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Abstract By solving pertinent mathematical models with numerical and com-
putational methods, we analyze the formation of superfluid vorticity structures in
a turbulent normal fluid with an inertial range exhibiting Kolmogorov scaling. We
demonstrate that mutual friction forcing causes quantum vortex instabilities whose
signature is spiral vortical configurations. The spirals expand until they accidentally
meet metastable, intense normal fluid vorticity tubes of similar curvature and vortic-
ity orientation that trap them by driving them towards low mutual friction sites where
superfluid bundles are formed. The bundle formation sites are located within the tube
cores, but, due to tube curvature and many-tube interaction effects, are displaced by
variable distances from the tube centerlines as they follow the contours of the lat-
ter. We analyze possible implications of these processes in fully developed thermal
superfluid turbulence dynamics.

Keywords Thermal superfluid turbulence · Vortex dynamics · Numerical
computation

PACS 67.25.dk · 47.32.cb · 47.37.+q

1 Introduction

Thermal superfluids represent a particularly complex case study in nonlinear and
statistical physics, since they are characterized by strongly coupled, nonlinear fluc-
tuations over extensive scale ranges. The main challenge in their mathematical study
is the construction and analysis of dynamical models of the structure of these fluctu-
ations in specific scale-ranges, and, subsequently, the connection of these models in
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order to achieve a conceptually continuous description valid over all scales. In this
vein, microscopic models within the framework of quantum field theory have been
proposed [1–4], as well as mesoscopic (kinetic regime) models employing a gen-
eralized version of the Gross-Pitaevskii equation for the superfluid and a quantum
Boltzmann equation for the normal fluid [5, 6]. The fact that the microscopic quan-
tum field theory does not lead, in the quantum fluids case, to the classical Liouville
equation and from there to the classical Boltzmann equation (as it does in classical
fluids) has to do with both that (a) the wavelength of the wavefunction associated with
the constituent molecules is larger than the interparticle distance, and (b) molecule
mobility allows, by enabling particle position interchanges, quantum statistics, i.e., of
the effects of particle indistinguishability, to be active (in the quantum fluids case) in
all pertinent space-time scales [1]. Moreover, superfluids are a special case of quan-
tum fluids since they exhibit the intrinsic phenomenon of Bose-Einstein (4He and
alkali gases) or Cooper-pairing (3He and electron liquid in conducting solids) con-
densation. Without condensation phenomena, the macroscopic behaviour of quantum
fluids would have been reduced to the hydrodynamics of the normal fluid compo-
nent which is not phenomenologically different to classical hydrodynamics. Notwith-
standing their generality, the computational complexity of the aforesaid models does
not allow the practical computation of large superfluid systems. Hence, macroscopic
scale models based on continuum mechanical theory [7–12] in which only the hy-
drodynamic scales are treated have also been employed. In the latter, both superfluid
and normal fluid are depicted as continuous systems, although the discrete nature of
superfluid vorticity (in the form of isolated vortex lines) is explicitly taken into ac-
count. Finally, at hyper-macroscopic scales even the superfluid vorticity becomes a
continuous field [13, 14].

The present contribution focuses on the macroscopic fluid mechanical regime, and
in particular on the most general flow state in this realm in which both normal fluid
and superfluid velocities fluctuate [15, 16]. Due to their vortical and deterministic
nature, these nonlinear fluctuations are classified as turbulent. An intuitive way of
understanding the structure of fluctuating systems could involve (if possible) the iden-
tification of (at least metastable) structural elements that dominate their complex phe-
nomenology and carry most of the fluctuation energy shaping the fluctuation statistics
via their interactions. In athermal superfluids, the quantized line vortices are examples
of such structural elements. In thermal superfluids, the addition of the normal fluid
complicates the situation, since the reduction of turbulence phenomenology to inter-
actions between a complex system of vortex tubes has only (a vigorously debated)
approximate validity [17–20] in the classical Navier-Stokes equation that describe
the physics of the normal component. In this context, the vortex tube model (VTM)
of Kivotides and Leonard [21, 22], based on a postulated “quantization” of classical
(normal fluid) turbulence in terms of linear vortical structures (see also relevant dis-
cussions in Refs. [23, 24]), was shown to reproduce basic statistics of inertial range
Navier-Stokes turbulence, and has been employed as an intuitive model of large scale
velocity field physics in various disciplines [25, 26]. Thus, it appears that a basic
understanding of interactions between the aforesaid classical and superfluid vortic-
ity structures could provide significant insight into the fundamental flow processes
behind turbulence fluctuations in thermal superfluids. These ideas have inspired the
analysis performed in the present contribution.
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Previously, Vinen [27] modeled turbulence eddies in both fluids as rigid spheres,
and by employing dimensional and scaling analysis, as well as an approximate for-
mula for the mutual friction force, concluded that under certain conditions the large
scale dynamics of the two fluids would be identical (fully coupled). This understand-
ing, which is also employed in the analysis of Stalp et al. [15] indicates a much
stronger effect than a simple tendency of alignment between the vorticity of the two
fluids. Barenghi et al. [28] continued Vinen’s approach by considering slightly more
complicated flow models and argued for a tendency of alignment of the two vortici-
ties. They heuristically coupled their findings with standard scaling theories of clas-
sical turbulence (i.e., ignoring the effects of the superfluid on the structure of normal
fluid turbulence) and reached similar conclusions to Vinen’s.

