
Gas and R in the language of these compensated derivatives. For R, it is actually easier to
work in the original theory at first. Recall the chiral variation of an arbitrary superfield ¥
can be defined by

5.V = 6 + VW (3.4.30)

which generalizes the case where W is itself chiral. Then the chiral variation of R is

1 —2 1 —2 1*2
R=——V2(X6,U) + —056.UV2X = —=D?, 431
0.R = — V2 (X0.U) + o0.UV DU (3.4.31)



91

Similarly, the chiral variation of X, is

6eXo = 262 (VadU + 2iVV U — iV (VU))
= g(ﬁ — 8R) (Do6U + 2iZy — 2iDa V(D)) (3.4.32)
where
Zo =VVU
— %(DQ —12R)V, + %DBDQVB
- épapﬁgvﬂﬁ + %DQ(GBBVM) + i(zﬂ ~12R)DV},
+DY(RV, 5) + %XBVQB (3.4.33)

Calculating G is a bit more difficult since its definition in terms of X necessarily
involves both dotted and undotted spinor derivatives in a symmetric fashion. The most
straightforward way to proceed seems to be to work out its variation by calculating the
variation of the torsion component 67’;,. This gives the following rather complicated
expression:

1 - .
0Gai == 7[Da, DaldU — Hoo"Gy — iV DpGag — iV DyGas
1 1 1 _
— iAmAbvb — §Dad1>bvb — Q(D(DZ —8R)D + h.c.)Vau
1 1

1 . .
+ 5(D“*vd/i)wm + i(mvf)wm -5

Aua(VPGy)
1 s 1 sp, L 8
+ gD ngDaR + éDaVBdD R+ 673{5‘/&}@)(

1 5 1 ] 1 ;
_ IPBy. P __D.V. DR _ D .V. B
SD VBaDaR SDanaD R 6D{BVQ}QX

_ 1
— RRVp4 — vapﬁxﬁ
1 b 1 b 1 b
- §(Aadv )Gb - EAb(V Gad) + i(AbV )Gad
iy oo .ty pBBa..
+ 4V5aD Gaﬁ 4V045D Gga
where we have defined
SU = 6U + D"V — iD5VP + AV (3.4.34)

For the linear compensator model, U = L~1L, but for the generic chiral model

6U = = (K’ + K57 =280V = 4V*Gy + V'K ) (3.4.35)



92

The expression for G involves a combination of the supergravity potentials that
has been succinctly combined into H,P, which is the deformation of the bosonic vierbein.
It can be calculated from

6D, = —H,®Dp — H.2X,,

the left hand side of which can itself be calculated easily from 6D, and édDgs. The reason
for collecting these terms in this way is that we will eventually find they cancel out.
Rearranging a number of terms leads to

1 - .
0Gaa =58aabU — Hoo'Gy — iV DGog — iVPDyGaa

Lo oavi—ip pvv Lepe gy 1oy
2Aao¢AbV 2DozanV 32 {D 7D }Vaa + 2DVaa
1 _ . s
+ 5(RD2 + RD*)Vaa + (Do )Wopa + (DIV )W, 5
1
— GPAYVas — (Daa VDG — Ap(VPGas) + (ApV?)Gas + §V”A[bG(ad)]

1 1 1
- §D5V5d(DaR — 3Xa) + EDBVMXB

1 .
DiVos XP

1_; _ 1

_ 1 7 . 7 .
— RRVy4 — gvm(Dﬁxﬁ +he)+ ngdpﬁﬁcag - Zvagpﬁﬁczﬁéy (3.4.36)

3.4.2 Proceeding to second order

We would like to proceed to second order so that we can perform one-loop calcula-
tions. The immediate difficulty we face is that we solved our constraints only to first order.
For example, V (A) might also involve some second order object of the form V¢O,V;, where
O, is some conformally invariant operator. Then in analyzing the variations of the W’s,
we should have worked to second order in V* to find out if any such object exists.

There are two approaches one could take at this point. One would be to return
to the original analysis and redo it to second order and determine what modifications are
necessary. The second approach is to use our ability to take first order variations and to
vary to first order the first order action that we already have — thereby bootstrapping to
second order. This is possible since our first order solution was not dependent on any
specific origin point on the constraint surface of conformal supergravity; it merely required
that we remain somewhere on that surface.

This latter approach is the one we will take. The main difficulty is figuring out
how to vary the quantum superfields V* and ¥". On the one hand, varying these only shifts
the action by a term proportional to the equations of motion, so it’s not an immediate issue
if we choose to work on shell. On the other, if there is some sort of natural variation of
these objects, then we can possibly simplify the second-order action without the need to
apply the equations of motion.

We begin by considering a primary chiral superfield of vanishing weights. In this
way its variation can be defined solely in terms of V% and V. Then varying ® in the most
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natural way amounts to
) 1
P =eV( @)= —iVE+1n— 5V2<1> —iVn+0(V?) (3.4.37)

where we have stopped the expansion at second order. Demanding that the second order
terms agree with the first order variation of the first order terms gives

on=—iVn, S(V®)=—iVid (3.4.38)

(In the calculation one must include an additional factor of 2 since the second variation is
generated from half of the first order variation squared.) The first is a perfectly sensible
definition (it amounts to d.n = 0) and the second implies for the variations of V¢ and X"

Vi = —8VaVi + iV DgVig — V5D Vo + VP Hyas)
0% = iVOD,Y — iViDYE + 2iVOVO By 4 2iVEV iy — VIA,Y

. 1 1 1 1
+ Ve <_2Davabd + §debea — ZVbDand + 4VdeFba> (3.4.39)
In the last equation we have suppressed the r index to simplify notation.
Note that 6V, > VP H,* and §G, = —H,’G} and so there will be no Hp? in terms
like 6(V°2G,). We will similarly identify the combination H,? in the variation of K, and ),

so that this cancellation occurs for these terms as well.

Variation of the n term

Beginning with
oS = / En' (XPK; + P+ ;) +he. (3.4.40)

we consider the effect of a second variation. Given the presence of 7', it is most sensible to
work in quantum chiral gauge where 7’ has no further variation.
Taking the superpotential term, one finds simply

86,5 > / En'n’ Py (3.4.41)
The gauge field term is a bit more complicated:
/1 1
00,5 > /517’ <4n]fm7ijW0”Was + 2frs,l-WM50W;> (3.4.42)
Plugging in 6.W/} gives

1 w 1 . y
86,5 > 1 / EN' frsisWTWE + 3 / En' frs ;WO (iVaX® + Vag W) (3.4.43)
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The term involving X and K; is the most difficult to deal with. We rewrite it as
a full superspace integral and then take the chiral quantum variation?

56,5 5 6 X0’ K + X1iK; (ﬁ3 + 2¢VBXB<§3) + X0 Ky (3.4.44)

The last term we will consider in tandem with P;;. The second term can be simplified by
noting that when Xp = D or A, the result simplifies. First note

DK; = —AKi = +Kij A&7 + K505 8 (3.4.45)
%AICZ- = AKG = Ky AT 4 KA D (3.4.46)
which together imply
0=K5A:87. (3.4.47)
This gives
Kin'm + 2in'K;; (VbDb + ETXT) &+ 2V, D (1K) (3.4.48)

Next we observe that §.X is equivalent to
0.X = XoU +iVX = XoU —iXD Vs + iXDBVB — XAVP+2iV(D)X  (3.4.49)

where we have used (3.4.34) again. Plugging this in and using several integrations by parts,
we can show that the total variation of this term is

56,85 X (iDbeKmi — AV K+ 2in K5 (V + 2)® + SUKay + Ky + Ki;nifﬁ)
(3.4.50)

The combination (V + X) is shorthand for (V*Dy 4 ¥7X,.). Note that the terms involving
V< and Vg have dropped out. We can simplify this expression by combining the first two
terms and then integrating by parts. The result is

866,53 X (—;Vdapa(Kijni)Ddéi + 2 K587 + SUKy + Kijn'i? + Kijnin3>
(3.4.51)
Combining this with everything else yields
§6,S = [Ui(PXKij + P + yij)nj]F +h.c.
+ [Xﬁi G+ XOUN K + 0’ (XK + Vig) 57+ XVKqn' + V' , the
(3.4.52)

3We have written this and many subsequent D-terms without an overall [ E or with the brackets [ ]p to
keep the formulae from growing cluttered.
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where we have defined

Kir = 2iC;X, % 3.4.53

1 ]
yi,r = ers,iWasDa = §Grs,iWaSDa 3.4.54

3.4.55
3.4.56

K:ao'z,ini = _Dd(i)jlpa (anz)

7

yad,i = —frs,iWQst = —Grsﬂ;WgWé

AA,_\/_\
~— ~— ~— =

Variation of the X term

The ¥ term is
/EZTQ}T + XK,)

where we recall
Vr = —%V“ (frsWa®) + hec.
K, = —il;X,® +iK;X,®
The variation of the first term is given by using the formula
§(Ved,) = — iVP(V3V2®,) + ivg(vﬁ'va%) — A (VIVOD,) + 2VETW D,
—iXV2®, — 2i(VE") X, 0, + %vdv%vd%a) + V¥ (6:.D4) (3.4.57)

where @, is an arbitrary chiral spinor superfield. This is written in terms of the old V3 and
V8. Exchanging for the new conformally invariant ones gives

5(Ved,) = — iDP(VaVed,) + mg(vﬂ'va@a) — A (VOVOD,) + 2V, D,
1 .
— iV, — 2i(D*E") X,y + 1véyv?(vaou%) + D%(6,D4) (3.4.58)

In this formula, we have mixed conventions with V’s and D’s appearing in the same expres-
sion. E\_/ery isolated V, (or V4) here is equivalent to D, (or Dg), while V? is equivalent to
D? —8R. A, is in terms of D and this will remain the case for the rest of this work.
Applying this formula to )Y, gives
0V, = —iDP(Va)h) +iDs(VFY,) — Ay (VPY))
+ ivdastWaufsrtftu + iVadWaSWdufsrtﬁu
+ évavz(vadcmwdr) - éVdVQ(VdO‘GTSWQS)
+ izsfsrtyt + Dazsfsrtwauftu - T)dzsfsrtwduftu
1 = 1 _ .
-V (frs V2V E?) — gVa (frs VZVES?)

i i i _j TS
— D fraiWa®) — S DaliP oy ) (3.4.50)
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Including the variation of ¥ and integrating by parts gives
5(ZTY,) = (22'1/0“7)&27“ — %VaDYST 4+ 2iVOV Fy + 2éVé‘Vbed) Y,
+ Voo (—;DaVbed + %debea - %VbDand + iVdeFba> Y,
= 2VHAX")Yr
F VY + éz’"vaW(VmeW“) - ézrvaW(V“GrsWﬂ
+ XD £ ' Wo fru — B Da S5 for W Fra
- ézrva (frs VPV E) — éz’“vd (frsV2VEE?)
+ 0 Vi + Y, 5 (3.4.60)
where we have defined
Vaar = =2 (WEWY for' fru + WEIWE for' fru) (3.4.61)
Varying K, gives
0K, = —iVIDsK, +iV5DIK, + 1 Kiy + P K,
+2K5(V + £)O1X, 8 + 2605 X, 01V + B)8 (3.4.62)

where again
V4+Y=V'D, + 37X,

Including the variation of X and X" gives
X152 XK,) = (2ivaDazr — 2V DS + 2iVOVPFy + 2inVbed> o
. 1 1 1 1
+ Vo (—QDaVbed + 5debea — ZVbDand + 4VdeFba) K.
—VOAKIK, — (A VIS, + 6USK,
+AK S8 + 2KV 'SP + 2K 5507V $
+ XK+ XK i (3.4.63)
Variation of the V¢ term

The V@ term is

[Vb(—4XGb + XK, + yb)] N (3.4.64)

We require the variations of Gn¢, Kaa, and Vg in order to continue.
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The variation of G4 contains the graviton kinetic term. We have already worked
this out in (3.4.36), but we rewrite it here in the compact and useful form

- 1 _ ,
X_l(S(XGad) =0UGua + §Aad5U — Hadbi — iDﬁ(VﬁGad) + Z"DB(V’BGQQ)
1 1 1 _ 1
- *Aao'cA b *DadD b — D2 D2 ad o ad
5 BV 5 BV 32{ , D YWoa + 2DvV
1 1 _
— Gaa VP — Ane(VPGy) + 52)/3 (RDVias) + 52>B-(R1>5vad)
1 1 : 1
_z B DV Bx. _ 2 a
2Dava XB + 2DaVa X/g QWDCGdecbaaad
1 fe7e" N2 D D 1 7" 1
= SVIUD* R+ D*R) — RRVas + 5V DG" + SV Aaa) Gy (3.4.65)
where we have defined
1 : 1 ; 1 . 5
L= . _ _plB DAy . —pryBsBs . ZpyyBB .
W,pq and its conjugate are defined by
B (yiypa = 2i€55Wopa
Rs(v3)ba = 2i€5yWipa (3.4.67)
The variation we need is
X16(~4XVIG,) = — 8iVPDsV G, + 8iV;D VG, — 16VVGag
— 40U (VGy) — 2A,V0U
1 o .
+2(A,V)? — 2(Dy V)% — gDQVaaDQVad +V0y Vag
+ 8V G AV
+ VDI (RDV,g) + VODy(RD Vo)
— VAODLVa X5+ VoD Vo X
1 . o _ .
— 1VMVW(DQJ-'{ + D?R) — 2RRVYV,5 + VOV, A,GY  (3.4.68)
Note that the combination H,? cancels out of the expression.

Turning to the variation of the matter term, we begin by noting that o4 may be
written a number of equivalent ways

Ko = K5Va®'Vi® = V3V K; = Vo K3V
= K;jDa®'Da®’ = Do®'DsK; = Do KD P’ (3.4.60)
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which can simplify its variation. We find after a lot of algebra

MWas = — Hadb’Cb — Z'VBDBICO@ + iVB‘DB’Cad — Aw(vblcb)
+2K5(V + £)¢"Daad’ + 2K5(V + £)¢' Do’
— Aad(Z”ICT) + (AMZT’)ICT
— DV WK, + iDa Vo WK,
iy T Ly BT
2Va (DaW3)K: + QVQ (DQWB)ICT
— 2D, Vs’ X" + 2Da Vo X ()
B (K) B . v K
—Va"Da Xy + Vo DQXB
+Da¢' Da(Kijit’) — Dad Da(Kin')
where again we have collected a number of terms into the combination H,’. The object

X é’c) is defined as

K 1o
x{M = —§v2vﬁlc (3.4.70)

In the chiral model, this can further be identified as the U(1) spinor field strength Xg.
Including the variation of the compensator and V¢ gives
X(XVOK,) = + 20VPDsVK, — 2iVDP VK, +4VOV K ag
+OUV Ky — 2V K AV
F2K5(V + D)0V +2K5(V + 2)S VP!
— AVU(ETK,) 4+ VAUALZENK,
. 1 1 1 1
— Ve <—2DQV”FM + 5DaV" Foa — V" DaFha + 4V”Ddea> I,
+ V3DV X — Vi v, X (Y

1 -
+ Ve (DX + Dy x700)

]. < . = 1 . —= .
= 3V Da® Ds(Kigi¥) + 5V Dad D (K1) (3.4.71)

j

The term arising from varying the Yang-Mills piece is fairly complicated. One
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finds
0Vas =~ Haa" Vs — (BaaV)Vy — iD? (VgVas) + iD(VF Vas)
1 N
DD, .V B _ —pé B8
+ DDV Vi — 1D DiaVyVe
— VﬁﬁGagde — VﬂBGﬁdyaB
1, - 5 1 .
+ ZGMW(VQBWﬂ YW — ZGTSVQ(VwWﬂ YW
+ iVODy(frs W YW5 + iVEDyWIWSS frs — iVIWL frs DyWi — iVEWI Dy ( frsWa*)
— (Gran' + Gy g7 )WIWS
— 2 f WISWE + 2 f s (SWTYWE + %va?vaz’”wg - %Gmwvdz’”wg
(3.4.72)

A number of somewhat complicated looking terms have been introduced in the first few
lines, partly because the H," term is not generated here as readily as in §G, and 6K,. A
more convenient arrangement of the above terms is given by

6¥ai = = Hoa’Vy = iD? (VgVaa) +iD5(V Vac)
— UDyVe) G e(aiyped + PP (GL,D Vi) — D (G, DPVos)

DB RYD - 2D ’yDB o) — DY BBy _pY BBy
+2D7(R7DgVac) + 2D5(R"D Vaa) VW 88 aa) VW 68 e

1 1 1 1
2 <_2Davabar + §DdVbedr - ZVbDanar + 4VbDanaT> Vr
_ BB o i i s
14 y(ad)(ﬂﬁ) (Gmﬂn + Grs,g"?])WaWa
= 2 fy WiE WS + 2ifos (EWDWS + 1 GraVVaX Wi = 1Gr V2V X W,

where we have made a number of definitions. In particular,

1 T S
RY = —1—6GTSW¢ Wy (3.4.73)
_ 1 o
V=_— WO 4.74
R GG W' W (3.4.74)
Yy _ 1 YT/ S
Gad = ZG/"‘SWQ Wd (3475)

These definitions should not be taken more seriously than just serving as convenient names.
RY, for example, is not chiral unless the gauge couplings are trivial. We have simply
identified these combinations since they seem like they shall combine nicely with actual
objects of those names in the graviton propagator.* In addition, we have written “curvature”

1t is plausible, although we haven’t explored this possibility deeply yet, that if the linear compensator
is coupled to the Chern-Simons term for the gauge sector, then the superfields R and G defined in terms of
L will pick up contributions of the above form for the case G,s  6rs.
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terms which will also combine with the similar term in Oy :

1 .
y = —€- r . ¢5 (s (b S
WY oy = 1 Eﬁ <EMWB Dy(GrsW) + e, W5 DO (Grs W)
— o Grs W' (D) + GTSWQTD7W55> (3.4.76)
1 - - -
y = __ TVTD @s TV ST D? s
WY e = ~ 160 Eﬁ <emwﬂ Dy(GrsW) + ey Wy DO(Grs W)
GV (D) = Gl Dy (3.4.77)

as well as the “potential” term
Vﬂﬁy(ad)(ﬂm = Vbiyad - Gadvbyb + VadGbyb
1.5 1
+ v (Dﬁwamﬁ-wg; + DﬁwgDBWm) — 5V B0Vas

1 _ iy 1 _
o 7Vaﬁ. (D2 o 8R)W/BT GrsWdS + gvdﬁ (D2 - 8R)WBT GrsWas

oo

1 1 o
+ 2 VasPaW DY (frsWy") + L VagDa W D3 (frs W)
1 = Br s 1 - Br r oTsys
— gvaBDdI/Vﬁ DY (frsW,*) — gvagpdwﬁ Ds(frs W) (3.4.78)
These look like they could be defined in terms of the new RY and G objects we have

mentioned before, but we will avoid doing so explicitly.
The combination we need is

5(VaYa) =2iVEDVEY, — 2V DPVOY, + 4VVEYns
— AVYUDV) G €aped
1 . : 1
= 5VADHG) D Vaa) + 5 VD (G D Vas)
— VDI RYDyVaa) — VOODy(RVDVis)
1. : 1o
1 aapyy 88y 1 capiyseyy
VDV aea T2V PV W0y
— yae <—;DaVbea + %debFM — iVbDana + iv%%) Vr
o 1. , = -
aaysBB . Qo i = YIS
FVEV o) + gV Cran’ + Cra P YWEWS
+ iV F WISWE — iV f (SWWE
VGV + VGV (3.4.79)
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Variation of the £ term

In the simple linear compensator model, there is one additional term — that in-
volving L. Beginning with

Sp=[L(Vr+ K)]D (3.4.80)

one varies it to find
L 4 -
oS, =L <3L — 2AbV” + Vb(Kb —4Gy) + Kin' + Kjﬁ] + ZTKT> (3.4.81)

3.4.3 Summary

We will break down our results into various sectors.
The terms involving just the chiral (and antichiral) quanta are

S = [UiXKijﬁj] o+ [ (P(XKy) + Py + Yig)n’]  + hc.
The terms involving chiral and gauge fields are

Sys = 4 Kz X, IS + in' frs ;W Vo 5" + hc.
=20 (XK + Vir) 7 + hoc.
The terms involving chiral and gravity fields are
Spv = +Vdapai>jpa(X’Cijni) + VOOWIWS frsin' + huc.
=2V (XKain' + Vai) ' + hec.
The terms involving gravity and gauge fields are
Ssv = (2iVODaY" — 2V DY) (XK, + ;)
— VYAV, — 2X (AVOETK,
+ %VadGrsstvQVQEr _ ivdaGrsWQSVQVdET
+AXKGVO'DPT + 4XK;; 00V &I
+ 20V [ WISWE — 20V f (SW WS (3.4.82)

In the last two lines, we use a single ¥ to denote X" X, acting to the right. It seems
reasonable to rearrange the second line of Sy so that it is proportional to the equation of
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motion.
Sy = (2IVODE" — 20V D) (XK, + V)
—2(A VOIS (XK, + V)
+ 3VMGTSW‘3‘S?2VO‘E’" — %VWGTSW&SVQV@ET
— XDV DAY, 4 XDV, DY,

—25TVIA,
HAXKGVOIRP + AXK; 50V
+ 2V [ WISWE — 2V f, (SWWE (3.4.83)

The term with three spinor derivatives can be rearranged so that it is proportional to
D*Vpoeo(D? — 8R)X"Gs WS, which can be cancelled if we introduce a Gaussian smearing
with the gauge fixing functions DV, for the gravity sector and (D? —8R)X" for the gauge
sector, which is the standard approach. [25]

Next we turn to the pure gauge sector. We find

Sx, =AXK 5SS + ST DOSS £, ' W fry — ST DT for W
1 _ 1 . .
— gzrva(fmvwa?) — gx"vd(meVQZS) (3.4.84)

It is conspicous that for arbitrary holomorphic f,s, the last term yields the three spinor
derivative term X7 (V< f,.s)V2V,X* which it does not seem possible to remove by a smeared
gauge. It is not strictly speaking problematic to have a third order spinor derivative term
(as it is still less divergent than the pure kinetic term and so can in principle be treated at
least perturbatively), but it will lead to a more complicated one-loop analysis.

In any case, it is useful to rearrange the kinetic term into a form involving chiral
projections of 3. We use the identity

%EVO‘( fV2V,E) + hc. =(D,X)G(D,X) + é(@"’ — 8R)XG(D? — 8R)X.
+ <;ﬁd22§d F(D?—8R)S + h.c.>
+ %zpa fEDoR + %zm fEDYR
— 8RRYGY. + %EGZ(DQR + D?R)
— D XGYGDsY + ipazpdz(pm f—Daaf)
+ DSF(WoX) — Da X f(WOE)
+ i@dzpa fDoas + EDQEDQ fD%y% (3.4.85)

In the above, we have suppressed all gauge indices for the sake of a less cluttered nota-
tion. They should be contracted in the obvious way, taking care to note that (W,X)" =
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—WEStf,". We have also chosen to integrate certain terms by parts so that the result is
manifestly symmetric.

It is useful to define a generalized d’Alembertian for ¥ based on the above formula.
We choose

1 . .
0V, 2% =D%(GrsDaX?) — 5D[Q(Gwc;rszﬂ28) + DS GeuWa' fri — DaX* GouW ! fri®
(3.4.86)

so that in compacted notation
1 . .
YOpY = 2DYGD,Y) — 5zp[a(amcn)a]z) — DOSGWLE + D XGWEY  (3.4.87)

This is a generalization of the scalar d’Alembertian Oy discussed in [22], generalized to a
superfield ¥ with a nontrivial gauge sector with corresponding gaugino superfield W,. The
form of this operator also inspired the definition of Oy Vg for the gravity sector.

