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Within the context of data assimilation, we describe the use of chaotic synchronization to

overcome instabilities in the search space of the associated optimization problem and use numer-

ical examples to demonstrate how the elimination of positive (conditional) Lyapunov exponents

allows one to determine both the number and specific state variable choice of dynamical dimen-

sions that must be measured in order to ensure feasibility of synchronization-based optimization

techniques.

We present a novel objective function based upon the chaotic synchronization-error met-

ric that utilizes a strongly-coupled fiducial trajectory as a full dimensional surrogate of the

measured data. This synchronization fiducial serves as the metric origin in the space of model

dynamical trajectories, thus making the search over model parameters more informative and

eliminating the need for collocation of the dynamical variables.

The relationship between this (and other) proposed objective functions and the configu-

ration functions of classical statistical physics are explored, including an additive-noise approxi-

mation to errors in the model expressed as a path integral over the joint probability distribution

of the dynamics.

From these considerations we create two statistical (derivative-free) numerical optimiza-

tion algorithms on parallel processors that employ Monte Carlo techniques to evaluate the dis-
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tribution of unknown state variables and model parameters; this is done on chaotic and elec-

trophysiological twin-experiments, where we demonstrate how these methods are used to assist

in the design of neuron models and stimulus (current injection) protocols. Finally, we report

data-assimilation results, including model error estimates, of a model optimized to a current-

clamp recording of a neuron from the High Vocal center (HVc) of the zebra finch birdsong neural

pathway.

xv



Chapter 1

Data Assimilation and

Optimization

Data assimilation is a quintessential problem of inductive science. Scientists express

physical phenomena in terms of mathematical models as a means to understanding relevant

constituents and to provide future predictions. The ability to create highly specific instances of

these models requires the incorporation of measured data from the system in question.

If the the physics of the experimental system is well known then it may be possible to

determine the functional form of a model to any desired accuracy. However, even in a situation of

such unlikely good fortune as this, in order to make predictions with this model one requires full

knowledge of the system state, possibly beyond those variables that can be directly measured. Or

perhaps the model contains many unknown parameters due to a large number of interacting par-

ticles or subsystems. The obtainment of these unknown variables and any unknown parameters

from measured experimental data is the problem of data assimilation.

It is a natural consequence of reductionalism that demands are placed upon these models

to explain an ever increasing range of experimental results; indeed, first principles can become

cumbersome as the complexity of the system increases. As this occurs, the models inevitably

contain features that straddle the boundary between established physical principles and effects

that are specific to individual experimental instances.

Managing parameter and state optimization in situations where such complexity cannot

be avoided is what we attempt to illuminate within this manuscript; specifically by utilizing

concepts familiar to nonlinear dynamics such as synchronization and time-delay embedding.

Some of these complexity issues include systems that contain chaotic parameter regimes, the

1
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presence of measurement noise, as well as models whose functional form remains an incomplete

or incorrect description of nature.

Many approaches to data assimilation, including filters (Judd and Stemler (2009)) and

estimators (Cessna et al. (2007)) have been developed for the high-dimensional problem of weather

forcasting, in which choatic dynamics are ubiquitous. Among other fields such as geophys-

ical fluid dynamics, state and parameter estimation has been applied to biological systems

(Bhalla and Bower (1993); Vanier and Bower (1999); Tabak et al. (2000)). Our attention is

focused on neuron systems, where models of single neuron and network properties quickly ex-

tend into large-variable descriptions requiring careful treatment (Huys et al. (2006); Beuter et al.

(2003)).

1.1 Dynamical Systems

Our investigation is limited to classical (i.e. non-quantum) mechanics, where a dynamical

system is represented by a set of equations that describe how the state of the system varies in

time. The variables of these equations are state variables, that vary in time according to the

dynamics; together with any constant parameters they fully specify the system at a given point

in time.

With time as a parameterization, the vector of state variables traces out a trajectory

through state space, which is the space of all possible states of the system. All of the systems

considered are assumed to be bounded, meaning that physical restrictions on the state variables

prevent them from going to infinity as time progresses, even in the limit as time goes to infinity.

The nature of time during the course of our system’s evolution is assumed to obey

Galilean relativity; that is, there is no absolute reference point in time so that shifting the

origin of time does not change the system. This is equivalent to asserting that the system is

autonomous, meaning that time cannot appear explicitly in the dynamics; only time intervals

may have a physical realization.

Futhermore, this discussion is primarily intended for deterministic systems; it is assumed

that there is no random component to the dynamics. Some of the optimization methods examined

herein include stochastic algorithms, and there is considerable discussion in chapter 5 about

including a random component to the dynamics as a means to investigate the effects of model

error, however these methods are developed with underlying nonlinear deterministic systems in

mind,
dx

dt
= f(x,p) . (1.1)
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With the discrete version of the dynamics operation over a timestep dt given by the map

x(t+ dt) = F ◦ (x(t),p) . (1.2)

Barring a chaotic caveat, the deterministic nature of the dynamics means that it is

permissible to discuss the unique trajectories of f by their initial conditions and parameters.

Using the shorthand notation

xT = FNT · (x(0),p)

= {x(0),x(1), . . . ,x(NT )} ,
(1.3)

where FNT represents NT repeated applications of F, the dynamical map corresponding to the

model differential equations f .

1.2 Variational Optimization

It is possible to formulate the data assimilation problem as a special realization of optimal

control theory, and more generally as a problem for nonlinear optimization, where one searches

for a solution set that minimizes a cost or objective function. Optimal control theory has a rich

history (see for ex. Kirk (1970); Bryson and Yu-Chi (1969); Gill et al. (1981); Powell (1982);

Barclay et al. (1998)), and from it originates much of the terminology that is used througout.

Algorithmic search routines support a natural division along which methods are com-

monly separated into two steps: the first is the selection of a potential point for evaluation, and

the second is a comparison of two points to determine which is the ‘better’ one. The methods

to accomplish the former task are quite varied and heuristic-based, distinguishing one’s overall

approach to optimization, while the second challenge is readily met by means of an objective

function.

The objective function is a measure which defines what it means for one point to be a

more desirable solution than another. The discussion of optimization is limited to minimization

problems, where -all else being equal- a point with a lower objective function is considered closer

to the solution than one with a large objective function. Clearly, this is both an essential piece

of optimization and a very subjective declaration; the best that an optimization algorithm can

do is solve the problem that is posed to it, whether or not it is the problem that one intends to

solve is relegated to the skill of the inquisitor.

Presented next are some fundamentals of the variational calculus approach to optimiza-

tion. The discussion remains general, although the emphasis is on how these methods are useful

for solving data assimilation problems.
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1.2.1 Unconstrained Optimization

Our search variable, ω, is a W -dimensional vector comprising all of the unknown state

variables and parameters of our data assimilation problem. For example, one specfic search space

that we are interested in includes the model initial conditions and parameters (see chapter 7), in

which case ω = {x(0),p} and W = Nx +Np, where Nx is the dimension of the dynamical model

and Np is the number of unkown parameters in the model. More commonly in the optimization

of dynamical systems, the state variables are collocated, where the search is performed over the

state variables at each time point x(t) individually, resulting in ω = {x(0),x(1), . . . ,x(NT−1),p}

and W = Nx ·NT +Np. For this section however, the discussion remains general and any specific

relationship between the physical model dynamics and the optimization should be considered

unspecified. One restriction that may be assumed because of the association with physical

dynamical systems is that our search space, let us call it Ω, is a continuous1 and bounded

subspace of RW .

The objective function φ(ω) : ω → R+ is used to evaluate the relative fitness of various

points ω ∈ Ω in the search space. The simplest formulation of optimization that is of concern is

minimize φ(ω) ω ∈ Ω, Ω ⊆ RW , (1.4)

which represents an unconstrained problem, as it involves solely the objective function.

The solution to this problem is formally written as ω∗, although keep in mind that this

is at best a local solution, for the assertion

ω∗ = ω′ : ∀ω′∈Ω φ(ω′) ≤ φ(ω) ,

is a statement of global optimization, and is as impractical as it is desirable.

The variational approach takes a different tack and instead looks to fulfill derivative

requirements. The first and second optimality conditions are easily understood, for it is obvious

even to the causal observer that for a point ω∗ to be a local minimum of φ the following must

be satisfied:

i.)
dφ

dω

∣∣∣∣∣
ω∗

= 0 (1.5)

ii.)
d2φ

dω2

∣∣∣∣∣
ω∗

> 0 . (1.6)

These follow from elementary calculus considerations, and are ultimately responsible for the

locality restriction on the solution ω∗ due to the infinitessimal limit in the definition of the

derivative.

1The numerical search is done on a finite-state search space, but we generally allow continuity
requirements by choosing a suitably small dtint.
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1.2.2 Constrained Optimization

Of course, one would like to restrict the region of Ω that must be searched over as

much as possible by imposing known relations amongst the search variables through the use of

constraint equations. The constraints are usually divided into equality constraints cE(ω) = 0,

and inequality constraints cI(ω) > 0, so that they may be dealt with more efficiently separately.

Generally, optimization problems with inequality constraints present additional difficulties to

those with equality constraints alone.

With the exception of simple bounds, which maybe linearly scaled away (see section

2.1.2), we are unlikely to encounter many inequality constraints in data assimilation, and for

purposes of exposition restrict the discussion to optimization problems with equality constraints

alone.

The constrained optimization problem with equality constraints is expressed as

minimize φ(ω) ω ∈ Ω, Ω ⊆ RW (1.7)

subject to cj(ω) = 0 j ∈ 1, . . . , E .

For a point ω∗ to be a solution to this problem, it must satisfy both the constraints and minimize

the objective function.

If ω satisfies a constraint, cj(ω) = 0, then that constraint is active, and if ω satisfies all

E of the constraints then ω is said to be a feasible point; the set of all feasible points being the

feasible region of Ω. In high dimensions and especially with nonlinear constraints, the feasible

region need not be simply connected; disjoint ‘islands’ of feasibility may exist throughout the

search space.

Remaining in the feasible region between successive iterations of a search algorithm is

not guaranteed if the constraint equations are nonlinear, because the curvature of these equations

may depend upon high order derivatives that are not accurately reflected in the perturbation

step. Algorithms vary on their approach to finding and staying within the feasible region, yet

clearly there is a benefit to using constraints to limit the size of the search space, especially if

there are linear constraints as any linearly independent dimensions of the active set of constraints

reduces the dimesion of the problem.

1.2.3 Solution Uniqueness

It is commonplace to inquire whether a linear system of equations is well-determined.

That is, if the constraint equations restrict the solution space to a single point ω∗, then a unique

solution exists and the problem is well defined. Too few restrictions and there may exist multiple



6

degenerate solutions where φ(ω1) = φ(ω2), yet ω1 6= ω2; too many restrictions and there is a risk

that no solution exists in the feasible region.

Independence of the unknown parameters can be algorithmically tested for a linear sys-

tem, and an assessment of whether the above situation can be satisfied is possible. However,

the linear-independence of nonlinear variables can only be assessed in a local, point-wise fashion;

indeed, the lack of a globally equivalent criterion is arguably what makes nonlinear systems dif-

ficult to work with. In general, then, we note that it is not possible to guarantee the uniqueness

of a solution to a nonlinear optimization problem.

While it is obvious that redundant parameters should not be present in a model, the pos-

sible interdependence of apparently independent parameters of a nonlinear system may involve

complicated inverse (and often transcendental) expressions of the state variables making elimi-

nation counterproductive from the standpoint of numerical optimization and data assimilation.

This represents a realization of the vague notion of complexity mentioned in the introduction.

1.2.4 Lagrange Multipliers

The method of Lagrange multipliers (see for example Arfken and Weber (2005)) is often

used in variational optimization to satisfy both feasibility of the constraints (to first order) and

optimality of the objective function. This approach recognizes that we seek a solution that is

in the feasible region, but where any feasible move must be perpedicular to the gradient of the

objective function. For if it were not orthogonal, a move could be made in this feasible direction

that would reduce the objective function.

The Lagrange function2 relates the constraints to the objective function via their gradient

information, and is defined as

L(ω, λ) = φ(ω)−
E∑

j=1

λjcj(ω) , (1.8)

where λ is the E dimensional vector of Lagrange multipliers.

The first order optimality condition (1.5) is satisfied if ∂φ
∂ω can be written as a linear

combination of the constraint derivatives, ∂c
∂ω , locally at the solution ω∗ according to

∂φ

∂ωi

∣∣∣∣∣
ω∗

=
E∑

j=1

λ∗j
∂cj
∂ωi

∣∣∣∣∣
ω∗

, (1.9)

2The term ‘Lagrangian’ is only used in regards to optimization (where it is applied to the
objective function) although it is mathematically equivalent to its usage in determining unknown
forces in dynamics situations.
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where λ∗ is the vector of Lagrange multipliers at the solution. To satisfy the second order

optimality condition, consider H the Hessian of (1.8), written as

H =
∂2φ

∂ω2
−

E∑
j=1

λj
∂2cj
∂ω2

. (1.10)

This contains the second derivative information of the constrained optimization problem, and as

per (1.6) must be positive definite.

1.2.5 Uncontrained Penalty Functions

It is possible to formulate the constrained optimization problem (1.7) as an unconstrained

problem using Lagrange multipliers by absorbing the constraints into the objective function and

creating what is called a penalty function (see for example Gill et al. (1981)). Problem (1.7) is

then written as

minimize ψ(ω) = φ(ω) + ρc†(ω) · c(ω) ω ∈ Ω, Ω ⊆ RW (1.11)

where φ(ω) is the original objective function, c is the vector of constraint functions and ρ is

known as a penalty parameter (where x† represents transpose). The inner product is taken over

the constraints to ensure that any violation is non-negative.

The first order optimality condition (1.5) on this penalty function is

∂ψ

∂ωi
=

∂φ

∂ωi
+ 2ρ

E∑
j=1

cj
∂cj
∂ωi

,

which is driven to equal equation (1.9) in the limit that ρ → ∞, in which case the penalty

parameter is associated with the lagrange multiplier at the solution according to

2ρcj → −λ∗j .

1.2.6 Optimization Software

In addition to the synchronization-inspired statistical optimization scheme developed

within this work, the data assimilation experiments reported herein rely upon external algorithms

to satisfy the associated optimization problem.

Two useful software implementations with which we have had success are SNOPT

(Gill et al. (2005)) and IPOPT (Wächter (2002)). SNOPT is developed and maintained by P.

E. Gill here at UCSD, and IPOPT is available as open source software under the Eclipse Public

License (see http://www.coin-or.org/Ipopt/).
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Both of these algorithms use a variational approach to minimizing the collocated dynam-

ical trajectory subject to the equations of motion as equality (or very nearly equality) constraints

between the state vectors at different time points. This results in a matrix of constraint deriva-

tives that is sparse, and these methods take advantage of this sparcity to manage problems with

a significant number of variables, i.e. ω is high dimensional.



Chapter 2

Complications

In this chapter we discuss some of the general complications that affect data assimilation

regardless of the optimization approach that is used to solve the associated minimization problem.

These complications include things such as numerical issues, high dimensionality of the search

space and chaotic instabilities in the objective function surface.

2.1 Numerical & Symmetry Considerations

Computations involving values that range over many orders of magnitude are prone

to numerical instabilities. Due to finite limitations on precision, floating point arithmetic is

not commutative. As a result, when creating numerical algorithms one should add and subtract

terms of a similar magnitude, and keep intermediate multiplicitive terms close to unity if possible

(Press et al. (2007)).

Errors also arise naturally during progression of the dynamics due to the presence of

positive Lyapunov exponents, the focus of section 2.3 and chapter 4. As the potential for poor

variable scaling after many computations exists due to either of these complications alone, dealing

with both of them in a high dimensional setting can be a very real impediment to effective

algorithm design.

2.1.1 Integration

As numerical integration schemes cannot satisfy invariance under all possible symmertries

simultaneously, it is imperative to choose numerical methods that reflect the symmetries of the

dynamics, and therefore preserve the relevant conserved quantities of the system. As dissipation

9
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in the dynamics prevents the nonlinear systems that we investigate from conserving the first-

integral of the motion, we are not concerned with simplectic intergrators. See Hairer et al.

(2002) and the references therein.

Time-reversal symmetry is important for the collection of accurate statistics by the

Monte Carlo techniques that are employed in chapters 6 and 7; the other concern being speed,

this calculation uses an implicit (second order) trapezoidal rule. For the collocated optimization

problems presented to SNOPT, and IPOPT, an implicit Simpson integration scheme is used for

its time-symmetry, relative speed and accuracy (fourth order).

For the multiple-Markov chain Monte Carlo approach of chapter 7, an explicit fourth

order Runge-Kutta scheme is used, again for its accuracy and speed. However here an explicit

form is used because the emphasis is on the speed of repeatedly solving the initial value prob-

lem and not on preserving time-symmetry. Although a time-symmetric Runge-Kutta scheme

of equivalent accuracy is known to exist (Omelan et al. (2003)), it was not used in the results

presented here. Also, similar considerations apply for the calculation of conditional Lyapunov

exponents in chapter 4 where a fourth order explicit Runge-Kutta scheme is used.

2.1.2 Scaling

All of the optimization variables are constrained by upper and lower bounds, l ≤ ω ≤ u,

assumed to be provided by the user, however, during the optimization process it is best to scale

them all to −1 ≤ ω′ ≤ 1. Using a linear transformation ω′ = aω + b and fixing the bounds of ω′

to ±1, the new variable becomes

ω′ =
2

u− l
ω − u+ l

u− l
. (2.1)

In a geometrical sense, one would like to avoid searching for minimizing solutions in

long, narrow valleys. This implies that there is a direction (along the valley) that allows for a

large search step without changing the objective function significantly, and that there is another

direction (up the valley walls) where only small perturbations are permitted. The situation is

further complicated in high dimensions as the valley itself is likely to curve in yet other directions.

One would like to scale the search space to turn any such valleys into radially-symmetric

basins, with uniform step sizes in various directions leading to approximately the same amount

of change in the objective function. As the first derivatives are zero at the solution, the shape

of the local basin is given by second derivative information; in variational techniques, the search

variables ω are scaled by the square root of the Hessian (1.10) to make this region more radially

symmetric, ω′ ∝ H(ω)1/2, see Gill et al. (1981).
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To overcome these difficulties for a stochastic search algorithm, where derivatives are

not used, the variance of the distribution in different directions may be used to normalize the

perturbation step size, as is done in section 7.4.2.

2.2 High Dimensional Spaces

The number of unknown parameters and state variables that must be searched over

during the optimization process can quickly become quite large. There are complications to

working in high dimensional spaces that follow solely from geometrical considerations and that

strain our intuition on such matters as precision, sampling and statistics.

2.2.1 Entropy of a Gridsearch

A simple argument shows how the size of a space that must be searched over for the data

assimilation problem can make the task of finding a minimum challenging. Consider trying to

estimate a function over a bounded one-dimensional space; with n uniformly separated samples

one obtains approximations to the function at a resolution of about 1/n over the bounded region.

The difficulty arises when the space is d dimensional, because in order to achieve the

equivalent resolution in all variables requires nd samples. If one selects a single sample at random,

it is done so with probability P = n−d.

2.2.2 Non-intuitive Statistics

An intuitive notion of being able to sample a probability distribution over a space is

that an adequate approximation may be obtained by clustering the sampling about the mean.

For instance, the fractional area of a unit circle inscribed within a square of side-length 2 is

fairly significant (≈ 0.785), however the fractional hyper-volume of the analogous problem in

a d dimensional space goes to zero as d goes to infinity 1. Meaning that one’s ability to accu-

rately sample a high dimensional space does not necessarily follow from low-dimensional intuition

(Kolmogorov and Rozanov (1960); Friedman (1989)).

1The d-volume of a unit hyper-sphere is given by Vd = 2πd/2

dΓ(d/2) , while the normalization

Γ(d/2)→∞ as d→∞, see for example Arfken and Weber (2005).
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2.2.3 The ‘No Free Lunch’ Theorem

One should excercise restraint when attempting to compare the relative success of dif-

ferent optimization schemes, for Wolpert and Macready (Wolpert and Macready (1997)) have

shown that on average, if an optimization method perfoms well (as in taking less steps to find

a solution than randomly guessing) on a certain class of problem, it will perform poorly (worse

than randomly guessing) on the compliment of problems.

The arguments are quite general, stemming from information theory and geometry; they

require that the search space is finite –certainly true of any computational method on a finite-

state machine. They also require that the space of all possible objective functions that map the

search space to R+ be finite, which is again technically satisfied for the same reason.

Perhaps all is not lost, for we are limiting ourselves to the (purposefully vaguely defined)

class of optimization problems that can be described by the dynamical approaches to data as-

similation herein. Dangling tautologies aside, we push on ahead, but also caution the reader that

the success or failure of an optimization routine on one problem does not guarantee a similar

result on an another problem, and so comparisons between the relative performance of algorithms

should be made carefully and taken lightly.

2.3 Nonlinearity & Chaos

The richness of the physical world cannot be adequately described with only linear

dynamical equations. If a function f ◦x is linear in its argument x it allows us to write f ◦(a+b) =

f ◦a+f ◦b. In multiple dimensions, the set of equations f can be considered as a matrix operator

upon the vector x and the edifice of linear algebra may be used to solve the system of equations.

For nonlinear systems the action of f is not uniform over the space of x; it is not

seperable in the way shown here so that applications of linear algebra may only be used as

a local approximation. Nonlinearity in a system of equations is necessary for chaotic behavior,

however it is not sufficient. The system must also have enough dimensions (at least three) to allow

for aperiodic behavior in a bounded region (Lorenz (1963); Afraimovich et al. (1977); Strogatz

(1994)).

2.3.1 Sensitivity to Initial Conditions

Allowing for aperiodic behavior in a bounded region of state space requires that ∀tx(t) 6=

x(0) as the number of repeated applications of the transformation x(t+1) = F ◦x(t) = F t+1◦x(0)
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increases to infinity. It is not surprising that the precision demanded of x to make the distinction

x + ε 6= x increases as well (leading to the sampling complications mentioned in 2.2.1). Since

the dynamics themselves are deterministic this precision requirement can be related back to

restrictions on the inital conditions.

2.3.2 Predicting Chaotic Trajectories

It is the future predictions of our model that provide the ultimate test of the success

of the data assimilation process, and these predictions beyond the current measurements are

what we are truly after. The previous section shows us that regardless of the success of any

optimization procedure it is not possible to predict a chaotic system forward in time indefinitely

without infinite precision in the state variables.

No matter how much we try to limit the error introduced by f the chaos in the dynamics

will exponentiate the size of the error until it cannot be regarded as negligable with respect to

the values of the state variables. However, it is possible to estimate the length of a prediction

window, during which time the error in the predicted state is less than some threshold.

Given some error in our current time estimation of the dynamical system ∆x(t), perhaps

at the end of the data assimilation window when T = t0 + NT · dtobs, it is possible to estimate

the error of the state at a later time ∆x(T + τ) as

∆x(T + τ) = ∆x(T ) exp(λ1 · τ) . (2.2)

For data assimilation this is best regarded as providing an upper limit to the time that a reason-

able prediction can be made,

τ . 1

λ1
ln

∆x(∞)

∆x(T )
. (2.3)

One may approximate ∆x∞ as the radius of the attractor, or as the standard deviation of the

prediction from a final-time distribution over the measured state; this is done for the Lorenz ’63

experiment results in section 7.5.1.

2.3.3 Lyapunov Exponents

Aside from the usage just described, familiarity with the construction of the Lyapunov

exponents is also useful because it is the basis for the calculation of the conditional Lyapunov

exponents, which may be used to determine the number of measurements required for synchro-

nization, and therefore for synchronization-based approaches to data assimilation to succeed (see

chapter 4).
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Converting the dynamical system (1.1) into a discrete time map involves integrating it

for a relatively short interval dt, so that we have

xi(t+ dt) = Fi ◦ (x(t),p) . (2.4)

The Jacobian of this map

DFij(x) =
∂xi(t+ dt)

∂xj(t)

∣∣∣
x

, (2.5)

is a matrix which governs the linear behavior of displacements about the point x at which it

is evaluated. If one expands the behavior of the system F about a point in phase space, the

Jacobian DF is the matrix coefficient of the linear term in the expansion. As such, it can be

viewed as a transformation that will stretch and rotate any perturbation vector to which it is

applied.

We can represent the repeated action of this transformation along the trajectory of the

dynamical system x(t) from t = 0 to NT − 1 as

DFNT = DF
∣∣∣
x(Nt−1)

·DF
∣∣∣
x(N−2)

· · ·DF
∣∣∣
x(1)
·DF

∣∣∣
x(0)

. (2.6)

Taking the long time limit NT →∞ and multiplying by the transpose to ensure that the eigen-

values are real, Oseledec proved (Oseledec (1968); Johnson et al. (1987)) that the eigenvalues

of

OSL(xT ) = lim
NT→∞

[
(DFNT )†·DFNT

]1/2NT

, (2.7)

exist, are constant to within a basin of attraction, and are unchanged by a smooth coordinate

transformation. If we write the eigenvalues of this OSL matrix as λ = {λ1 ≥ λ2 ≥ . . . ≥ λD},

they are the Lyapunov exponents of the system.

