Title

Synthetic studies toward the pladienolide and spirohexenolide natural products

Permalink

https://escholarship.org/uc/item/2fr9w459

Author

Jones, Brian D.

Publication Date

2010
Peer reviewed|Thesis/dissertation

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Synthetic Studies Toward the Pladienolide and Spirohexenolide Natural Products

A dissertation submitted in partial satisfaction of the requirements for the degree

Doctor of Philosophy

in

Chemistry

by

Brian D. Jones

Committee in charge:
Professor Michael Burkart, Chair
Professor Partho Ghosh
Professor Thomas Hermann
Professor Randall Johnson
Professor Charles Perrin

Copyright

Brian D. Jones, 2010
All rights reserved.

The dissertation of Brian D. Jones is approved, and it is acceptable in quality and form for publication on microfilm and electronically:
\qquad

TABLE OF CONTENTS

SIGNATURE PAGE iii
TABLE OF CONTENTS iv
LIST OF FIGURES xv
LIST OF SCHEMES xvii
LIST OF SPECTRA xxi
LIST OF TABLES xxxiii
ACKNOWLEDGEMENTS xxxvii
VITA xxxix
ABSTRACT OF THE DISSERTATION xl
Chapter 1 Studies toward the pladienolides and FD-895 1
1.1 Introduction to the pladienolides and FD-895 1
1.2 Synthetic approaches to the pladienolides and FD-895 7
1.2.1 Eisai Corp.'s total syntheses of pladienolides B and D. 7
1.2.2 Structural elucidation of pladienolides B and D. 11
1.2.3 Skaanderup's approach to the pladienolide core 13
1.2.4 Retrosynthetic analysis of the pladienolides and FD-895 16
1.2.5 A chiral pool approach to the $\mathrm{C}-1$ to $\mathrm{C}-8$ acid olefin of 1 20
1.2.6 Exploration of the chiral pool approach to the C-1 to C-8 fragment... 24
1.2.7 Asymmetric dihydroxylation approaches to fragment 37 32
1.2.8 Preparation of the sidechain of FD-895. 39
1.2.9 Model studies of the endgame fragment assembly of FD-895 48
1.3 Concluding remarks 51
1.4 Acknowledgements 52
1.5 NMR spectra of intermediates compared to authentic FD-895 (1) 53
1.6 Experimental techniques and characterization data 64
1.7 Selected NMR Spectra 107
Chapter 2 Studies on the spirohexenolides 188
2.1 Isolation of spirohexenolides A and B 188
2.1.1 Abstract. 188
2.1.2 Introduction 189
2.1.3 Results 190
2.1.4 Discussion. 203
2.1.5 Experimental methods 205
2.1.6 Acknowledgements 212
2.2 Spirotetronate biosynthesis 213
2.3 IMDA approaches to spirotetronate natural products 215
2.4 Synthetic approaches to the spirohexenolides 218
2.4.1 An IMDA approach to spirohexenolide A 218
2.4.2 A Lewis acid catalyzed Diels-Alder approach to (\pm)-spirohexenolide B238
2.5 Concluding remarks 251
2.6 Acknowledgements 252
2.7 Experimental techniques and characterization data 252
2.8 Spectral overlays of compound 217 with IMDA reaction products 357
2.9 Spectral overlay of compound 280 with spirohexenolide B (129) 359
2.10 Selected NMR spectra. 360
REFERENCES 535

LIST OF ABBREVIATIONS

Å	angstrom
Ac	acetyl
$\mathrm{Ac}_{2} \mathrm{O}$	acetic anhydride
AcOH	acetic acid
AsPh_{3}	triphenylarsine
BaSO_{4}	barium sulfate
BnBr	benzyl bromide
BF_{3}	boron trifluoride
BOM	benzyloxymethyl
BORSM	based on recovered starting material
br	broad NMR peak
Bu or $n-\mathrm{Bu}$	butyl
$t-\mathrm{Bu}$	tert-butyl
$\mathrm{Bu}_{4} \mathrm{NI}$	tetrabutylammonium iodide
t-BuOK	potassium tert-butoxide
$\mathrm{Bu}_{2} \mathrm{SnCl}_{2}$	dibutyltin dichloride
$\mathrm{Bu}_{2} \mathrm{SnH}_{2}$	dibutylstannane
$\mathrm{Bu}_{3} \mathrm{SnH}$	tributyltin hydride
Bz	benzoyl
c	concentration in g / dL

calcd	calculated
CCDC	Cambridge Crystallographic Data Center
$\mathrm{C}_{6} \mathrm{D}_{6}$	deuterated benzene
CDCl_{3}	deuterated chloroform
CHCl_{3}	chloroform
$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	dichloromethane
$\mathrm{C}_{6} \mathrm{H}_{6}$	benzene
cm^{-1}	wave number (frequency, IR)
COSY	correlation spectroscopy
CSA	camphorsulfonic acid
$\mathrm{CuBr} * \mathrm{SMe}_{2}$	copper (I) bromide, methyl sulfide complex
CuI	copper (I) iodide
$\mathrm{CuSO}_{4}{ }^{*} \mathrm{xH}_{2} \mathrm{O}$	copper (II) sulfate hydrate
d	doublet (NMR)
DBU	1,8-diazabicyclo[5.4.0]undec-7-ene
DCC	1,3-dicyclohexylcarbodiimide
DDQ	2,3-dichloro-5,6-dicyano-1,4-benzoquinone
d.e.	diastereomeric excess
DHP	3,4-dihydro-2H-pyran
DIAD	diisopropyl azodicarboxylate
DIBAL-H	diisobutylaluminum hydride
DIPEA	diisopropylethylamine - Hünig's base
dm	decimeters

DMAP	4-dimethylaminopyridine
DMF	N, N-dimethylformamide
DMP	Dess-Martin periodinane or 3,4-dimethoxyphenyl
DNP	dinitrophenylhydrazine
DMSO	dimethylsulfoxide
DMSO-d6	deuterated dimethylsulfoxide
EDC	1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride
e.e.	enantiomeric excess
EI	electron impact ionization
eq.	equivalents (molar)
ESI	electrospray ionization
Et	ethyl
$\mathrm{Et}_{3} \mathrm{~N}$	triethylamine
$\mathrm{Et}_{2} \mathrm{O}$	diethyl ether
EtOAc	ethyl acetate
EtOH	ethanol
EtSH	ethanethiol
FAB	fast atom bombardment
FT-IR	fourier transform infrared spectroscopy
g	grams
GI_{50}	concentration required for 50\% growth inhibition
h	hours
HCl	hydrogen chloride

HF-py	pyridine hydrofluoride
HMPA	hexamethylphosphoramide
HOBt	hydroxybenzotriazole
HRMS	high-resolution mass spectrometry
$\mathrm{H}_{2} \mathrm{SO}_{4}$	sulfuric acid
HWE	Horner-Wadsworth-Emmons olefination
Hz	hertz
IBX	o-iodoxybenzoic acid
IC_{50}	half-maximal inhibitory concentration
(-)- $\mathrm{Ipc}_{2} \mathrm{BOMe}$	(-)-B-methoxydiisopinylcampheylborane
IR	infrared spectroscopy
J	coupling constant (NMR)
KCN	potassium cyanide
KHMDS	potassium bis(trimethylsilyl)amide
KF	potassium fluoride
KMnO_{4}	potassium permanganate
KOH	potassium hydroxide
L	liters
LC_{50}	median lethal dose
LDA	lithium diisopropylamide
LiAlH_{4}	lithium aluminum hydride
LiBF_{4}	lithium tetrafluoroborate
LiCl	lithium chloride

LiHMDS	lithium bis(trimethylsilyl)amide
LiOH	lithium hydroxide
m	multiplet (NMR)
M	concentration in molarity (mol/L)
$[\mathrm{M}]^{+}$	molecular ion (found in EI/MS)
m / z	mass per charge ratio of detected ion (mass spectrometry)
$[\mathrm{M}+\mathrm{H}]^{+}$	protonated molecular ion (found in ESI/MS)
$\left[\mathrm{M}+\mathrm{Na}^{+}\right.$	sodium molecular ion (found in ESI/MS)
$\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$	ammonium molecular ion (found in ESI/MS)
$[\mathrm{M}+\mathrm{K}]^{+}$	metassium molecular ion (found in ESI/MS)
Me	methylaluminum dichloride
MeAlCl	
2	

MeCN	acetonitrile
mL	milliliters
mM	millimolar
mmol	millimoles
mol	moles
Ms	methanesulfonyl
MS	mass spectrometry
NaBO_{3}	sodium perborate
NaCl	sodium chloride
NaH	sodium hydride
NaHCO_{3}	sodium bicarbonate
$\mathrm{Na}_{2} \mathrm{SO}_{3}$	sodium sulfite
$\mathrm{Na}_{2} \mathrm{SO}_{4}$	sodium sulfate
$\mathrm{NH}_{4} \mathrm{Cl}$	ammonium chloride
$\left(\mathrm{NH}_{4}\right)_{6} \mathrm{Mo}_{7} \mathrm{O}_{24} * 4 \mathrm{H}_{2} \mathrm{O}$	ammonium molybdate tetrahydrate
nM	nanomolar
NMO	4-methylmorpholine N -oxide
NMP	1-methyl-2-pyrrolidinone
NMR	nuclear magnetic resonance
NOE	nuclear overhauser effect
NOESY	nuclear overhauser effect spectroscopy
ORTEP	Oak Ridge thermal ellipsoid plot
p	pentet (NMR)

$\mathrm{Pd}_{2} \mathrm{dba}_{3}$	tris(dibenzylideneacetone)dipalladium(0)
$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	tetrakis(triphenylphosphine)palladium(0)
PG	protecting group
Ph	phenyl
PhMe	toluene (methylbenzene)
$\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{PdCl}_{2}$	bis(triphenylphosphine)palladium(II)dichloride
PMB	para-methoxybenzyl
PMP	para-methoxyphenyl
PPh_{3}	triphenylphosphine
ppm	parts per million
PPTS	pyridinium p-toluenesulfonate
PT	1-phenyl-1H-tetrazol-5-yl
py	pyridine
PyBOP	(benzotriazol-1-yloxy)tripyrrolidinophosphonium hexafluorophosphate
q	quartet (NMR)
RCM	ring-closing metathesis
R_{f}	retention factor (TLC)
rt	room temperature ($20-25^{\circ} \mathrm{C}$)
S	singlet (NMR)
SAR	structure - activity relationship
$\mathrm{Sc}(\mathrm{OTf})_{3}$	scandium (III) trifluoromethanesulfonate
SEM	2-(trimethylsilyl)ethoxymethyl

t	triplet (NMR)
TBAF	tetrabutylammonium fluoride
TBDPS	tert-butyldiphenylsilyl
TBS	tert-butyldimethylsilyl
TBDMS	tert-butyldimethylsilyl (same as TBS, above)
TES	triethylsilyl
Tf	trifluoromethanesulfonyl
TFA	trifluoroacetic acid
THF	tetrahydrofuran
THP	2-tetrahydropyranyl
TIPS	triisopropylsilyl
TLC	thin layer chromatography
TMS	trimethylsilyl
TMSCHN_{2}	(trimethylsilyl)diazomethane
TPAP	tetrapropylammonium perruthenate
Ts	p-toluenesulfonyl
UV	ultraviolet
ZnCl_{2}	zinc chloride
$[\alpha]_{\mathrm{D}}$	optical rotation, sodium D line (589 nm), rt (20-25 ${ }^{\circ} \mathrm{C}$)
${ }^{\circ} \mathrm{C}$	degrees celsius
δ	chemical shift in ppm (NMR)

LIST OF FIGURES

Figure 1.1 FD-895 (1) and pladienolides A-G ($\mathbf{2 a - 2 g}$) 2
Figure 1.2 Semisynthetic analogs of pladienolides B and D (2b and 2d) 4
Figure 1.3 Spliceosome targeting natural products 7
Figure 1.4 NOESY interactions observed on $\mathbf{1 6} \boldsymbol{\alpha}$ 13
Figure 1.5 Alternate enones to $\mathbf{4 0}$ targeted 28
Figure $1.6{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 1 54
Figure 1.7 Comparison of adduct $\mathbf{1 1 4}$ to $\mathbf{1}$ 55
Figure 1.8 Comparison of hydrogenation product $\mathbf{1 0 7}$ to $\mathbf{1}$ 56
Figure 1.9 Comparison of adduct 109 to 1 57
Figure 1.10 Comparison of hydrogenation product $\mathbf{1 0 5}$ to $\mathbf{1}$ 58
Figure 1.11 Comparison of crotylboration adduct $\mathbf{1 0 5}$ to $\mathbf{1}$ 59
Figure 1.12 Comparison of stannane $\mathbf{3 2}$ to $\mathbf{1}$ 60
Figure 1.13 Comparison of adduct $\mathbf{1 2 5}$ to $\mathbf{1}$ 61
Figure 1.14 Comparison of model 126 to 1 62
Figure 1.15 Comparison of model 127 to $\mathbf{1}$ 63
Figure 1.16 ORTEP stereopair drawing of the X-ray crystal structure of bromohydrin 112, ellipsoids drawn at the 50% probability level. 92
Figure 2.1 Production of metabolite $\mathbf{1 2 8}$ from Streptomyces platensis strains MJ1A1 and MJ1A2. 191
Figure 2.2 Structures of spirohexenolides A (128) and B (129) 194
Figure 2.3 Select NMR data. 195

Figure 2.4 Uptake and subcellular localization of spirohexenolide A (128) in HCT116 cells

Figure 2.5 Tetronic acid numbering scheme 213

Figure 2.6 ORTEP stereopair drawing of the X-ray crystal structure of compound 128 with ellipsoids drawn at the 50% probability level 254

Figure 2.7 ORTEP drawing of the X-ray crystal structure of compound $\mathbf{1 2 9}$ with ellipsoids drawn at the 50\% probability level .. 262

Figure 2.8 ORTEP stereopair drawing of the X-ray crystal structure of compound 148 with ellipsoids drawn at the 50% probability level276

Figure 2.9 ORTEP stereopair drawing of the X-ray crystal structure of lactone 236 with ellipsoids drawn at the 50% probability level

Figure 2.10 ORTEP stereopair drawing of the X-ray crystal structure of compound 264 with ellipsoids drawn at the 50% probability level336
Figure 2.11 Compound 217 (left) and IMDA product 1 (right) 358
Figure 2.12 Compound 217 (left) and IMDA product 2 (right) 359
Figure 2.13 Spectral overlay of compound $\mathbf{2 8 0}$ with spirohexenolide B (129) 360

