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 The transition from algorithmic to memory-based performance is a core 

component of cognitive skill learning.  E.g., an arithmetic problem such as 4 x 3 may 

initially be solved with a repeated addition algorithm (4 + 4 + 4), but with practice the 

answer will be recalled directly from long-term memory (LTM).  There has been debate 

about the temporal dynamics of strategy execution, with some models assuming a race 

(i.e., independent, capacity unconstrained parallel processing) between algorithm and 
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retrieval, and others assuming a choice mechanism.  This work introduces an original 

paradigm that permits (for the first time) the objective identification of strategy use on 

every trial, as well as the latency of each component step of an algorithm.  I also 

introduce a technique for appropriately aggregating data across different learning curves.  

Results are uniquely consistent with a strategy choice mechanism involving a 

competition between the retrieval strategy and the 1st step of the algorithm.  Some 

previously undiscovered skill-acquisition phenomena (such as increasing latency for 

algorithm initiation on trials immediately preceding the first correct direct retrieval for 

each item) are identified and discussed.  Examination of partial-algorithm trials (in which 

the algorithm is initiated, but abandoned prior to completion in favor of direct retrieval) 

indicates that for algorithms consisting of multiple retrievals from LTM, the bottleneck 

extends beyond the 1st step of the algorithm, whereas for simple perceptual-motor 

algorithms, some parallel performance on later steps is possible.  I introduce a theoretical 

framework that can accommodate the results found for different classes of algorithms.  

Results highlight the importance of studying partial-algorithm trials (something that has 

not been possible in previous skill-acquisition paradigms), and also the importance of 

considering the issue of efficiency in strategy scheduling as a factor that may affect 

performance over the course of practice.
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Chapter 1 

Skill Acquisition: An Introduction
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 “Practice makes perfect” is a phenomenon that is very well known, but not 

very well understood.  We are all familiar with the basic principle of using repeated 

performance of a task over time as a means of improving performance.  Present a 

child with a math problem, such as “What’s 4 x 3?”, and the child may initially find 

the answer in a slow and laborious manner.  But present the same problem repeatedly 

over time, and the child will eventually begin answering the question with speed and 

seeming effortlessness (e.g., Siegler, 1988).  What are the mechanisms underlying 

this change in the speed of performance?  For a wide range of cognitive tasks, the 

major source—if not the sole source—of this speed-up is the shift from initial use of 

a slow, multistep algorithm to a faster and subjectively less effortful memory look-up 

(direct retrieval) of the answer (Logan, 1988; Rickard, 1997, 2004).  A child 

presented with the arithmetic problem “4 x 3” may initially find the answer through 

an algorithm of repeated addition (4 + 4 + 4), but over time will learn to simply 

recall the answer from long-term memory (LTM). 

 For a task such as the above arithmetic problem, the algorithm itself consists 

of a series of retrievals from LTM.  However, there are many tasks in which a direct-

retrieval strategy competes against a perceptual-motor algorithm.  For example, to 

find an unfamiliar room in an office building, a person may initially need to utilize a 

visuo-motor search algorithm; but a person who frequently returns to the same room 

will likely learn to directly retrieve the location from memory.  To perform some 

editing function in a word processor, one may initially need to move the mouse 

pointer to a dropdown menu in search of the appropriate command; eventually, 
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though, one may simply recall a particular shortcut key combination for accessing 

that command. 

 The transition from algorithm-based to direct-retrieval-based strategies is, in 

short, an ubiquitous phenomenon (Delaney, Reder, Staszewski, & Ritter, 1998; 

Hertzog, Touron, & Hines, 2007; Jenkins & Hoyer, 2000; Logan, 1988, 1992; 

Onyper, Hoyer, & Cerella, 2006; Palmeri, 1997; Rawson, 2004; Reder & Ritter, 

1992; Rickard, 1997, 1999, 2004; Rickard & Bajic, 2003, 2006; Rogers, Hertzog, & 

Fisk, 2000; Schunn, Reder, Nhouyvanisvong, Richards, & Stroffolino, 1997; Touron, 

Hoyer, & Cerella, 2001), and the extent to which we understand this transition thus 

has important implications for our fundamental understanding of learning, of skilled 

performance, and of the underlying cognitive architecture.  Yet there is ongoing 

debate regarding the nature of the transition, and of the ways in which competing 

strategies will or will not affect one another.  In more concrete terms, if a child 

begins to solve a multiplication problem through the use of a repeated addition 

algorithm, would the execution of this strategy in any way interfere with the 

concurrent recall of the answer for that problem?  If interference were found for 

tasks such as this, would this interference also extend to cases that involve simpler 

perceptual-motor algorithms?   For example, would moving a mouse pointer to a 

dropdown menu interfere with the recall of a shortcut key combination?  The 

experiments described in the following chapters have helped provide some new 

insight into these fundamental questions.  Before they are described further, though, 
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it is important to ground them within a historical perspective, and explain how the 

skill acquisition literature arrived at the questions that are currently being asked.   

 Here, a good starting point is a philosophical question: when we get better at 

any given activity, are we expanding our abilities, or are we better compensating for 

our limitations? 

Skill Acquisition: Are We Becoming Richer, or Living Within Our Means? 

 While the latter view—skill as cognitive frugality—may seem to be a 

counterintuitive perspective, it has been an extremely influential viewpoint 

throughout much of the modern skill acquisition literature, and it is worth 

considering further, particularly in regard to what may be termed the capacity-based 

models of skill acquisition (e.g., Shiffrin & Schneider, 1977).  The starting point for 

these models is the basic notion that we possess some limited cognitive resources, or 

“capacity limitations…that cannot be removed by training or practice” (Shiffrin & 

Dumais, 1981); such as, perhaps, the total amount of attention we can direct among 

different activities at any given moment.  However, if a financial metaphor may be 

used, although we are living on a limited budget, we can learn to buy the same or 

equivalent goods at a lower cost.  One early example that seemed to lend credence to 

this perspective came from comparisons of expert and novice chess players (see 

De Groot, 1965; Chase & Simon, 1973).  It was found that (as might be expected) 

expert players had a superior ability to hold complex patterns of chess pieces in 

mind.  However, it was also found that experts and novices did not differ in terms of 

the number of pieces of information they could hold in mind at any given time.  



 

 

5

Rather, the experts simply learned to recognize familiar patterns of pieces, and could 

thus represent each familiar pattern as a single “chunk” of information, rather than as 

a collection of multiple distinct pieces of information (see De Groot, 1965; Chase & 

Simon, 1973; Miller, 1956).  When dealing with unfamiliar patterns of chess pieces, 

the expert players were no better than the novices. 

 In relation to issues of short-term memory and the chunking of information 

(Miller, 1956), a capacity-based perspective clearly has some merit.  However, the 

capacity limits that have received the greatest focus within the modern skill-

acquisition literature have been the limits of attention, and research on how to 

circumvent these limits has focused on automaticity, which can roughly be defined 

as the ability to perform some practiced action without thinking about it.  (As will be 

seen, though, no definition of automaticity will be entirely satisfying to everyone.)  

 It is easy to think of examples that appear to support the capacity-based 

perspective of skill acquisition.  When first learning a new activity, such as driving 

(e.g., Brown & Poulton, 1961), or typing (e.g., Salthouse, 1986), or playing a 

musical instrument (e.g., Shiffrin & Dumais, 1981), people initially need to give 

their full attention to the mechanics of performance, but over the course of time and 

practice, more and more aspects of performance seem to occur with little or no 

attentional effort, freeing the skilled individual to direct attention to other concurrent 

activities, such as speaking on a cell phone while driving.  This led some researchers 

to make an explicit dichotomy between automatic vs. controlled processing (e.g., 

Shiffrin & Dumais, 1981), or automatic vs. attentional processing (e.g., Logan, 1980; 
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McDaniel & Einstein, 2000).  However, problems with this perspective soon 

emerged.  (In regard to the perils of using cell phones while driving, see Redelmeier 

& Tibshirani, 1997.) 

 First, contrary to what many had assumed, it appears that no skilled activities 

can be completely independent of attention.  Even with the most highly trained and 

seemingly uncontrollable automatic activities, such as the unintended word-reading 

that gives rise to the Stroop effect (and that also helped define many researchers’ 

notions of what constituted a genuinely automatic activity; see Logan, 1988), 

manipulations of attention can still affect performance (e.g., Besner, 2001).  Thus a 

distinction such as automatic vs. attentional is a false dichotomy. 

 In a further problem for the capacity-based perspective, researchers could not 

agree on how best to define the central concept of automaticity.  For example, is an 

automatic activity one that can occur without thought, but be highly controlled (such 

as walking), or is it an activity that can be triggered without or against one’s 

intentions (like a bad habit).  Would both characteristics be necessary?  Would either 

be sufficient?  Multiple researchers attempted to develop a more specific definition 

of automaticity, but could not agree on the number of characteristics that defined 

automaticity (e.g., five according to Hasher & Zacks, 1979; twelve according to 

Schneider, Dumais, & Shiffrin, 1984).   

 Amid this backdrop, a more recent trend in the skill-acquisition literature 

(e.g., Logan, 1988; Nosofsky & Palmeri, 1997; Rickard, 1997) has shifted away 

from the previous focus on attentional savings, and has instead put an increased 
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focus on LTM gains.  For example, in an influential paper, Logan (1988) defined 

automaticity not in terms of how little a given skill impinges upon limited cognitive 

resources, but rather in terms of how fully it is based on direct retrieval from LTM.  

Attentional processes thus affect skill-acquisition to the extent that these processes 

affect LTM. 

 A core concept within these models is a phenomenon that I introduced 

earlier: strategy transitions.  Specifically, the transition from algorithmic 

performance to direct memory retrieval.  However, from the perspective of some 

earlier models of skill acquisition, what may subjectively appear to be direct retrieval 

from memory might in fact be automatized algorithmic performance.  That is, we are 

still using the algorithm to reach the answer, but performance of the algorithm is now 

taking place outside of conscious awareness, resulting in a subjective experience that 

may be indistinguishable from direct retrieval.  How could we distinguish this from 

actual direct retrieval?  Before describing the strategy-transition models further, then, 

it is important to first validate two core assumptions of these models: namely, that 

direct retrieval is retrieval, and that it is direct. 

 Unconscious algorithm use could potentially take two basic forms: 

unconscious processing of information (which would not be tied to specific stimuli), 

or unconscious representations of information (which could be tied to specific 

stimuli).  In regard to the former possibility, some learning models from the early 

part of the modern skill-acquisition literature (e.g., Kolers, 1975; LaBerge & 

Samuels, 1974; Logan, 1978) placed a heavy, if not exclusive, emphasis on 



 

 

8

processes rather than representations.  One representative example would be the 

LaBerge and Samuels (1974) model of reading.  From the perspective of this model, 

learning to read involves the development of processes for combining textual 

information into larger units: features into letters, letters into words, words into 

sentences into meaning.  With practice, these processes become automatized, and fall 

out of conscious awareness, but every newly presented piece of textual information 

is still processed upward from the most basic units of information, and thus transfer 

of reading skills to new and unfamiliar texts would be expected to be quite good.  

However, this class of models (Logan, 1988, referred to them as process-based 

models, but that is not a uniformly used term within the literature) ran into a very 

basic problem: learning tends to be quite specific in nature.  For example, when 

receiving training on unfamiliar math problems (e.g., either young children receiving 

practice on simple multiplication problems, such as 6 x 7, or college-age individuals 

receiving training on multiplication problems such as 17 x 23), learning may not 

even transfer to operand order reversals (Reder & Ritter, 1992; Siegler, 1986).  (E.g., 

for a child first learning multiplication, training on 6 x 7 does not transfer to 7 x 6.)  

When dealing with more familiar math problems (e.g., college students training on 

simple multiplication problems), observed improvements in response time (RT) with 

practice will transfer to operand order reversals, but not to related problems 

involving a change of operand or operator (Rickard & Bourne, 1996; Rickard, Healy, 

& Bourne, 1994).  That is, training on 6 x 7 = __ will result in faster performance for 

7 x 6 = __, but will not result in faster performance for 7 x __ = 42, or for 
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42 π 6 = __, or for other related manipulations.  Equivalent results have been found 

in a study that used words and sentences rather than arithmetic (Rickard & Bajic, 

2006).  That is, if subjects are taught sentences such as “snow falls gently”, then 

repeated practice recalling the word “gently” when presented with “snow falls ____” 

will result in faster recall of that specific word when presented with that specific 

sentence fragment.  However, this practice does not result in faster recall of the word 

“falls” if subjects are later tested on “snow ____ gently” (Rickard & Bajic, 2006). 