As it originates from a nonlinear system, the Jacobian matrix is likely to have both

positive and negative eigenvalues, and the multiplication of a large number of ill conditioned

matricies quickly leads to numerical scaling problems. Thus, it is important to employ QR

(or QL) decomposition to each individual Jacobian of equation (2.7) to perform the numerical

calculation. The decomposition separates each subsequent Jacobian into a rotation matrix Q

which propogates the direction of the eigenvector along the trajectory, and into a triangular

scaling matrix R. The Lyapunov exponents can then be summed from the R decompositions

along the way and taken from the log of this matrix (see for example Abarbanel (1996)).

2.3.4 Instabilities in the Objective Function

A connection between the Lyapunov exponents of the model and the instabilities in

the objective function surface can easily be seen (Abarbanel et al. (2009)) with a least-squares
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objective function such as,

φ(ω) =
1

NT

NT−1∑
t=0

M∑
i=1

(xi(t)− yi(t))2 ,

where the search domain is over the initial conditions and parameters, ω = {x(0),p}, and the

dependence upon the parameters enters through the dynamics.

Choosing one dimension of the model as an example, as per the optimality condition

(1.5) the estimation of xi(0) formally requires the evaluation of

∂φ

∂xj(0)
= 0

∂φ

∂xj(0)
=

2

NT − 1

NT−1∑
t=0

M∑
i=1

(xi(t)− yi(t))
∂xi(t)

∂xj(0)
. (2.8)

The time evolution of the dynamics (equation (2.4)) allows us to express the chain-rule

term in (2.8) as

∂xi(t)

∂xj(0)
=

(
∂Fi ◦ x(t− 1)

∂xk(t− 1)

)(
∂xk(t− 1)

∂xj(0)

)
,

where j, k ∈ (1, Nx), and where the Jacobian of the dynamical map DF (x(t)) is contained within

this epression.

This operation must be applied repeatedly so that when t = NT − 1, equation (2.8)

contains the term

∂xj(NT − 1)

∂xj(0)
=

(
∂FjT−1 ◦ x(NT − 2)

∂xjT−2(NT − 2)

)
· · ·

(
∂Fj2 ◦ x(1)
∂xj1(1)

)(
∂Fj1 ◦ x(0)
∂xj(0)

)
.

The connection is now readily apparent between this expression and the Oseledec matrix (2.7), the

eigenvalues of which are the Lyapunov exponents. Consequently, the instabilities characteristic

to a chaotic system manifest in the attempt to obtain derivative information over the entire

trajectory.

2.3.5 A Note on Identical Systems & Twin Experiments

For the sake of more involved discussion it is useful to categorize different problem

situations by the relationship between the involved data and model systems. We will consider

two systems to be identical when they have the same functional form f = g and the same value for

any constant parameters p = q; they may have different initial conditions and still be considered

identical in this sense. If two systems have different parameter sets but otherwise share functional

forms we will refer to them as functionally equivalent systems, f = g, p 6= q.
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True experimental verification of a mathematical model comes from its predictive power,

however to demonstrate that our data assimilation algorithms can succeed on similar problems

one often constructs twin experiments where the ‘data’ is generated by a functionally equivalent

system, the unmeasured dimensions of which are also known to the experimenter to use as

validation.



Chapter 3

Relevant Techniques from

Nonlinear Dynamics

In this chapter we discuss two phenomena from nonlinear dynamics, namely chaotic

synchronization and phase-space embedding, and how they may be used in data assimilation to

overcome the problems discussed in the previous chapter. Specifically, we rely upon synchro-

nization to regulate chaotic instabilities in the dynamical trajectories, and comment on the use

of proxy-space transformations to provide more dynamical information in light of insufficient

measurements for synchronization.

3.1 Chaotic Synchronziation

One of the more interesting discoveries to come out of the study of chaotic dynamical

systems is the phenomenon of synchronization (Afraimovich et al. (1983); Fujisaka and Yamada

(1983); Pecora and Carroll (1990)). This effect demonstrates that one dynamical system, with

equations given by g and referred to as the receiver, may be induced to follow a trajectory

given by another system f , denoted the transmitter. Under suitable conditions, this remarkable

effect of trajectory matching occurs in functionally equivalent systems regardless of their initial

conditions, parameters, or the presence of chaotic instabilities.

Although other variants exist, the synchronization relevant to data assimilation is uni-

directional: in which an experiment is ‘transmitting’ measurements to a ‘receiving’ mathematical

model through an ad hoc coupling term. Given the present context, the terms data system and

model system are used rather than transmitter and receiver, although the idea remains the same.

17
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The measured state variables of the data system are passed into the model dynamics by

means of a coupling term. The strength of this coupling is mitigated by a control parameter γ,

and the effect of the coupling term is to force the model to follow the data.

3.1.1 Synchronization of Equivalent Systems

In the description of synchronization that follows, the model and data systems are func-

tionally equivalent. This avoids unnecessary complications at the outset, however the notational

distinction between the model f and data g equations is preserved for later consistency. Fur-

thermore, for illustration purposes the data system is assumed to be completely known to the

researcher, akin to a twin experiment.

The data system is given by a set of dynamical equations

dy

dt
= g(y,q)

where the dependence upon the parameter set q is made explicit and again, the discussion will be

restricted to physically bounded deterministic systems. The first NM dimensions of y are those

that can be measured in an experiment, and are a subset of the entire Ny-dimensional system.

The first NM equations of the receiving model may be ordered so that they correspond

to their analog in the data system. To accomplish synchronization with the data, these NM

equations of the model are also modified to contain a coupling term, one for each dimension of

the measured data, as

ẋ1 =f1(x,p) + γ1 · (y1 − x1)
...

ẋM =fM (x,p) + γM · (yM − xM ) , (3.1)

ẋm+1=fm+1(x,p)

...

ẋNx =fNx(x,p)

where f(x,p) are the uncoupled model equations, and the overdot denotes differentiation with

respect to time, ẋ =
dx

dt
.

With the form of the coupling term shown in equation (3.1), the control parameter

γ multiplies the separation between the data and model trajectories in a manor resembling

dampening. Although other coupling schemes are certainly possible, unless otherwise noted this

form will be used throughout.
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The control parameter is positive semi-definite γ ≥ 0 and one can see from ẋ ∼ −γ ·x that

it drives x → y, at least in those NM dimensions for which measurements are available. What

makes this phenomenon remarkable is that the other dimensions of x(t) follow their analogous

un-measured y(t) counterparts.

For notational convenience γ may be considered aNx dimensional vector with the i > NM

components zero, so that the set of equations (3.1) may be written more compactly as

dx

dt
= f(x,p,y, γ) , (3.2)

using f to represent the coupled model equations and y is the vector of available data.

3.1.2 The Synchronization Error Metric

To address questions regarding the quality of synchronization requires a measure between

the two systems. One way to determine the closeness of two dynamical trajectories is to take

the average separation of their locations in phase space. Let us define the synchronization error

SE(·, ·) between two timeseries as

SE2(xT ,yT ) ≡ lim
NT→∞

1

NT + 1

NT∑
t=0

Nx∑
i=1

1

r2i
(xi(t)− yi(t))2 . (3.3)

In principle this can use any metric1 between the vectors at time t, but for simplicity is chosen

to be a scaled Euclidean metric. Scaling over the dynamical range ri = ui − li for the ith state

variable weighs the contribution from each dimension in a uniform manor and makes the SE

unitless; one may choose r = 1 if the model is already adimensionalized.

The infinite time limit NT → ∞ is part of this defnintion because the synchronization

error is a global property of the combined model-data system. This limit eliminates the con-

tribution to SE from short-time transients. The dependence upon the coupling γ is implicit in

the dynamics f that are used to generate xT ; again, yT is the data timeseries. Note that while

not all dimensions of y must be coupled to x, all dimensions must be known to calculate the

synchronization error.

If the models are functionally equivalent and contain the same parameters then SE→ 0

as NT → ∞ regardless of initial conditions, if the parameters are different then SE → c, c > 0.

This is crucial for the optimization methods that we develop based upon synchronization, and is

illustrated in figure 3.1.

1The square-root is explicitly taken so that the SE retains the proper qualifications for a
metric, noting that the least squares measure fails the triangle inequality.
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3.1.3 Synchronization of Non-Equivalent Systems

Throughout this work synchronization will be used to couple data into a model system

for the purpose of data assimilation. From the vantage point of doing this for experimental

data, where one is ignorant of the underlying system and furthermore, where the data system is

almost certainly different from the proposed model, the question of whether experimental data

will synchronize with the proposed model is really a question of under what conditions incorrect

models will synchronize.

However relevant this question may be, it is unfortunately difficult to answer for a few

reasons. If the two systems have a different number of dimensions, it is difficult to define a

measure between them, except perhaps with the L∞ norm, which is computationally expensive

to implement.

More severly, this is very problem specific. Given our proposed model, we may ask how

it synchronizes with different systems, but the question remains, what second system should

be chosen? It is for these reasons that we pursue the question of additive noise as a form of

model error in chapter 5 and 6, and attempt to avoid this problem altogether with the use of the

self-synchronization error in chapter 7.

3.2 Synchronization in Data Assimilation

The idea of using synchronization techniques as a means to overcome chaotic insta-

bilities that are present during the estimation of state variables and model parameters has

been in development for quite some time (So et al. (1994); Voss et al. (2004); Sakaguchi (2002);

Sorrentino and Ott (2009); Yu et al. (2007)). However, the problem persists that it is not possi-

ble to use the synchronization error as given in (3.3) directly as an objective function due to the

requirement of knowing the unmeasured data dimesions.

3.2.1 Balanced Synchronization

A delicate balance must be reached between using a coupling that is strong enough to

prevent chaotic instabilities in the solution dynamics from manifesting and one that is so powerful

that it aligns all trajectories with the data, making the search space singular. For the variational

methods that are implemented within this work to find a solution to the data assimilation problem

with chaotic, or otherwise nonlinear models, a modified form of the model dynamics (3.2) are

used to couple the data to the model (thus allowing for synchronization at large values of the
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coupling), along with an objective function that penalizes, or balances the use of the coupling

term, relative to the mismatch between the model and the data (Abarbanel et al. (2008, 2009)).

An example of such an objective function is the least squares difference between the data

y and the model x, with an additional quadratic penalty term for the coupling γ, such as

minimize φ =

NT−1∑
t=0

M∑
i=1

(
xi(t)− yi(t)

)2
+ γ2 .

subject to x(t+ 1)− F ◦ (x(t),p,y(t), γ) .

(3.4)

This may be considered a type of penalty function (1.11) (with ρ = 1 here), where F is used to

denote the dynamical map of the coupled equations f in (3.1).

The use of the coupling must be regulated because it is an ad hoc addition to the model

dynamics f → f which, it is presumed, are already an adequate description of the physical system

that created the data; one therefore wishes to use as small a coupling as possible.

For collocation methods, where each x(t) is taken to be an independent variable, the

coupling can effectively be driven to zero between neighboring time points x(t) and x(t + 1).

However the coupling is still required during the optimization procedure to make the search

space surrounding the solution x(t) ≈ y(t) more informative to the derivative-dependent linear

algebra operations performed by variational approaches. An added complication is that although

formally γ → 0, there remains the practical difficulty of how one chooses the relative scaling (i.e.

ρ) between the terms.

3.2.2 Properties of the Synchronization Error Metric

The coupled trajectory can be written with explicit dependence on the initial conditions

and parameters of the dynamics as the discrete time map F as

xT = x(0),F ◦ (x(0),p,y(0), γ),F2 ◦ (x(1),p,y(1), γ), . . . ,FNT ◦ (x(NT − 1),p,y(NT − 1), γ)

= sync(x(0),p,yT , γ)

(3.5)

With this understanding, the SE may be expressed in terms of the model initial conditions,

coupling and data

SE(xT ,yT ) = SE(x(0),p,yT , γ) , (3.6)

a notation that makes the quantities of interest readily available.

Figure 3.1 shows the synchronization error between two trajectories of the Lorenz ’63

system with different initial conditions; this particular model is chosen for later reference to the
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twin experiment of chapter 7, however presently we are concerned with the general behavior

of SE. From this figure one should note two important properties of the synchronization error

metric as γ →∞. Firstly, with γ · dt greater than 0.08, the SE monotonically decreases for all of

the finite NT evaluations; this indicates that stronger coupling leads to a model trajectory that

is closer to the data trajectory (recall that all dimensions of the data enter into (3.3) and here

are assumed known).

The second feature of the SE we point out is that using more time points NT →∞ in the

calculation results in consistently reduced values by eliminating the contribution of finite-time

transients to the SE.

3.3 Synchronization as a Critical Phenomenon

The image of the synchronization error in figure 3.1 is clearly reminiscent of a critical

phase transition (e.g. ferromagetism at the Curie temperature), where there is an emergence of a

uniform state from individual constituents (Landau and Lifshitz (1980); Pathria (1996)). Related

as synchronization is to the onset of chaos in dynamical systems, it is possible that this is another

expression of the Feigenbaum criticality (Feigenbaum (1979); Coppersmith (1999)), or perhaps

anther type of bifurcation (Afraimovich and Shilnikov (1974); Afraimovich et al. (1983)).

Regardless, critical phase transitions with the synchronization error as the order param-

eter have been observed in more traditionally structured systems that interact via coupling as in

equation (3.1) and otherwise exhibit spatio-temporal chaos (see for example, Ahlers and Pikovsky

(2002); Szendro et al. (2009)).

In the context of chaotic systems, the knowledge of the behavior of the SE near the

critical coupling γc is perhaps of less interest than knowing the value of γc itself. For γc represents

the smallest value of the coupling between two systems that allows for synchronization of their

trajectories in the long time limit. This means that the coupled system is altered the least (from

the uncoupled dynamics) that is allowed by chaos. The need to determine γc for the model in

question as a prerequisite for the success of the subsequent optimization problem is explored in

Abarbanel, Creveling, Farsian and Kostuk (Abarbanel et al. (2009)), although presented purely

with regards to the success of data assimilation, and not as it relates to critical phenomena.

We return to this analogy again in section 5.5 as a possible means to constructing a

path integral representation for data assimilation. Although this connection is not rigorously

exhausted, it is provided as motivation for the design of the optimization algorithm in chapter

7, which uses the emergence of this criticality as a marker to terminate the search procedure.
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3.4 Phase Space Reconstruction

There is another phenomenon from nonlinear dynamics that is useful for data assimi-

lation known as phase-space reconstruction. Meaning that it is possible to reconstruct higher

dimensional information from a measured timeseries by expressing it in a time-delay or proxy-

space coordinate system. Takens and Ruelle used a period-double approximation to turbulent

chaos to place an upper bound of 2d + 1 on the number of time-delay dimensions required to

guarantee an embedding of the original d-dimensional system (Ruelle and Takens (1971); Takens

(1981)); The embedding theorem of Takens is the extension of this to nonlinear systems in general

(Takens (1981)).

Packard et. al conjecture that a time-delay coordinate system is sufficient to capture

some geometrically invariant properties of the dynamical system, such as the topology and di-

mension of the attractor (Packard et al. (1980)). They also demonstrate that the dimension of

an unknown system may be determined from the smallest time-delay reconstruction (equation

3.7) that collapses the conditional probability distribution P (x(t)|sk(t), τ) to a delta function (in

the noise-free limit).

An appropriate delay size τ can be chosen by minimizing the mutual information between

the original trajectory and the one projected onto time-delay coordinates (Fraser and Swinney

(1986)). It is also possible to choose non-uniform spacings between the time-delayed dimensions

to more-efficiently capture dynamics with multiple timescales (Hirata et al. (2006)). One can

use this reconstruction to determine estimates of the Lyapunov exponents of a measured signal,

provided that sufficient data is available (thus approximatingNT →∞)(Abarbanel et al. (1992)).

Additionally, this method can also be used to distinguish between high dimensional deterministic

systems and types of noise (Kennel and Isabelle (1992)).

3.4.1 Time-delay Coordinates

With the emphasis throughout this work on using synchronization to assist in the data

assimilation problem, one must consider the problem that the coupled data from the measured

dimension may be insufficient to achieve synchronization. The number of required measured

dimensions needed to allow for synchronization may be determined for a model as described in

chapter 4, however can anything be done if one is not able to measure all of these variables?

Assume for the moment that one can only measure one dimension of the dynamics x1(t);

According to the embedding theorem, there is sufficient information contained in this timeseries

to reconstruct the dynamics in the time-delayed space of the system.
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Consider the d-dimensional vector formed from the time-delay values of x1,

s(t) = (x1(t), x1(t− τ), . . . , x1(t− (d− 1)τ))† . (3.7)

Since the delayed dynamics may be written as

s(t+ 1) = G ◦ s(t) , (3.8)

and due to the nature of how this space is constructed, these dynamics form a rule to take the

set of delay coordinates into the next measured state x1(t+ 1) as the first dimension of s(t+ 1).

A method is proposed in Abarbanel et al. (2009) to use this phase space embedding

to achieve an enhanced version of synchronization that relies upon applying the coupling to the

transformed, proxy-space expression (3.8) of the dynamics. The practical difficulties encountered

with performing this transformation (more specifically, the reverse transformation s→ x) on high

dimensional systems, and when multi-step integration routines are in place, make this approach

challenging and is not pursued further in this work.

3.4.2 Proxy Space Inspired Objective Functions

In addition to improving the synchronization between two systems with insufficient mea-

surements, the information contained in the time-delay coordinates of the measured variables can

be applied more directly to the minimization problem of data assimilation.

For the variational approach as described in chapter 1, the use of time-delay information

manifests as additional constraints of the form

xi(t)− Fn
i ◦ x(t− nτ) = 0 n > 1 , (3.9)

where Fn implies n repetitions of the dynamical map.

Although this may appear redundant for a collocated problem that already contains the

n = 1 case as a constraint, we point out that (3.9) only connects the variables at two time points,

namely t and t − nτ , and skips over the intermediary times, enforcing longer-term correlations

between the data and model values. It should not be surprising that if n is chosen too large,

chaotic instabilities will occur in the evaluation of these constraints in exactly the same way as

described in section 2.3.4.

On the other hand, if n is chosen very small (n ≈ 1) then the benefit to using time-delay

constraints becomes very slight compared to simple model error constraints. Additionally, every n

creates off-diagonal entries in the Lagrangian of the objective function, so that the incorporation

of many different n-constraints may have serious consequences for the sparcity of the resultant
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Lagrangian. As the two variational solvers that we utilize rely upon sparse matrix techniques

for increasing the speed of the linear algebra calculations, this is a relevant concern to using

time-delays.
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Synchronization Error vs. Coupling Strength of Lorenz ’63 Model

Figure 3.1: The synchronization error (SE), equation (3.3), of the Lorenz ’63 system is shown

as a function of coupling strength γ for timeseries of various lengths. The two trajectories have

differing initial conditions, yet identical parameters (f = g,p = q), which are integrated using

an explicit RK4 scheme with timestep of dtint = 0.01; the total number of timepoints NT over

which the SE is calculated is given in the legend. The parameters that are used are listed in table

7.1, and are the same as those used for the ‘data’ in the twin experiment of section 7.5. The

emergence of a bifurcation at γcdtint ≈ 0.08 is suggestive of a critical phenomenon as NT →∞.



Chapter 4

Determining the Necessary

Measurements for

Synchronization

Synchronization may be used in a number of ways to assist the optimization step of the

data assimilation problem. Therefore ascertaining whether a dynamical system is capable of syn-

chronizing to the given data trajectory becomes paramount for the problem of data assimilation.

Not knowing the full data system makes a rigorous determination of synchronization

success impossible for a true experimental situation. However, the information gained from

examining the self-synchronization case, when g = f , is quite useful nonetheless and can be

regarded as necessary (though perhaps not sufficient) to describing the more general case.

With these considerations, we will answer the following question in a model specific way:

given a model with coupling, f(xT ,p,yT , γ), what measurements must be supplied to it, and at

what coupling strength γc, so that it will synchronize with data yT generated from g(yT ,q), when

g = f . An equivalent way to think about this is to ask what dimensions of γ must be non-zero

in order for self-synchronization to occur?

The investigations show that the search-space region around the synchronization mani-

fold (where xT ≈ yT ) is smoothed when the largest conditional Lyapunov exponent is negative

(Rulkov et al. (1995)).

27
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4.1 The Synchronization Manifold

The relevant space of the combined data-model system in which the synchronized tra-

jectory evolves is RNx ⊗RNy , and the synchronization manifold is the subset of this space where

the model is equivalent to the data; i.e. where xT = yT . The distance of the model trajectory

from this manifold is measured by the synchronization error, equation (3.3).

One should not think of this manifold as a simple projection of the model dynamics into

the higher dimensional combined space because the synchronization coupling term alters the dy-

namics of the model system (see equation (3.1)) so that the actual trajectory of the synchronized

model is a mixture of the data and model attractors (Abarbanel et al. (1995)). It is true that

in the identical case, in which f = g and p = q, the model is innately capable of reproducing

the data trajectory; the difference between it and the data is their starting location, and this is

equivalent to a time-translation between their attractors. However, despite the existence of such

a translation, it remains to be determined if the data that is passed to the model is capable of

enforcing it.

We note that since this combined surface is distinct from the native (un-coupled) model

trajectory due to blending with the data, the Lyapunov exponents of the model are no longer

the appropriate measure for determining the stability of the synchronized system.

4.1.1 Stability of the Synchronization Manifold

Ensuring the stability of the space surrounding the synchronization manifold is important

because it allows the alignment of the model to the data, and also because otherwise chaotic

instabilities can mask possible solutions to the data assimilation problem.

For mismatched data-model systems, or even functionally equivalent systems with differ-

ent parameter sets, the underlying chaotic dynamics makes it unlikely that the synchronization

manifold is stable. Meaning that a small perturbation from this region will push a dynamical

trajectory farther away, especially perturbations in directions that are not measured. From the

viewpoint of a model attempting to follow a data trajectory, this is precisely what the unmeasured

dimensions of the model dynamics do.

However, as mentioned above this manifold is dependent upon the specific data that is

presented to the model, therefore when f 6= g its stability can only truly be tested on a case by

case basis. It is for this reason that the restriction f = g is used to address the question of stability,

thereby making it a question of the relevant measurements necessary for self-synchronization of

a single model choice f .
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The synchronization-error surface suffers from the same precarious situation as the least-

squares objective function as described in section 2.3.4. This should not be surprising given the

similarity between the form of the synchronization error (3.3) and a least squares objective

function. An image of this irregular surface is given in figure 4.2.

The ability of the measured data dimensions, given a strong enough (γ >> γc) coupling,

to smooth the synchronization manifold means that they are necessary for synchronization-based

data assimilation techniques to be successful; otherwise the surrounding surface is riddled with

local minima. Combining the implications of figure 4.2 with those of figure 3.1 one may infer that

when the coupling is at the minimum value required for stablization, i.e. γ = γc, then the only

point in the search space that will not have a large synchronization error will be the ‘solution’

{x(0),p} = {y(0),q}, and the surrounding space will be un-informative. Increasing the coupling

from γc increases the size of the stablized region about the solution.

4.1.2 Conditional Lyapunov Exponents

Recognizing from the self-synchronization case that the instabilities in the synchroniza-

tion manifold come from the presence of chaos in the dynamics, it follows that if our measured

data is coupled into the model in such a way that the Lyapunov exponents of the resultant, cou-

pled data-model system, are reduced to negative values, then the region near the this manifold

will attract nearby trajectories and become stable to small pertubations. As these experiments

are dependent upon the presented data, they are referred to as conditional exponents.

The calculation of conditional Lyapunov exponents (CLEs) proceeds similarly to that

of standard Lyapunov exponents for a dynamical system. The main difference occurs at the

beginning, with the inclusion of the data timeseries yT that is driving the model system f ,

dx

dt
= f ◦ (x,p) + γ(y − x) . (4.1)

Here, recall that only NM dimensions of γ are non-zero; the non-zero elements of γ corresponding

to the measured dimensions of yT .

The stability of the synchronization manifold is then the condition that the real part of

the largest CLE, λ1 is sufficiently negative to prevent the divergence of nearby trajectories. In

practice, simply being negative at all is usually adequate, however there may be situations where

λ1 < 0 is insufficient (Rulkov et al. (1995))

To investigate the infinite coupling limit, where the tracking of the data by an auxiliary

system has the best chance of succeeding, the system takes on the value in the measurement

xM = yM (as per eqn. (3.1)), and these degrees of freedom are eliminated. Since the dynamics
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of the system F no longer depend on those variables that have been replaced,

F ◦ (x1, . . . , xNx)→ F ◦ (y1, . . . , yM , xM+1, . . . , xNx), (4.2)

the rows and columns of the Jacobian ∂fi/∂xj , with i, j ∈ 1, . . . ,M , are zero. The remaining

NM + 1 to Nx uncoupled dimensions define the reduced, or sub-Jacobian, matrix of the system

(Pecora and Carroll (1990)). It is now possible to continue the CLE calculation analogously

to the Lyapunov exponent calculation in section 2.3.3 where the decomposition is done on this

reduced dimensional matrix.

4.2 Numerical Examples

The following numerical results are similar to those in Abarbanel, Kostuk andWhartenby

(Abarbanel et al. (2010)), in which the connection between positive conditional Lyapunov expo-

nents and the stability of the synchronization manifold is explored. Additionally in Abarbanel et al.

(2010), the optimization software SNOPT (Gill et al. (2005)) is used to solve data assimilation

twin experiments on the Lorenz ’96 Model by collocating the timeseries of dynamical variables

and using a multi-dimensional chaotic synchronization term to regulate search instabilities.