We may then write

1, _
Syy =X0pY — g(D2 —8R)XG(D? — 8R)Y

- %2G2(D2 —8R)R — %EGZ(@Q ~ 8R)R+4XK;50'2d

1 _ . _
— (8%2@@ f(D*> —8R)X + h.c.)
1

1 o .
— 3EDfEDaR — D [EDR ~ %DQZDQE(DW f = Do f)

[\]

— ZDSD°fDasY — ;DaXDef DT
+ XD WL X fou) — DX WX, fou)

Note the last line involves the gauge generator acting on the holomorphic gauge couplings.
If these are taken to be proportional to the identity, then the last line will vanish.
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We turn finally to the pure gravity sector. The terms are quite numerous:
Syv = (2iV°‘Vbea v 2inVbed> (XK + D))

(+2¢Vﬁpﬂva — 2V, DV + 4vav%gd) (—4X G + XKo + Va)

+2X (A, V0?2 —2X (D, V)% — gﬁvwﬁ?vm + XVOy Vg

— 20 VO (XVOK, — 4XVG,)

+ XVODI (RDgVos) + XVIDy(RDVos)

— VDB (RYDyVs) — VoD 4 (RVD Vig)

= %VWDﬂ (GY;DVas) + %V“DE (G¥.DV,4)

— AV (DpVe) G €aved

+ XVIOD Vil Ky — XVOD VoK)

* %VWDWMW%BB)M) + %Vdawvﬁﬁw%ﬁm(a@

— 2XRRV*Voi + 4XKGVOIV P 4 Vieviy oo (3.4.88)

We have defined

) e B . .
{ sV VoK — X, for the simple linear compensator model (3.4.89)

Ka = 0 for the arbitrary chiral model

We have until now left the gauge for V¢ unspecified. Inspection of its appearance
in all the terms shows that it is always proportional to the equations of motion, so if we
work with the background on-shell then the gauge of V¢ (at least to one-loop order) is
physically irrelevant. We will still choose the particular gauge V¢ = 0 for definiteness.

The above represent the common features of the linear and chiral models. They
also each have a term involving 6U:

S5t = SU(XKynf + XK57 + XK, " — AXVPGy + XVPK, — 2X A, V)

Depending on the model, the variation of the compensator may be quite different. The
simple linear compensator model has

oU=L""c
while the arbitrary chiral model possesses
- 1 . -
0U = — (K + K57 + K, = 4V Gy + VK, — 28,

In addition, for the linear compensator model there are the terms arising from varying
(3.4.81):

L . =
Sp«=L <3L — QAbe + Vb(Kb —4Gy) + Kin' + Kjﬁ] + ZTKT> (3.4.90)
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Combining these two effects gives the second order action for the linear compen-
sator model

@

linear —

= SVV =+ SEV —+ SEE + Sn\/ + Snz + Snn
2

L % _j T
+35 2L (Km + K1 + XK, + V(K — 4Gy) — 2AbV”) (3.4.91)

For the chiral model, we find

@

chiral —

=Syv + Ssv + Sux + Spv + Sys + Sy
. = 2
- ? (ICm’ I+ KX 4 V(K — AG) — 2Abvb> (3.4.92)

For reference, we include here their first order variations as well:

Skar = V(XK — 4X G+ Vo) + S (XKr + V)]

+ ["(P(XK:) + P+ V)] & [ I (P(XK5) + P + y;)]F (3.4.93)
S = VXK, = 4XGo + Vo) + (XK, + V)]

+ [ (P(XK:) + P+ V)] o + [ (P (XK)+P3+y3)}F

+[L£(Ve + K)]p (3.4.94)

Their respective actions to second order in the quantum fields are then given by

Schiral = Séggral + S(Elllzral + 2 Sc(ifral (3495)
2
Slinear = Sl(ln)ear + Sl(ln)ear Sl(ln)ear (3496)

When we consider that the linear compensator model is classically dual to a special
case of the arbirary chiral model, it becomes perhaps unsurprising that their quantum
actions should have so many features in common. This commonality is enough for us to ask
whether the two theories might actually be equivalent at the one-loop level, at least on-shell.
One can in fact make a rather straightforward argument, based on the existing proofs of
equivalence for chiral spinors and chiral scalars [22, 32] that the two effective actions should
be equivalent on-shell at one-loop.

3.5 Conclusion

The formulae listed above constitute the end of the algebraic manipulations neces-
sary to produce a suitable action quadratic in the quantum superfields of supergravity, super
Yang-Mills, and chiral matter. Further steps are necessary to produce one-loop results.

The first step is obviously to perform a gauge-fixing of the gravity and gauge
sectors. Part of the procedure here will involve deciding just how to do it. Even if we
choose a smeared gauge and aim for only 1/p? propagators (as was the guiding principle in
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[27]), we have the option of removing certain terms in Sy or Syy involving operators of
dimension less than two. Any choice must, of course, be physically equivalent to any other,
but certain calculational simplifications may occur only one way.

The second is to actually perform the resulting path integrals. For background
field calculations, one generally prefers a method which is non-perturbative, such as the
Schwinger proper time method or the derivative expansion. Such a procedure here is a bit
more difficult since while the gauge and gravity sectors involve generalized Laplacians, the
chiral sector involves Dirac-like operators. If the couplings between these sectors do not
vanish, some amount of perturbation seems necessary, since the determinant of an operator
with a diagonal consisting of Laplace and Dirac operators is difficult to deal with without
separating out the two sectors.

The first step toward fulfilling this program — the calculation of the effective action
for chiral superfields in an arbitrary supergravity background — is the topic of Part II of
this thesis.
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Part 11

Towards the effective action of
Poincaré-invariant supergravity
theories
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Chapter 4

A brief review: The effective
action for component field theories

4.1 Heat kernel analysis for Laplace operators

The one-loop contribution to the effective action for a generic quantum field theory
usually boils down to the calculation of the regulated quantity Trlog H where H is the sec-
ond variation of the action around the quantum fields. After an appropriate Wick rotation,
H usually becomes a differential operator with a positive spectrum — at least perturbatively.

For example, the Euclidean effective action for a complex bosonic field ¢ at one-
loop generically amounts to performing the path integration

P /ngexp <—/d4$\/§q_5(—m +Q) gZ)) (4.1.1)

where O is some covariant Laplacian and @) is a generic matrix which may depend on
background fields. To define the path integral requires specifying the measure. This is
usually done implicitly by specifying the meaning of Gaussian integration. A sensible choice
is

/D¢>exp (—/d4x\/§ q3¢> =1 (4.1.2)

This defines (;3 = g'/%¢ as the path integration variable and guarantees a manifestly diffeo-
morphism invariant measure.! For any internal symmetries it will often also be manifestly
invariant since ¢ is usually in the conjugate representation to ¢. For classically Weyl in-
variant theories where ¢ has unit scaling dimension, one has @ = —%R + V where V is
some conformal field of dimension 2. The Ricci scalar in () combines with O to give the
conformally invariant Laplacian, 0O 4+ R /6. Unfortunately, the measure is not conformally
invariant and this leads to the familiar conformal anomaly.?

!The measure is invariant because the “1” is invariant on the right side, the integrand is invariant on the
left, and so the measure should be also.

20ne could choose instead a different power of g in defining the measure to make it conformally invariant,
but this would trade a conformal anomaly for a diffeomorphism anomaly.
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Using the definition of Gaussian integration, the Euclidean effective action is given
by

' =TrlogH = -T (4.1.3)

where H = —0 + @ and I is the Minkowski effective action. We would like to efficiently
calculate properties of this object. One method to calculate Trlog H is Schwinger’s proper
time technique. One makes use of the matrix equation®
 dr
Trlog H = —Tr/ 7exp(—7'H). (4.1.4)
0

which holds — up to an infinite constant — in the basis where H is diagonal. (To prove the
equality, one differentiates both sides with respect to the eigenvalue of H.)

Usually H is afflicted with ultraviolet divergences. Then the above definition can
be modified in several ways. One way, which is quite similar to dimensional regularization,
is to add extra powers of 7 in the definition of the trace:

* d
[Trlog H], = —uQsTr/ Tlis exp(—7H). (4.1.5)
0

The parameter u has dimensions of mass and is added only to make the final result dimen-
sionless. The integral then formally gives

[Trlog H], = —Tr (;) ) I'(s) (4.1.6)

Since the result is proportional to (z(s), the zeta-function associated with H, this approach
goes by the name of zeta-function regularization. Differentiating with respect to H gives

{Trlﬂ =m { (;) B %F(s + 1)} (4.1.7)

with the limit agreeing as s tends to zero.
Another method, which we shall adopt, is simply to introduce a small cutoff for
the parameter 7:

*d
[Trlog H], = —Tr/ —Texp(—rH). (4.1.8)
e T

Differentiating then gives

[Tr}ll] = Tr <eH;I> (4.1.9)

The parameter € has dimensions of length squared (or inverse energy squared).

3Tt is not necessary for the function in the integral to be an exponential. Any function f with certain
boundary conditions — namely f(0) = 1 and f(oco) = 0 sufficiently quickly — would work. The advantage of
using the exponential is the ease of differentiating it.
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In many problems, one can use either regulation scheme by working in a momentum
basis, performing a derivative expansion, and then doing the resultant momentum integrals.
But it is advantageous to have a formalism which does not require doing so directly. Such
an approach is the heat kernel.*

The heat kernel is the formal operator U(7) = exp(—7H). Its two point function
is given by

Ulz,z';7) = (z]e ™). (4.1.10)
and is subject to two conditions: the initial condition U(z,2’;0) = §(z,2’) and the “heat
equation”

auv
dr
One is usually concerned with H’s which are perturbatively related to the Laplacian Hy =

—0™0,, in flat space. This case is directly solvable via Fourier transform.® The result
(written in four dimensions) is

—HU. (4.1.11)

1
Up(z,2';7) = Wexp (—|z —2')?/47) (4.1.12)
This can be generalized to H = —9™0,, +m? for constant m? in d dimensions by®
1

but we will keep d = 4 in all our calculations.
When the model is modified with a potential or to include a Yang-Mills gauge
field, one expects the corrections to U to come in a simple perturbative way. One takes

Uz, 2';7) = 5 €XP (—|z — 2'|?/47) F(z,2';7) (4.1.14)

1
(4mT)
where F(7) is assumed to be an analytic function in 7 regular at 7 = 0 and obeying
F(xz,z;0) = 1. Applying the heat equation to this ansatz for U gives

OF | Liym _ ym\Dy F = (D™ Dy + Q)F (4.1.15)

or T

where we have taken H = —0 + Q. 7 Taking y = v — 2/, O = —H, and writing F =
ZZO:O a,7"/n!, we find a set of recursion relations for the coefficients a,

1
an + —y" Dpan, = Oay_q (4.1.16)
n

4The heat kernel method has a long history, with much of its properties worked out originally by DeWitt
[33]. A review of the heat kernel can be found in [34].

This is the only location where a momentum basis calculation is used.

5Zeta function regularization essentially replaces d in this formula with d — 2s, which is why it is similar
to dimensional regularization.

712 @ contains a constant mass term, one generally separates it out by positing F' to have an overall factor

e—Tm
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for n > 1, and
y" Dpag = 0. (4.1.17)

for n = 0. These relations can be solved as power series in y for each coefficient, using the
initial condition that [ag] = 1, where the brakets denote taking the “coincident limit” of
y=z—x —0.

The inclusion of gravity requires one to reinterpret |2 — 2|2 = 2 in a coordinate-
invariant way. One makes the replacement |z —2'|?/2 — o, where o is a symmetric bi-scalar
function (that is, a scalar function of both = and z’). The heat equation becomes

2 o oF 1 Oo 1
——F+ —F4+ —=—V%VyoF - —F—--V%V.,F-HF 4.1.18
T + 272 + or  4r2 TVa? 27 T TVa ( )

In order for F' to be analytic at 7 = 0, the term that goes as 1/72 must be trivially satisfied,
giving

20 =V%V,0o. (4.1.19)
This equation, together with [V,o] = 0 and [V,V,0] = 74 uniquely determines o as

0 = 3gmn(2’)(z — 2")"™(z — /)" + O((z — 2’))3. The remaining equation can be written in
a form analogous to (4.1.15) provided we rescale F’

F — AY?F (4.1.20)
where A obeys
Ve V,logA + 0o =4 (4.1.21)
with the initial condition [A] = 1. The resultant equation reads

oF | lV“crvaﬁ = ATV2OAYV2E = OF (4.1.22)
or 7
where O = A~1/20A1/2,

The bi-scalars o and A are well-known from the study of geodesics. o is the
geodetic interval — half of the integral of ds? along the geodesic connecting 2’ to z. A
is known as the Van Vleck-Morette determinant and represents the Jacobian between an
arbitrary coordinate system and geodesic coordinates. The precise definitions of these
objects will not concern us, since we will show that in a suitable coordinate system both o
and A take especially simple forms.

Expanding F in a power series, we find the set of recursion relations

1 -
an + EV“UVQZLTL = Oap-1 (4.1.23)
for n >1 and

VoV aio = 0. (4.1.24)
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for n = 0. These relations were first written down by DeWitt [33] and solved recursively,
using the  — 2/ limit of certain quantities to derive all of them.

The importance of these coefficients lies in recalling the definition of the regulated
determinant:

[Trlog H]. = Tr/ @exp(fTH) = / ﬂTr(aﬂU( )|x) (4.1.25)
€ T €
dr 1 -
dr 1 S R
= — _— —Tr|ay, 4.1.2
/6 T (477)? vt n! T [an] ( 7

where we have used [0] = 0 and [A] = 1. The total effective action is given by the z = 2
limit of the coefficients a,,. In particular, the divergent terms in four dimensions are

[Trlog H|. = 16 — d*z/g Tr <[] + u - u log e + ﬁmte> (4.1.28)

where the limit = 2’ has been taken.

Since the coincident limit of the heat kernel coefficients are by construction local,
the divergences in the above expression can be removed by adding local counterterms. One
can take

A = +163 /d4xfT (H—I—[al]—[a;]loge) (4.1.29)

and then the regulated trace can be defined as the limit where € tends to zero
[Trlog H]yeg = lim ([Trlog H]. + A) (4.1.30)
e—0

The result is explicitly e-independent and corresponds to a minimal substraction scheme at
one-loop.

This is not the only application of this method. In particular, any theory with a
potential anomaly at one-loop can be understood by the nonzero symmetry transformation
dyH where g is an element of the potentially anomalous symmetry group. (This can be
seen to arise via the non-invariance of the path integral measure, which was Fujikawa’s
perspective [35].) Using the proper time regulation scheme, the transformation of the
effective action is given by

dg[Trlog H] = —Tr/ d—T(S exp(—7H) :/ drTr (64H exp(—7H)) (4.1.31)

where we have used cyclicity of the trace. In most cases of interest, the anomaly has the
form 6,H = aAH +bHA for some numerical coefficients a and b and some quantity A which
may or may not be local. Then using cyclicity of the trace, one finds

dg[Trlog H]c = (a + b) /OO drTr (AH exp(—7H)) = (a + b)Tr (Ae—EH)

iJf / . ([Aao] [A311+[A;21+@(6)> (4.132)
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In the case of the conformal anomaly for a conformally invariant action, ¢ = 3 and b = —1
(that is, H' = e3*He ™) and A is a local function, one finds

0c[Trlog H|. =

1%2/#%@T4?ﬂ?L+%?ﬂ+AMﬂ+O@0 (4.1.33)

Usually (and we will demonstrate this) the coefficients [a,] are such that the conformal
transformation of the counter terms cancels the effect of the two leading divergences. Then

we may take € — 0 for the finite regulated action and find the finite conformal anomaly
depends only on [ag].

4.1.1 Analysis in normal coordinates

DeWitt’s original analysis of the heat kernel coefficients was performed using the
recursion relations and the differential equations for o and A. This approach works reason-
ably well for the first few coefficients but quickly becomes unwieldy. A much more efficient
method was developed by Avramidi [36], who was also the first to evaluate the coefficient
[a4] in curved space. We will review how his approach works here using normal coordinates,
which we reviewed in Section 2.1.2.

In normal coordinates, one would expect the geodetic interval to take the simple
form

p— (4.1.34)
2
where y is the normal coordinate for z centered at z’. In order for this choice to obey the

required equation (4.1.19), one must have
Voo =€ Ym = 0" Ym = Ya (4.1.35)

Normal coordinates possess the property that y™e,,* = y* as well as y%e,™ = y™, but
the condition we require is slightly different. It can be shown that if the stucture group
is Riemannian plus some internal degrees of freedom, normal coordinates possess also this
additional quality.®

The Van Vleck-Morette determinant is also quite simple in this coordinate system:

A = det(e,™) = det(e,,*) ! (4.1.36)

which is essentially the Jacobian between x and the normal coordinates y. It is straightfor-
ward to show this obeys (4.1.21).
The recursion relation for the coefficients now reads

(1 + g) an = Oty (4.1.37)

8For Einstein-Cartan geometry with torsion, one can define normal coordinates using a Riemannian
connection and then relate the results with Riemannian curvatures and derivatives to the torsioned quantities.



114

where D = V%V, = y™0,, with the special case Day = 0. These can be formally solved
by taking ag = 1 and

an:<1+§>_l(§(1+ D1>_1@---(1+D)_1(§. (4.1.38)

n —

The operator D = y™0,, can be thought of as the derivative along the Riemannian geodesic.
It is formally a one-dimensional derivative and possesses eigenvalues |n), which are the
totally symmetric n-tensors

1
n) = |by,...,b,) = ﬁybl ceegPr (4.1.39)

where D [n) = n|n). Provided we are concerned only with quantities which are analytic in
y (i.e. only those quantities which admit an analytic normal coordinate expansion) this set
of eigenvalues forms a basis. Associated with these tensors are the dual tensors

(m| = (a1,...,am| = 0uy -~ Da,,- (4.1.40)
The inner product (m|n) is defined in the obvious way with y = 0 taken at the end:
(mln) = Smndot . (4.1.41)

We can therefore solve for a,, as a power series in y. In the language of the bras and kets,
o0

in = Y _ |k)(klan) (4.1.42)
k=0

where

Hay = Y <1+f;)_1 <1+ Z"_‘ll)_l---u + ) x

Jrdho120
(k[Oljn—1)(in-110ljn—2) - - - {j1|O[0) (4.1.43)

The y = 0 limit of a, is given by (0|a,) = [a,] and its kth order derivative given by the
k-tensor (k|a,).

The essence of (4.1.43) is that the heat kernel coefficients are given by matrix
elements of the operator @. To evaluate such elements, we first write O in terms of normal
coordinates as

O = X"™8,0p + Y ™0 + Z (4.1.44)

For the case O = A~Y/2(V*V, — Q)A'/?, we find
an — gmn
ym — _Qanhn + angnm

Z = gmnhmhn - ngnmhm - gmnamhn — Q + A_1/2VQVGA1/2 (4145)
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where h,,, is the connection found in V,,, = 0,, — hs,. Z can be rewritten as
Z =g hmhn — Ong" " hiy — g7 O — Q

1 1 1
- iang”mam loge — §g”m8m8n loge — Zg”mam log edy, loge (4.1.46)

which shows that the original operator O could have been written
0= g_1/4vmgm"\/§Vng_1/4 (4.1.47)

This is an indicator that we have essentially used the scalar density ¢'/%¢ as the path
integral variable. Moreover this operator is manifestly symmetric. We will encounter a
similar structure when we deal with chiral superfields.

The divergences and anomalies are related to the y = 0 limits of the first three
heat kernel coefficients. The zeroth coefficient is the simplest, (0|ag) = 1, and gives the
quartic divergence.

The quadratic divergence is given by the first coefficient

(0a1) = (0]0)0) = [Z]

To evaluate [Z], first note that
1
2] = ~Q - LB loz ]

in normal coordinates as y — 0. (Clearly [0y, loge] vanishes since there are no covariant
vectors of the right dimension to correspond to it.) We need the expansion of loge to y2.
The vierbein in normal coordinates is given by

1
ema - 5m(l + gRymya + O(y3)

where we have used the notation that a y in an index slot means a y is contracted with that
index. Thus loge is given by

1
loge = gRyy + O(y®)

where R, is the Ricci tensor. One easily finds
1
(0la1) = —Q — 6R (4.1.48)
The logarithmic divergences are given by the y = 0 limit of as:

(Olaz) = > (1+j1)~" (0O]51) x (j1|O0)
J1=0
Although the sum is over all values of j;, the first matrix element vanishes for j; > 3. We

easily find
(0fin) = (2" + 5[V ™[0 7] + (X080 7]
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Using [X™"] = ™" and [Y™] =0,
N 1\ 1.

The remaining term is a little complicated to evaluate. Begin by expanding it out, using
[hm] = 0 and [Opgmn] = O:

1 2 2 1
g[(?m@mZ] = g[gpqﬁmhpﬁmhq] — g[amapgpqamhq] — g[gpqﬁm(?maphq}
1 1
- g[amamA—anvaAl/?] — 5[0"0Q)]
where we have used that [h,,] = 0 and [Opgmn] = 0. Most of the terms can be evaluated by
noting

g =n - gRy y T 0(93)7 b, = §~7:ym + O(?JQ)

These give
1 1 1 1 1
S[0m0Z) = ZF? — Z0Q — Z[0%0™hy] + S [0*ATY20AL/?
L(0m0n7) = S~ 50Q — (0RO hy] + (0PA 7 P0AN?)
The gauge field h is given to cubic order by
1 1 1 1
hn = 5 Fyn + 3 VyFyn + §V§fyn - IRynybIby +O(y*)

and one easily finds [0™0,0"hy] = 0.
The remaining term is significantly more messy. After some work, we find

1 1 1
[0, ATV2VOV, AV = —gv%z - %Rabmb + ER“”“Z (Rabed + Radeb)
1 2 1 b 1 bed
= ——V>R — —RYRy + — R Ry,
5V 30 T bed

using the symmetry properties of the Riemann tensor. The second heat kernel coefficient
(and the logarithmic divergences) is then given by

1

1 1 1
FOR = R Rap + 5o B Rapea — 50Q  (4.1.49)

0lgo) — 1722 L
o) = (@ + ) + 57 - 3

It is useful to rewrite some of the quantities appearing here. The square of the
conformal Weyl tensor can be written

1
CadeCabcd = RadeRabcd — QRGbRab -+ —R? (4.1.50)
3

This quantity (and Cgpeq itself) transforms covariantly. The four dimensional Gauss-Bonnet
term

Ly = R Rypeq — 4RV Rap + R?