 In regard to unconscious representation-based algorithms, a good 

hypothetical example involves something that people frequently fail to see as 

algorithms: namely, mnemonic devices.   Suppose that a person uses a mnemonic 

device to recall some information, such as using an image of a bowl of corn flakes in 

order to remember the name Cornthwaite.1  Initially, accessing the name Cornthwaite 

will require use of the algorithm—the mediating image of corn flakes.  After time 

and practice, it will seem that the name Cornthwaite is recalled directly to memory, 

with no need to access the image of cereal.  However, as Adams and McIntyre 

(1967) pointed out (see also Bellezza & Poplawsky, 1974; Bellezza, Poplawsky, & 

Aronovsky, 1977; Crutcher & Ericsson, 2000), even if a mnemonic device ceases to 

come to conscious awareness, this does not necessarily imply that a transition to 

direct, unmediated retrieval has taken place.  Instead, it is possible that the original 

mnemonic pathway continues to be used, but at an automatic level outside of 

awareness.  Crutcher and Ericsson (2000), who argued in favor of this viewpoint, 
                                                 
1 This example is taken from an anecdote related by the columnist Jack Smith.  As Smith 
(1994) noted, however, the woman who attempted to use this mnemonic device later referred 
to the actor, Robert Cornthwaite, as “Mr. Kellogg”.  
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referred to this unconscious use of old mnemonic representations as covert 

mediation. 

 How can we distinguish genuine direct retrieval (which completely bypasses 

the old mediating representation) from covert mediation?  One technique introduced 

by Crutcher and Ericsson (2000) involved an interference manipulation.  To relate 

the logic of this approach to the earlier example, if one learns to access the name 

Cornthwaite via an unconsciously accessed representation of corn flakes, then 

associating the image of corn flakes with a different name should make it more 

difficult to access the name Cornthwaite.  Crutcher and Ericsson (2000) found 

evidence of such interference in a task that involved vocabulary-learning via a 

mnemonic device (the keyword method; see Raugh & Atkinson, 1975).  However, 

Rickard and Bajic (2003) argued that conventional mnemonic devices could 

potentially add confounding variables to such an analysis.  Instead, they recreated the 

basic interference paradigm using a simple two-link paired associate chain.  A 

subject learned to associate a set of color-word stimuli with a set of spoken letter 

responses (e.g., see GREEN, and say “H”), and then learned to associate the set of 

letters with a set of spoken number responses (e.g., see H, and say “5”).  Later, on 

each trial of an extensive training phase, the subject was presented with a color-word 

stimulus, and spoke the number associated with the corresponding letter mediator 

(e.g., see GREEN, think H, and say “5”).  With sufficient training, of course, the 

numbers could be retrieved from memory without conscious use of the letter 

mediators.  At that point, the interference manipulation was introduced: a subset of 
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the letter mediators were associated with new responses (e.g., see H, and say “3”).  

Contrary to the covert mediation hypothesis, the interference manipulation did not 

increase the difficulty of speaking the appropriate number for each color-word 

stimulus.  Thus, consistent with our subjective experience, direct retrieval is 

genuinely retrieval, and genuinely direct. 

 Although, as noted, there is strong evidence that skill acquisition for many 

classes of tasks involves a transition to a direct-retrieval strategy, there is not a 

general consensus regarding the exact mechanisms of this transition.  To put these 

controversies within the proper context, it is important to first discuss another topic 

that has long held a central position within the skill acquisition literature: the time 

course of learning. 

Practice Curves and the Power Law 

 Across a number of studies dealing with what appeared to be quite different 

sets of skills—e.g., rolling cigars (Crossman, 1959), tracing images seen in a mirror 

(Snoddy, 1926), proving geometric theorems (Neves & Anderson, 1981)—careful 

analysis of learning-rate data revealed a surprisingly common pattern: when practice 

curves were plotted (with the number of repetitions of some task on the x-axis, and 

the time needed to complete the task plotted on the y-axis), the speed-up in 

performance was initially rapid but then leveled off, along a curve that could 

generally be well fitted by a power function.  Put another way, practice curves are 

generally straight lines when plotted in log-log coordinates.  This log-log linearity of 

practice curves was first noted by Snoddy (1926), and later noted by De Jong (1957).  
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Crossman (1959), who developed and formalized the idea further, suggested that it 

could be called “De Jong’s Law”.  However, this commonality across different types 

of skill-learning scenarios did not truly gain traction until it was rediscovered in a 

highly-influential meta-analysis by Newell and Rosenbloom (1981).   Newell and 

Rosenbloom suggested two possible names for the phenomenon: (a) the log-log 

linear learning law, and (b) the less alliterative name by which it is now more 

commonly known: the power law of practice. 

 The tendency of speed-up with practice to approximate a power function has 

since been identified in an even wider range of skill domains, such as mental rotation 

(Kail, 1986), lexical decisions (Logan, 1988), recall of facts (Pirolli & Anderson, 

1985), and social judgments (Smith & Lerner, 1986).  However, there has been 

disagreement regarding exactly what the power law signifies in terms of the 

processes and representations that underlie skilled performance.  Pirolli and 

Anderson (1985) argued that smooth, power function learning curves were indicative 

of performance improvements based on quantitative, rather than qualitative, changes.  

Logan (1988), however, demonstrated via stochastic modeling that smooth, power 

function speed-up can occur when there is a gradual transition between qualitatively 

different performance strategies. 

 Although there was disagreement regarding the power law’s implications, 

there was consensus regarding its importance.  As Logan (1988) observed, power-

function speed-up “is treated as a law, a benchmark prediction that theories of skill 

acquisition must make to be serious contenders…If they cannot account for the 



 

 

13

power law, they can be rejected immediately.”  However, as also noted by Logan 

(1992), virtually any model of skill acquisition can be modified to predict power 

function speed-up; particularly if (as is often true) the shape of the learning curve is a 

free parameter. 

 It was in this particular climate—great respect for the power law, but 

diminishing respect for the limited-capacity models of skill acquisition—that Logan 

(1988) introduced his instance theory of skill acquisition.  From the perspective of 

instance theory, each encounter with a particular problem is encoded in memory as a 

distinct representation, or instance.  When the problem is encountered again, a 

parallel, capacity unlimited race occurs between the algorithm and all previously 

encoded instances, with the winner of this race determining the response.  As more 

instances accrue with practice, it becomes probabilistically more likely that at least 

one instance on each trial will have a finishing time that is faster than that of the 

algorithm, and thus the transition to memory-retrieval based performance occurs 

(Logan, 1988).  Further, Logan demonstrated that a race process such as that 

embodied by his model could predict power function speed-up over the course of 

practice.  Indeed, Logan (1992) argued that one advantage of instance theory, 

relative to other models of skill acquisition, was the fact that power function speed-

up naturally emerged from its core assumptions.  (For debate regarding the accuracy 

of this assertion, see Colonius, 1995, and Logan, 1995.) 

  Instance theory was followed by the exemplar-based random walk (EBRW) 

of Nosofsky and Palmeri (1997; see also Palmeri, 1997), which synthesized Logan’s 
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(1988) model of skill acquisition with Nosofsky's (1986) generalized context model 

of categorization.  For present purposes, the most important detail is that the EBRW 

model shares instance theory’s core assumption that an unlimited-capacity parallel 

race takes place between the algorithmic strategy and the direct-retrieval strategy.  

Over the course of practice, this results in power function speed-up. 

 But there was a problem in the skill acquisition literature: the models were 

obeying the power law, but the data were not.  That is, practice curves could 

generally be fairly well fit by power functions, but there were particular patterns of 

deviation from log-log linearity that were frequently appearing in data sets.  For 

some tasks, power function fits would tend to underestimate RTs in the earlier part of 

practice, and overestimate RTs in the later parts of practice (Rickard, 1997).  This 

observation helped set the stage for Rickard’s (1997) component power laws 

(CMPL) model of skill acquisition.  The CMPL model assumes that two independent 

retrievals from LTM can not occur simultaneously.  Thus, for algorithms that consist 

of multiple retrievals from LTM2—such as the serial addition algorithm for 

multiplication problems—the algorithm-based strategy and the direct-retrieval-based 

strategy can not be executed simultaneously (Rickard, 1997; Rickard & Bajic, 2004). 

 Based on their core assumptions (see Logan, 1988, 1992), the race models 

predicted that power function speed-up would be observed not just in performance 

data averaged over items and subjects, but even in the practice curves observed for 

individual items.  From the perspective of a strategy-selection model such as 

                                                 
2 The CMPL model, as currently specified, does not make any predictions regarding 
algorithms with no LTM retrieval component, such as simple perceptual-motor algorithms. 
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CMPL,3 however, the practice curves for individual items could more closely 

resemble a step function.  That is, RTs for an individual item could show the 

following pattern: slow RTs in the earlier stages of practice, when performance is 

based solely on the algorithm; an abrupt drop in RT on the first trial in which direct-

retrieval occurs; fast RTs thereafter, as performance is based solely on the direct-

retrieval strategy.  Since the exact point of transition to direct retrieval would occur 

essentially independently for each item (see Rickard, 2004), average RT data over 

items and subjects could result in a practice curve that approximates a power 

function, albeit with the deviations from log-log linearity that are often observed in 

practice data: RTs slower than the power function prediction in the earlier stages of 

practice (when use of the algorithmic strategy dominates for most or all items), and 

RTs faster than the power function prediction in the later stages of practice (when the 

direct-retrieval strategy dominates).  Analysis on item-level data revealed precisely 

this pattern for some tasks (Rickard, 2004). 

  The once sacrosanct power law of practice has since come under fire even 

from researchers who do not share the core assumption of the CMPL model.  In a 

meta-analysis of item-level RT data conducted by Heathcote, Brown, and Mewhort 

(2000), it was found that item-level practice curves could be better fit with an 

                                                 
3 There are other models of skill acquisition (e.g., Siegler, 1988; Lemaire & Siegler, 1995) 
that share the CMPL model’s assumption of a non-parallel strategy-selection process.  
However, these other models do not focus on the same types of issues that CMPL, instance 
theory, and the EBRW model routinely deal with, such as slight changes in RT for tasks that 
are already being performed at near-asymptotic accuracy.    
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exponential function rather than a power function.4  When multiple exponential 

functions are averaged together (as would occur in typical aggregate data analysis), a 

power function can result as an artifact of the averaging (Myung, Kim, & Pitt, 2000; 

Estes, 1956; see also Stratton, Liu, Hong, Mayer-Kress, & Newell, 2007). 

 As Palmeri (1999) observed, “the power law may not be as lawful as was 

once thought.”  This initially created problems for the race models of skill 

acquisition, which had log-log linearity so closely bound to their core assumptions.  

However, Palmeri (1999) demonstrated that race models can account for deviations 

from log-log linearity, provided that some simplifying assumptions from earlier 

specifications of the race models are dropped (see Logan, 1988, 1992), and provided 

also that there are modified assumptions regarding the parameters of the distribution 

of retrieval RTs (Palmeri, 1999; see also Rickard, 2004).    

 Thus, some of the most basic issues of skill acquisition—such as whether or 

not two strategies can be executed at the same time—remain a source of ongoing 

controversy. 

Moving Forward 

 The difficulty of fully resolving the above issues within the context of the 

current literature stems largely from three factors: two of them related to 

experimental design, and one related to data analysis. 

                                                 
4 Heathcote et al. (2000) found even better fits using a hybrid power and exponential 
function, which they termed the APEX function.  However, the APEX function requires an 
extra parameter relative to the exponential, so they recommended the exponential function as 
a simpler alternative. 
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Problem 1.  The first of these issues cuts directly to a fundamental question: on any 

given trial, how do we know which strategy (or strategies) a subject is using?  Until 

now, no one has developed a method for objectively identifying strategy use on each 

trial of a study. 

 Logan (1988) lamented that there were no established methods for 

identifying strategy use; but he suggested that one possible means of doing so would 

be through transfer tests.  That is, after some amount of practice, new items would be 

introduced, and performance for these items would be compared with performance 

for the old, practiced items.  For subjects who have transitioned to direct retrieval, 

this would be a comparison of fast direct retrieval performance vs. slower algorithm 

performance.  For subjects who have not transitioned, it would be algorithm vs. 

algorithm, and little difference, if any, would be expected.  However, even if the 

reasoning behind such an approach were valid, it would still provide only a rough, 

after-the-fact indication that some transition to direct retrieval had occurred.  It 

would not pinpoint the exact moment that such a transition had occurred for each 

item, and it would not provide information about the relative time-course of these 

transitions across different items. 

 In Siegler (1988), elementary school children performed multiplication-based 

arithmetic problems, with optional use of scratch paper.  The performance of these 

children was videotaped, and two raters later classified which strategy each child had 

used on each problem.  However, as would be expected, inter-rater reliability was 

not perfect.  Further, under the classification scheme used by Siegler, children were 
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classified as having used retrieval for any problem during which no overt behavior 

(such as the use of scratch paper) was observed.  As Siegler himself noted, such an 

approach introduces a risk that some algorithm-based solutions (e.g., a trial in which 

a child performs serial addition mentally, with no assistance from scratch paper) will 

be misclassified as retrieval trials (Siegler, 1988). 

 Haider and Frensch (2002) attempted to identify strategy transitions by 

monitoring for drops in RT among subjects performing alphabet arithmetic tasks.5  

After RTs had fallen below a pre-set level, subjects would receive a transfer test (i.e., 

testing with new items).  However, their chosen RT criteria were (as they admitted) 

apparently somewhat arbitrary.  Further, using this approach, they concluded that the 

transition to faster strategies essentially occurred at the same time for all items.  

However, this result has not been replicated in more tightly controlled studies of 

strategy shifts (e.g., Delaney et al., 1998; Rickard, 2004), which have found that the 

transition to the more-efficient strategy of direct-retrieval essentially occurs 

independently for all items.  (Also, see Rickard, 2004, for a critique of their 

interpretation of the transfer test data.) 