4.2.1 The Lorenz ’96 Model

Exploring the situations discussed above using some numerical examples, our system of

interest is the Lorenz ’96 system. This system is a toy model that was presented by Lorenz at

a conference in 1996 (Lorenz (1996)). This model is a ring (one spatial dimension with periodic

boundary conditions) composed of K similar equations:

dxi
dt

= xi−1(xi+1 − xi−2)− xi + ν i ∈ 1, . . . ,K, (4.3)

where x0 = xK and x−1 = xK−1, making the system aK-dimensional set of differential equations.

The model has a single forcing parameter ν that drives it to chaos when ν is larger than a critical

value νcrit; this critical value depends upon K, however we use ν = 8.17 which is greater than

νcrit for all of the work that follows.

The physical interpretation of this model could loosely be described as ‘weather on a

circle’. It describes the motion of a single quantity x that has some natural rotation around a

bounded one-dimensional space, with driving force ν. The nonlinearity is provided by a term

resembling a spatial discretization of advection.



31

The number of equations, K, represents the spatial discretization of the system around

the ring. We exploit the dimensional-flexibility of this system to demonstrate the effects of

increasing complexity on the stability of the synchronization manifold.

Adding a synchronization coupling vector γ to this model, and a driving data signal

given by yT we have,

fi =
dxi
dt

= xi−1(xi+1 − xi−2)− xi + ν + γi(yi − xi) i ∈ 1, . . . ,K, (4.4)

Specifically choosing the K = 5 system and a coupling vector γ = {γ1, 0, 0, 0, 0} results in the

following response system

ẋ1 = x5(x2 − x4)− x1 + ν + γ1(y1 − x1)

ẋ2 = x1(x3 − x5)− x2 + ν

ẋ3 = x2(x4 − x1)− x3 + ν (4.5)

ẋ4 = x3(x5 − x2)− x4 + ν

ẋ5 = x4(x1 − x3)− x5 + ν .

The data signal y1(t) is taken from an identical Lorenz ’96 system with the same forcing parameter

ν, but with different initial conditions than the response system; i.e., y(0) 6= x(0).

Insufficient Measurements

As it happens, the coupling scheme presented to the model in equation (4.5) is insufficient

to stablize the synchronization manifold. This can be seen in the top panel of figure 4.1, where

we see how the spectrum of conditional Lyapunov exponents of the singly coupled Lorenz ’96

K = 5 model is affected by the finite value of the coupling parameter γ. The largest conditional

Lyapunov exponent, shown with diamonds (and a red line), never becomes negative denoting

a failure of synchronization for all coupling strengths. Finite values of γ, expressed as unitless

values of γdt, are used and the exponents of the full Jacobian are calculated. Beyond γdt ≥ 1

this approach becomes numerically unstable; however one is able to verify that the CLEs of

the four remaining –that is, uncoupled– state variables indeed approach those calculated using

the sub-Jacobian method (representing infinite coupling strength) which is used to calculate the

CLEs in table 4.1.

In table 4.1 and all of the tables that follow, the models are integrated for 105 time points,

after which the Lyapunov and conditional Lyapunov exponents are calculated along subsequent

trajectories of 109 points. All integration is done using an explicit fourth-order Runge-Kutta

integration scheme with a timestep of dtint = 0.01 per point. The Jacobian is numerically
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calculated based upon an averaged offset of both ±10−8 in all directions. The eigenvalues of the

Oseledec matrix that is formed from the reduced Jacobians, as described in the previous section,

are determined using a standard QR decomposition algorithm as found in Numerical Recipies

(Press et al. (2007)).

Sufficient Measurements

Taking symmetery into consideration, there are two unique ways to assimilate two mea-

surements into the Lorenz ’96 K = 5 model; coupling through x1 and x2 or through x1 and

x3. We chose the latter, where γ = {γ, 0, γ, 0, 0}, for the bottom panel of figure 4.1. In this

coupling scenario the largest conditional Lyapunov exponent becomes negative; indicating that

the proposed criterion for stability of the synchronization manifold is now satisfied.

Table 4.1: The Lyapunov exponents of the autonomous and conditional Lyapunov exponents of
the Lorenz ’96 K = 5 model (with ν = 8.17) for various coupling schemes. Both of the dual
coupling schemes result in stabilized synchronization manifolds, while the single coupling scheme
does not.

autonomous single dual dual
coupling coupling coupling

(LE) (CLE) (CLE) (CLE)
y1 y1, y2 y1, y3

0.527 0.491 -0.117 -0.106
10−7 -0.298 -1.201 -1.089
-0.432 -0.832 -1.871 -2.183
-1.303 -3.550 - -
-3.793 - - -

4.2.2 Projection of the Synchronization Manifold Surface

We now examine the effect that a negative λ1 has on the structure of the surface near

the synchronization manifold. Consider a higher dimensional Lorenz ’96 model, with K = 9.

A projection of the synchronization error for this model and a single driving variable coupled

through x1 is shown in the upper left panel of figure 4.2 and in table 4.2 we have listed both the

Lyapunov exponents of the autonomous K = 9 model, as well as the CLEs that result from this

single coupling. The response system x is started completely on the synchronization manifold

with the exception of the x4 direction, whose deviation from this manifold is given on the abscissa.

That is, xi(0) = yi(0) for all i 6= 4.
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Notice that there does exist a sharp minimum at x4(0) = y4(0) indicating the presence of

the synchronization manifold. However, with a single coupling there remains a positive exponent,

indicating the lingering instabilities surrounding the synchronization manifold which results in

the nearby surface being self-similar in nature. In the upper right panel of figure 4.2 we present a

hundred-fold enlargement of the region around x4(0) = y4(0). Once again, a minimum indicating

the existence of the synchronization manifold is present, however it is not any easier to find within

a smaller bounded region.

Table 4.2: The Lyapunov exponents and singly-coupled conditional Lyapunov exponents of the
Lorenz ’96K = 9 model (with ν = 8.17). The single coupling term reduces the positive Lyapunov
exponents, however it provides insufficient stablization for synchronization to be successful. (see
the upper two panels of figure 4.2.)

autonomous single
(LE) coupling

y1
1.268 1.012
0.585 0.447
10−6 -0.092
-0.208 -0.628
-0.759 -1.125
-1.245 -1.681
-1.815 -2.459
-2.573 -3.632
-4.252 -

Judging by the conditional Lyapunov exponents in Table 4.3, none of the simple cou-

pling schemes that incorporate two observations into the Lorenz ’96 K = 9 model will result in

synchronization because they all contain at least one positive exponent.

It is not until three observations are used that regularization can occur for this system

The CLEs that result from some of these triple coupling schemes are listed in table 4.4. We have

left out some of the schemes that are redundant based upon the symmetry of this model.

We also note that some coupling schemes are more successful than others at minimizing

the conditional Lyapunov exponents. For example the y1, y2 and y3 coupling arrangement does

not lead to a completely negative spectrum of CLEs, whereas the y1, y2 and y7 arrangement does.

This is to be expected because the manor in which the measurements are passed thoughout the

dynamics is not uniform.

If we examine a driven model that does have a completely negative spectrum of condi-

tional Lyapunov exponents, such as the y1, y2 and y7 coupling scheme, the synchronization error
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Table 4.3: The conditional Lyapunov exponents of the Lorenz ’96 K = 9 model with two coupled
observations. Each column represents a different coupling scheme with two pieces of information
y1(t) and yi(t), for i = 2, 3, 4, 5. Those not listed are similar to one that is listed via symmetry.
All of these dual-coupling schemes are incapable of synchronizing the K = 9 model.

y1, y2 y1, y3 y1, y4 y1, y5
0.162 0.789 0.638 0.799
-0.208 0.189 0.058 0.265
-0.581 -0.347 -0.458 -0.380
-0.909 -0.880 -0.953 -0.930
-1.281 -1.425 -1.449 -1.511
-1.794 -2.225 -2.087 -2.342
-2.543 -3.414 -3.061 -3.213

- - - -
- - - -

Table 4.4: The conditional Lyapunov exponents of the Lorenz ’96 K = 9 model with three
coupled observations. Each column represents a different coupling scheme. The choice of variables
to observe and couple is important; some couplings, e.g. y1, y2, y7, are capable of synchronizing,
while others are not.

y1, y2, y3 y1, y2, y7 y1, y2, y8 y1, y3, y5 y1, y3, y7 y1, y4, y7
0.106 -0.070 -0.024 0.661 0.501 0.025
-0.308 -0.553 -0.471 0.013 -0.076 -0.421
-0.736 -0.837 -0.846 -0.618 -0.732 -0.986
-1.130 -1.207 -1.137 -1.226 -1.265 -1.257
-1.653 -1.517 -1.523 -2.083 -1.991 -1.625
-2.436 -2.128 -2.311 -3.216 -2.906 -2.202

- - - - - -
- - - - - -
- - - - - -

that results from the phase space neighboring the synchronization manifold is now smooth and

capable of being searched for a minimum. This regularization effect is shown in the bottom panel

of figure 4.2.

4.2.3 Parameter Dependence of the Conditional Lyapunov

Exponents

It is also possible to examine the effect that the forcing parameter has on the spectrum

of conditional Lyapunov exponents. As we increase the forcing parameter ν we expect that the

model exhibits more chaotic behavior, which should manifest itself in the CLE spectrum as an
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increasing number of positive exponents. The CLE spectrum for the singly-coupled Lorenz ’96

K = 5 model, as in equation (4.5), is presented in figure 4.3. Here the spectrum is calculated

using the sub-Jacobian method and so one conditional Lyapunov exponent is identically zero

(not shown), corresponding to the coupled dimension, y1. The remainder of the spectrum is

completely negative for ν . 7, indicating that this single measured state variable is sufficient to

allow for synchronization if the parameter of the model is below this range. Above this forcing

value there exists a positive exponent, signifying a failure of synchronization with the coupling

of this single measurement; this is the regime presented above where ν = 8.17. If the model

has an even greater forcing, ν & 18, there exist multiple positive CLEs that could require even

more measurements for regularization. One can clearly see degeneracies in the eigenvalues in the

region with ν . 5, and there is a prominent bifurcation at ν ≈ 2.5.
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Conditional Lyapunov Exponents of Lorenz ’96 vs. γ

Figure 4.1: Each panel shows the effect of varying the strength of the coupling parameter γ

on the conditional Lyapunov exponent (CLE) spectrum of the Lorenz ’96 K = 5 model with

(upper panel:) a single coupled measurement, as in equation (4.5), which is insufficient to make

this system’s single positive CLE (shown with red diamonds) negative for any value of the

control parameter. And with (lower panel:) two coupled measurements, y1(t) and y3(t), which

is sufficient to reduce the largest CLE below zero. Note in each how the exponent associated

with the coupled state-variable(s) goes (off the graph) as −γ for large γ. (The lines are present

to guide the eyes.)
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Surface Projection and Regularization of Synchronization Manifold

Figure 4.2: The synchronization error of the Lorenz ’96 K = 9 model that results from three

values of the coupling parameter γ = 0, 10, and 25 are plotted in each panel; The upper

two panels use {γ, 0, 0, 0, 0, 0, 0, 0, 0}, while the lower panel uses coupling {γ, γ, 0, 0, 0, 0, γ, 0, 0}

(through x1, x2, x7). The surface is projected along deviations to the uncoupled dimension x4.

A sharp minimum exists at the synchronization manifold itself, but the surrounding space is

un-informative without the aid of the coupling. Note the different scale in the upper right panel.
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Conditional Lyapunov Exponents of Lorenz ’96 vs. Parameter ν

Figure 4.3: The spectrum of conditional Lyapunov exponents (CLEs) of the Lorenz ’96 K = 5

model with a single coupling (see equation (4.5)) for various values of the forcing parameter ν.

The emergence of additional positive CLEs (at ν & 7.18) as the forcing is increased indicates

the failure of this single coupling to regularize the synchronization manifold in this parameter

regime. Note only the four CLEs from the uncoupled eigenvectors are plotted.



Chapter 5

The Objective Function as a Path

Integral

In this chapter we will explore an interpretation of the objective function as a (dis-

cretized) path integral. Since the mathematics of physical phenomena ranging from fluid phase

transitions to particle collision crossections are representable as a path integral (Feynman and Hibbs

(1965); Domb and Green (1976); Zinn-Justin (2002)) exploring this connection allows for deeper

insight into the data assimilation problem and for the broader application of the techniques

developed herein.

The problem of minimizing the energy of a physical system to uncover its ground state(s)

is a centuries old quest, and the interpretation of an objective function as such an energy function

has lead to useful statistical approaches to solving the more general optimization problem. In

this regard, the Boltzmann distribution serves as the keystone by connecting a wide range of

systems through a common mathematical framework, and providing a meaningful context to the

statistical optimization algorithms developed for parallel computation described in chapters 6

and 7.

The Bayesian approach that we follow is motivated by the observation that for any

real-world application of data assimilation, there is inevitably noise in the measurement and the

model is at best only an approximation. As there is no measure on the space of models, one must

account for discrepancies between the model prediction and the measured data. One way to do

this is to assume that there is noise in the model dynamics, the physical origin of the noise being

degrees of freedom in the system that are not accounted for by the model. We address additive

noise only.

39
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5.1 The Boltzmann Distribution

In the micro-canonical ensemble of statistical mechanics, the Boltzmann distribution is

the probility distribution πB(ω) on the phase space Ω that maximizes the entropy of an ensemble

of states with a given average energy (Pathria (1996)).

With no other restrictions1, the a priori assignment of equal probabilities to all states

ω ∈ Ω defines the entropy of a distribution π(ω) as

H = −
∑
ω∈Ω

π(ω) lnπ(ω) ,

where the summation is performed over all (assumed finite) states ω in the space Ω (Boltzmann

(1868); Pauli (2000)). If the logarithm is base two then H is the entropy of Ω measured in bits

(Cover and Thomas (2006)).

The maximization of H gives all states a probability πB(ω) = N(Ω)−1 where N(Ω) is

the cardinality of the states {ω} in Ω. If Ω is the search space that our objective function φ(ω)

is defined on, then the additional requirement on πB(ω) that the average objective function be

〈φ(ω)〉 =
∑

ω∈Ω φ(ω)πB(ω) leads itself to a constrained optimization problem that may be solved

via Lagrange multipliers (see for example, Otten and van Ginneken (1989)).

The resultant Lagrange multiplier β appears in the Boltzmann distribution as

πB(ω) =
exp(−βφ(ω))∑

ω′ ∈ Ωexp(−βφ(ω′))
, (5.1)

and obtains the physical interpretation as (scaled) inverse temperature if φ is taken to be an

energy.

Once again, it is relevant for our discussion because this analogy between the objective

function of a minimization problem and an energy of a classical statistical system is very useful

for the understanding of statistical approaches to optimization.

5.2 Bayesian Formulation

For problems with many unknown variables and parameters, or when it is likely that

they share complicated dependencies, one naturally looks to the statistics about the solution

as a characterization of error. It is possible to use the definition of conditional probability to

define such a characterization, which, following the ideas of Lorenc (1986), Eyink et al. (2004),

1Of course, since πB(ω) is a probability distribution we require 0 < πB(ω) < 1 and the
normalization

∑
ω∈Ω πB(ω) = 1.
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and Apte et al. (2007), ultimately leads to a path integral measure for the problem of data

assimilation (Restrepo (2008); Abarbanel (2009)).

5.2.1 Conditional Probability

The definition of conditional probability asserts that the probability of both events A

and B occuring is given by the probability of event B occuring independently, multiplied by the

conditional probability of event A occuring given that B occurs. It is written as

P (A|B) · P (B) = P (A ∩B) , (5.2)

where P (·) denotes probability, A|B represents the conditional, and the union of events is denoted

by ∩. Bayes’ rule follows immediately from the commutivity of the intersection of events; since

the joint probabilities are equal, P (A ∩B) = P (B ∩A) it follows that

P (A|B) · P (B) = P (B|A) · P (A) ,

which is known as Bayes’ rule.

It is possible to phrase the problem of data assimilation by asking, what is the probability

that the model will be in state x(t), given that a measurement y(t) has been made of the NM

measureable dimensions? Expressed as a conditional probability following equation (5.2), this

may be written as

P (x(t)|y(t)) = P (x(t) ∩ y(t))

P (y(t))
. (5.3)

Since it is beneficial to use an entire timeseries of measurements when addressing the above

question, consider the series of measurements from 1 to t denoted yt = {y(1),y(2), . . . ,y(t)}, to

formulate

P (x(t)|yt) =
P (x(t) ∩ yt)

P (yt)
, (5.4)

which represents the probability that the system is in state x at time t conditioned upon all of

the available measurements yt.

Recognizing that the set of measurements is seperable,

yt−1 ∩ y(t) = {y(1),y(2), . . . ,y(t)} ,

allows for the explicit re-introduction of the measurement at y(t) using equation (5.2) again to

write

P (x(t) ∩ yt) = P (x(t) ∩ y(t)|yt−1) · P (yt−1)

P (yt) = P (y(t)|yt−1) · P (yt−1) ,
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and substituting this into equation (5.4) results in

P (x(t)|yt) =
P (x(t) ∩ y(t)|yt−1)

P (y(t)|yt)
.

5.2.2 Conditional Mutual Information

An application of unity allows us to express P (x(t)|yt) in terms of the conditional mutual

information as

P (x(t)|yt) =
[ P (x(t) ∩ y(t)|yt−1)

P (y(t)|yt−1) · P (x(t)|yt−1)

]
P (x(t)|yt−1) . (5.5)

Where the term in brackets is the exponential of the conditional mutual information (CMI)

between the measurements and the model dynamics (Fano (1961)),

CMI(x(t) ∩ y(t)|yt−1) = log
[ P (x(t) ∩ y(t)|yt−1)

P (y(t)|yt−1) · P (x(t)|yt−1)

]
. (5.6)

Note that this is slighlty different from some definitions of conditional mutual information, such

as in Cover and Thomas (2006), in which a summation is performed over all possible states.

5.3 The Marginal Distribution

The normalization of probability over an intermediate distribution, along with the defi-

nition of conditional probability, leads to a useful identity known as the Chapman-Kolmogorov

equation (see for example Van Kampen (2007)). Expressed in a form that is relevant to the

discussion at hand, it is

P (x(t)|yt−1) =

∫
dNxx(t− 1) P (x(t)|x(t− 1)) · P (x(t− 1)|yt−1) , (5.7)

and requires that the transition probabilities in question are independent; i.e. that the dynamics

x(t+ 1) = F ◦ x(t)

satisfies the Markov condition. In the case of deterministic dynamics, the transition probability

for the state to advance in time is given by a delta function on the discretized form of the

differential equations,

P (x(t+ 1)|x(t)) = δNx(x(t+ 1)|F ◦ x(t)) . (5.8)

The delta function is relaxed in the following section to account for errors in the model, however

for now, note that the knowledge of the dynamics and the Chapman-Kolmogorov equation (5.7),
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allows one to take the influence of the measurements on the model at a prior time, P (x(t −

1)|yt−1), and calculate the conditional probability distribution of the model at the current time,

P (x(t)|yt−1). This approach is used by some on-line filters (Judd and Stemler (2009)) to advance

an estimate of the model state.

Alternatively, one may combine (5.7) and (5.5) to obtain a recursion relation

P (x(t)|yt) =
[ P (x(t) ∩ y(t)|yt−1)

P (y(t)|yt−1) · P (x(t)|yt−1)

] ∫
dNxx(t− 1) P (x(t)|x(t− 1)) ·P (x(t− 1)|yt−1) ,

(5.9)

relating the probability that the model is in state x(t) conditioned upon the measurements

{y(1), . . . ,y(t)}, to the same quantity at a previous time, P (x(t− 1)|yt−1).

Recursively applying this equation gives another exponentiated conditional mutual in-

formation term as well as an additional integral over a second intermediary time point, which

results in a relationship between P (x(t)|yt) and P (x(t− 2)|yt−2). Explicitly, this is

P (x(t)|yt) =
[ P (x(t) ∩ y(t)|yt−1)

P (y(t)|yt−1) · P (x(t)|yt−1)

]
×
∫

dNxx(t− 1)dNxx(t− 2)
[ P (x(t− 1) ∩ y(t− 1)|yt−2)

P (y(t− 1)|yt−2) · P (x(t− 1)|yt−2)

]
× P (x(t)|x(t− 1)) · P (x(t− 1)|x(t− 2)) · P (x(t− 2)|yt−2) ,

where two instances of the discrete dynamics can be seen, advancing x(t− 2)→ x(t− 1)→ x(t).

The eCMI term at t−1 cannot escape integration because it involves quantities at an intermediary

timestep, unlike the analogous term at t, which is the final time in the series.

Continually applying (5.9) from time t = NT to time 0 results in

P (x(NT )|yT ) =

∫ NT∏
t=1

dNxx(t− 1)
[ P (x(t) ∩ y(t)|yt−1)

P (y(t)|yt−1) · P (x(t)|yt−1)

]
P (x(t)|x(t− 1)) · P (x(0)) .

(5.10)

where the CMI(x(t) ∩ y(t)|yt−1) term has been placed inside the integration for compactness.

Also note that, since no measurement is made at y(0), the conditional is dropped from the

final term in the sequence to become P (x(0)|y(0)) → P (x(0)). This equation (5.10) is the

marginal distribution of x(t) conditioned upon the entire timeseries of measurements, yT =

{y(0),y(1), . . . ,y(NT )}.

If instead, the intermediate distributions are not integrated over, one obtains an expres-

sion for the probability distribution of the model state vector during the entire data window

conditioned upon the entire timeseries of measurements,

P (xT |yT ) =

NT∏
t=1

[ P (x(t) ∩ y(t)|yt−1)

P (y(t)|yt−1) · P (x(t)|yt−1)

]
P (x(t)|x(t− 1)) · P (x(0)) ,
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where xT = {x(0), . . . ,x(NT )}. Incorporating the conditional mutual information in a explicit

way, this equation may equivalently be written as

P (xt|yt) =
t∏

t′=1

eCMI(x(t′)∩y(t′)|yt′−1)elogP (x(t′)|xt′−1)elogP (x(0)) . (5.11)

In the following chapter, this distribution is estimated using a Metropolis-Hastings Monte Carlo

algorithm for the case of additive Gaussian noise in both the measurements and model dynamics.

5.4 Approximating the Effective Action

Borrowing from the ideas statistical physics presented in section 5.1 as a means to ex-

press the probability distribution of equation (5.11) in a manageable way, and from the work of

Restrepo (2008) and Abarbanel (2009), consider an expression for this probability distribution

such as

P (xT |yT ) ∝ e−A0(xT ,yT ) , (5.12)

where the normalization factor is not of concern because of the Metropolis Hastings method of

generating samples in accordance with the desired distribution; additive constants to A0 may

also be omitted for the same reason.

By comparison with (5.11), we may write

A0(xT ,yT ) = −
NT∑
t=0

CMI(x(t) ∩ y(t)|yt−1)−
NT∑
t=0

logP (x(t)|xt−1) , (5.13)

where it is assumed that P (x(0)) is a uniform distribution over the state space, and therefore

may be dropped as a constant. In the dynamics literature, a function such as A0 is referred to

as the effective action of the trajectory xT (Hochberg et al. (1999); Abarbanel (2009)).

The first term in the action measures the total conditional mutual information shared

between the model state and the measurement, conditioned upon all of the previous measure-

ments until that time point. While the second term measures the conditional probability over

the entire path that the dynamics are propagating the model state from one time point to the

next.

5.4.1 Additive Noise as Measurement Error

The first term in (5.13) may be approximated to a usable computational form if we

assume that any discrepancy between the model state and the measurement is due to noise in

the measurement; any error in the model is relegated to the second term. Furthermore, taking
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this noise to be a multivariate Gaussian distribution, the conditional probability at a single time

point t is

P (x(t)|y(t)) = (2π)−M/2|Q|−1/2 exp
(
−1

2

M∑
m=1

(xm(t)− ym(t))†Q−1(xm(t)− ym(t))
)

,

where Q is NM ×NM dimensional covariance matrix of the noise, and x† represents transpose.

The summation is over the number of measurements, NM , and again the normalization factor

will eventually be of little consequence.

Additionally, it is assumed that the measurement noise is uncorrelated; a commonly

adopted premise in the laboratory. This way, the conditional probability P (A|B) reduces to

P (A) and, by first applying the identity P (A ∩ B|C) = P (A|C) · P (B|A ∩ C), the conditional

mutual information reduces to

CMI(x(t) ∩ y(t)|yt−1) ≈ logP (x(t)|y(t))− logP (y(t)) . (5.14)

Since P (y(t)) does not depend upon the search variables it may be regarded as a constant for

the purposes of optimization, and therefore also dropped.

The noise covariance matrix Q is assumed to be diagonal so that the vector σ2
m may be

used to denote the variance in the NM measurements. Depending upon the nature of the mea-

surement noise this may not be an appropriate assumption, however only a single measurement2

is used for the neuron models that we assimilate and so remains valid.

5.4.2 Additive Noise as Model Error

Relaxing the distribution that connects the dynamical state between time t and t + 1

in equation (5.8) from a delta function to one with finite variance may be used to incorporate

additive noise into the time-evolution of the dynamics. The differential equations (1.1) that

describe the dynamics of our model are extended to include noise

dx

dt
= f(x(t),p) + η(t) , (5.15)

where the noise η(t) is assumed to be Gaussian-distributed with mean zero, however this restric-

tion may be relaxed (Restrepo (2008)). The noise is also uncorrolated in time, i.e.