These studies indicate important physics, but they (essentially) analyze simple
flows not necessarily relevant to complex turbulent flows. Indeed, Barenghi et al. [28,
29] have studied superfluid vorticity dynamics in a kinematic, single scale ABC nor-
mal flow and observed a polarization of the quantum vortex tangle by normal fluid
vorticity which, in this flow, is organized in a system of straight (nonplanar) vor-
tices. Samuels [30] went a step further, and by calculating the dynamics of quan-
tized vortices under the influence of a kinematic, straight normal fluid vortex tube,
suggested an explicit mechanism of superfluid tangle polarization. He has shown
that an initial superfluid ring becomes distorted by the normal fluid vortex that pulls
the similarly aligned hemicircle towards it and traps it within its core. Subsequently,
the Ostermeier-Glaberson instability causes the part of the loop connecting the free,
anti-aligned hemicircle with the trapped one to generate a new vortex loop. Samuels
showed that subsequent multiple repetition of this process accumulates quantized
vortices within the normal vortex core, and conjectured that, at large times, the circu-
lations in the two fluids are matched.

Whilst such studies have offered valuable insights, direct extrapolation of these
results to fully developed turbulent normal flow is difficult to justify. First, in normal
fluid turbulence there are many, curved, dynamic vortices that generate a multiscale
fluctuation field with the Kolmogorov spectrum. Their physics are influenced by the
superfluid vortices via mutual friction effects which are absent in kinematic normal
fluid descriptions. Equally important, the aforesaid studies have not included both
mutual friction terms, and, despite the work of Idowu et al. [31], have not employed
the mutual friction force equations that are consistent with a normal flow velocity
modeled after the Navier-Stokes equation. Since the Kolmogorov spectrum applies to
a local (Navier-Stokes) normal velocity field and not to a spatial average of it obey-
ing HVBK type equations, it is difficult to justify (in the superfluid vortex dynamics
equations) mutual friction models that involve HVBK type averages of the normal
fluid velocity. Kivotides [32] addressed some of the aforesaid issues by modeling an
interaction of superfluid vortices with a snapshot of homogeneous, isotropic normal
fluid turbulence that was generated by the VTM model and presented an inertial range
with Kolmogorov scaling. The advantage of his approach is that it combines the com-
plexity of Navier-Stokes model turbulence with explicit information about coherent
vorticity structure physics. Moreover, the calculations included both mutual friction
force components employing their local normal fluid velocity formulation [31].

The analysis has shown that the normal vortex tubes induce superfluid vortex bun-
dles of strength comparable with the normal fluid tubes. These bundles form within
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the normal fluid vortex cores but somewhat offset from their centerlines. Bundle for-
mation comes together with the emergence, in the superfluid energy spectrum, of
an inertial range with Kolmogorov scaling. We note parenthetically that the com-
puted superfluid bundles could be thought of as discrete, inviscid analogues of nor-
mal/classical fluid vortex tubes, so it is not surprising that a similar result (regarding
an inertial regime with Kolmogorov scaling) was also obtained by Kivotides and
Leonard via VTM [21] in the context of classical turbulence. Kivotides [32] also
demonstrated that self-stretching of superfluid bundles of quantized vorticity coin-
cides with a direct energy cascade in wavenumber space (a process also considered
to be crucial in classical fluid turbulence physics [17]). Another aspect of his analysis
was the description of an inverse vorticity cascade via bundle braiding processes that
result in bundle fusion. So the superfluid bundles become thinner by self-stretching
(and cascade energy to smaller scales), but become fatter by the aforesaid braiding
process. The braiding process is a necessary condition (when for example the ex-
ternal forcing has ceased and there is no new coherent structure formation) for the
existence of a (strongly intermittent) energy cascade, since without the bundle fatten-
ing (via braiding) process there could be no bundle core stretching process. In other
words, the braiding process is a way of allowing the inertial effects to achieve simul-
taneously (during vortex bundle fusion) these two, seamingly opposite, processes.
Indeed as shown in references [32, 33] bundle fusion coincides with strongest vortex
stretching. Overall, superfluid turbulence involves the formation by self-organizing
mutual friction action of quantized vorticity bundles that grow thicker by braiding
while at the same time (for the particular strength of inertial forces in the flow) be-
come thinner by stretching, transporting energy to smaller scales. In this way, most
of the cascade physics involves the potential flow outside vortex bundle cores rather
than the (approximately) solid body rotation within the latter. This scenario could be
compared with an analogous one in the classical case [44], where it is thought that
Navier-Stokes dynamics produce first vortex sheets that roll-up via Kelvin-Helmholtz
instabilities into fine spiral vortical structures that fuse into classical vortex tubes via
viscous action. In the classical case, one needs a large scale forcing (for example, in-
cluded self-consistently in fluid-structure interaction theories) that would provide the
energy needed for the formation of the near singular vortex tubes, and a viscous force
to dissipate the cascaded energy. In this context, Kivotides [32, 33] offered quantita-
tive proof that both of these functions in the bundle system are performed by mutual
friction (i.e., by the normal fluid).