 Delaney et al. (1998) presented a reanalysis of data from Reder and Ritter 

(1992) and Schunn et al. (1997).  On each trial of these studies, the subject was 

presented with an arithmetic problem, and had 850 ms in which to indicate (via a 

                                                 
5 In a typical alphabet arithmetic task (e.g., Compton & Logan, 1991; Logan & Klapp, 1991; 
Rickard, 2004), the subject would be presented with a problem such as “H + 3”, with the 
correct answer being the letter, “K”, that is 3 positions down the alphabet from H.  Note that 
the task utilized by Haider and Frensch (2003) differed slightly from a typical alphabet 
arithmetic task, but only in terms of visual presentation; the underlying logic of the problems 
was the same. 
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button press) whether he or she wished to solve the problem by direct retrieval from 

memory (in which case, the subject would have approximately 1 s in which to do so), 

or through calculation (with a limit of approximately 18 s).  Trials in which the 

subject answered the problem incorrectly were discarded, but trials in which the 

subject went over the time limit for answering the problem were retained.  For each 

trial, the subject was classified as having used either direct retrieval or the algorithm, 

based on his or her choice during the initial 850 ms after stimulus onset.  Overall, 

RTs for trials identified as retrieval trials were faster than those trials identified as 

algorithm trials, which suggests there is some validity to this approach.  However, 

among subjects that had already successfully completed direct memory retrievals for 

some items, reversions to the use of the algorithm for those items appeared to occur 

more frequently than it did in studies that did not impose the 850 ms snap-judgment 

requirement (e.g., Rickard, 2004), thus suggesting possible classification errors 

associated with the requirements of the task.  Further, an approach such as this is not 

ideal for studying the initial transition to direct retrieval.  That is, indicating that 

subjects should only select the retrieval option when they believe they will be able to 

complete the retrieval quickly may be appropriate in the later stages of practice, 

during which retrieval can most likely be consistently completed more rapidly than 

the algorithm.  However, we can not be certain that direct retrieval would be faster 

the first time it is attempted in a more naturalistic setting.  Potentially, the first 

attempt at direct retrieval could be slower than some or all of the steps of the 

algorithm.  An additional issue, which applies to all the strategy-identification 
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methods discussed so far, is that they do not provide any means of identifying 

possible partial-algorithm trials—that is, trials in which a subject might begin the 

algorithm, but recall the answer directly before the algorithm has run to completion.  

(By way of analogy, a person using a word-processing application might begin 

moving the mouse pointer toward the dropdown menus, but then suddenly remember 

the shortcut key combination for the command that he or she wishes to use.) 

 A more common method of assaying strategy use is through retrospective 

reports, or strategy probes.  That is, after each trial (e.g., the protocol group in 

Rickard & Bajic, 2003), or after each of a representative subset of trials (e.g., 

Rickard, 2004), or (less ideally) at the end of an experimental session (e.g., Logan & 

Klapp, 1991), a subject would be asked to explicitly identify which strategy (or 

strategies) he or she had used in the preceding trial (or trials).  This would be done 

either by verbal report (e.g., Rickard, 1997; Rickard & Bajic, 2003; Romero, 

Rickard, & Bourne, 2006), or by a key-press response to a presented set of candidate 

strategies (e.g., Compton & Logan, 1991; Rickard, 2004).  If a paradigm utilizing 

retrospective responses is properly designed (e.g., if subjects are not asked leading 

questions, and are not asked to speculate about cognitive processes of which they are 

not likely to have any conscious awareness), this approach can provide meaningful, 

veridical data  (see Ericsson & Simon, 1993).  Even with properly designed studies, 

though, this approach brings some risk of reactivity; that is, the act of repeatedly 

asking subjects about their strategy use may affect their choices regarding possible 

strategies.  One way to check for this possibility is through between-group RT 
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comparisons between subjects who were or were not instructed to provide strategy 

reports.  However, studies that have used this approach have found inconsistent 

results (see discussion in Rickard, 2004).  More research would be needed to clarify 

the source of these inconsistent results.  In particular, there needs to be greater 

clarification regarding what would constitute an appropriate filler task for subjects 

who do not provide strategy reports.  That is, a task that roughly matches the 

duration and (relatively minor) difficulty of a strategy report, but does not itself 

introduce any problems of reactivity (see Rickard, 2004).  

 Rickard (2004) combined retrospective reports with item-level RT analyses.  

Subjects performed an alphabet arithmetic task, and provided retrospective strategy 

reports via button-press on a subset of trials.  These reports were later compared 

against RT data at the level of individual trials and items for each subject, and were 

found to be highly correlated with RT, such that reports of algorithm use were 

associated with slower RTs, and reports of direct retrieval were associated with faster 

RTs.  For about 1.2% of trials, though, a strategy report was associated with a RT 

that was more characteristic of a different strategy, possibly indicating that the 

subject had misclassified his or her strategy. 

 Of all the strategy-identification methods described thus far, retrospective 

reports appear to be the most reliable overall.  However, as noted, they bring a risk of 

reactivity—the inquiry might alter the results.  Also, such data may only be reliable 

at a broad, aggregate level.  Strategy-identification data gained through this method 

may be correct most of the time, but if we select a specific trial for a specific subject, 
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we can not be certain which strategy was used for that specific trial—either because 

it may be a trial for which no retrospective data was collected (in a design for which 

such data is only collected for a subset of trials), or because the subject may have 

accidentally (or deliberately) misidentified which strategy he or she had used for that 

trial. 

 Conceivably, retrospective reports could be used to investigate partial-

algorithm trials, but so far the efforts to do so have not been promising.  In Compton 

and Logan (1991), subjects made strategy reports by a key-press selection from a set 

of candidate answers.  In addition to being able to report direct retrieval or the 

algorithm, some conditions allowed subjects to choose from a set of more subtle 

possibilities, such as starting one strategy and then switching to the other.  However, 

only the basic direct retrieval and algorithm reports appear to have been reliable; the 

percentage of reports in other response categories fluctuated depending on what 

subjects were asked (Compton & Logan, 1991).  This result is not surprising, since it 

is known that retrospective reports become unreliable when subjects are asked to 

speculate about subtle cognitive processes (Ericsson & Simon, 1993). 

 Thus, the effort to find better strategy-identification methodologies is an 

ongoing topic of research, and any improvements in reliability and validity are a 

useful contribution to the literature.  In Chapter 2, I introduce an original paradigm 

that permits the collection of objective data regarding strategy use in every trial, with 

no need to ask subjects for retrospective reports (e.g., Romero et al., 2006), and no 

need to make indirect inferences about strategy use (e.g., Siegler, 1988).  In addition, 
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the paradigm that I introduce is the first that permits the systematic investigation of 

partial-algorithm trials.  

Problem 2.  The second ongoing problem within the skill literature is the fact that, in 

current experimental designs, RT data is only collected for the final answer.  Such 

designs provide no means of indexing the latency of each individual step of a given 

algorithm.  As such, significant and consistent latency changes that uniquely affect a 

single algorithm step may be concealed within the overall RT data.  Consider again 

the example of a person who can either engage in a visuo-motor search for a room in 

a building, or simply remember the location.  When seeking the room the first time, 

this individual might walk down a hallway while searching for the room.  The 

second time, though, this individual might attempt to recall the location, fail in this 

attempt, and then hurry down the hallway during his search, in an effort to recover 

lost time.  In such a case as this, there may be little change in the overall time 

required to locate the room, yet a change in strategic processing has clearly 

occurred—something that would only be revealed by data indicating how long this 

individual paused prior to making his first step down the hallway.  Thus, a lack of 

latency data for individual steps of the algorithm hinders identification of the exact 

ways in which strategy use changes over time.  In Chapters 2 and 3, I introduce a 

new approach that allows the latency of each individual algorithm step to be 

measured. 

Problem 3.  The third issue, as noted earlier, relates to data analysis.  Consider a 

hypothetical experiment that involves multiple problems (items) for which a 
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transition from algorithm to direct retrieval is possible; and suppose that these items 

are presented repeatedly over multiple blocks of practice.  Because the shift to direct 

retrieval is known to occur roughly independently for each item (Rickard, 2004), it is 

vanishingly unlikely that any subject would simultaneously transition to direct-

retrieval for all items.  Thus, a given block may include some items for which the 

subject still uses the algorithmic approach (with a relatively slow overall RT), some 

items for which the subject is performing her first accurate direct retrievals for the 

corresponding answers (faster overall RTs; a qualitative improvement relative to the 

algorithm), and some items for which the subject has transitioned to direct retrieval 

several blocks earlier (even faster RTs, due to practice; a quantitative improvement 

relative to earlier retrieval trials).  In an analysis involving aggregate data, how can 

we prevent the mixing of items at different stages of transition, and different levels 

of practice, from obscuring effects that may only exist for items belonging to one 

specific state of transition, or one specific level of practice?  In Chapter 2, I introduce 

a data-analysis approach that makes it possible to appropriately and effectively 

aggregate data, even when the learning curves for individual items are not naturally 

synchronized. 

 In addition to finding solutions for the methodological and data analytic 

issues outlined above, an additional goal of the present work is to explore and 

compare two general classes of tasks that exhibit the shift to retrieval: namely, tasks 

with algorithms that require the retrieval of information from LTM, and tasks with 

algorithms that do not require LTM retrieval—i.e., those with simple perceptual-
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motor algorithms.  The latter class of tasks is very common in everyday life (as 

evidenced by the amount of time individuals spend visually searching for objects, 

such as cars and keys, whose locations they could instead have remembered 

directly); however, this class of tasks has been underserved within the current skill 

acquisition literature.  Studies of skill acquisition in perceptual-motor tasks (e.g., 

Snoddy, 1926; Stratton et al., 2007) tend to focus specifically on how people get 

better at perceptual-motor performance, not on how they could potentially skip the 

perceptual-motor performance entirely through the use of a LTM-retrieval strategy.  

For researchers interested in strategies based on LTM retrieval (e.g., Delaney et al., 

1998; Jenkins & Hoyer, 2000; Logan, 1988, 1992; Onyper et al., 2006; Palmeri, 

1997; Rawson, 2004; Reder & Ritter, 1992; Rickard, 1997, 2004, 1999; Rickard & 

Bajic, 2003, 2006; Rogers et al., 2000; Schunn et al., 1997), the algorithm typically 

consists of a different set of LTM retrievals.  Considerably less attention has been 

given to tasks in which use of a perceptual-motor strategy transitions to use of a 

direct LTM-retrieval strategy (cf. Touron et al., 2001).  There has not (until now) 

been a study that directly compares performance between two tasks with algorithms 

designed to be identical in all ways except in regard to whether LTM retrieval was 

needed. 

 In Experiments 1 and 2 of Chapter 3, I explore the dynamics of performance 

for tasks with simple perceptual-motor algorithms, including (for the first time) a 

direct, controlled comparison of performance for tasks with LTM-retrieval-based 

algorithms versus tasks with perceptual-motor algorithms. 



 

 

26

 Before going further, it would be worthwhile to note a philosophical 

perspective guiding much of this work.  In all of the following experiments, the 

retrieval-based algorithms and the perceptual-motor algorithms have been designed 

to be as simple as possible—involving such basic components as counting and 

tapping.  If one were to instead use algorithms based on more difficult operations, 

and one were to find that people can not execute two complex strategies at the same 

time, it would still be an open question as to whether they could have executed two 

simple strategies simultaneously.  That is, the failure at simultaneous performance 

could indicate some structural limit in human cognition, or it could represent some 

capacity limit related to insufficiently practiced tasks, or it could be an artifact of 

some confounding variable introduced by (or obscured by) the complexity of the 

task.  But if we instead use very simple algorithms, and we still find that people are 

unable to execute two very simple strategies simultaneously, then it would strongly 

suggest that they would have at least as much difficulty—if not much more 

difficulty—in simultaneously executing two complex strategies.   For this reason, by 

using strategies based on very simple (and seemingly automatic) algorithms 

(counting, tapping, clicking) it can help us to identify the most basic, fundamental 

limits of human skilled performance—the bare minimum of what individuals can or 

can not accomplish with repeated practice of a task.  It is from this perspective that 

I’ve chosen to use algorithms based on very simple activities—highly-familiar, 

highly-trained, essentially automatic—to explore the temporal dynamics of strategy 

execution in cognitive skill learning. 
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Chapter 2 

The Temporal Dynamics of Strategy Execution in Cognitive Skill Learning 
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 Chapter 2, in full, is a reprint of the material as it appears in Bajic, D., & 

Rickard, T. C. (2009). The temporal dynamics of strategy execution in cognitive skill 

learning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 

35(1), 113-121.  Copyright 2009 by the American Psychological Association. 

Reproduced with permission. The official citation that should be used in referencing 

this material is listed above. The use of APA information does not imply 

endorsement by APA. The dissertation author was the primary investigator and 

author of this paper. 
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Chapter 3 

The Case of Simple Perceptual-Motor Algorithms 
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Abstract 

Prior work has shown that algorithmic and direct memory retrieval strategies 

are not executed in parallel in cognitive skill learning tasks in which the algorithm 

involves a series of long-term memory retrievals (as is the case, for example, in 

arithmetic).  This effect has been hypothesized to reflect a bottleneck in memory 

retrieval processes that forces a strategy choice during an early stage of processing.  