〈η(t)η(t′)〉 = δNx(t, t′) ,

preserving the assumption of Markovian dynamics.

2making σ2
m a scalar so that the subscript simply denotes ‘measurement noise’
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The discretization of the dyamics in time is accomplished with the trapezoidal rule,

which is implicit (i.e. time-symmetric) and accurate to second order in the integration timestep

dtint (Hairer et al. (2002)). Discretizing equation (5.15) using this rule gives

xi(t+ 1) = xi(t) +
dt

2

(
fi(xi(t)) + fi(xi(t+ 1))

)
+
dt

2

(
ηi(t) + ηi(t+ 1)

)
,

Separating out the noise-free dynamical map, and abreviating it as TRP allows us to write

TRP = xi(t+ 1)− xi(t)−
dt

2

(
fi(xi(t)) + fi(xi(t+ 1))

)
TRP =

dt

2

(
ηi(t) + ηi(t+ 1)

)
, (5.16)

which appears in the approximation below.

As the deterministic dynamics must approach a delta function transition probability

in the noise-free limit as given by equation (5.8), we may again approximate the transition

probability as the limit of a multivariate Gaussian distribution over the dynamical equations.

This is by no means the only way to achieve a delta function in the limit, however it mirrors the

discussion concerning the conditional mutual information term, and again allows for the error

in the model to be interpreted as noise, this time in the dynamics. The single time transition

probability is then given by

P (x(t+ 1)|x(t)) =

(2π)−Nx/2|Qf |−1/2 exp
(
−1

2

Nx∑
i=1

TRP†(xi(t), xi(t+ 1))Q−1
f TRP(xi(t), xi(t+ 1))

)
(5.17)

where TRP(xi(t), xi(t+ 1)) is given by equation (5.16). The different dimensions of model error

are assumed to be independent, resulting in a covariance matrix of the dynamical noise Qf that is

diagonal, and given by the vector of model error variance σ2
f . Typically, the different dimensions

of σ2
f are taken to be uniform for convenience.

5.4.3 Computational Form of the Action

Combining the approximations from equations (5.14) and (5.17), allows us to write the

action equation (5.13) as the discretized sum,

A0(xT−1,yT−1) =
1

2NTσ2
m

NT−1∑
t=0

M∑
i=1

(
xi(t)−yi(t)

)2
+

1

2NTσ2
f

NT−2∑
t=0

Nx∑
i=1

(
TRP(xi(t), xi(t+1))

)2
.

(5.18)
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This is the form that is used for calculations 3.

The value of N−1
T is used to make the action intrinsic; i.e., independent of the length

of the data assimilation window. This is required because the noise estimates, e.g. of the

measurements σ2
m, are obtained with respect to a single dtobs, while equation (5.18) is a value

with respect to the entire path.

Although different discretization methods (such as the one used in equation (5.16))

lead to different explicit formulations of the action and subsequently to the form of the path

integral, it is presumed that in the appropriate limits, dt → 0 and NT → ∞ such different

approaches converge. In these continuum limits, the discrete summation over finite states may

be formally recognized as a functional integral over the dynamics (Feynman and Hibbs (1965);

Jouvet and Phythian (1979)).

5.5 Lattice Field Theory Analogy

Following the above discussion, and noting the similarities between the behavior of the

synchronization error in the long time NT → ∞ limit and critical phenomena (see section 3.3

and figure 3.1), it is reasonable to look for the analogous configuration function of a classical

lattice gas, and inquire about the existence of a critical phase transition at γ = γc.

Consider the analogous statistical system of a one dimensional lattice of gas particles at

regularly spaced intervals (by an amount dtobs), where this one dimension is the time variable of

the dynamics. At each point on the lattice, the nearest-neighbor interactions between them is

given by the dynamics enforced as a constraint, x(t + 1) = F ◦ x(t). A chaotic synchronization

term in the dynamics utilizing the control parameter γ is analogous to a local field potential

h(t) = γ · (y(t) − x(t)), which ‘aligns’ the dynamics to the data at every time point, and is

measured by the synchronization error as the order parameter with NT → ∞ as a type of

‘thermodynamic’ limit on the required size of the system for the emergence of criticality.

In a typical lattice gas it is the interaction potential among the constituent elements

that gives rise to critical phenomema, whereas in the synchronization system it is not the inter-

element interactions (the dynamics) that are of interest, but the coupling to the external ‘field’

(i.e., the data y(t)) from which the interesting behavior seen in section 3.3 arises; however in

3As a technical note, we point out that since the second term connects two locations along the
path, the summation involvesNT−1 terms. For the benefit of future predictions, it would perhaps
be advantageous to use

∑NT−1
t=1 TRP2(xi(t− 1), xi(t)), however (5.18) accurately represents the

computation that is performed, with future predictions originating from the state values at
x(NT − 2).
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addition all of the elements in a timeseries of the dynamical system remain strongly coupled to

their nearest-neighbors.

Note also that although the analogous lattice gas extends spatially in one dimension, the

interactions between adjacent particles is multi-dimensional; specifically the Nx-dimensions of

the dynamical model. Many systems, for example the K > 5 Lorenz ’96 system (section 4.2.1),

involve multiple dimensions of data as well. The high dimensionality of these interactions make

the existence of some type of critical behaviour plausible, however it also makes this type of

problem difficult to tackle analytically. We refer the interested reader to Domb and Green (1972,

1976) and Zinn-Justin (2002).



Chapter 6

Single Markov Chain Monte Carlo

In the previous chapter it is shown that if one attributes the Markov quality to the

dynamics, as is also implicitly done in collocation approaches to optimization, then the problem

of data assimilation can be formulated as a discrete time path integral. Additionally, one can

incorporate both measurement and model error, in the form of additive gaussian noise, into

the dynamics and data to achieve an approximation to this integral (Hochberg et al. (1999);

Restrepo (2008)). Following this interpretation of error, the variation in the measured values of

an experiment may be directly utilized to scale the fluctuations in the Markov chain through

the measurement noise coefficient. In this chapter, the details of how one may use Monte Carlo

methods to calculate an estimation of this integral are given.

The first piece of analysis software written by the author is a Metropolis-Hastings Markov

chain simulation, implemented in parallel on a single graphics processor (GPU), to sample the

distribution of state variables and parameters at a given ratio of observational error to model

error.

At the end of the simulation, the estimated distribution of state variable –and therefore,

also noise– information at all times {x∗
T−1}, as well as the distribution of model parameters {p}

is obtained. From these distributions, one may calculate quantities of interest as expectation

values over the distribution as well as propagate the model forward to generate a prediction of

the future state of the assimilated data-model system.

Twin experiment results on neuron models using this software are presented in chapter

9, after the neuron models have been described in chapter 8. Results on physical neurons from

the birdsong system are given in chapter 10.

49
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6.1 Random Search via Markov Chain

The entire process is iterative, and each iteration consists of two basic steps. Given a

current point in the seach space, ω, a random move from this current point is proposed and a

Metropolis-Hastings acceptance function is used as a decision process to determine if the move

is to be executed or ignored. The sequence of current points comprises a Markov chain if the

transition probability is symmetric. This guarantees that sampling from the chain appropriately

estimates the desired distribution.

Let us point out that the Markov condition is used in the previous chapter as a qualifica-

tion on the dynamical map advancing the dynamical state x(t) forward in time, while it is used

here as a requirement on the sequence of candidate points ω̃(k) as they are moved throughout

the search space, from one iteration to the next k → k + 1.

6.1.1 The Search Space

The total search space for this formulation consists of the state variables at each point

in time and the parameters, resulting in Ω = {x(0),x(1), . . . ,x(NT − 1),p}, where Ω ⊆ RW and

has dimension W = NxNT + NP . This exacerbates the high dimensional sampling difficulties

discussed in section 2.2.1 and 2.2.2 relative to Ω = {x(0),p}. For this reason the calculation

begins with a trajectory given by an optimization routine such as the one described in the

following chapter, or by another method, and provides the distribution about the region of the

search space that is local to the point ω provided.

Each timepoint of the statevector x(t) is given an independent thread, or core-process

on the GPU. The individual Nx dimensions of this vector are kept together, on the same thread,

so that they may be accessed more efficiently during the evaluation of the model equations.

6.1.2 The Objective Function

The ‘objective function’ here is essentially the action of the path integral given by (5.18),

with the independent variable extended to include the full search space Ω including the model

parameters,

φ(ω,yT−1) =
1

2NTσ2
m

NT−1∑
t=0

M∑
i=1

(
xi(t)− yi(t)

)2
+

1

2NTσ2
f

NT−2∑
t=0

Nx∑
i=1

(
TRP(xi(t), xi(t+ 1))

)2
.

(6.1)

The problem here is not to minimize this function, but to evaluate it for the sequence of {ω(k)}

that constitute the Markov chain, once enough iterations have allowed this chain to reach an
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equilibrium state. The distribution (5.12) being estimated by this calculation is then

P (xT |yT ) ∝ e−φ(ω,yT ) . (6.2)

Evaluating the action is the most time consuming step of the algorithm; with the cal-

culation of the model dynamics contributing the most to the objective function. This step is

implemented in parallel, so that x(t),x(t + 1) pairs of this function are evaluated (by the TRP

function), and this portion of the total objective is stored. A second function is then called to

sum the pieces together and obtain a value for the action over the entire path.

In this way a value for the entire path is obtained before being subjected to the Metropolis-

Hastings acceptance function, this is distinct from other algorithms which calculate a change in

the action between adjacent pairs of points in the timeseries such as in Quinn and Abarbanel

(2011).

6.1.3 The Selection Function

The first important aspect to the generation of the Markov chain is the selection function,

which defines how one chooses a candidate point. Formally, this amounts to a probability measure

S over pairs of points in the search space,∑
(ω,ω̃)∈Ω

S(ω, ω̃) = 1 .

In order for the observations of Metropolis et al. to be valid, the samples must be

generated by a Markov chain which has a reversible selection function; that is

S(ω, ω̃) = S(ω̃, ω) . (6.3)

Where ω is the current point in the chain and ω̃ is a proposed candidate point. This property

of the selection function ensures that the Markov chain is reflexive, or k-reversible over the

iterations which index the elements of the chain. Although this is not specifically required for

a Markov chain calculation, it greatly simplifies the statistics provided by the chain (see for

example Otten and van Ginneken (1989)).

We note that the reflexive property is often violated in attempts to locate points that

contribute greatly to the distribution, such as during the burn-in phase, however it is always

enforced during the gathering of samples that are used in statistics.

This function is implemented in parallel so that all NT elements of the state-vector

timeseries are perturbed simultaneously. Similarly, all dimensions of the parameter vector are

also perturbed in parallel, however via a separate function call. The geometry of the graphical

processor memory on which this occurs is used most efficiently when NT is a power of 2.
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6.1.4 Scaling the Stepsize α

For the implementation of MCMC used here, candidate paths are perturbed using

ω̃ = ω + U(−α/2, α/2) · (ωu − ωl) ,

where U is a uniformly distributed random number in [−α/2, α/2]. The perturbation stepsize,

α, must remain constant between subsequent iterations to satisfy the reflexive property of the

transition probability.

The stepsize is the scaled quantity, α ∈ (0, 1) with ω entering the dynamical equations.

All quantities are vectoral, and have the same dimensions as ω (NxNT +Np in this case), however

the dimensions of αi are not individually scaled. This means that resolution between different

variables is uniform (with respect to their individual bounds, ωl and ωu), relegating the inter-

variable scaling to the user who determines the variable bounds.

The equilibrium density of the system π̂(ω) is defined to be stationary, which means that

continued perturbations of the equilibrium distribution are again the equilibrium distribution.

This distribution is therefore independent of the selection probability S(ω, ω̃) of candidate points.

This means that the perturbation stepsize α can be given by any rule, provided that it remains

constant in between successive perturbations so that equation (6.3) remains valid.

6.2 Metropolis-Hastings Algorithm

One can approximate the distribution (6.2) by randomly sampling the space (as is done

via the random walking of an unbiased Markov chain) and then performing a weighted aver-

age over the samples, weighting the contribution from ω with exp(−βφ(ω)), when computing

quantities of interest such as expectation values.

Metropolis et al. (1953) pointed out that it is more computationally efficient, and nu-

merically equivalent, to instead generate samples from the desired distribution and then weigh

them uniformly when performing averages. This is more efficient because the portion of the

solution space that contributes significantly to terms in these summations is quite small, and so

a uniform random sampling will generate many elements that are irrelevant to the final value.

The user chooses an initial point in the search space ω(0), and their bounds ωl, ωu, as

well as the values of σ2
m and σ2

f that enter into φ. The algorithm then proceeds according to the

steps in figure 6.1.
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Metropolis Hastings Monte Carlo Algorithm

k ← 0

evaluate φ(ω0)

do {

ω̃ ← ω(k) + U(−α/2, α/2) · (ωu − ωl)

evaluate φ(ω̃)

If U(0, 1) < exp[−(φ(ω̃)− φ(ω(k))] then ω(k+1) ← ω̃

else ω(k+1) ← ω(k)

k ← k + 1

} while k < MAX

Figure 6.1: The Metropolis-Hastings Monte Carlo Algorithm. Parallelization of both the per-
turbation step and the evaluation of φ allows for all time points of the dynamical path to be
calculated simulatenously.

6.2.1 The Acceptance Function

The method proposed in Metropolis et al. (1953) and generalized in Hastings (1970) to

generate a desired distribution is to bias the Markov chain with an acceptance function. As the

Markov chain evolves (over iterations), this function is a rule that takes a trial move and accepts

this candidate point ω̃ with a probability given by

Pacc = min
(
1, e−β(φ(ω̃)−φ(ω))

)
. (6.4)

If the candidate point ω̃ has a lower penalty than the current point, i.e. if φ(ω̃) < φ(ω), then

this move is accepted with probability 1. However, if the proposed move increases the objective

function, it may still be accepted but only with probability exp
(
−β(φ(ω̃) − φ(ω))

)
< 1. In the

limit that β → ∞, the Markov chain is ‘frozen’ and only moves that reduce φ are accepted; we

use β = 1 because the equivalent scaling is set by the noise in the measurement as described

in chapter 5. The Markov chain explores the basin about the local minimum via random walk,

while the Metropolis-Hastings acceptance function maintains the appropriate distribution (6.2).

A ‘healthy’ Markov chain, from a computational standpoint, is one where Pacc is far

from both 0 and 1 (although not necessarily 1/2). For if Pacc is near zero, no new paths are
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being sampled implying that the chain is not moving. While if it is near unity, it is often because

the stepsize is so small that every move is accepted, again resulting in a chain that does not

adequately sample the entire search space.

The relationship between the perturbation stepsize α and the average acceptance rate is

generally

as α→ 0, 〈Pacc〉 → 1

as α→ 1, 〈Pacc〉 → 0

however this may be complicated at the extremes due to numerical issues as well as the depen-

dence of 〈Pacc〉 on β.

6.2.2 Sampling and Boundaries

The iterations of the Monte Carlo simulation are adjusted so that the parameters and

states are sampled more uniformly, in the form of perturbation updates to the Markov chain. The

parameter vector is perturbed and the changes evaluated by the Metropolis-Hastings acceptance

criterion NxNT /Np times for every perturbation to the state vector timeseries; this distributes

the sampling roughly equally between the entire timeseries xT and the vector of parameters p.

This recognizes that the parameter distribution is generally of more interest, and that we do not

want to under-sample it as a consequence of using a long-time data series.

The perturbation of p and xT is accomplished by separate function calls, and both of

these perturbation steps are performed in parallel, updating each dimension of p (or all time-

points of xT ) simultaneously.

The stochastic nature of the perturbation to the search variable ω means that it is

possible to perturb a valid point across a boundary. This must be remedied, and is accomplished

with pseudo-absorbing boundaries that place the perturbed variable at the boundary. Ideally,

one would make the bounds large enough that they are rarely or never encountered, however in

practice this cannot be realized. Caution must be taken if one reflects the perturbation in the

boundary, because values are prevented from approaching the bounds arbitrarily closely without

suffering from a repulsive ‘force’. This may cause the appearance of a valid distribution within

the bounds, when in fact the Markov chain is being biased towards the boundary.

6.2.3 Calculating Moments of the Distribution

At the termination of the Monte Carlo algorithm, one obtains a sample of points {ωi}NE
i=1

in the search space over paths and parameters where each point is ω = {x(0), . . . ,x(NT − 1),p},
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and the entire sample approximates the distribution (5.12) according to

P (xT |yT ) ≈
1

NE

NE∑
i=1

δ(ω − ωi) ,

where ωi ∈ {ωi}NE
i=1, and the dependence of the probability distribution on the parameters p

enters through the dynamics in the model error terms of the action.

Correspondingly, expectation values of any function F(ω) over the search space may be

estimated using this sample set as

〈F(ω)〉 =
∫
dΩ F(ω)P (xT |yT )

≈ 1

NE

NE∑
i=1

F(ωi) . (6.5)

This is used to generate the averages and standard deviations of the parameter estimates that

are reported.



Chapter 7

Stochastic Optimization with

Synchronization Fiducial

In this chapter we present an optimization algorithm that relies upon synchronization

to regularize chaotic instabilities, to guide the model to a solution commesurate with the data

and to provide the search with approximate information of the unmeasured state variables of the

model through a fiducial trajectory. The search step is provided by an ensemble of Markov chains

propagating through the search space following a Metropolis-Hastings biased random walk.

The question of model error is not addressed by this formulation, which satisfies the

equations of motion as delta-function equality constraints through explicit integration of initial

conditions. The restriction of the search space to initial conditions and parameters ω = {x(0),p}

allows each search iteration to be carried over a proper ensemble of NE points, calculated in

parallel on a graphics processor. The manor in which synchronization is used allows for the

regularization of chaotic instabilities without the need to collocate the dynamical variables in

time.

We demonstrate the success of this algorithm on a twin experiment using the Lorenz ’63

model.

7.1 General Framework

The key computational advantage exploited by this algorithm is to take advantage of

of today’s modern parallel processing hardware by using a non-interacting ensemble of Markov

chains to enhance the statistics capability for larger problems. For this reason, and to distinguish

56
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it from the algorithm in the previous chapter, we refer to it as multiple Markov chain Monte

Carlo (MMC). At termination the simulation provides a distribution of final states of the model

at {x∗(NT − 1)} and parameters {p∗} that can be used for subsequent forward prediction or

analysis.

The strategy employed here is to solve a series of subproblems, where we create a strongly

coupled fiducial trajectory (thus providing an approximation to all Nx dimensions of ‘data’) and

search for a point that can recreate this trajectory with a lesser value of the coupling, thereby

driving the coupling to its critical value.

We conjecture that, for a given coupling, all candidate points with a synchronization

error (as measured from the fiducial) that is less than the fiducial’s self-synchronization error

(section 7.2.2) are equally likely to be an improvement over the current solution. This is reflected

in the distribution generated by the Metropolis-Hastings Monte Carlo techniques that are used

to solve the individual subproblems (7.5).

7.1.1 Comparison with the Marginal Distribution

The structure of this computation could loosely be seen as an estimation of the marginal

distribution (5.10), as the solution depends on synchronization with the entire data timeseries

yT , i.e. not just the data initial conditions y(0).

The Chapman-Kolmogorov integral over the intermediary probability distributions is

collapsed to a series of delta functions, as there is no model error incorporated into this version

of the calculation. Dispite the similarities due to a noise-free integral over the path, we avoid

making a direct comparision to the distribution in (5.10).

7.1.2 Problem Formulation

The search is made over the space of initial conditions and parameters, ω = {x(0),p},

however in practice the state variables at the end of the data assimilation window x(NT − 1)

are of more interest, because they may be used to predict the system forward in time. They are

also much easier to obtain and are outputted for exactly this purpose, however the situation we

engendered is naturally phrased as an initial value problem. Formally, then, we are solving

minimize µ2(ω,yT−1, γc) =
1

NTNm

NT−1∑
t=0

Nm∑
i=0

ai(t)
2(xi(t)− yi(t))2 , (7.1)
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where the dependence of the objective function on the variables ω is done through the generation

of a dynamical trajectory synchronized with the data (from (3.5)),

xT = sync(ω,yT , γ → γc) ,

and where γc is the critical value of the coupling (see section 3.3), which may be considered γc ≥ 0

but otherwise unknown at the outset. The scaling of this objective function a(t)2 is discussed in

detail in section 7.4.1.

The model equations are therefore treated as equality constraints between t and t + 1

that are satisfied through the forward integration. Since there are unmeasured dimensions to the

model, we cannot use the synchronization error itself as an objective function, but instead will

approximate (7.1) by relying upon the synchronized fiducial as the origin of our measure. This

is done so that γc is also acquired during the optimization.

7.2 The Synchronization Fiducial

The synchronization fiducial is a trajectory that is strongly coupled to the measured

data. It serves two purposes: it functions as a reasonable guess of the unmeasured dimensions of

the data, and it is used to calculate a reference value for the self-synchronization error (7.2) at

reduced coupling strengths.

More precisely, it provides an approximation to the unmeasured dimensions of the pro-

posed model while that model remains consistent with the data, such that xm(t) ≈ ym(t), which

is the known effect of chaotic synchronization (Afraimovich et al. (1983); Fujisaka and Yamada

(1983); Pecora and Carroll (1990)).

7.2.1 Creating a Fiducial

To create the synchronized fiducial trajectory zT , the model is synchronized with the

data using strong coupling, γfid >> γc, where the initial conditions and parameters ω = {x(0),p}

are provided by the current ‘best’ guess, denoted ωfid, or by the user at the beginning of the

optimization procedure. We write this as

zT = sync(ωfid,yT , γfid) .

The stronger the coupling the more closely the fiducial will reproduce the data trajectory,

keeping in mind that the NT →∞ limit is formally required to make this statement due to finite-

time transients.
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7.2.2 Self-Synchronization Error Metric

If one uses the same point that created the fiducial, ωfid, and instead of coupling it

strongly to the data, couples it weakly, how much does the trajectory change? Derivative quan-

tities with respect to γ are likely to be unstable following the same arguments as in section 2.3.4,

so one should have in mind finite (and possibly large) differences between γ and γfid (while

maintaining γ < γfid).

In practice we only evaluate the self-synchronization error for ω
(k)
fid, however the idea here

is to compare two trajectories generated from the same search variable ω = {x(0),p}; both are

coupled to the data, but with different coupling strengths. Let us define the self-synchronization

error of the point ω as φ0, where

φ20(ω,yT−1, γ) ≡ lim
NT→∞

1

NTNx

NT−1∑
t=0

Nx∑
i=0

(z̃i(t)− zi(t))2 , (7.2)

and the dependence on γ and the data ym(t) is again provided through the trajectories

zT = sync(ω,yT , γfid)

z̃T = sync(ω,yT , γ) γ < γfid .

The key difference between this and the synchronization error (equation (3.3)) is that the com-

parison trajectory is provided by a fiducial generated from the same ω; one can also see the

similarities between this and the concept of generalized synchronization (Rulkov et al. (1995);

Abarbanel et al. (1996)).

It should be obvious that if the self-synchronization error is evaluated with γ = γfid the

trajectories will be identical and φ0 = 0 for all ω, this has important consequences for the choice

of the relevant sampling distribution in section 7.3.5.

7.2.3 Choice of the Fiducial Coupling, γfid

The coupling that is used to create the fiducial γfid must be strong enough to ensure

that zm(t) ≈ ym(t) with any transients lasting for a small fraction of the data assimilation

window. Numerical instabilities may occur with an integration timestep of dtint if the product

dtintγfid > 1 due to large derivatives during integration.

Based upon our studies it is also important that γfid remain finite. Meaning that the

infinite coupling limit, where zm(t) is replaced by ym(t) (see section 4.1.2), does not provide as

useful metric information as a finite γ.
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7.3 Solving The Subproblem

The optimization algorithm, as detailed in figure 7.2 and 7.3, consists of a series of

simulated-annealing subproblems indexed by k, during which the fiducial zT is held constant.

Each subproblem attempts to find an improvement to ω
(k)
fid from the ensemble of candidate points

{ω̃i}NE
i=1 at the current value of the coupling, γ(k). The purpose of the coupling γ(k) is to regulate

the search surface, allowing for a meaningful assessment of the candidate point.

The idea is to compare the synchronized trajectory xT of a candidate point ω̃ with that

of the synchronization fiducial, zT . The candidate trajectory is synchronized to the data with a

smaller coupling strength γ(k) than was used to create the fiducial, i.e. γmin < γ(k) < γfid. If

we can find a point ω̃ that closely reproduces the fiducial trajectory, yet does so with a smaller

coupling, then ω̃ is an improvement over ωfid, and will be accepted according to the Metropolis-

Hastings criterion.

At the beginning of the algorithm, the user specifies the following:

ω0 = {x(0),p} The user’s initial guess for ωfid.
ωl, ωu Lower and upper bounds on all search variables.

γmin, γmax ≥ 0 Lower and upper bounds on the coupling γ.
β0, β∞ Numerical limits to β ∈ (0,∞).

〈Paccept〉target A target mean acceptance rate P ∈ (0, 1).
F The discretized coupled model equations of motion.

yT−1 The timeseries of measurements.

In what follows are some of the details specific to this implementation of Markov chain

Monte Carlo, which primarily involves adequate estimation of the inverse generalized-temperature,

β, the perturbation stepsize, α, and the proper scaling ai(t)
2.