However, despite these findings, the crucial aspect of an explicit bundle formation
mechanism (on par with the analysis of Samuels [30]) is lacking. Equally important,
the serious deficiencies of the kinematically prescribed normal fluid, and the lack of
any normal fluid dynamics remain. The latter issue was tackled by Morris et al. [34]
who employed fully developed Navier-Stokes turbulence in order to generate super-
fluid turbulence, and found a tendency of alignment between the large scale averages
of the two vorticities. There was, however, no explicit information on the formation
of superfluid bundles and their trapping by coherent normal vortical structures or their
combined subsequent movement as one fully coupled vortical structure as suggested
by Vinen [27]. Notwithstanding the sophistication of their computation, Morris et al.
did not offer an explicit mechanism for the alignment process, and did not employ the
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local normal flow velocity formulation of the mutual friction forces that is consistent
with their fully resolved Navier-Stokes turbulence in the normal fluid.

In this contribution, we first analyse Samuels’ [30] problem, employing a for-
mulation which included two mutual friction forces [31]. We demonstrate the basic
phenomenology of the interaction between superfluid vorticity and a straight normal
vortex tube, and, subsequently, we identify elements of this phenomenology on the
more complicated problem of the interaction of quantum vortices with a multiscale
(although still kinematic) turbulent vortical structure. Note that, in similarity with the
VTM calculation of [32, 33], the normal fluid vortices are static by default. By explic-
itly showing how superfluid vortices are trapped by normal fluid turbulence vorticity
structures, we facilitate the interpretation of more powerful fully coupled turbulence
calculations that are presently pursued.

2 Mathematical Model and Methods

Both fluids are modeled as vortex dynamical systems. Since in our approach the su-
perfuid vorticity is not continuous but discrete (individual line vortices), we need to
use a superfluid vortex dynamics equation that employs the local normal fluid veloc-
ity at the quantized vortex positions. It is not consistent to employ an averaged normal
fluid velocity that obeys HVBK type of equations, since, at the length scales where
the latter formalism is valid, the superfluid vorticity is continuous. Idowu et al. [31]
have derived a suitable vortex dynamical equation that we use here. Notably, the
latter equation does not simply involve a rescaling of the α and α′ mutual friction
coefficients in the equation employed in references [30, 39]; it is a different equation.
In particular, let Xs(ξs, t) denote the superfluid vortex tangle Ls where ξs is the ar-
clength parametrization along the vortex loops, and t is time. The evolution equation
for Xs(ξs, t) is given by [10]:

∂Xs

∂t
= V s + h1X

′
s × (V n − V s) + h2[X′

s × (X′
s × V n) + V s], (1)

where V n is the normal fluid velocity and the superfluid velocity V s is given by the
Biot-Savart integral:

V s(x) = − κ

4π

∫
Ls

dξs

X′
s × (Xs − x)

|Xs − x|3 . (2)

Here, X′
s ≡ ∂Xs/∂ξs is the unit tangent vector (indicating the direction of the sin-

gular superfluid vorticity), κ is the quantum of circulation and h1, h2 are known
dimensionless mutual friction parameters [35].

The computational superfluid vortex model includes topological changes in the
tangle geometry via reconnections. Feynman [38] was first to suggest them, and
Schwarz [39] was first to introduce them in computational studies. They give rise
to the equation

TLs
(t) �−→ T ′

Ls
(t), (3)
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with TLs
(t) denoting the topology of Ls at time t . At each time step, we compute

the minimum of grid resolution along the vortices’ contours and intervortex distance,
and we instantaneously reconnect two vortices when their distance becomes smaller
than the a fraction fs = 0.1 of this minimum.

The model for the normal fluid vortices is described in detail in [21, 36] and ref-
erences therein. The velocity of the normal fluid at field position x is given by the
Biot-Savart integral

V n(x) = − 1

4π

∫
(x − x′) × ωn(x

′)dx′

|x − x′|3 , (4)

where, notably, the integral is over all space, and the normal fluid vorticity ωn is
distributed within the normal fluid filament cores [36]

ωn(x, t) =
∑

i

�

∫
Ci

1

σi(ξn, t)
3
ζ

( |x − Xi
n(ξn, t)|

σi(ξn, t)

)

×
(

∂Xi
n

∂ξn

+ x − Xi
n(ξn, t)

σi(ξn, t)

∂σi

∂ξn

)
dξn. (5)

Here, Ci is the centerline contour of filament i, ξn is the arclength parametrization,
and σi(ξn) is the core radius along the same filament. The smoothing kernel ζ de-
scribes the way vorticity spreads around the core centerline. The calculations are
done with the Gaussian kernel of [37]

ζg

(
r

σ

)
= 1

(2π)
3
2

e−r2/(2σ 2). (6)