Here we investigate simple perceptual-motor algorithms that involve no memory 

retrieval steps.  The data indicate a surprising amount of interference between 

algorithmic and memory retrieval strategies even in this case, eliminating simple 

versions of parallel strategy execution models.  We infer that an early-stage strategy 

execution bottleneck precludes parallel strategy initiation even in the case of 

perceptual-motor algorithms.  We advance a theoretical framework that can 

accommodate results both for perceptual-motor algorithms and for algorithms that 

involve memory retrieval steps. 
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A common phenomenon in cognitive skill learning is a shift with practice 

from reliance on use of a multistep algorithm to direct memory retrieval.  The classic 

example is arithmetic learning.  In doing single-digit multiplication, children may 

initially perform a repeated addition algorithm, but with sufficient practice will 

transition to direct retrieval (Siegler, 1988).  Multiple laboratory studies have 

confirmed the occurrence of this shift over a variety of arithmetic and non-arithmetic 

tasks (Delaney, Reder, Staszewski, & Ritter, 1998; Hertzog, Touron, & Hines, 2007; 

Jenkins & Hoyer, 2000; Logan, 1988, 1992; Onyper, Hoyer, & Cerella, 2006; 

Palmeri, 1997; Rawson, 2004; Reder & Ritter, 1992; Rickard, 1997, 1999, 2004; 

Rickard & Bajic, 2003, 2006; Rogers, Hertzog, & Fisk, 2000; Schunn, Reder, 

Nhouyvanisvong, Richards, & Stroffolino, 1997; Touron, Hoyer, & Cerella, 2001). 

 There has been debate about the temporal dynamics of strategy execution on 

each trial, with one group of models assuming parallel (simultaneous) strategy 

execution (Logan, 1988; Palmeri, 1997), and a second class of models assuming a 

strategy choice process such that only one strategy is executed at a time (Rickard, 

1997, 2004; Schunn et al., 1997; Siegler, 1988).  The most recent evidence (Bajic & 

Rickard, 2009) clearly favors the strategy choice account, at least for the case of 

algorithms that involve memory retrieval steps.  Bajic and Rickard used a task design 

that allowed indexing of not only the response time (RT) for each trial (defined as 

the latency between stimulus onset and response execution) but also the latency for 

completion of each step of the algorithm.  On each trial of the experiment, subjects 

saw a two-digit number and were instructed to count forward from that number, 
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pressing the space bar in synchrony with each count, until the computer informed 

them to stop and to speak the number to which they had counted.  For each stimulus 

number (e.g., 21) the same number of counts was always required (say, 11), and the 

same response was always to be spoken (e.g., 32).  Each stimulus was presented 

multiple times over training blocks.  If subjects remembered the answer at any point 

during a trial, they could end the trial prior to completing the algorithm by speaking 

that answer (these trials will be referred to as retrieval trials even if some algorithm 

steps were completed).  Each key press recorded the approximate latency of each 

counting step, and a microphone voice-key recorded the RT. 

 This task design allowed Bajic and Rickard (2009) to explore two previously 

unaddressed questions about the temporal dynamics of strategy execution: (1) on the 

last few algorithm trials preceding the first correct retrieval trial for an item, is there 

evidence of progressively slower execution times for one or more algorithm steps, as 

might be expected if the retrieval strategy becomes more competitive over trials and 

if there is a latency-consuming strategy competition? And (2) on retrieval trials, is 

there evidence that some fraction of the algorithm steps are completed, as would be 

expected if the two strategies can be executed in parallel?  

 With respect to both questions above, the data supported a strategy choice 

process in which there is a competition between the first step of the algorithm (i.e., 

the first tap-count event) and the retrieval strategy.  On the last few algorithm trials 

preceding the first correct retrieval trial, there was a marked slowing of execution of 

the first algorithm step (but not for subsequent steps), reaching a peak value of over 
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800 ms on the trial immediately preceding the first correct retrieval trial.  Bajic and 

Rickard (2009) termed this selective first step slowing the pause effect (because on 

observation it often produced a palpable hesitation at the beginning of the trial) and 

we will refer to the increasing magnitude of this effect approaching the first correct 

retrieval as the pause effect slope.  The algorithm was apparently blocked 

temporarily on some of those trials while subjects attempted to retrieve the answer.  

Answer retrieval either failed, or subjects were insufficiently confident to speak the 

answer based on retrieval, and thus proceeded to execute the algorithm as a backup 

strategy.  The positive slope of the pause effect suggests that the proportion of trials 

on which retrieval was initially attempted increased steadily on trials approaching the 

first correct retrieval. 

 On the first few correct retrieval trials for each item (when retrieval was 

slowest), one or more algorithm steps were completed on only about 10% of trials 

(we will refer to these as partial-algorithm trials), whereas a parallel race account 

(i.e., independent, capacity unconstrained parallel strategy execution; Logan, 1988; 

Palmeri, 1997) predicted that one or more algorithm steps should have been observed 

on about 86% of trials in that portion of the study.  For the few partial-algorithm 

trials that were observed, there was a roughly 700 ms partial-algorithm pause effect 

(i.e., a 700 ms delay in execution of the algorithm first step only) just as there was 

for algorithm trials approaching the first correct retrieval, ruling out simple race or 

limited capacity parallel retrieval models even for those trials. 
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Bajic and Rickard (2009) interpreted their results in the context of Rickard’s 

(1997) component power laws (CMPL) model.  That model assumes a bottleneck in 

cued-recall from long-term memory, such that only one response can be retrieved at 

a time (see also Nino & Rickard, 2003).  The entire retrieval, up to the point at which 

the answer becomes available for responding, must be completed before another 

retrieval can be initiated.  Thus, for any algorithm that involves a series of memory 

recall events (even a series of retrievals as simple as counting), the algorithm and 

retrieval strategies can not be executed in parallel (for more detail on the CMPL 

model, see Rickard, 1997, 1999, 2004; Rickard & Bajic, 2004; Bajic & Rickard, 

2009). 

The CMPL model leaves open the possibility that algorithm and retrieval 

strategies can be executed in parallel for algorithms that do not involve a series of 

long-term memory retrievals.  An example laboratory task is noun-pair look-up 

(Hertzog et al., 2007; Touron et al., 2001).  In a typical version of that task, a set of 

noun pairs is presented at the top of the screen.  On each trial, a noun pair cue is 

presented in the center of the screen, and the subject must indicate, by pressing one 

of two keys, whether the cue pair corresponds to one of the pairs on the top of the 

screen.  Subjects must either remember the paired nouns (direct retrieval) or visually 

search the noun-pair table (the algorithm) to find it.  In this task, execution of the 

search algorithm does not require retrieval from long-term memory.  There are also 

numerous cases in everyday cognition in which people can either retrieve an answer 

from memory or execute a visual or visuo-motor search algorithm.  Consider, as 
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examples, remembering a keyboard shortcut to perform a word processing operation 

versus searching a dropdown menu, or remembering a person’s name or phone 

number versus looking it up on a contact list.   

 The goal of the current experiments was to explore the temporal dynamics of 

strategy execution when the algorithm does not involve memory retrievals.  We 

compared simple key-tapping and mouse-clicking algorithms (that involved no 

memory retrieval processes) to matched versions of those algorithms that did involve 

retrieval (i.e., counting) using the basic design and methods employed by Bajic and 

Rickard (2009). 

Experiment 1 

 This experiment is nearly identical to the experiment described in Bajic and 

Rickard (2009), the major exception being that subjects were not required to count as 

they executed the key tapping algorithm.  Subjects simply began tapping when the 

stimulus was presented and stopped tapping either when the response was provided 

by the computer or when they remembered the response. 

Method 

Subjects 

31 University of California at San Diego undergraduate students participated 

for course credit. 

Materials, Design, and Procedures 

 Subjects were tested individually on IBM-compatible personal computers, 

with each subject seated approximately 50 cm from the computer screen, and 
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approximately 3 cm from a microphone.  The computer keyboard was positioned 

directly behind the microphone, such that the subject could comfortably place one 

hand over the spacebar key.  The experimenter was seated to the right of the subject, 

with access to the keyboard’s number pad.  The experiment was created with 

E-Prime software (Psychology Software Tools, Pittsburgh PA) and the 

accompanying voice key apparatus (model 200A). 

 The experiment was designed to be as similar as possible to the experiment 

conducted by Bajic & Rickard (2009), while using an algorithm that did not involve 

any memory retrieval steps.  To achieve this, the count-tap algorithm from that study 

was replaced by a simple repeated tapping algorithm.  The experiment consisted of a 

warm-up phase and a training phase.  Prior to each phase, instructions were 

presented on the screen, and were also read aloud by the experimenter.  Within each 

trial of each phase, a two-digit number stimulus was presented visually and the 

subject had to speak the answer (another two-digit number) either by use of the 

tapping algorithm or through memory retrieval.  The Appendix lists all visual 

stimulus and vocal response items used in the training phase.  The warm-up phase 

utilized the same values, each raised by 10 (e.g., “30” and “44” in the warm-up phase 

versus “20” and “34” in the training phase, etc.).  The Appendix also lists the 

Algorithm Steps, which were the number of key taps required to complete the 

algorithm for each item.  Although the visual stimulus and vocal response pairings 

were the same across all subjects, the Algorithm Steps were randomly assigned to 

items for each subject, with the only requirement being that the number of algorithm 



 

 

52

steps for a particular item could not be equal to the value of the correct response 

minus the numerical stimulus (that is, the correct answer could not be found by 

counting taps).  In the description below, a block is defined as one randomly ordered 

presentation for each of the 10 possible stimulus-response items, each item therefore 

having a mean repetition lag of 10 trials across blocks. 

 The warm-up phase consisted of a single block.  At the start of each trial, the 

screen went blank for 500 ms, a fixation field (consisting of three plusses) was 

presented at the center of the screen for 500 ms, the screen again went blank for 500 

ms, and then a two-digit number—the trial stimulus—was presented at the center of 

the screen.  Subjects were instructed to begin rapidly tapping the spacebar key when 

the number appeared.  After the number of taps equaled the number of algorithm 

steps for that item, the stimulus disappeared, and the word “STOP” was presented on 

the screen, along with the answer for that trial presented just below.  The subject 

would then speak the answer into the microphone. 

 After the subject provided a vocal response, the experimenter entered the 

subject's response, and recorded whether the voice key tripped properly.  

Immediately after each incorrect trial, the correct response was presented for 5 s.  

Otherwise, the word “Correct!” was presented for 800 ms.  Immediately following 

feedback, the next trial began. 

 The training phase of the study was identical to the warm-up phase, with the 

following exceptions.  Multiple blocks were presented, and subjects were informed 

that the same set of starting numbers (stimuli) would be presented repeatedly 
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throughout the phase, with each starting number always having the same final 

number.  Subjects were informed that they therefore had two methods that could be 

used to find and speak the correct answer for each trial: (1) tapping the spacebar until 

the word “STOP” and the answer for that trial appeared on the screen (the 

algorithm), and (2) remembering the answer associated with the starting number for 

that trial and speaking the answer into the microphone without doing all of the key 

presses.  To promote parallel strategy execution, if such parallelism is possible, the 

instructions stated (falsely) that, “Many subjects report good results when they 

attempt to use both strategies at the same time.” Subjects were told that they could 

speak the answer into the microphone at any time during each trial.  They were 

instructed that they should try to finish this part of the experiment as quickly as 

possible, while still being accurate. 

 Each trial stimulus was removed from the screen either when the subject 

spoke an answer, or when the subject had entered a sufficient number of key-presses 

to bring the word “STOP” onto the screen—whichever came first.  Subjects were 

permitted a brief pause between each block, and continued to receive new blocks 

until 45 minutes from the start of this phase, after which the experiment concluded 

and the subject was debriefed. 

Results 

 For all experiments, only the training phase data were analyzed and subjects 

were excluded from analysis if they gave inaccurate responses on more than 20% of 

trials, or if they made voice key errors on more than 10% of trials.  
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 For Experiment 1, all subjects had sufficiently high accuracy for inclusion, 

and four subjects were rejected due to frequent voice key errors.  Individual trials 

were excluded from analysis in all experiments if voice key errors occurred 

(approximately 3% of trials in Experiment 1), or if there was a latency of less than 

180 ms from stimulus onset to the first algorithm step, or less than 300 ms from 

stimulus onset to the vocal response (less than 1% of trials across all experiments).6  

(Note that in supplementary analyses with excluded data reintroduced, it was found 

that the above exclusion rules did not alter the central results or any conclusions 

discussed below.) 

 Mean accuracy was initially near-perfect (over 99% on the first training 

block), fell to its lowest value (approximately 91%) on Block 10, then rose again to 

approximately 98% by the 27th block, the furthest block that all 27 subjects 

completed. 