2
_ CadeCabcd _ 2RabRab + §R2 (4151)
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is topological, its integral being invariant under arbitrary local (including conformal) defor-
mations of the metric.
We can thereby rewrite [ag] as

L 1.\ 1., 1 1 1 (3 ubed 1
<0|CL2> — <Q + 6R> + gf - §|:| <Q + 6R> + % <2C Cabcd - §LX - DR)
(4.1.52)

It is worth noting that if we wanted H to transform covariantly under conformal
transformations, we would choose ) = —%R + V where V transforms conformally. Then
[a1] and [ag] would be

la1] = —V (4.1.53)
1 1 1 /3

V2. -F2_ bl
2] = V2 4 2 F2 - 2OV + <2

1
90 CadeCabcd — §LX — DR) (4.1.54)

and [a1] would be conformal (with dimension 2) and [a2] would be conformal (with dimension
4) up to total derivatives.
Thus if we calculate the conformal transformation of the counter-terms, we find

[a

/d4x\/§Tr <4AE§] + 2A[“ﬂ> (4.1.55)

€

1
§ A =+ ——
e = 162
and the regulated trace anomaly is finite and given by

1

50 [Tl" IOg H]reg = 1672

/d4$\/§ Tr (Afaz]) (4.1.56)

4.2 Heat kernel analysis for Dirac operators

A common Dirac fermion model is
S— / dhe\ /G (BT + Fp0) (4.2.1)

where j is a generic mass term and Y = 7%V, is a covariant derivative. Written in two-
component notation, the Lagrangian is

(x* W) ( 11607 0, sVa ) ( Vg > (4.2.2)

i&ffﬂ v U5d5' >—<5

We assume ¥ and VU to transform in conjugate representations. This means that the Weyl
fermion v is gauge conjugate not only to ¥ but also to y.
One can define the path integral of a Gaussian in the obvious way:

/D\Ilexp <—/d4x\/§@\1?> =1 (4.2.3)
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This definition is clearly diffeomorphism, Lorentz, and gauge invariant and so we expect
these symmetries to be non-anomalous. The (Euclidean) effective action is

I'p = —Trlog D (4.2.4)
where
D=i¥+u (4.2.5)

One normally proceeds using the standard fermion doubling trick, arguing that I'g cannot
depend on the sign of u. Equivalently, one could argue that I'r cannot depend on the
convention for the gamma matrices. Either way, one can introduce a new operator with a
relative sign flip between the kinetic and mass terms

D=—iV+pu (4.2.6)
which should yield the same determinant as D. Then one may define
I'g = —%Tr log D — %Tr log D = —%Tr log(DD) (4.2.7)
where?
DD = 1% —i[V, u] — FupS® — O (4.2.8)

A greater level of sophistication is required when the model of interest is chiral.
Taking the above model with y = ¥ = 0 we find in two-component notation

5— / dw/5 (1057 b0 (4.2.9)
A Majorana mass term may be included:
. 1 1- .
S = / dz\/g <wd&g“vb¢a + §¢au¢a + 2%,1«,&@) (4.2.10)

The difficulty with this model arises because the simplest Lorentz invariant definition for
the Gaussian path integration is

/Dwexp <—;/d4x\/§(1/)2 +¢2)> =1 (4.2.11)

For the massless case, the classical action is gauge invariant but the measure is not.°

9The same basic approach holds if we replace 1 — g + iv7s. The only major modification is that one of
the terms generated is linear in a derivative, vy57%V,, which must be treated as a matrix connection. One
absorbs it into a new definition of the derivative V' and again proceeds as before.

10The measure used here has the structure of a Majorana mass term, which in four dimensions joins objects
of the same chirality. In d = 2 + 4n dimensions, both the Majorana mass term and the Dirac mass term
join objects of opposite chirality and so there is no Lorentz invariant way to define Gaussian integration.
This is one way of explaining the celebrated gravitational (or Lorentz) anomaly found by Alvarez-Gaumé
and Witten [37].
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Explicit two-component notation can be avoided by combining 1 and 1) into a
Majorana fermion W,; where

_ . W
Uy = (9 s ), \I’M:<1’/—)g>
Then the action reads
1 B N
s=1 / Ay /g0 (i + ) oy (4.2.12)

with measure

/D@Dexp (—;/d‘lx\/@DM\I'M) =1 (4.2.13)

where i = Re p + ¢y5 Im p is the Majorana mass and the Majorana derivative is

- 0 o -@a
v=[ . af 4214
gihyga ( )

where V,, is the derivative in the representation of ¢ and V, is the derivative in the conjugate
representation of ¥. This is problematic even in the massless case since the square of this
object involves operators like V,V}, which do not transform covariantly and therefore make
calculation especially difficult.

X We restrict ourselves now to the case of vanishing Majorana mass. Defining D =
iV, path integration yields a Pfaffian, which can be interpreted as the square root of a
determinant:

1
' =—logPfD = —iTrlogD (4.2.15)

The properties of the effective action are then related to the properties of the determinant
of the operator D. This operator can be thought of as a mapping

D:Cu(r) & O_(F) = CL(F) @ C_(r) (4.2.16)

where r is the representation of ¢, T is that of ¥, and + and — denote the positive and
negative chirality sectors. As a formal operator, its determinant is ill-defined since the
domain and range are different spaces; this is just another way of saying that its determinant
does not transform in a gauge-invariant manner. One way of making sense of this object is
to note that when the gauge coupling vanishes, D ceases to a problematic operator since
there is no longer a distinction between a representation and its conjugate. Varying the
trace with respect to the coupling, we find

§Trlog D = Tr (D7'6D) (4.2.17)

If this expression can be suitably regulated and then integrated, we are left with a reasonable
definition of the effective action. This approach was pioneered by Leutwyler [38] in the case
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of fermions and by McArthur and Osborn for the case of chiral superfields in background
Yang-Mills [39].
Following Leutwyler, we regulate (4.2.17) by introducing the dual operator

- 0 —10% .V,
D = ( af > (4.2.18)

—igihya 0
so that
~ —0 — Fppo® 0
H=DD = - ~ 4.2.1
< 0 -0 — fabﬁab ( 9)
Fap = —[Va, V] is the field strength associated with the covariant derivative and o =
1(0%6® — 0%57) in the conventions of [6].
We define
o
Le=Tr (=¥ D7'6D) = Tr / ar (7 DoD) (4.2.20)
€

This operator can be separated into parts which are even and odd under parity: L. =
LY + L7 where

L} = %Tr / dr (e*TH DSD + e H D(SD) (4.2.21)
LD = %Tr / dr <e_TH DD —eH D5D) (4.2.22)

The operator H = DD is the conjugate of H. Using cyclicity of the trace, one can imme-
diately deduce that

L= 2Tr/ dr (e ™MsH) =6 <_2ﬁ/ dTe—TH> = O[T log H]. (4.2.23)
€ € T

which is trivially integrable. In retrospect, the even part is certainly integrable since it
corresponds to introducing a Weyl spinor y transforming as v; then one can simply combine
1 and y into a Dirac fermion. A straightforward calculation shows that

%[Tr log H]. = — 217# <Tr2[§] | Trlat) élogeTr[aQD] + ﬁnite) (4.2.24)

where
Tr[ad] = 4 (4.2.25)
Tr[a?] = %R (4.2.26)

4 1 11 1
Tr[ad] = —§Tr(F“bFab) - Ecabcdcabcd + g lx t EOR (4.2.27)
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The odd part is not generally integrable. If it were, then L_ would be the variation
of the odd part of the effective action. Interpreting the § in L_ as a differential operator,
L_ would be an exact form and would obey L. = 0. However, one can show that

1 -~
C.=6L7 =¢ / d\ Tr (6De_6)‘H6De_E)‘H) (4.2.28)
0

(where A=1- A) does not vanish in the limit of vanishing ¢ due to singularities in the
small € limit of the heat kernel operators appearing in the expression. Since dD = —w and
8D = — are local operators, we can perform the trace with a single insertion of a complete
set of states, giving

Ce = e/d4x d4x'\/§\/?/01 d\Tr (w(a:)U(a:, o' eN@(2)U (2, 2; ei)) (4.2.29)

Since o(z,2') = o(2',z) and A(z,2") = A(2/, x), the above can be written as

_ 1 ' 1 4, 74,1 7 —0 /2N /
Ce = (16772)263/0 d)\()\5\)2 /d xdz'\/g\/g'e Az, z")
Tr (w(x)F(:L', o N () F (o, z: d)) (4.2.30)

One chooses 2’ to be expanded in a normal coordinate system 3’ about x. Then rescaling

Y =y X 2V e

1 ~
Ce = 1671T46 /d4x\/§/0 dA/d4yey2 Tr (@) Fla /s NOW) P 25 60)) (4.2.31)

One generally finds that Tr(ww) vanishes (it certainly does in this case) and the triviality
of [ag] guarantees that the only contribution comes from the two a; coefficients:

C=1lmC, =

lim 3271_2/d4$\/§Tr (wlai]w + wola]) = 22/d4x\/§Tr (wawpFeq) €04

8
(4.2.32)

where d A, = wp. This vanishes precisely when the symmetrized trace of three generators
vanishes. This is the standard anomaly cancellation condition and implies that the odd
part of the effective action can indeed be defined.

Since C' is by construction an exact local term, it can generally be represented as
the variation of a local finite counterterm —¢ (defined up to a closed form). Then one may
add this counterterm to the L. and define (schematically)

1
d[Trlog D], = 56[Tr log H]e + (L. +0) (4.2.33)
Trlog H is generally free of gauge (but not conformal) anomalies, and so the gauge anomaly

is found in the two terms L_ and ¢ by considering 0D to have the form of a gauge trans-
formation. Then L_ gives the covariant gauge anomaly and ¢ a finite piece which ensures
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that the sum has the form of a consistent gauge anomaly. Since ¢ is defined only up to
a closed form, the consistent gauge anomaly is defined only up to the gauge variation of
some local term. The definition of [Trlog D], so arrived at is not likely to coincide with
what we would have found by naively squaring the operator, since the regulation method
we have used here damps out the high energy spectrum of the gauge invariant operator H,
whereas damping the high energy spectrum of D? does not have a gauge invariant mean-
ing. The method used here is to be preferred since C' is generally free of divergences and
therefore the divergent part of [Trlog D], is straightforwardly integrable. This procedure is
quite analogous to the normal perturbative calculation, where one finds that the triangle
diagram is not itself divergent but when regulated produces an ambiguity in the effective
action which requires a prescription (which can be interpreted as the addition of a finite
local counterterm) in order to be defined.

4.3 Mixed Laplace-Dirac operators

One generally does not encounter an isolated Dirac or Majorana fermion in models
of physical interest; generally they mix with bosons. One therefore requires some general
prescription for how to define the effective action in these situations.

For definiteness, we will give a specific schematic model:

S = /d4:c\/§ <;¢>H¢ + %@D\y + ¢Q\1:> (4.3.1)

where V¥ is a Majorana fermion, ¢ is a boson, and @ is some interaction term. If @) were
zero, one could proceed by combining results of the previous two sections, so we proceed in
a way that generalizes most easily to the () = 0 case. Naturally, such a method will be a
perturbative one.

We begin by making note of the following Dyson-like expansion:

Trlog(H + V) = — / ﬂe—r(HjLV)

-
1 T .
= Trlog H + /dTTI“(B_THV) ~3 /dT/ doTr(e Ve ?Hy) 4 O(V3)
0
(4.3.2)

Here we have not specifically regulated the trace but one should assume some regularization
scheme to be in play; the details do not specifically affect the calculation.
Our original action involves an operator H with the structure

( H Q
H‘(QTD)

when understood to act on the space ® = (¢, ¥). We introduce the dual Dirac operator

o~(3 3)
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Then we seek Trlog H via Trlog H = Trlog(DH) — Trlog(D). Writing

~ _ H Q _

where Hj is the diagonal and V the off-diagonal pieces, we then have the formal expression

TrlogH = Trlog(Ho + V) — Trlog D. Making use of the perturbative expasion in V, we
immediately arrive at

TrlogH = Trlog H + Trlog D + C

C= —/dT /T do Tr(eiGHQeféf)D]jQT) +0(QY (4.3.3)
0

where for Trlog D, we take the definition given in the previous section. Note that were it
not for the need to regularize the 7 integral, C would be formally independent of D since the
integration variables could be swapped from (7, 0) to (o, ), with the & integration formally
yielding D~1D1.

Properly regulated, (4.3.3) serves as the definition of the effective action for a
mixed Laplace-Dirac system. The advantage of this perturbative definition is that it is
independent of certain choices made in the steps leading up to it. For example, if we
were to have multiplied H on the right by D, the perturbative result would be completely
equivalent even when requlated.



124

Chapter 5

Effective action of chiral superfields

5.1 Physical motivation and previous work

As we have discussed, the most straightforward kinetic coupling of chiral super-
fields to (old) minimal supergravity involves an exponential factor involving the Ké&hler
potential in the form

3
S=—" [ dzEe KR (5.1.1)
K
Here we have restored the Planck length 2, which previously we have set to one. The limit
of k2 — 0 represents the decoupling of supergravity from the Kihler potential, and the
globally supersymmetric Kahler term is restored with the familiar Kéhler invariance of

K—-K+F+F (5.1.2)

In the locally supersymmetric case, the action is invariant under a certain combination of
Kahler and super-Weyl transformations under which the determinant F of the supervierbein
transforms counter to the Kahler potential. However, this coupling of K yields a noncanon-
ical Einstein-Hilbert term which must be fixed either by a complicated component-level
rescaling of the various supergravity fields [7], or via the reformulation of the geometry of
superspace to the so-called Kéhler superspace formulation [6].

In either formulation, calculating the effective action for chiral matter coupled to
supergravity in superspace itself (thus maintaining manifest supersymmetry) is a difficult
task. The Kéahler formulation, while being more elegant for classical calculations, makes the
origin of the supersymmetric form of the Kéhler anomaly unclear [40], as it undoubtedly
becomes intertwined with conformal transformations. On the other hand, calculating in the
original formulation (as advocated in [40]) is clearly an inelegant task.

Here we advocate an alternative route. Having introduced the formulation of
conformal superspace, the original action can be rewritten

S = —% /dSzEQ()(I)oe_”QK/S (5.1.3)
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where @ is the conformal compensator, originally introduced in [23] at the level of the
tensor calculus. As is well known, the original Poincaré formulation is found by the gauge
choice @y = 1 while the Kahler formulation is found by the choice &g = e K/6 The original
Kaéhler symmetry in the conformal formulation is then a classical symmetry of the action
provided we also transform

By — e 16 (5.1.4)

We have subsequently shown how to expand generic actions coupling supergravity, super
Yang-Mills, and chiral matter to quadratic order in quantum superfields in order to enable
the calculation of one loop effects in arbitrary locally supersymmetric models in superspace.

As a first step toward that result, in this chapter we will formally construct the one
loop effective action from all chiral loops'. Our approach to the calculation is not a new one,
but constitutes a generalization and combination of two classic papers by McArthur [41] and
one by Buchbinder and Kuzenko [42] calculating heat kernel coefficients in a Poincaré super-
gravity background2and another by McArthur and Osborn [39] about calculating anomalies
in supersymmetric gauge theories.

This chapter is divided into two sections. In the first section, we consider the
general case of chiral superfields coupled to arbitrary background supergravity and super
Yang-Mills. The results are similar to those found in [41, 39], except for the change from
Poincaré superspace to U(1) superspace, which as we have shown can be understood as
a gauge-fixed version of conformal superspace. In the second section, we apply the chiral
loop calculation to the action (5.1.3) with the addition of a superpotential term. We find
the covariant form of the reparametrization, Kéhler, and gauge anomalies in a form which
is non-perturbative in the Kéhler potential, thus expanding the well-known results of [40]
which restricted to a limited set of these anomalies. The remaining non-covariant part
will be dependent on the precise choice of the definition of the effective action, and should
presumably be fixed by details of the actual UV completion of the theory.

5.2 Setting up the problem

The standard textbook coupling of supergravity to chiral matter can be described
by the conformal action®

S =-3 / d*0ED e K3 + < / d*0EDIW + h.c.>

— 3 [@poc ]+ (@], +he) (521)

'We include the conformal compensator but exclude any chiral fields that may (and will) be introduced
by the gauge-fixing procedure in the supergravity and super Yang-Mills sectors.

2McArthur worked in normal coordinates, which is the approach we will take in order to most easily
apply Avramidi’s non-recursive method. Buchbinder and Kuzenko worked in a generally covariant fashion
and necessarily identified more of the interesting features of the supergeometry. See for example their
followup paper [43] where the anomaly term was integrated.
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In this expression, K is the Kahler potential, a Hermitian function of the chiral superfields
®' and their antichiral conjugates ®’; W is the superpotential, a chiral function of only
®’; and ®( is the conformal compensator, the only chiral superfield with non-vanishing
conformal and U (1) weights, which are 1 and 2/3, respectively. We denote the conformal
and U(1)g weights of superfields by the ordered pair (A, w), so ®y has weight (1,2/3) and
®g has weight (1,—2/3). The action is invariant to redefinitions of ®y — ®pef/? provided
K and W transform as K — K + F + F and W — e FW. When ® is absorbed into the
frame of superspace, its reparametrization becomes the super Weyl symmetry of Howe and
Tucker [20] and the combined transformation is the Kéhler transformation.

Because the conformal requirements of the action are satisfied by ®g, K and W
are allowed to be arbitrary. To retrieve the original minimal supergravity formulation, one
fixes the conformal gauge by taking ®; = 1. The formulation of Cremmer et al [44], found
by taking ®y = W~1/3, is strictly valid only when W nowhere vanishes. The formulation
of Binetruy, Girardi and Grimm [6] corresponds to @y = e//6. Yet in each of these for-
mulations, the quanta of ®y remain in the Poincaré supergravity sector. Therefore, we will
avoid explicitly fixing the gauge of ®y until after path integrals are taken.

This is not the only way to define a supergravity theory in superspace. Another
possibility is to allow the fields ®* to have non-vanishing conformal dimension. One is
immediately led to the more general form

S=[Zlp+I[Plp+[P]s (5.2.2)

where Z is a weight (2,0) function of chiral superfields ®/ and their conjugates, and P is a
weight (3,2) purely chiral function. In the gauge where Z = —3, the Einstein-Hilbert term
has the standard normalization. This more arbitrary choice is classically equivalent to the
previous one by choosing to single out a particular chiral superfield of weight (1,2/3) and
rescaling all of the other fields by it, turning them into projective variables. The Kahler
symmetry is then a redefinition of the projective coordinates.

One may also choose to allow more general superfields than chiral ones. A linear
superfield of weight (2,0) allows one to formulate new minimal supergravity, where the
matter couplings can be described by

S > [LK], (5.2.3)

Here K is a Hermitian function of chiral superfields ®° of vanishing weight. This theory is
classically dual to (5.2.1) in the absence of a superpotential, which cannot be posed because
@’ have vanishing U(1)r weight and so there is no way to formulate a function of them
with the necessary dimension. Allowing non-vanishing dimension for the chiral superfields
leads immediately to the more general form

S=[Z]p+I[Plp+ [P]: (5.2.4)

where Z is weight (2,0) and P is (3,2). One can suppose Z to be linear in L, as Z = LK,
but there is no reason (beyond simplicity) to impose this constraint. (In fact, one may even
introduce several linear superfields.)

3For simplicity, we have neglected to include the possibility of a nontrivial holomorphic gauge coupling
for the Yang-Mills sector.
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These different conformal theories, even when classically dual, are not necessarily
quantum mechanically equivalent. The major stumbling block is to formulate the Gaussian
path integration for a quantum chiral superfield 1 of conformal dimension A. Only for
A = 3/2 (and therefore U(1)r weight w = 1) is the chiral Gaussian

/DnDnexp <—/d205nT7) + h.c.) =1 (5.2.5)

conformal and U(1)g invariant. These last invariances are necessary for the chiral action to
be supersymmetric. It is further evident that this definition of the measure is only gauge
invariant if 7 is in a real representation of the gauge group.

For more general 7, it is possible to construct a gauge invariant measure through
the introduction of a field M4

/DnDﬁ exp <—/d29577TM77 + h.c.) =1 (5.2.6)

M here is assumed to have the appropriate transformation properties to render the measure
gauge invariant. If an appropriate M is naturally furnished by the theory (as a function,
perhaps, of the background fields) then it may be used, but more often no such object
exists. Inserting a spurion field by hand does render a gauge invariant path integral, but
this does not eliminate the anomaly. Instead of having an effective action which changes
under a gauge transformation, one has an effective action which changes if a different M is
chosen. These are, of course, the same thing.

For the original supergravity and chiral matter model (5.2.1), the conformal and
U(1)r symmetries are effectively removed from the theory through the use of &y as a
compensator field. All of the other fields ®* and their quanta 7’ are chosen to have vanishing
conformal and U (1) g weights, and ®3 is placed in all chiral superspace integrations. In this
way, the chiral measure essentially becomes £ (IDS. These theories amount then to the choice
M = ®}. Any fields in complex representations of gauge groups must have their path
integration defined using some other method, usually a perturbative method such as in
[39].

This effectively converts the conformal theory with background ®( into a Poincaré
theory. The independent conformal and U (1) symmetries of the original theory survive as
Kahler transformations of the Poincaré theory. We note that if ®¢ is used in this way, the
choice &g = 1 seems the simplest and most reasonable Gaussian path integration for the
Poincaré theory, but the choice for the overall factor of the measure should presumably be
equivalent to the choice of how precisely to regulate the theory.

We will be concerned with calculating anomalies and divergences involving chiral
loops. Using the background field formalism, we split all chiral fields into a background
piece ® and a quantum variation 7,

P — D 40 (5.2.7)

4That the measure integral has the same structure as a mass term is not coincidental; one way to regulate
the effective action involves using this measure field M in a way analogous to a Pauli-Villars field.
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All of the above theories we have mentioned have a common structure for the part of the
action quadratic in the quantum chiral superfield n*:

- . 1.
S = |7z o+ ([’ +hee) (5.2.8)
Any D-terms of the form n"Zz-jnj have been chirally projected and absorbed into p;;. In
performing the splitting (5.2.7), we have broken any manifest reparametrization invari-
ance. In many classical theories, chiral superfields parametrize a Kahler manifold with the
reparametrization symmetry

o' — AY(D) (5.2.9)
This symmetry is manifested on the n as
io_ ON’
oOPI
In order to consistently truncate the expansion at the first term, one would need to introduce
a chiral connection for the coordinates ® [45]. Unfortunately, there is no natural object in
the theory to play this role, (the Kéahler affine connection being non-chiral). However,
provided we work on shell, this will not be an issue.?

These concerns are not major ones at the moment. As far as we are concerned,
the index i can be interpreted as a gauge index; hence we regard S as simply

" ' +O0m?) = A +O(n) (5.2.10)

S@ = [7Zn], + % ([n"un] , +hec.) (5.2.11)

Writing this in Majorana form,

T

S — %( [en™ [&n) < 75“Z Pf > ( ﬁ@ ) (5.2.12)
The “column vector” on the right is an element of Cy(r) @ C_(T), where Cy and C_
denote respectively the spaces of chiral and antichiral superfields and r and T denote the
representations. The matrix in the center can be thought of as an operator mapping Cy (r)®
C_(T) to the dual space C(s) ®C_(S). r and s are “dual” in the following way: their index
structures are conjugate in the normal Yang-Mills sense, but their conformal and U(1)g
charges are dual in the sense that they add to 3 and 2, respectively.

We can introduce some suitable measure by requiring that the path integral of

SM:%(fSnT fé’n)<]‘04 A%)(”) (5.2.13)

,,7]T

be unity. Then path integration of the action S involves calculating the formal determi-
nant of the operator

—1
M 0 p PZEN\ _( M7pw MpZT (5.2.14)
0 M PZ [ S\ M'Pz M =
5 Alternatively, one could choose to introduce a chiral metric by hand (which would presumably correspond
to a “chiral measure metric” M;;). But this only cloaks the anomaly in a different form.
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on the space Cy(r) ® C_(T). This is an endomorphism by construction (i.e. its domain and
range are the same space), so its determinant is at least formally sensible. Equivalently,
one could also calculate

p  PZT M o0\ pM=Y  pZTA1
L - ~ = 4 1 =1 (5.2.15)
PZ @ 0 M PZM M
on the space C(s) ® C_(8).
The above structure can be clarified by the example of a chiral superfield in a
background Yang-Mills field. We transform from the space of covariantly chiral superfields ®
(which obey V¢® = 0) to the space of conventionally chiral superfields ¢ (which obey D%¢ =

0). The transformation to the conventionally chiral notation involves the introduction of
the gauge prepotential V and the action reads

S = [ne"n],+ % ([n"pm) o +hec.) (5.2.16)

where p is some chiral Majorana mass term. The path integral measure can be defined by
requiring the Gaussian integration of

1
S =5 [n"n] . + hec. (5.2.17)
to yield unity. This amounts to choosing the spurionic measure field M to be unity in this
particular gauge. The operator corresponding to S is

1pH2, VT
H —1D% > (5.2.18)
< —iD%" L

and maps the space C; @ C_ to itself. By “degauging” the theory, we can define an
operator whose determinant is at least sensible, however it it not particularly calculable.
Its square yields operators like D2eV" D2eV which are difficult to deal with unless in a real
representation, and there is no clear reason that the action should be invariant under gauge
transformations.”