Moreover, � is the circulation strength attributed by the VTM “quantization” to all
filaments, and is the VTM model’s analog of the quantum of circulation. It is related
to the Reynolds number by Re = �/νn, where νn is the kinematic viscosity of the
normal fluid. Inserting the above definition of vorticity in the Biot-Savart integral
reduces the latter to a sum of line integrals over each filament centerline contour

V n(x) = − �

4π

∫
Ln

dξn

Q(φ)

(σ (Xn)2 + σ(x)2)3/2
X′

n × (Xn − x), (7)

where Ln denotes the normal vortex centerline tangle and function Q(φ) (with
φ = |Xn − x|/(σ (Xn)

2 + σ(x)2)1/2) depends on the particular smoothing kernel
ζg employed [37, 42]. For the Gaussian kernel case, it is

Q(φ) =
erf(φ/

√
2) −

√
2
π
φe−φ2/2

φ3
, Xn �= x, (8)

Q(φ) =
√

2

9π
, Xn = x. (9)
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Notably, this desingularization of the Biot-Savart kernel gives zero self-induced ve-
locity for a differential element. In this way, its velocity is determined by the neigh-
bouring elements. As in athermal superfluids, the normal filament centerlines move
with the local normal fluid velocity

∂Xn

∂t
= V n. (10)

Notably, according to Leonard’s model (5) there can not be helical vortex lines around
the vortex-core center lines, and therefore axial flow inside the cores. It is important to
note that in normal fluids vortex contour dynamics alone does not capture all physics.
One needs a way of updating the tube radii. Biot-Savart motion changes vortex length,
and this in turn results in tube radii dynamics according to the law of filament volume
conservation during inviscid evolution

d

dt

(
σ(Xn)

∣∣∣∣∂Xn

∂ξn

∣∣∣∣dξn

)
= 0, (11)

which is applied to each discrete vortex segment at each time step, and it is a direct
consequence of the incompressibility of the fluid and the fact that in Euler dynam-
ics vortex lines move with the fluid velocity. The combination of this law with the
solenoidal character of the vorticity field is responsible for the intriguing phenomenon
of enstrophy intensification in classical turbulence dynamics via vortex stretching.
Although this vortex stretching effect is absent from superfluid line vortex dynam-
ics, it is active in superfluid vortex bundle dynamics, and its physical consequences
in thermal superfluid turbulence context are discussed in references [10, 21, 32]. In
addition, normal fluid vortex cores are growing due to the diffusive part of molecular
fluctuations (which do not preserve filament volume). This effect is captured with the
core spreading method [43]

dσ 2

dt
= 2γ νn, (12)

where γ is a factor depending on the particular kernel ζg employed, and is equal to
γ = 1 for our Gaussian choice of kernel.

Similarly with the superfluid case, normal fluid vortices reconnect. Vortex recon-
nection in classical fluid dynamics is a standard, intensively studied topic. A com-
putational approach to classical filament reconnection in a vortex-dynamical context
was developed by Kivotides and Leonard [40]. The corresponding equation is

TLn
(t) �−→ T ′

Ln
(t), (13)

with TLn
(t) denoting the topology of Ln at time t . We instantaneously reconnect two

vortices when their distance becomes smaller than a fraction fn = 0.5 of the sum of
their local tube radii. Note that filament volume is not conserved during reconnections
since the latter rely on the relative slip of the vorticity field with respect to the fluid
(i.e., they do not move with the material velocity) as this is effected by viscous action,
and so the tube volume can change. In our computational model, we keep the tube
radius of the reconnecting filament during reconnection constant, and we adjust the
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reconnecting differential element volume taking into account the post-reconnection
topology.

The above set of equations was solved with numerical methods that have been
extensively discussed in the cited references. Although, in all cases presented here,
the superfluid vortices interact with stationary normal vortices, classical filament dy-
namics are needed to achieve the homogeneous, isotropic turbulence state employed
in the study of interactions between quantized vortices and turbulence.

3 Results

Since we intend to understand the structure and energetics of homogeneous thermal
superfluid turbulence, we impose in all computations periodic boundary conditions.
The working superfluid is 4He; similar mathematical models are also applicable to
3He-B, although the typical phenomenology of 3He-B flows is expected to differ from
the 4He case since the material properties that enter as parameters in these equations
differ significantly between the two fluids [8, 41]. We fix the temperature at T = 1.3 K
so that νn = 2.3303 × 10−3 cm2/s, h1 = 0.04093, and h2 = −0.02175. Notably,
the two mutual friction coefficients are of the same order and opposite sign. Since
the magnitude of the second coefficient is approximately half of the first, its effects
can not be neglected. When two superfluid vortices reach a certain close proximity
(specified below) they reconnect. We have verified that our results do not depend on
this cut-off distance.