LIST OF SCHEMES

Scheme 1.1 Eisai Corp.'s retrosynthetic analysis of 2b and 2d 8
Scheme 1.2 Degredation experiments on $\mathbf{2 b}$ and $\mathbf{2 d}$ 12
Scheme 1.3 Skaanderup's approach to the pladienolide core $\mathbf{2 0}$ 15
Scheme 1.4 Retrosynthetic analysis of pladienolide B (2b) 18
Scheme 1.5 Retrosynthetic analysis of FD-895 (1) 20
Scheme 1.6 A chiral pool retrosynthetic approach to 37. 21
Scheme 1.7 Substrate-controlled methylations of chiral ketones 21
Scheme 1.8 Methods for opening the C-7 acetal to an acyclic intermediate 22
Scheme 1.9 Predicted mode of addition to intermediate 49 23
Scheme 1.10 Synthesis of acetal 46 24
Scheme 1.11 Attempted thioacetalization of 46 25
Scheme 1.12 Possible mechanism of formation of trimercaptan 51 26
Scheme 1.13 Preparation of compound 55 26
Scheme 1.14 An alternate method to break the-OiPr acetal of $\mathbf{4 6}$ 27
Scheme 1.15 Synthesis of oximes 60 and 61 29
Scheme 1.16 Early protecting group manipulations on $\mathbf{6 0}$ and $\mathbf{6 1}$ 29
Scheme 1.17 Additional manipulations on oximes $\mathbf{6 0}$ and 61 30
Scheme 1.18 Initial asymmetric dihydroxylation retrosynthetic scheme 32
Scheme 1.19 Dihydroxylation of ester $\mathbf{7 5}$ 33
Scheme 1.20 Dihydroxylation of 4-methylpent-4-en-1-ol derivatives. 34
Scheme 1.21 Modified dihydroxylation retrosynthesis of 71 35
Scheme 1.22 HWE homologation of ketone $\mathbf{8 6}$ 35
Scheme 1.23 Dihydroxylation of substrate 87 36
Scheme 1.24 Dihydroxylation of 7-membered lactones 37
Scheme 1.25 Attempts at forming lactone 92 38
Scheme 1.26 Another method to form lactone 92 39
Scheme 1.27 Preparation of allylic alcohol 35 40
Scheme 1.28 Catalytic Sharpless epoxidation of allylic alcohol $\mathbf{3 5}$. 40
Scheme 1.29 Attempted crotylation of aldehyde 34 42
Scheme 1.30 A new approach to fragment $\mathbf{3 2}$ using Marshall's methodology 43
Scheme 1.31 Predicted mode of addition of stannane $\mathbf{1 0 8}$ to aldehyde $\mathbf{3 4}$ 44
Scheme $1.32 \mathrm{MgBr}_{2}$ catalyzed addition of $\mathbf{1 0 8}$ to aldehyde $\mathbf{3 4}$ 45
Scheme 1.33 Experiment to determine the correct reagent to form $\mathbf{1 0 9}$ 46
Scheme 1.34 Hydrostannation of alkyne $\mathbf{1 0 9}$ 48
Scheme 1.35 A new C-1 to C-8 acid olefin fragment model 115 49
Scheme 1.36 Synthesis of the model core system $\mathbf{1 2 3}$ 50
Scheme 1.37 Synthesis of model compounds 125-127 51
Scheme 2.1 Biosynthesis of chlorothricin (135) 214
Scheme 2.2 The Sorensen group's synthesis of abyssomicin C (138) 216
Scheme 2.3 Yoshii's IMDA approach to chlorothricolide 217
Scheme 2.4 First generation IMDA approach to $\mathbf{1 2 8}$ 219
Scheme 2.5 Retrosynthetic analysis of aldehyde 146 220
Scheme 2.6 Preparation of lactone ester 149 221
Scheme 2.7 Saponification of ester 149 222
Scheme 2.8 Attempts to convert acid $\mathbf{1 4 8}$ to aldehyde $\mathbf{1 4 6}$ 223
Scheme 2.9 Attempts to homologate lactone 156 224
Scheme 2.10 The Julia method applied to the C-10/C-11 olefin 226
Scheme 2.11 Testing the Julia method for the C-10/C-11 olefination 227
Scheme 2.12 Hydrostannation regioselectivity influenced by propargylic alcohols228
Scheme 2.13 Second generation IMDA approach to spirohexenolide A 228
Scheme 2.14 Preparation of stannane $\mathbf{1 8 3}$ 229
Scheme 2.15 A different approach to the propargylic alcohol fragment 230
Scheme 2.16 Synthesis of stannane 195 231
Scheme 2.17 Preparation of polyene 202 232
Scheme 2.18 Attempts to install the tetronate earlier in the route 233
Scheme 2.19 Preparation of IMDA precursor 217 235
Scheme 2.20 Attempted IMDA cyclization of 217 236
Scheme 2.21 Oxidation of Stille adduct 212 237
Scheme 2.22 Retrosynthetic analysis of spirohexenolide B 239
Scheme 2.23 Zografos' route to the abyssomicin core 240
Scheme 2.24 First Lewis acid catalyzed Diels-Alder approach 241
Scheme 2.25 Use of aldol adduct derived dienes in the Diels-Alder reaction 243
Scheme 2.26 The Roush group's synthesis of endo-spirotetronate 249. 244
Scheme 2.27 Use of diene 251 and processing to the spirotetronate fragment 245
Scheme 2.28 Attempt to introduce unsaturation to aldehyde 255 245
Scheme 2.29 The triene substrate Diels-Alder strategy 246

Scheme 2.30 Implementation of the triene Diels-Alder strategy 247
Scheme 2.31 Generation of the spirotetronate fragment 268 248
Scheme 2.32 Synthesis of the iodide 274 and Stille coupling with 269.................. 249
Scheme 2.33 Processing of Stille adduct 275 through Julia adduct 279 250

LIST OF SPECTRA

Spectrum $1.1 \quad{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound $\mathbf{3 2}$ 108
Spectrum $1.2{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 32 109
Spectrum $1.3{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 39 110
Spectrum $1.4{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 39 111
Spectrum $1.5 \quad{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 46. 112
Spectrum $1.6{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 46. 113
Spectrum 1.7 NOESY1D NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 46, irradiation at
1.24 ppm , the C-6 methyl singlet 114
Spectrum $1.8{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound $\mathbf{5 1}$ 115
Spectrum $1.9{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 51. 116
Spectrum $1.10{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound $\mathbf{5 3}$ 117
Spectrum $1.11{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 53. 118
Spectrum $1.12 \quad{ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ gCOSY NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 53 119
Spectrum $1.13{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 53. 120
Spectrum 1.14 DEPT135 NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 53 121
Spectrum $1.15{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound $\mathbf{5 4}$ 122
Spectrum $1.16{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ of compound 55 123
Spectrum $1.17{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 57 124
Spectrum $1.18{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 57. 125
Spectrum $1.19{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}, 400 \mathrm{MHz}\right)$ of compound $\mathbf{3 8}$ 126
Spectrum $1.20 \quad{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound $\mathbf{6 0}$ 127
Spectrum $1.21{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound $\mathbf{6 0}$. 128
Spectrum $1.22{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound $\mathbf{6 1}$ 129
Spectrum $1.23{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound $\mathbf{6 1}$. 130
Spectrum $1.24{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 62. 131
Spectrum $1.25{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound $\mathbf{6 2}$ 132
Spectrum $1.26{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound $\mathbf{6 3}$ 133
Spectrum $1.27{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound $\mathbf{6 3}$ 134
Spectrum $1.28{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound $\mathbf{6 4}$. 135
Spectrum $1.29{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 64 136
Spectrum $1.30{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound $\mathbf{6 5}$. 137
Spectrum $1.31 \quad{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound $\mathbf{6 5}$ 138
Spectrum $1.32{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound $\mathbf{6 6}$. 139
Spectrum $1.33{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 66 140
Spectrum $1.34{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 67 141
Spectrum $1.35{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound $\mathbf{6 8}$. 142
Spectrum $1.36{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 68. 143
Spectrum $1.37{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 70 144
Spectrum $1.38{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 70. 145
Spectrum $1.39{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 77 146
Spectrum $1.40 \quad{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound $\mathbf{8 0}$. 147
Spectrum $1.41{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound $\mathbf{8 1}$ 148
Spectrum $1.42{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ of compound $\mathbf{8 5}$. 149
Spectrum 1.43 NOESY1D NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound $\mathbf{8 5}$, irradiation at
1.86 ppm , the C-6 methyl, mixing time $=0.5 \mathrm{sec}$. 150
Spectrum $1.44{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound $\mathbf{8 7}$. 151
Spectrum 1.45 NOESY1D NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 87, irradiation at
2.14 ppm , the C-6 methyl 152
Spectrum $1.46{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound $\mathbf{8 8}$ 153
Spectrum $1.47{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ of compound $\mathbf{8 9}$. 154
Spectrum $1.48{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound $\mathbf{9 0}$ 155
Spectrum $1.49{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 90 156
Spectrum $1.50{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 98 157
Spectrum $1.51{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ of compound 99 158
Spectrum $1.52 \quad{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound $\mathbf{1 0 0}$ 159
Spectrum $1.53{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound $\mathbf{1 0 0}$. 160
Spectrum $1.54{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 101. 161
Spectrum $1.55{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 101. 162
Spectrum $1.56{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of crotylboration product $\mathbf{1 0 5}$ 163
Spectrum $1.57{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of crotylboration product 105. 164
Spectrum $1.58{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$ of reduction product 105 165
Spectrum $1.59{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ of compound 107. 166
Spectrum $1.60 \quad{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound $\mathbf{1 0 9}$ 167
Spectrum $1.61{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 109 168
Spectrum $1.62{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 112. 169
Spectrum $1.63{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound $\mathbf{1 1 2}$. 170
Spectrum $1.64{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$ of compound 114. 171
Spectrum $1.65{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound $\mathbf{1 1 8}$ 172
Spectrum $1.66{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 118 173
Spectrum $1.67{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 119 174
Spectrum $1.68{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 119 175
Spectrum $1.69{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound $\mathbf{1 2 0}$. 176
Spectrum $1.70{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound $\mathbf{1 2 0}$. 177
Spectrum $1.71{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound $\mathbf{1 2 1}$ 178
Spectrum $1.72{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 121. 179
Spectrum $1.73{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 122. 180
Spectrum $1.74{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 122. 181
Spectrum $1.75{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$ of compound 123. 182
Spectrum $1.76{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$ of compound $\mathbf{1 2 3}$ 183
Spectrum $1.77{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 125. 184
Spectrum $1.78{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound $\mathbf{1 2 5}$. 185
Spectrum $1.79{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 126. 186
Spectrum $1.80 \quad{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ of compound 127. 187
Spectrum 2.1 ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ of spirohexenolide A 128 361
Spectrum $2.2{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of spirohexenolide A $\mathbf{1 2 8}$ 362
Spectrum $2.3{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, 500 \mathrm{MHz}\right)$ of spirohexenolide B 129 363
Spectrum $2.4{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, 125 \mathrm{MHz}\right)$ of spirohexenolide B 129. 364
Spectrum $2.5 \quad{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ of compound 130a. 365
Spectrum $2.6{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$ of compound $\mathbf{1 3 0 a}$. 366
Spectrum $2.7{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ of compound $\mathbf{1 3 0 b}$ 367
Spectrum $2.8{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$ of compound $\mathbf{1 3 0 b}$ 368
Spectrum $2.9{ }^{1} \mathrm{H}$ NMR $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}, 400 \mathrm{MHz}\right)$ of compound 151 369
Spectrum $2.10 \quad{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 149 370
Spectrum 2.11 NOESY1D $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 149 , irradiation at $\mathrm{H}-7$methine $\delta 5.93 \mathrm{ppm}$371
Spectrum 2.12 ${ }^{1} \mathrm{H}$ NMR (DMSO-d6, 300 MHz) of compound 148 372
Spectrum $2.13{ }^{13} \mathrm{C}$ NMR (DMSO-d6, 75 MHz) of compound 148 373
Spectrum 2.14 ${ }^{1}$ H NMR (DMSO-d6, 500 MHz) of compound 156 374
Spectrum $2.15{ }^{13} \mathrm{C}$ NMR (DMSO-d6, 100 MHz) of compound 156 375
Spectrum $2.16{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound $\mathbf{1 5 8}$ 376
Spectrum $2.17{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 158. 377
Spectrum $2.18 \quad{ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ gHMQC NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}-100 \mathrm{MHz}\right)$ of compound
158 378
Spectrum $2.19{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound $\mathbf{1 5 9}$ 379
Spectrum $2.20 \quad{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound $\mathbf{1 6 0}$ 380
Spectrum $2.21{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound $\mathbf{1 6 0}$. 381
Spectrum $2.22{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$ of compound 161. 382
Spectrum $2.23{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$ of compound 161. 383
Spectrum $2.24{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$ of compound 171. 384
Spectrum $2.25{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$ of compound 171. 385
Spectrum 2.26 ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$ of reduction product of $\mathbf{1 7 1}$ 386
Spectrum $2.27{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$ of reduction product of $\mathbf{1 7 1}$ 387
Spectrum $2.28{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ of sulfide precursor to $\mathbf{1 6 8}$ 388
Spectrum $2.29{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of sulfide precursor to $\mathbf{1 6 8}$ 389
Spectrum $2.30{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound $\mathbf{1 6 8}$ 390
Spectrum $2.31{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 168 391
Spectrum $2.32{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound $\mathbf{1 6 6}$. 392
Spectrum $2.33{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound $\mathbf{1 6 6}$ 393
Spectrum $2.34{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound $\mathbf{1 8 0}$ 394
Spectrum 2.35 ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of the DMP acetal of $\mathbf{1 8 0}$ 395
Spectrum $2.36{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound $\mathbf{1 8 1}$ 396
Spectrum $2.37{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of oxidation product of $\mathbf{1 8 1}$ 397
Spectrum 2.38 ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of the oxidation product of $\mathbf{1 8 1}$ 398
Spectrum 2.39 ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$ of the alkyne precursor to $\mathbf{1 8 2}$ 399
Spectrum 2.40 ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$ of the alkyne precursor to $\mathbf{1 8 2}$ 400
Spectrum 2.41 ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound $\mathbf{1 8 2}$ 401
Spectrum 2.42 ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 182 402
Spectrum $2.43{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound $\mathbf{1 8 3}$ 403
Spectrum $2.44{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 191. 404
Spectrum $2.45{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 193 405
Spectrum $2.46{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 193 406
Spectrum 2.47
Spectrum 2.48${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of the TBS ether of compound 193408
Spectrum $2.49{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 194. 409
Spectrum $2.50{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 194. 410
Spectrum $2.51{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 195 411
Spectrum 2.52 ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 195 412
Spectrum $2.53{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ of compound 196 413
Spectrum $2.54{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$ of compound 196. 414
Spectrum $2.55{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ of compound 197. 415
Spectrum $2.56 \mathrm{gCOSY} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ of compound 197 416
Spectrum $2.57{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$ of compound $197 \ldots$ 417
Spectrum $2.58{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ of compound 198 418
Spectrum $2.59 \mathrm{gCOSY} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ of compound 198 419
Spectrum $2.60{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$ of compound 198. 420
Spectrum 2.61 ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of the enyne precursor to 199. 421
Spectrum 2.62 gCOSY NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of the enyne precursor to 199.422
Spectrum 2.63 ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of the enyne precursor to 199 423
Spectrum 2.64 ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 199 424
Spectrum 2.65 ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 199. 425
Spectrum 2.66 ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of the sulfide precursor to $\mathbf{2 0 0}$ 426
Spectrum 2.67 ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of the sulfide precursor to 200 427
Spectrum 2.68 ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound $\mathbf{2 0 0}$. 428
Spectrum $2.69 \mathrm{gCOSY} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound $\mathbf{2 0 0}$ 429
Spectrum $2.70{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 201. 430
Spectrum 2.71 gCOSY NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound $\mathbf{2 0 1}$ 431
Spectrum $2.72{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 202. 432
Spectrum $2.73{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of oxidation product 204 433
Spectrum $2.74{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ expansion of Spectrum 2.73 434
Spectrum $2.75{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ expansion of Spectrum 2.73 435
Spectrum $2.76{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ of the adduct precursor to 205 436
Spectrum $2.77{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of the adduct precursor to $\mathbf{2 0 5}$. 437
Spectrum $2.78{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ of the benzoate precursor to $\mathbf{2 0 5}$ 438
Spectrum $2.79{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ of compound 205 439
Spectrum $2.80{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$ of compound 205 440
Spectrum $2.81{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of Sonogashira adduct precursor to 207
441
Spectrum $2.82{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of Sonogashira adduct precursor to 207 442
Spectrum $2.83{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ of compound 207. 443
Spectrum $2.84{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$ of compound 207. 444
Spectrum $2.85{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ of compound 210. 445
Spectrum $2.86{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound $\mathbf{2 1 0}$. 446
Spectrum $2.87{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ of compound 211. 447
Spectrum $2.88{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 211. 448
Spectrum $2.89{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 212a 449
Spectrum $2.90{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 212a. 450
Spectrum $2.91{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ of compound 212b 451
Spectrum $2.92{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 212b 452
Spectrum $2.93{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 213. 453
Spectrum $2.94{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 213. 454
Spectrum $2.95{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 214. 455
Spectrum $2.96{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$ of compound 214 456
Spectrum $2.97{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$ of compound $\mathbf{2 1 5}$ 457
Spectrum $2.98{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$ of compound 215 458
Spectrum $2.99{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 216. 459
Spectrum $2.100{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 217 460
Spectrum 2.101 ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ of compound 219 461
Spectrum $2.102{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$ of compound 219 462
Spectrum 2.103 ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ of compound 235. 463
Spectrum $2.104{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 235. 464
Spectrum 2.105 ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 236 465
Spectrum $2.106{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 236 466
Spectrum $2.107{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of the crude Dieckmann precursor to compound 237 467
Spectrum 2.108 ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ of compound 237. 468
Spectrum 2.109 ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ of side product obtained with $\mathbf{2 3 7} .469$
Spectrum 2.110 ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 238. 470
Spectrum 2.111 Expansion of Spectrum 2.110 471
Spectrum 2.112 Expansion of Spectrum 2.110 472
Spectrum $2.113{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 238. 473
Spectrum 2.114 Expansion of Spectrum 2.113 474
Spectrum 2.115 Expansion of Spectrum 2.113 475
Spectrum $2.116{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ of compound 241 476
Spectrum $2.117{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of diol precursor to 242 477
Spectrum $2.118{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$ of compound 242 478
Spectrum $2.119{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 243 479
Spectrum $2.120{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 243. 480
Spectrum 2.121 ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 244. 481
Spectrum 2.122 ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ of compound 245 482
Spectrum 2.123 ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 246 483
Spectrum 2.124 ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 251 484
Spectrum $2.125{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of alcohol precursor to $\mathbf{2 5 2}$. 485
Spectrum $2.126{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of alcohol precursor to 252 486
Spectrum 2.127 ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 252. 487
Spectrum 2.128 ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 253. 488
Spectrum $2.129{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 254 489
Spectrum $2.130 \quad{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ of the alcohol precursor to $\mathbf{2 5 5}$. 490
Spectrum $2.131{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound $\mathbf{2 5 5}$ 491
Spectrum $2.132{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$ of compound 256 492
Spectrum 2.133 ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 260 493
Spectrum 2.134 ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound $\mathbf{2 6 0}$. 494
Spectrum $2.135{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 261 495
Spectrum $2.136{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 261 496
Spectrum 2.137 ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 262. 497
Spectrum $2.138{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 262. 498
Spectrum $2.139{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ of compound 263. 499
Spectrum $2.140 \quad{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$ of compound 263. 500
Spectrum $2.141{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ of compound 264. 501
Spectrum $2.142{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 264. 502
Spectrum $2.143{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 265. 503
Spectrum $2.144{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 265 504
Spectrum $2.145{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 266 505
Spectrum $2.146{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 266. 506
Spectrum 2.147 ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 267. 507
Spectrum $2.148{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 267. 508
Spectrum 2.149 ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 268 509
Spectrum $2.150{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 268. 510
Spectrum 2.151 ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 269 511
Spectrum 2.152 ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$ of compound 269 512
Spectrum 2.153 ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ of sulfide precursor to $\mathbf{2 7 1}$ 513
Spectrum 2.154 ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$ of sulfide precursor to $\mathbf{2 7 1}$ 514
Spectrum $2.155{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 271 515
Spectrum $2.156{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$ of compound 271. 516
Spectrum $2.157{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 272. 517
Spectrum 2.158 ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$ of compound 272 518
Spectrum 2.159 ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ of compound 273 519
Spectrum 2.160 ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$ of compound 273 520
Spectrum $2.161{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ of compound 274. 521
Spectrum 2.162 ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$ of compound 274 522
Spectrum 2.163 ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ of compound 275. 523
Spectrum 2.164 ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$ of compound 275 524
Spectrum $2.165{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 276 525
Spectrum $2.166{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$ of compound 276. 526
Spectrum 2.167 ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ of compound 277. 527
Spectrum 2.168 ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$ of compound 277. 528
Spectrum 2.169 ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ of compound 278 529
Spectrum $2.170{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$ of compound 278 530
Spectrum 2.171 ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ of compound 279 531
Spectrum 2.172 ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$ of compound 279 532
Spectrum $2.173{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ of compound $\mathbf{2 8 0}$ 533
Spectrum $2.174{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$ of compound $\mathbf{2 8 0}$ 534