In classical supergravity with a conformal compensator, the above action we con-
sidered would instead have the form

_ Crm 1
S(@ — [%@06 K/3 77€V77] ot 2([<I>8nT;m]F + h.c.) (5.2.19)
with the measure
1
S =3 <[<1>377T77] st h.c.>. (5.2.20)

5Even if a series of 7 are chosen to have vanishing anomaly coefficients, the determinant defined above will
still give an anomalous effective action. In this case, though, the anomaly will be cohomologically trivial: it
can be removed by the addition of a local counterterm to the effective action.
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This yields the operator

—%(1)6362@0(1)06_1(/36‘/1“ )

1)
L H 5.2.21
( —%(I)O 3V2‘I)0(I)0€ K/3€V 1% ( )

where V is the conformally covariant derivative. Note this approach involves degauging
the Yang-Mills structure but leaving the chiral superfields covariant with respect to the
superconformal group. Thus the operator acts on the space C4(0) @ C_(0) where 0 denotes
the conformal weight of n. Different choices for the conformal gauge of ®g give superficially
different forms of the off-diagonal terms, but they are all conformally equivalent.

Another approach is to absorb a factor of <I>g/ % into n, or equivalently, split the
measure factor onto both sides of the operator. This gives

192/ F -2 —K/3,VT
B 1V (@) %€ e 9 99
( —1IV2(DoDg) 2 K/3eV i (5.2.22)

which acts on C4(3/2) ® C_(3/2), but has the same determinant as (5.2.21). We will use
this approach in what follows.

The structure of these operators is quite generic in conformal theories (or Poincaré
theories with conformal compensators). One generally finds

I PV X1/2
PeV X -1/2 I

acting on the space C(3/2) & C_(3/2). The projectors P = —1V? and P = 1V? are
conformally covariant, X is Hermitian function of conformal dimension two, and V is some
generalized internal symmetry matrix. We will henceforth interpret V as a background
gauge prepotential.

There is a classical invariance where a factor in ¥ /X/2 may be considered either
as a contribution to the U(1) part of V or as a contribution to X. We will refer to this as the
“U(1) ambiguity.” This classical symmetry is broken by our definition of the effective action,
which treats ¢ and X in an asymmetric way, and naturally an anomaly is introduced. It
turns out that this anomaly term is cohomologically trivial — it is the variation of a local
counterterm — and so the anomaly isn’t truly physical.

In the operator (5.2.23), the dimension two object X could be eliminated by fixing
the conformal gauge so that X is constant. There is an equivalent way of proceeding which
does not explicitly fix the conformal symmetry. We may introduce conformally compensated
derivatives D along with superfields R, G. and X, defined in terms of X so that X becomes
covariantly constant and the derivatives become those of Poincaré U(1) supergravity. Then
P = —1(D? — 8R) and P = —3(D? — 8R), where we use the supergravity conventions of
[6]. This gives a structure that is formally identical to gauging X to be a constant, but
because the conformal symmetry has only been hidden as opposed to fixed, it is a bit more
aesthetically appeasing. Note that in this approach the U(1)g structure remains.”

(5.2.23)

"It is possible to remove even the U(1)r symmetry by introducing another compensator Y with weight
(0,1). The combination of X and Y can then be combined into a complex compensator ¥ of weight (1, w)
for arbitrary nonzero w. When w = 2/3, ¥ may be further restricted to be chiral, and the original Poincaré
supergravity of [7] is recovered.
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The similarity of the structure of (5.2.23) to the Dirac operator is compelling. We
may define D as this operator in the massless limit

_ 0 PV X -1/2
D= ( BV X172 0 (5.2.24)
and define its conjugate operator
~ 0 —Pe VX2

In choosing D to enable a Leutywler-like quantization, we have explicitly broken the classical
U(1) ambiguity since e~V /X1/? is not invariant under the same exchange of U(1) factors
as its conjugate.

The Hermitian operator H is

(5.2.26)

~ DV y—1/25 V y—1/2
H:DD:< Pe VX PeV X 0 >

0 —75€*VTX*1/2736VTX*1/2

Note that since D is conjugate to D, the operators appearing in H are actually gauge
covariant. We may absorb the various factors of ¢ into gauge covariant derivatives (as well
as commuting various factors of X past the derivatives) to yield

_ w1 [ —15(D*—8R)(D* - 8R) 0
H=X 1< 16 0 _1(p? _ 8R)(D” - 8R) ) (5.2.27)

where we should properly interpret the space this acts on as C4(1,r)®C_(—1,s), the 1 and
—1 denoting just the U(1)g charges now, since the conformal structure has been hidden.
(Before the conformal and U (1) r charges were related so we needed only specify the former.)
Note that X appears only as an overall factor, compensating the conformal scale of the rest
of the operator. In actual calculations, X can be presumed to be unity during calculations
and then restored in the final results using dimensional analysis.

As we found in the case of the Dirac operator, the heat kernel expansion of this
operator encodes a great deal of information, so we turn next to a derivation of that.
Operators such as that above have been considered many times in the literature before
[41, 22], but usually in the limit where the supergravity U(1)g was absent. This corresponds
to the case where X is simply the product of a chiral and an antichiral superfield (i.e.
X = ®¢®Pg). As the U(1)g is quite necessary for our purposes, we will rederive similar
results as those done before, but in the case where X is arbitrary and so the supergravity
U(1)g field strength X, does not necessarily vanish. Our results will therefore differ slightly
from the literature by terms involving X,.

5.3 Heat kernel for a generic chiral superfield

In deriving the heat kernel for a generic chiral superfield, we follow closely the setup
of Buchbinder and Kuzenko from their classic paper [43] as summarized in their textbook
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[22]. We refer the interested reader to their treatment of the subject. The major difference
here is that we work in U(1) supergravity and utilize normal coordinates in superspace in
order to more easily apply Avramidi’s non-recursive technique.

The first step in deriving anomalies and divergences of (5.2.24) is to analyze the
heat kernel structure of (5.2.27). Recall that the heat kernel for a generic chiral superfield
is the gauge and U(1)g covariant operator e”+ where

0, = %(@2 — 8R)(D? — 8R) (5.3.1)

[

acts on a chiral superfield of unit U(1) g weight. This generalizes the global supersymmetric
1—16D2D2. Since the operator O acts only on chiral superfields, we may expand it out as

1 .
046 =09 + WDad + 5 (D*Wa)é — iG** Do
1 « 1 2 1 N2 D D,
+ 5D*RDa¢ + ;RD*6 — 5D°R¢ + ARR

+ %(1 W)X Do — iw(paxam (5.3.2)
where ¢ is assumed to be a chiral field of U(1)r weight w. Our concern will be the case
w = 1, but we quote the general formula for reference. With the exception of the two
terms involving W, which is specific to the gauge group of ¢, all of the other terms in this
expression are generic supergravity terms.

One begins with the chiral heat kernel for the free theory

1 /12 /\2

—ly — 4 — 3.
(47r7’)2 eXp( |y y| / T) (9 9) (533)
in chiral coordinates 3 = (y,6), where D% = 9%. The additional factor of (6 — #')? is to
reproduce the chiral delta function: Uy(3,3;0) = d*(y — v/)0%(0 — 0') = 6*(y — v/ ) (6 — 6).
We generalize this to

Uo(3.3'57) =

U = ; 47717)2 exp (—/27) F (5.3.4)
where U(3,3';7) (and F') is formally a bi-tensor chiral field of U(1)r weight 1 at both of its
spacetime points. That is, for operators acting on 3, U is U(1)r weight 1. However, under a
global U(1)g phase transformation, U transforms with a total weight of 2, just as Uy does.
The chiral bi-scalar ¥ has no chiral weight.

We demand U(7) obey the heat equation

ou
== OLU (5.3.5)

where O, = -(D? — 8R)(D? — 8R).
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Before proceeding further, it is helpful to work out various operators we will en-
counter. The first is O4, which is the chiral generalization of the d’Alembertian:

1 -
O.¢= 173(132 — 8R)D?*¢
1 .
=06+ WDag + 5 (D*Wa)d — iG**Dasd

1 1 1
+ §D°‘RDQ¢ + §RD2¢ + 5(1 —w) XDy — %(DaXa)qﬁ (5.3.6)
This is related to Oy by
1 - _
Oy =0, — 5(2)2 —8R)R (5.3.7)

Note that O, vanishes on a covariantly constant ¢, while O, includes an extra supergravity
“mass” term.

Also of use will be the chiral generalization of D*3D,¢, which following Buchbinder
and Kuzenko, we denote % * ¢:

1, o
3% :1—6(’D *SR) (D ED&¢)

1 1
— DDy + gz)azpaqs — JuD EXap + ;D EWad (5.3.8)

In terms of these new operations, the chiral heat equation takes the form

2 by OF 1 1 1
——F+—F+—=0,F——4 X F+-—XxX) F—-YXxF 5.3.9
T + 272 + or + 2r Ot + 472 (2+2) o ( )
which should be compared to the corresponding bosonic equation (4.1.18). As before, we
demand the 1/72 term yield an identity

2N =N %Y (5.3.10)

This equation is consistent with the chirality requirement of ¥. The remaining term for F
can be simplified if we rescale F by F = AY2F where A is some chiral determinant. The
result is

2. OF 1

L~ -1 - 1 ~
——F+—=04F— —043F—-YxF——(XxlogA) F
T or 27 T 2T

where Oy = A~1/20, A2, We require A to obey the chiral equation
4=04%+ X xlogA. (5.3.11)

Provided there is no barrier to finding a chiral ¥ and A which obey these properties, we
find the simple chiral equation
OF 1 _ - - -
— +-DF =04F (5.3.12)
or 7
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where we have introduced the chiral operator DF = ¥ % F to mimic the final form of
the bosonic expression (4.1.22). Given the similarity between the above formulae and the
bosonic formulae, we expect their solution to take roughly the same form. Aside from some
complications and some simplifications, this will be the case.

Note that we have not yet specified the chiral weight of A and F. In the non-
supersymmetric case, A was given in normal coordinates by e~!; we expect the chiral A to
be given in normal coordinates by £~ '. Thus we shall take A to have chiral weight 2 on
its 3 coordinate and —2 on its 3’ coordinate, and so F' has vanishing chiral weight on 3 but
weight 2 on j3'.

5.3.1 Chiral normal coordinates

Before proceeding to a comprehensive analysis of the chiral heat kernel, we need
to construct a useful set of normal coordinates as in the non-supersymmetric case. Here
the procedure is a little more sophisticated, since we have coordinates associated with P,
Q, and @ and so several ways one might define a normal coordinate system.

Recall that normal gauge in bosonic cooridnates was defined by requiring that the
Taylor expansion ¢(y) = e¥?¢ match the covariant Taylor expansion ¢(y) = e¥F¢ where
P was the formal parallel transport operator (i.e. the covariant derivative). In superspace,
there are three distinct coordinates (x, 0, ) and — even in flat superspace — several different
ways of constructing a normal coordinate system. Within global supersymmetry, Hermitian
(or vector) superspace is defined by

U(x,0,0) = exp(zP + 0Q + 0Q)¥ (5.3.13)
whereas chiral superspace is defined by
U(y,0,0) = exp(yP + 0Q) exp(AQ) V. (5.3.14)

where W is an arbitrary superfield. The advantage of chiral superspace is that the chirality
condition reduces to independence of the coordinate # (since formally @ annihilates any
chiral superfield). Thus D% = 9% and the antichiral vierbein F#4 and its inverse E%M are
especially simple.

We require a chiral set of normal coordinates so we shall follow suit in placing
exp(AQ) to the far right. However, there are several ways in which one might define the
remainder. The simple Lorentz invariant options are

exp(yP +nQ), exp(yP)exp(nQ), or exp(nQ)exp(yP)

where we introduce 1 to denote the normal coordinate difference between 6 and 6’. Within
global supersymmetry, these are equivalent since [@, P] vanishes, but not so in curved
superspace. The first is the most symmetric and yields a normal mode expansion in y
and 1 completely analogous to the bosonic case. The second is the one most useful when
the spinor connections need to be simplified. In fact, in converting an F-term integral to
a component x-space integral, one works in a coordinate system that amounts to having
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extracted exp(n@) to the far right. That this is suitable for components is clear by noting
that the expansion of ¢(y,n) then looks like

Dy ---DyDy - Dyo.

which is how one would naturally order these derivatives when projecting to lowest compo-
nents.

However, both of these latter two coordinate systems turn out to lack the properties
we will need. It turns out that the best system for our purposes is the third. We define
therefore

G = exp(nQ) exp(yP) exp(7Q) (5.3.15)

The connections are then found by first differentiating G,
G 1oymG = By Pa + Hy%X,, (5.3.16)
and then operating with G on the result:®
EMA = GEMA, HMQ = GﬁMQ.

Here P4 represents the formal translation operator (which is represented on fields by the co-
variant derivative) and the set of X}, consists of Lorentz, U(1)g, and Yang-Mills generators.
H)% are the connections corresponding to the Xj.

One immediately finds for M = ji the connections take the rather simple form

B =54 (1 - 7?R), wh(M) = STaBR(M),  Af=0, A*=0 (5.3.17)

Here we use an italicized A for the Yang-Mills connection to distinguish it from the super-
gravity U(1)g connection A. The inverse vierbein is easily found and allows us to write the
connections with a Lorentz form index

EM =M (1 + 7?R), (M) = 577(543643(1\4), A% =0, AY¥=0 (5.3.18)

from which it is straightforward to show that when acting on an arbitrary superfield ¥
without any dotted spinor indices,

(D? — 8R)W¥ = 90" (1 + 27*R)¥ (5.3.19)

and so the result is explicitly independent of 77 and therefore chiral.
For M = m, the connections are given by

Wi = exp(—iQ)e YT 0,e?T exp(7Q) (5.3.20)
Defining

Wi = e ¥P0,,ev" (5.3.21)

80ne can simplify the last step by reinterpreting the tilded connections as having an extra implicit y
dependence in all the covariant terms, replacing each with their covariant Taylor expansion.
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we then have

~ A

Wi = exp(—1Q) Wi exp(7Q) x exp(—nQ) X 4 exp(7Q)
= exp(—7Q) Wy exp(7Q) x X (71)p* X4 (5.3.22)
The final result is
WA = (e"QeyPWmA> x GX (77) g2 (5.3.23)

Note that X (0)p? = dp*.
For M = pu, the connections are given by

W, = exp(—ﬁ@)e_ype_"Qﬁye"QeyP exp(7Q) (5.3.24)
We first define
W, = e 199, (5.3.25)

which is rather simple. One finds

N _ ) 1, . N
EA=6,4(1-n*R), @.(M)= g1 Rop(M), Ay =0, A, =0 (5.3.26)

Defining G, = exp(yP) and Gj; = exp(7jQ), we then have

W, = G5'G,'W,AG, Gy x GG X4G, Gy,
= GG, W, PGyGy < X(y, 15" X (5.3.27)

which gives
WA = (G W B) x GX (y,71) 5™ (5.3.28)

We are most interested in the case where 77 = 0, since our heat kernel has 8’ equal
to #. Following the non-supersymmetric case, we would like to define ¥ = y2/2. For this to
work requires E,"y, = yq as well as Ey™y,, = 0 — both of which we take when 7 vanishes
but for arbitrary y and 7. Note that if we define Y™ = (3™, 0,0), then the above conditions
— along with £4™ = (0 which always holds in chiral coordlnates — lead to

EMYy =Ys < Yy = EyAiYy

so we require Ep,%y, = ym and E,%y, = 0. The first is easy to see. It follows from
E‘maya = Ym, which is true just as in the non-supersymmetric case. Any term generated
in E,,% past the leading term arose from commuting a P with a P or with an M. (No
P can be generated by commuting a P with a Q or Q.) Thus all the terms with a free
index a will be of the form 7,.,* or Rpcy®. The latter vanishes by antisymmetry of the final
two indices and the former vanishes since in the space we have, the bosonic torsion T, is
totally antisymmetric. (It is proportional to G%gcpq.)
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The condition for F,%y, = 0 follows for essentially the same reason. One notes
that since the only nonzero hatted connections are E,f‘ and w, (M), we need only show
that X%y, = 0 and X3y, = 0. The Lorentz term vanishes since conjugating M.q by
e YF only gives a P from terms that look like [M,yP] or [P,yP] — these both vanish as in
the non-supersymmetric case. The (), term vanishes since the only way to generate a P
from commuting several yP’s with the initial @), is to first generate an M, then commute
[M,yP]. (This is because [Q, P] by itself does not generate a P.)

Thus we are free to define ¥ = y?/2. This then obeys

25 =N« ¥ = DYDY + 0 = 4%, (5.3.29)

trivially. Note this result is consistently chiral.
Next we turn to our definition of A. We define A = det(E4M) = £~ where we
understand the indices A and M in &£ to be only over (a,a) and (m, ). We require

4=0,%+ T xlogA. (5.3.30)

which amounts to
- YO 1 fe% 1 2 a R fe%
4 =0 -G Dad2+§D RDQE+§RD Y+7D ZDalogAqL;D XD, log A

Proceeding in a way analogous to the non-supersymmetric case, we consider taking a deriva-
tive of log A:

Dalog A = DAERMEME = EpPDREAM — Tag™MEAE

Here we are using an implicit grading for the indices. Since EFB vanishes, the last term
becomes a trace of the torsion tensor in the chiral space. The remaining terms become

Dalog A = Dy EgM — B, D EuM — Tag®
= DMEAM + By 5 T° 4™ — Tas®
= DEM+ (TB

= D Ea™ — Tus® + Ta;  Ep’

P TyuP Ep B ) — Tas®

This gives (using T,°5 = 2iG,)

R
4="Dpym (DaEEaM + 2DQEEQM>
Since the result in the parentheses is invariant under all symmetry operations, we can replace
the overall Dy by daq. Since the derivative involves only y and 7 derivatives, we can cleanly
set 7 = 0 within the parentheses, which leave behind a single factor of y™ within, giving

the result.
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For the calculation of the chiral heat kernel, we will need the vierbein to second
order in the coordinates y and 7. Omitting the details, the result is

1 1 1 1 1
En® =" + iTyma + gDyTyma + §D77Tyma - gTymbTbya + ERymya
1 1 1 1
Ep® = 5Tym® + 3Dy Tym™ + 5Dy Tym® = gTymBTBya
1 1 1 1 B
Emdz = §Tymd + gDyTymd + §Dr]Tymd - gTym TByd
1 1 1 : _
B, =6, + Ty + §DyTyua - §TyuBT6ya - §Tyu5Tﬁya + DpTy” — T72R5ua
1 1
B, = §Ryuya + §Rnuya
1 1
Eys = Ty + 5Dy Ty — iTwﬁTﬁyd - TWT (5.3.31)
We will need the following inverses to second order:
1 1 1 1 1
By = 0" = 5Ty = 3Dy Tya™ = 5Dy Tya™ = 15T Toy™ = 6Ryaym
1 1 1 1 1
Bt = =Ty = 2Dy Tya — Dy Tyl — ETyabTby“ - gTyaﬂTBy“ + 6Ty TP
1 1 1
E" = 61 — Tyt — §DyTya’“‘ — QTWBTgy + 2TMT — Dy Tyo + n* R 6"
1 1
E, " = _iRyaym — §Rnaym (5.3.32)

One specific combination which we will use a great deal is
1
Xt =E"Eq, — iREa”EW

1 1 _
=30 Tyap = R+ RTya® + 5Dy Tya® + RDyTya® — 20°RR

4
R R R
- §TWBT = 5Ty Tyap + §TyaﬁTy5a (5.3.33)

The explicit R terms in the above are to be understood as R(y,n) where

1 1
R(y.n) = R+ DyR+DyR+ DyDyR + ;DyDyR+DyDyR + .. (5.3.34)

5.3.2 Chiral heat kernel analysis

The remaining differential equation for our heat kernel reads

F DF . -
or + == =0O.F (5.3.35)

or T

for

R 1
D = D*SD, + 5 DSy + ;DEWa (5.3.36)
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(Recall that F has U (1) weight 0 on its 3 coordinate, where D acts.) In normal coordinates
at 7 = 0, the above simplifies drastically. We end up with

D =y*D, =y"0n (5.3.37)

We assume F can be expanded as a power series in 7 with F = Yoo AnT™/nl,
which gives recursion relations which we can solve just as before. (We neglect placing tildes
on the coefficients A for notational simplicity.) We fix

Ay =n? (5.3.38)

to obey both the differential equation and the necessary 7 = 0 boundary condition. The
rest of the coefficients follow via the formal solution of Avramidi [36]

D\ ' - D \ ' ~
A, = (1 + n) N (1 + n_1> O,---(1+D) 'O (5.3.39)

As before we seek analytic power series solutions, except now the power series are in 7 as
well as y, giving a generic ket |n,v). Since the 7 series terminates for ¥ > 3, we have the
the generic kets

n,0) =In), In,1) =|n) x 0™, |n,2) = |n) x o’ (5.3.40)

where |n) is as defined in the non-supersymmetric case. We define the corresponding bras
by

(0] = (n], (m1]= (| X Oy (n,2] = —% (n] x 9%, (5.3.41)

It then follows easily as in the non-supersymmetric case

o =2 2 <1+fb>1 <1+7‘zn_11>1"-(1+j1)1x

JiseJk—120 22791576120

<k7 H|@+ ’jn—la ’Yn—1><jn—17 Tn—1 |C~)+|jn—27 7n—2> e <j17 71 |(/~)+|07 2>
(5.3.42)

We turn now to the structure of O,. One finds after a great deal of work
.~ -1 ~ -1 -1 ~
O, F =Dy (E“MDaF + 2REQMDQF> + WODLF + o (D Wa)F + §WQ(DMEQM)F
i (A‘1/20+A1/2> P
This operator can be rewritten in the manifestly symmetric form

_ 1 1
01 =D XMV Dy + SWEMDps + SDMEMWo + (A’1/2(’)+A1/2) (5.3.43)
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We have used 4™ in place of E4™M since all 7 derivatives have been removed and so
we may take 7 to vanish without incident. The above form is particularly striking since
the operator is clearly self-adjoint up to a change in the representation of the gauge field
strength:

O (Wa) = 04 (-W1) (5.3.44)

This is sensible since Oy appears naturally acting between a chiral superfield ®; and its
conjugate Po,

/5¢2To+<1>1 = /5(0+<1>2)T<1>1 = /5@{0@2 (5.3.45)

which is a gauge invariant expression only if @, is in the representation conjugate to ®.
We have introduced the “chiral metric”

1
XMN = gaMg N 4 51%5,‘6“45:&/“ (5.3.46)

where M and N are only the chiral spinor and bosonic index. In all these formulae an
implicit grading has been used.
In general O4 has the form

O = X™Wonom+ Yo+ Z (5.3.47)
We have
YP = _2X"™WH, + o XV 4 weE,™
Z =— X"WonHuy + X™ Hy Hop — (0 X)) Hyr
+ %DQWQ + %(amem)wa — WOE " Hyy + A™V20,AY? (5.3.48)

Aside from the terms involving W%, the above form is strikingly similar to the non-
supersymmetric case, with XMV replacing ¢™". The connection H is really just the Yang-
Mills connection A; the heat kernel function F has only a Yang-Mills structure since all
its U(1)g weight is on the 3’ coordinate, not the 3 coordinate. If we were to generalize our
approach to include chiral superfields with Lorentz indices, the Lorentz connection would
appear here as well.