7.3.1 Subproblem Statistics via MCMC

The individual subproblems are solved using a Markov chain Monte Carlo (MCMC)

procedure as outlined in the previous chapter. The statistics are gathered over a distribution of

candidate solutions during a constant fiducial subproblem, after which ωfid is updated with the

expectation value of this distribution, i.e. the maximum likelyhood solution to the minimization

problem (7.1) is used as the initial guess of the subsequent subproblem,

ω
(k+1)
fid = 〈π({ω}(k))〉 , (7.3)

where we denote the ensemble of search points as {ω}.

During the kth subproblem, many Metropolis-Hastings updates may be performed for

every chain in the ensemble as indexed by the l iterations shown in figure 7.1. This loop is
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terminated by an equilibrium condition that may be difficult to satisfy in a meaningful way for

very high dimensional systems and so contains a maximum iteration limit. For the numerical

example detailed in section 7.5, quite the opposite occurrs and so a minimum number of 2W +1

iterations is also enforced (W = Nx +Np).

The Metropolis Hastings (MH) Acceptance Subroutine

l← 0

do {

{ω̃} ← {ω}+ U(−α/2, α/2) · (ωu − ωl)

{x(t)} = sync({ω̃},yT−1, γ
(k))

{φ(ω̃)2} = N−1
T N−1

x

∑NT−1
t=0

∑Nx

i=1 ai(t)
2({xi(t)} − zi(t))2

∀ω̃i∈{ω̃} If U(0, 1) < exp[−β(k)(φ(ω̃i)− φ0)] then ωi ← ω̃i

l← l + 1; if l > MAXl then break;

} while |d〈φ〉dk | < κσ({φ}) AND l ≥ 2W + 1

Figure 7.1: The Metropolis-Hastings Monte Carlo subroutine for use with the synchronized
fiducial optimization scheme. Notice the perturbation via the fixed stepsize α and the form of
the distribution. The quasi-equilibrium condition in the while loop signifies the acquisition of
{ω} after at least 2W + 1 iterations; σ({φ}) =

√
var({φ}).

7.3.2 Main Subproblem Algorithm

No formal annealing (increase in β) is implemented in the Markov chain loop, it simply

acquires the distribution (7.5) over the ensemble {ω̃}. However this subroutine is performed

twice: at a high temperature (β0 ≈ 0) where an equilibrium is very easy to acquire, and then

again at β∞, where equilibrium is more difficult to obtain and where the chain is likely to suffer

from Pacc → 0 as the acceptance criterion can not be satisfied. To avoid this, the chain is then

warmed-down (β(k) : β∞ → β0) until the user supplied target acceptance rate is achieved. Once

the chain achieves equilibrium statistics are taken over the ensemble and the location of the

optimal point is updated for the next iteration according to (7.3). The value of β(k) obtained is
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used as the high temperature value for the subsequent iteration. The steps described here are

presented in the overall subproblem algorithm of figure 7.3.

The Multiple-Markov Chain Initialization

ωfid ← ω0

{ω}(0) ← U(ωl, ωu)

{ω̃}(0) ← U(ωl, ωu)

γfid ← γmax

γ(0) ← γmin

β(0) ← β0 ≈ 0 (A high temperature β)

k = 0

Figure 7.2: The initialization of the synchronized fiducial multiple-Markov chain Monte Carlo
algorithm. Note that the distribution is started with a small β ≈ 0.

7.3.3 The Subproblem Objective Function

Although the search space only includes the initial conditions and parameters of the

model, in order for the data to be relevant to the assimilation procedure a long-time trajectory

of the dynamical system must enter into the objective function. This is done by integrating

forward from the initial conditions x(0) until the end of the data assimilation window, using the

parameters p and the coupling value of the k-th iteration, γ(k), obtaining

xT = sync(ω,yT , γ
(k)) γ(k) < γfid

Once the trajectory xT is generated in this way from the search variable ω = {x(0),p},

the subproblem objective function

φ2(ω, γ(k)) =
1

NTNx

NT−1∑
t=0

Nx∑
i=1

ai(t)
2(xi(t)− zi(t))2 , (7.4)

with the fiducial

zT = sync(ωfid,yT , γfid) ,

is evaluated. This is essentially the same as the self-synchronization error (equation 7.2), except

that now we allow it to measure the separation between any candidate point ω̃ and the fiducial
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zT . In other words, the self-synchronization error φ0 is a special case of the subproblem objective

function with ω = ωfid. This allows for a direct comparison to be made between ω̃ and ωfid

at γ(k), ascertaining the ability of a candidate point ω̃ to reproduce the fiducial trajectory with

γ(k) < γfid.

Let us clearly point out that trajectories are only ever coupled to the actual data yT ,

the fiducial is not used to provide additional ‘data’ dimensions for the sake of synchronization;

it is only ever used for additional metrical information via the objective function.

7.3.4 Determining the Subproblem Coupling, γ(k)

It is crucial to determine a proper coupling γ(k) to use for evaluation of the synchronization-

fiducial objective function during the k-th iteration of the subproblem. Recall from section 7.1

that we wish to drive γ → γc but are prevented from doing so by the need to regulate instabilities

in the search surface. Choosing γ(k) too large, i.e. very close to γfid, can be problematic because

the use of a synchronization fiducial creates an artificial ‘solution’ to the minimzation problem

when γ(k) is large. To see this, simply let γ(k) = γfid, then the point which minimizes equation

(7.2) is clearly ωfid. For this reason, the distribution used to estimate the subproblem solution

is chosen with some care as described in the following subsection.

Alternatively, using a coupling that is close to γc can be detrimental when the current

guess ωfid is far from the solution ω∗. This is because the irregularities in the synchronization

manifold begin to manifest as γ → γc. One should think of γc as being the coupling that

regularizes the manifold between the single trajectory defined by ω∗ and the data, and that as

one increases γ →∞ it regularizes an increasingly large portion of Ω about ω∗. This behavior is

described in chapter 4, and illustrated in figure 4.2.

As γ → γc the self-synchronization error increases in a manor depicted by figure 3.1.

Since the strongly coupled fiducial zT is only able to reproduce the measured data approximately,

with an error given by µ(ωfid), any improvement that is made to ωfid should be done so without

deteriorating its alignment with the data ym(t). Therefore γ(k) is assigned as

γ(k) = min
γ∈[γmin,γfid)

|φ0(ωfid, γ)− µ(ωfid)| ,

where µ(ωfid) is given by equation (7.1), and measures the separation between the strongly

coupled fiducial zT and the measured data dimensions ym(t). Recall that γmin here is set by the

user as a lower bound to the expected critical coupling γc of the system.

The subroutine used to calculate φ0 is implemented in parallel with each thread choosing

an equally spaced γ for a resolution in γ(k) of (γfid−γmin)/NTHD, where NTHD is the number of
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threads (i.e., independent parallel processes) available on the graphics processor, typically about

210 − 214 depending upon the problem size.

7.3.5 The Distribution of Subproblem Solutions

Motivated by the above discussion, we conjecture that the relevant distribution that we

are interested in collecting with our ensemble of Markov chains is

π(ω) ∝ e−β(φ(ω)−φ0) , (7.5)

This is the micro-canonical ensemble of a system with φ(ω) as the configuration function and

‘energy’ φ0, with allowed fluctuations about this energy at the inverse ‘temperature’ β. Again,

the normalization factor of (7.5) is of little consequence as the distribution is directly sampled

via the Metropolis-Hastings acceptance criterion.

To presume that the distribution (7.5) describes the desired ensemble of Markov chains

the assumption is made that, for a given value of the coupling, all trajectories with the same

synchronization error are equally likely to generate the data using the model dynamical system.

The expectation value 〈ω〉E over this ensemble at the end of the kth subproblem forms

the initial guess ω
(k+1)
fid of the following subproblem.

7.4 Scaling The Subproblem

Firstly, the dynamical variables in the objective function are scaled to ±1 by the user-

supplied bounds. The parameters are not scaled in this way as they enter the objective function

through the dynamics, however the parameters are similarly given a uniform resolution over the

search space during the Monte Carlo procedure via the perturbation stepsize α.

7.4.1 Objective Function Scaling

The subproblem objective function is scaled individually at every time point by the Nx

dimensional timeseries a(t)2, where

a(t)2 =
(z̃(t)− z(t))2

var({z(t)}0)
, (7.6)

and

zT = sync(ωfid,yT , γfid)

z̃T = sync(ωfid,yT , γ) γ < γfid.
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The variance in the denominator is taken over the high entropy distribution {ω}0 =

e−β0(φ) where β0 ≈ 0+ and then synchronized (using γfid) with the data. This acts like a

modification of the variable bounds at each time point; the user supplied bounds represent the

overall dynamical range of the variables, xi(t) ∈ (xl, xu), however the variance of a synchronized

high-temperature distribution provides time resolved information about a range that reasonably

restricts the solution trajectory.

The numerator contains the same two trajectories that enter into the self-synchronization

error; it increases when there is a discrepancy between the strongly and weakly coupled trajec-

tories of the fiducial point ωfid. This increases the relative importance of finding a candidate

trajectory that matches the fiducial at this location along the timeseries.

7.4.2 Scaling of the Perturbation Stepsize α

It is likely that perturbations to the different dimensions of the search variable ωi do not

effect the objective function in uniform way. The problem of non-hyperspherically symmetric

search directions is discussed as it relates to the variational problem in section 2.1.2. To address

this issue for a stochastic search algorithm, the perturbation stepsizes are set according to the

variance of the resultant distribution π according to

α2
i = var({ωi}) , (7.7)

where α and ω are vectors of the same dimension and the index implies that the variance is taken

over the ith dimension of all ω ∈ {ω}.

This scaling is done at the beginning of every subproblem, using the previously obtained

distribution, so that the scaling is relevant to the evaluations of φ. Calculating (7.7) is fast

enough that it is reasonable to perform this scaling twice in a single subproblem, once before

and once after β(k) is obtained, however this was not found to be significant for the reported test

problem.

7.5 Lorenz ’63 Twin-Experiment

The behavior of this algorithm is tested on a twin experiment using the Lorenz ’63 model

(Lorenz (1963)). The equations of this model f with the explicit coupling term are

ẋ1 = p0(x2 − x1) + γ1(y1 − x1)

ẋ2 = x1(p1 − x3)− x2

ẋ3 = x1x2 − p2x3 .

(7.8)
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As a twin experiment, the data is generated using the uncoupled model (γ1 = 0) with

parameters and initial conditions given in table 7.1, and integrated using a fourth order explicit

Runge-Kutta method with a timestep of dtint = 0.001 reported at dtobs = 0.01. All dimensions

of the system are generated and recorded for later comparison, however NM = 1, indicating only

y1(t) is ‘known’ to the model, and coupled into the model according to (7.8).

The data assimilation window, the number of timepoints that are provided to the opti-

mization routine, consists of NT = 214 = 16384 points, with an interval timestep of dtint = 0.01,

corresponding to the timestep of the measured data. However we point out that with the current

implementation of this algorithm it is possible to use any dtint that is an integer fraction of dtobs

if such precision is required for stability.

The range of the coupling allowed for the optimization is γ ∈ (0.0, 50.0), or γ · dtint ∈

(0.0, 0.500), meaning that the initial synchronization fiducial is created with the ‘strong’ coupling

γfid = 50.0. From figure 3.1, the critical coupling for this model is γc ≈ 8, although such

information is presumed unknown at the outset.

The ensemble of Markov chains consists of NE = 4096 elements, each one corresponding

to an individual thread on the GPU. The averages and variances that are reported are made over

this ensemble. The 〈Pacc〉target = 0.3 and the upper and lower limits to β are (10−4, 1010).

7.5.1 Initial Conditions and Parameter Results

Table 7.1: The initial conditions and parameters used for the Lorenz ’63 twin experiment, with
optimization performed using the MMC method with synchronization fiducial. The results of the
optimization are shown as 〈ω〉E ± σω (over the ensemble) along with the user-supplied bounds
(ωl, ωu) and user-supplied initial guess ω0.

ω = {x(0),p} ‘data’ value 〈ω〉 σω ωl ω0 ωu

p0 10.040 1.00190906524658e+01 1.238e-04 0.0 4.1 30.0
p1 2.6767 2.67646455764771e+00 2.490e-05 0.0 1.1 7.0
p2 28.011 2.80191955566406e+01 7.107e-05 0.0 35.0 50.0

x1(0) -4.010 -3.59577608108521e+00 3.110e-04 -30.0 -1.0 45.0
x2(0) 1.1119 8.92393589019775e-01 3.132e-04 -30.0 8.0 45.0
x3(0) 2.7170 2.70061039924622e+00 3.078e-04 -30.0 -5.0 45.0

x1(NT − 1) 15.6098 1.55878105163574e+01 1.996e-05 – – –
x2(NT − 1) 15.6777 1.64476032257080e+01 9.455e-05 – – –
x3(NT − 1) 36.6666 3.58734626770020e+01 1.956e-04 – – –
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In figure 7.4 the three dimensions of the data system, including the measured dimension

x1(t) and the two unmeasured dimensions are shown, along with the forward prediction using the

resultant state vector distribution at {x(NT − 1)}. The values of {x(NT − 1)} that are predicted

forward for t ≥ NT come from the final distribution of {ω̂} (which contains only initial condition

information) at the end of the optimiation process. This distribution is coupled to the data with

γfid and integrated over the data assimilation window,

{x(NT − 1)} = sync({ω̂},yT , γfid) ,

to obtain an estimate for state at t = NT − 1, again only using the NM data dimensions.

The prediction is generated by integrating this forward, again with explicit RK4, using

the uncoupled version of the model; i.e. completely independent of the data system, with γ = 0.

Due to the chaos inherent in the system, this prediction will inevitably deteriorate on a time

scale given by the largest Lyapunov exponent, which is λ1 ≈ 0.9 for this system.

We use the error in the long time prediction of ±σx1 ≈ 7 from figure 7.4 as ∆x1(∞), and

the values in table 7.1 between the optimization result and the data to provide ∆x1(NT − 1) =

x1(NT − 1)− y1(NT − 1) = 0.022. Equation (2.3) approximates the length of time for which we

expect our prediction to be valid as

τmax =
1

0.9
ln

7

0.022
, (7.9)

which is indicated on figure 7.4 as a vertical line at t = NT + τmax = 170.2. All of this informa-

tion about the quality of the prediction may be obtained from the measured variables and the

optimization results and is therefore available for non-twin-experimental situations.

The initial conditions of a chaotic system are of little interest for the purposes of gener-

ating a predicition, especially when the data assimilation window is very long. Nevertheless, it

is possible to improve the quality of their estimation by repeating this method with a reduced

value for γfid closer to γ+c . This, and possibly reducing the length of the data assimilation win-

dow1 have the effect of increasing the relevance that the transient resulting from any discrepancy,

x(0) 6= y(0), has on the objective function.

7.5.2 Equilibrium Estimation of the Critical Coupling, γc

Over the course of the algorithm iterations k, the subproblem coupling γ(k) reaches an

equilibrium value, at which point the optimization would terminate with the ensemble distribu-

tion as the result, however it was allowed to continue for an arbitrary total of k = 500 subproblems

1After the procedure is run once, we already have an estimate for γc and the requirement of
NT →∞ does not have to be as strictly enforced.
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to illustrate the stability of the solution {ω̂}. This is shown in figure 7.5, where the value of the

coupling used for the subproblem is plotted as a function of the subproblem iterations. Recall

that the value of γfid is never reduced, so that for each successive subproblem, the reported value

of γ(k) represents the point where the self-synchronization error of ωfid ‘crosses’ the value of the

main problem objective function (see equation (7.1) and section 7.3.4).

The number of required Markov chain perturbations for the subproblem to determine

a new ωfid varies per subproblem, however the average number of Markov chain updates per

subproblem over the k = 500 subproblems was about 280.

As can be clearly seen in figure 7.5, the equilibrium value of 〈γ(k)〉E · dtint = 0.074, is

in agreement with what is seen for γc of this system in figure 3.1. One is therefore justified in

using γ(k) at the end of the optimization as an approximation for γc, which is the least amount

of coupling that must be supplied to the system to overcome the chaotic instabilities that will

eventually occur with any prediction.

For a true experimental situtation, γc is not known a priori because it depends upon the

parameters of the data system. However, once it is estimated as we have done here, it may be

used to couple measurements at later times ym(t > NT ) with the assimilated model to provide

high fidelity estimations of the unmeasured model variables much farther into the future than

the uncoupled prediction (not shown). Importantly, if this is done with γc (as opposed to an

arbitrarily large γ) it represents the minimal alteration of the model required to overcome the

instabilities on the synchronization manifold between the data and model.

7.5.3 Additional Details

The length of the assimilation window purposefully pushes the NT → ∞ limit, as an

attempt to satisify the theoretical arguments that require it, including the supposition of critical

behavior for φ near γc. As can be seen in figure 3.1, NT = 214 is qualitatively unsatisfactory

compared to say, 220. We note that, while computation time is not irrelevant, at NT = 216 the

reported values for φ would consistently overflow the memory limitations of the GPU.

On the subject of computation time, by far the longest step in the current implementation

is the ebvaluation of a(t)2, which takes at least half of the total time within a subproblem. The

integration of the ensemble of Markov chains is performed in parallel for each timestep, however

the calculation of the variance is done on the CPU, with the additional slow step of moving a large

amount of data from the GPU to the CPU for every timepoint. This is done out of a desire for

stability in the calculation (performed with double precision on the CPU), which is by no means

a requirement, but avoids possible errors in the coding of the more complicated parallel version.



69

The most immediate performance increases would result from a completely parallel version of

this function. The computation of the 500 subproblems used in this twin experiment took six

hours to complete.
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The Multiple-Markov Chain Subproblem Algorithm

do {

k ← k + 1

zT−1 = sync(ωfid,yT−1, γfid)

µ2 = N−1
T N−1

M

∑NT−1
t=0

∑NM

i=1 ai(t)
2(zi(t)− yi(t))2

Subroutine to Obtain γ(k), and φ0 such that φ0 = φ(ωfid,yT−1, γ
(k)) ≈ µ

z̃T−1 = sync(ωfid,yT−1, γ
(k))

a(t)2 = (z(t)(k)−z(t))2

var({ω})

α = σ({ω}(k−1))/(ωu − ωl)

MH subroutine using β(k−1) to obtain ‘high temp’ {ω}(k)0

MH subroutine using β∞ to obtain ‘low temp’ {ω}(k)∞

Reduce β∞ → β(k) such that Pacc ≈ 〈Pacc〉target

MH subroutine using β(k) to obtain {ω}(k)

if 〈φ(ω)〉 < φ0 then ωfid ← 〈{ω}(k)〉E

} while 〈dγ
(k)

dk 〉k > εEQ

Figure 7.3: The subproblem algorithm of the synchronized fiducial multiple-Markov chain Monte
Carlo optimization routine.
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Equilibrium Coupling γ∞ of Multiple Markov Chain Monte Carlo

Figure 7.5: The value of γ(k) that is obtained in accordance with section 7.3.4 is plotted. An

average of 280 Markov updates are performed per subproblem. Notice that an equilibrium value

of ≈ 0.0745 is obtained rather quickly, after which it continually returns to the same value of

γ(k).



Chapter 8

Birdsong Neuron Models

The ability of a bird to sing is a pleasantly recognized skill; the acquisition of this ability

requires learning the skill, and is looked upon as an archetype for language learning in general.

The effects of many pheneomena such as practice, auditory and sensory-motor feedback, sleep,

and age upon the learning of and production of birdsong have been well studied. We refer

the reader to the following review articles for a more complete introduction to this subject:

Brainard and Doupe (2000, 2002); Margoliash (2004); Knudsen and Gentner (2010).

The zebra finch is one species of songbird that is studied due to its limited repetoire

of a single song, and very distinct learning period. Physically, the nuclei comprising the pre-

motor portion of the song-production system are very pronounced. Much is known about the

large scale connective structure and in some cases the role of the different nuclei in the various

stages of birdsong production (Long and Fee (2008); Wang et al. (2008)) Each nuclei contains

approximately 104 − 105 densely packed neurons, most likely with some level of heterogeneous

characteristics amongst them.

The High Vocal center (HVc) is generally considered to be the location of pre-motor song

initiation, with very sparse yet importantly-timed signals projecting to RA, the robust nucleus

of the archistriatum (Hahnloser et al. (2002)). HVc is also known to project to area X, which is

part of a set of delay-time feedback nuclei collectively known as the anterior forebrain pathway.

Projections from RA then lead to the motor control of the syrinx and lungs (see for example

Abarbanel et al. (2004); Wang et al. (2008); Gibb et al. (2009)).

Properly modelling the production, control and learning of birdsong would certainly

take detailed knowledge of this network, and possibly of finer structures within each nuclei.

However, with this vision in mind, the motivations for developing methods of data assimiliation

73
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that have been discussed until now become all the more apparent; especially when one considers

how it might be possible to probe such a high dimensional structure with limited measurements,

or limited intrusion (Buibas and Silva (2011)). Additionally, feedback networks of neurons are

known to exhibit chaotic properties, even as many of the neuron models that we construct do

not have obvious chaotic parameters sets.

We set out now with a far more modest task; to probe the nodes of this network, single

cells, with data assimilation attempts on an in vitro neuron from HVc. In this chapter we discuss

the pieces and creation of these models that will be used for that neuron and for the neuron

twin-experiments in the following chapter.

8.1 Gross Neuro-Anatomy

The cells that make up the nervous system of organisms utilize electrochemical gradients

of various ions, such as Na+ and K+, to generate fast electrical signals in response to external

stimuli. These signals also provide regulatory feedback, and control muscular tissue.

The propagation of electrical impulses through a neuron is generally in one direction,

originating from many small branched-structures that make up a dendritic tree, through the

soma or cell-body, and down an extended axon to another highly branching terminal region,

where it connects to subsequent neurons. Between neurons, signals are propogated via direct

electrical connections called gap junctions, or via synapses where chemical signals diffuse across

inter-cellular space (Cowen et al. (2001)).

The voltage across the cell membrane of the neuron is governed by the flow of ions through

specialized channel protiens embedded within the membrane. Like most cells, the membrane of

the neuron consists of a phospho-lipid bilayer; the phospho-lipids sit tail to tail, creating a

hydrophobic region in the center of the cell membrane, while the polar heads are exposed to the

aqueous medium of both the interior and exterior of the cell.

A wide variety of channel protiens have been discovered through their functional effects

on isolated neurons and in some cases their representation in the genome has been identified

(Kew and Davies (2010)). Some of them operate passively, as pores with a varying degree of ion

selectivity achieved by steric restrictions. Some ‘active’ channel protiens undergo conformational

changes causing them to open or close in response to changes in the potential across the mem-

brane, to the presence of ions such as calcium or magnesium, or by the attachment of chemical

signaling modelcules called ligands. These interdependencies create nonlinearity in the behavior

of the ion channel protiens and is one of the mechanisms which allows for the quick response to
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stimuli and the characteristic spiking observed in neuron membrane voltage.

As inferred from the genomic encoding of these protiens, neurons that serve different

specialized roles within a single organism are likely to draw from the same finite pool of channel

protiens. In this way they can be seen as a finite set of building blocks from which one can

account for a wide range of neural behavior, while specificity may be achieved through different

densities of these channels in the membrane.

8.2 Trans-Membrane Current Flux

The voltage difference across the cell membrane is defined (Johnston and Wu (1994)) as

Vm = Vint − Vext, and the resting potential of typical neurons is about −65 to −75 mV. The

double-wall structure of the phospho-lipid bilayer that makes up the cell membrane can store

charge like a parallel plate capacitor; assuming that this membrane capacitance Cm is constant,

the definition of current

I = Cm
dVm
dt

, (8.1)

is used as a starting point to model the behavior of the membrane voltage. Often the ‘size’ of a

neuron is colloquially described by its capacitance, where small interneurons may have a Cm ≈

20−25pF while large neurons can have a Cm as high as 100pF (Szücs (2012)). Additionally, the

specific membrane capacitance C̃m ≡ 1µF/cm2 is used as a unit of conversion, while biophysical

values range from 0.5− 3µF/cm2 (White (1970); Byzov (1958)).

The current flux accross the membrane occurs in different directions for different ionic

species due to the gradients established by the cell. The processes that establishes these gradients

such as the sodium-potassium pump operate on timescales that are much greater than present

interest and are not modeled. The definition of Vm and equation (8.1) together uniquely define

an orientation of the cell membrane in which the inward pointing normal is defined as positive1.

Considering the typical movement of ions during an action potential, Na+ and Ca+2 entering the

cell is a positive current flux, and K+ leaving the cell is negative (Cl− tends to flow inward, as a

negative current).

1We note that this introduces a sign difference between the membrane currents reported here
and neuron models which define the outward flux as positive and write CmdV/dt = −I. Ideally,
one would define outward flux of positive ions as positive, and use CmdV/dt = I, however this
implies Vm = Vext − Vint which gives neurons a resting potential of about +70mV.
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8.2.1 The Goldman-Hodgkin-Katz Equation

The trans membrane currents result from ion movement, which in turn depends upon

the local electric field as well as the ionic concentration gradients. One can describe this current

flux Φs for ion species S, with charge zs, through a trans membrane channel using the Goldman-

Hodgkin-Katz (GHK) equation (Goldman (1943); Johnston and Wu (1994)),

Φ̃s = −Psz
2
sV Xs(V )

qF

kBT

(
[S]int − [S]ext exp(−zsV q/kBT )

1− exp(−zsV q/kBT )

)
, (8.2)

where Xs(V ) is the voltage dependent probability that the given channel is open. The functional

form of Xs(V ), along with the ion species that passes through the pore, uniquely characterizes

the channel and is discussed in the following section. The variable definitions and units used in

the GHK equation are given in table 8.1.