LIST OF TABLES

Table 1.1 Crystal data and structure refinement for burk05.
 93

Table 1.2 Atomic coordinates ($\mathrm{x} 10^{4}$) and equivalent isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for burk05. $\mathrm{U}(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized Uij tensor. ... 94

Table 1.3 Bond lengths $\left[\AA\right.$] and angles [${ }^{\circ}$] for burk05.. 95
Table 1.4 Anisotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for burk05. The anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{*} U^{11}+\ldots+\right.$ 2 hk a* b* U12].. 97

Table 1.5 Hydrogen coordinates ($\mathrm{x} 10^{4}$) and isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for burk05... 98

Table $2.1{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, gCOSY, NOESY and HMBC NMR data for spirohexenolide A (128) in CDCl_{3} 196

Table $2.2{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, gCOSY, and HMBC data for spirohexenolide $\mathrm{B}(\mathbf{1 2 9})$ in $\mathrm{C}_{6} \mathrm{D}_{6}$.

Table 2.3 Crystal data and structure refinement for burk03.................................... 255
Table 2.4 Atomic coordinates ($\mathrm{x} 10^{4}$) and equivalent isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for burk03. $\mathrm{U}(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized Uij tensor. ... 256

Table 2.5 Bond lengths $[\AA]$ and angles [${ }^{\circ}$] for burk03.. 258

Table 2.6 Anisotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for burk03. The anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{*} U^{11}+\ldots+\right.$ $2 \mathrm{hka}^{*} \mathrm{~b}^{*} \mathrm{U}^{12}$] 260

Table 2.7 Hydrogen coordinates ($\times 10^{4}$) and isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for burk03.. 261

Table 2.8 Crystal data and structure refinement for burk08.................................... 263
Table 2.9 Atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for burk08. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. ... 264

Table 2.10 Bond lengths $[\AA]$ and angles [$]$ for burk08.. 266
Table 2.11 Anisotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for burk08. The anisotropic displacement factor exponent takes the form: $-2 \square^{2}\left[\mathrm{~h}^{2} \mathrm{a}^{* 2} \mathrm{U}^{11}+\ldots+\right.$ $2 \mathrm{hka}^{*} \mathrm{~b}^{*} \mathrm{U}^{12}$] 271

Table 2.12 Hydrogen coordinates $\left(\times 10^{4}\right)$ and isotropic displacement parameters $\left(\AA^{2}\right.$ x 10^{3}) for burk08... 273

Table 2.13 Crystal data and structure refinement for burk04.................................. 277
Table 2.14 Atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for burk04. $\mathrm{U}(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized Uij tensor. ... 279

Table 2.15 Bond lengths $[\AA]$ and angles [${ }^{\circ}$] for burk04... 279

Table 2.16 Anisotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for burk04. The anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{*} U^{11}+\ldots+\right.$ $2 \mathrm{hka}^{*} \mathrm{~b}^{*} \mathrm{U}^{12}$] 280

Table 2.17 Hydrogen coordinates ($\times 10^{4}$) and isotropic displacement parameters
\qquad
Table 2.18 Crystal data and structure refinement for burk10. 316

Table 2.19 Atomic coordinates (x 10^{4}) and equivalent isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for burk10. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. ... 317

Table 2.20 Bond lengths $[\AA]$ and angles [$]$ for burk10.. 317
Table 2.21 Anisotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for burk10. The anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[\mathrm{~h}^{2} \mathrm{a}^{* 2} \mathrm{U}^{11}+\ldots+\right.$ $2 h k a *^{*} \mathrm{U}^{12}$ 〕... 318

Table 2.22 Hydrogen coordinates $\left(\times 10^{4}\right)$ and isotropic displacement parameters $\left(\AA^{2}\right.$ x 10^{3}) for burk10... 319

Table 2.23 Crystal data and structure refinement for BURK12............................. 337
Table 2.24 Atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for BURK12. $\mathrm{U}(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized Uij tensor. .. 338

Table 2.25 Bond lengths $[\AA]$ and angles [${ }^{\circ}$] for BURK12. 339

Table 2.26 Anisotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for BURK12. The anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{*} U^{11}+\ldots+\right.$ $2 \mathrm{hk} \mathrm{a*} \mathrm{~b}^{*}$ U 12]... 342

Table 2.27 Hydrogen coordinates ($\times 10^{4}$) and isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for BURK12.. 343

Table 2.28 Hydrogen bonds for BURK12 [\AA and ${ }^{\circ}$].. 344

ACKNOWLEDGEMENTS

I wish to extend my gratitude to Professor Michael Burkart and Dr. James La Clair, who provided me the opportunity to conduct the research described herein. In addition to providing support and direction in this research, they allowed me to work together with Dr. Alexander Mandel on the project described in the first chapter. Alex is an outstanding chemist who served as a continuous source of inspiration and knowledge, and was instrumental in my growth as a synthetic chemist. I wish to thank Dr. Matthew Alexander, a postdoctoral researcher in the Burkart group who provided me with useful advice and assistance during my first two years in the laboratory. Dr. Min Jin Kang brought her expertise in microbiology to the Burkart group and deserves special thanks for her tireless work in culturing Streptomyces platensis for the isolation studies described in the second chapter.

I would like to thank Professor Donoghue and everyone on the Growth Regulation and Oncogenesis training grant at UCSD for support during my fourth and fifth years. Being on the training grant allowed me to focus on my thesis project during this time period, and also gave me the opportunity to hear about cutting edge research in cancer biology.

I would like to thank Dr. Anthony Mrse at the NMR facilities in Pacific Hall for keeping the instruments well maintained and helping me troubleshoot many of the problems I had with obtaining quality spectra. Professor Rheingold operates the fantastic small molecule X-Ray facility at UCSD, where all of the crystal structures described herein were obtained. The service of all my committee members is
acknowledged and appreciated. I wish to thank all past and present Burkart group members who assisted me during my time in graduate school. I also thank all the students and postdocs in the organic division at UCSD from other laboratories who helped me with advice, chemicals, solvents or anything else.

Chapter 1 contains some material that was published in Bioorg Med Chem Lett., 17, 18, pp. 5159-5164, 2007. The dissertation author was the second author of this paper.

Section 2.1, in full, is a reprint of the material as it appears in J Org Chem., 74, 23 , pp. 9094-9061, 2009. The compound and reference numbering, and some of the formatting were changed to fit the requirements for the dissertation. The dissertation author was the second author of this paper.

Section 2.4.2 describes material being prepared for publication entitled "Total Synthesis of (\pm) - Spirohexenolide B", Jones B.D., La Clair J.J., Burkart M.D. The dissertation author is the primary author of the manuscript.

VITA

2002 Bachelor of Arts, Chemistry. University of Colorado, Boulder.
2006 Master of Science, Chemistry. University of California, San Diego.
2010 Doctor of Philosophy, Chemistry. University of California, San Diego.

PUBLICATIONS

Mandel, A. L.; Jones, B. D.; La Clair, J. J.; Burkart, M. D., A Synthetic Entry to Pladienolide B and FD-895. Bioorg. Med. Chem. Lett. 2007, 17, (18), 5159-5164.

Kang, M. J.; Jones, B. D.; Mandel, A. L.; Hammons, J. C.; DiPasquale, A. G.; Rheingold, A. L.; La Clair, J. J.; Burkart, M. D., Isolation, Structure Elucidation, and Antitumor Activity of Spirohexenolides A and B. J. Org. Chem. 2009, 74, (23), 90549061.

Jones, B.D., La Clair, J.J., Burkart, M.D., Total Synthesis of (\pm)-Spirohexenolide B, in preparation

ABSTRACT OF THE DISSERTATION

Synthetic Studies Toward the Pladienolide and Spirohexenolide Natural Products

by
Brian D. Jones
Doctor of Philosophy in Chemistry
University of California, San Diego, 2010
Professor Michael Burkart, Chair

Actinomycetes are microbes found in terrestrial soil and marine sediment that produce a rich variety of secondary metabolites. These natural products have diverse biological activity including antifungal, insecticidal, antibacterial, and antitumor activities. Although in most cases we can only speculate why the producer microbes make these natural products, they have been in use throughout human history. Some of these secondary metabolites and their semi-synthetic derivatives have proven to be indispensible to modern medicine, and others are highly desirable for non-essential uses such as food additives, fragrances and dyes.

Our laboratory became interested in the actinomycetes produced pladienolide natural products when they were originally reported due to their potent antitumor activity and unique cell-cycle arrest profile. The novel assay used in their discovery,
and the reported biological data indicated that these natural products probably had a unique mechanism of action against tumor cells.

Herein is described research toward the synthesis and structural elucidation of the pladienolides and their close structural relative FD-895. This research was accompanied by efforts to isolate authentic samples of the pladienolides from their producer organism, Streptomyces platensis MER 11107. These efforts led to the isolation and structural elucidation of novel spirotetronate polyketides from this organism, the spirohexenolides. Chapter 1 describes attempts toward the synthesis of the core macrolactone ring of the pladienolides and FD-895, the synthesis of the sidechain of FD-895, and the synthesis of two models of FD-895 which demonstrate the feasibility of our end-game strategy toward this family of natural products. Chapter 2 describes the isolation efforts directed toward the pladienolides, and the isolation and structural elucidation of the spirohexenolides. An intramolecular DielsAlder (IMDA) approach to (\pm) - spirohexenolide A, and a Lewis-acid catalyzed DielsAlder approach to $(\pm)-$ spirohexenolide B are described.

Chapter 1

Studies toward the pladienolides and FD-895

1.1 Introduction to the pladienolides and FD-895

The first member of a new family of polyketide natural products, FD-895 (1), was discovered in 1994 at the Taisho Corporation in Japan, through efforts to discover antitumor agents active against drug resistant cell lines. ${ }^{1}$ It was isolated from the culture broth of a soil microbe collected in Japan, later determined to be Streptomyces hygroscopicus A-9561. The planar structure of 1 was elucidated through NMR, IR, UV and mass spectrometric analyses, which revealed an unusual twelve-membered macrolide attached to a long lipophilic, epoxide containing sidechain (Figure 1.1). Because it was discovered by activity guided fractionation using adriamycin resistant HL-60 cells, it was not surprising that $\mathbf{1}$ showed low nanomolar IC_{50} values against a variety of other drug resistant and non resistant tumor cell lines in vitro. The original report describes that $\mathbf{1}$ was shown to block biosynthesis of nucleic acids and protein but had no activity against V-ATPases, a common target of cytotoxic polyketides with related structures. Compound $\mathbf{1}$ had no discernable antibacterial or antifungal activity, and was shown not to prolong the survival time of mice transplanted with P388 leukemia cells, a cell line that it had been shown to be very active against in vitro. The Taisho Corporation published no further reports on 1, suggesting that the poor result in the mouse xenograft study and possibly other discouraging biological activity data forced them to cancel the project.