Before proceeding further, we should note the projections to y = 0 and n = 0 of
the terms given above:

[an] — nmn7 [Xmu] — 07 [X,uz/] — %Reuz/
Y™ =0, [Y¥]= DR+ WH
1
(2] = D" Wa + [AT20, AV

The quartic divergence is proportional to (0,0[/Ap) which vanishes as required by
supersymmetry.
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The quadratic divergence is proportional to
(0,0/41) = (0,0/04]0,2) = 2[X*,] = —2R (5.3.49)

This is an F-term, so the corresponding D-term would simply be 1. In a sense, the quadratic
divergence in superspace is most like the quartic divergence in normal space.
The logarithmic divergence is given by

(0,0[A2) = > (1451)7"(0,0(04|j1,m) (i1, 11]O10,2)
J1,m

The first matrix element vanishes trivially unless v; 4+ j1 < 2. Those satisfying this require-
ment are

(0,0[0410,0) = [Z]

(0,010,10,1) = [Y#] = Wi + DmR
(0,0[041,0) = [Y*] =

(0,0|(§+!0 2) = [2X‘3‘a] — —9R
(0,0[041,1) = [X"7] =

(0,004 2,0) = [X01b2] = phrb2

We require the product of these with (ji, ’yl\@+]0, 2) for (j1,7v1) = {(0,0),(0,1),(0,2),(2,0)}.
The first case we’ve already found. The second is

(0,110410,2) = (200, X 4] + 2[Ya,]

It is straightforward to show [0a, X?®s] = —D, R, giving

(0,1/040,2) = =Dy, R + 2W,,
The third term is

0,210110,2) = [~50°0,X%5] — [0V, + [2]
= —D Wy + [0,0, X™] + [Z]

but a straightforward calculation shows the middle term vanishes, leaving

(0,2]0,]0,2) = —DW, + [Z]

The fourth and final term is

(2,0[0410,2) = +204,00, X% 5
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For simplicity, we note that only the contracted part of this is necessary, so we focus on

o X*, :%chacha — OR + 2D RT}," + RD T
— RT, ;T — RT**Ty, + RT*Tyg,
=WPW. g + iDaRDaR + %XO‘DQR — %X‘”‘Xa + %DdGdeGb
— OR — 4iD°RGy, — 2iRDyG? + 8R?R + 4RG?

Several terms can be collected into manifestly chiral terms, using

O+ R =0R + 2iG*DyR + %DQRDQR + %RDQR — %X“DQR — %(DaXa)R
as well as
i(z‘)? —8R)G? = %DdGbD‘j‘Gb — 2iG"DyR + 4G*R
to give

1, = 1
X =WIPOW 5, + Z(D2 —8R)G* — 0O, R — X Xa
3 « 2 D 1 N2 D 1 «
+ ZD RD,R+8R°R + iRD R— §RD Xo
Putting all of this together gives

0,0/0410,0)(0,0]0,[0,2) = —2R[Z]

( ) )
~ ~ 1
(0,0[04]0,1)(0, 1|04 [0,2) = 2W* Wy — D" RDo R
(0,00,]0,2)(0,2|0410,2) = —2R[Z] + 2RD*W,,
1 ~ ~ 2
5(0,0[042,0)(2,0[04[0,2) = gaaaax%
2 1 - 2 1
_ ‘B Z(D? — 2_Z2 - —X%X
3W W'y,Ba + 6( SR)G 3[:|+R 18 o

1 16 - 1. _-—o- 1
+ 5DaRDaR + ER2R + gRD2R - gRDaXa

the sum of which is
2 1

2 1, -
[AQ] :2WaWOé + gWﬂYﬁan[Ba + E(Dz - 8R)G2 - §D+R - 178XOCXCY

16 - 1__,- 1
— 4R[Z] + 2RD*W,, + ?RQR + §RD?R - 3 RD" X,

We must still evaluate [Z]. Begin by noting

%(@2 —8R)R+[AY/20, A2

1 1
[2) = 5D"Wa + [AT120,AY?) = 5D Wa —
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Evaluating the term involving O is a somewhat laborious task. The most straightforward
way of doing it is to expand out all the terms so that they involve log A and then to work
out the expansion of log A to the necessary order. The expansion of log A to second order
is

1

log A = —2iG, + 24T P b — & Bymy™ — 1Dy Gy + QTQWTB > —2m’R

Note that there are no terms linear in 1. The O term yields

1 1 1 1
A2, AY?) = — ZDO‘XO[ + ZR@“&X log A + iGbﬁb log A + —8bab log A + fab log Adylog A

1 _ 1 1

— *’DaXa 9 7TCbaT - ab iD b T,Bcoc 2

1 + RR+24 cha Rab 1Dy G +2 ach + G

Using
3 o _
Rayp® = —DP X4 — 5(2)2}2 +D?R) + 48RR
T, = —24G2, T, sT° = 8RR
we find that
7] = Lpew, — Lpox, 4 2RR
2 12 “
which gives the net result of
@ 2 Ba 1 N2 1 a
2 1, 1 _
— oW . “1r7vBa a_iXaX —*D2— _e4m2 *DQ—
WeW, +3W W3 13 4( 8R)< 3G +6( 8R)R
(5.3.50)

The divergences associated with the heat kernel of this operator are

[Trlog H]e = 1672 /ET ( o] [Al] _ 1A loge+ﬁmte> + h.c. (5.3.51)

which we may write as

1 log e 1
TrlogHl =+ ——— [ E E(Woew, + wrbew. a——XaX
[Trlog H] +167T26/ +167r2/ < t3 e 36 >
loge 1 o 24 .
+ = /E <_3G - 3RR> + h.c. + finite (5.3.52)

where we have dropped a total derivative. This result for U(1) supergravity agrees with the
traditional calculation (up to factors of two in the definition of the supergravity superfields)
in Poincaré supergravity when X vanishes [41].

In the non-supersymmetric calculation (provided only a classically conformal ac-
tion was used) there was a striking feature where the logarithmic divergent term consisted
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solely of conformal or topological terms. Since we could have written our result here in terms
of the heat kernel of a conformally coupled bosonic scalar and fermionic superpartner, it
should have the same property.

Consider a small shift in the choice of compensator X of the form §. X = XU where
0U is a dimension zero superfield. First note that £ and d€ both vanish if X is changed a
small amount. This is because the choice of X while redefining E,™ does so only by shifting
the spinor derivative part of the bosonic derivative. That is, dF = —ESE,MEp* = —EJE,°
vanishes. Similarly 6€ vanishes.

It is straightforward to work out that

3c 3 -
6Xo = §V2Va5U = g(D2 — 8R)D, U (5.3.53)
We similarly may calculate
SR = — 192U — LV, XVOSU = — 2D (5.3.54)
-8 4X ¢ -8 -
and
1
0Gai = —7[Da, DaldU (5.3.55)

It is straightforward to check that the specific combination
_ 1
[G* +2RR] ) + G (XX, (5.3.56)

is invariant to any deformation of the compensator. It corresponds at the component level
to the expression

—%F“bFab — %RabRab + iRz + fermions
where Fy, is the field strength of the U(1)g. Noting that
[WWBO‘WV/BOC} e éF“bFab + %CadeCabcd + fermions (5.3.57)
we find
[G* + 2RR] , + é X Xa]p + [ WPV 0] .= %Lx + fermions (5.3.58)

up to total derivatives, where L, is the topological Gauss-Bonnet term. Since WebY s
X-independent automatically, this combination must be independent under deformations
of both the compensator X and the conformal supergravity structure. Showing this directly
at the superspace level is straightforward, but requires solving the constraint structure of
supergravity. This can be done using the formulae given in the previous chapters which we
leave as an exercise to the interested reader.
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This superfield topological combination will appear several times, so it is useful to
introduce a label for the superfield expression. We choose to define the Hermitian combi-
nation

L _ 1 1
— 2 o' a
Sy =[G +PR+PR-2RR] , + 15 [X"Xalp + 15 [XaX]
1 1r7.- gy
= \wBew W, Wb
T3 [ W‘L T3 [ B }F (5.3.59)
where, one should recall, P = —%(D? — 8R). (We have chosen to reintroduce a total

derivative which formerly dropped out previously since when we calculate the conformal
anomaly this term will not in general vanish.) We can then write the divergences that we
found as

[Trlog H]e =+ # [X]D - ;Z%SX
4 loge [W“W + L xex, + 2wsow ]
1672 “T3" T3 el
log e [W- W+ L xaxa g 2 .WW]
1672 [ “ 36 3 b P
+ finite (5.3.60)

where we have reintroduced the compensator X. Its only explicit appearance is in the
quadratically divergent D-term, where it provides the necessary conformal weight to render
a conformally invariant expression. Although it is implicitly used to define S, as we noted
Sy is independent of small deformations of X. The remaining presence in X, is purely the
part of X that can be regarded as a U(1) prepotential, if say we were to decompose X as
PoPoe" for some U(1) prepotential V.

One also suspects it should combine with W in a way that removes the classical
“U(1) ambiguity.” Indeed, noting that

1_ 3=
W, = §V26_Vvaev, X, = §v2va log X (5.3.61)
the combination
W — %Xa _ é@2 <67V+logX/2va€VflogX/2> (5.3.62)

corresponds to the way the factors of V' and X appear in the original theory, and so we note
that the divergent term seems to correspond to only the combination (W, — %XG)Q. We
are missing, of course, the cross-term WX, but this is to be expected. The determinant
of H corresponds to the part of the effective action even under charge conjugation. If this
cross term exists, it should be found in the superfield version of the odd part of the effective
action. We turn to that analysis next.
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5.3.3 Integration of the odd part
Recall that D and D are defined in the massless case by

0 PV X1/2 - 0 —Pe VX2
D= < BV x -1/ 0 R Y Sy 0 (5.3.63)

Defining H = DD and H = DD, the effective action Trlog D is divided into two terms
1
[Trlog D], = 3 [Trlog H], + / (L; +0) (5.3.64)
the first of which we have already found. The objects L, and ¢ are one-forms in the space
of all possible variations of the gauge prepotential, and ¢ is chosen so that L_ + ¢ is a
closed form. It is therefore (at least locally) the variation of some other expression and can
be integrated, which we have indicated with a schematic [ symbol which shall be better

defined later.
In analogy to the fermionic case, we define

€

1 o0 ~ 7 -
L7 = 3T / dr (e_TH DSD — 8 D(SD) (5.3.65)
¢ itself is defined by integrating the formula ¢ = —C where
1 .
C.=0L7 = / d\Tr <5De_€’\H5De_€)‘H) (5.3.66)
0

where A =1 — \. Using cyclicity of the trace, we find

1 [ ~ z ~
L, = 2/ drTr <5DDe_TH - (5DDe_TH) (5.3.67)
We denote
[ Hy 0
H = ( 0 H. ) (5.3.68)

and similarly for H. )
The operator product DD is given by

sDD — —Pse¥ PeV" 0 [ —PAVT PV 0
N 0 —PseVPeV | 0 —PAVeYPeV
and its conjugate 6DD by
SBD = —Pse=VPeV 0 [ PAVe VPeY 0
N 0 —Pse=V PV ) 0 PAVT eV PeV”
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where we have defined
AV =e VeV, AVT = ((5eVT)e_VT
AV = (6e)eV, AVT = seV e VT (5.3.69)

The operators above are defined in a purely chiral or antichiral gauge, but it is
clear that we can rewrite them in a general basis. The way to do this is to absorb the
various factors of eV in the operators above to define covariant chiral projectors P and P.
In so doing, we would like to interpret AV and AV (as well as their transposes) as covariant
objects. To do this, we define

w = AV (chiral gauge). (5.3.70)
and extend w into any other gauge by requiring it to transform covariantly. It follows that

in antichiral gauge, w = ¢V AVe™" = AV. We may now write L in a covariant way:

€

1 [ _ 7 _
L, = —2/ dr Try (PwTPe_TH+ + PwPe_THJF) + h.c.

where we have broken the trace up into the part over the separate chiral and antichiral
spaces. Noing that the exponential term is the heat kernel, we find

L= —% / T / ¢ (PW"PUL ()] + PLPUL(r))) + he

= _;/ dr /E (wTﬁm(T) +w75U+(T)) + h.c. (5.3.71)
The heat kernel Uy is
1 — T
Uy(r) = Ttk B2 AV2 (1) (5.3.72)

Noting that [X] = 0, [DsYX] = 0, and [D?3] = 0, we find

L7 =— / /ETr TIPAY2E +w[73A1/2F]) +h.c.
p 47r7'

Note that F has the same form as F but in a conjugate representation. Next we note that
[AY2] =1, [DaAY?] = 0, and [D*D,A?] = 4R, giving

1 o
L—:_/ ar /Eﬂ T[PF — RF) + w[PF — RF])+h.c.

_—/ e /ETr< [1D2F+RF]+w{—1D2F+RF]>+h.c.
€ 7T7'

Since F(A) = Y 07 4 A,A"/nl, only the terms involving Ap and A; contribute to the diver-
gences — the former to the quadratic and the latter to the logarithmic. Using [Ap] = 0 and
[D2Ap] = —4, we find for the quadratic divergences

2
L~ ETr hec =— - | EdTr 3.
T3 / (" +w) + hc. 1626/ 5Tr (V) (5.3.73)
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which is a divergent contribution to the Fayet-Tliopoulos term.
For the logarithmic divergences, we note from our experience with the heat kernel,

we immediately may conclude that [4;] = —2R and [D?A;] = 2D°W, + 1D*X, — 8RR
which give
loge 1 ~ 1 1 1
= ET —=D*W, — —=D*X, —=D*W, — —=D*X, h.c.
Le 322/ r< [2 12 ]“’[2 12 ]>+C
(5.3.74)
In chiral gauge, W, = —%P (e‘vDaeV) and Wa = —%79 (evTDae_VT> = —Wg. Trans-

posing cancels out the even term, leaving the odd term

_ loge 1
L. = 162 /E (w X 12D‘“Xoé) +h.c.

Noting that 6W, = —%PDaw, this is equivalent to
1
L7 > - ;fe /5Tr (6W*X,) + h.c. (5.3.75)

which is trivially integrable.
We summarize here our results: the quadratic divergences of the operator D are
(restoring the compensator)
1
[Trlog D] 2 +——|Tr(1 -2V) X (5.3.76)
1672¢ D

and the logarithmic divergences are

loge loge 1 2 9
Trlog D] 3 — —— @ ZX° WP, 5,
[Trlog Dle 5 = 72259+ 355 [<W : > +3W WWL
loge[< 1_ >2 2 }
+ Wo—=Xa | + W, 5,W77 (5.3.77)
3272 6 3 7

Calculation of ¢

The non-integrability of the finite part of L. is due to the non-vanishing of
1 .
Co=—e / AATY (§De= M 5De=M)
0
1 X 17 —
= / d\Tr (PAVe_E)‘H*PAVe_“\fu) — conjugate rep

/ A / / E Tr U_(2,7';eN) w(z ')U+(z’,z;e)\)> _ conjugate rep
(5.3.78)

where we have written everything in a covariant notation as well as promoting w to a 1-
form in analogy to the fermionic case. The above expression includes the subtraction of the
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conjugate (V — —V7) representation; thus in a self-conjugate representation C, vanishes
and L. is integrable by itself.

In the last line of the above formula we have taken a trace over chiral coordinates,
introduced a complete set of antichiral coordinates in the center, and converted both systems
into total superspace integrals using the explicit projectors.’

The evaluation of this expression is somewhat technical, so we relegate it to Ap-
pendix D where we explicitly evaluate the expression

Z(we,wr1;€,A) = /E/E’ Tr <w2(z)U_(z,z',eS\)wl(z’)U+(z',z,e/\)> (5.3.79)
where A = 1 — \. We find

e e
16 Tor2e2 /ETr{wgwl — —RD woDywr — —RDQWQD w1
T

- EDQXWM — MDDy Dy
X, o
+ ?(D wow1 Wy — woD%w W)

S . _
n %(meawl — wa W Dowy) + 0(62)} (5.3.80)

For the case of interest here,

1 1 1 1 1- - _ 1
C. = 162 /ETr{ —ww — gDawDaw — ZRDawDaw — ZRdeDO‘w — EDO‘Xaww

1 1 1 : 1 ;
— ZwDO‘wWa + ZDawwWa + ZdeW“w — 4deD°‘w} + O(e)
— conjugate rep (5.3.81)

Using cyclicity of the trace and the antisymmetry of the 1-forms w (and the fact that the
conjugate rep is the same result after transposition), we find that only a small set of terms
survive in the e — 0 limit, giving

= 39.2 /ETr wDawW — DwwW,, + wDawW? —DawwWa)
2

_ 1
3272

/ E <MD%SWCQ +w”desv‘th> Apst (5.3.82)

where A, = Tr({T,, Ts}T¢) is the anomaly factor, the symmetrized trace of three gen-
erators of the gauge group. This is exactly the same form as the globally supersymmetric
result found by McArthur and Osborn [39]. C' may also be written

=162 / ETr (wD*wW,, — DawwW?) (5.3.83)

9The subtraction of the conjugate representation arises because one actually adds the full Hermitian
conjugate; in reordering the operators so that U_ appears before U, in each term, one finds a sign flip from
pushing the one-forms past each other.
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by integrating by parts and using D*W,, = DaW?.
To derive the form of ¢, we follow exactly the procedure of [39], which is essentially
unchanged by the addition of supergravity. We begin by introducing a new function X

1
where
X (h1,he, V) = STr (hiD*haWy — Dyh1hoW®) (5.3.85)

is a two form. We define it with a symmetrized and normalized trace of the three generators
of the gauge group:

STr (ABC) = %A”BSCtTr ({T,, Ts}Ty) (5.3.86)

One can show that this two form is both Hermitian and symmetric in its one-form arguments
hy1 and hy. Note X depends on V' implicitly through W, and the covariant derivative.

Again following McArthur and Osborn, we enlarge the configuration space of V' to
include a parameter ¢, with ¢ = 0 corresponding to V = 0 and ¢t = 1 corresponding to the
full background V. We denote this parametrized prepotential by V;. The total variation €2,
of €' is then given by two pieces: € = w! + w; where, in chiral gauge, w; = e~"*§e"* and
w! = e Vedie"t for dy = dt 9;. Since C and therefore X is exact,

(6 +dp) X (2, 2, Vi) =0 (5.3.87)

and one may show (using dt A dt = 0)
1
80X (wp, wh, V) = —§dt/'\.’(wt,wt, Vi) (5.3.88)

Then we may construct a local one-form

1
(=——— [ X(w,wi, V) (5.3.89)
87T2 I;

whose variation is?

1
(56 = @ L 52{(“&7“47%) -

1

—— | diX Vi) =
1672 /It 1 X (we, we, Vi)

s

The precise form of ¢ is useful in certain applications — for example, to give a
consistent form for the non-Abelian anomaly associated with gauge transformations of V.
However, the definition of ¢ is quite path dependent; in particular, ¢ is only defined up
to an arbitrary closed form. There are two obvious paths to choose. One is the “gauge
coupling” path V; = tV, where ¢t has the immediate interpretation as the strength of the

10T these expressions, integration is defined with dt moved to be adjacent to the integration symbol. This
generates a sign whenever dt is pushed through another 1-form. Thus ¢ [ L= /. 7,0
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gauge coupling. This is the simplest choice for an Abelian theory. Another reasonable
option is the “minimal homotopic” path of e"* = (1 —t) +te" suggested by Gates, Grisaru,
and Penati [46].
Since one is often concerned with Abelian anomalies, we will restrict ourselves
briefly to that case and the use of the gauge couping path. This immediately gives
P 1X(w wh V) = ! <<5VD°‘VW —D-(SVVWé‘>
82 Jo TR TV T 94 o e
1
2472

_ 1 <5VQV> (5.3.91)

<5VD“VWQ + VD, VW + 5VVDde>

1272

where we have dropped a total derivative. Here, W, = %(752 — 8R)D,V and, it should be
recalled, D*W,, = DyW?. Qy is the Chern-Simons superfield [47] for the Abelian gauge
group, obeying [AQy|p = [AW*W, ] for chiral A.

Expression for Trlog D

We now need to integrate the closed form L_ +¢. We introduce another parameter
u which interpolates from V = 0 to the final value of V. We then take

1
/ (Lg(aaz,vu)w(wz,vu)): [ vy - [ Reteto G392
I I 87 J 1, %1,

where V,,; denotes the doubly-parametrized V and w!; and w?, are defined in chiral gauge
by

why = e VurdeVur . Wl = e Ve d, eV (5.3.93)

It is not necessary for the paths parametrized by u and ¢ to be identical. One can show
(following McArthur and Osborn) that under an arbitrary variation in the gauge prepoten-
tial,

1
0| L (w!,V,)=L(w,V)— 2/ X Wy, wir, Vi) (5.3.94)
I 81 Jr,
as well as
) X (Wl wky, Vi) = | X(wi,wh, Vi) — | X (wy,w, Vi) (5.3.95)
IuXIt It Iu

The above (5.3.95) is especially simple when the paths parametrized by u and ¢ are identical:
then the variation of this term vanishes!
The final expression of the effective action is

1 1
[Trlog D] = i[TrlogH]E +/ L (wy, Vi)

- 82/ X (weips Wgs Vat) (5.3.96)
I ™ Ty x1Iy

This shall represent our definition for the regulated effective action.
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Anomaly for the U(1) ambiguity

Before analyzing the gauge and conformal anomalies, we will consider a different
sort of anomaly. Our massless action in the natural path integral variables had the form

_ eV

where 7 is weight (3/2,1), X has conformal dimension two, and V' is a dimension zero gauge
prepotential. Under the replacement

eV =V =Wy X1 X120Vt = X1/ (5.3.98)

for a U(1) prepotential V;, the classical action is invariant for all values of y. Since the
gauge and conformal sectors were treated asymmetrically, we expect our definition for the
effective action should be anomalous under this transformation; however, if the anomaly is
not really physical, then the difference should be a local expression. It turns out this is the
case, which we now prove.

We begin with a model where the replacement (5.3.98) has been made for some
value of y. The first step is to extract the gauge dependence from [Trlog H]., writing it as

1
%[Tr log H] = %[Tr log Hlev—o + / du LT (wyty, Vuy) (5.3.99)
0
The first term on the right can be understood as the effective action in a formally gauge-free
background, yet it still depends on the U(1) prepotential V; through the compensator X.
The second term on the right represents the additional dependence on V,,,, the now-doubly
parametrized prepotential we have extracted.
The total effective action can be written

1 1
[TI“ log D]e = §[TI' log H]e,V:O 7L/Iv LG(waa Vuy) - @

/ X (witty Whtys Vuty) (5.3.100)
IuXIt
where Le = LT+ L_ . Recall that in the second and third terms we have introduced auxiliary
path variables v and ¢t where u = 0 or ¢ = 0 correspond to vanishing V and u =t =1
correspond to the full V,,.
Then one can show that by differentiating with respect to y,
[ee] - € - ~
Oy Le(wly, Vi) = u / arTr (7 Do,D)  + / do'Tr (M0, De= o, D)

€ uy 0 uy
where D, D, and H are defined in terms of Vuy, emphasized by the subscript. (This equation
is a special case of (5.3.66).) This immediately implies that

Oy /Iu Le(wyys Vuy) = /e dr'Tr <6_THD3yD) v, /e drTr <6_THD8yD) Vo

1 € -
—ocH N, —(e—oc)H
+/O du/o do'Tr (e Oy De (<) Oy]D)Vu

Y
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The first term on the right vanishes since 9, (e" Xy Y 2) vanishes. The second term on the
right can be simplified by noting that at V=0, D = —D, and so

%) HE 1 > dr . 1
—/6 drTr <e HDE)yD> Vo = 28y/€ 7Tr (e H)V:0 = —iay [Trlog Hle,v=o
Then the y-derivative of [Trlog D], is reduced to

1 € _ -
d,[Trlog D). = + /O du /0 do Tr (=791, De= =9, D)

1
T Q2
87 Jr.x1,

Vauy

ayX(wilLLtyv thya Vuty) (53101)

which is a local (though divergent) expression. The ambiguity in whether we consider the
U(1) as part of the conformal factor or as part of the Yang-Mills factor is therefore a local
counterterm allowed by the ambiguities of regularization. We are free to choose whatever
parametrization is the most natural.