Table 8.1: For proper numerical scaling and biophysical relevance, reasonable units for the
experimental parameters in equation (8.2) are given. (Note, 1 mL is assumed to be 1 cm3.)

Φ̃s µA/cm2

Ps µm/s
Vm mV
[S] mM
zs [unitless]
T Kelvin

q/kB K/mV 11.604519
F deca-Coulomb/mmol 9.64853365

Numerical Stability

The GHK equation (8.2) requires L’Hopital’s rule to evaluate V = 0 and therefore must

be approximated for numerical stability. Since the evaluation of the model functions are often

the most time consuming step of an optimization algorithm, it is important not to retain too

many terms in the expansion.

To this end, a Taylor expansion is performed about V = 0, and the coefficients of the

highest order terms (both positive and negative) are adjusted to extend the domain of voltage

over which the expansion is a close approximation. Rewriting (8.2) as

Φ̃s = PszsXs(V )F
(
[S]ext − [S]int exp(zsV q/kBT )

)
·

(
zsV q/kBT

exp(zsV q/kBT )− 1

)
,

the expansion is performed upon the last term in parentheses.
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It is also important to write them so that the terms do not combine floating point values

of vastly different magnitudes, therefore the following functional form is used for optimization,

ξV

eξV − 1
≈ 1− ξV/A+ (ξV/B)2

(
1− (ξV/9)2(1− (ξV/13)2)

)
/3 , (8.3)

where ξ = zsq/kBT . The coefficients were fit by eye at T = 35C so that for the zs = 1 case,

A = 2.000 and B = 2.018 results in < 0.5% relative error over V ∈ (−120, 65) mV. For the zs = 2

case (e.g. calcium), A = 1.950 and B = 1.965 results in < 3% relative error over V ∈ (−120, 45)

mV and < 13% relative error over V ∈ (−120, 65) mV. Note that it is more challenging to match

a given voltage range for divalent ions because of zs in the expansion.

8.2.2 Ohmic Current Flux

If the ratio of the internal to external ion concentration is approximately unity, the

Nernst equation may be used to calculate a reversal potential Erev for that ion species,

Es =
kBT

zsq
ln

[S]ext
[S]int

. (8.4)

The reversal potential is specific to an ion species, and so the subscript is reserved for the ion type.

This is a valid approximation for sodium and potassium, however the calcium concentrations can

differ by a few orders of magnitude and necessitate the use of the GHK equation for their accurate

description.

The Nernst equation may then be used to define a current flux given by Ohm’s law,

Φ̃s = g̃sXs(V ) · (Es − V ) , (8.5)

where again, Xs(V ) is the probability that that channel type will be found open, and is voltage

dependent. The specific maximal conductance, g̃ has units of millisiemens per square centimeter,

1S= Ω−1, giving [Φ̃s] = µA/cm2 again. This form of membrane current flux was used by Hodgkin

and Huxley in their studies of the giant squid axon (Hodgkin and Huxley (1952)).

Both this form for the current flux (8.5) and equation (8.2) may be used in the same

neuron’s voltage equation, allowing one to model the effects of calcium flux while taking numerical

advantage of the Nernst simplification for sodium and potassium.

8.2.3 The Effect of Temperature

Aside from consistency, a benefit to using the GHK equation (8.2) for all ionic species

is that it keeps the parameters of the model independent of temperature, whereas the reversal
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potentials in the Nernst equation are temperature dependent. By separating out this dependency,

one may arrive at more general characterizations of neuron populations.

The author speculates that, while the average temperature of the experimental setup is

very nearly constant (especially over the 100 − 1000 msec used for the optimization) the expo-

nential dependence of the gating kinetics, reversal potentials (and therefore spiking threshold),

on temperature likely makes the system as a whole sensitive to error in this value. The effects

of such measurement error is exactly what the arguments of chapter 5 are designed to address,

however to date the effects of error in temperature have not been evaluated.

8.3 Single Barrier Ion-Channel Model

The ion channels that are responsible for passive membrane currents, also known as leak

currents, are modeled with X(V ) = 1; these are combined into one ohmic current with a unique

reversal potential ELeak that takes into account multiple types of passive channels, and their lack

of ion selectivity.

The voltage dependent, or active channels that appear in (8.2) have far more structure,

and each usually consists of a few independently operating channel protiens2 that undergo a

conformational change depending with the voltage potential of the membrane (see, for example

Kew and Davies (2010)). The probability that the channel is open is then the product of the

probabilities that the individual gating protiens are in the open state.

The membrane-average state of each type of gating protien is given by a unique x,

representing the probability that it is found open x ∈ [0, 1]. Since the protien confirmations are

assumed to only depend on their current state and the transition rates α and β between states,

their dynamics is governed by the first-order kinetic equation

dx

dt
= α(1− x)− βx . (8.6)

The opening rate is given by α(V ) and the closing rate by β(V ).

The details of the voltage dependent rate equations α and β depend upon the mechanism

of the gating proteins. For simplicity, we assume that the energy landscape of the protein’s

conformational change consists of a single energetic barrier. Therefore the transition rates are

given by the Boltzmann factor e−E/kBT , where E is the energetic height of this barrier. Then

2These channel protiens are also often referred to as gating ‘particles’.
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for a voltage dependent barrier height these rates are

α(V ) = e−(Gα∓zαV )q/kBT

β(V ) = e−(Gβ±zβV )q/kBT
(8.7)

where Gα and Gβ represent the height of the energetic barrier (inmV ) of the opening and closing

rates respectively. The linear voltage dependence of the channel protien’s conformational change

is given by z, again the individual parameters for the opening and closing transitions indicate

a possible asymmetry to the confirmational change. Physically, z can be thought of as the net

charge on the particle that gates the channel.

By restricting z to be positive the ± signs designate how the channel responds to changes

in voltage. The top sign is used for m-particles, that open upon increasing voltage, and the

bottom sign is for h-particles, those that open with decreasing voltage.

Another representation of these kinetics, that is also often used and perhaps more aligned

with experiment is
dx(t)

dt
=

1

τ
(x∞ − x(t)) (8.8)

where τ(V ) is the time constant for the channel to return to a steady-state open-fraction, given

by x∞(V ). The transformation relating (8.6),(8.7) and (8.8) is

x∞ =
1

1 + β/α

τ =
1

α+ β

where

β/α = exp
(
−(G± zV )

q

kBT

)
= exp

(
−
V1/2 − V

κ

)
.

The top sign is again for m-particle while G = Gβ −Gα and z = zα + zβ are the same for both

types of protiens. This results in

V1/2 = ∓G
z

κ = ∓kBT
zq

,

where V1/2 is the voltage of half-activation in the x∞(V ) sigmoid, and κ is the slope at this

voltage.

8.3.1 Numerical Stability

The bare exponentials can become large when the membrane voltage is very large (small)

for the α (β) function. To avoid this purely numerical issue, for all calculations we rewrite them
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as logistic functions with a limiting rate of 1/dt, where dt is the integration timestep; this has

little effect on the performance of the gating particle. For those situations, we use the form

α(V ) =
1

e(Gα∓zαV )q/kT + εα

β(V ) =
1

e(Gβ±zβV )q/kT + εβ

(8.9)

with ε ≤ dtint, which reduces to (8.7) when εα and εβ are zero.

Additionally, there are instances where the time constant of the channel is found exper-

imentally to be appreciably non-zero at extreme voltages. This indicates that there is some kind

of restriction on the maximum transition rates and so the use of a logistic function with a larger

constant term ε is more appropriate.

Equivalently, the α(V ) and β(V ) may also be given by

α(V ) =
1

2ε

(
1 + tanh

−(Gα ∓ zαV )q/kBT + ln ε

2

)
β(V ) =

1

2ε

(
1 + tanh

−(Gβ ± zβV )q/kBT + ln ε

2

)
,

(8.10)

which has more numerically stable derivatives than (8.9). For an m channel, that opens with

increasing voltage, use the top sign; for an h channel, that closes with increasing voltage, use the

lower sign. Note that regardless of the form of the sigmoid that is used, stability with respect

to the bounds of the kinetic variables must be maintained; that is, if x(t) > 1.0 or x(t) < 0 the

model neuron will fail.

8.4 Single Compartment Neuron Models

The voltage measurements from a whole cell (current-clamp) experiment are dependent

upon the intrinsic neuron channel dynamics and an injected current Iinj applied by the experi-

menter so that (8.1) becomes the combined equation

Cm
dV

dt
= Am

∑
s

Φ̃s(V ) + Iinj ,

where Am is the surface area of the cell membrane, and the sum of current fluxes is over both

the channel type and active ion; e.g. one may have currents resulting from multiple channels, all

with different gating kinetics, but that are permeable to the same ion.

For calculations, this is rewritten as

dV

dt
= C̃−1

m

∑
s

Φ̃s(V ) + CmIinj ,
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where Cm/Am is replaced with C̃m ≡ 1.0µF/cm2 (note that both C̃m and Cm appear), thus

absorbing any discrepancy bewteen this assumed value and the actual value into g̃s for ohmic

current-fluxes described by (8.5), or into Ps for fluxes described by (8.2). Note that the units on

Iinj/Cm here must be Amp/Farad; typically Iinj is measured in nA.

8.5 Ion Channel Models

There are about a dozen well identified types of sodium channels and upwards of 40-50

potassium channels (Kew and Davies (2010)). Given the ability for combinations of the gating

particles to give rise to kinetically distict varieties, not to mention genetic mutations in the chan-

nel protiens, the number of possible channel types is rather large. Specific channel identification

is beyond the scope of this work, although in principle data assimilation may assist with this

type of problem.

Assuming that much of the channel kinetics is conserved across neurons and even to a

certain extent across organisms, it is quite reasonable to consider fixing these parameters when

one is concerned with whole-cell properties. The extent to which the data assimilation method

can correctly estimate these values is discussed later in the context of individual experiments;

in what follows the parameters for some common channels expressed using equation (8.9) or

(8.7) are taken from previously completed biological studies and compiled in the tables 8.2 and

8.3. Unless otherwise noted, the ε’s for all channel particles are negligible (ε ≈ dt for numerical

stability).

Table 8.2: Part I. Channel kinetics obtained from the literature.

Channel Formula Gα [mV] zα [·] Gβ [mV] zβ [·]

Nav1.1 x(V ) = m3hj Barela et al. (2006)
m -40 3.0 78 3.0
h 170 1.7 9.6 2.12
j - - - - not modeled

Nav1.2 x(V ) = m3h Stühmer et al. (1987)
m -10 1.3 108 1.58
h 150 1.2 -8.9 1.28

Nav1.7 x(V ) = m3h Cox (2006)
m -50 2.3 94.4 2.85
h 240 1.14 -64 3.14
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Table 8.3: Part II. Channel kinetics obtained from the literature.

Channel Formula Gα [mV] zα [·] Gβ [mV] zβ [·]

Kv1.1 x(V ) = m4 Grissmer et al.
(1994)

m 60 0.45 156 2.56

Kv1.2 x(V ) = m1 Grissmer et al.
(1994)

m 140 0.30 86.8 1.67

Kv3.1 x(V ) = m4 Grissmer et al.
(1994)

m 140 1.5 92.9 1.44

Kv10.x x(V ) = h Huguenard and McCormick
(1992)

(IH) h 388 2.28 49.7 1.86

Kv4.x x(V ) = m4h Huguenard and McCormick
(1992)

(IA1) m -45 1.3 135 1.7 εα = εβ = 0.37
h 162 0.68 -235 5.1 εβ = 20

8.5.1 Nav1.x (INaT) sodium channel

The INaT current is reponsible for the neuron depolarization that generates the ac-

tion potential. This channel is known to have three similar activation particles, m, and a fast

in-activation particle h. It is also suspected that the Nav1.1 channel has a second, slower inac-

tivation particle j, that is not modeled because complete kinetic information was not available.

Parameters are found from Barela et al. (2006) for the Nav1.1 channel; from Stühmer et al.

(1987) for the Nav1.2 type channel and from Cox (2006) for the Nav1.7 type channel.

8.5.2 Kv4.x (IA) potassium channel

The IA current is governed by a rapidly in-activating potassium channel gated by two

particles in an m4h configuration. The h particle of the IA channel has quite a functionally

interesting time constant τ(V ) which is responsible for the rapid in-activation of this channel.

Huguenard & McCormick (Huguenard and McCormick (1992)) use a piecewise function to de-

scribe the time constant, however we are able to use a continuous function at the expense of using

more extreme values of Gα and zα. Additionally they find that this channel requires non-zero
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time constants εα,β because τ(V ) remains appreciable at extreme voltages.

8.5.3 Kv10.x (IH) potassium channel

The IH current is seen in many cell types as a sag response to a hyperpolarizing injected

current. The current is found experimentally to have a single activation particle h, that opens

with decreasing voltage. This channel is thought to have a less selective pore than others,

allowing both sodium and potassium ions through when it is open. For GHK currents, we model

the permeability of this channel by a single parameter and fix the relative amounts of sodium

and potassium based upon the inverse of their relative ionic cross-sectional area. Done this

way, the sodium contribution receives a prefactor of 0.631 and the potassium 0.368. For ohmic

currents, we model this channel with a unique reversal potential that accounts for both sodium

and potassium ions.

8.5.4 Cav1.x & 3.x (IL & IT ) calcium channels

The IL and IT currents are low-threshold calcium currents, letting calcium flow into the

cell similar to the action of sodium but on a much slower timescale. Following Huguenard &

McCormick again, we model IT as being gated by two types of particles in an m2h configuration.

The IL current follows m2 kinetics but parameter values were not obtained from the literature.

8.5.5 KCa (IKCa or IBK) calcium-gated potassium channel

The IKCa channel is somewhat more complicated than the ones we have discussed until

now. Dispite the interest in this complicated piece of biological machinery, good experimental

data of the time constant is difficult to find. We follow conventional wisdom and model this

channel as being selective to potassium ions, with activity composed of four gating particles that

open upon increasing voltage in an m4 configuration. As with all channel types, there are genetic

variants, however it is thought that up to three calcium ions bind to the interior region of each

particle affecting the voltage sensitivity. We have found that it is possible to account for the

majority of the calcium binding effect through changes to the energetic barrier of the particle as

a function of the internal calcium concentration. Based upon experimental studies by Cui et al.

(1997) and Prakriya et al. (1996), the effect of this calcium binding upon the charge of the particle

(zα and zβ) is measureable, however minor in its effect on the overall voltage sensitivity to the
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time constant. We model the kinetics of this particle with the following equations,

α(V, [Ca]i) = e−(Gα([Ca]i)−zαV )q/kBT

β(V, [Ca]i) = e−(Gβ([Ca]i)+zβV )q/kBT ,

with zα = 0.75 and zβ = 0.5. The calcium dependent energetic barriers are given by the following

power-laws

Gα([Ca]i) = Aα[Ca]
p
i

Gβ([Ca]i) = Aβ ln
q[Ca]i ,

with Aα = 160mV, p = −0.2, Aβ = 17.5mV, q = 0.6 and [Ca]int measured in µM . Note that

because of the ln[Ca] in Gβ this functional form is only valid with [Ca]i ≥ 1µM , Gβ is considered

to be zero at lower concentrations. These parameters were obtaind by fitting time constants by

eye to the data collected by Cui et al. (1997).

8.5.6 Calcium Dynamics

Typical interior concentrations of calcium range from 5-100 nM, while the exterior con-

centrations are more commonly in the mM range. Due to such large variations, if one uses IKCa

channels it is important to model [Ca+2]int(t) as a dynamical variable. One aspect of calcium

dynamics that is possibly important but not represented in this model is that interior concen-

trations may be much higher locally around the calcium channels, especially if the IKCa are

in close proximity to the IL and IT channels, allowing the IKCa to experience a more extreme

calcium gradient. The calcium enters the cell through the voltage-gated IL and IT channels and

is sequestered by the cell in the smooth endoplasmic reticulum where it is buffered and regulated

by intermediate messenger molecules (Blackwell (2005)).

The effects of calcium dynamics, and the IKCa channels were not used in any of the

models here.



Chapter 9

Neuron Twin Experiments

In this chapter are presented twin experiment results with various neuron models using

a variety of computational techniques. The first experiment is worked through in detail to show

how the algorithm described in chapter 6 may be used to ascertain the impact of model error

about a locally optimized solution.

We also describe the results of some data assimilation twin experiments performed on

neuron models from the previously published works of Abarbanel et al. (2011), Toth et al. (2011),

and Kostuk et al. (2012). These papers address interesting questions including the effects of

measurement noise on some varational optimization methods, the attempt at assimilating data

from an incorrect model, and dynamical considerations that one should address when designing

an input stimulus for those systems –such as a neuron– that may be driven by the experimenter.

9.1 Model Error of a GHK Twin Experiment

We performed a twin experiment on a model (GHK-1069) inspired by the discussion in

the previous chapter, that uses the Goldman-Hodgkin-Katz (GHK) equation (8.2) to describe

the current flux across the cell membrane. A set of permeabilities for a spiking neuron using

the various ion channel kinetics that were collected from the literature in tables 8.2 and 8.3 was

not found, therefore the kinetics of the twin experiment are given by the parameters that were

obtained using the variational optimization on a physical HVc neuron described in detail in the

next chapter.

Using these kinetics in a twin experiment has the benefit that one can see how they

respond to the incorporation of model error when a reference exists (i.e. the ‘unmeasured’

85
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variables of the twin experiment ‘data’). With this in mind, the purpose of this twin experiment

is to demonstrate the effect of model error on a neuron model with GHK currents, and to help us

better interpret the results of allowing model error on the unmeasured variables of the physical

neuron in the subsequent chapter.

The data is generated using an explicit fourth order Runge-Kutta method with a timestep

of dtint = 0.002 ms and reported at dtobs = 0.20 ms. The data assimilation window consists of

NT = 4096 time points spaced at dtobs for a total time of 819.2 ms; the total length of the data

timeseries is required to properly sample kinetics that presumably have slow time constants,

while the short integration timestep is required by the explicit method to alleviate numerical

instabilities in the exponentials near the kinetic boundaries. The timestep dtint = dtobs = 0.2 ms

is used in the Monte Carlo evaluation, for which any error in the discretization method is still

less than the level of model error being allowed by σ2
m and σ2

f . We note that this is identical to

the setup used to ascertain model error of the physical neuron in the next chapter.

The model error in the states and parameters is determined using the single-Markov

chain Monte Carlo algorithm described in chapter 6. The measurement noise is taken from

the RMS variation in the experimental voltage trace of the physical neuron (during a period of

constant current) that is analyzed in the next chapter, and is

σm = 0.2597 mV .

A value for σ2
f is simply chosen to reflect a presumed level of model error, however the choice

greatly affects the ability of the Markov chain to reach equilibrium in a reasonable amount of

time. The rule of thumb that is followed for this algorithm is to use σf =
√
2σ2

m. As such the

coefficients of the conditional mutual information term and the model error term in the action

are given by

1

2σ2
m

= 7.41 mV−2

1

2σ2
f

= 54.91 ,

respectively. The units of the different dimensions of the model noise [σf ] are assumed to be

equal to their respective variable; mV for the voltage and unitless for the gating probabilities. For

simplicity the magnitude of model noise is assumed to be constant over the different dimensions

of the model.

The full set of parameter bounds and the set that is used to generate the data are given

in appendix C.
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9.1.1 GHK-1069 Model Equations

The full model equations that are used for this twin experiment are

dV

dt
= (PNaTm

3
1h2 + 0.631PHh6)([Na]ext − [Na]int exp(V ·QKT))GHKz1

+ (PKA1m3 + PKA2m
4
4h5 + 0.368PHh6)([K]ext − [K]int exp(V ·QKT))GHKz1

+ (gCaLm
2
7 + gCaTm

2
8h9)([Ca]ext − [Ca]int exp(V ·QKT))GHKz2

+ gL(EL − V ) + C−1
m Iinj

m1

dt
=

1−m1

exp[(G1α − z1αV )QKT] + ε1α
− m1

exp[(G1β + z1βV )QKT] + ε1β
h2
dt

=
1− h2

exp[(G2α + z2αV )QKT] + ε2α
− h2

exp[(G2β − z2βV )QKT] + ε2β
m3

dt
=

1−m3

exp[(G3α − z3αV )QKT] + ε3α
− m3

exp[(G3β + z3βV )QKT] + ε3β
m4

dt
=

1−m4

exp[(G4α − z4αV )QKT] + ε4α
− m4

exp[(G4β + z4βV )QKT] + ε4β
h5
dt

=
1− h5

exp[(G5α + z5αV )QKT] + ε5α
− h5

exp[(G5β − z5βV )QKT] + ε5β
h6
dt

=
1− h6

exp[(G6α + z6αV )QKT] + ε6α
− h6

exp[(G6β − z6βV )QKT] + ε6β
m7

dt
=

1−m7

exp[(G7α − z7αV )QKT] + ε7α
− m7

exp[(G7β + z7βV )QKT] + ε7β
m8

dt
=

1−m8

exp[(G8α − z8αV )QKT] + ε8α
− m8

exp[(G8β + z8βV )QKT] + ε8β
h9
dt

=
1− h9

exp[(G9α + z9αV )QKT] + ε9α
− h9

exp[(G9β − z9βV )QKT] + ε9β

(9.1)

where the GHK expansions for the cations are given by the expansion in equation (8.3), and

the value of QKT is fixed at 0.037756 mV−1to mimic the experimental data of chapter 10. This

model has Nx = 10 and Np = 69.

9.1.2 Equilibrium of the Markov Chain

The burn-in phase of the Monte Carlo calculation proceeds for 50,000 iterations, gen-

erating 2.97x107 updates to each dimension of the parameter vector p, in accordance with the

sampling adjustment1 described in section 6.2.2. These iterations are discarded while the Markov

chain settles into an equilibrium state. The statistics gathering phase involves twice as many

iterations as the burn-in phase, during which time 100 uniformly-spaced (in iterations) samples

are selected to represent the distribution. These samples are used to calculate the averages and

standard deviations that are reported here; it is possible to calculate higher moments if one is

1NxNT /Np ≈ 594
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interested in knowing them. These samples form the distribution that is integrated forward,

individually and noise-free, to generate the prediction distributions shown in the figures.

To ensure that the statistics are valid the Markov chain should be in a steady state

during the statistics collection phase. This means that the average value of the action 〈A〉 should

remain roughly constant during this time, relative to the size of the fluctuations, indicating a

quasi-equilibrium state. Figure 9.1 shows A(k) for both the burn-in phase (top) and the statistics

phase (bottom).

The large scale undulations of A are possibly indicative of poor mixing, meaning that

the stepsize α may be too small to effectively sample the entire space (Rosenthal (2011)). This

stepsize is not set directly, but is adjusted prior to the burn-in phase in an attempt to match the

user-determined target mean acceptance rate 〈Pacc〉target of the chain; this observation of poor

mixing would suggest reducing 〈Pacc〉target towards zero.

However, adequately sampling an entire space of this size is ultimately a question of

patience and the overall behavior of 〈A〉 is not trending (neither increasing nor decreasing) which

is the key element for us to declare this chain as sufficiently equilibrated. If the chain has not

come to equilibrium the distribution will drift away from the local solution by an amount much

greater than a standard deviation of the model error.

9.1.3 Voltage Assimilation and Prediction

The results of the Monte Carlo calculation are shown for the voltage variable of the

model as 〈V 〉 ± σ(V ) in figure 9.2. The segment of the timeseries that is shown straddles both

the end of the data assimilation window and the beginning of the prediction period, separated

by the vertical line at t = 819.2ms.

The ‘measured’ data voltage is shown for comparison; this is the data that is provided

to the model and assimilated into the state variable determination via the conditional mutual

information term in the action. During the assimilation window the average values of model

spikes are somewhat diminished relative to the data, however the full height of the spikes remains

comparable to the data during the prediction phase. The spike-timing of the prediction with

model error also remains consistent with the data system. However, without the assimilated

data the average sub-threshold potential of the model neuron is clearly depolarized (shifted to

higher voltage) relative to the data system. The prediction may be continued for the duration of

the injected current (≈ 2.5sec) without futher deterioration (not shown).
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Action of Markov Chain for GHK-1069 Twin Experiment

Figure 9.1: The action A as a function of the iteration of the Markov Chain Monte Carlo

simulation is shown for the GHK-1069 neuron model twin experiment. A qualitiative assessment

of equilibrium is provided by the overall lack of trend in 〈A〉 relative to the scale of the fluctuations

in A.

9.1.4 Model Error of an Unmeasured Variable

Next, we examine the effects of model error an an unmeasured state variable in the

context of a twin experiment where there is access to the ‘true’ value of the state. We look at

one of the gating variables in the sodium current, m1, which involves Na+ ions entering the cell

when the membrane voltage exceeds a threshold potential (of ≈ −45 mV). It is gated by two

particles in an x(V ) = m3(V )h(V ) configuration as shown in equation (9.1).

In figure 9.3 one can see the effect that the incorporation (or lack thereof) of the mea-

surements during the assimilation window have upon the prediction of this unmeasured state

variable. Note the overall increase in the baseline of this variable’s predicted average relative to

the data value, as well as the relative increase in variance (shown in red).
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As the kinetics of this model are adapted from the experimental problem in chapter

10, performing this twin experiment may be seen as validation of the suppositions made there.