		R_{1}	R_{2}	R_{3}	R_{4}	R_{5}	R_{6}
FD-895	$\mathbf{1}$	Ac	H	OH	H	OCH_{3}	H
pladienolide A	$\mathbf{2 a}$	H	H	H	H	OH	H
pladienolide B	$\mathbf{2 b}$	Ac	H	H	H	OH	H
pladienolide C	$\mathbf{2 c}$	Ac	H	H	H	$=\mathrm{O}$	
pladienolide D	$\mathbf{2 d}$	Ac	OH	H	H	OH	H
pladienolide E	$\mathbf{2 e}$	Ac	H	H	OH	OH	H
pladienolide F	$\mathbf{2 f}$	H	OH	H	H	OH	H
pladienolide G	$\mathbf{2 g}$	H	H	H	OH	OH	H

Figure 1.1 FD-895 (1) and pladienolides A-G (2a-2g)

Seven pladienolides ($\mathbf{2 a - 2} \mathbf{2}$) were reported in 2004 by the Eisai Corporation (Figure 1.1). ${ }^{2}$ Their discovery was the result of the development of a cell-based assay designed to identify small molecules that block the hypoxia inducible factor (HIF-1) transcription factor pathway and thus expression of vascular endothelial growth factor (VEGF) genes. This pathway is critical to the growth of tumors in their common low oxygen (hypoxic) environment, because VEGF stimulates the recruitment of new blood vessels to the tumors, a process known as angiogenesis. ${ }^{3}$ A high-throughput screening assay was developed that allowed the Eisai Corporation to rapidly examine thousands of crude bacterial culture broths for this activity, and one of the hits resulted in the isolation of $\mathbf{2 a - 2 g}$. Their producer organism was determined by taxonomic
methods to be Streptomyces platensis and the strain was designated MER 11107. Standard spectroscopic structural elucidation methods revealed their planar structures to be almost identical to $\mathbf{1}$ (Figure 1.1). ${ }^{4}$

In addition to powerful anti-VEGF activity, the pladienolides displayed a broad range of in vitro cytotoxicity against a panel of 39 tumor cell lines. Exposure of WiDr cells to $\mathbf{2 a - 2 g}$ resulted in cell cycle arrest at the G1 and G2/M phases, and the cell cycle arrest profile of $\mathbf{2 a - 2} \mathbf{g}$ did not correlate well with 5-fluorouracil, vincristine, or taxol. Additionally, COMPARE analysis ${ }^{5,6}$ of the in vitro activity profile data of $\mathbf{2 b}$ did not identify a standard antitumor drug with a high correlation coefficient. Thus, the cellular target of these angiogenesis inhibitors was thought to be new for antitumor agent development. Initial in vivo activity results were promising; in particular, $\mathbf{2 b}$ demonstrated potent activity in six mouse xenograft models, slowing tumor growth in five and causing complete regression in one. ${ }^{7}$ The most important structure-activity relationship result from the isolation of the pladienolides was that the acetate at C-7 (as in $\mathbf{1}$ and 2b-2e) is critical for anti-VEGF activity; the non-acetylated congeners are much less active. Much of the subsequent semi-synthetic medicinal chemistry work on the pladienolides by the Eisai Corporation was done by making various esters and carbamates at C-7 of $\mathbf{2 b}$ and $\mathbf{2 d}$. Eventually a urethane derivative of 2d, with 7-(4-cycloheptylpiperazin-1-yl) substituted for 7-Ac was identified with complete retention of anti-VEGF activity and in vitro antitumor activity. 8, 9 This derivative with enhanced in vivo potency and pharmacokinetic properties was denoted E7107 (compound 3, Figure 1.2), and entered phase I clinical trials for cancer treatment in 2007. Several chemical biology experiments at the Eisai Corporation were conducted
to identify the molecular target of $\mathbf{2 a - 2 g}$ and $\mathbf{3}$. Three 'chemical probes', semisynthetic derivatives of $\mathbf{2 b}$ were developed for this purpose (compounds 4-6, Figure 1.2). ${ }^{10}$

		R_{1}	R_{2}
pladienolide B	2b	CH_{3}	H
pladienolide D	2d	CH_{3}	OH
E7107	3		OH
${ }^{3} \mathrm{H}$ probe	4		H
fluorescent probe	5		H
biotin-tethered probe with photocrosslinking agent	6		H

Figure 1.2 Semisynthetic analogs of pladienolides B and D (2b and 2d)
${ }^{3} \mathrm{H}$ probe 4 was incubated with HeLa cells and subsequent cell fractionation and scintillation counting indicated that the target was most likely a nuclear protein. Fluorescent probe 5 was incubated with the same cells and fluorescence microscopy indicated probe localization on the nuclear speckles. Cells incubated with $\mathbf{4}$ were thus fractionated and the nuclear fraction subjected to co-precipitation experiments with antibodies against nuclear speckle proteins. Antibodies against the U2 small nuclear ribonucleoprotein (U2 snRNP) proteins, components of the spliceosome, precipitated most efficiently with the probe. The antibody against the spliceosome associated protein SAP155 precipitated $40-60 \%$ of the ${ }^{3} \mathrm{H}$ signal. Biotin linked analog of 6 with a photocrosslinking agent was developed and incubated with the HeLa cells, precipitated with the anti-SAP155 antibody, and irradiated to form a covalent conjugate with the target protein. Immunoblotting experiments identified two candidates, both components of splicing factor SF3b. Additional immunoblotting experiments with green fluorescent protein fused SF3b subunit 3 (SAP 130) indicated a direct interaction with probe 6. Other experiments revealed that the target protein must be incorporated into the SF3b complex for probe binding. Finally, it was shown that $\mathbf{2 b}$ inhibits in vivo mRNA splicing in HeLa cells in a dose-dependent fashion and causes enlargement of the nuclear speckles, most likely due to the accumulation of unspliced pre-mRNA.

These results suggest that the pladienolides are part of a new class of spliceosome targeting antitumor agents including FR901464 (7b) and its methyl ketal derivative spliceostatin A (7a). ${ }^{11-13}$ Although the pladienolides are very different structurally (Figure 1.3), it is possible that they share an identical mechanism of
action. Spliceostatin A was also demonstrated to target SF3b, and displays a similar cell cycle arrest profile to the pladienolides. ${ }^{11}$ The total synthesis of FR901464 by the Jacobsen group revealed that both the epoxide and acetate groups are required for activity. ${ }^{14}$ The independent synthetic efforts from the Jacobsen and Kitihara groups toward $\mathbf{7 b}$ resulted in the discovery that replacement of the 1-hemiketal moiety with more stable alkyl or alkoxy groups improved compound stability and potency in vitro. This discovery led to the development of semisynthetic probes used in the discovery of the target protein of these compounds. The methyl ketal 7a was named spliceostatin A and was used for further biological studies by the Kitihara group (IC_{50} values for comparison were not reported but it is stated that activity of $\mathbf{7 a}$ in the assay used was greater than 7b). ${ }^{15}$ The 1-deoxy analog $\mathbf{7 c}$ was prepared by the Jacobsen group in their synthetic efforts and demonstrated enhanced potency, and the 1-methyl analog 7d was later prepared by the Koide group and shown to have low picomolar activity. ${ }^{16}$

It is unknown whether $\mathbf{2 a - 2} \mathbf{g}$ bind to the same site of SF3b as $\mathbf{7 a - 7 d}$, or interact with it in the same way. It is also not known exactly how interfering with mRNA splicing confers cytotoxicity, but it is likely that truncated proteins resulting from the translation of unspliced pre-mRNA translation such as p27 CDK may play a role. It has not been proven that inhibition of SF3b by $\mathbf{2 a - 2} \mathbf{g}$ is the reason VEGF genes are not expressed in cells exposed to these compounds. There may be additional cellular targets of $\mathbf{2 a - 2 g}$ responsible for the observed cytotoxicity effects. Because structureactivity studies have demonstrated that the epoxide and distal acyloxy groups are essential for cytotoxicity for both natural product types, medicinal chemistry work was
done to try to identify a minimal pharmacophore. ${ }^{17}$ The minimal analogs that were made had much reduced potency, and were not proven to bind to SF3b, so more work needs to be done to validate this approach.

pladienolide B(2b)

Figure 1.3 Spliceosome targeting natural products

1.2 Synthetic approaches to the pladienolides and FD-895

1.2.1 Eisai Corp.'s total syntheses of pladienolides B and D

The primary objective of the first synthetic studies toward $\mathbf{2 b}$ and $\mathbf{2 d}$ was to elucidate their relative and absolute stereochemistry, because the isolation studies on $\mathbf{1}$ and $\mathbf{2 a - 2 g}$ provided only planar structures. Material supply of the natural products was not the motivation, since high production titers of $\mathbf{2 b}$ are consistent when the patented optimized procedures are used. ${ }^{18,19}$ Researchers at the Eisai Corporation employed a flexible four-component strategy to synthesize $\mathbf{2 b}$ and 2d, with all of the components generated using reagent-controlled asymmetric synthesis (Scheme 1.1). ${ }^{9}$, 20 The work was done concurrently with traditional structural elucidation studies involving degredation and derivitization of $\mathbf{2 b} .{ }^{21}$ If, during the synthesis, the working stereochemical model was changed, they could adjust the stereochemistry of each fragment by altering the reagents.

bb, $\mathrm{R}=\mathrm{H}$ and $\mathbf{2 d}, \mathrm{R}=\mathrm{OH}$

\downarrow

9

10

11

 \downarrow

13

Scheme 1.1 Eisai Corp.'s retrosynthetic analysis of ab and 2d

The synthetic group made the first retrosynthetic disconnection of $\mathbf{2 b}$ and $\mathbf{2 d}$ at the E-1,2-disubstituted $\Delta^{14,15}$ olefin, which they reasoned could be efficiently generated (in the case of 2b) by a Julia-Kocienski olefination between a terminal sulfone sidechain fragment $\mathbf{8}\left(\mathrm{R}_{2}=\mathrm{SO}_{2} \mathrm{PT}\right)$ and aldehyde core component $11\left(\mathrm{R}_{1}\right.$: $=\mathrm{O})$. For 2d, hinderance at $\mathrm{C}-16(\mathrm{R}=\mathrm{OPG})$ prevented the required $\mathrm{C}-15$ sulfone nucleophile from adding to aldehydes in model studies. Therefore, this bond was installed by cross metathesis between terminal olefins of these advanced fragments.

The C-15 to C-23 sidechain fragment $\mathbf{8}$ was disconnected at the C-18/C-19 trans epoxide, which was installed by asymmetric epoxidation of a precursor E-1,2disubstituted $\Delta^{18.19}$ olefin. The necessary olefin came from a Julia-Kocienski coupling of C-15 to C-18 sulfone subunit $\mathbf{1 0}$ and $\mathrm{C}-19$ to $\mathrm{C}-23$ aldehyde $\mathbf{9}$. The $\mathrm{C}-20 / \mathrm{C}-21$ syn stereodiad of aldehyde 9 was the result of Evans' asymmetric aldol chemistry. The isolated C-16 stereocenter of $\mathbf{2 b}$ was acquired from methyl (R)-3-hydroxy isobutyrate; both enantiomers of this starting material are commercially available for the same price. The C-16 tertiary alcohol of $\mathbf{2 d}$ had to be installed by Sharpless' asymmetric epoxidation of an appropriate allylic alcohol precursor, and iodination followed by reduction using Luche's conditions ${ }^{22}$ afforded the desired fragment.

An esterification / ring-closing metathesis strategy was chosen for the synthesis of the core fragment 11, an increasingly common approach to propionatederived macrolactone natural products. ${ }^{23,} 24$ A multifunctional fragment $\mathbf{1 2}$ was prepared, in addition to the acid-olefin component 13. The C-9 to C-14 fragment $\mathbf{1 2}$ was generated using Paterson's anti-aldol addition ${ }^{25}$ of a reported aldehyde and a lactate-derived chiral ketone, and 4 subsequent steps to install the terminal olefin. The

C-1 to C-8 acid olefin component $\mathbf{1 3}$ was prepared in 10 steps from the commercially available terpene nerol. The C-3 hydroxyl group was set by an auxiliary driven asymmetric Reformatsky reaction. ${ }^{26}$ The C-6/C-7 diol was prepared using Sharpless' asymmetric dihydroxylation which proceeded in modest (76\%) d.e., and the diastereomers could not be separated. After 2 protecting group manipulations on the diol mixture, a crystalline intermediate was formed, which after a single recrystallization gave a single pure diastereomer.

To complete the synthesis of $\mathbf{2 b}$, esterification of alcohol $\mathbf{1 2}$ and acid $\mathbf{1 3}$ was effected in 92% yield under Yamaguchi's conditions to form the RCM precursor. The precursor was treated with the Hoveyda-Grubbs catalyst in refluxing toluene to afford the core component 11 in modest (46\%) yield. The core component was converted to an aldehyde in 2 steps, which coupled to the $\mathrm{C}-15$ to $\mathrm{C}-23$ sidechain sulfone fragment 8 in 64% yield. After 5 protecting group steps, the tetraol pladienolide A (2a) was formed. The researchers knew from their semisynthetic work on the natural products that 2a could be regioselectively acetylated at the C-7 hydroxyl group, so this was the last step to produce $\mathbf{2 b}$.

To synthesize 2d, the aldehyde of the core component $\mathbf{1 1}$ was converted to a terminal olefin with the Tebbe reagent, the protecting groups were removed and the C 7 acetate was regioselectively installed. The fully deprotected C-15 to C-23 terminal olefin sidechain fragment $8\left(\mathrm{R}=\mathrm{OH}, \mathrm{PG}=\mathrm{H}, \mathrm{R}_{2}:=\mathrm{CH}_{2}\right)$ was prepared for the final cross metathesis reaction. A 2:1 mole ratio mixture of $\mathbf{8 : 1 1}$ was refluxed in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ in the presence of Grubbs' second generation olefin metathesis catalyst, and 2d was formed in 64% yield based on the limiting component 11.

In summary, $\mathbf{2 b}$ and $\mathbf{2 d}$ were synthesized in 22 and 19 steps respectively, and 2.1% and 2.2% overall yields, respectively. 2a was also synthesized as a target of opportunity en route to $\mathbf{2 b}$. Included in the synthetic work was a degredation experiment done on $\mathbf{2 d}$ (Scheme 1.2) to elucidate the absolute stereochemistry at C-16 which was confirmed by the synthesis. The synthesis of $\mathbf{2 b}$ confirmed the results of the degredation and structural elucidation studies described in the next section.

1.2.2 Structural elucidation of pladienolides B and D

The relative stereochemistry of the core macrolactone of pladienolide B was elucidated by 1D selective TOCSY and homonuclear-decoupling experiments. ${ }^{20,} 21$ The NMR data obtained allowed the researchers at the Eisai Corporation to accurately determine coupling constants for every proton on the molecule, which allowed them to make a conformational model. This model was supported by observation of all the expected 2D-NOESY correlations in the core structure.

It follows from the vicinal coupling constant ${ }^{3} J_{\mathrm{H}-18 / \mathrm{H}-19}=2.4 \mathrm{~Hz}$ that the C18/C19 epoxide is trans in $\mathbf{1}$ and $\mathbf{2 a - 2 g} .{ }^{4}$ The rest of the relative stereochemistry of the sidechain of $\mathbf{2 b}$ and $\mathbf{2 d}$ was determined by degredation and NMR analysis of derivatives as shown (Scheme 1.2). The C-3 and C-21 hydroxyl groups of $\mathbf{2 b}$ were silylated, and exhaustive olefin dihydroxylation was carried out with OsO_{4}. Subsequent cleavage with NaIO_{4} provided aldehyde 14, which was then reduced to the primary alcohol with NaBH_{4}. The alcohol was converted to the corresponding tetrahydrofuran compound 15 by treatment with t - BuOK , which promoted the favorable 5-exo-tet epoxide ring opening at $\mathrm{C}-18$. After removal of the silyl group, the
resultant C-21/C-19 1,3-diol was protected as the p-bromobenzylidene acetal, which formed as a $2: 1 \alpha: \beta$ mixture of diastereomers $\mathbf{1 6}(\alpha / \beta)$, which were separable on silica gel. NOESY interactions then revealed the relative stereochemistry of the sidechain of 2b (Figure 1.4).