It is straightforward to evaluate the first term of (5.3.101) using the method of
Appendix D. The result is

1 1 1= _ _ .
P (eTT(Vy)Vl = {RTx(e™v D) Do Vi — L RTe(e™ ¥ Dae')DV;

_ %D%{J&(Vy)v1 + ;ZTr@{d(e*VyDa}eVy)) Ddam)
where we should recall Vi, = V' + yVi. This is a somewhat deceptive labelling though since
the y-dependent compensator X, is used to define the supergravity superfields R and X,
as well as in the covariant derivatives D. In principle, all of the y (and V) dependence may
be explicitly expanded.

The second term may be evaluated by noting that X is independent of the compen-
sator X, and so 0, amounts to an arbitrary U(1) shift in the prepotential. Then following
(5.3.95),

u t _ Yy t u
o, [ X(wtpwt Vi) = [ Xl wt,, Vi) — / XY Vi)
IuX]t It Iu

which vanishes if the paths parametrized by ¢ and u are identical. Then the only contribu-
tion is that of the first term, which is manifestly local and can be integrated in the U(1)
deformation parameter y.
Conformal anomaly

The conformal anomaly with which we will be concerned involves the transforma-

tion

n—etn, foqet, X o Xer? R (5.3.102)
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in the action (5.3.97). Begin by recalling the definition of the effective action:

1 1
T log D], — 2[mogm€+/ L;(w}j,Vu)—w/ Xt o Vi) (5.3.103)
I T JIuxIy

Under a conformal transformation, Trlog H generates the covariant conformal anomaly:
1 ~
5(5,\’I‘rlogH =Try ()\e_EH+) + Try (Ae_€H+) + h.c.

1 2

Since X is independent of X, the only other contribution to the conformal anomaly comes
from the LZ term. It is straightforward to show

1 . 1 . ~
oNL. = —6/ d\Tr (eiﬁ)‘Hé)\De*“\H&/D) + 6/ d\Tr (eiCAHé)\Defe)‘HévD)
0 0
which may be rewritten as
1 .
S\LT = —c / AN Tr (ﬁ“f SpDe~ M 5V]D>
0

This is easy enough to calculate using the general formula found in Appendix D. The result
is a contribution

1

s

4 1 2
Tr | -AV — RD*\D,V — =\D*X_,V + =-\OV
€ 3 3 D

which is symmetric with respect to A and V. The third term may be rewritten to give the
missing “cross-term” WX, for the covariant anomaly.

Putting everything together, we find a conformal anomaly which may be written
(restoring the compensator X)

1
1 1 2 1 1
— 0w — =X, Tr BT, — ——Tr[A\Q
+ 87T2Tr [)\ <W 6 > » T o {)\W W, ’BV]F 24n2 " Mhdp

1 1 2
4 T [-RDUADLV + ~DA XLV — “DAD,V| +he  (5.3.106)
1672 3 3 D

where we have defined
Q,=G?*+PR+PR—-2RR+ %Qx +Qr (5.3.107)
with
[Qx]p = [X*Xa]r = [Xa X5
QD = [WPWosalr = (W, W7 5.
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The Chern-Simons superfields Q2x and €7 should exist so long as our background gauge
sector is topologically trivial [47]. They are not themselves gauge invariant; but since they
transform under a gauge transformation into a linear superfield, integrals of expressions like
¢Qx for chiral ¢ are gauge invariant.

This expression for the conformal anomaly is fairly simple to understand: the first
line which is quadratically divergent is cancelled if we add counterterms to the effective
action to remove the original ¢ divergences; the second line is a sensible anomaly with a
topological Gauss-Bonnet term; and the third line is an extra contribution to the conformal
anomaly in the presence of a gauge sector which is not trace-free and a conformal parameter
A which is not constant.

Gauge anomaly

The gauge anomaly arises from the transformation

ety et eV —etelel (5.3.108)

in the action (5.3.97). Again we begin by recalling the definition of the effective action,

1 1
2[TrlogH]e—F/ L (wu, Va)

[Trlog D], = s g

/ X(wztawqt_thvut) (53109)
Iu ><It

Under a gauge transformation, Trlog H is invariant as it corresponds to the even gauge
sector, where the superfields can be combined in a Dirac-like and anomaly-free fashion.
The variation of the other two terms can be found from (5.3.94) and (5.3.95) to give

1
5a[Trlog D). = LT (W™, V) — 53 X(wh, Wt V) (5.3.110)
T I;
where w = e"VAe¥ + A in the chiral representation and where A is conventionally chi-

ral and A is conventionally antichiral. (The precise form of w{\ is path-dependent but is
straightforward to work out.) The first term can be evaluated straightforwardly to give the
covariant gauge anomaly

L7 (W™, V) =Try (Ae_€H+) + Try (AT6_5H+> + h.c.

1

2

1 1 1
=~ [XTYA]p + —5 | TrAW W, + - TrAX*X,,
S | r]D+8w2[r T B
1

g |TAW W,

1272 [TrAQy]p + hec. (5.3.111)

1
Fo 242
where we have used TrAT = TrA as well as Tr(ATAy) = Tr(AAy). (We have also restored
the compensator X in the final equality.) The divergent anomalous term is exactly the
gauge variation of the Fayet-Iliopoulos term, which appeared as a divergent contribution to
the odd part of the effective action.



156

This alone is not a consistent anomaly and requires the addition of the term
involving X, which is path-dependent and for a non-abelian gauge sector will in general
involve an infinite series of terms. We will subsequently neglect this term.

Conspicuous in its absence is anything resembling the cross term W*X,. This is
not found in the covariant part of the gauge anomaly, nor is it found in the term X'. Since
the U(1) ambiguity implies that a conformal anomaly must be equivalent to a U(1) gauge
anomaly up to a local counterterm, it is clear that the missing cross term for the gauge
anomaly must be found as the variation of a local counterterm. Indeed, such a term does
exist:

%5A [Tr(V*)DX.] ,, = [Tr(AV)D* X, + hec. (5.3.112)

which gives the missing cross term as well as a non-covariant term which depends on the
derivative of A. This is simply one of the terms of (5.3.105) with the covariant parameter
A replaced by V.

Inclusion of a covariant mass term

The preceding analysis dealt with massless fields, which was sensible since we have
been concerned with arbitrary complex representations where a constant mass term would
be manifestly forbidden. The models with which we will be concerned, however, do contain
covariant mass terms generated both from the superpotential and Kéahler potential, so we
will need a method to deal with them.

For the case of chiral fermions, the inclusion of a mass term is not terribly difficult.
If the operator D has entries 4 and 1 on the diagonal, one simply constructs D to have entries
i and p. For chiral superfields, this avenue is not open to us because of the holomorphicity
requirement. A generic covariant chiral mass term p, depending perhaps on the background
chiral superfields, simply cannot be used in the antichiral sector. We will therefore restrict
ourselves to dealing with mass terms via a perturbative approach.

Given an operator det(D + /1) and the additional operator det D associated with
the massless conjugate, we may formally identify

Trlog D + Trlog(D + 1) = Trlog(DD + Dj1) (5.3.113)

Identifying H = DD and D,& = V, this operator at least formally has the structure of
H + V. Evaluating this perturbatively using a proper time cutoff regulator gives

[Trlog(H + V)], =[Trlog H], + / dr Tr (e"™1V)
- 1/ dT/ do Tr (e_"HVe_(T_")HV> +OV?)
2 € 0

For our case, Dﬂ has vanishing elements on the diagonal and so only terms even in Dﬂ
appear. This leads to the identification

1 [e’¢) T B B
[Trlog(D + fi)]e — [Trlog D], = — 2/ dT/O do Tr (e*"HD,ze*(T*U)HDg) + 0>
(5.3.114)
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where [Trlog D], is the previous definition we have made. The advantage of (5.3.114) is
that the final answer is quite independent of the particular way we have chosen to write
(5.3.113); other arrangements of the formal operators lead to an identical regulated result.
We may rewrite (5.3.114) as

(Trlog(D + ). ~ (Trlog D). = = [ dr [ do Z(psorr = o) + O
€ 0

where Z is as defined in Appendix D. At leading order,

_ r 1
Z(H,M;U,T_U):16W2ﬁ[MM]D+-”
which gives
. loge . _ )
[Trlog(D + fi)]e — [Trlog D] = T [ap]  + finite (5.3.115)

To calculate anomalies associated with the mass term, observe first that a gauge
anomaly acts on the objects D, D, and [ via

6D =DA+A"D, 6,D=—DAT —AD, §,1=pA+ATp
69H = [HvA]a 5!]([)/1) = [D/'/Z7A:|

provided that i transform in a way that leaves the classical action gauge invariant. Given
the transformation rules of H and Dfi, the perturbative expansion of the effective action in
terms of i must be free of gauge anomalies. (This is obvious in retrospect since we based
our construction on the operator DD + Dji, which is manifestly gauge covariant.) Thus

5, <[Tr log(D + fi)]c — [Trlog D]e) =0 (5.3.116)

For conformal anomalies, observe that

8D ={D,7\}, 6.D={D,A}, &cfr={i1,\}
6cH = {H,\} + 2DAD, 6.Dji = {Dji, \} + 2D\i

It follows (after some algebra) that
€ g
(5c<[Tr log(D + f1)]e — [Trlog D]€> = 2/ da/ do’
0 0
Tr (e—OJHAe—(O’—O'/)HDILLe—(E—O')HD/:L + De_J/HAe_(U_J/)Hﬂbe_(e_a)ﬁﬂ> + O(ﬂ4)
For our chiral model, the traces under the integrals may be written as
Tr. (ee_"lH+ Ae (0= Hippe—(e—o)H- 75u> + conjugate rep + h.c.

where we are using covariant notation for the chiral projectors and the chiral and antichiral
mass terms. This is in principle a three point operator, but we don’t actually need to
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evaluate it fully. Simply observing that dimensional counting forbids anything worse than
Apfi as a D-term, we can first neglect all derivatives on A to contract the first set of heat
kernels and then perform the ¢’ integration to give

e <[Tr log(D + ft)]e — [Trlog D]6> = 2/ doo Try ()\P[Le_(E_U)H*ﬁue_dﬁ)
0
+ conjugate rep + h.c.

The operator within the trace is equivalent to Z except for the addition of the factor A.
This immediately yields

1

e <[Tr log(D + j1)]e — [Trlog D]F_> =353 (Al p +hec.

Restoring the explicit factors of the gauge and conformal fields gives
1
Se <[Tr log(D + 1)) — [Trlog D]6> =33 [AXTr(e—Vpe—VT w|  +he. (5.3.117)
T

That there is a conformal anomaly involving u but not a gauge anomaly implies
again an asymmetry between whether we include a U(1) factor in the conformal or in
the gauge sector. There is an obvious finite counterterm to include whose U(1) gauge
variation gives the corresponding U(1) gauge anomaly: one simply puts the U(1) part of
the prepotential in place of A\ in the above expression.

Summary

We have covered a lot of ground so we briefly review our results. The model we
are considering is of the form

1

v 1
S = [”;1/277} . +5 (0" pn) o+ 3 [nan" ], (5.3.118)

The one-loop effective action I (with a proper time cutoff) is found by calculating

[[]e = —=[Trlog(D + ji)]. (5.3.119)

1
2

The divergences of this effective action are

I'eos— ———[Tr(1-2V) X
log e loge V. _yT
9672"X 3272 [XTr(e pe M)]D

1 1\ 2
F

where

_ 1 1
_ 2 o' a
Sy = [G* +2RR], + <12 (X Xalp + 5 [WW Wvga}F - h.c.> (5.3.121)
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We emphasize that the logarithmic divergences are independent of the choice of where to
place the U(1) factor.
Of a nearly identical form is the conformal anomaly:

1

1672€
L [)\XTr(efvfe*VT )} + L
1672 pe W T g2

1
1672

Se[T]e = +——Tr [AX(1 — 2V)],,

[)‘QX]D

1 vo L2 B
TI' EX +§)\W W’yﬁa

A(WO‘—
F

1 2
Tr [RD”‘ADQV + 3D AXaV 3DQADQV] +he  (5.3.122)

3272 D

where
_ _ _ 1
QXEG2+PR+73R—2RR+EQX+QL (5.3.123)

(Recall that S, = [Q,]p.) It is worth noting that the finite part of the conformal anomaly
is independent of the U(1) ambiguity when A is a constant.

The part of the gauge anomaly which is covariant and independent of the path
comes from

1
dg[le = +167T2€ [TrA X1, + 182 [TrA Q]
- 162 Tr(AWeW,,) + %TrA XX, + gTrA WY, 5 . + h.c.
+ non-covariant piece (5.3.124)

This differs in three places from the form of the conformal anomaly. Two of them
can easily be restored by local counterterms. Both the missing cross term [W*X,|r and the
missing divergent term [TrAV]p can be introduced by using 6, Tr(V?)/2 = Tr(AV)+Tr(AV).
The divergent term is proportional to this directly while the cross term can be generated
from [Tr(V?)D*X,]|p. Note that since these terms are quadratic in the gauge charge,
they cannot come from the non-covariant piece, which is proportional to the symmetrized
trace of three gauge generators. It is interesting that if we restricted to an anomaly free
representation (or even just a traceless representation), both of these terms in the conformal
anomaly would vanish, since they are proportional to the trace of a single generator, and
so there would be no motivation to reintroduce them for the gauge sector.

The mass term, if we assume it should have the form [X Tr(Ae~™V fie="" u)]p is more
difficult to generate for an arbitrary gauge transformation A. However, one can generate
this term for the U(1) part of A by using [X(TrV)(Tre=V fie™"" 1)]p, which is enough to
verify that the U(1) ambiguity is indeed restricted to local counterterms.

VT
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5.4 Old minimal supergravity coupled to chiral matter

In the conformal compensator formalism,

S=-3x [ége‘K/%O]D + [®3W], + [B3W] 5 (5.4.1)

g is a weight (1,3/2) conformally chiral superfield, K is weight (0,0) and Hermitian, and
W is weight (0,0) conformally chiral chiral. There are N chiral matter superfields ®¢ on
which K and W depend.

Different gauge choices for ®( correspond to different conformally related flavors
of minimal supergravity; in these versions, the quanta of ®y are interpreted as quanta of
the gravitational sector. Here we will leave ®g ungauged and its quanta we will interpret
at the same level as the other chiral matter. There is some question as to the physicality of
this approach; after all, these quanta appear with the wrong sign kinetic term and so their
Euclidean path integral is poorly defined.!! Since the quanta can be removed by a certain
gauge choice for diffeomorphisms, any poor behavior of this sector should be accounted for
when the entire graviton and Fadeev-Popov sectors are taken into account.

In a previous chapter, we have expanded out the action to second order in the
quanta of the chiral, gauge, and supergravity superfields. This action possesses kinetic
mixing between the chiral and gravity sectors; in terms of Feynman graphs, the chiral and
supergravity quanta mix with a coupling that goes as p?. The proper procedure then is to
find a clever gauge fixing procedure to remove the kinetic mixing (this was the approach
taken in [27, 28, 25]) or to find a way to deal with an arbitrary operator on the space of
vector and chiral superfields.

Either approach is beyond the scope of the tools developed here so we will restrain
to a more limited case: we will attempt to calculate divergences and anomalies due purely
to chiral loops. The analogous procedure in a non-supersymmetric theory would be to
calculate loops involving both matter and the conformal mode of the graviton only. There
may be some divergences and anomalies found in mixed loops, but we will not attempt to
discover those here.

To calculate the effective action due to chiral loops, we must expand ®¢ and @, as
a background plus a quantum superfield. How precisely we do this is a matter of defining
quantization and should not affect the final result provided the background fields are taken
to satisfy the equations of motion. We will choose

50" =n', 5By = (5.4.2)

where 7 is weight (0,0) chiral and 7o is weight (1,3/2) chiral.
Denote Z = —3®qPge K/3 and P = ®3W for generality.!? Introducing the nota-
tion ® = (®g, ®%), the action may be written

S=1[Zlp+ [Py + [P]: (5.4.3)

"This is an old problem in the non-supersymmetric gravity literature. The famous paper of Gibbons,
Hawking and Perry [48] suggested to Euclideanize the conformal mode of the graviton with an additional
factor of i.

12The definition of Z differs by a factor of —3 from that used in the previous chapters.
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with a first order variation

SW =[Pz +n' P, (5.4.4)
where P = —V?/4 is the conformal chiral projector. The equations of motion PZ; = — Py
amount to

P (<I>0<i>0e—K/3) =W, P ((Docioe_K/?’Ki) - (5.4.5)

If the gauge choice ®y = e//6 were adopted these would become

1 -
2R = e&/2W, —Z(DQ — 8R)K; = —e/?w; (5.4.6)

The second of these may be rewritten using the first as

1_
ZDQKZ- = K2(W + KW) = 52w, (5.4.7)
In this form, both sides of the equations transform covariantly under Kahler transforma-
tions.

The second variation is

1 r 1 1rro s
55(2) = {nIZfJUJ} s T3 (" X’ + 3 {77] fj”?“’} - (5.4.8)

where
Xrj=Prj+PZrs (5.4.9)

Manifest reparametrization invariance has been lost at the second variation. If we wanted
to maintain it, we would need to introduce an affine connection on the space of chiral
superfields. There is no object in the theory which can serve this purpose (the Kéhler affine
connection being non-chiral), so we would have to insert one by hand. This seems artificial
so we accept the loss of manifest reparametrization invariance and expect it to be restored
on shell.

The kinetic matrix Z7; is clearly an object which we can treat analogously as eV,
except for the difficulty that its indices carry conformal as well as Yang-Mills charge. This
can be remedied by introducing a particular measure for the path integration variables n!
so that each of the 5! are dimension (3/2,1). Then we could write Z7; as (¢")7;/X'/?
where X has dimension two and V is dimensionless. In calculating the effective action, V'
and X would appear differently (as we have previously discussed), but for certain questions
we would find answers that were independent of the particular details of this separation.
In particular, the logarithmic divergences for the theory take the form (including the mass
term)

loge g log e

0672 x ~ 39,3 1 [QPIp

1 loge 2
I'=—=-Trlog(D + i — T P -d h.c.
5 Trlog(D + 1) > — =23 r([ z+ 3 W]F+ c>+

(5.4.10)
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where
Qp = X277 X 527 (5.4.11)
1 2
by = <W°‘ — 6X°‘> , Oy = WP W, (5.4.12)
and
_ _ _ 1 1 .- -~
_ 2 a «

A+

\ga (5.4.13)

F

There is a distinction between V' and X in S, and ®7, but the former is a topological
invariant independent of small variations in X and the latter is manifestly independent of
the distinction, since we may rewrite

by = 2%y, Zo=-V (vaazm) (5.4.14)

1
8
where Z!7 is the inverse of the kinetic matrix Z 71- (The Weyl curvature Wz, is, of course,
independent of X since it is defined in conformal supergravity.)

Only the mass term Qp and the field strength ®, are the interesting objects to
investigate. We will begin by evaluating Qp.

5.4.1 Simplifying Qp

To simplify this term, it helps to introduce reparametrization connections and
curvatures for the kinetic matrix Z. Observe first that

V2Z1) = V(21,7907 = Vo (T(2) 1,5 2 77407
= R(Z);7,5Va®X V! + 1(2) 1,5V 2k
where I'(Z) and R(Z) are analogous to the Kéhler connection and curvature but defined
with the kinetic matrix Z instead of the Kéhler potential. The connections are

1 1

0(Z)i* =Tk - g(sﬁKj - gaiji
P 1
0(Z)i" = ?0 (Fiijk - Kij — 3Kin>

I'(Z)o;" = ®5'6,"
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and the curvatures are

In these equations, the quanties on the left have an index structure associated with Z; 5 (i.e.
indices are raised and lowered with the kinetic matrix) while the quantities on the right
have an index structure associated with the Kéhler metric Kj;.

Lowering the indices on the left using the kinetic matrix, we find that the only
non-vanishing R(Z); ;75 is

- 1 1
-K
R(Z),55% = PoPoe /3 (Riﬁk - gKﬁKﬂ; — 3Ki,-€Kj5> (5.4.15)
which is both reparametrization covariant and Kahler invariant. This observation dramat-
ically simplifies calculations involving R(Z).

Using the equation of motion PZ; = — Pr, we may rewrite
PZy = —iR(Z)IjJRvdéKv%j —T(2)1,5 Pk (5.4.16)
and then rewrite the “mass term”
X1y =Prj+PZy=Pyy— iR(Z)IijVd@RVd@j (5.4.17)

in a reparametrization covariant way. The notation ; I denotes the covariant field derivative,
using the connection I'(Z).
We may easily calculate

Py = 62oW
Poj = 205W; = 207 (W;; — K;W)

)

2 2 2
3
Py =Py <W;z’j — g KWy — KW + 3K1K1W)

and, raising the left index,

_ 2 7
POy = /3, <—2W + 3K,€W”“)

Py = 2«9K/3&W;g
D

5 2 2 1 2
P = e} (-W;j +3 2 — 9

KW,
k J 9

KW
3 377 +3

P — eK/3gg Wit — ngﬁ
J 60 J 3 J

K,;W”“Kj)
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The notation ;i on the right side of these equations denotes field differentiation covariant
with respect to both Kéhler transformations and reparametrizations. Thus,

W, =DW =W, + K;W (5.4.18)
and
Wij = DiWy = 0;W,; = T* W + KW, (5.4.19)
The mass term can then be expanded as

_ R 1 .
__plJ B IJ B
PryRY %+ JoR Ry 5

N |

_ 1
Qp = P Pl - §P;IJRIJaa -
The relevant quantities we will need are
. = -8 _ _—
PP = 253908, <4WW - 3WWo + W;iijU>
KL K/3 o3 ke 2
PgrR""15=e 3 W R™ 5 — gVV;ij

5 4 2
Rk Ryygr = R wRijig — 3Bk + 5 (Kl + Ky Kor)

In the second two formulae, the free indices with 0 or 0 in the slots are understood to vanish.
This is due to the particular simplicity of their kinetic matrix.
The mass term can then be written

Qp = KB, <4WW - gw;jw;j + Wn-jWﬂ'j>

1 ks ke 200 ) wagio 4
e = Wi R ij WU Ve'Vad! + h.c.
2° P, U 30

1 A
R+ =K% Ko (5.4.20)

1 .. .
—_RWa RO T
+ 16 e 12 36

We use here a compact notation where an « in place of an index i denotes saturation with
Va@'; thus

Koo = K;jVad'Vad, Rija™ = RijjzVad’ V¥, ete. (5.4.21)

5.4.2 Simplifying ¢,

Next we turn to evaluating &, = Z*Z,, where

1_ o 1_
Zo s =Whs+ §V2 <ZIKV&ZI_{J) =W+ §V2 <F(Z)]JKva‘1)K>
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We evaluate each term in turn, keeping in mind that ®q is assumed to be a gauge singlet:

Zo’0 =0 (5.4.22)
, oL . A
Zo'o = %anqﬂ = O, (W, D) (5.4.23)
Dp = i 1
70 = _?sz (Kj;;Va(K’“’“Kk) + 3KjVaK> (5.4.24)
: : S T .
Zo'; =Wa'j =Ta'j + 2 Xad'j — 51V (KjVag)) (5.4.25)

where we have defined the effective reparametrization gaugino field strength

. 1_ ,

I, = —§v2 <r1jkva¢’f) (5.4.26)

The trace of Z¢Z, can be simplified by extracting Waij, Faij, and X, which are invariant
under Kahler transformations and treating the non-invariant terms separately. One finds

[Tr(ZaZa)]F = 9

. | \Z 1
Tr (Walj — Fazj + 3Xa52j> + XaXa]
F

| 1
+ |:KaaKad -

. 1 _z
- aada — VW (K X, k K X, k)
72 2’ 6" Wa( b Xrd" = KpXrd L)

(5.4.27)

where the trace in the first line is to be understood as over the “matter” fields ¢ only.
For reference, we have defined

Koo = Kz Vad"Vad" (5.4.28)

R = Ry Ve Vad" Vi VO (5.4.29)
. 1_ =

Loy = =5V (KVaky)) (5.4.30)

The appearance of the combination W, ' j —T, ;j as a field strength is gratifying. In
a component calculation, we have (after applying the equations of motion for the auxiliary
fields) a reparametrization connection for the component fields, and so we would expect
T aij to appear in the final answer with the Yang-Mills connection, which it here does.
Moreover, this specific combination is necessary in order to have covariance under a full
gauged isometry [6].