3.1 Straight Normal Fluid Vortex

The size of the computational box is lb = 0.005 cm. Within it, we place a straight
normal fluid vortex tube and a seed superfluid vorticity in the form of a vortex ring.
The straight normal fluid vortex circulation corresponds to Re = 400. This gives
�/κ = 934.92, thus inertial effects in the normal fluid grossly overpower correspond-
ing effects in the superfluid, and the effects of mutual friction on the quantized vor-
tices are dominant. The vortex tube radius is chosen to be σ = 0.1 lb . Note that,
according to the definition of the employed Gaussian smoothing kernel, σ does not
imply a sharp cut-off of normal vortex tube vorticity at this distance; it only delin-
eates the region of highest vorticity. In order to ensure a smooth normal fluid velocity
field, we densely discretize the normal vortex contour: the size of the vortex seg-
ments is δln = 0.1σ . The superfluid vortices are discretized in segments of length
δls = lb/32. The reconnection cut-off is set to 0.1 δls . The numerical time step that
resolves all Kelvin waves present in the system is δt = 6.9 × 10−6 s. The size of the
quantized vortex ring is of the order of the system size; its diameter is D = 0.2lb. We
have experimented with various ring orientations and positions within or outside the
tube core. For sufficiently strong normal circulation strengths, they all gave similar
results. In order to ensure that the quantized ring will interact rapidly with the normal
vortex tube, we have placed the ring in a collision course with the tube at distance
equal to 0.25D. Moreover, normal vortex circulation and system size give, for the
characteristic time scale τ = l2

b/�, the value τ = 2.68 × 10−5 s. We calculate at least
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Fig. 1 Superfluid vortex
length (cm) vs time (s) when
(a) the local normal fluid
velocity is employed and both
mutual friction components are
taken into account (fast growing
dashed line), and (b) the average
normal fluid velocity is
employed and only one mutual
friction component is taken into
account as in [30] (dot-dashed
line). At large times, both
computations show exponential
increase

two orders of magnitude beyond this time in order to ensure that all transients have
ceased. Finally, we have also made a complementary computation using the equations
employed in [30] in order to compare the two solutions.

The evolution of the superfluid vortex length is shown in Fig. 1. As expected, the
formulation employing both mutual friction coefficients results in enhanced energy
transfer from the tube to the superfluid. In agreement with Samuels [30], we also
find that the Ostermeier-Glaberson instability generates new loops and a portion of
them becomes trapped by the vortex core. Only vortices that find themselves in the
neighbourhood of the vortex centerline (i.e., within the intense vorticity region) and
(at the same time) extend approximately along the vortex direction are trapped. Cer-
tain dynamical processes limit the strength of the trapping mechanism. In particular,
the first (i.e., associated with h1) mutual friction force component causes loops on
planes normal to the vorticity tube to become three-dimensional facilitating vortex
reconnections with other similarly affected loops. These reconnections have in gen-
eral a disorganizing effect. On the other hand, the second (i.e., associated with h2)
mutual friction force component tends to blow up such loops creating planar-like
outward-spiraling vortex configurations (that escape the influence of the core). These
are depicted in Fig. 2 which shows the projection of line vortex geometry on the plane
normal to the tube.

In the context of these findings, we mention that fully resolved Navier-Stokes
computations [44] show that small scale classical (normal fluid) turbulence structure
is characterized by straight, stretched vortices. Burgers vortices, for which dissipation
is counterbalanced by a uniform straining field, are examples of such structures. Thus,
assuming that our straight tube (which, like the Burgers vortex, has a constant core
radius) is representative of small scale normal vorticity structure, the computed spiral
structure could be relevant to the high-frequency behaviour of quantized vorticity
in recent thermal superfluid turbulence experiments [45, 46], i.e., measured spectra
could correspond (at high wavenumbers) to the spectra of quantum vortex spirals.
Their energy spectrum (computed as discussed in [10]) is displayed in Fig. 3, and
shows a low wavenumber scaling of k−3 which is reminiscent of the scaling of two
dimensional classical turbulence in the large scale, direct enstrophy cascade regime.
Similarly, since the quantum vortex spirals extend on planes normal to the straight
tube, one expects a poor correlation between the two fluid vorticities at small scales
in fully developed (kinematic normal fluid) thermal superfluid turbulence. This could
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Fig. 2 (Color online) Projection of superfluid vortex centerline geometry on a plane normal to the normal
fluid tube. The vorticity tube is shown with one tenth of its full radius, and appears as a central white dot.
The formation of outward-spiraling vortices is the dominant dynamical effect. The corresponding graph
times are: ta = 1.588 × 10−3 s, tb = 1.912 × 10−3 s, tc = 2.050 × 10−3 s, td = 2.339 × 10−3 s

Fig. 3 Energy spectrum of the
spiral structure shown in Fig. 2
(largest time). A k−3 fit at low
wavenumbers is also shown.
Note that the wavenumbers are
defined without the 2π factor,
i.e., k = 1/� where � has units of
length
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explain the similar finding of Ref. [34]. Finally, sufficiently perturbed axisymmetric
vortices [47] lead to classical spiral vortices that are also employed as models of the
finest turbulence structure [48]. There is a notable similarity between the computed
quantized vorticity spiral and spiraling patterns of passive scalar dispersion by these
classical spiral vortices [48, 49]. Notably, at final time, the superfluid tangle is so
dense that the kinematic description of the normal fluid is not appropriate. The model
applies only to appropriately dilute quantum vortex tangles, and long time results are
merely shown in order to demonstrate that all transients have ceased, and that we
have indeed achieved a steady state (in terms of tangle organization since the vortex
length keeps increasing at this time).