Namely, that the shift in behavior of this variable before and after the assimilation window

is indicitive of it being sensitive to model error, and therefore suggestive of a focus for model

improvement. This will be discussed further in section 10.3.3.

9.2 Hodgkin-Huxley Model with Noise

The results of another data assimilation twin experiment are given in Abarbanel et al.

(2011), this time using the Hodgkin-Huxley neuron model (not repeated here (Hodgkin and Huxley

(1952))). The twin-experiment is also setup to mimic a current-clamp protocol where a current

is injected into the neuron, and its voltage response is recorded.

The related minimization problem is solved using the balanced synchronization objective

function (equation (3.4)) by the nonlinear variational solver SNOPT (Gill et al. (2005)). The

model has Nx = 4 and Np = 22; the timeseries of assimilated data is short by comparison

with the other results here, approxiately 100 ms, but sampled at a frequency of 100 kHz to give

NT = 4000. The authors suggest the use of a chaotic input current to expand the combined

dimension of the data-model system, thereby allowing the optimization to better distinguish

between dynamical models with similar parameter sets.

9.2.1 Observational Noise Reduction via Synchronization

Also in Abarbanel et al. (2011), observational noise that is added to the measurement

(and assimilated into the model) is shown to be filtered during the optimization process through

the connection to the model; a model which does not contain modes that operate as fast as the

observational noise. The resultant, optimized voltage trajectory contains reduced noise relative

to the input.

Limits to this filtering do exist, and if sufficient noise is present the optimization step

will eventually fail. This occurs through the use of increased coupling (or constraint violations in

the differential equations, if they are permitted as model error) and consequently the estimation

of the unobserved state variables deteriorates.
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9.3 NaKl & NaKlH Assimilation using Varia-

tional Method

A data assimilation twin experiment, between two different Hodgkin-Huxley like models

is carried out by Toth et al. (2011). The twin experiment is setup to mimic a current-clamp

protocol and the associated minimization problem is solved using a balanced synchronization

objective function (equation (3.4)) by the nonlinear variational solver IPOPT (Wächter (2002)).

The models equations (9.2) and (9.3) are given at the end of the chapter.

The two models that are used have a sodium, potassium and leak current, with the

channel dynamics governed by hyperbolic tangent functions (as in (8.10)) and the currents given

by the Nernst equation (8.4). The NaKlH (9.3) model contains an additional potassium current,

the IH current as described in section 8.5.3. In total the NaKl model has Nx = 4 and Np = 19,

while the NaKlH model has Nx = 5 and Np = 26; typical data assimilation windows were

NT = 1000− 10000 with a timestep dtint = dtobs = 0.02 ms.

9.3.1 Assessments of Incorrect-Model Assimilation

Within Toth et al. (2011) the question of assimilating data into an incorrect model is

addressed in two complementary ways. Firstly, data from a NaKlH system is presented to

the NaKl model for assimilation. As the NaKl model lacks the IH current, it is incapable of

reproducing the NaKlH voltage data without assistance from the synchronization coupling.

The second case used to illustrate model-incorrectness involves assimilating data from a

NaKl system into a NaKlH model. In this situation, the NaKlH model contains an additional

current that is not necessary to generate the data that is presented to it. The result of the opti-

mization procedure on this experiment reported the maximal conductance of this channel to be

gH = 10−9 mS/cm2, indicating its irrelevance compared to the other channels with conductances

ranging from 0.3− 120 mS/cm2.

9.3.2 Adequate Stimulus Protocols

As the unobserved state variables must have a relevant effect on the dynamical output of

the model in order to be adequately estimated, the design of the injected current is important to

determining the channel properties of neuron models. In Toth et al. (2011), the influence of the

injected current on the ability to estimate the maximal conductance of the additional channel

gH is also tested. The IH current activates (opens) when the neuron is hyperpolerized (driven
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to greater negative membrane voltages) with a stablizing effect, preventing further hyperpolar-

ization; It is found that the optimization is better able to estimate the gH parameter when the

system is driven by a strongly hyperpolarizing current. This indicates that for the success of

any optimization procedure it is crucial to excerise as much of the model’s dynamical range as

possible within the data assimilation window.

Consideration must also be paid to the frequency content of the stimulus current, as the

gating dynamics operate with different refractory time constants described by (8.8). As shown

in Toth et al. (2011) very high frequencies, above those that are attenuated by the nueron’s RC

low-pass filter properties, do not assist the parameter estimation; while it remains important to

use a complicated enough stimuls to perturb, and therefore have a better chance of distinguishing,

the trajectories of dynamical systems with similar parameters and state variables.

9.4 NaKl & NaKlH Model Error

The same two Hodgkin-Huxley like models are used in Kostuk et al. (2012) and examined

using the Markov chain Monte Carlo techniques described in chapter 6. This approach approx-

imates errors in the model as additive gaussian noise according to section 5.4.2, and provides

statistical information about the solution provided by the variational optimization.

As the studies in Kostuk et al. (2012) are twin-experiments, the actual noise in the

‘measured data’ is extremely small, akin to machine precision. So to make the situation more

experimentally realistic, the noise in the voltage measurements is taken to have an RMS deviation

of ±0.25 mV, which is approximately what is seen in actual experiments. The noise coefficients

used in the path integral are 1/2σ2
m = 8 mV−2 and 1/σ2

f = 80.

The data assimilation window for the Monte Carlo estimations is 40.96 ms, and uses 4096

time points in the path integral approximation with an integration timestep between collocated

variables of dtint = 0.01 ms.

The error associated with the posterior distribution of the parameter estimates was

typically small, with relative standard deviations σ/x̄ ≈ 0.05, for both the NaKl and NaKlH

twin experiments. However for the case of assimilating data into an incorrect model, where data

is generated from the NaKl model and assimilated into the NaKlH model again results in a

conductance for the IH current (which is not present in the data system) near zero. At the end

of the statistics gathering phase, gH = 0.019± 0.015 mS/cm2.
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NaKl Model

dV

dt
=

1

Cm

{
gNam

3
1h2(ENa − V ) + gKm

4
3(EK − V ) + gL(EL − V ) + Iinj

}
dxi
dt

=
1

τi(V )
(xi,∞(V )− xi)

(9.2)

with

xi,∞(V ) =
1

2
+

1

2
tanh

V − vi
dvi

τi(V ) = τa + τb

(
1− tanh2

V − vi
dvi

)
and i ∈ {1, 2, 3}; each gating particle has p = {vi, dvi, τa, τb} for a total of Nx = 4 and Np = 19,

Cm ≡ 1µF/cm2.

NaKlH Model

dV

dt
=

1

Cm

{
gNam

3
1h2(ENa − V ) + gKm

4
3(EK − V ) + gHh4(EH − V ) + gL(EL − V ) + Iinj

}
dxi
dt

=
1

τi(V )
(xi,∞(V )− xi)

(9.3)

with

xi,∞(V ) =
1

2
+

1

2
tanh

V − vi
dvi

τi(V ) = τa + τb

(
1− tanh2

V − vi
dvi

)
and i ∈ {1, 2, 3}, as in the NaKl model. In addition, the H-current is given by

h∞(V ) =
1

2
+

1

2
tanh

V − va
dva

τ(V ) = τa + τb tanh
V − vb
dvb

which has p = {va, dva, τa, τb, vb, dvb} for a total of Nx = 5 and Np = 26, Cm ≡ 1µF/cm2.
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Chapter 10

High Vocal Center Neuron

Results

In this chapter we report on the data assimilation results of voltage data taken from a

single neuron1, obtained from a current-clamp slice preparation of the High Vocal center of a male

zebra finch, and assimilated into a Hodgkin-Huxley like model with calcium currents described

by an approximation to the Goldman-Hodgkin-Katz equation.

The analysis proceeds in two parts, similar to what was done for the twin experiments

of the previous chapter, where an adequate solution is found using a variational optimization

method, followed by the collection of statistics about this solution using Markov Chain Monte

Carlo.

10.1 Design of the Stimulus Current Protocol

Following the ideas in Abarbanel et al. (2011), the current stimulus used to drive the

neuron should have enough structure to adequately excercise the full dynamical range of the

neuron. A chaotic current, such as one of the dimensions of the Lorenz ’63 system, has been

shown to aid in the success of the associated optimization problem. However, a current that

varies at too high of a frequency is lost by the RC filtering of the neuron.

In order for the channels with slower kinetics to be represented in the voltage measure-

ment, constant step currents are useful to probe the passive membrane properties. Note that

our ability to assimilate very long timeseries of data has improved since the development of the

1In our database it is neuron 201105 1 3 epoch 12.
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current stimulus in figure 10.1, thus restrictions were placed upon the step currents to keep them

each to 50 ms in duration. This severe of a restriction is no longer pertinent, and improved results

on the slower channels, such as calcium and passive sodium, may be realizable with longer steps.

The scale of the injected current above and below Iinj = 0 that appropriately stimu-

lates the neuron are different; the cell allows for a greater magnitude of current in the positive

(depolarizing) direction and far less in the negative (hyperpolarizing) direction.

With these considerations in mind, the injected current stimulus in figure 10.1 is typical

of the types used to stimulate neurons for data assimilation and is precisely the one used for the

subsequent results.

10.2 Balanced Synchronization Results

The analysis proceeds in two steps; firstly, an optimization routine is used to find a quality

solution to the data assimilation problem, and then the effects of model error and measurement

noise about this solution are ascertained using the MCMC algorithm described in chapter 7. In

this section we focus on the results from the first step.

The optimization of this neuron is done using the variational algorithm IPOPT (Wächter

(2002)), which employs a collocated balanced synchronization objective function to solve

minimize φ(ω,yT−1) =

NT−1∑
t=0

NM∑
i=1

(
xi(t)− yi(t)

)2
+ γ2 ·

(
1 + 5Tanh

(xi(t) + 25

5

))2
subject to x(t+ 1)− F(x(t),x(t+ 1),p,yT−1, γ) = 0 .

The Simpson rule with Hermite interpolation is used to discretize the model equations into F that

are presented as equality constraints. The factor multiplying the coupling γ may be interpreted

as a voltage dependent penalty parameter. It has the effect of strongly weighting γ when the

neuron is spiking, thus emphasizing solutions where the spiking occurs without the need for the

coupling. Crafting an objective function that extracts the qualities of interest from the space of

possible models remains an art form.
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Injected Current Stimulus

Figure 10.1: A four panel figure of a single injected current lasting approximately 2 seconds is

shown. It proceeds from top to bottom, left to right. This is the current signal that is provided

to the neuron that is analyzed extensively in this chapter.
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10.2.1 Mixed-1280 Neuron Model

The neuron model that is used to assimilate the data contains currents based upon

the Nernst approximation to the GHK equation. These Hodgkin-Huxley like currents operate

according to kinetics described by the logistic function according to equation (8.9). In total, the

model has Nx = 12 state variables and Np=80 parameters, six for each gating particle. as well

as parameters that describe the maximal conductances of each ion channel, and their reversal

potentials. This accounts for two sodium channels, two potassium channels, an H current, two

calcium currents and a leak current, in addition to the membrane capacitance. Not all of these

channels are found to be present by the optimization routine.

We note that this model contains a completely redundant sodium channel, described by

gNa2 and the state variables m10 and h11 in the model (10.1). It was included after noticing that

many (physical) neurons show structure in their spike shape that cannot easily be accounted for

by a single type of sodium channel, or that perhaps require a multi-compartmental model for

their adequate description (Meliza and Margoliash (2012)). The variational optimization routine

finds a solution with the maximal conductance of this channel, gNa2 ≈ 3x10−12, that is essentially

zero, and so it appears in-consequential to the quality of the assimilated and predicted solutions,

albeit necessary for the success of the optimization. An otherwise equivalent model with this

channel omitted, i.e. Nx = 10 and Np = 67, was attempted however the optimization failed to

find a suitable solution. This may seem bizarre, but such is the world of nonlinear optimization.
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dV

dt
= (gNaTm

3
1h2 + gNa2m

3
10h11)(ENa − V )

+ (gKA1m3 + gKA2m
4
4h5)(EK − V ) + gL(EL − V ) + gHh6(EH − V )

+ (gCaLm
2
7 + gCaTm

2
8h9)([Ca]ext − [Ca]int)13/GHKe + C−1

m Iinj

m1

dt
=

1−m1

exp[(G1α − z1αV )QKT] + ε1α
− m1

exp[(G1β + z1βV )QKT] + ε1β
h2
dt

=
1− h2

exp[(G2α + z2αV )QKT] + ε2α
− h2

exp[(G2β − z2βV )QKT] + ε2β
m3

dt
=

1−m3

exp[(G3α − z3αV )QKT] + ε3α
− m3

exp[(G3β + z3βV )QKT] + ε3β
m4

dt
=

1−m4

exp[(G4α − z4αV )QKT] + ε4α
− m4

exp[(G4β + z4βV )QKT] + ε4β
h5
dt

=
1− h5

exp[(G5α + z5αV )QKT] + ε5α
− h5

exp[(G5β − z5βV )QKT] + ε5β
h6
dt

=
1− h6

exp[(G6α + z6αV )QKT] + ε6α
− h6

exp[(G6β − z6βV )QKT] + ε6β
m7

dt
=

1−m7

exp[(G7α − z7αV )QKT] + ε7α
− m7

exp[(G7β + z7βV )QKT] + ε7β
m8

dt
=

1−m8

exp[(G8α − z8αV )QKT] + ε8α
− m8

exp[(G8β + z8βV )QKT] + ε8β
h9
dt

=
1− h9

exp[(G9α + z9αV )QKT] + ε9α
− h9

exp[(G9β − z9βV )QKT] + ε9β
m10

dt
=

1−m10

exp[(G10α − z10αV )QKT] + ε10α
− m10

exp[(G10β + z10βV )QKT] + ε10β
h11
dt

=
1− h11

exp[(G11α + z11αV )QKT] + ε11α
− h11

exp[(G11β − z11βV )QKT] + ε11β

(10.1)

Note that in this model we have taken the specific membrane current C̃m ≡ 1µF·cm−2

as a definition, relegating any physical discrepancy into the maximal conductances, gX . State

variables denoted with an m indicate gating particles that open with increasing (polarizing)

voltage, while those denoted with an h open with decreasing (hyperpolarizing) voltage.

The GHK expansion for the calcium current given by

GHKe =
(
1 +

V
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(
1 +

V
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(
1 +

V

52

(
1 +

V

65

(
1 +

V

78

(
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91
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104

(
1 +

V

117

(
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130

(
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V

143

×
(
1 +
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(
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182

(
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V

195

(
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V

208

(
1 +

V

221

(
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V

234

(
1 +

V

247

(
1 +

V

260

×
(
1 +

V

273

(
1 +

V

286

(
1 +

V

299

(
1 +

V

312

(
1 +

V

325

))))))))))))))))))))))))
,

and was suggested by Nogaret (2011). The internal concentration of calcium does not vary in this

model and is fixed at [Ca]int = 100 nM. Also, QKT= q/kBT is not varied during the optimization

procedure, but is fixed for this specific neuron according to the average temperature of the cell

over the course of this recording, 〈T 〉 = 32.87± 0.06 ◦C, resulting in QKT= 0.037756 mV−1.
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10.2.2 Voltage Assimilation and Prediction

The assimilation window begins at t = 150 ms (omitting a section of constant current)

and lasts for a duration of 1500 ms; with the data sampled at a frequency of 50 kHz, this amounts

to NT = 7.5x104 data points. This is a majority of the individual recording epoch for this neuron,

which lasts about 2300 ms in total. Such a long window is used to get high precision parameters,

however results on twin experiments have been successfully obtained with windows as short as

50 ms. Of course, slower varying currents require longer assimilated timeseries.

After the assimilation procedure is complete2 the state variables of all dimensions of

the model are estimated, including the ones that are not measured directly such as those which

describe the ion channel gating probability, as are the model parameters. The model equations

are then integrated forward using the optimized parameters from the last time point of the

assimilation window, x(NT −1), and with the continuation of the same injected current that was

presented to the neuron to generate the prediction.

The entire voltage recording, along with the model voltage from both the assimilation

windown during the optimization and the prediction after the assimilation window is shown in

figure 10.2. The overlap between the two is quite remarkable, indicating that the model is capable

of reproducing both the spike timing and the voltage behavior in the hyperpolarized region. The

injected current is not shown, but the current that was used to stimulate this neuron is shown

in figure 10.1. A detailed version of the voltage comparison between the neuron and the model

is shown, accompanied by the injected current, in figure 10.3.

The parameters of this model that resulted from this optimization procedure, as well as

the statistical values (average and standard deviation) that result from the subsequent MCMC

calculation, are shown in three tables 10.1, 10.2 and 10.3. We will return to them after discussing

the details of the Markov chain Monte Carlo estimation.

10.3 Single Markov Chain Measurement Noise

and Model Error Estimates

The result of the variational optimization procedure (during the assimilation window)

is used as the starting location ω0 for the single Markov chain Monte Carlo calculation. This

consists of the full NTNx dimensional timeseries {x(0), . . . ,x(NT )} and Np parameters p; ω is

a point in a 49, 232 dimensional search space. Due to the hardware restrictions of the GPU

2The optimization process took 73.3 hours on a single 3.2GHz CPU.
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Variational Assimilation & Prediction of HVc Neuron (Full)

Figure 10.2: The full ≈ 2.3 sec of data recorded for this neuron is shown, wrapped to four

consecutive panels from top to bottom. Both the measured voltage (solid black) and the model

assimilation and prediction (dashed red) are given, where the vertical lines denote the assimilation

window t ∈ (150, 1650) ms and the prediction with optimized parameters (and zero synchroniza-

tion coupling to the data) follows until the end of the epoch. The injected current is omitted,

however the waveform used is shown in figure 10.1.
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on which the MCMC calculation is run, the total number of time points that can be used is

212 = 4096. The timeseries is downsampled, so that dtobs = 0.20 ms (dtint = 0.02) and the full

assimilation window is 819.2 ms in duration.

This starting point ω0 is then iterated forward according to the method described in

chapter 6 for 5x104 discared iterations, followed by 1x105 iterations of statistics collection, during

which NE = 100 samples are taken (uniformly over the statistics iterations). Note that this many

iterations during the statistics collection phase involves 4.91x109 perturbations and acceptance

evaluations to each dimension of p.

The values for the noise allowed in the calculation is the same as was used for the

GHK-1069 twin experiment,

1

2σ2
m

= 7.41 mV−2

1

2σ2
f

= 54.91 .

10.3.1 Chain Equilibrium

Figure 10.4 shows the value of the action as a function of the Markov chain evolution,

in terms of the algorithm interation, k. The action adjusts, during the burn-in phase, to a

value commesurate with the measurement error σm taken from the experimental voltage trace.

Afterwards it remains approximately constant (see section 9.1.2), and NE samples are collected

uniformly during this phase to estimate the distribution over the entire path xT−1 and parameters

p. The resultant ensemble of samples {ω̂} are individually integrated forward, and variance of

this integrated distribution is plotted as error bars in the figures 10.5, 10.6 and 10.7.

10.3.2 Optimized Parameters

In a three part table 10.1, 10.2 and 10.3, are listed all of the resultant parameters of the

optimization. The first table collects the reversal potential for the various ionic species and the

conductances of the neuron, along with the channel kinetic parameters from the NaT channel.

The following two tables contain the parameters split based upon their relevance to the model,

where those channels that are not necessary for the fidelity of the optimized prediction are in

the second table. The parameter bounds for both the IPOPT optimization and the assessment

of statistics by MCMC are given in table D.1 of the appendix.

Biophysically reasonable bounds are used for the reversal potentials, as the optimization

of them often proves to be problematic, resulting in a parameter that is pushed to one of the
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bounds. This occurs for both the ENa and EK potentials that are strained to their extremes,

which is a common occurrence with optimized neuron models, but does not occur for the IH

current reversal potential. The irrelevance of a channel current to the model voltage is declared

when the maximal conductance of that channel is found by the optimization to be approximately

zero, meaning that the kinetic parameters that influence these gating particles are also irrelevant.

From table 10.1 we see that the main contributions to the model’s voltage response are

given by the IA2 and INa1 currents. The extreme value of the potassium current and its relative

dominance over the sodium is unusual, although not completely unheard of, and is known to give

similar spike timings as models with gNa/gK � 1, where subtle variations are distinguishable

in the spike shape (Prinz et al. (2011)). The contributions of the additional currents that are

present, such as IA1 and ICaL, fall well within biophysically reasonable ranges as measured by

their channel conductances (Golowasch et al. (1999); Goldman et al. (2000)).

10.3.3 Optimized Channel Currents

In figure 10.6, the model error of the unmeasured variable m1(t) is shown for both a

portion of the data assimilation window and the prediction afterwards. This variable is the m

gating variable of the sodium channel, which opens as the cell is depolarized and is reponsible for

letting sodium ions flow into the cell, causing the sharp rise in voltage that is characteristic of an

action potential. What can be seen in this figure is that the model error allows for a significant

amount of variance in this variable, plotted as the standard deviation σm1(t). This, and the fact

that the average value 〈m1(t)〉 is elevated (relative to its location during the assimilation time

period) would have the effect of raising the overall potential of the cell. This likely contributes

to the wide range of values in the predicted value of the neuron voltage.

From a data assimilation standpoint, this shows that the m1 model variable is very

sensitive to errors in the model, and in a way that has a significant impact on the predicted

measurable (voltage) data. Contrast this with the m4 model variable, which is shown in figure

10.7, and for which the same level of noise in the model dynamics does not show nearly as

detrimental an impact on the predicted dynamics relative to its behavior during the assimilation

period.

Comparing the dynamical trajectory of an unmeasured variable between the assimilation

window and the prediction period, as done in figures 10.6 and 10.7, reveals the impact that the

measurement(s) have on maintaining the Markov chain near the optimized solution. If one

presumes a certain level of resilience in this biological system, or any system under study, they

would likely demand similar resilience from a quality model as well. The experimenter can
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therefore use this information to focus their efforts on obtaining improved models or parameter

sets related to those variables that are most sensitive to noise in the model, as improving these

areas are likely to have the most impact on improvements to the subsequent predictions.

10.4 Discussion of Optimized Neuron Results

This neuron is putatively an interneuron due to the relatively high frequency of spiking

and small size (20−25 pF). We posit that the high frequency of spiking assisted the optimization

process in arriving at a quality solution, as the full range of dynamics are excercised allowing for

the distinction between candidate model solutions during the assimilation process.

This neuron-model assimilation result is one of the more successful ones, in terms of

the fidelity of the future prediction, that has been obtained by the author to date. Collecting

more quality results from a population of neurons in HVc and uncovering possible classifications

between inter-neurons and projection neurons is a current work in progress (Abarbanel et al.

(2012)).

As there is no measured data with which to make a comparison for the unmeasured

gating particles, we show instead the resultant rate kinetics of the assimilated parameters in

appendix B. To the neurobiologist, this offers insight into whether the optimized parameters

plausibly represent the bio-physical channel dynamics of the neuron under study. Some of them,

e.g. the INa1 ‘m’ particle (m1) and the IA2 ‘h’ particle (h5), do not exhibit kinetics commesurate

with known biological behavior; while others, e.g. the INa1 ‘h’ particle (h2), ICaL ‘m’ (m7), and

the IA1 ‘m’ particle (m3), do exhibit plausible behavior.

As we are not attempting to identify specific channels, futher comparison is beyond the

scope of this work, however hopefully we have left the reader with the impression that such a

task is answerable within the general framework of data assimilation.
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Equilibrium Action of Markov Chain for mixed-1280 Model on HVc Neuron

Figure 10.4: The action of the Markov chain is shown for the 5x104 burn-in iterations (upper

panel) along with the 1x105 statistics collection iterations (lower panel). For the chain to be in

equilibrium, the overall trend of 〈A〉 should not be increasing nor decreasing relative to the size

of the fluctuations.
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Table 10.1: Part I. The parameters that result from the variational optimization of an HVc
neuron, and the assessment of noise about this solution. The bounds that were used for both
procedures can be found in the Appendix. Some parameters that appear in Part I. appear again
in later tables for convenience.

Parameter Units Variational 〈p〉 σp

C−1
m nF−1 3.941666e+01 50.24832 8.29715

ENa mV 4.500000e+01 59.20824 7.75353
EK mV -8.500000e+01 -122.30239 4.24563
EL mV -7.269787e+01 -72.75626 21.62558
EH mV -4.367534e+01 -48.71512 11.54734
gL mS/cm2 3.758373e-12 0.03023 0.01528

[Caext] mM 8.999548e+00 9.43534 2.65942

gNa1 mS/cm2 7.341148e+00 10.13042 0.82918
gNa2 mS/cm2 2.911103e-12 0.02138 0.01301
gA1 mS/cm2 2.470600e-01 0.21127 0.06158
gA2 mS/cm2 5.100000e+02 728.64011 34.61997
gH mS/cm2 1.272465e-12 0.00927 0.00544
gCaL mS/cm2 2.049909e-02 0.02006 0.00543
gCaT mS/cm2 2.516841e-13 0.01953 0.01101

gNa1 mS/cm2 7.341148e+00 10.13042 0.82918
Gαm mV -3.402891e+02 -339.01536 99.31301
zαm [·] 7.000000e+00 7.82044 1.88100
εαm [·] 4.213660e-02 0.05171 0.00670
Gβm mV 4.014904e+01 41.84444 10.53611
zβm [·] 5.000000e+00 4.95156 1.38977
εβm [·] 4.000000e-02 0.04995 0.00602
Gαh mV 2.754432e+02 275.12590 81.13355
zαh [·] 5.000000e+00 5.56253 1.18198
εαh [·] 3.209158e-01 0.33530 0.09540
Gβh mV -2.239083e+00 -2.41987 0.63264
zβh [·] 2.877228e+00 2.83652 0.87617
εβh [·] 4.000000e-02 0.05041 0.00563
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Table 10.2: Part II. The parameters that result from the variational optimization of an HVc
neuron, and the assessment of noise about this solution. The bounds that were used for both
procedures can be found in the Appendix.