 The mean of the subject-level mean correct RTs (latency from stimulus 

presentation to vocal response) is plotted as a function of training block in 

Figure 3.1A, and the mean of the subject-level SDs is plotted in Figure 3.1C.  For 

reference, the corresponding data from the matched version of this experiment that 

involves counting and tapping (Bajic & Rickard, 2009) are shown in Figures 3.1B 

and 3.1D.  Best-fitting three-parameter power functions for the RT data are also 

included for reference.  Both the deviation from power function decreases in RT and 

the inverted U-shaped SD values are consistent with results of prior studies.  These 

                                                 
6 See Luce (1991) and Rickard (2004). 
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effects have to date only been observed for tasks known to exhibit a shift to retrieval, 

and reflect a strategy mixture over trials for each subject during the strategy shift 

portion of training (Rickard, 1999).  Note the substantially faster latencies of the tap-

only task in Figure 3.1A versus the tap-count task in Figure 3.1B.  This latency 

difference is expected because the relatively time-consuming counting operation is 

absent for the tap-only group. 

 The proportion of correctly answered trials in which subjects retrieved the 

answer (defined as those trials in which the subject spoke the answer before 

completing all algorithm steps) is shown as a function of training block in 

Figure 3.1E.  The strategy shift was nearly 100% complete by the 27th block.  Both 

Figure 3.1E and the peak of the SD curve in Figure 3.1C indicate that the shift to 

retrieval had occurred for approximately 50% of the items by about Block 10 (see 

Bajic and Rickard, 2009, and Rickard, 1999, for discussion of the relationship 

between peak SD and proportion of trials on which retrieval occurs).  Similar results 

were observed by Bajic and Rickard (2009; see Figure 3.1F), although there appears 

to have been a slightly slower rate of shift to retrieval in that experiment. 

Algorithm step latencies on trials preceding the first correct retrieval 

 Here and in all subsequent analyses of algorithm step latency effects on trials 

preceding the first correct retrieval, the following procedure was used.  First, prior to 

conducting this analysis, the training block variable for each item for each subject 

was reset, such that zero corresponded to the first correct retrieval block for that 

item, with blocks preceding the first correct retrieval taking negative values.  Below, 
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when referring to block numbers synchronized in this manner, we use the 

abbreviated term sync-blocks.  For each subject, the mean latency (over items) for 

each algorithm step was then computed for sync-block values of -5 through -1 (i.e., 

for the last five algorithm blocks preceding each item’s first correct retrieval block).  

Items with 5 or fewer blocks prior to the first correct retrieval were excluded from 

this analysis.  These sync-block means were then averaged over subjects and plotted 

in Figure 3.2A.  Shown are results for Algorithm Steps 1, 2, 3, and 4, along with the 

mean of Steps 5-9.  Most items required more than nine algorithm steps, but data 

from those steps showed patterns like those for Steps 2-9 and so are not plotted. 

 The algorithm first step is substantially slower than subsequent steps, 

presumably reflecting the need to orient to the presented stimulus and to initiate the 

tapping algorithm.  Also for the algorithm first step, there was a pronounced 340 ms 

increase in latency from Sync-block -5 through Sync-block -1 (the pause effect 

slope), confirmed by a within-subjects analysis of variance (ANOVA), F(4, 104) = 

9.63, p < .0001.  Note, however, that this effect is less than half the size of the pause 

effect slope for the tap-count algorithm in Bajic and Rickard (2009; shown in 

Figure 3.2B for reference).  There was no significant effect of sync-block for Steps 2, 

3, 4, or 5-9 (p > .05 in all cases). 

 To test for group differences in the pause effect in this experiment versus 

those observed by Bajic and Rickard (2009), a mixed factors analysis of variance 

(ANOVA) with factors of experiment and sync-block (-5 through -1) was conducted 

on the subject-level mean latencies for Step 1.  There were significant effects of 
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sync-block, F(4, 232) = 17.25, p < .0001, and group, F(1, 58) = 17.84, p < .0001.  

There was also a significant interaction, F(4, 232) = 3.18, p < .02, as reflected in the 

different latency slopes in Figures 3.2A and 3.2B.  The same analysis, when 

performed on Algorithm Steps 2 through 9, also yielded significant effects of group 

and the interaction in all cases.  As expected, latencies for individual algorithm steps 

were faster overall for the tap-only algorithm.  In addition, practice apparently 

somewhat improved the speed of algorithm step execution (for Steps 2 and onward) 

for the tap-count algorithm but not for the tap-only algorithm. 

 Partial-algorithm step completion on retrieval trials 

 A bar graph of the frequency with which 0, 1, 2, 3, or more algorithm steps 

were completed during Sync-blocks 0 to 4 (as defined in the preceding section, 

where zero corresponds to the first correct retrieval block for each item) is shown in 

Figure 3.2C, along with the expected frequencies according to a race model.  These 

trials were used because they tended to have the slowest retrieval latencies, and 

hence would be expected to exhibit the most algorithm step completion according to 

a parallel model.  (Results did not depend critically on this choice.) 

 Here and in all subsequent analyses, the expected number of algorithm steps 

according to a race model was derived as in Rickard and Bajic (2009).  First, 

latencies for each algorithm step during the first block of the training phase were 

averaged over items for each subject.  Prior analyses indicated no significant effect 

of items on these latencies, motivating the averaging.  The first training block was 

used because no algorithm step slowing due to retrieval competition would be 
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present.  Next, for each retrieval trial under consideration, the expected number of 

completed algorithm steps under a race assumption was estimated by determining the 

number of first training block algorithm steps that the subjects would have been 

expected to complete on that trial.  (That is, if a particular subject had a Block 1 

mean latency of 1200 ms for the completion of four algorithm steps, and 1400 ms for 

the completion of five steps, then a race model would predict that this subject would 

complete four algorithm steps on a trial with a vocal RT of 1300 ms.) 

 As shown in Figure 3.2C, algorithm steps were completed less frequently 

than predicted by the race model.  Statistical significance of this effect was tested by 

first computing the difference between the number of algorithm steps expected by 

the race model and the number of observed steps on each trial, taking the mean of 

these difference scores over trials for each subject, and then conducting a Wilcoxon 

Signed Rank Test on those mean difference scores, T+ = 378, p < .0001.  The failure 

of the race model to fit the data is driven largely by (1) a much larger than predicted 

percentage of trials with zero completed algorithm steps, and (2) very slow retrievals 

on about 21% of trials for which the race model predicted that all algorithm steps 

should have been completed (represented by the ">" column of Figures 3.2C and 

3.2D). 

 Despite the strong statistical rejection of the race model, there were far more 

trials on which one or more steps were completed than were observed by Bajic and 

Rickard (2009) for the tap-count algorithm (shown in Figure 3.2D).  Statistical 

significance of this difference in distribution shapes was confirmed using the χ2 test 
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of independence, χ2(12) = 353.1, p < .0001.7  Note also that, with respect to the tap-

only group, there was a tendency for the observed distribution of completed 

algorithm steps (beyond 0 steps) to mimic the distribution predicted by the race 

model (albeit with a left-shifted mode, as would be expected given the pause effect 

on partial-algorithm trials that is discussed below).   

 The race model predicts that the speed of algorithm step execution on the 

partial-algorithm trials will not be influenced by the race with retrieval.  One 

approach to evaluating these race model latency predictions is through analysis of 

algorithm step latencies on the partial-algorithm trials shown in Figure 3.2C relative 

to the step latencies on the first training block (where retrieval was not possible).  

For each subject, the means of the latencies for Algorithm Steps 1 to 4 for the first 

training block were subtracted from the mean of these step latencies on partial-

algorithm trials (due to data attrition, partial-algorithm latencies on subsequent steps 

were not analyzed).  These difference scores (depicted in Figure 3.2E, with positive 

scores indicating slowing relative to Block 1, and negative scores indicating 

speed-up) were then subjected to matched t-tests.  Contrary to the race prediction, for 

Step 1 there was a significant 745.59 ms pause effect, t(24) = 3.64, p < 0.002.  This 

result roughly matches the more than 700 ms partial algorithm pause effect in Bajic 

and Rickard (2009; see Figure 3.2F). 

  These difference scores for Algorithm Steps 2 to 4 were: 67.88, 54.53, and 

65.53, respectively.  Despite being more than one order of magnitude smaller than 

                                                 
7 Here and elsewhere, bins were combined as needed to meet χ2 assumptions of expected 
frequency of no fewer than 5. 
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the slowing observed for Step 1, these results were still significant (p < .05 in all 

cases).  This result is in contrast to Bajic and Rickard (2009), who observed 

nonsignificant speed-up for Steps 2-4 on partial-algorithm trials in the same type of 

analysis. 

 One potential problem with analyzing partial-algorithm latencies by way of 

comparison to step latencies on the first practice block is that the results may be 

biased if there is algorithm step speed-up or slowing over the first few practice 

blocks, which could occur independently of any competition effects with the 

retrieval strategy.  An analysis of algorithm step latencies on the first five practice 

blocks confirmed that there was modest speedup in Steps 2-4 (about 30 to 60 ms 

from the first to the fifth block) for the Bajic and Rickard (2009) experiments, as 

well as for both groups in Experiment 2 of this paper.  It appears that, in these 

experiments, subjects gained algorithm step execution skill over the first few blocks 

of practice.  In Experiment 1 of this paper, in contrast, there was about 20 ms of 

slowing of Algorithm Steps 2-4 over the first five practice blocks.  We suspect that 

subjects initiated the very simple and highly automated repeated tapping at a very 

fast rate that could not be improved upon with practice.  Instead, there appears to 

have been a slight fatigue effect for that algorithm, or an adjustment to a slightly 

more comfortable tapping pace.  Similar fatigue or adjustment effects might have 

also occurred for the algorithm steps in the other experiments but may have been 

more than compensated for by the larger magnitude learning effects. 
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 These modest sources of bias in the tests of the race model for partial-

algorithm step latencies are too small to materially influence the inferences that were 

drawn from the distribution of completed algorithm steps (Figure 3.2C) and from the 

partial-algorithm pause effect of more than 700 ms.  However, these 20-60 ms biases 

are similar in magnitude to the partial-algorithm latency discrepancies (relative to the 

race prediction) for Steps 2-4 that were discussed above.  As a supplemental 

approach that is less influenced by changes in algorithm step latency over the first 

few practice blocks, we analyzed latencies for Steps 2-4 for Sync-block -1 in 

comparison to Sync-block 0 (the first correct retrieval block), limited (for both sync-

block values) to items that exhibited partial-algorithm step completion on Sync-

block 0.  As can be seen in Figures 3.2A and 3.2B, latencies for Algorithm Steps 2 

and upward were relatively stable throughout the range from Sync-block -5 to -1.  

Also, the increasingly competitive retrieval strategy was not interfering with 

latencies during those sync-blocks, as evidenced by the lack of any significant 

slowing for Steps 2 and upward.  Thus, the latencies on Sync-block -1 for Steps 2-4 

provide a relatively bias-free estimate of what the expected latency should be for 

those steps on Sync-block 0 according to a race model, or in the case in which there 

is no ongoing retrieval attempt during partial-algorithm execution.  Results of these 

analyses were similar for Steps 2-4, so data were averaged over these steps.  For each 

subject who completed some algorithm steps at Sync-block 0, the mean latency of 

Steps 2-4 for all partial-algorithm items at Sync-block 0 were compared against the 

mean latencies of those steps for the same items at Sync-block -1.  Matched t-tests 
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revealed nonsignificant (p > .05) differences of less than 20 ms both for 

Experiment 1 and for the data from Bajic and Rickard (2009).  It appears, then, that 

there was no (or at most minimal) algorithm step slowing for Steps 2-4 in these 

experiments, not only on algorithm trials approaching the first correct retrieval trial, 

but also for the partial-algorithm steps on the first correct retrieval trial.  The 

significant effects reported earlier for Steps 2-4, using comparison to the latencies on 

the first practice block, are most likely due to algorithm fatigue effects in the present 

experiment, while the nonsignificant speed-up found in the same comparison for the 

Bajic and Rickard (2009) data likely represents modest algorithm learning over the 

course of the study. 

Discussion 

 There was a striking degree of strategy interference even for this simple 

tapping task that was predicted by neither the CMPL model nor any other model in 

the literature, including models of the shift to retrieval in skill learning (Logan, 1988; 

Palmeri, 1997) and models of dual-task performance that emphasize parallel 

processing (Logan, 2002; Meyer, Glass, Mueller, Seymour, & Kieras, 2001).  

Nevertheless, two important differences between the current results and those of 

Bajic and Rickard (2009) were observed: (1) the algorithm pause effect in this 

experiment (Figure 3.2A), while still large and highly significant, is less than half the 

magnitude of that in Bajic and Rickard (compare Figures 3.2A and 3.2B), and (2) 

partial-algorithm step completion on retrieval trials is much more frequent in this 

experiment (compare Figures 3.2C and 3.2D). 
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 Also of note is the bimodal distribution of observed partial-algorithm steps in 

Figure 3.2C, with one mode at zero and the other mode at 3 steps.  Bimodality 

typically signifies a mixture of observations from two distinct populations.  In the 

current case, it appears to reflect the adoption by subjects of one of two distinct 

processing strategies on each retrieval trial: one in which the algorithm is entirely 

abandoned in favor of retrieval from the outset of the trial (yielding the mode of zero 

steps), and another in which the algorithm is initiated at some point during the trial 

but then aborted before completion in favor of retrieval (yielding the mode of 3 

steps).  Theoretical implications of these results will be considered after describing 

the closely related results for Experiment 2. 