How important is the effect calculated by Samuels in Ref. [30]? The graphs of
Fig. 4, show the way superfluid vorticity builds up within the normal tube for the

Fig. 4 (Color online) The formation of a superfluid bundle within the core of the (not shown) normal
vortex tube. At the final time, the circulation of the induced bundle is much smaller than (less than
5% of) the circulation of the normal tube. The corresponding graph times are: ta = 1.588 × 10−3 s,
tb = 1.912 × 10−3 s, tc = 2.050 × 10−3 s, td = 2.339 × 10−3 s
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same times as in Fig. 2. At the final time, we can count a few dozen (not more that 50)
superfluid vortices comprising a bundle that coincides with the normal fluid tube.
Noting that the normal circulation is approximately 1000κ , the results do not support
the formation of a superfluid bundle of strength equal to the normal tube. Similar
conclusions were allowed by the results of the computation neglecting the second
(i.e., h2) mutual friction coefficient. Noting that the total quantum vortex length at
the final time is 8.3849 cm, and that the total length involved in the bundle is (at
most) approximately 0.25 cm, only a small fraction of the total length is obviously
organized within the tube core. Certainly, the less organized part could also tend to
align with the tube axis and so to couple the two fluids. However, while trying to
understand the structure of thermal superfluid turbulence, one can not neglect the
majority of the superfluid vorticity induced, especially since it appears to be much
more structured in the form of the aforesaid spiral. Next, we shall show that in the
more complicated case of a turbulent normal fluid tube system, the formation of large
scale bundles relies on the ability of intense normal fluid vorticity to trap superfluid
vortices of similar geometry and vorticity direction. However, due to the curvature of
realistic [21] large scale normal tubes, the Samuels mechanism of bundle formation is
not active; instead, the bundles are formed when normal tubes capture the aforesaid
outward-spiraling quantum vortices originating in Obermeier-Glaberson instability
processes that took place in the vicinity of other normal tubes. Thus, in general, the
superfluid vortices are trapped by a different intense vorticity region than the one that
created them at the first place.

3.2 Turbulent Normal Fluid Vortex Tangle

In Ref. [32], Kivotides has shown that in a model, structured turbulent flow, with
many curved normal fluid tubes and an inertial range exhibiting Kolmogorov scaling,
superfluid vortex bundles (bound states of quantized vorticity) form in between the
normal vortex centerlines (but within their cores). The bundles gain strength until they
acquire their own independent dynamics when their circulation is approximately 10%
of the normal tube circulation. Subsequently, they interact strongly with each other,
and by fusing via braiding they gain strength until their circulation becomes com-
parable with the circulation of the normal tubes [32]. Although this “independence”
threshold is an artifact of the lack of dynamical effects in the kinematic description
of the normal fluid, the post-escape physics of superfluid bundles described in [32]
could be an informed approximation to the kinematics of quantized vorticity in fully
developed thermal superfluid turbulence. Here, we perform a similar computation
with emphasis on the initial stage of coherent structure formation. We indicate con-
nections with the straight tube case, and suggest a structure formation mechanism.

The calculations are done for same conditions as in the straight vortex case, i.e.,
the working fluid is helium II and T = 1.3 K. The normal fluid Reynolds number
Reγ = γ /νn (where γ = 932.12 × 10−4 cm2/s is the circulation of the normal fluid
vortices) is Reγ = 40. One notes that since γ /κ = 93.492, one normal fluid vortex is
as strong as approximately 100 aligned superfluid vortices put together. Similarly to
Ref. [32], we first choose a cubic computational domain of size lb = 0.1 cm. Then, we
place in it a number of normal vortex loops set at random locations and orientations
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Fig. 5 (Color online) The signature of interaction between intense normal fluid vorticity and quantum
vortices in a turbulent velocity field is instability generated spiral-like structures. Left: superfluid vortices
together with normal fluid vortices at time t = 1.417 × 10−3 s. For clarity, the vorticity tubes are shown
with 0.08 of their actual core radius σ . Right: only the superfluid tangle is shown

with circulation γ defined above. As the loops evolve, they undergo a large number of
reconnections, quickly forming a time-dependent turbulent tangle. By checking the
statistics of the vortex system, we determine when a statistically isotropic and homo-
geneous turbulence state with the appropriate Kolmogorov statistics is achieved [21].
We then keep this normal turbulent flow constant in time while we investigate its
effect, via mutual friction, on a single initial superfluid vortex ring.