Scheme 1.2 Degredation experiments on 2b and 2d

The C-16 hydroxyl group of $\mathbf{2 d}$ prevented this method from being employed for its derivatization. 2d was thus silylated and subjected to reductive ozonolysis to afford alcohol 17, which formed the corresponding tetrahydrofuran 18 upon deprotection and treatment with t-BuOK. The p-bromobenzylidene acetal 19 also formed as a mixture of separable diastereomers, and NOESY interactions confirmed that the C-16 methyl group of $\mathbf{2 d}$ had the same relative configuration as $\mathbf{2 b}$, as expected.

Figure 1.4 NOESY interactions observed on $\mathbf{1 6} \boldsymbol{\alpha}$

Finally, preparation of the $(R)-$ and $(S)-\mathrm{C}-3 / \mathrm{C}-21$ bis-MTPA esters of $\mathbf{2 b}$ allowed the researchers to unambiguously assign absolute stereochemistry by the modified Mosher method. ${ }^{27}$

1.2.3 Skaanderup's approach to the pladienolide core

A more efficient route to the pladienolide core was reported by Skaanderup and Jensen's group a year after Eisai's completed total synthesis report (Scheme 1.3). ${ }^{28}$ The work was begun before the absolute stereochemistry of the pladienolides was published and they prepared the incorrect enantiomer, but it is clear that they had correctly deduced the relative stereochemistry of the core. The researchers mentioned an interest in studying the structural basis for the interaction of the pladienolides with the spliceosome, and intend to explore this by developing novel sidechain analogs to be tethered to the core for SAR studies.

The core macrolide 20 was disconnected at the $\mathrm{C}-1 / \mathrm{C}-11$ lactone linkage and the $E 1,2$-disubstituted $\Delta^{8,9}$ olefin as in the Eisai route, and the sidechain was left out to focus efforts on improving the synthesis of the C-1 to C-8 ester olefin fragment $\mathbf{2 2}$. This fragment was generated in 9 steps and 38% overall yield from the commercially available neryl acetate (Scheme 1.3), a substantial improvement in comparison to the Eisai route. An asymmetric acetate aldol reaction was used to set the C-3 hydroxyl group in 89% yield but a moderate $4: 1$ d.r. The diastereomers were separable on a single column, so the material was taken forward to evaluate the installation of the C-6/C-7 stereodiad by Sharpless' asymmetric dihydroxylation. Surprisingly, the researchers report that the substrate 23 reacted with AD-mix- β in 95% yield and $>$ 20:1 d.r., much higher selectivity for essentially the same reaction that had been run by the Eisai group. Eisai was using AD-mix- α to form the correct stereoisomer, but it has been observed that the selectivity difference between the AD-mix ligands (DHQPHAL for AD-mix- α vs DHQD-PHAL for AD-mix- β) is negligible in general ${ }^{29}$, so the observed disparity in selectivity is most likely due to the substrate used. The Skaanderup group left the chiral auxiliary from the aldol reaction on substrate $\mathbf{2 3}$ for the AD-mix reaction, whereas the Eisai group had cleaved the auxiliary from their Reformatsky reaction prior to the dihydroxylation step.

Scheme 1.3 Skaanderup's approach to the pladienolide core 20

Skaanderup's group converted the diol product of the dihydroxylation reaction to the ester olefin fragment $\mathbf{2 2}$ in 4 steps and 71% overall yield. Compound 21 was prepared in 4 steps and 84% overall yield from the Roche ester, a commonly employed chiral precursor. After some optimization effort, it was observed that $\mathbf{2 1}$ and 22 reacted efficiently under cross-metathesis conditions using the HoveydaGrubbs catalyst to afford the $E-1,2$-disubstituted $\Delta^{8,9}$ olefin in 76% yield. The core structure $\mathbf{2 0}$ was then prepared in 5 steps from the cross-metathesis product.

In summary, the Skaanderup synthesis demonstrated some improvements in the synthesis of the C-1 to C-8 fragment, and increased the efficiency of the formation of the $\Delta^{8,9}$ olefin by opting for cross-metathesis instead of RCM. It is not clear from these studies how they intend to install the C-10/C-11 stereodiad, or how they intend to couple their sidechain analogs to the core as there is no functionality available on compound $\mathbf{2 0}$ for this purpose.

1.2.4 Retrosynthetic analysis of the pladienolides and FD-895

We became engaged in similar synthetic efforts during roughly the same time period as Skaanderup / Jensen's group. ${ }^{30-33}$ It is likely that the Eisai Corporation began their synthetic efforts before their report of the isolation of $\mathbf{2 a - 2} \mathbf{g}$, because they applied for a patent on the syntheses of $\mathbf{2 b}$ and $\mathbf{2 d}$ in October 2005. ${ }^{20}$ Unfortunately, authentic samples of $\mathbf{2 a - 2} \mathbf{g}$ were not available to us. To circumvent this issue, we sought to acquire the producer strains of $\mathbf{2 a - 2 g}$ from Japanese culture collections. After many repetitions of the published isolation protocols ${ }^{2}$, both of the strains delivered to us failed to produce $\mathbf{2 a - 2} \mathbf{g}$ in detectable quantities. The only secondary metabolites that could be identified and reproducibly detected from these efforts are the subject of chapter 2 .

We were eventually provided an authentic sample of $\mathbf{1}$, which was used to conduct 2D NMR experiments in attempts to deduce its relative configuration. The spectra obtained on this sample indicated very good agreement between $\mathbf{1}$ and the reported data for its closest pladienolide congener $\mathbf{2 b}$ for many of the δ_{C} and δ_{H} values and ${ }^{3} J_{\mathrm{HH}}$ vicinal proton coupling constants. It was thus proposed that $\mathbf{1}$ probably has the same relative configuration as $\mathbf{2 b}$ and $\mathbf{2 d}$, although $\mathbf{1}$ has the additional C-17 stereocenter such that its sidechain has six contiguous stereogenic centers.

Due to the limited amount of $\mathbf{1}$ provided to us we were hesitant to conduct extensive degredation studies on it, instead focusing on NMR studies combined with a few attempts to crystallize it or make crystalline derivatives (such as pbromobenzoates or 3,5-dinitrobenzoates). Our NMR instruments were not set up to
run J-resolved HMBC or HETLOC experiments, which are necessary to measure the ${ }^{2,3} J_{\mathrm{CH}}$ values needed to conduct J-based configurational analyses $(\mathrm{JBCA}){ }^{34,35}$, so we assigned as many ${ }^{3} J_{\mathrm{HH}}$ vicinal coupling constants as possible, comparing them with similar fragments from the literature, and NOESY experiments to get relative information between separate spin systems.

At the same time, strategies toward stereodivergent fragment synthesis were devised to make models of the possible diastereomers, and hopefully start ruling out some of the possibilities in this way. Additionally, it was desired that these fragments should incorporate useful handles for couplings to complete the molecule. Our retrosynthetic analysis for $\mathbf{2 b}$ was similar to the one used successfully by the Eisai researchers, with the major difference being the method of attachment of the sidechain to the core (Scheme 1.4). We proposed disconnection at the C-13/C-14 bond of the diene on the sidechain, reasoning that a Stille coupling would be the mildest method to achieve late stage fragment assembly.

2b

26

28

29

30

31

Scheme 1.4 Retrosynthetic analysis of pladienolide B (2b)

Disconnecting the core vinyl iodide fragment 27 at the C-1/C-11 lactone and the E 1,2-disubstituted $\Delta^{8,9}$ olefin required the production of $\mathbf{3 1}$, the same $\mathrm{C}-1$ to $\mathrm{C}-8$ acid olefin fragment synthesized in the Eisai route (compound 13) (Scheme 1.1). Because no synthesis of such a fragment existed at the time our studies began, many routes were examined involving asymmetric synthesis and also chiral pool approaches. The multifunctional fragment $\mathbf{3 0}$ was also needed, for which a three-step synthesis from propargyl alcohol was devised, using crotylboration to set the C-10/C-11 stereocenters. This was chosen because both stereocenters were set in a single step, and all 4 stereoisomers were accessible. The crotylboration product also had the appropriate handles for fragment assembly. It was thought that because ${ }^{3} J_{\mathrm{H}-10 / \mathrm{H}-11}=$ 9.8 Hz in $\mathbf{1}$ and $\mathbf{2 b}$ that $\mathrm{C}-10 / \mathrm{C}-11$ had the anti configuration.

Disconnection of stannane 26 at the C-18/C-19 E olefin precursor to the epoxide was also the same strategy employed by the Eisai route. This left us to synthesize sulfone 29, easily accessible from 2-methyl 1,4-butanediol, both enantiomers of which are commercially available. Aldehyde 28 was prepared by asymmetric aldol methodology. All that remained was to couple the fragments and find a suitable asymmetric epoxidation to form the C-18/C-19 epoxide, which proved more difficult than expected.

Because we had an authentic sample of 1, we sought to develop a stereodivergent route to its sidechain. For this aspect of the project, the major disconnection of the Stille coupling to core component 27 was retained, and thus required a different stannane fragment 32 to be produced by reagent controlled methods that could provide either stereochemistry of the C-17 alcohol (Scheme 1.5). Crotylation or aldol addition to aldehyde $\mathbf{3 4}$ was envisioned for this purpose, because both syn and anti methods are available with high levels of reagent control. Sharpless' method was used to set the epoxide of the sidechain of $\mathbf{1}$, since the precursor would be an allylic alcohol. This required the preparation of allylic alcohol 35, which was accomplished by Horner-Wadsworth-Emmons homologation of aldol-derived aldehyde 36.

Having developed flexible strategies to $\mathbf{1}$ and $\mathbf{2 b}$, several attempts to generate the $\mathrm{C}-1$ to $\mathrm{C}-8$ acid olefin fragment $\mathbf{3 1}$ were initiated. It was soon realized that $\mathbf{3 1}$ is the most intractable piece of the molecule, requiring the most synthetic operations in any route yet devised toward $\mathbf{1}$ and $\mathbf{2 a - 2 g}$.

34

36

Scheme 1.5 Retrosynthetic analysis of FD-895 (1)

1.2.5 A chiral pool approach to the C-1 to C-8 acid olefin of 1

At the outset, it was suspected that the relative configuration of the C-6/C-7 stereodiad of $\mathbf{1}$ was as shown in fragment 31 (Scheme 1.4) due to NOE correlation between the C-6 methyl substituent and methine proton H-7. The relative configuration of the isolated $\mathrm{C}-3$ stereocenter to the $\mathrm{C}-6 / \mathrm{C}-7$ diol could not be definitively assigned from the NOESY spectra. Fragment 37, a diastereomer of 31, was arbitrarily chosen as the synthetic target for the C-1 to C-8 segment of the core. One of the initial forays toward $\mathbf{3 7}$ was a chiral pool approach using a carbohydrate derived scaffold to provide the C-3 stereocenter (Scheme 1.6). Precursor 38 was targeted to achieve this goal because it was apparently simple to prepare.

Scheme 1.6 A chiral pool retrosynthetic approach to 37

A report of high levels of substrate control in the addition of methylcerium dichloride to carbohydrate derived chiral ketones 42 and 43 to give axial addition products 44 and 45 , respectively, was thought to be particularly suitable for this type of fragment (Scheme 1.7). ${ }^{36}$ Substrate controlled methylation of known enone 40 (similar to 42), would thus provide 39.

Scheme 1.7 Substrate-controlled methylations of chiral ketones
A survey of the literature revealed numerous methods for the preparation of enones such as 40. A one-step high yielding method developed by De Fina starting with the widely used galactose-derived glycal 41 (Scheme 1.6) was chosen for our
first attempt. ${ }^{37}$ It was thought that if an efficient method to open the acetal of $\mathbf{3 9}$ to a manipulable acyclic form could be found, this route could provide rapid access to the scaffold needed for $\mathbf{3 7}$. Two techniques were considered for this transformation (Scheme 1.8). Hydrogenation of $\mathbf{3 9}$ would provide 46, and several conditions have been reported for converting acetals directly to 1,3-dithianes such as 47 , or similarly to acyclic dithioacetals. ${ }^{38,39}$ Alternatively, acid catalyzed hydrolysis of 46 would give the triol 38. A number of methods exist for converting hemiacetals of this type to oximes (48, $\mathrm{R}=\mathrm{Me}$ or Bn), for which there is a spectrum of oxidative cleavage conditions. ${ }^{40}$

Scheme 1.8 Methods for opening the C-7 acetal to an acyclic intermediate

Two homologations of acyclic intermediates such as 47 or 48 would be necessary to reach 37 (Scheme 1.6), the first being introduction of the $\mathrm{C}-1$ carbon which could be accomplished by cyanide or 2-lithio-1,3-dithiane displacement of the corresponding C-2 tosylate or iodide. ${ }^{41,42}$ Additionally, the C-8 carbon needed to be
introduced preferably as the terminal olefin for the RCM step, with concurrent installation of the C-7 stereocenter. Chelate-controlled addition of vinylmagnesium bromide to the C-7 aldehyde from this route would give the wrong diastereomer, so protection of the C-6 hydroxyl with a bulky, non-chelating silyl group such as TES would favor the Felkin-Anh type addition product. ${ }^{43}$ For example, if cyanide displacement were used to install C-1, a bis-TES protected open chain aldehyde such as compound 49 would be generated upon cleavage of the C-7 dithioacetal or oxime. A projection of 49 is shown on the top right in Scheme 1.9, which predicts generation of product 50, which has the correct stereochemistry to form $\mathbf{3 7}$ (see Scheme 1.6).

49

50

Scheme 1.9 Predicted mode of addition to intermediate 49

Once this outline was developed, it was thought to be flexible enough that it would be worthwhile to attempt the synthesis of compounds $\mathbf{3 9}$ and $\mathbf{3 8}$ to test our hypotheses.

1.2.6 Exploration of the chiral pool approach to the C-1 to C-8 fragment

De Fina's preparation of enone 40 proceeded as reported, provided that the purity of the starting material was high, that freshly distilled isopropanol was used, and that anhydrous conditions were strictly maintained. ${ }^{37}$ Temperature control was also important; if the reaction was allowed to warm to room temperature before quenching, more of the reported byproduct 5-acetoxymethyl-2-furaldehyde was observed.

Scheme 1.10 Synthesis of acetal 46

During examination of the methylation of enone 40, it was discovered that transmetallation of methyllithium to cerium was unnecessary to achieve selectivity for this substrate. The first method used for this addition (Scheme 1.7) described similar substrates to $\mathbf{4 0}$, but they were methyl glycosides. ${ }^{36}$ It was thought that the bulkiness of the 7 -OiPr group blocked equatorial attack of methyllithium, such that product 39 was exclusively observed in excellent yield, with some of the C-2 acetate side-product (Scheme 1.10). Hydrogenation of $\mathbf{3 9}$ provided compound $\mathbf{4 6}$ in good yield, upon which 1D selective NOESY experiments were conducted to confirm the axial mode of addition of MeLi to enone 40, and a strong interaction was observed between the isolated C-6 methyl group and the H-7 anomeric proton (Spectrum 1.7). Efforts then
commenced to open the acetal of $\mathbf{4 6}$ to an acyclic dithioacetal, or a cyclic dithiane such as 47 (Scheme 1.8). When acetal 46 was subjected to the thioacetalization conditions reported by Frejd, clean 62% conversion to trimercaptan 51 was observed (Scheme 1.11). ${ }^{39}$ It was originally thought that this product was dithioacetal 52, although there seemed to be an additional ethanethiol unit in the NMR spectrum (Spectrum 1.8). Product 51 was converted to acetonide 53 with the intention of protecting the C-6 hydroxyl group such that various dithioacetal cleavage methods could be examined to obtain a C-7 aldehyde. All attempts to protect 53 returned starting material, and the NMR spectrum of $\mathbf{5 3}$ appeared to still have the extra ethanethiol unit (Spectrum 1.10).