5.4.3 Summary: Chiral loop logarithmic divergences

The logarithmic divergences of the theory can be written in the following way:

loge
9672

log e
(N +1)S, — —32i2 [91 o+ Qg}

1 2
[s--28° ([CDI FEN 1)<I>W] + h.c.) +
F

6472 3 b

(5.4.31)
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where

. 1. \? 1
o, =Tr <Wa1j — Falj + 3Xa51j> + §XaXa

Dy = WPW 5, (5.4.32)

The curvatures appearing in the trace in ®; can be understood as the effective curvatures
(after equations of motion are applied) for the underlying component theory. For example,
Faij has the interpretation as the Ké&hler reparametrization curvature and Xa5ij is the
effective U (1) curvature.

There are additional D-terms which are more difficult to interpret:

Oy = X308, <4WW - %V[/;jW;J' + W;ijWﬂf> (5.4.33)
1 o? 2 . .
Qp = —= BB 0 (W RF — SWii ) V¥¢'Vo¢? + hec.
2 By \ 3
+ LR RS ¢ L ROE  — SR (5.4.34)
]_6 (6% 1] 24 o 8 ax . ke
1 -
Q= —ZVW, (kaﬂp’f . K,;qu5k> (5.4.35)

Although €7 can be thought of as a renormalization of the Kahler potential, the others
cannot since they involve derivatives of the background fields and we usually consider the
Kaéhler potential to be derivative-free.

Finally there is a topological term

_ 1
Sy = [G* +2RR] , + Re [WWWW + 6X"‘Xa] (5.4.36)
F

which is the superspace version of the Gauss-Bonnet term.

5.4.4 Chiral loop quadratic divergences

The logarithmic divergences considered previously are the physical divergences of
the theory, in the sense that they are independent of the particular form of our regularization
prescription. This is not true of the quadratic divergences, which for our generic model take
the form

1
= ——F—5[Qx+Q 5.4.37

where
Qx = (N+1)X, Qp=-2XTrV (5.4.38)

These clearly depend on the precise choice of X, which is itself partly determined by the
choice of path integration measure.
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Focusing on the D-term, we note that the kinetic matrix is

7. — o K/3 _§ Do K
1J K@y &) (K, — LKGK;)

We haven’t as yet specified the precise measure. If we take the point of view that the field
® is to be truly used as a compensator, then the simplest approach is to define the measure
to include various factors of ®g so that the effective path integral variables are of dimension

: o : i 1 i 0 _y 1,0, 1
(3/2,1). Performing such a rescaling involves taking n* — @3/277 and n° — 75 X 5

(the additional v/3 factor to normalize the kinetic term of 1°):

/ efK/3 —]_ %Kj
L (@)1 2 \ 5K (K — 5HGK;)

where now the fields 7" and 7 have the same dimension.

Unfortunately, n° still conspicuously has the wrong sign kinetic term. The ap-
proach advocated in [48] would involve taking n° — 1%, 7° — Bi® with 83 = —1, requiring
that the naive understanding of conjugation be modified after Euclideanizing this mode.
We will take this approach here, leaving 3 and /3 arbitrary except for the requirement that
pB=—1.

This leads to

—-K/3 1 ﬁKh
Z = e( V3T ) (5.4.39)

T @feg) 2 \ B (K - 3 GK)

The precise choice of 5 and 3 should not have an effect on the final answer.

We still must separate this kinetic matrix into conformal and gauge terms. The
most physically sensible choice is to identify X as the quantity in the classical theory which
is gauged to unity, that choice here being

X = ®gPge K73 (5.4.40)

Given that choice, the non-Yang-Mills part of V is defined by

% K/2 1 ﬁKJ’
e =e K2 V3, (5.4.41)
ﬁKi (Kij - gKZKJ)
which yields
N+1
TtV =TrV — T+K + Trlog K, (5.4.42)

where V is the true Yang-Mills prepotential. We have then the quadratic divergences

1
'=——+—1[Q Q 4.4
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where

Qx = BgPoe KB(N +1), Qp = Bgdge /3 <—2Trv + (N 4+ 1)K — 2Trlog Kkk>
(5.4.44)

In the gauge where &y = eX/6

for a generic (0,0) superfield V/

, one can easily check that in the absence of fermions

1 1 _ _
—3VLsg+m + E2)@(1)2 —8R)D,V — 8RD*V — 8RD*V
where Lg1m is the normal Lagrangian of supergravity coupled to a Kahler potential. As-
suming Wess-Zumino gauge for reparametrizations, Yang-Mills, and Kahler transforma-
tions, we conclude

[(ﬁOi)oeiK/gV]D =

1 .
[Q]p = —2TD — (N + 1)D" X + DT/,

This coincides with component field calculations [1], which isn’t too surprising, since our
choice of X corresponds to the natural choice of a Weyl-rescaled metric at the component
level.

In addition, using the superfield equations of motion and neglecting all fermions

1 . _
3 Lsgim = [0 = [2R]p = [eK/2W]F = KWW + 3K WV

and so
[Qxlp = (N + 1) x (=S Wy W 4+ 3e5WW) = —(N + 1)V

This result differs from a corresponding result in [1], where Gaillard, Jain, and collabora-
tors found V + M?, where M? is the gravitino mass squared, using a momentum cutoff
calculation. The deviation seems likely due to a breakdown in supersymmetry due to the
cutoff.?

5.4.5 Anomalies

There are a number of classical symmetries respected by the action (5.4.1) which
are not manifestly respected by the measure.'* These are

1. Kéahler transformations

Dy =Py, K K+F+F, Woelfw (5.4.45)

13 A subsequent analysis with Pauli-Villars regulators[2] found a supersymmetric divergence, but the orig-
inal analysis with a momentum cutoff is closer in spirit to the analysis performed here.

140f these, only Yang-Mills gauge transformations are physical and thus the only one which must be
anomaly-free to yield a consistent theory. However, in string-inspired supergravity theories, modular trans-
formations in the underlying string theory manifest themselves in the effective supergravity theory as a
certain combination of reparametrization and Kéhler transformations. Thus it seems useful to consider the
general class of symmetries described here.
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2. Reparametrizations of the chiral matter

o' — AY(D) (5.4.46)

3. Yang-Mills gauge transformations

Pt — exp(ArT,,)ijq)j, eV = eheVel (5.4.47)

Our choice of X = ®gPge /3 is conspicuous in being the choice which is Kéhler
invariant in addition to being Yang-Mills and reparametrization invariant. This means that
each of these transformations manifests itself as a gauge anomaly in the way we defined the
effective action.

This is not the only reasonable choice. We could have chosen, for example,
X = ®y®y, which would correspond to a calculation in conventional (i.e. non-Kéihler)
Poincaré supergravity. The Kahler anomaly in such a calculation would be a purely confor-
mal anomaly. Another choice would be to place all of the eX factors into X; this would yield
a combination of conformal and gauge anomalies which together give the Kéhler anomaly.
However, as we have shown, the difference between any of these approaches is a local (though
infinite) counterterm and so there is no particular need to choose one over any other.

Since the above set of transformations may all be interpreted as gauge transfor-
mations, we can treat them in one step. Taking into account the rescalings we have made,
we find the transformations
gﬁo + B\l/gFm” +0(), ot = gn” + AT+ AT 7+ O(n?)

The kinetic matrix associated with our variable choice is

ony =

1 —-K/2 1 ﬂK
w5 = S ( 8 B (5.4.48)
X X VL (K3 — 3G K;)

where X = ®¢®ge /3. This choice of X is particular in being totally invariant under the
combined Kéahler and reparametrization symmetries. The anomaly associated with these
is then simply a gauge anomaly. Taking the regulated effective action (i.e. the e-divergent
effective action with a simple subtraction to remove the e divergences), the covariant part

of the one-loop anomaly is
1 o 2 ~Ba
59[F]T€g = — W TI'(AZ Za) + gTrAW W,yﬂa + h.c.
F
1

+ M[’I‘rAQX}D + non-covariant piece (5.4.49)

with infinitesimal gauge parameter

_1 B
AIJ:( N | ) (5.4.50)
VA j
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In the expression for the anomaly, we have “completed the square” for the curvature piece by
introducing the local counterterm whose gauge variation includes W*X,. In the variables
we are using, Z, has the components

720 =0 (5.4.51)

Zolo = \%(Waqﬂ) (5.4.52)

7,0 = —24\/‘2?2 (Kjkva(K’“’ka) + ;KjVQK) (5.4.53)
Zoli = Walj — Tolj + % 0% — i@Q(Kijpi) (5.4.54)

where 33 = —1. We have neglected the part of the anomaly arising from the path-dependent
piece.
The covariant part of the Ké&hler anomaly is

1 2
3glreg @+ [Fcbl + gF(N + 1)W’75“Wy/ga] i —

Fv e,

9672 D

1 [ 1 -1 . 1
- —~FK;Ve¢'Wad’ — —FR%.:" + - FK**K ]
322 | 3 Y “ 247 Y T2 “1p

1 1 . 1
— | =S F (WY =T, V. 0" + =VF KW, " h.c. 5.4.55
+32W2[3J(W )kV¢+9 kW¢]D+ c ( )
where
7 7 1 7 2 1 «@

The first two lines of this expression are quite similar to the expression for the logarithmic
divergences given in (5.4.31). ®; is as defined there, for example, and F Kijvo‘qﬁiwaq;j is
equivalent to that equation’s 23 after integrating the latter by parts. As before, the Yang-
Mills curvature appears only in the reparametrization-covariant combination W, — I',.
One expects the Kéhler anomaly to encode the same information as the log diver-
gences, up to the addition of local counterterms. We can check here that this is indeed the
case. The major difference between (5.4.55) and (5.4.31) (aside from the path-dependent
terms that we neglect) is the lack of a mass term Qp as well as the addition of the third line
in (5.4.55). It turns out, however, that these amount to variations of finite counterterms.
For example, the “missing” term involving p can be introduced simply by adding the
finite counterterm [KQp|p with the appropriate normalization. Similarly, the third line of
(5.4.55) (as well as the second!) may be removed via the addition of local counterterms
involving K. The only honest Kédhler anomalies (i.e. ones that cannot be cancelled by local
counterterms) are the field strength terms involving ®; and Wa'BVWaﬁW. The reason for
this is that while these terms can be written as D-terms, say F) where {2 is an appropri-
ate Chern-Simons superfield, the candidate counterterm K2 is not gauge invariant under
gauge transformations associated with 2. For example, the Lorentz Chern-Simons term
Qr, whose chiral projection is WO‘BVWQBV, transforms under a Lorentz transformation by
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a term which is a linear superfield, 01,2, = L, and while the integral of F'L vanishes, the
integral of KL does not. It seems hardly productive to trade one anomaly for another, so
we will leave these terms be.

Note that we have kept the combination

_ _ S o1
Qy=G*+PR+PR—2RR+ M+ (5.4.57)

together as a single object since its D-term integral (without an overall F' factor) is topolog-
ical. However, in simplifying the Kahler anomaly as much as possible, one should probably
eliminate the G? and PR+ PR terms with the local counterterms KG? and KPR+ KPR.
In doing so, the Kéhler anomaly for pure chiral loops is reduced to one purely described
by F-term field strength expressions. This overlaps nicely with the calculations of Ovrut
and Cardoso [40] and one may check that the coefficients of W*W, and I/VO‘BVVVCXE7 agree
with those results. (One must be sure to count the contributions of W W5, from Q,.)
However, while those authors worked essentially to first order in K, the conformal terms
we have found are inherently non-perturbative in K. Of course, the rest of the anomaly
involving path-dependent non-covariant terms we have not said much about, since these
in our approach are dependent strongly on the precise prescription one uses to integrate
the effective action. Thus we have not checked the level of agreement between our path-
dependent non-conformal terms and the corresponding non-conformal terms found in [40]
since there is no particular reason for these to match.

This approach also gives the covariant form of the reparametrization and Yang-
Mills anomalies, which may be collectively written

1 L2 1 [,
6g[lreg > +—— [A’ 017, + AW, ﬂa] - [AQ ]
(S T 3 e P T b
1 3 « ]‘ o'
+ 162 Q[A V¢J< Wad — —Riaa +72V KKMHD
PR Y A VOY K KWaod® + Al (W“—ra+lxa)j Vad*K;
1672 | 18 e CRE A
+h.c. (5.4.58)

where A’; consists of both the chiral reparametrization parameter A*; = 9;A% and the chiral
Yang-Mills parameter A"T,";

The terms involving the trace A?%; correspond to the chiral part of the variation of
log det K5 = Trlog K5 and were previously reported in [40] and elsewhere. The additional
terms involving the general matrix A’; are not dissimilar in form to those found in the
Kaéhler anomaly, and one expects that certain of these should be local counterterms as well,
but there seems no generic requirement that this should be so.
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Chapter 6

Ongoing work and conclusion

We have shown how the effective action due to chiral loops may be defined in a
manifestly supersymmetric way, thus enabling a calculation of the covariant part of the
various anomalies in the classical theory. In principle, we have also a prescription for
the calculation of the non-covariant part of the anomalies, but this is a path-dependent
prescription as in the globally supersymmetric case. One critical feature that we have
uncovered is the the overlap between the U(1) part of supergravity and a corresponding
U(1) in the gauge sector. While the difference between these two is only a local counterterm
in the calculation we have performed here, it undoubtedly affects details of the non-covariant
part of the calculation, which we have not attempted to define precisely. A UV complete
theory would undoubtedly shed light on these issues.

One possible method for UV completion is to include massive Pauli-Villars chiral
superfields to regulate the divergences in a manifestly supersymmetric way. This was the
point of view taken in [2], where it was shown at the component level that the divergences in
general supergravity models may be regulated via the introduction of PV supermultiplets.
Recently it has been shown [49] that the form of the anomalies in such theories has a
structure similar to that of (5.3.122), with the anomalous Pauli-Villars masses contributing
to the compensator field X defining the Gauss-Bonnet term and the U(1) field strength
X,4. It seems plausible that a generalization of the Green-Schwarz anomaly cancellation
mechanism should be applicable here.

Having constructed the one-loop chiral contributions, one naturally turns next to
the gauge and supergravity loops. The former are quite straightforward to deal with, while
the latter are more troublesome. The difficulty in the gauge-fixing procedure, which leads
to ghosts with additional gauge invariances and non-minimal Lagrangians, has long ago
been overcome in the context of supergravity coupled to a single chiral compensator on-
shell [25], where the on-shell conditions eliminate the superfields R and G, and drastically
simplify the commutators of the various derivatives. Our task is a more difficult one since
for arbitrary couplings to matter and gauge fields, there is no similar simplification on-shell.
However, the basic program of [25] may still be applied with some modifications, which we
are currently in the process of exploring and hope to complete in the near future.
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Appendix A

Solution to the Bianchi identities

A.1 General solution to gauge constraints

The constraints chosen for conformal supergravity include a set of constraints we
shall call the “gauge” constraints for their similarity to the constraints imposed on internal
gauge theories in superspace:

{VaVs} = {Va, V) =0
{Vow Vc’x} = _2ivao}

where V4 = E4M (8M —h MQX Q) is the covariant derivative. Here X} is any non-translation
symmetry generator; for the conformal group it consists of scalings D, chiral rotations A,
Lorentz rotations My,, and the special conformal transformations K. In principle, it
may also include any internal symmetries (eg. Yang-Mills), but we will not be explicitly
concerned with those here. Since they commute with the conformal group, it is quite easier
to add these symmetries later when needed.

The gauge constraints enforce relationships between the various fermionic connec-
tions. One could attempt to solve these constraints in terms of prepotentials and then give
all the connections and curvatures in terms of these prepotentials. In the case of internal
symmetries, this is quite straightforward to do; one finds the prepotentials take the form
of adjoint Hermitian superfields V' = V" X, where X, is the internal symmetry generator.
These in turn possess a gauge invariance of the form V — V + A + A for chiral superfields
A. When the symmetry group fails to commute with translations, this approach is more
difficult (though not impossible). Moreover, in practice one is only concerned with calcu-
lating the curvatures themselves. It turns out the simpler procedure is usually to derive the
constraints the curvatures obey and to solve the curvatures in terms of some unconstrained
superfields. In this latter procedure, one finds chiral gaugino superfields W = W’ X,. whose
lowest components are the gauginos and which transform homogeneously under the gauge
transformation. (These, of course, can be written in terms of the gauge prepotentials, but
this is usually not necessary to do.) It is this latter procedure which we will follow here.
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The starting point to deriving constraints on the curvatures is the Bianchi identity
0= Z [VAa [VBa VC’H
[ABC]

where the sum is over (graded) cyclic permutations of the indices. Both the permutation
and the commutator carry an implicit grading which gives an extra sign whenever two
fermionic indices are pushed past each other. We shall examine each case in turn, in a
treatment roughly analogous to that of [7].

The case of afy is trivial. All terms in the sum vanish.

The second case is af8y. The Bianchi identity reads

0=[Va,{Vs, V5} + [V5:{Va, V}] + [V, {V5, Va}]
= —2i[Va, V/j:y] +0—2i[Vg, Vo]
= +2ila(5y) + 2il5(as)

This implies the curvature is antisymmetric in the undotted indices. We therefore may
define the “gaugino” superfield W by

Ry ap) = 2i€apWs,  Ryap = 2ic,3Ws (A.1.1)

We have included the analogous formulae for the complex conjugate. Note that Wg) = -WH
under this definition.
The third case of interest is afBc. One finds

0={Va,[Vs, Vel} + [Ve, {Va, Vs }l = {V5,[Ve, Val}
= —{Va, Rgc} + 0~ {Vg, Rac}
Writing R in terms of W and contracting with 05, gives
0 = ~2icg (Vo Wy} — Zicar (V5. W3
A further contraction with €? gives
0={Va, Wa}t ={Va, Wa} (A.1.2)

where we have included the conjugate result as well. This generalizes the chirality condition
of the normal Yang-Mills case, but this is not quite the conventional chirality. To wit,

0={Va,WsBXp} = (VaWE X5 — Wi foaP X5

W, is antichiral in the conventional sense only when the second term vanishes, which is
the case when the symmetry group under consideration is internal (i.e. one that commutes
with translations). Nevertheless, it is useful to retain the term “chiral” to describe W, and
“antichiral” for W,,.

The fourth case of interest is a3c. We find

0= {VOH [vﬁa VC]} + [V07 {Vom Vﬁ}] - {vﬁa [vw voc]}
= —{VQ,RBC} — 2i[Vc,VQB} — {V57Rac} = —{VQ,RBC} + QiRc(aB) — {VB',RQC}
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which serves to define the bosonic curvature:
Qin(ad) ={Va, Rt} + {Va, Rap}
Rewriting the right-hand side in terms of W gives

Rgp)ai) = +eapl{Var Wolb + cap{Va, Wy}

The left-hand side is antisymmetric under interchange of the pairs (33) and (ac) and so
the right-hand side must be as well. It is easy to check that this requires the additional
condition

{V*Wa} = {Va, W'} (A.1.3)

This generalizes the analogous property for the Yang-Mills case much as the chirality con-
dition has been generalized. Using this constraint one may rewrite the curvature in the
manifestly antisymmetric form

1 1
Rigpyaa) = ~5¢5a{Vie: Way} = 5801V 5, War } (A.1.4)

The remaining cases to check are abc and abc. These turn out to follow from the
previous conditions on W (just as in the Yang-Mills case) and so we do not include them
here. All other cases are conjugates of those given above, and so the constraints have been
solved.

It is useful to derive how the symmetry generator Xy acts on Wz. In order to
do this, it is helpful to have a set of constraints on the structure constants consistent with
the Jacobi identities. The easiest way to proceed is from the general formula (2.1.44),
specializing to the cases of C'B equal to v/ and VB . For the first case, one finds

0=> <_fd'yFRFB - fmifiﬁAXA> (A.1.5)
(v8)

where Rpg = RF/;AX 4 where X4 in this and the above formula consists of both the
translations P4 and the non-translation symmetries X,. For the second case, one finds

0= 2ify 5" Xa = fos"Rpp — f.5" Rog — fes™f 43" Xa — fo5% s Xa (A.1.6)

(We have relabelled d to ¢ and 7 to 3 since 3 and 3 naturally go together to form a vector
index.)

One set of additional constraints is also useful. For any theory in superspace,
we would like to be able to write down chiral integrals; the existence of these implies the
structure constant constraints (2.1.84)

fag® = fapy =0, fap® (fgdd + fg;5> =0

as well as their complex conjugates

Jus® = T =00 Sy (Jea® = ") =0
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Applying these constraints to (A.1.5) gives
0= 3" (~fu"Rus = fir  f15"Xa) = = 3 S frs” X (A.1.7)
(“/5) (’Yﬁ)

which is a further constraint on the structure constants. Note that this constraint is equiv-
alent to

farl fo Xa = %67ﬁfg¢ifi¢AXA (A.1.8)
Applying the constraints to (A.1.6) gives fgbA in terms of fggA and ngA:
Feoi)(ac) = 2646 fesa — 2680t 44 (A.L9)
Tepr)” = —%fggdfgﬁa (A.1.10)
Ty = —%fgﬂdfdgd (A.1.11)
Tepp™ = —%fgﬁdfdgg - %fggifgﬁg (A.1.12)

We are now in a position to derive the general gauge transformation property of
WB’ To proceed, ﬁrst pote that in principle B'y(ﬁﬁ') = fw(gg)AXA + ARV(BB) where the
first term on the right is a structure constant in the global theory and the second term
is the local correction. (In practice, the first term usually vanishes.) It follows that a
similar decomposition of W takes place, giving WBA = fB-A + AWBA. Since the first term
is a structure constant, it necessarily is gauge invariant; we therefore need only calculate
the gauge transformation of the local correction. Using equation (2.1.45), for the case of
CB = ~vb gives

27;675XQWBA = —Qie%gAWBFdeA + Qifd%gAWBA — ifd(ﬁ[;)(,y,y)AW;YA (A.1.13)

Using (A.1.9) allows one to show the right-hand size is proportional to €,3. The final result
is

XQWBA — _Awﬂ_FdeA _ quﬁ(bAWBA _ fdlB_;YAW‘yA

The first term on the right hand size can be combined with the left-hand side to yield the
compact formula

(X, AWﬂ] = —fdd)d)AWﬁ' — fdﬂ'#AW;y (A.1.14)
The complex conjugate is
[Xa, AW35] = +f,3° AWs — fa57 AW, (A.1.15)

We include the precise definition of the covariant derivative of the local gaugino
superfields for completeness:

VoAWs" = oMoy AW + ho (AW fra® = [,° AW + f4' AW,A) - (A1.16)
VAWt = EcMouAW;* + he (MW" fra® + fas® AWy + [ A1) (A117)

(The covariant derivative of the constant part of W vanishes.)
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A.2 Conformal supergravity solution

From the result of the previous section, we may define maximal conformal super-
gravity as the theory with the Yang-Mills constraints

{Va,Vs} ={Va,Vs} =0
{Va,Va}t =—2iV4s.
It follows that the remaining curvatures are of the form
Roog) = 2icas)Vs
Raop = 2icas)Vs
1 1
Rispyan) = ~5¢0al Vi Wart = 5e8a{Vis War}
where the superfields W obey the constraints
{Va:Wa} ={Va,Wa} =0
{va? Wa} = {VO'H Wd}
The W here is understood as
1
Wa = W(P)a""Pp + 5 W(M)a" Mye + W(D)aD + W(A)aA + W(K)a" Kp

That is, there is a W associated with each symmetry in the conformal group. These W
are not conformally primary but are rotated into each other by the action of the conformal
group. In this case, the global theory is characterized by YW = 0 and so no decomposition
of W into global and local parts is necessary.