As expected, a sequence of instabilities ensues, and their respective sites emanate
quantum vortex spirals as shown in Fig. 5. The arms of these spirals keep expanding,
decreasing their curvature until they accidentally (due to the random nature of tur-
bulent normal fluid vorticity) find a normal tube of identical orientation and similar
curvature. As discussed above, these two conditions are necessary for the trapping of
a quantum vortex by normal vorticity tubes. As the first vortex of a spiral structure
slows down under the influence of a normal tube, subsequent arms catch up with it,
and their accumulation leads to bundle formation. The various stages of this process,
as well as the orientation of normal and superfluid vorticity are shown in Fig. 6. The
bundles escape their formation sites once their circulation becomes approximately
10% of the normal vortex circulation. Thus the correlation between their formation
sites and their own position is subsequently lost. In a fully consistent computation
though, this need not be the case since, as depicted in Fig. 6, a bundle and the nor-
mal tube that traps it have similar vorticity orientations and geometry, thus will tend
to move in the same direction. Notably, the bundle of Fig. 6 has already formed at
t = 1.719 × 10−3 s, that is, two orders of magnitude smaller than the inertial time of
the large scale normal turbulent flow, τ = l2

b/� (τ = 1.072 × 10−1 s). Certainly, this
relation between bundle formation time and normal large eddy turnover time does not
apply directly to a fully coupled, dynamic Navier-Stokes computation, but it informs
that trapping interactions between tubes and quantized vortices are effective in much
smaller time than the time needed by a tube of curvature similar to the system size
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Fig. 6 (Color online) Mechanism of bundle formation in Vortex Tube Model turbulence. The normal
tubes (thick, stationary lines) are shown with 0.08 of their actual core radius σ . One observes in (a) that
the first arm of a spiral has approached a normal tube of similar orientation and curvature. In (b), the
aforesaid vortex is trapped by the normal tube, as subsequent spiral vortices grow due to mutual friction in
a similar fashion to the straight normal tube results. As the new spiral arms approach the normal tube (c),
they slow down under its influence (d), and start accumulating (e) and eventually form a bundle of six line
vortices (f). The corresponding times are ta = 0.351 × 10−3 s, tb = 0.646 × 10−3 s, tc = 0.787 × 10−3 s,
td = 0.894 × 10−3 s, te = 1.013 × 10−3 s, tf = 1.719 × 10−3 s

to transverse the system. Thus, although bundle formation in fully developed super-
fluid turbulence remains hypothetical at this stage, it appears plausible. According to
these results, in a computation based on the more powerfull Navier-Stokes model,
the controlling factor of bundle formation would not be so much the dynamic nature
of normal fluid vortical structures, but the intensity and duration of their coherence,
as well as their geometry. In fully developed superfluid turbulence, the latter are ex-
pected to be affected by the back reaction from the bundles on the normal fluid that
becomes important some time after the initiation of bundle formation [10].

Notably, as found in Ref. [32], the position of bundle formation does not coincide
with the tube centerlines. For example, Fig. 7 shows a bundle formed at distances
between 25 and 50 percent of the tube core radius from the centerline. The greater
distance between bundle formation site and tube centerline in the low part of the
graph has to do with the presence of a neighbouring normal tube (shown in Fig. 6).
In fact, the bundle sits just outside the core of this second tube.

Why are bundles offset from the centerlines? In the straight tube case, the quan-
tum vortices are attracted by mutual friction to the center, and stay there since both
their self-induction velocity and the normal velocity are zero (solid-body rotation of
the core). In turbulence, typical induced bundles shown in Fig. 6, are curved and so
posses a self-induced velocity. In order for them to accumulate, this velocity must be
approximately counterbalanced by mutual friction effects at the accumulation site.
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Fig. 7 (Color online) The
superfluid bundle formation site
follows the outline of the
neighbouring, similarly
oriented, normal tube of Fig. 6
from a variable displacement.
The normal tube is shown with
25% of its actual core diameter,
and the bundle sits exactly
outside this distance for a
significant portion of its contour.
The lower bundle part is located
at a distance 50% of the tube
core from the centerline

Now, the normal fluid velocity field is a complex function incorporating many-tube
effects and it is highly unlikely that this cancellation can happen exactly on the tube
core centerline. What then determines the distance of the formation sites from the
centerlines? Since mutual friction involves the highly energetic normal fluid veloc-
ity, and the self-induced superfluid velocity is relatively small, it could be that the
bundles’ sites coincide with the superfluid tangle positions of small normal fluid ve-
locity (so that mutual friction effects are minimized). Indeed, Fig. 8 demonstrates
such a correlation. In particular, at time t = 1.254 × 10−3 s, the maximum normal
fluid velocity magnitude along the tangle is V mx

n = 1798.709 cm/s, the minimum is
V mn

n = 19.45271 cm/s, and the average value is V a
n = 745.1873 cm/s. We have then

superposed the tangle contour (lines) with the tangle-points (dots) with normal fluid
velocity magnitude less than 0.5 V a

n . Only 0.18 of the total number of tangle points
satisfy this criterion. As Fig. 8 indicates, they correlate very well with bundle forming
sites.