Scheme 1.11 Attempted thioacetalization of 46

Re-evaluation of the NMR spectra of $\mathbf{5 3}$ and HRMS analysis led to its identification, which provided the explanation for why attempts to install a C-6 protecting group were not working. This type of overreaction of a dithioacetal was postulated by Horton et. al. to proceed via an episulfonium ion intermediate, resulting in inversion at C-6 of compound $\mathbf{4 6}$. ${ }^{44}$ It is thought that the desired product $\mathbf{5 2}$ forms under the reaction conditions, undergoes Lewis-acid assisted episulfonium ion formation, and this intermediate is then converted to $\mathbf{5 1}$ by substitution of ethanethiol at C-7 (Scheme 1.12).

Scheme 1.12 Possible mechanism of formation of trimercaptan 51

The thioacetalization conditions were altered to avoid the overreaction of 46. Experiments included lowering the temperature, controlling stoichiometry (not using an excess of ethanethiol), use of different solvents and Lewis-acids, and the similar reaction with 1,3-propanedithiol to form the cyclic dithiane 47 as in Scheme 1.8. Lack of success with these modifications led to the idea that if the C-6 hydroxyl group was appended with an acid-stable protecting group before thioacetalization, maybe the episulfonium ion formation would not be as favorable. Acetal 46 was silylated at the C-2 hydroxyl group, and the C-6 hydroxyl group was protected as benzyl ether $\mathbf{5 5}$ (Scheme 1.13).

Scheme 1.13 Preparation of compound $\mathbf{5 5}$

Reaction of acetal 55 under ZnCl_{2} catalyzed thioacetalization conditions again resulted in trimercaptan formation. All attempts at acidic aqueous hydrolysis of $\mathbf{5 5}$ to the hemiacetal returned starting material. TiCl_{4} catalyzed 1,3-dithiane formation with

1,3-propanedithiol also resulted in overreaction, either by trimercaptan formation or the alternative 7-membered thioether ring.

An unexpected result was observed in an attempt to generate dibenzoate 56 from acetal 46 (Scheme 1.14).

Scheme 1.14 An alternate method to break the-OiPr acetal of $\mathbf{4 6}$

Under conditions reported to benzoylate tertiary hydroxyl groups ${ }^{45}$, the Lewis acid used to activate benzoic anhydride cleaved the - OiPr acetal of $\mathbf{4 6}$ and afforded tribenzoate 57 as the only product. This constituted another method for the preparation of $\mathbf{3 8}$ by a two-step sequence, if it could be optimized. Unfortunately the reaction proved difficult to monitor because the intermediates had similar R_{f} to the product. Because of this difficulty, in a later optimization attempt, monobenzoate $\mathbf{5 8}$ was recovered as the sole product. Additionally, an attempt to selectively cleave the anomeric benzoate of 57 with hydrazine acetate ${ }^{46}$ resulted in cleavage of the primary and tertiary benzoates to give $\mathbf{5 9}$ as the sole product. A different strategy was adopted, conversion of 46 to oximes as in 48 (Scheme 1.8).

Acidic hydrolysis of $\mathbf{4 6}$ proved to be problematic, and the only conditions that provided 38 reproducibly were heating to $80^{\circ} \mathrm{C}$ overnight in 2 N HCl (Scheme 1.15). Any more mild conditions than this returned starting material, and harsher conditions resulted in decomposition. Although the consistently low yields of $\mathbf{3 8}$ were frustrating, it was decided that the route should be continued under the rationale that if the subsequent steps succeeded, the acetal hydrolysis step could be optimized.

Alternatively, it might be possible to generate a more labile acetal from De Fina's rearrangement reaction on glycal 41 to form enone 40, by clever choice of the substituting alcohol (Figure 1.5). The rearrangement reaction was attempted with benzyl and p-methoxybenzyl alcohol, 2-trimethylsilylethanol, and methanol. Unfortunately the reaction only seems to work well on secondary aliphatic alcohols without much functionality. Of all the alcohols tried, only the methanol variation provided any product, and it was an inseparable mixture of anomers, which would not confer the axial selectivity of methyllithium addition that was achieved using enone 40. Manipulations on oximes from 38 were continued.

Figure 1.5 Alternate enones to $\mathbf{4 0}$ targeted

Scheme 1.15 Synthesis of oximes 60 and 61

Compound 38 was converted to the benzyl (60) and methyl (61) oximes in moderate yields (Scheme 1.15). Some of the Z-isomer of the methyl oxime was observed in the ${ }^{1} \mathrm{H}$ NMR spectrum of 61 (Spectrum 1.22), but only the E-isomer was observed in $\mathbf{6 0}$ (Spectrum 1.20). The original plan was to homologate at C-7 prior to the C-2 homologation, so these oximes were first protected as the $\mathrm{C}-2 / \mathrm{C}-3$ acetonides 62 and 63 (Scheme 1.16).

Scheme 1.16 Early protecting group manipulations on $\mathbf{6 0}$ and $\mathbf{6 1}$

The benzyl oxime acetonide 62 was protected as its C-6 OTES ether 64, and subjected to ozonolytic cleavage in an attempt to generate a C-7 aldehyde. Although the ${ }^{1} \mathrm{H}$ NMR indicated product formation, the reaction was done on too small of a scale to confirm that it was the correct product aldehyde. Additionally, it was decided that the $\mathrm{C} 2 / \mathrm{C} 3$ diol of oximes $\mathbf{6 0}$ and $\mathbf{6 1}$ should be differentially protected to retain the option of homologation at C-2 prior to installation of the C-7 stereocenter. Methyl oxime 61 was protected as the C-2/C-3 bis-TBS ether $\mathbf{6 5}$ and the C-6 hydroxyl group protected as the BOM ether 66. Compound 66 was subjected to an oxime exchange reaction with paraformaldehyde, and acetone, catalyzed by the cation exchange resin amberlyst $15 .{ }^{47}$ Decomposition of starting material was observed.

49

Scheme 1.17 Additional manipulations on oximes $\mathbf{6 0}$ and $\mathbf{6 1}$

The C-2 primary hydroxyl group of oximes $\mathbf{6 0}$ and 61 were selectively activated as the tosylates, and displaced with cyanide in moderate yields over 2 steps to afford the nitriles 67 and 68 (Scheme 1.17). Silylation of the methyl oxime $\mathbf{6 8}$ with excess TESOTf provided 70 in moderate yield, but a complex mixture resulted from
the same attempted protection of the benzyl oxime 67 on the second repetition. It is not obvious why this result was observed, since the reaction apparently worked the first time on smaller scale, and also worked on the corresponding acetonide substrate 62 to produce 64 (Scheme 1.16). The methyl oxime 70 could not be converted to the aldehyde 49 (see Scheme 1.9) by ozonolysis followed by standing overnight at $-78^{\circ} \mathrm{C}$ in unquenched ozone.

Failure of both strategies to efficiently produce useful acyclic intermediates as illustrated in Scheme 1.8, and the realization that the chiral pool strategy was forcing excessive protecting group manipulation steps left us to consider strategic changes. The chiral pool approach was abandoned in favor of an asymmetric dihydroxylation strategy to provide the C-6/C-7 diol.

It should be noted that the chiral pool strategy may have been more successful by starting with enone 43 (Scheme 1.7), as the tertiary alcohol would be remote from the acetal to be opened. Further, there are efficient syntheses of enone 43 that could be used to incorporate various primary alcohols at the anomeric position that would be more hydrolytically labile than the bulky -OiPr acetal of $46 .{ }^{48}$ This strategy would be used to develop the enantiomer of $\mathbf{3 7}$, because the positions of enone 43 as they map to the product are reversed relative to $\mathbf{4 6}$, but at this point the absolute stereochemistry of the target natural products was unknown to us. Reagent controlled methods would have to be used to install C-3 in this route, as well.

A dihydroxylation strategy seemed more promising and flexible, being able to afford all possible stereoisomers of the C-6/C-7 diol from readily available starting materials. As seen in sections 1.2 .1 and 1.2.3, synthetic efforts from other groups
toward these natural products have used dihydroxylation effectively to generate the retron 31 (Scheme 1.4). In general, it is not advisable to use chiral pool synthetic strategies unless both the relative and absolute stereochemistry of the target have been unambiguously determined.

1.2.7 Asymmetric dihydroxylation approaches to fragment 37

Our first retrosynthetic scheme under this new approach to 37 involved the use of an asymmetric acetate aldol reaction on aldehyde $\mathbf{7 1}$ to install the C-3 stereocenter. Aldehyde 71 could be derived from alcohol 72, which could be generated by substrate-controlled Felkin addition of vinylmagnesium bromide to the chiral aldehyde 73 to provide the C-7 stereocenter.

Scheme 1.18 Initial asymmetric dihydroxylation retrosynthetic scheme

The C-6 tertiary alcohol of aldehyde 73 would result from asymmetric dihydroxylation of the readily available 4-methylpent-4-en-1-ol derivative 74. High
levels of enantioselectivity had been recently reported for dihydroxylation of $74\left(\mathrm{PG}_{1}\right.$ $=\mathrm{Bn}) .{ }^{49}$ In the course of preparation of 74, the precursor ester 75 was prepared by the previously described Claisen orthoester rearrangement of β-methallyl alcohol and triethyl orthoacetate. Dihydroxylation of 75 unexpectedly provided lactone 76 in 97\% yield (Scheme 1.19), which was thought to be potentially useful. The only previously reported preparation of lactone 76 was accomplished in racemic form by hydroxylactonization of the corresponding acid of 75 using MTO / $\mathrm{H}_{2} \mathrm{O}_{2} .{ }^{50}$

Scheme 1.19 Dihydroxylation of ester 75

We were interested in oxidizing the C-7 primary alcohol of 76 to the aldehyde and examining the selectivity of the addition of vinylmagnesium bromide to it. It is not obvious which diastereomer would be preferred in this addition, or if the α-oxygen in the lactone ring would cause chelation control to predominate. Alternatively, the C7 hydroxyl group could be protected, and the lactone opened and homologated at C-3 first. Most importantly, the selectivity of the AD-mix reaction in its formation needed evaluation. Derivitization of $\mathbf{7 6}$ as its (R)-2-phenylbutyrate ester ${ }^{51,52} \mathbf{7 7}$ revealed that the dihydroxylation step had proceeded in a disappointing 65% e.e.

The selectivity of asymmetric dihydroxylation is substrate dependent, so ester 75 was reduced and protected as in 78-79, and the reaction was repeated according to
the published procedure. Although the dihydroxylations proceeded in good yield as described, derivitization of the product diols $\mathbf{8 0 - 8 1}$ as their (R)-2-phenylbutyrate esters

82-83 indicated only 42-60\% e.e. for the AD-mix reactions (Scheme 1.20).

Scheme 1.20 Dihydroxylation of 4-methylpent-4-en-1-ol derivatives

These results were confusing in light of the reported selectivity for 74, and could not be improved by altering the protecting group at the C-3 OH. It should be noted that the derivitization reagent used, 2-phenylbutyric acid, was judged to be enantiomerically pure by reaction with control chiral alcohols under the same esterification conditions used for derivitization. In any event, it was decided that a trisubstituted olefin would be a better choice for the substrate, such that the C-6/C-7 stereodiad would be set in a single step.

The trisubstituted olefin approach necessitated a small change in the retrosynthetic strategy, being installation of the C-8 terminal olefin handle on intermediate 71 (Scheme 1.18) by means of Wittig homologation of a terminal C-8 aldehyde. This type of aldehyde could derive from an intermediate such as $\mathbf{8 4}$ (Scheme 1.21), which in turn could come from the dihydroxylation product of an appropriate Z-trisubstituted olefin such as $\mathbf{8 5}$, after protecting group manipulations and reduction.

Scheme 1.21 Modified dihydroxylation retrosynthesis of 71

There was a recent report of generating 85 with its E-isomer 87 by using Horner-Wadsworth-Emmons (HWE) homologation of ketone 86. ${ }^{53}$ HWE reactions are known not to show high selectivity on ketone substrates, and the report did not mention the isomer ratio as it was unimportant for the authors' purposes. If the isomers could be generated in a roughly equal ratio and chromatographically separated, this would constitute a stereo-divergent route to the fragment, being able to develop diol $\mathbf{8 4}$ from the Z-trisubstituted olefin $\mathbf{8 5}$ and the alternatetively configured C-6/C-7 diol from the E-trisubstituted olefin 87.

79

rt, 12h., 99%

86

87

Scheme 1.22 HWE homologation of ketone $\mathbf{8 6}$

Ketone 86 was generated by ozonolysis of the 1,1-disubstituted olefin 79, and reacted with the triethylphosphonoacetate anion. The quantitative yield of the α, β unsaturated esters $\mathbf{8 5}$ and $\mathbf{8 7}$ observed in the first report was not observed in our experiment. A moderate yield of a roughly $4: 1$ mixture of $\mathbf{8 7 : 8 5}$ was produced, and
with some experimentation it was found that the isomers were separable on silica gel. Selective 1D NOESY experiments confirmed that the reaction proceeded with modest E-selectivity, such that more pure 87 (Spectrum 1.44, Spectrum 1.45) was obtained than 85 (Spectrum 1.42, Spectrum 1.43). Although this did not bode well for the synthesis of the C-6/C-7 diol with the predicted configuration, both isomers were obtained so that their reactivity with AD-mix could be evaluated. There are a few Zselective variations of the HWE reaction that could be explored if the dihydroxylation results were promising. ${ }^{54,55}$

Scheme 1.23 Dihydroxylation of substrate $\mathbf{8 7}$

The E-isomer 87 reacted sluggishly with AD-mix- α and in moderate yield to form diol 88, but a three-step derivitization with a chiral amine (Scheme 1.23) showed that the reaction had proceeded in $>86 \%$ e.e., the highest yet observed selectivity. We sought to carry out the same sequence on the pure sample of $\mathbf{8 5}$ that we had obtained, but failed to find a set of conditions under which 85 would react with AD-mix. Starting material was returned even under the most forcing conditions. Although the electron-deficiency of the olefin in $\mathbf{8 5}$ may have been remediated by reducing the ester
and protecting the resulting alcohol, the problem of how to generate the Z-isomer selectively remained. Instead of opting for a Z-selective phosphonate type homologation, two medium-ring lactones were targeted, in a slightly modified retrosynthetic scheme.

Scheme 1.24 Dihydroxylation of 7-membered lactones

Intermediate 71 (Scheme 1.18) was targeted again, and it was realized that its precursor could be derived from a C-8 aldehyde/lactol such as 91 (Scheme 1.24). It has been observed in our own laboratory and by others that such hemiacetals/lactols can be homologated in the presence of excess ylide. ${ }^{56,57}$ Hemiacetal 91 would be the result of dihydroxylation of medium-ring lactone 92 after protecting group manipulations and careful reduction with DIBAL-H. Lactone 92 is a known compound, but its reported synthesis is inefficient and involves thermal fragmentation of a diastereomeric mixture of chlorocyclopropanes to force ring expansion. ${ }^{58}$ Since the report of lactone 92, several catalysts and conditions have become available for the formation of medium rings by RCM. ${ }^{59-61}$ The ease of preparation of the precursor 93
(Scheme 1.24), combined with the possibility of an intramolecular HWE to form this lactone, was interesting enough to prompt experimentation.

Alternatively, the unknown lactone 96 (Scheme 1.24) could provide intermediate 94 which is analogous to 71 . Lactone 96 should be more reactive to ADmix than 92, since the olefin is not conjugated to the lactone carbonyl, but its formation would have to occur through RCM; there would be no intramolecular HWE option.

Diene 98, the cinnamate ester (surrogates for acrylate esters in RCM reactions) of 4-methylpent-4-en-1-ol was prepared to evaluate whether it could form lactone 92, but none of the desired product was observed in reactions using Grubbs' $2^{\text {nd }}$ generation catalyst (Scheme 1.25).