Experiment 2 

 The lack of random assignment of subjects in the above comparison of 

Experiment 1 to the experiment of Bajic and Rickard (2009) may compromise 

statistical conclusions about between-groups differences.  Experiment 2 resolves this 

problem by randomizing assignment of subjects to groups.  It also employs a 

different motor task to explore the generalizability of the results.  Instead of key 

tapping, the motor task in this experiment required subjects to use the computer 

mouse to click alternately on target regions on the left and right side of the computer 

screen. 
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Method 

Subjects 

36 University of California at San Diego undergraduate students participated 

for course credit. 

Design and Procedure 

 The simple tapping algorithm from Experiment 1 was replaced with a visuo-

spatial task.  This experiment included two randomized between-subjects conditions.  

The first (click-only) was a perceptual-motor task analogous to the tap-only task 

from Experiment 1.  Subjects used the computer's mouse to click over the location of 

a rectangle that alternated between positions on the left and right side of the 

computer screen.  The second group (click-count) was analogous to the tap-count 

task used by Bajic and Rickard (2009): namely, to find the answer for each item, the 

subject was required to count upward from the presented number each time that he or 

she clicked the rectangle on a given trial.  The rectangle alternated its position in 

response to each click just as for the click-only group. 

 As in Experiment 1, this experiment consisted of a 1-block learning phase 

and a 45-minute training phase, with similar instructions prior to each phase.  The 

Appendix lists the numerical visual stimuli, number of algorithm steps, and correct 

vocal responses for all 10 stimulus-response items.  In contrast to Experiment 1 (but 

analogous to the experiment in Bajic & Rickard, 2009), the number of algorithm 

steps for both groups was always equal to the value of the correct response minus the 

numerical stimulus.  Subjects in the click-only group, however, were not aware of 
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this consistency, nor of the requirement to count for the click-count group, and thus 

had no reason to do any counting during algorithm execution. 

 Prior to each trial, a small textbox containing the words "Click Here to 

Begin" would appear just below the center of the screen, and clicking this box would 

immediately initiate the trial.  (This ensured that the mouse pointer was always at 

roughly the same position at the start of each trial).  During each trial, the screen 

would be divided into two equal halves by a thin vertical line down the center.  At 

the beginning of each trial, a 1.5x1.5 cm square containing the numerical stimulus 

for that trial would appear at the center of the screen, and a green rectangle 

(6.5x11 cm) would appear on either the left or right half of the screen (randomly 

determined), centered vertically on the screen, with one edge positioned 2.5 cm away 

from the vertical line that divided the screen.  This rectangle will henceforth be 

referred to as the target.  If the target was clicked with the mouse pointer, it would 

immediately move to its equivalent position on the opposite half of the screen.  Each 

mouse-click of the target constituted one algorithm step. 

  For subjects in the click-only group, the complete algorithm simply involved 

the repeated clicking of the target.  After the full number of algorithm steps for a 

given trial had been provided, the mouse pointer and the trial's numerical stimulus 

would vanish from the screen.  Simultaneously, the target rectangle would change 

from green to black, with white text inside it presenting both the word “STOP”, and 

the appropriate numerical answer for that trial's vocal response. 
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 For subjects in the click-count group, finding the answer algorithmically 

required that the subject count upward from the value of the numerical stimulus each 

time he or she clicked the target rectangle.  That is, if the numerical stimulus for a 

given trial were 21, the subject would silently count up to 22 the first time that he or 

she clicked the target square, then count to 23 the second time, and so forth.  When 

the full set of algorithm steps had been provided, the same changes described above 

for the click-only group would occur, except that the white text would only present 

the word “STOP”, and not the answer itself. 

Results and Discussion 

 Following the rules described for Experiment 1, data from four subjects (two 

in each group) were excluded due to a high rate of voice key errors; and data from 

two subjects in the click-count group and one subject in the click-only group were 

excluded due to low overall accuracy.  Among the remaining subjects, voice key 

errors occurred on approximately 3.85% of trials in the click-count group, and 

approximately 4.24% of trials in the click-only group. 

 For subjects in the click-count group, mean accuracy was initially 89.31% on 

the first training block, fell to its lowest value (85.58%) on Block 10, then rose to 

93.41% by the 22nd block, the furthest block that all subjects completed.  The mean 

RT, the mean SD, and the proportion of trials on which the answer was retrieved, 

followed patterns similar to those depicted in Figure 3.1, and thus will not be 

depicted visually.  Instead we provide summary results: the mean of the subject-level 

mean correct RTs (latency from stimulus presentation to vocal response) was 
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7340.57 ms in Block 1, falling to 1876.06 by Block 22.  The mean of the subject 

level SDs was initially 1429.04 in Block 1, rose to its highest value (2491.1) on 

Block 8, then fell to 641.16 by Block 22.  The proportion of trials in which subjects 

retrieved the correct answer rose to approximately 50% by Block 10, and 

approximately 95% by Block 22. 

 For subjects in the click-only group, mean accuracy was initially perfect 

(100%) on the first training block, fell to its lowest value (90.23%) on Block 6, then 

rose again to 98.67% by the 26th block, the furthest block that all subjects 

completed.  The mean of the subject-level mean correct RTs (latency from stimulus 

presentation to vocal response) was 5825.53 ms in Block 1, then fell to 2095.63 ms 

by Block 26.  The mean of the subject level SDs was 940.32 in Block 1, rose to its 

highest value (1854.16) on Block 10, then fell to 985 by Block 26.  The proportion of 

trials in which subjects retrieved the correct answer rose to approximately 50% by 

Block 9, and approximately 93% by Block 26. 

Algorithm step latencies on trials preceding the first correct retrieval 

 For each experimental group, synchronized blocks were computed using the 

procedures described for Experiment 1.  Mean algorithm step latencies from Sync-

block -5 through -1 are shown in Figures 3.3A (click-only) and 3.3B (click-count).  

A mixed factors ANOVA on the algorithm first step data (identical to that performed 

earlier) revealed significant effects of sync-block, F(4, 108) = 16.5, p < .0001, group, 

F(1, 27) = 30.3, p < .0001, and their interaction, F(4, 108) = 2.47, p < .05.  The 

simple effects of sync-block were also confirmed in separate ANOVAs performed 
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for each group: F(4, 52) = 9.32, p < .0001, for the click-count group; and 

F(4, 56) = 8.91, p < .0001, for the click-only group.  There were no significant 

effects involving sync-block when this analysis was performed on the subsequent 

algorithm steps. 

Partial-algorithm step completion on retrieval trials 

 This analysis was conducted using the procedures described for 

Experiment 1, and the corresponding bar graphs are shown in Figures 3.3C (click-

only) and 3.3D (click-count).  The Wilcoxon tests allow rejection of the race model 

for both groups: click-only: T+ = 102, p < .0007; click-count: T+ = 105, p < .0002.  A 

χ2 test of independence, comparing the observed distribution of completed algorithm 

steps on retrieval trials for the two groups, was again highly significant, χ2(9) = 

205.26, p < .0001, indicating more algorithm step completion on retrieval trials for 

the click-only group than for the click-count group.  The bimodality in Figure 3.3C 

replicates that observed in Figure 3.2C, as does the tendency for the observed 

distribution of completed algorithm steps (beyond 0 steps) to mimic somewhat the 

distribution predicted by the race model (albeit again with a left-shifted mode, as 

would be expected given the pause effect on partial-algorithm trials that is discussed 

below). 

 As depicted in Figure 3.3F, for the click-count group, partial-algorithm step 

latency difference scores based on comparison to the first training block (with 

positive scores indicating slowing relative to Block 1, and negative scores indicating 

speed-up) for Algorithm Steps 1-4 were: 607.6, -8.43, 128.31, and 62.16, 
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respectively.  There was significant slowing for Step 1, t(9)=2.35, p < .05.  No 

subsequent steps reached significance.  For the click-only group (see Figure 3.3E), 

partial-algorithm difference scores for Algorithm Steps 1-4 were: 459.49, 66.42, 

43.05, and 13.06, respectively.  There was significant slowing for Step 1, 

t(14) = 3.15, p < 0.008.  No subsequent steps reached significance. 

 In the alternative analyses of Steps 2-4 on partial-algorithm trials that 

compared latencies for Sync-blocks -1 and 0 (see results of Experiment 1), there 

were again no significant effects for either group (p > .05 in each case). 

 In nearly all respects, the results of this experiment closely match those for 

the comparison of tap-only versus tap-count discussed in Experiment 1.  Relative to 

the tap-count group, there was a shallower (but still robust) algorithm pause effect 

slope and a large increase in the frequency of partial-algorithm trials.  A partial-

algorithm pause effect was observed in both the click-only and the click-count 

groups, and the bimodal distribution in completed algorithm steps that was observed 

in the tap-only group was also observed in the click-only group. 

Theoretical Development 

 The results for the click-count group confirm and strengthen the conclusion 

of Bajic and Rickard (2009) that strategy execution reflects a choice between 

retrieval and the algorithm first step for the general case in which the algorithm steps 

require retrieval from long-term memory, even for very simple retrievals such as 

counting.  There is little or no evidence of parallel strategy execution for that general 

case. 
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 The results for the tap-only and click-only groups of Experiments 1 and 2 

also eliminate any straightforward parallel model (including the race model and 

simple versions of limited capacity parallel models) for the currently studied 

perceptual-motor algorithms, and most likely for the entire class of perceptual-motor 

algorithms.  A simple limited capacity model that assumes constant capacity demand 

from both strategies throughout all stages of their execution can potentially explain 

the pause effects if they are considered in isolation, but it cannot explain the finding 

of no slowing for Algorithm Steps 2 and beyond (on both algorithm trials and 

partial-algorithm trials), nor does it naturally predict the bimodal distribution of 

completed algorithm steps on retrieval trials that was observed in both experiments. 

 A pure one-at-a-time strategy execution account, like that of CMPL, also 

encounters difficulty accommodating the overall pattern of results.  It does not 

straightforwardly accommodate the substantially shallower slope in the algorithm 

first step latencies approaching the first correct retrieval for the tap-only and click-

only algorithms relative to their counting algorithm counterparts.  It is also 

questionable whether a one-at-a-time strategy execution model can plausibly account 

for the frequent partial-algorithm retrieval trials in the tap-only and click-only 

groups, as it would imply that subjects switched, mid-algorithm, to speaking the 

previously retrieved response on about half of the retrieval trials represented in 

Figures 3.2C and 3.3C (as opposed to about 10% of trials in Bajic & Rickard, 2009, 

and in the click-count group of Experiment 2).  In the Bajic and Rickard (2009) 

experiment (and in the click-count group of Experiment 2), the counting process 
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yielded results that gradually approached the correct answer.  Thus, the counting 

algorithm progressively narrowed the set of candidate answers.  On some trials this 

property of the algorithm may have increased the subjects’ confidence in a 

previously retrieved answer, leading them to speak that answer before completing 

the algorithm.  In the current experiments, however, the tap-only and click-only 

algorithms did not serve to narrow the set of candidate answers, eliminating that 

explanation of why subjects might shift back to speaking a previously retrieved 

response after starting the algorithm.  Note also that the algorithm is easier and faster 

when there is no counting, which would presumably decrease any motivation to 

switch back to a previously retrieved response after initiating the algorithm.  Even if 

one allows for the large number of partial-algorithm trials, purely one-at-a-time 

strategy execution predicts neither the bimodal distribution of partial-algorithm 

steps, nor the tendency for the distribution of completed algorithm steps (beyond 0 

steps) to mimic the distribution expected by the race model. 

 The considerations above lead us to conclude that there is at least some 

degree of parallel strategy processing for the case of perceptual-motor algorithms.  

As a working model, we propose that both the perceptual-motor algorithm strategy 

and the retrieval strategy can be understood (sufficiently for current purposes) as 

involving two discrete, sequentially executed stages, which we will term the high 

attention (HA) and the low attention (LA) stages.  For both strategies, the 

hypothesized HA stage occurs immediately after stimulus perception and 

corresponds to the processes of (1) selecting a task set to execute (i.e., “initiate the 
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algorithm” or “initiate retrieval”), and (2) executing any subsequent processing 

during which the selected strategy requires continued attentional focus on the task set 

and on the stimulus.  For the simple perceptual-motor algorithms explored here, we 

propose that the HA stage is brief (perhaps on the scale of about 100-200 ms), and 

can be understood as the triggering event for initiating a perceptual-motor algorithm 

that is already primed in working memory (e.g., repeated key tapping).  We propose 

that the HA stage for memory retrieval lasts at least several hundred ms, a period 

during which sustained attentional focus on both the stimulus and the retrieval task 

set are needed to drive the retrieval process until it can proceed to completion 

without that input. 