Parameter Units Variational 〈p〉 σp

gA1 mS/cm2 2.470600e-01 0.21127 0.06158
Gαm mV -1.889764e+02 -188.69206 59.56649
zαm [·] 7.000000e+00 7.01804 1.97803
εαm [·] 1.739546e+00 1.76532 0.52649
Gβm mV -5.309936e+02 -560.41432 153.05653
zβm [·] 2.698601e+00 2.79542 0.80928
εβm [·] 1.438101e+02 123.75122 39.27438

gA2 mS/cm2 5.100000e+02 728.64011 34.61997
Gαm mV -4.952332e+02 -497.24613 145.34728
zαm [·] 5.000000e+00 4.85165 1.51840
εαm [·] 2.294526e+00 2.59608 0.61230
Gβm mV 9.801215e+00 9.90350 2.81759
zβm [·] 9.042192e-01 0.89169 0.25136
εβm [·] 4.000000e-02 0.05004 0.00600
Gαh mV 2.744450e+02 281.80443 81.41812
zαh [·] 7.000000e+00 7.57914 2.00267
εαh [·] 1.335403e+01 13.45143 4.46756
Gβh mV -2.781500e+02 -286.48243 75.71445
zβh [·] 7.000000e+00 6.95893 2.03511
εβh [·] 9.196644e+00 8.72900 2.62201

gCaL mS/cm2 2.049909e-02 0.02006 0.00543
Gαm mV -9.044624e+01 -87.86151 22.80013
zαm [·] 1.957267e+00 1.83452 0.51937
εαm [·] 1.289876e-01 0.12431 0.03600
Gβm mV 1.631071e+02 169.90936 45.54412
zβm [·] 7.000000e+00 7.04800 1.94155
εβm [·] 4.231150e+00 3.97929 1.15302

[Ca]ext mM 8.999548e+00 9.43534 2.65942
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Table 10.3: Part III. The parameter values of the channels with a maximal conductance ≈ 0,
and therefore presumed absent from the neuron in this form.

Parameter Units Variational 〈p〉 σp

gNa2 mS/cm2 2.911103e-12 0.02138 0.01301
Gαm mV -2.081181e+02 -202.86855 55.12413
zαm [·] 2.489339e+00 2.49183 0.61445
εαm [·] 4.080179e+02 400.87347 118.25967
Gβm mV -9.230537e+00 -10.11642 2.58550
zβm [·] 3.495205e+00 3.54056 0.93217
εβm [·] 4.089970e+02 440.12758 113.74883
Gαh mV -1.234778e+01 -12.01392 3.76722
zαh [·] 3.493162e+00 3.86045 1.02860
εαh [·] 4.098306e+02 416.41388 123.08780
Gβh mV -2.361097e+02 -239.61735 66.51639
zβh [·] 2.728242e+00 2.68865 0.89015
εβh [·] 4.089542e+02 398.11070 106.06683

gH mS/cm2 1.272465e-12 0.00927 0.00544
Gαh mV -1.164327e+01 -10.74471 3.31970
zαh [·] 3.493663e+00 3.73833 0.97009
εαh [·] 4.085324e+02 399.80118 107.57280
Gβh mV -2.128236e+02 -205.23405 60.07804
zβh [·] 2.498296e+00 2.61628 0.72541
εβh [·] 4.076516e+02 388.80110 109.39778

gCaT mS/cm2 2.516841e-13 0.01953 0.01101
Gαm mV -2.121085e+02 -218.07943 65.02975
zαm [·] 2.481215e+00 2.47620 0.73729
εαm [·] 4.117448e+02 367.89505 106.05881
Gβm mV 4.745622e+01 41.22607 12.28202
zβm [·] 3.443896e+00 3.34213 1.02725
εβm [·] 4.114233e+02 388.60514 123.15097
Gαh mV 4.315966e+01 46.35745 11.61695
zαh [·] 3.443573e+00 3.60238 1.06053
εαh [·] 4.123252e+02 379.32965 124.03386
Gβh mV -2.375531e+02 -234.63409 66.82619
zβh [·] 2.718202e+00 2.68636 0.79592
εβh [·] 4.124946e+02 443.37927 122.06687
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Appendix A

Notation Index

A great effort has been made to try and keep the notation consistent and to not re-use

variables whenever possible throughout this work. Collected here is a list of the most important

and commonly used symbols along with their intended meaning within.

Nx The dimension of the model dynamical system.

NT The number of time points in the data assimilation window, t ∈ (0, NT − 1)

x(t) The Nx dimensional state vector at time t.

xT = {x(t)}
∣∣∣t=T

t=0
= {x(0), . . . ,x(NT )}

The NT + 1 element timeseries of the model from t = 0 to t = NT

p The Np dimensional vector of model parameters.

f(x,p) The dynamical equations that describe the (uncoupled) model.

F The Nx dimensional map F : xt → xt+1

f ◦ (x,p) The dynamical equations that describe the coupled model.

F ◦ (x,p,y, γ) The Nx dimensional coupled map of the dynamics.

NM The dimension of the measurements; NM ≤ Nx.
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y(t) The NM dimensional vector of measurements at time t.

yT = {y(t)}
∣∣∣t=T

t=0
= {y(0), . . . ,y(NT )}

The NT + 1 element timeseries of measurements from t = 0 to t = NT .

g(y,q) The dynamical equations that describe the data system, with parameters q.



Appendix B

Ion Channel Kinetic Functions

Using Parameters from the

Mixed-1280 Model

Here are gathered the α(V ), β(V ), x∞(V ) and τ(V ) functions for the channel kinetics

that were obtained from the optimization and model error estimates of neuron (20110512 1 3 12).

The equations of these kinetics are all given by equation (8.9).
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Figure B.1: Optimized Channel Kinetics of INaT ‘m’ Particle
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Figure B.2: Optimized Channel Kinetics of INaT ‘h’ Particle
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Figure B.3: Optimized Channel Kinetics of IKA1 ‘m’ Particle
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Figure B.4: Optimized Channel Kinetics of IKA2 ‘m’ Particle
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Figure B.5: Optimized Channel Kinetics of IKA2 ‘h’ Particle
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Figure B.6: Optimized Channel Kinetics of ICaL ‘m’ Particle



Appendix C

Parameter Bounds and ‘Data’

Values for GHK-1069 Twin

Experiment
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Table C.1: Part I. Parameter Bounds and Results of GHK-1069 Model Error Analysis

Single Markov Chain Monte Carlo
‘Data’ Results

Parameter Units Lower Init. Cond Upper 〈p〉 σp

C−1
m nF−1 35.478 39.42 43.362 39.90220 2.42565

[Na]ext mM 131.4 146.0 160.6 151.19007 6.51289
[Na]int mM 22.185 24.65 27.115 24.46308 1.53994
[K]ext mM 2.25 2.5 2.75 2.45049 0.13019
[K]int mM 64.755 71.95 79.145 71.95799 3.57256
[Ca]ext mM 7.92 8.8 9.68 8.69852 0.50477
[Ca]int mM 9e-05 1.0e-04 0.00011 0.00010 0.00001
gL mS/cm2 0.0333 0.037 0.0407 0.03676 0.00176
EL mV -79.97 -72.7 -65.43 -74.52784 3.64690

PNa1 µm/s 1.7334 1.926 2.1186 1.98578 0.09842
Gαm mV -374.31801 -3.402891e+02 -306.26019 -339.57535 19.22981
zαm [·] 6.3 7.000000e+00 7.7 6.88246 0.38713
εαm [·] 0.03792294 4.213660e-02 0.04635026 0.04213 0.00233
Gβm mV 36.134136 4.014904e+01 44.163944 39.59822 2.31557
zβm [·] 4.5 5.000000e+00 5.5 4.96078 0.28172
εβm [·] 0.036 4.000000e-02 0.044 0.03975 0.00231
Gαh mV 247.89888 2.754432e+02 302.98752 275.85187 16.61517
zαh [·] 4.5 5.000000e+00 5.5 5.00456 0.26947
εαh [·] 0.28882422 3.209158e-01 0.35300738 0.31874 0.01903
Gβh mV -2.4629913 -2.239083e+00 -2.0151747 -2.26608 0.13045
zβh [·] 2.5895052 2.877228e+00 3.1649508 2.86698 0.17590
εβh [·] 0.036 4.000000e-02 0.044 0.04008 0.00222

PA1 µm/s 0.0621 0.069 0.0759 0.07073 0.00382
Gαm mV -207.87404 -1.889764e+02 -170.07876 -186.46662 10.95944
zαm [·] 6.3 7.000000e+00 7.7 6.86198 0.37611
εαm [·] 1.5655914 1.739546e+00 1.9135006 1.70539 0.09498
Gβm mV -584.09296 -5.309936e+02 -477.89424 -535.80879 32.69298
zβm [·] 2.4287409 2.698601e+00 2.9684611 2.70847 0.15258
εβm [·] 129.42909 1.438101e+02 158.19111 144.19762 8.76362

PA2 µm/s 1.197 1.33 1.463 1.34163 0.06550
Gαm mV -544.75652 -4.952332e+02 -445.70988 -510.11743 23.56007
zαm [·] 4.5 5.000000e+00 5.5 4.89670 0.25968
εαm [·] 2.0650734 2.294526e+00 2.5239786 2.34023 0.12347
Gβm mV 8.8210935 9.801215e+00 10.7813365 9.63010 0.58221
zβm [·] 0.81379728 9.042192e-01 0.99464112 0.92379 0.05107
εβm [·] 0.036 4.000000e-02 0.044 0.03957 0.00208
Gαh mV 247.0005 2.744450e+02 301.8895 271.81162 14.80204
zαh [·] 6.3 7.000000e+00 7.7 7.06150 0.35962
εαh [·] 12.018627 1.335403e+01 14.689433 13.34129 0.72423
Gβh mV -305.965 -2.781500e+02 -250.335 -273.33965 14.16798
zβh [·] 6.3 7.000000e+00 7.7 7.00760 0.37017
εβh [·] 8.2769796 9.196644e+00 10.1163084 9.12169 0.54390
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Table C.2: Part II. Parameter Bounds and Results of GHK-1069 Model Error Analysis

Single Markov Chain Monte Carlo
‘Data’ Results

Parameter Units Lower Init. Cond Upper 〈p〉 σp

PH µm/s 0.00558 0.0062 0.00682 0.00627 0.00032
Gαh mV -12.807597 -1.164327e+01 -10.478943 -11.53498 0.72229
zαh [·] 3.1442967 3.493663e+00 3.8430293 3.46242 0.19546
εαh [·] 367.67916 4.085324e+02 449.38564 398.53929 21.98915
Gβh mV -234.10596 -2.128236e+02 -191.54124 -216.72648 10.72890
zβh [·] 2.2484664 2.498296e+00 2.7481256 2.46204 0.14631
εβh [·] 366.88644 4.076516e+02 448.41676 407.48917 24.38089

PCaL µm/s 0.01845 0.0205 0.02255 0.02063 0.00115
Gαm mV -99.490864 -9.044624e+01 -81.401616 -91.05904 4.94502
zαm [·] 1.7615403 1.957267e+00 2.1529937 1.94796 0.10459
εαm [·] 0.11608884 1.289876e-01 0.14188636 0.13307 0.00639
Gβm mV 146.79639 1.631071e+02 179.41781 162.22205 8.03428
zβm [·] 6.3 7.000000e+00 7.7 7.04673 0.39851
εβm [·] 3.808035 4.231150e+00 4.654265 4.28043 0.23951

PCaT µm/s 0.0459 0.051 0.0561 0.05100 0.00284
Gαm mV -233.31935 -2.121085e+02 -190.89765 -217.66860 10.89615
zαm [·] 2.2330935 2.481215e+00 2.7293365 2.47567 0.14446
εαm [·] 370.57032 4.117448e+02 452.91928 414.14512 20.68319
Gβm mV 42.710598 4.745622e+01 52.201842 47.31904 2.80451
zβm [·] 3.0995064 3.443896e+00 3.7882856 3.40190 0.19081
εβm [·] 370.28097 4.114233e+02 452.56563 409.36728 21.41204
Gαh mV 38.843694 4.315966e+01 47.475626 42.38841 2.52077
zαh [·] 3.0992157 3.443573e+00 3.7879303 3.40552 0.19324
εαh [·] 371.09268 4.123252e+02 453.55772 409.92222 22.70966
Gβh mV -261.30841 -2.375531e+02 -213.79779 -238.43556 13.44209
zβh [·] 2.4463818 2.718202e+00 2.9900222 2.70007 0.15165
εβh [·] 371.24514 4.124946e+02 453.74406 416.02345 25.07570
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Table D.1: Part I. Parameter Bounds of HVc Neuron Optimization

Variational Single Markov Chain
(IPOPT) Monte Carlo

Parameter Units Result Lower Upper Lower Upper

ENa mV 4.500000e+01 45 55 22.5 67.5
EK mV -8.500000e+01 -85 -70 -127.5 -42.5
EL mV -7.269787e+01 -77 -57 -109.046805 -36.348935
EH mV -4.367534e+01 -47 -40 -65.51301 -21.83767
gL mS/cm2 3.758373e-12 0.0 0.6 1.8791865e-12 5.6375595e-02
C−1

m nF−1 3.941666e+01 4 90 19.70833 59.12499

gNa1 mS/cm2 7.341148e+00 0.0 190 3.670574 11.011722
Gαm mV -3.402891e+02 -550 200 -510.43365 -170.14455
zαm [·] 7.000000e+00 0 7 3.5 10.5
εαm [·] 4.213660e-02 0.04 800 0.04 0.0632049
Gβm mV 4.014904e+01 -550 550 20.07452 60.22356
zβm [·] 5.000000e+00 0 5 2.5 7.5
εβm [·] 4.000000e-02 0.04 800 0.04 0.06
Gαh mV 2.754432e+02 -550 550 137.7216 413.1648
zαh [·] 5.000000e+00 0 5 2.5 7.5
εαh [·] 3.209158e-01 0.04 800 0.1604579 0.4813737
Gβh mV -2.239083e+00 -550 550 -3.3586245 -1.1195415
zβh [·] 2.877228e+00 0 7 1.438614 4.315842
εβh [·] 4.000000e-02 0.04 800 0.04 0.06

gNa2 mS/cm2 2.911103e-12 0 150 1.4555515e-12 4.3666545e-02
Gαm mV -2.081181e+02 -550 550 -312.17715 -104.05905
zαm [·] 2.489339e+00 0 7 1.2446695 3.7340085
εαm [·] 4.080179e+02 0.04 800 204.00895 612.02685
Gβm mV -9.230537e+00 -550 550 -13.8458055 -4.6152685
zβm [·] 3.495205e+00 0 7 1.7476025 5.2428075
εβm [·] 4.089970e+02 0.04 800 204.4985 613.4955
Gαh mV -1.234778e+01 -550 550 -18.52167 -6.17389
zαh [·] 3.493162e+00 0 7 1.746581 5.239743
εαh [·] 4.098306e+02 0.04 800 204.9153 614.7459
Gβh mV -2.361097e+02 -550 550 -354.16455 -118.05485
zβh [·] 2.728242e+00 0 9 1.364121 4.092363
εβh [·] 4.089542e+02 0.04 800 204.4771 613.4313

gA1 mS/cm2 2.470600e-01 0 90 0.12353 0.37059
Gαm mV -1.889764e+02 -1050 550 -283.4646 -94.4882
zαm [·] 7.000000e+00 0 7 3.5 10.5
εαm [·] 1.739546e+00 0.04 2000 0.869773 2.609319
Gβm mV -5.309936e+02 -650 550 -796.4904 -265.4968
zβm [·] 2.698601e+00 0 7 1.3493005 4.0479015
εβm [·] 1.438101e+02 0.04 800 71.90505 215.71515
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Table D.2: Part II. Parameter Bounds of HVc Neuron Optimization

Variational Single Markov Chain
(IPOPT) Monte Carlo

Parameter Units Result Lower Upper Lower Upper

gA2 mS/cm2 5.100000e+02 0 510 255.0 765.0
Gαm mV -4.952332e+02 -650 550 -742.8498 -247.6166
zαm [·] 5.000000e+00 0 5 2.5 7.5
εαm [·] 2.294526e+00 0.04 800 1.147263 3.441789
Gβm mV 9.801215e+00 -550 550 4.9006075 14.7018225
zβm [·] 9.042192e-01 0 7 0.4521096 1.3563288
εβm [·] 4.000000e-02 0.04 800 0.04 0.06
Gαh mV 2.744450e+02 -550 550 137.2225 411.6675
zαh [·] 7.000000e+00 0 7 3.5 10.5
εαh [·] 1.335403e+01 0.04 800 6.677015 20.031045
Gβh mV -2.781500e+02 -1050 550 -417.225 -139.075
zβh [·] 7.000000e+00 0 7 3.5 10.5
εβh [·] 9.196644e+00 0.04 800 4.598322 13.794966

gH mS/cm2 1.272465e-12 0 100 6.362325e-13 1.9086975e-02
Gαh mV -1.164327e+01 -550 550 -17.464905 -5.821635
zαh [·] 3.493663e+00 0 7 1.7468315 5.2404945
εαh [·] 4.085324e+02 0.04 800 204.2662 612.7986
Gβh mV -2.128236e+02 -550 550 -319.2354 -106.4118
zβh [·] 2.498296e+00 0 7 1.249148 3.747444
εβh [·] 4.076516e+02 0.04 800 203.8258 611.4774

gCaL mS/cm2 2.049909e-02 0 100 0.010249545 0.030748635
Gαm mV -9.044624e+01 -550 550 -135.66936 -45.22312
zαm [·] 1.957267e+00 0 7 0.9786335 2.9359005
εαm [·] 1.289876e-01 0.04 800 0.0644938 0.1934814
Gβm mV 1.631071e+02 -550 550 81.55355 244.66065
zβm [·] 7.000000e+00 0 7 3.5 10.5
εβm [·] 4.231150e+00 0.04 800 2.115575 6.346725

gCaT mS/cm2 2.516841e-13 0 510 1.2584205e-13 3.7752615e-02
Gαm mV -2.121085e+02 -550 550 -318.16275 -106.05425
zαm [·] 2.481215e+00 0 7 1.2406075 3.7218225
εαm [·] 4.117448e+02 0.04 800 205.8724 617.6172
Gβm mV 4.745622e+01 -550 1050 23.72811 71.18433
zβm [·] 3.443896e+00 0 7 1.721948 5.165844
εβm [·] 4.114233e+02 0.04 800 205.71165 617.13495
Gαh mV 4.315966e+01 -550 1050 21.57983 64.73949
zαh [·] 3.443573e+00 0 7 1.7217865 5.1653595
εαh [·] 4.123252e+02 0.04 800 206.1626 618.4878
Gβh mV -2.375531e+02 -550 550 -356.32965 -118.77655
zβh [·] 2.718202e+00 0 9 1.359101 4.077303
εβh [·] 4.124946e+02 0.04 800 206.2473 618.7419

[Ca]ext mM 8.999548e+00 0.0 9 4.499774 13.499322



References

Abarbanel, H. D. I., 1996: Analysis of Observed Chaotic Data. Springer-Verlag, New York.

Abarbanel, H. D. I., 2009: Effective actions for statistical data assimilation. Physics Letters A,
373, 4044–4048.

Abarbanel, H. D. I., Brown, R., and Kennel, M. B., 1992: Local lyapunov exponents computed
from observed data. Journal of Nonlinear Science, 2, 343–365.

Abarbanel, H. D. I., Bryant, P., Gill, P. E., Kostuk, M., Rofeh, J., Singer, Z., Toth, B., and Wong,
E., 2011: Dynamical parameter and state estimation in neuron models. In the dynamic brain:
An Exploration of Neuronal Variability and Its Functional Significance, editors D. Glanzman,
and M. Ding, chapter 8. Oxford University Press.

Abarbanel, H. D. I., Creveling, D., and Jeanne, J., 2008: Estimation of parameters in nonlinear
systems using balanced synchronization. Physical Review E, 77(016208).

Abarbanel, H. D. I., Creveling, D. R., Farsian, R., and Kostuk, M., 2009: Dynamical state and
parameter estimation. SIAM Journal of Applied Dynamical Systems, 8(4), 1341–1381.

Abarbanel, H. D. I., Kostuk, M., Margoliash, D., Meliza, C. D., and Nogaret, A., 2012: Data-
assimilated neuron models of a population of neurons in the high vocal center of the zebra
finch. In progress.

Abarbanel, H. D. I., M., K., and Whartenby, W., 2010: Data assimilation with regularized
nonlinear instabilities. Quarterly Journal of the Royal Meteorological Society, 136(648), 769–
783.

Abarbanel, H. D. I., Rulkov, N. F., and Sushchik, M. M., 1995: Blending chaotic attractors using
the synchronization of chaos. Physical Review E, 52(1), 214–217.

Abarbanel, H. D. I., Rulkov, N. F., and Sushchik, M. M., 1996: Generalized synchronization of
chaos: The auxiliary system approach. Physical Review E, 53(5), 4528–4535.

Abarbanel, H. D. I., Talathi, S. S., Mindlin, G., Rabinovich, M., and Gibb, L., 2004: Dynamical
model of birdsong maintenance and control. Physical Review E, 70(051911).

Afraimovich, V. S., Bykov, V. V., and Shilnikov, L. P., 1977: Appearance and structure of lorenz
attractor. Doklady Akademii Nauk SSSR, 234(2), 336–339.

Afraimovich, V. S., Rabinovich, M. I., and D., U. A., 1983: Critical-points and phase-transitions
in the stochastic-behavior of a nonautonomous anharmonic-oscillator. JETP Letters, 38(2),
72–75.

129



130

Afraimovich, V. S., and Shilnikov, L. P., 1974: Some global bifurcations connected with vanishing
of a fixed-point of saddle-node type. Doklady Akademii Nauk SSSR, 219(6), 1281–1284.

Ahlers, V., and Pikovsky, A., 2002: Critical properties of the synchronization transition in space-
time chaos. Physical Review Letters, 88(25).

Apte, A., Hairer, M., Stuart, A. M., and Voss, J., 2007: Sampling the posterior: An approach to
non-gaussian data assimilation. Physica D, 230, 50–64.

Arfken, G. B., and Weber, H. J., 2005: Mathematical Methods for Physicists. Elsevier, sixth
edition edition.

Barclay, A., Gill, P. E., and Rosen, J. B., 1998: Variational calculus, optimal control, and
applications. 124, 207–222.

Barela, A. J., Waddy, S. P., Lickfett, J. G., Hunter, J., Anido, A., Helmers, S. L., Goldin,
A. L., and Escayg, A., 2006: An epilepsy mutation in the sodium channel scn1a that decreases
channel excitability. The Journal of Neuroscience, 26(10), 2714–2723.

Beuter, A., Glass, L., Mackey, M. C., and Titcombe, M. S., 2003: Nonlinear Dynamics in
Physiology and Medicine. Springer-Verlag.

Bhalla, U., and Bower, J., 1993: Exploring parameter space in detailed single neuron models:
Simulations of the mitral and granule cells of the olfactory bulb. J. Neurophys., 69, 1948–1965.

Blackwell, K. T., 2005: Modeling calcium concentration and biochemical reactions. Brains,
Minds and Media, (2).

Boltzmann, L., 1868: Studien über das gleichgewicht der lebendigen kraft zwischen bewegten
materiellen punkten. Wiener Berichte, 58, 517–560.

Brainard, M. S., and Doupe, A. J., 2000: Auditory feedback in learning and maintenance of vocal
behavior. Nature Reviews Neuroscience, 1, 31–40.

Brainard, M. S., and Doupe, A. J., 2002: What songbirds teach us about learning. Nature, 417,
351–358.

Bryson, A. J., and Yu-Chi, H., 1969: Applied Optimal Control: Optimization Estimation and
Control. Ginn and Company.

Buibas, M., and Silva, G. A., 2011: A framework for simulating and estimating the state and
functional toplogy of complex dynamic geometric networks. Neural Computation, 23(1), 183–
214.

Byzov, A. L., 1958: Capacitance and resistance of layers in frog retina. Biofizika [Transl], 3(6),
627–638.

Cessna, J., Colburn, C., and Bewley, T. R., 2007: Multiscale retrograde estimation and forcasting
of chaotic nonlinear systems. 46th IEEE Conference on Decision and Control. New Orleans,
LA, USA, Dec. 12-14.

Coppersmith, S. N., 1999: A simpler derivation of feigenbaum’s renormalization group equation
for the period-doubling bifurcation sequence. Am. J. Phys., 67(1).



131

Cover, T. M., and Thomas, J. A., 2006: Elements of Information Theory. John Wiley & Sons,
Inc., 2nd ed. edition.
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