Scheme 1.25 Attempts at forming lactone 92

The HWE alternative was examined by forming chloroacetate ester 99 and the subsequent Arbuzov reaction to form phosphonate $\mathbf{1 0 0}$ (Scheme 1.25). Ketone $\mathbf{1 0 1}$ was cleanly afforded by ozonolysis, and this substrate was subjected four different sets of HWE conditions. $\mathrm{K}_{2} \mathrm{CO}_{3}$ in the presence of 18-Crown-6, NaH in THF, $\mathrm{Et}_{3} \mathrm{~N}$ in refluxing THF, and DBU in refluxing THF all of which failed to effect cyclization of
$\mathbf{1 0 1}$ to lactone $\mathbf{9 2}$. The reactivity of lactone $\mathbf{9 2}$ under dihydroxylation conditions is still unknown, and lactone 96 has not yet been prepared. These studies were abandoned before a thorough investigation could be made. At this time, the project shifted focus to the preparation of the sidechain of FD-895 (1) as well as fragment assembly and model studies, the remaining sections of Chapter 1.

It should be noted that there is the possibility that lactone 92 could be synthesized from the previously reported saturated lactone 102. Several methods exist to convert the readily available and inexpensive 3-methylcyclohexanone to lactone 102 by Baeyer-Villager oxidation. ${ }^{62-64}$ Conversion of $\mathbf{1 0 2}$ to $\mathbf{9 2}$ could then proceed via oxidation of the α-phenylselenide.

3-methylcyclohexanone

ox. $=\mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{NaIO}_{4}$, or mCPBA

Scheme 1.26 Another method to form lactone 92

1.2.8 Preparation of the sidechain of FD-895

As outlined in Scheme 1.5, we sought to develop the sidechain of FD-895 (1), in a linear fashion with stannane fragment $\mathbf{3 2}$ as the target. We planned to introduce the six continguous stereocenters in three asymmetric reactions. ${ }^{31,33}$ Aldehyde $\mathbf{3 6}$ was prepared in 4 steps and 48% overall yield from propionaldehyde, and the propionylated thiazolidinethione auxiliary (prepared in 3 steps from L-Phe) described
by Crimmins et. al. ${ }^{65}$ Aldehyde $\mathbf{3 6}$ could be converted to allylic alcohol $\mathbf{3 5}$ in 2 steps and 74% yield by HWE homologation, which proceeds with complete E-selectivity, and reduction of the ester with DIBAL-H.

Scheme 1.27 Preparation of allylic alcohol 35

Selectivity issues were encountered with asymmetric epoxidation on substrate 35. The catalytic asymmetric epoxidation proceeded in high yield (typically 90-95\%), but the 9:1 d.r. was not reproducible. Several careful repetitions of the standard catalytic procedure ${ }^{66}$ gave inseparable mixtures of epoxides 103 and $\mathbf{1 0 4}$ in unacceptable d.r. of 2:1-4:1 (Scheme 1.28).

Scheme 1.28 Catalytic Sharpless epoxidation of allylic alcohol 35

This result was confusing in light of published reports of high levels of reagent control on similar substrates, and a satisfactory explanation for the low observed d.r.'s under these conditions was not obtained.

Yamamoto et. al. had recently reported the use of chiral bishydroxamic acid ligands in complexation with vanadium isopropoxide and $t-\mathrm{BuOOH}$ as a new method for the asymmetric synthesis of epoxides from allylic alcohols. ${ }^{67}$ Evaluation of this method for the epoxidation of $\mathbf{3 5}$ resulted in modest improvement with one of the ligands reported; a 7.5:1 d.r. was obtained favoring the desired epoxide $\mathbf{1 0 3}$, but the reaction did not proceed to completion and a 65% yield was observed. Yamamoto's methodology was deemed unsatisfactory due to the long reaction times (3-5 days), and the need to synthesize the ligands over 6 steps not including the resolution of (\pm)-trans-1,2-diaminocyclohexane.

Re-evaluation of Sharpless' asymmetric epoxidation at stoichiometric reagent levels and low concentration ([substrate] $\leq 0.02 \mathrm{M}$) provided reproducible high yields (94%) of $\mathbf{1 0 3 : 1 0 4}$ in 6:1 or higher d.r., which was accepted and further exploration of the route was continued.

A more serious problem was encountered once the α, β-epoxy alcohol 103 was converted to aldehyde 34 (IBX was discovered to be the preferred oxidizing agent for this transformation). A syn-crotylation using ${ }^{\mathrm{d}} \mathrm{Ipc}_{2} \mathrm{~B}-(\mathrm{Z})$-crotyl reagent 33 (Scheme 1.5) was required to obtain the necessary syn-C-16/C-17 fragment 105 . We assigned the relative stereochemistry of $\mathrm{C}-17$ from the NOE interactions of methine $\mathrm{H}-17$ with the epoxide protons $\mathrm{H}-18$ and $\mathrm{H}-19$, and $\mathrm{H}-16$, all of which corresponds most closely with $\mathrm{H}-17 \beta$ for $\mathbf{2 b}$ as tabulated in Eisai's published and patented NMR data. ${ }^{20,21}$

Several repetitions of the reaction of $\mathbf{3 4}$ with $\mathbf{3 3}$ afforded only decomposition of starting material and trace amounts of $\mathbf{1 0 5}$ (Scheme 1.29). This result was confusing because reports in the literature indicate that in most cases, with almost any relative configuration of the precursor aldehyde, Brown's crotylation methodology should provide the product in at least moderate yield and typically high selectivity. ${ }^{68,69}$ It had also been observed that 34 reacts with the ${ }^{1} \mathrm{Ipc}_{2} \mathrm{~B}-(Z)$-crotyl antipode 106 in low to moderate yield to afford diastereomer 107. The little amount of $\mathbf{1 0 5}$ obtained was a single diastereomer and its ${ }^{1} \mathrm{H}$ NMR spectrum appeared similar to the sidechain of $\mathbf{1}$, but it was clear that an alternate method was needed to install these stereocenters.

Std. Cond.

Scheme 1.29 Attempted crotylation of aldehyde 34

A few attempts were made at using the same asymmetric aldol methodology for C-16/C-17 that had been used to install the C-20/C-21 stereodiad as in 36 (Scheme 1.27). The results indicated that the Lewis acids used to generate the enolates in these types of reactions were too harsh for the epoxide of aldehyde 34 .

The Marshall group developed methodology to deliver the type of stereochemistry needed for fragment 105 with high selectivity using chiral allenic stannanes. ${ }^{70-72}$ These reagents add in S_{E} ' fashion to aldehydes, with the selectivity being governed by a combination of reagent and substrate control. (P)-allenic stannane 108 was prepared in two steps from $(R)-(+)$-3-butyn-2-ol which was predicted to generate homopropargylic alcohol $\mathbf{1 0 9}$ upon Lewis acid catalyzed addition to 34 (Scheme 1.30). This method appeared to be particularly useful for our synthesis because $\mathbf{1 0 9}$ could be directly hydrostannylated to the desired stannane fragment 32 (Scheme 1.5), thus reducing the number of linear steps.

Scheme 1.30 A new approach to fragment $\mathbf{3 2}$ using Marshall's methodology

It was thought that the chelation-controlled result observed for the addition of $\mathbf{1 0 8}$ to (S)-lactic aldehyde benzyl ether $\mathbf{1 1 0}$ to provide the all syn-111 (Scheme 1.31) should work similarly on aldehyde 34, the transition state involving chelation of the Lewis acid to the α-epoxide unit. 72 In the event, $\mathbf{1 0 8}$ reacted with $\mathbf{3 4}$ under $\mathrm{MgBr}_{2} * \mathrm{OEt}_{2}$ catalysis to provide bromohydrin $\mathbf{1 1 2}$ in modest yield (Scheme 1.32). The structure of the product bromohydrin $\mathbf{1 1 2}$ was not clear upon inspection of its ${ }^{1} \mathrm{H}$ NMR spectrum, but it could be immediately seen that the C-18/C-19 epoxide had been
opened. The structure of $\mathbf{1 1 2}$ was confirmed by mass spectrometric, NMR, and X-ray crystallographic analyses.

Scheme 1.31 Predicted mode of addition of stannane $\mathbf{1 0 8}$ to aldehyde $\mathbf{3 4}$

The reaction of trans- α, β-epoxy aldehydes with MgBr_{2} to form bromohydrins has been reported by several groups in the literature and it appears that epoxide opening occurs regioselectively adjacent to the carbonyl group in almost all cases. ${ }^{73,74}$ Conversion of $\mathbf{1 1 2}$ to $\mathbf{1 0 9}$ by treatment with base was not explored because it would most likely result in an inseparable mixture of epoxides, and there were still other options available to us using Marshall's methodology. Although there is no clear
consensus on whether or not the ring opening occurs by magnesium chelation of the oxirane and the carbonyl, the observed relative stereochemistry of $\mathbf{1 1 2}$ seems to preclude the possibility that the epoxide opening occurs prior to the S_{E}, addition of 108. If the bromohydrin formed first, a different chelation model would ensue from the resulting β-alkoxide and the aldehyde, ${ }^{70}$ and the opposite relative configuration between the $\mathrm{C}-17$ alcohol and the $\mathrm{C}-18$ bromide would have been observed.

Scheme $1.32 \mathrm{MgBr}_{2}$ catalyzed addition of $\mathbf{1 0 8}$ to aldehyde $\mathbf{3 4}$

However, the questionability raised by others about the potential for MgBr_{2} to actually chelate this type of epoxy aldehyde leaves open the question of whether the TS shown in Scheme 1.31 is correct, or if a Felkin-Anh type model would be more appropriate, as both would lead to the predicted product 109. These ambiguities lead to uncertainty as to which model to apply to our system, which is unique in the context of this methodology. We were left with the need to explore two alternatives to obtain 109.

It was clear that we could not use MgBr_{2} to promote the addition of these allenic stannanes, so it was necessary to examine the addition of both $\mathbf{1 0 8}$ and its (M)antipode $\mathbf{1 1 3}$ with aldehyde $\mathbf{3 4}$ under catalysis with the monodentate Lewis acid
$\mathrm{BF}_{3} * \mathrm{OEt}_{2}$, one of which should provide the correct all syn configuration for $\mathrm{C}-16-\mathrm{C}$ 19 in products $\mathbf{1 0 9}$ and $\mathbf{1 1 4}$ (Scheme 1.33). Also, $\mathbf{1 0 9}$ would form $\mathbf{1 1 2}$ upon treatment with $\mathrm{MgBr}_{2} * \mathrm{OEt}_{2}$, if our theory about the formation of $\mathbf{1 1 2}$ was correct.

113

Scheme 1.33 Experiment to determine the correct reagent to form $\mathbf{1 0 9}$

Aldehyde $\mathbf{3 4}$ reacted with both $\mathbf{1 0 8}$ and $\mathbf{1 1 3}$ in moderate yields with $\mathrm{BF}_{3} * \mathrm{OEt}_{2}$ catalysis, and the epoxides stayed intact in both of the products recovered, $\mathbf{1 0 9}$ and 114 (Scheme 1.33). Both were subjected to hydrogenation with Rosenmund's PdBaSO_{4} catalyst in the presence of quinoline. Although the spectra obtained from the reduction experiments are crude and complicated by some overreduction to the alkane in both cases, neither product $\mathbf{1 0 5}$ or $\mathbf{1 0 7}$ appears to match the spectrum obtained for the putative 105 from the crotylboration experiment. Most disconcerting in each spectrum is the chemical shift of the $\mathrm{H}-17$ methine, which is too far downfield in each as compared to the putative $\mathbf{1 0 5}$ from crotylboration and the spectrum of authentic $\mathbf{1}$ (see section 1.5 for overlays of these intermediates with $\mathbf{1}$). Additionally, the epoxide protons H-18 and H-19 do not agree well in terms of chemical shift or ${ }^{3} J_{\mathrm{H}-\mathrm{H}}$ values.

These results indicate that more experimentation needs to be done to acquire a fragment with C-16/C-17 stereochemistry corresponding to 1 . It is likely that the target $\mathbf{1 0 9}$ was generated in one of the addition reactions, but that the all syn relative configuration of $\mathrm{C}-16$ to $\mathrm{C}-19$ is not the relative configuration of the sidechain of $\mathbf{1}$. Additionally, the products $\mathbf{1 0 9}$ and $\mathbf{1 1 4}$ should each be treated with $\mathrm{MgBr}_{2} * \mathrm{OEt}_{2}$ to see if they form crystalline bromohydrins as in 112. It may be coincidental that the small amount of putative $\mathbf{1 0 5}$ obtained from the crotylboration experiment appears very similar to the sidechain of authentic $\mathbf{1}$. The trace amount obtained could have been the result of 1,3 -sigmatropic isomerization of the crotylborane species in situ prior to addition (a process known to normally happen in trace amounts), ${ }^{75}$ and that the relative stereochemistry of the fragment generated is not as shown.

If the relative configuration of the $\mathrm{C}-16 / \mathrm{C}-17$ stereodiad in $\mathbf{1}$ is anti, then the allenic stannane methodology would need to be replaced, because these additions are always syn between the newly formed stereocenters when $\mathrm{BF}_{3} * \mathrm{OEt}_{2}$ is used as the catalyst. Fortunately, Marshall's group has developed allenylzinc and allenylindium reagents to deliver the anti configuration if this adjustment needs to be made. ${ }^{76,77}$ Crotylboration with the (E)-crotyl species to give the anti stereochemistry may also be more efficient with 34 than the syn crotylboration attempt described in Scheme 1.29. Also, when exploring this system, it would be advisable to generate bromohydrins from as many of the synthetically prepared isomers as possible and check if they are also crystalline like 112, as this is a convenient method to confirm stereochemistry. Because there are ample techniques to deliver the homopropargylic and homoallylic alcohols 109 and 105, and a good method was obtained to produce two of the potential
diastereomers with great selectivity, the putative $\mathbf{1 0 9}$ was carried through the final stages of model assembly, and its stereochemistry while tentative will continue to be shown as in Scheme 1.33.

The final step in assembly of the sidechain of $\mathbf{1}$ was hydrostannation of alkyne 109, which provided the desired (E)-vinylstannane 32 (see Scheme 1.5) in moderate yield (Scheme 1.34).

Scheme 1.34 Hydrostannation of alkyne $\mathbf{1 0 9}$

1.2.9 Model studies of the endgame fragment assembly of FD-895

The preparation of $\mathbf{3 2}$ allowed the late-stage fragment assembly steps toward a total synthesis of $\mathbf{1}$ to be examined, because we had already developed an efficient synthesis of the multifunctional fragment $\mathbf{3 0}$ (Scheme 1.4) for our model studies on 2b. ${ }^{31,33}$ In these model studies, 8-nonenoic acid served as as a surrogate for $\mathrm{C}-1$ to C 8 acid olefin fragment 31. At this stage of the project, all of the devised schemes (such as Scheme 1.18) toward 31 required a reagent-controlled installation of C-3. A new surrogate 115 including the C-3 stereocenter was devised so that methods could be evaluated for its installation (Scheme 1.35). A recently described acetate aldol methodology using an L-tert-leucine derived thiazolidinethione auxiliary $\mathbf{1 1 6}$ was employed, so that 6-heptenal $\mathbf{1 1 7}$ would be the substrate for the aldol reaction. ${ }^{78}$

117

Scheme 1.35 A new C-1 to C-8 acid olefin fragment model 115

The aldol reaction between the acetylated thiazolidinethione 116 and aldehyde $\mathbf{1 1 7}$ proceeded in high yield and selectivity to afford adduct $\mathbf{1 1 8}$ (Scheme 1.36). Because these adducts were reportedly prone to hydrolysis in aqueous workups, we chose to remove it immediately by treatment with methanol and imidazole, and the methyl ester $\mathbf{1 1 9}$ was protected as its C-3 -OTBS ether $\mathbf{1 2 0}$ in a low, unoptimized yield, probably owing to the remaining cleaved auxiliary, which had not been entirely removed in the purification of 119. More than enough silylated material was obtained to continue through the remaining steps of saponification to afford acid 121, which was then esterified to fragment $\mathbf{3 0}$ in nearly quantitative yield to provide RCM precursor diene 122. The ring-closing event proceeded uneventfully to form the model core $\mathbf{1 2 3}$ in less than 2 hours' reaction time, as the single $E-\Delta^{8,9}$ olefin isomer.