 We propose that a processing bottleneck at the HA stage necessitates that 

subjects complete that stage for only one strategy at a time, resulting in a strategy 

initiation choice at the outset of each trial.  Performance on the count algorithms and 

other algorithms that involve memory retrieval steps can be understood within the 

HA-LA model by assuming that even the LA stage for retrieval is sufficiently 

demanding on attentional resources that initiation of another retrieval is precluded 

until both the HA and LA stages of the ongoing retrieval are completed.  That is, it 

may only be possible to retrieve one response at a time from long-term memory, as 

argued by Nino and Rickard (2003) and by Rickard and Bajic (2004, 2005).  As 

such, strategy execution for algorithms that involve memory retrieval steps is a 

purely one-at-a-time phenomenon, consistent with the general principles of the 

CMPL model and with the data for the tap-count and click-count groups. 
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   For perceptual-motor algorithms, however, we propose that the LA stage for 

either strategy can run in parallel with either the HA or the LA stage of the other 

strategy.  The processing stage sequences for four strategy scheduling types that are 

consistent with the HA-LA model are summarized in Figure 3.4.  Note that 

Scheduling Types 1 and 2 (a and b) prioritize the algorithm, in that it is initiated first, 

whereas Scheduling Types 3 (a and b) and 4 prioritize retrieval. 

 Initially, before retrieval is competitive, only the algorithm stages are 

executed on each trial (Scheduling Type 1 in Figure 3.4).  On trials for which both 

strategies are roughly equally competitive (i.e., around the point of the strategy shift 

for each item) there are potentially two distinct scheduling types.  One possibility is 

that subjects first initiate the HA stage for the algorithm, followed by parallel 

execution of the LA stage for the algorithm and the HA and LA stages for retrieval.  

The case in which the algorithm generates the response first is depicted by 

Scheduling Type 2a in Figure 3.4, and the case in which retrieval generates the 

response first is depicted by Scheduling Type 2b.  Note that this scheduling type is 

efficient, in that it would yield no algorithm pause effects while also allowing the 

retrieval strategy a chance to generate the response first (Type 2b) as it becomes 

more competitive, with the only penalty being a brief (perhaps 200 ms or less) delay 

in retrieval initiation as the algorithm HA stage is executed. 

 The second possible scheduling type when the strategies are roughly equally 

competitive is that subjects first initiate the HA stage for retrieval and then switch to 

parallel execution of the LA stage for retrieval and of the HA and LA stages of the 
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algorithm.  If retrieval fails to deliver an answer before the algorithm is completed, 

or if subjects are not confident in the retrieved answer, then the algorithm runs to 

completion and produces the executed response (Scheduling Type 3a in Figure 3.4).  

The alternative outcome is that retrieval is successful and the subject is sufficiently 

confident to execute the retrieved response (Scheduling Type 3b), but possibly only 

after some algorithm steps have been completed. 

 Finally, after subjects become highly confident in the retrieval strategy, they 

execute the HA and LA stages of the retrieval strategy only (Scheduling Type 4 in 

Figure 3.4).  Subjects would be expected to choose Type 4 even over the efficient 

Type 2b at this point because execution of the algorithm in Type 2b would delay the 

onset of the HA stage for retrieval.  Related reasoning indicates that subjects should 

come to prefer Scheduling Type 4 to Type 3b. 

 Now consider how the HA-LA model can accommodate the main patterns in 

the data for perceptual-motor algorithms.  First, the shallower (but still substantial 

and highly significant) algorithm pause effect slope for the perceptual-motor case 

compared to the counting case can be accommodated by a mixture of Scheduling 

Type 2a trials (yielding zero slope) and Scheduling Type 3a trials (yielding a slope 

similar to that of the counting algorithms).  Second, the much larger percentage of 

retrieval trials with partial-algorithm step completion for the perceptual-motor 

algorithms (relative to the counting algorithms) is consistent with Scheduling Types 

2b and 3b, neither of which can occur under our framework for the counting 

algorithms.  Third, the pause effect on partial-algorithm trials is explained by 



 

 

75

Scheduling Type 3b.  The bimodality in the distribution of completed algorithm steps 

on retrieval trials is explained by a mixture of Scheduling Type 4 (yielding the mode 

of 0 in Figures 3.2C and 3.3C) and Types 2b and 3b (which are consistent with the 

mode of 2 or 3 steps shown in those figures).  The tendency of the distribution of 

completed algorithm steps on retrieval trials to mimic (beyond the case of zero steps) 

the race prediction is accounted for because once the HA stage for the prioritized 

strategy is complete, the tapping and clicking sequences are run in parallel (perhaps 

as a race) with retrieval.  Finally, the left-shift of the larger mode in Figures 3.2C and 

3.3C reflects Scheduling Type 3b, in which algorithm step execution is delayed until 

the HA stage of retrieval is completed. 

Subject-level Analyses Combining Experiments 1 and 2 

 The use of more efficient (i.e., Types 2a and 2b) versus less efficient (i.e., 

Types 3a and 3b) strategy scheduling is likely to reflect, in large part at least, 

individual differences rather than differences over trials within each subject.  In other 

studies of strategy use, most subjects do not use all available strategies (e.g., Lemaire 

& Siegler, 1995; Romero, Rickard, & Bourne, 2006; Siegler, 1988).  It would also 

place less strategy selection load on subjects if they adopt a general (i.e., prior to 

trials) rather than trial-specific (i.e., during the trial) scheduling approach. 

 Efficient schedulers would eschew Scheduling Type 3 in favor of Type 2.  As 

retrieval begins to produce the answer first (i.e., as the transition from Type 2a to 2b 

occurs), these subjects would have evidence that they can successfully shift from 

prioritizing the algorithm to prioritizing retrieval.  Given that these subjects would 
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already have had successful retrieval experience at that point (through scheduling 

Type 2b), they may be inclined to shift directly from Scheduling Type 2 to Type 4, 

with relatively few trials on which Scheduling Type 3b is used; that is, these 

hypothetical subjects may feel that there is little need to initiate the algorithm after 

the HA stage of retrieval as insurance in case retrieval were to fail.  Highly efficient 

subjects, then, may adopt a strategy scheduling sequence transition of 1-2a-2b-4.  In 

the idealized case, they would exhibit zero pause effect slope and no partial-

algorithm pause effect.  On the other hand, some subjects may not recognize the 

efficiency advantage of Scheduling Type 2.  Instead, when retrieval becomes 

competitive, they simply pause the algorithm as they attempt to retrieve (i.e., they 

use Scheduling Type 3).  After sufficient practice, retrieval begins to succeed and 

they undergo a transition from Type 3a to 3b.  Eventually they become sufficiently 

confident in retrieval that they do not execute any algorithm steps (shifting to 

Scheduling Type 4).  Low efficiency subjects, then, would tend to adopt the 

scheduling sequence transition of 1-3a-3b-4. 

 Given the hypothesis of individual differences in scheduling efficiency 

outlined above, the HA-LA model implies a positive correlation over subjects 

between the magnitude of the pause effect slope on algorithm trials and the 

magnitude of the pause effect on partial-algorithm trials.  Efficient scheduling should 

yield small values for both measures, whereas inefficient scheduling should yield 

large values for both measures.  The combined data from the tap-only and click-only 

groups is shown in Figure 3.5, along with the best fitting linear prediction.  
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Necessarily, this graph only includes subjects who exhibited partial-algorithm trials, 

and to reduce noise effects we further limited it to subjects who had at least 5 partial-

algorithm trials.  The slope of this fit is highly significant, t(30) = 8.51, p < .0001, 

whereas the intercept does not significantly differ from zero (p > .05).  This result, 

interpreted within the context of the HA-LA model, indicates that some subjects use 

efficient scheduling and others inefficient scheduling. 

 The data for the highly efficient subjects shown in Figure 3.5 (lower left data 

points) are consistent with the HA-LA model, but are also consistent with a simple 

race model.  For that subset of subjects, the pause effect data offer no evidence (or 

little evidence) of any strategy interference on either algorithm or partial-algorithm 

trials.  The HA-LA and race accounts for that subset of subjects can be 

discriminated, however, by analysis of the distribution of completed algorithm steps 

on retrieval trials (i.e., the data depicted in Figures 3.2C and 3.3C).  The race account 

is consistent with a unimodal distribution that has a shape matching that of the race 

prediction as derived earlier.  The HA-LA model, on the other hand, predicts an 

additional mode at zero steps (because efficient subjects are likely to select 

Scheduling Type 4 over Type 2b after sufficient practice, as discussed earlier), just 

as was the case in Figures 3.2C and 3.3C.  Additional analyses were conducted for 

the most efficient subjects shown in Figure 3.5, defined as those subjects with a 

pause effect slope value of less than 50, and a partial-algorithm pause effect less than 

the predicted value at that point (boundary conditions delimited by the dashed line in 

Figure 3.5).  Twelve subjects met the criteria for inclusion in this analysis.  For this 
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subset of subjects, the distribution of completed algorithm steps in Sync-blocks 0-4 

was again bimodal, with a major mode at 0 steps (approximately 17% of trials), and 

a minor mode at 4 steps (approximately 14% of trials).  The Wilcoxon test on the 

subjects’ mean difference scores (the mean of the expected minus the observed 

number of completed steps) was significant, T+ = 63, p < .005. 

 As an alternative (but in our view implausible) account of the results shown 

in Figure 3.5, it is in principle possible that there are profound individual differences 

in cognitive architecture, such that some subjects can execute these strategies to a 

large extent in parallel whereas others can not.  We know of no precedent, however, 

that suggests such differences in any of the related literature on dual-task 

performance or attention.  Our account in terms of individual differences in 

efficiency of strategy scheduling is, on the other hand, highly plausible in light of 

numerous demonstrations in the literature of subject differences in strategy selection 

over a variety of tasks (Lemaire & Siegler, 1995; Romero et al., 2006; Siegler, 

1988). 

General Discussion 

 We can now draw several well-grounded conclusions about the temporal 

dynamics of strategy execution in cognitive skill learning.  First, there is an 

apparently complete bottleneck in strategy execution when the algorithm involves 

memory retrieval, even for the simplest retrieval operations such as counting.  For 

this class of tasks, the algorithm first step competes with retrieval and only one of 

those strategies is executed at a time until completed. 
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 Second, most subjects exhibit substantial strategy interference even for 

simple perceptual-motor algorithms involving no memory retrieval.  As noted 

earlier, both the race and the simplest case limited capacity versions of parallel 

strategy execution models can be eliminated for the tasks studied here.  It is 

questionable whether such models could provide sufficient accounts of any task 

exhibiting a shift from algorithm to retrieval, regardless of the properties of the 

algorithm. 

 Third, strategy execution for the case of perceptual-motor algorithms is 

generally well accounted for by the new model proposed here, the HA-LA model 

(see the Discussion of Experiment 2 for a detailed description), which proposes a 

strategy processing bottleneck at an early, high-attention stage of processing.  The 

HA-LA model is simple at its core, yet empirically powerful.  It accommodates a 

number of different strategy scheduling types (see the Scheduling Types listed in 

Figure 3.4) that appear to be represented in the data.  Our conclusion that these 

scheduling types are all used is of course based on inference rather than direct 

observation.  Nevertheless, there does not appear to be an alternative model that can 

both explain the complex patterns in the data and incorporate a similar level of 

simplicity in its core assumptions. 

 Anecdotally, it is not uncommon for people to pause briefly and attempt to 

remember, say, where their keys are before searching, or to pause and try to 

remember a key combination for a computer command before initiating a search of 

the dropdown menus.  Our results suggest that these palpable experiences reflect 
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fundamental limitations in parallel processing of memory retrieval with simple 

perceptual-motor algorithms, combined with commonly occurring inefficiencies in 

strategy scheduling. 

 Our results leave open the question of why some subjects would adopt 

efficient strategy scheduling whereas others would adopt inefficient scheduling.  One 

interesting possibility is that efficient subjects initiate the algorithm as soon as they 

detect stimulus onset but prior to stimulus identification.  (In the case of the 

perceptual-motor algorithms, initiation of the algorithm does not depend on which 

stimulus is presented, whereas initiation of the memory retrieval strategy does.)  For 

these subjects, stimulus identification can then take place during the HA stage of the 

algorithm (our HA-LA model does not preclude the possibility of perceptual 

stimulus processing operating in parallel with the HA stage of either strategy).  By 

the time stimulus identification runs to completion, the HA stage of the algorithm is 

also partially completed, so the delay in initiation of the HA stage for retrieval 

(Scheduling Type 2) may be quite brief for these subjects. 