4 Conclusion

4.1 Synopsis

Adding to a series of previous investigations of thermal superfluid turbulence physics,
we have demonstrated particular mechanisms of interactions between superfluid vor-
tices and intense normal fluid vorticity. As a rule, normal vortical structures tend to
organize quantized vorticity. In the simple case of a straight normal fluid vorticity
tube, a dominant organization of the superfluid tangle in the form of a dense spiral
was demonstrated. A smaller effect of superfluid bundle formation within the tube
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Fig. 8 (Color online) Superposition of tangle contour (lines) and tangle points with normal fluid velocity
less than half of its average value (dots) along the tangle at time t = 1.254 × 10−3 s. The dots delineate
bundle formation sites to a very good approximation. Note the consistently undotted large areas with
disorganized superfluid vorticity. Moreover, also consistently, the undotted part of the upper-right bundle
has some small residual motion at this time

core (first computed by Samuels in reference [30]) was also indicated. In the com-
plex case of the many, curved tube problem (“VTM turbulence”), tube curvature and
many-body effects do not favour the collapse of superfluid loops onto the centerline
of the normal tube that caused them to become unstable, and the aforesaid spiral
formations are the dynamically important processes. As they expand within a com-
plex net of normal vorticity tubes, they are accidentally arrested by suitable normal
fluid tubes with similar curvature and vortical orientation. They are driven to areas of
small normal fluid velocity in which the minimized effects of mutual friction counter-
balance the self-induced spiral-arms’ velocities. Thus, there follows quantum vortex
accumulation and bundle formation. Due to tube curvature and many body effects,
the bundle formation sites are displaced from the tube centerline positions while still
remaining within their cores.

4.2 Outlook

The practice of superfluid computations with kinematic (incompressible) normal fluid
is now well developed. From the uniform counterflow velocity profiles employed by
Schwarz, to the straight Gaussian vorticity tube of Samuels [30], the ABC flow of
Barenghi et al. [28, 29], the fluctuating random harmonic wave flow of Kivotides
et al. [50–53], and finally to turbulence via the VTM model computation of Kiv-
otides [32] and the Navier-Stokes model computation of Morris et al. [34]. Although
many more studies are needed for a deeper understanding and independent verifica-
tion of the available results, the latter apply only when the back-reaction of the super-
fluid on the normal fluid can be neglected. This can be true during the initial stages
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of interaction between a seed superfluid vorticity and a highly energetic normal flow,
but as the superfluid gains more energy from the normal fluid its back-reaction can
not be neglected.

In the past, there have been a number of fully coupled thermal superfluid compu-
tations. In particular, Kivotides et al. [9], and Idowu et al. [54] have computed the
dynamics of a superfluid ring propagating in an (initially) stationary normal fluid.
They found that, in contradistinction to the present study, organized superfluid vor-
ticity induces normal fluid vorticity structures in the form of twin, highly viscous
vortices adjacent to the superfluid ring. Subsequently, Kivotides et al. [55] demon-
strated that superfluid reconnections enhance the normal fluid dissipation rate thus
they augment effective viscosity values. These studies involved relatively simple su-
perfluid vorticity configurations. A step towards higher complexity was undertaken
by Kivotides [56] who showed that a turbulent superfluid tangle induces non-inertial
vortical fluctuations in an (initially) stationary normal fluid. These fluctuations could
be detected with current particle tracking experimental methods and are particularly
relevant to a recent experiment of Paoletti et al. [57]. Moreover, since in every nor-
mal fluid turbulent flow there are viscosity dominated (low inertia) scales at the high-
frequency end of the spectrum, these fluctuations relate to the small scale dynamics
of thermal superfluid turbulence and guide the choice of appropriate grid resolutions
in inertial turbulence computations as discussed in reference [10]. The latter paper
took a further step towards increasing complexity by having the initial superfluid
vorticity structured in bundles. As a result, the induced normal fluid turbulence pre-
sented fluctuations with a definite inertial range of similar scaling to the Kolmogorov
spectrum. Kivotides concluded that superfluid bundles need continuous transfer of
energy from the normal fluid in order to be sustained, otherwise they disintegrate. It
is important to note that the sudden demise of the superfluid bundles leads to enlarged
superfluid vortex line density since the system progresses (during a small time period
in comparison with the energy decay rate) from an organized to a disorganized state
with essentially similar energies. This sudden increase in vortex line density causes
a hump in the graph showing the evolution of superfluid vortex length versus time.
Notably, similar humps were observed in the decay of superfluid vorticity by Stalp et
al. [15]. These humps could simply be the signature of bundles in the turbulent flow
of reference [15] that disintegrate at late stages of normal turbulence decay when (in
accordance with [10]) the normal fluid does not have the energy to support its own
vorticity structures as well as the superfluid organization (i.e., to keep the entropy of
the quantum vortex tangle configuration low). Equally important, these humps were
absent in the quantum turbulence decay computation of Kivotides [53] where an un-
structured vortical fluctuations field was employed for the normal fluid.

What is needed presently is a collaboration between mathematical theory and ex-
periment that would improve upon the previous indirect argument and offer direct
evidence of structures and dynamics. From the experimental side, as discussed by
Kivotides and Wilkin [58] the particle tracking method (with its vital capability of
following individual particle trajectories) could search for signs of particle-bundle
collisions, and computational studies could compute fully coupled thermal superfluid
turbulence. Due to their combination of two different fluid dynamical formalisms
(i.e., the velocity space description for the normal fluid and the vortex dynamics de-
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scription for the superfluid), as well as their resolution requirements, such computa-
tions are computationally demanding, and we shall report their findings in a future
communication.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.
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