The chirality condition {V4, W, } = 0 reads

> 1
0= VaW(P)o"Vi = W(P)a“Tes* Vi + W(M),, sV’ + SWD)aVi +iW(A)aVa

A8
aBM «a
0= VaW(K)o"Kp = W(P)a“R(K)ca” K +iW(K)as” S5

0=VW(D)a — W(P)PR(D)g — 2W(K ) aa

0= VaiW(A)a = W(P)a" R(A) pa — 3iIW(K ) aq (A2.1)

1 1
0= 5V@W(M)aCbec — §W(P)QDRDdCbeC —2W(K)

For the last two equations we have omitted the generators D and A respectively. The
curvatures in these expressions are defined in terms of W; therefore, these formulae possess
both linear and quadratic terms in W.

The condition {V* Wy} = {V4, W} reads

1
VW(P)oPV 5 + W(P)*CTeo BV — W(M)® PV 5 — §W(D)C“Va +iW(A)*V,,

. . -1 . .
= VaW(P)*PV 5 + W(P)s“Tc*PV g — W(M)a" 3V — WD)V —iW(A)aV*
(A.2.2)
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1 1
§VQW(M)aCbeC + §W(P)QDRDaCbec + 2W(K)QBM504

1 . 1 . .
— 5vd1/\/(1\4)“1’1\41)0 + §W(P)dDRDaCbeC + 2WV(K) MO (A.2.3)

VW(K)oPKp + W(P)*CR(K)co " K5 — iW(K)*," S,
= VaW(K) P K + W(P).“RK)c*P K — iW(K)s“ S5 (A.2.4)

VW(D)o + W(P)*PR(D) o + 2W(K)*,, = VaW(D)® + W(P)sP R(D) g + 2W(K)a*
(A.2.5)

VW(A)a + W(P)*PR(A) pa — 3iIW(K)®,, = VaW(A)* + W(P)sPR(A)p* + 3iW(K) s
(A.2.6)

This is a very complicated structure that simplifies a great deal when we apply the
further constraints of conformal supergravity. These are F,, = 0, H,, = 0, and TWbA =0
along with their complex conjugates. (In addition, we want T, = 0 but this turns out
to be a consequence of the other constraints.) These constraints clearly force W(A),,
W(D)a, and W(P)? to zero. Since this set of constraints is conformally invariant (i.e.
SW(D)g = +2W(P)sy = 0), it follows that the covariant derivative of any of these also
vanishes.

The only non-vanishing gaugino superfields are then W(M) and W(K). In terms
of these, the chirality constraints (A.2.1) read

0=W(M),;V"
1 .
0= ivdW(M)Ofbec — 2V(K),;M’4

0 = VaW(K)oPKp +iW(EK) o(a” S5
0= —2W(K)ad
0 = —3iIW(K)as

It follows that W(M >a6"y and W(K)qq vanish. Furthermore, W(M)qap, is chiral and

VaW(K) o = —iW(K)aa”.
Considering the remaining constraints, we have (A.2.2)

W), Vs = WD) 57

This implies that W(M)®,,, = 0. Therefore, W(M)qp is totally symmetric in its indices.
Similarly for the conjugate.
Next is (A.2.3)

1 1 : 5
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which implies that W(K)g, = =2V W(M),s, (as well as its conjugate). Since we already
know that W(K)g(aa) = iVaW(K)ga, it follows that W (K)g(aa) = —5 V2aW(M)gsa-
Equation (A.2.4) implies

VW(K) P K g — W), S5 = VaV(K)* P Ky — iW(K) 6D S,
which, when we insert our existing formulae, gives a new identity
VIVEaW(M)gpa = VIVELW(M) 4
Finally, we note that the final two constraints (A.2.5) and (A.2.6) give
F2W(K)®,, = 2W(K) 5

and .
=3IW(K)*, = +3iW(K)s",

which are satisfied trivially. (Both sides vanish.)

All of the curvatures are then specified in terms of a single totally symmetric chiral
superfield W(M),py as well as its conjugate, which together obey a Bianchi identity. Fur-
thermore, from the transformation rules of the W found in the previous section, W(M).z
is conformally primary of scale dimension 3/2 and U(1) weight +1. To make contact with
the conventional normalizations and reality conditions, we define a new superfield W3, via
W(M)apy = —2Wqpy and W(M) , 5. = +2W, 3, and summarize our results in terms of it:

&y
W(P)a” =W(P)a" =0
WD)y =W(D)s =0
W(A)a =W(A)a =0
W(M)af'%, W(M)apy =0
W(M)OZ,B’Y - QWO(,B’)M W(M)ozﬂ'y — +2Waﬂ’7
1 1

=V, = VLW
W(EK) agp) = V75 Woas: WK)ags) = VW5
Wagy is a totally symmetric chiral primary superfield obeying a Bianchi identity
VIV? i Wopa = VIV W54

From the above definitions of YW and of the curvatures R in terms of W, one can
quite easily derive the curvatures in terms of W. These are given fully in Section 2.2.6.
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Appendix B

Global superconformal
transformations

In the literature on the conformal group, the generators on the fields in the global
approach are given at an arbitrary point x. For example, D is defined as A +z - 9. (See for
example [19].) For completeness, we present the global superconformal generators in the
same global picture.

The action of a generator g on a field ® may be defined at the origin. One takes
the defining relations for a primary superfield ® as

Pa®(0) = 0,2(0), Qa®(0) = Da®(0), Q%®(0) = D*®(0)
Myp®(0) = S;p®(0), D®(0) = AD(0), AP(0) = iwd(0)
K,®(0) =0, S,®(0)=0, S*®(0)=0

The action of the supersymmetry translation generators ), at the origin are formally
defined to be the same as D,. This is certainly allowed by the discussion in Wess and
Bagger since both are equivalent to 0, there; however, it will soon be apparent that the
intrinsic action of (), on a field anywhere is to be found by the action of D,.

In order to find the action of g elsewhere, conjugation by the translation operator
is necessary. That is, in order to calculate g®(z), one must commute g past the translation
element, g®(z) = ge*F®(0) = e*F'§(2)®(0) where §(z) = e *Fge* | and the elements in the
expansion of ¢’ are to be taken to act on ® at the origin. One may calculate the effect of
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conjugation by the translation element on each of the generators:

Pu(z) =P,
Qa(2) =Qa — 2i(0*0)a Py
Q%(2) =Q% — 2i(5°0)*P,
D(z) =D + 2P, + %9@ - %é@
A(z) =A —i0Q +i0Q — 2(00"0) P,
May(2) =Map, — 2, Py + (0004Q) + (050Q) + Peapea(00ab)
Ka(2) =K, + 224D — 22y My, +i(00,5) +i(05,5) + 2x4x, P, — 22 P,

+ 24(0Q) — 23 (004Q) + 24(0Q) — 2245(0524Q) + 3CaA + €qpealpMed
— 2€abealpe Py — 216 (0Q) + 2i,(0Q) — 2¢° P,
Sa(2) =Sa + i24(04Q)a — 204D + 3i00. A + 2(°?0) o My,
— 2002 P, + 4(0%°0) 20 Py — 202Qu — 204,(0Q) + 2i6%(6%0) o P,
S%(2) =8% + i24(5,Q)* — 20°D — 3i0% A + 2(6"0)% M,
— 2090 P, + 4(5%°0) x4 Py — 26°Q% — 20%(0Q) + 2i0%(5°0)° P,
where (¢ = §o°0.

The first set of definitions imply

P,®(z) = 9,9(2)

Qa®(2) = Da®(2) — 2i(0°0)00,®(2), Q°®(2) = D®(z) — 2i(5°0)0,P(2)

which is consistent with the standard definitions in the literature [7].
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Appendix C

A brief note on implicit grading

We make use of the convention of [7] with respect to superspace indices and their
contractions. Furthermore, we adopt an implicit grading scheme to avoid cumbersome
notation. In any formula involving capital Roman superindices (A4, B, C,...), an order
is set by the uncontracted indices of the first term; all other terms, if not in the order
given, must be supplemented with a grading to flip the indices to the appropriate order. In
addition, all index contractions are to be done high to low between adjacent indices; any
other configuration of indices must be swapped into this configuration.

A few examples help a good deal. First the commutator:

[VB,Va] =—Rpa

Explanding this out gives
VBVa4—VaVp=—Rpa

The first term sets the order to be B then A; the second term has the wrong order and so
a grading must be inserted. The final result is

ViV — (=)*PVaVE = —Rpa

The commutator is really an anticommutator if both A and B are fermionic.
Next, a more involved example:

VePVeWa + VeBV W = FapPPGep

The first term sets the order: C' then A. The B contraction is properly done, so no grading
is necessary for the first term. The second term has C' and A in the correct order, but
the B contraction is done through the A. One must swap the A with either B to get an
adjacent contraction, giving a grading (—)AB. The third term on the right side has the B
contraction done in the wrong order. This requires we place a grading of (—)Z. In addition,
the D contraction is done through the index C, giving a grading of (—)“?. Finally, the
overall order of indices is A then C; swapping them to the correct order gives a grading
(—)AC. The final result with the gradings restored is

VCBVBWA + (_)ABVCBVAWB — (_)B+CD+ACFABBDGCD'
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Now suppose G were a two-form. Then the form indices C'D can be swapped at the cost of
a sign if they are not both fermionic; this gives

We would have compactly written this without the gradings as
VePVpWa + VeBVaWg = —FapPPGpe.

which is equal to the first equation, provided we take Gpc = —G¢p which is true modulo
the grading.

The advantage of this notational method is that in any calculation involving su-
perindices, one may naively treat them as if they were all regular bosonic indices. Then
when one wishes to actually insert the components, the gradings can be added on the fly
subject to the rules we have given.
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Appendix D

Calculation of the two-point chiral
heat kernel

A common expression that we’ve come across is

Z(wo,w1; T4, T—) = /E’/E Tr (wo (2 )U- (2", 2, 7 )wi (2)U4 (2, 2, 74))

which is a functional of two local superfields wy and w9 and a function of two heat kernel
parameters 71 and 7. We are interested in a small 74 and 7_ local expansion. Without
loss of generality, we can define 7. = e\ and 7_ = e\ with A+ X = 1. Then ¢ is taken to be
our small parameter.

The first step is to use the symmetry of H_ to swap the coordinates of U_ so that
z is the leading coordinate in both bi-scalars. Due to (5.3.45), this induces a change in the
representation of W% within U_. Then one could choose to work in a normal coordinate
system for z about z’. The difficulty in doing the calculation this way is that U_ involves
an exponential in ¥ and Uy in ¥, but ¥ and ¥ are only both 32/2 when in their respective
antichiral and chiral gauges. However, in performing the z integration we can certainly
choose to do it in a conventional way by doing the Grassmann integrations, reducing the
expression to one in terms of y with 7 and 7 vanishing. In the case of vanishing n and 7,
gauge it is not hard to see that both ¥ and X reduce to y?/2. We will show this in due
course.

We perform the Grassmann integrations in a covariant way, using

1 - _
/EQ = /5 (D? —8R)Q = /d4ye (f + i1pg0%8 — waaabwa«)
where f, § and T are defined in terms of ) as

1 _ . 1 . _ _ _ _
f:_z(pth)Q §% = —-DYD? - 8R)Q, f=+—(D?—-24R)(D? - 8R)Q

1

8 16

We have elected to evaluate the D-term integral via an F-term. This will give the same
result as using an intermediate F-term up to a total derivative.
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The quantity €2 has two leading prefactors of the form

1 5 _ 1 -
P, = A2 - = d P_= __Al/2 - =
T {dren)? eXp( 26A> an @renz P\ T2an

and it may be written as

Q= P+p7 X WQF,W1F+

f, 5 and r will also have these prefactors, so we extract the common term P_P,, defining
the superfield T by

PP.T = (F+ita0"s = a0 isr)

Having performed the Grassmann integrations, the remaining y integration can be
done in any coordinate system of our choosing subject to the constraint that n = 7 = 0.
We will take as our coordinate system the normal coordinate system defined by expanding
any function of y in a Taylor series, using

1
F(y) = F +y*D,F + 5y“gf’DaD,,F + ...

Recall that in chiral gauge ¥ obeys [D,DpX] = 14, with any number of other purely bosonic
(symmetrized) derivatives vanishing, it follows that in this normal coordinate system ¥ =
y?/2 as well. Similarly for ¥. This simplifies the exponential part of the prefactors, leading
to the integration

s [ (‘“)F()T()
— ex — =
Un)ienae ) YV Ton) WY

where I'(y) = AY2(y) A2 (y)e(y).
The Gaussian integration is simple, keeping in mind we want only the diverging

terms in e€:

1
16722

Recall that A = det(E4M) = det(E,™)/ det(E." — E™En*E,"), giving

([FT] + eAX[DaDa(FT)]) +0(1)

1
I'= exp(—iTr logdet(E," — E"En“E) + h.c.)
= exp(y’RR + O(y%))
This simplifies the expression we seek to

1
1672¢€2

_The task remains to determine [T] and [D*D,TY], which will both depend on e,
A, and A\. We begin with the expansion for [T], which we will need to first order in e. In

([T} + 8EANRR[T] + e)\S\[D“DaT]) +0(1)
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deriving [T'], a number of terms will appear. They will involve Uy and U_ with at most
two derivatives. By cleverly ordering the derivatives, it will be possible to write [T] in
terms of (U], [DaU4], [PU4], [DoDpU4], [PPUL = dU, /d7y) and also in terms of [U_],
[DAU_], and [PU_]. But only certain combinations of these terms will contribute. Using
[A1] = —2R, [DaA1] = —DoR + 2W,, and [D?4,] = 2D°W, + 1D*X, — 8RR as well as
[Dalog Al = 0 and [D?log A] = 8R,

[U4] = Py ([F]) = Py (—2eAR + O(%))
[DoUt] = Py ([DoF] +...) = Py (—eADo R + 2eAW, + O(e?))
- é[DQ logA F]+ .. ) =P, <1 — %D“Wa — %Daxa + 0(62))

[DyU4] = Py ([DyF] + [Dylog A F]) = P1 (04 O(e))

PU.] = P, ([PF]

1 1
[DaDyU4] = Py <[DanF] + 5[DaDylog AF] + 3 [Dy log ADGF] . > = P (04 O(e))

[dUL/dry] = Py <—2[F] 4 4]

— d¢+> = Py 2R + O(e))

The last three terms we have expanded only to first order in € as that is all we will need.
We also require

U] = P~ (~2AR+O(e?))

[DSU_] = P_ (—GXZB@R oW 4 0(62))

[PU_] = P_ (1 - %ﬁdwd - %@dxd + O(é))

Note that the terms involving W¢ in derivatives of U_ have the same sign as the corre-
sponding terms involving W, in derivatives of U,. The reason for this is that U_ naturally
is conjugate to U, and so the formulae involving the operators W, would normally be re-
placed by their conjugates —W¢ (since the operator W, is formally anti-Hermitian in our
convention). However, in swapping the coordinates of U_ we have conjugated a second
time, yielding +W¢.

In expanding out [T], we note that [1)] = 0 and so we need only calculate

1 _
P,P.T =wy x E(D2 — 24R)(D? — 8R) (U_w, Uy)
Using the above rules and working to linear order in € one finds
1 2 1 fe' « 1 @
[T] =wawi + €Awo §D w1 R+ §D w1iDy R — D% W, — §w1D W,
5 Lo 5 1o A B A L5 16
+ eAws —|—§D w1 R+ §de1D R — WyD%wq — §DdW w1

- %wgwﬂ?o‘Xa — 8eARRwsyw
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Next we must work out [D*D,T] to zeroth order in e. This is more difficult than
it first appears since D?Y./2e) survives under two bosonic derivatives and thus decrements
the overall € order of the expression. However, since it multiplies F' = €A1 + ..., the inverse
¢ is immediately used up. More pernicious is the term dU, /dr,, which gives ¥/2¢2)\2.
Thankfully dU /dr; multiplies only U_ and so only U_ need be written to linear order in
€.

The terms which we will need then are

Uy
DU,
B, + O(e)
75U+ 1 2 1 2
~ —=D?%A —D*YA+0O
P, 1 0+ 3 1+ (6>
~——Dy2 A @)
P, 5 b 1+ O(e)
1 1 1
PoDUs | lpsipa, — 1p,Dy2 Ay — 1Dy2Dalog A A+ O(e)
P, 2 2 4
1 dU, ) by
Py dry 1+26)\ 1+4 2+ 0(¢)

as well as
% ~ eAA] + O(e?)

DU

~ 0+ O(e)

PU_ 19+ l-9e =
—— ~—-DAg+ =D*¥ A1+ O
28 1 o+ 3 1+ O(e)
The terms generated by r are easy to dispense with since the two bosonic deriva-
tives must be expanded on the v terms and the remaining terms generated involving U
and U_ have insufficient derivatives. Similarly, s will also fail to contribute anything. As
before, the only relevant terms come from f, with

1 1

DD,T ~ wyD Dy [ =
af 2 a<P+P16

(D* — 24R)(D? — 8R) (U_w1U+)>
and only two terms from this expression can contribute:

1 _ dU,.
DD, T ~ wyD*Dy—— _ Wl ——
w9 P+P, <PU W1PU+ + U w1 dTJr )

Using

[D*D,¥] =4, [D"D,D?Y]=—32R
[D2Ag) = —4, [D,D?Ag] = —8iGa, [D*DyD*Ag) = —8iDG, + 16G? + 32RR
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we find a large number of cancellations yielding
a a 5‘ D
D DaT ~ W9 D Dawl + SXRRW1

Putting everything together, we find

1

1 1 1
T62e2 {w2w1 + eAws (21)2(,01]% + ipawﬂ)aR — DY W, — 2w1DaWa>

3 1. . . 1. .
+ edwo <+ D? wlR + 5 awl’Do‘R — WsD%w1 — Q’DdWauq)

- ﬁ&)leD Xo+ 6/\)\w2D Dawl}

which after integrating by parts gives our final expression

€A €A
16 —3 /ETr{wgwl — —RD woDywr — —RDasz w1
T€

- EDaXaw2w1 — MDD yw

A
G—(Dawgwl Wo — woDwi Wy,)

A
+62( QOJQW (JJl—CUQWD w1)+(9( )}

where we have relabelled 2’ to z.

We note that the coefficients of these terms can be checked in several ways. The
case of constant wo and wy is easy enough to rearrange into a trace over a single chiral or
antichiral heat kernel. For A = 0 or A = 0 one can similarly evaluate the resulting expression
immediately. The only cases not covered by either of these is the term D%wsD,w1; but this
expression can be checked in the case of global supersymmetry where the calculation is
quite easier.
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Appendix E

Arbitrary linear and chiral
superfield models at first order

We have expanded the actions for arbitrary chiral models to second order in the
quantum fields to enable quantization. The structure they possess is fairly interesting and is
reflected in the minimal model of a linear compensator coupled to supergravity and a Kahler
potential. We will briefly consider the generalization to an arbitrary coupling of a linear
superfield L to chiral multiplets ® in the context of conformal supergravity. Although we
will assume only a single linear superfield L, the generalization to several is straightforward.

The interesting part will be contained in the D-term action

SD:—;/Efwﬂﬂéh

The —3 is chosen so that if F is independent of L, a canonical Einstein-Hilbert term is
reproduced for the choice F = 1. Observing that

DF =2F = F; i@ + F;0:87 + 2F, L
31 ; -
_EA}- =0=FA\D — .7-"3A3<I>]
and that the Einstein-Hilbert term is contained within
3 .3 .
_2F0P - SFOd
Sp > 2f O 255

where O are superconformal (and thus contain R/6 weighted by the scaling dimension of
the field on which O acts), it is easy to see that the normalization of the Einstein-Hilbert
term is

1 1 =7
X = i]:ZAl(I)l + E‘FEATI)] =F - LF]

It is clear that the field multiplying the Einstein-Hilbert term is the proper conformal
compensator to use for our theory, so we have chosen to label the above combination as X.
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Expanding Sp to first order in quantum fields using the tools we have developed
is straightforward. One finds

6Sp =3iVH(VoF) = 3iVa(VEF) 4 3A,(VPL) Fr + (AVO)(F — LFL)
+ 3V (FV, 07 = FV,d ) + 305" (FX, 0 — FX,87) - 3F,.L

where Ay is conformally covariant, as are all the other derivatives. Integrating by parts
(and taking care that the special conformal connections vanish) gives

6Sp =+ 3VILAVFL + VIA(F — LFL) + 3iV" (FV,07 - Fv,8 )
+ 303" (FiX, @ — F;X,87) ~3F,.L
Using
VOALF =VPFL AL — iVPF V8 + iVEF v, 8
+ %}} Vo v, 07
where U/ denotes the set (@, L) and U7 the set (7, L), we can write the variation as
6Sp = — 2VOAL(F — LFL) + ;vdafi;vacbivdciﬁ — gV‘m}“LLVaLVdL
+ 303" (FiX,® - FX,87) - 3F,.L

This form is immediately reminiscent of that we have discussed before. Since X = F — LF},
is to be identified as the compensator, we define G, = —XI/QAQX_I/2 as before. This
immediately yields

55p = —4XVGy + gvdaﬂ;vaqﬂvdiﬁ — ;vmeLvaLvdL — ;vdaxﬂvaxvdx
+ 303" (FiX, @ - F;X,87) - 3F,.L
To maintain the analogy, we should make the identifications
Koo = —3X 1F5Va® Ve ® + 3X VF VoLVl +3X 2V XV X
K, = +3iX ! (FX,0 - FX,8)
which would give
6Sp = —AXV Gy + XV Ky + XX'K, — 3FLL

We would like to think of terms involving V¢ to consist of a “supergravity term”
Gy and the “matter term” Kp, so it is sensible to expand Kj out entirely in terms of the
fields. We find

Koa = — 3Va @'V ® (X1F; — X 72X, X;)
+3Va® VoL (X 72X, X1) +3VaLVa® (X 72X X;)
+3VoLVaL (X Frp+ X °X X))
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where X,; = .7:2 — L-FLi; X; = f; - L]:Lj and XL = _L}—LL-

Before moving on, we should make one more generalization. Up until now we have
assumed L to be a normal linear multiplet. However, we may instead choose for L to obey
the modified linearity condition

1 1
PL = —szL = —ikTr(W“Wa)

This amounts to choosing L = Lg + k€2, where Ly is a normal linear superfield and 2 is the

Chern-Simons superfield [6]. L is chosen to be gauge invariant, so the gauge transformation

of 0, which is itself a linear superfield, must be cancelled by the transformation of L.
The Yang-Mills term then receives contributions from the D-term of F:

—S/E]:: T/S (]—"LTr(WaWa) + ) + h.c.

This contributes to f,s (effectively) a non-holomorphic factor of 3kd,sF7, and thus to G,s a
factor of 6kd,sFr,.
The quanta of L which we previously denoted £ should now be understood as

L =Lo—ikV*(WaX) — ikVa(WOS) + ik(VOW,L)E — KV W, Wy

where Ly is linear. This formula is determined by requiring the chiral quantum variation
of both sides of the modified linearity condition to coincide.
One can easily check that

—3LFL, = —3FLLoy + 3ikFLVY(WoX) + 3ikFLVa(WEE) — 3ikFr(VOW,)E
+ 3k FL VAW, Wy
= —3FLLo+ X"V, + VP,

where

Vr = =3ik(VOFL)War — 3ik(VEFL)WS, — 3ikFr (VW)
Vo = —6FLkTr(W,Wy)
This agrees with the previous definition for these objects provided we rewrite them solely in
terms of G5 = frs+ frs Then taking into account the contribution from the linear multiplet

gives G;~5 = frs + .frs + 6}—Lk5rs-
The first order structure can then be written

3Sp = VP (—4X Gy + XKy + W) + I (XK, + V) — 3FLL — 3Fn' — 35577

where we have included also the chiral superfield variations.
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