 Inefficient subjects, on the other hand, may wait for stimulus identification to 

occur before initiating either strategy.  Once they identify the stimulus, its familiarity 

(after several trials) may trigger a feeling-of-knowing response that promotes 

prioritization of retrieval (i.e., Scheduling Type 3).  This account is particularly 

plausible in light of the demonstration by Reder and Ritter (1992) that feeling of 

knowing is driven by familiarity with the stimulus rather than by familiarity with the 

answer.  To the extent that the feeling of knowing is not well calibrated in this 
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circumstance, the retrieval attempt would sometimes fail for these subjects (or 

subjects would not have sufficient confidence to respond based on the retrieved 

answer), giving rise to use of the algorithm as a back-up strategy and to the observed 

pause effects on algorithm and partial-algorithm trials.  Further implications will be 

discussed in Chapter 4. 
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Appendix 

 

Stimuli Responses Algorithm Steps
20 34 14
21 36 15
22 32 10
23 35 12
24 33 9
25 37 12
26 41 15
27 40 13
28 39 11
29 38 9

Phase 2 Stimulus-Response Pairings

Note: For Experiment 1, the Algorithm Steps listed above were
randomly reassigned to the various stimulus-response pairings
at the start of the experiment, following randomization
constraints listed in the Method section of that experiment.
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Figure 3.1: Mean response time with best fitting three-parameter power functions 

(panels A and B), mean standard deviation (C and D), and the proportion of trials on 
which the direct retrieval strategy was selected (E and F), as functions of training 
block, for Experiment 1 (panels A, C, and E, respectively), and the experiment in 

Bajic and Rickard (2009) (B, D, and F). 
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Figure 3.2: Mean algorithm step latencies on the five blocks prior to the first correct 
retrieval block for Algorithm Steps 1, 2, 3, 4, and the mean of 5 through 9 (panels A and B), 

relative frequency bar charts of expected (according to a race model) and observed 
completion frequencies for each algorithm step on the first five correct retrieval trials (C and 

D), and partial-algorithm latency difference scores (Sync-blocks 0-4 vs. Block 1) for 
Steps 1-4 (E and F), for Experiment 1 (A, C, and E, respectively) and the experiment in 

Bajic and Rickard (2009) (B, D, and F). For panels A and B, error bars represent the between 
subjects standard error, computed independently for each sync-block. 
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Figure 3.3: Mean algorithm step latencies on the five blocks prior to the first correct 
retrieval block for Algorithm Steps 1, 2, 3, 4, and the mean of 5 through 9 (panels A and B), 

relative frequency bar charts of expected (according to a race model) and observed 
completion frequencies for each algorithm step on the first five correct retrieval trials (C and 

D), and partial-algorithm latency difference scores (Sync-blocks 0-4 vs. Block 1) for 
Steps 1-4 (E and F), for the click-only group (A, C, and E, respectively) and the click-count 
group (B, D, and F) of Experiment 2. For panels A and B, error bars represent the between 

subjects standard error, computed independently for each sync-block. 
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Figure 3.4: Hypothetical strategy scheduling types for competing perceptual-motor 
algorithm and retrieval strategies. RET = retrieval; ALG = algorithm; HA = high-
attention; LA = low-attention; VR = vocal response. The right-side open-ended 
rectangles represent the strategy that does not drive the vocal response, either 
because it fails to generate a response on that trial or because the subject is not 

sufficiently confident to execute the response generated by that strategy. 
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Figure 3.5: Scatterplot, with best linear fit, of partial-algorithm pause effect as a 

function of the pause effect slope, for the combined tap-only (black dots) and click-
only (white dots) data.  The 12 subjects in the lower left corner (within the dashed 

box) demonstrated the most efficient strategy scheduling. 
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 Chapter 3, in part, has been submitted for publication of the material as it 

may appear in Bajic, D., & Rickard, T. C. (2009).  Temporal dynamics of strategy 

execution in cognitive skill learning: The case of simple perceptual-motor 

algorithms.  The dissertation author was the primary investigator and author of this 

paper. 
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Chapter 4 

Conclusions 
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 In Chapter 1, I described three problems in the skill acquisition literature: (1) 

Previous paradigms have been limited in their capacity to provide accurate data 

regarding strategy use on each trial, and have provided no means of collecting 

reliable data regarding partial algorithm trials.  (2) Previous paradigms have 

provided no means of measuring the latency of each individual step of an algorithm.  

And (3) the problem of appropriately and effectively aggregating data when the 

learning curves for individual items are not naturally synchronized. 

 In the preceding chapters, I have introduced fruitful solutions to all of the 

above problems.  The original paradigm that I introduced in the preceding chapters is 

the first that permits the collection of objective data regarding strategy use in every 

trial, with no need to ask subjects for retrospective reports (e.g., Compton & Logan, 

1991), and no need to make indirect inferences about strategy use (e.g., Siegler, 

1988).  In addition, this paradigm is the first that permits the systematic investigation 

of partial-algorithm trials, and also the first that allows the latency of each individual 

algorithm step to be measured. 

 With accurate data on strategy usage collected for every trial, it is possible to 

synchronize the learning curves for all items at the point of each item’s initial 

transition to direct-retrieval (i.e., sync-block analysis), thus providing a solution to 

the data analysis problem described above. 

 Sync-block analysis, combined with latency data for individual algorithm 

steps, revealed two previously undiscovered skill acquisition phenomena: (1) the 

pause effect slope for the first algorithm step on trials immediately preceding the first 
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correct direct retrieval for each item, and (2) the partial-algorithm pause effect on 

trials following the first direct retrieval. 

 As noted in Chapter 1, an additional goal of the present work was to explore 

and compare two general classes of tasks that exhibit the shift to retrieval: namely, 

tasks with algorithms that require the retrieval of information from long-term 

memory (LTM), and tasks with algorithms that do not require LTM retrieval—i.e., 

those with simple perceptual-motor algorithms.  Chapter 3 included the first direct, 

controlled comparison of performance for tasks with LTM-retrieval-based 

algorithms versus tasks with perceptual-motor algorithms, utilizing algorithms 

designed to be identical in all ways except in regard to whether LTM retrieval was 

needed.  For each type of task, the results were uniquely consistent with a strategy 

choice mechanism involving a competition between the retrieval strategy and the 

first step of the algorithm.  Regardless of whether a task involved a retrieval-based 

algorithm or a simple perceptual-motor algorithm, there was evidence of a pause 

effect slope preceding the transition to the direct-retrieval strategy, and a partial-

algorithm pause effect following the transition. 

 The collection of data regarding partial-algorithm trials (impossible in 

previous paradigms) provided critical insights differentiating performance for tasks 

with each type of algorithm.  In tasks with algorithms that consisted of multiple 

retrievals from LTM, partial-algorithm trials were very rare.  In tasks with simple 

perceptual-motor algorithms, partial-algorithm trials were more common, although 

there was still a heavy bias toward abandoning the algorithmic strategy altogether 
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once the direct-retrieval strategy became competitive.  Neither result is consistent 

with models that assume parallel strategy execution (e.g., Logan, 1988; Nosofsky & 

Palmeri, 1997).  The result in the case of tasks with retrieval-based algorithms is 

predicted by the CMPL model (see Rickard, 1997, 2004; Rickard & Bajic, 2004), 

which assumes that the direct-retrieval strategy can not be executed in parallel with 

the LTM-retrieval for any step of the algorithm.  No previous models predicted the 

full set of results observed for the tasks with perceptual-motor algorithms: that is, the 

partial-algorithm data described above, as well as the pause effect slope and the 

partial-algorithm pause effect.  However, as argued in Chapter 3, the full set of 

results observed for the tasks with simple perceptual-motor algorithms can be 

accounted for by a model that assumes an early-stage strategy execution bottleneck, 

with some parallel performance possible on later steps of the algorithm.  In 

Chapter 3, I introduced such a model: the HA-LA model.  Incorporating very few 

assumptions, the HA-LA model is capable of accounting for the full range of results 

observed for all tasks and algorithms described in the preceding chapters. 

 A novel contribution of the HA-LA model that goes beyond skill learning 

proper is the proposal of an initial phase of high-attention (HA) demand that exists 

not just for relatively effortful and time consuming cognitive processes such as LTM 

retrieval, but also (with at least a brief duration) for very simple processes, such as 

initiation of repeated tapping of the same key (Chapter 3, Experiment 1).  At least for 

the case of strategy execution discussed here, this HA stage constitutes a processing 

bottleneck.  An intriguing possibility is that a similar HA stage and bottleneck occur 
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for any type of goal-directed cognitive process that is triggered by stimulus onset.  

Here, a potentially instructive connection can be made with the central bottleneck 

theory that has been developed in the dual-task literature (see Pashler, 1994; 

Welford, 1952).  From the perspective of the dual-task literature, the direct-retrieval 

strategy from the preceding experiments can be thought of as a choice response time 

(RT) task.  That is, there are multiple stimuli associated with multiple responses, 

making necessary a response-selection stage of cognitive processing on each trial.  

The tap-only algorithm, in contrast, could potentially be regarded as a simple RT 

task.  That is, the onset of any stimulus is associated with a single response—

tapping.  From the perspective of some influential models of task processing (e.g., 

Donders, 1969), simple RT tasks do not involve a response-selection stage of 

processing. 

 The most common finding within the dual-task literature is that of a 

bottleneck in task processing that interferes with the ability to perform two 

independent tasks concurrently, even if there is no interference at the perceptual or 

motor stages of performance for the two tasks (Pashler, 1994).  Rather, this 

bottleneck occurs in central stages of task processing, and is most widely believed to 

reflect a structural inability to simultaneously perform response-selection for two 

different tasks (Pashler, 1994).  However, dual-task interference can be observed not 

just in concurrent choice RT tasks, but also in concurrent simple RT tasks (e.g., 

Telford, 1931; Welford, 1952), despite the fact that, as noted, simple RT tasks are 

widely assumed to lack a response-selection stage of processing.  This has led some 
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to speculate that the central bottleneck may not be limited to just the response-

selection stages of task processing (see Pashler, 1994).  Within the experiments of 

Chapter 3, to the extent that a perceptual-motor strategy such as the tap-only 

algorithm can be regarded as a simple RT task, then the finding of HA stage 

interference between the direct-retrieval and perceptual-motor strategies is consistent 

with the notion that central interference does not require two concurrent choice RT 

tasks.  Viewing the dual-task literature from the perspective of the HA-LA model, it 

may be that the interference observed for concurrent simple RT tasks likewise 

reflects a bottleneck at the early, HA stage of processing.  It is important to note, 

however, that standard dual-task designs possess some notable differences relative to 

the experiments described in the preceding chapters (e.g., two stimuli and two 

responses on each trial of a standard dual-task design, compared to one stimulus and 

one response—but two possible strategies—on each trial of the current studies), so 

we should be cautious in making cross-paradigm comparisons.  However, the present 

studies suggest some interesting prospects for future synthesis. 

 An even stronger case for synthesis can be made in regard to the HA-LA 

model and the CMPL model, which could quite easily be integrated.  As was noted 

in Chapter 1, the CMPL model, as currently specified, does not make any predictions 

regarding algorithms with no LTM retrieval component.  However, the CMPL model 

could be extended to tasks with simple perceptual-motor algorithms, if we 

incorporate the HA-LA model’s assumption of a bottleneck not just between 
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competing LTM retrievals, but also between the early, HA stage of processing for 

the competing strategies. 

 As was noted earlier, the experiments in the preceding chapters were the first 

that have provided a means of systematically studying partial-algorithm trials.  In the 

comparisons between tasks with retrieval-based algorithms and those with simple 

perceptual-motor algorithms, the collection of data on partial-algorithm trials 

provided critical insight, as one of the most distinctive differences between the two 

types of tasks was the greater frequency of partial-algorithm trials in the tasks with 

simple perceptual-motor algorithms.  This highlights the fact that partial-algorithm 

trials are an issue that the skill acquisition literature can not afford to continue 

ignoring.  For the tasks with simple perceptual-motor algorithms, there was an initial 

HA stage bottleneck, followed by parallel processing thereafter.  Sloppy analysis of 

tasks such as these could make it appear either that there is no parallel processing (if 

the later algorithm steps are ignored), or that there is no initial bottleneck (if the 

slowing of the first step is ignored).  By considering the full picture, though, we can 

discern possibilities for such tasks that are much more interesting: some parallel 

processing, with a slight delay at the start, along with the possibility of reducing the 

duration of this initial delay, if we schedule our strategies more efficiently. 

 These, then, are the temporal dynamics of strategy execution. 



 
 

 

100

References 

Compton, B. J., & Logan, G. D. (1991). The transition from algorithm to retrieval in 
memory-based theories of automaticity. Memory & Cognition, 19(2), 151-
158. 

 
Donders, F. C. (1969). On the speed of mental processes. Acta Psychologica, 30, 

412-431. 
 
Logan, G. D. (1988). Toward an instance theory of automatization. Psychological 

Review, 95(4), 492-527. 
 
Nosofsky, R. M., & Palmeri, T. J. (1997). An exemplar-based random walk model of 

speeded classification. Psychological Review. Vol 104(2), 266-300. 
 
Pashler, H. (1994). Dual-task interference in simple tasks: Data and theory. 

Psychological Bulletin, 116(2), 220-244. 
 
Rickard, T. C. (1997). Bending the power law: A CMPL theory of strategy shifts and 

the automatization of cognitive skills. Journal of Experimental Psychology: 
General, 126(3), 288-311. 

 
Rickard, T. C. (2004). Strategy execution in cognitive skill learning: An item-level 

test of candidate models. Journal of Experimental Psychology: Learning, 
Memory, and Cognition, 30(1), 65-82. 

 
Rickard, T. C., & Bajic, D. (2004). Memory retrieval given two independent cues: 

Cue selection or parallel access? Cognitive Psychology, 48(3), 243-294. 
 
Siegler, R. S. (1988). Strategy choice procedures and the development of 

multiplication skill. Journal of Experimental Psychology: General, 117(3), 
258-275. 

 
Telford, C. W. (1931). The refractory phase of voluntary and associative responses. 

Journal of Experimental Psychology, 14(1), 1-36. 
 
Welford, A. T. (1952). The 'psychological refractory period' and the timing of high-

speed performance—a review and a theory. British Journal of Psychology, 
43, 2-19. 

 