Because the sidechain fragment $\mathbf{3 2}$ had been prepared in $\sim 20 \mathrm{mg}$ quantity (see the previous section), we were in position to evaluate its coupling to the new model core $\mathbf{1 2 3}$ as well as the older model $\mathbf{1 2 4}$, of which we still had a few milligrams left over from our studies on $\mathbf{2 b}$. For these couplings, the Stille conditions employed by the Marshall group in their synthesis of Bafilomycin V_{1} were used, and we were
pleased to observe the couplings proceed to completion in both cases, in moderate yields to afford models $\mathbf{1 2 5}$ and $\mathbf{1 2 6}$, respectively (Scheme 1.37). ${ }^{79}$

6-heptenal
117

Scheme 1.36 Synthesis of the model core system $\mathbf{1 2 3}$

For the sake of completeness, the C-3 OTBS ether was removed on model $\mathbf{1 2 5}$ to provide model 127, which proved that the C-18/C-19 epoxide is stable to unbuffered HF-pyridine in acetonitrile, as observed in the model studies of $\mathbf{2 b}$. The dissertation author then turned to a new project, which was conceived during isolation efforts toward obtaining authentic samples of $\mathbf{2 a - 2 g}$ (see Chapter 2).

Scheme 1.37 Synthesis of model compounds 125-127

1.3 Concluding remarks

Two approaches to the C-1 to C-8 acid-olefin fragment $\mathbf{3 1}$ as shown in Scheme 1.4 were described. The chiral pool approach was unsuccessful due to difficulties in cleavage of the acetal of intermediate 46 by the methods outlined in Scheme 1.8, and the need for two homologations, which forced the use of excessive protecting group manipulations. The asymmetric dihydroxylation approach was unsuccessful on the few substrates that were tried, but the viability of this approach was later demonstrated by the research published by others on similar fragments.

The synthesis of the sidechain of $\mathbf{1}$, stannane fragment 32, was achieved in an efficient manner without the use of protecting groups (Section 1.2.8). This fragment was then coupled to models of the FD-895 core to evaluate the end-game assembly steps (Section 1.2.9). The success of these studies demonstrates the feasibility of our strategy toward 1.

Remaining obstacles to the synthesis of $\mathbf{1}$ are the synthesis of the core component 31 and subsequent assembly of the complete molecule. Modification of the stannane fragment $\mathbf{3 2}$ may also be necessary pending future revision of the relative configuration of $\mathbf{1}$. Efforts continue in the laboratory to address these issues and complete the synthesis of $\mathbf{1}$. This work could provide analogs of $\mathbf{1}$ unaccessible by fermentation or semisynthetic manipulations, which should be evaluated for antitumor activity in comparison to $\mathbf{1}$.

1.4 Acknowledgements

Dr. Alexander Mandel was the first to design and synthesize aldehyde 34 as summarized in Scheme 1.27-Scheme 1.29, the "keystone" fragment 30 and the first model core compound 124, and this work is described in Bioorg Med Chem Lett., 17, 18, pp. 5159-5164, 2007. The dissertation author was the second author of this paper. Dr. James La Clair procured the authentic sample of FD-895 (1).

1.5 NMR spectra of intermediates compared to authentic FD-895 (1)

This section consists of spectral overlays of selected synthetic intermediates from the sidechain and model studies described in sections 1.2 .8 and 1.2 .9 , with authentic FD-895 (1). The region of the spectra chosen for comparison is $\delta_{H} 4.5-2.7$ ppm, which includes the $\mathrm{C}-17$ to $\mathrm{C}-19$ stereotriad, and the $\mathrm{C}-21$ center of $\mathbf{1}$.

The experimental methods, characterization data, and full spectra for each of these intermediates are in sections 1.6 and 1.7, respectively. The full ${ }^{1} \mathrm{H}$ spectrum of authentic $\mathbf{1}$ is shown as Figure 1.6, and assignments were made on the basis of gHMQC, gHMBC, and gCOSY experiments.

Figure $1.6{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound $\mathbf{1}$

Figure 1.7 Comparison of adduct $\mathbf{1 1 4}$ to $\mathbf{1}$

Figure 1.8 Comparison of hydrogenation product $\mathbf{1 0 7}$ to $\mathbf{1}$

Figure 1.9 Comparison of adduct $\mathbf{1 0 9}$ to $\mathbf{1}$

Figure 1.10 Comparison of hydrogenation product $\mathbf{1 0 5}$ to $\mathbf{1}$

Figure 1.11 Comparison of crotylboration adduct $\mathbf{1 0 5}$ to $\mathbf{1}$

Figure 1.12 Comparison of stannane $\mathbf{3 2}$ to $\mathbf{1}$

Figure 1.13 Comparison of adduct $\mathbf{1 2 5}$ to $\mathbf{1}$

Figure 1.14 Comparison of model $\mathbf{1 2 6}$ to $\mathbf{1}$

Figure 1.15 Comparison of model 127 to $\mathbf{1}$

1.6 Experimental techniques and characterization data

General experimental methods:

Unless otherwise noted, all reagents and chemical compounds were purchased from commercial sources and used without further purification. High purity anhydrous solvents (tetrahydrofuran, dichloromethane, diethyl ether, and toluene) were obtained by passing through a solvent column composed of activated A-1 alumina. ${ }^{80}$ Anhydrous N, N-dimethylformamide was obtained by passage over activated molecular sieves and a subsequent sodium isocyanate column to remove traces of dimethylamine. Triethylamine $\left(\mathrm{Et}_{3} \mathrm{~N}\right)$ was dried over sodium and freshly distilled. Ethyl- N, N-diisopropylamine ($i-\mathrm{Pr}_{2} \mathrm{NEt}$) was distilled from ninhydrin, then from potassium hydroxide. All air or moisture sensitive reactions were performed under positive pressure of dry argon in oven-dried glassware sealed with septa. Reactions were magnetically stirred with Teflon coated stir bars. Flash chromatography was performed on EMD Geduran Silica Gel 60 (40-63 mesh) according to the method of Still. ${ }^{81}$ Analytical TLC was performed on Silica Gel 60 F254 pre-coated glass plates. Visualization was achieved with UV light and/or an appropriate stain $\left(\mathrm{I}_{2}\right.$ on $\mathrm{SiO}_{2}, \mathrm{KMnO}_{4}$, bromocresol green, dinitrophenylhydrazine, ninhydrin, and ceric ammonium molybdate). Yields and characterization data correspond to isolated, chromatographically and spectroscopically homogeneous materials unless otherwise noted. ${ }^{1} \mathrm{H}$ NMR spectra were recorded on Varian Mercury 300 MHz or 400 MHz spectrometers, or a Varian Mercury Plus 400 MHz
spectrometer, or on a Varian Unity spectrometer at $500 \mathrm{MHz} .{ }^{13} \mathrm{C}$ NMR spectra were recorded at 100 MHz on either a Varian Mercury or the Mercury Plus instrument, or at 75 MHz on a Varian Mercury spectrometer. Chemical shifts for ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR analyses were referenced to the reported values of Gottlieb et. al., using the signal from the residual protonated solvent for ${ }^{1} \mathrm{H}$ spectra, or to the ${ }^{13} \mathrm{C}$ signal from the deuterated solvent. ${ }^{82}$ Chemical shift δ values for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra are reported in parts per million (ppm) relative to these referenced values, and multiplicities are abbreviated as $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet, $\mathrm{br}=$ broad. All ${ }^{13} \mathrm{C}$ NMR spectra were recorded with complete proton decoupling. FID files were processed using MestReNova software version 5.3.0-4399. Electrospray (ESI) mass spectrometric analyses were performed using a ThermoFinnigan LCQdeca mass spectrometer, and high resolution analyses were conducted using a ThermoFinnigan MAT900XL mass spectrometer with electron impact (EI) ionization. Optical rotations were measured on a Perkin-Elmer polarimeter (Model 241) using a 1 mL quartz cell with a 10 cm path length.

Stannane 32

A solution of alkyne $\mathbf{1 0 9}(28 \mathrm{mg}, 0.124 \mathrm{mmol})$ in 5 mL of THF was added to solid $\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{PdCl}_{2}(4 \mathrm{mg}, 0.0062 \mathrm{mmol})$ and the suspension was stirred at room temperature. Stirring continued as $\mathrm{Bu}_{3} \mathrm{SnH}(42 \mu \mathrm{~L}, 0.155 \mathrm{mmol})$ was added dropwise via syringe. The solution darkened and was stirred for 20 min at room temperature, then concentrated under reduced pressure. The residue was purified by column chromatography (hexanes / ethyl acetate gradient) to provide 19 mg (30\%) of stannane

32 as a clear oil, and $13 \mathrm{mg}(20 \%)$ of a mixture of 32 and unidentified regioisomers. $[\alpha]^{22}{ }_{\mathrm{D}}+16.4\left(c \quad 0.077, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta$ 6.18-5.79 (m, 2H), $3.71-3.65(\mathrm{~m}, 1 \mathrm{H}), 3.41(\mathrm{~s}, 3 \mathrm{H}), 3.22-3.15(\mathrm{~m}, 1 \mathrm{H}), 3.02(\mathrm{dd}, J=2.4,8.1 \mathrm{~Hz}, 1 \mathrm{H})$, $2.88(\mathrm{~m}, 1 \mathrm{H}), 2.42-2.31(\mathrm{~m}, 1 \mathrm{H}), 1.87(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.73-1.60(\mathrm{~m}, 1 \mathrm{H}), 1.59-$ $1.37(\mathrm{~m}, 7 \mathrm{H}), 1.36-1.22(\mathrm{~m}, 6 \mathrm{H}), 1.14(\mathrm{~d}, J=8 \mathrm{~Hz}, 3 \mathrm{H}), 1.00-0.82(\mathrm{~m}, 21 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 149.9,129.8,83.9,71.3,59.4,58.3,57.0,46.1,39.0,29.3$, 27.4, 24.0, 16.1, 13.9, 10.8, 10.1, 9.6; ESI-MS m/z $541.14[\mathrm{M}+\mathrm{Na}]^{+}, 519.02[\mathrm{M}+\mathrm{H}]^{+}$.

Lactol 38

To the clear oil acetal 46 ($60 \mathrm{mg}, 0.296 \mathrm{mmol}$) was added aqueous $\mathrm{HCl}(4 \mathrm{~mL}$ of a 2 N solution, 9 mmol), and the stirred solution was heated to $80^{\circ} \mathrm{C}$ for 12 hours. After this time period, the reaction mixture was cooled to room temperature and quenched with saturated aqueous NaHCO_{3} solution. The quenched solution was concentrated under reduced pressure, and the residue was triturated several times with EtOAc. The EtOAc was filtered and concentrated under reduced pressure, and the residue was purified by column chromatography to afford the lactol 38 ($15 \mathrm{mg}, 31 \%$) as a clear oil. TLC (EtOAc): $\mathrm{R}_{\mathrm{f}}=0.03 ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{D}_{2} \mathrm{O}, 400 \mathrm{MHz}\right) \delta 4.61(\mathrm{br}, 1 \mathrm{H})$, $3.96(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{t}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.64-3.50(\mathrm{~m}, 1 \mathrm{H}), 2.07-1.46(\mathrm{~m}$, 4H), 1.11 ($\mathrm{s}, 3 \mathrm{H})$.

Diol 39

A solution of enone $40(1.88 \mathrm{~g}, 8.24 \mathrm{mmol})$ in $75 \mathrm{~mL} \mathrm{Et}_{2} \mathrm{O}$ was stirred, and cooled to $-78{ }^{\circ} \mathrm{C}$. Stirring continued as $\mathrm{MeLi}\left(25.7 \mathrm{~mL}\right.$ of a 1.6 M solution in $\mathrm{Et}_{2} \mathrm{O}$,
41.2 mmol) was added slowly via syringe. The solution continued to stir, and was allowed to slowly warm to room temperature over 12 h . The reaction mixture was then cooled to $0{ }^{\circ} \mathrm{C}$ and quenched with MeOH , then saturated $\mathrm{NH}_{4} \mathrm{Cl}$. The mixture was diluted with $\mathrm{H}_{2} \mathrm{O}$ and ethyl acetate, and the layers were separated. The aqueous layer was extracted with ethyl acetate (2 x), and the combined organic layers were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solution was filtered and concentrated under reduced pressure, and the residue was purified by column chromatography (5:1 to $1: 1$ hexanes / ethyl acetate gradient) to provide $0.95 \mathrm{~g}(57 \%)$ of diol 39 as a colorless oil. TLC (1:1 hexanes / ethyl acetate): $\mathrm{R}_{\mathrm{f}}=0.1 ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400\right.$ $\mathrm{MHz}) \delta 5.78(\mathrm{dt}, J=10.3,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.57(\mathrm{dd}, J=10.5,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.76(\mathrm{~s}, 1 \mathrm{H})$, 4.26-4.22 (m, 1H), 4.00 (septet, $J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{dd}, J=3.1,11.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.58$ (dd, $J=6.4,11.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.32(\mathrm{~s}, 3 \mathrm{H}), 1.25(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.21(\mathrm{~d}, J=6.2 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 133.0,124.3,100.1,70.8,69.7,67.1,65.1,26.1$, 23.5, 22.0; ESI-MS m/z $225.01[\mathrm{M}+\mathrm{Na}]^{+}, 219.86\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$.

Acetal 46

To a solution of diol $\mathbf{3 9}(950 \mathrm{mg}, 4.7 \mathrm{mmol})$ in 10 mL of MeOH was added 5% Pd on carbon ($400 \mathrm{mg}, 0.188 \mathrm{mmol}$), and the mixture was stirred at room temperature. A balloon of H_{2} was attached to a 6" needle, the tip of which was submerged below the solution surface. A vent needle was inserted through the septum, so that the H_{2} gas bubbled through the solution. Three repetitions with fresh balloons of H_{2} were conducted, and then the reaction mixture was filtered through celite, which was washed with EtOAc. The filtrate was concentrated under reduced pressure, and the
residue was filtered through a short silica gel plug with ethyl acetate to provide 0.86 g (90%) of acetal 46 as a colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 4.47(\mathrm{~s}, 1 \mathrm{H}), 3.91$ (septet, $J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~m}, 1 \mathrm{H}), 3.58(\mathrm{dd}, J=11.6,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{dd}, J=$ $11.5,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.43(\mathrm{~s}, 1 \mathrm{H}), 1.88-1.77(\mathrm{~m}, 1 \mathrm{H}), 1.66-1.58(\mathrm{~m}, 1 \mathrm{H}), 1.52-1.44(\mathrm{~m}$, $2 \mathrm{H}), 1.24(\mathrm{~s}, 3 \mathrm{H}), 1.22(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.15(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 100.5,69.8,69.0,68.6,65.6,32.8,25.5,23.6,22.8,21.9$; ESIMS m/z $227.02[\mathrm{M}+\mathrm{Na}]^{+}, 221.89\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 204.84[\mathrm{M}+\mathrm{H}]^{+}$; HR-EI-MS: m / z calcd. for $\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{O}_{4}[\mathrm{M}]^{+}: 204.1356$, found 204.1354.

Trimercaptan 51

Acetal $46(96 \mathrm{mg}, 0.471 \mathrm{mmol})$ was dissolved in $700 \mu \mathrm{~L}$ EtSH $(9.42 \mathrm{mmol})$, and the stirred solution was cooled to $-15^{\circ} \mathrm{C}$ in an ethylene glycol / CO_{2} bath. Solid $\mathrm{ZnCl}_{2}(385 \mathrm{mg}, 2.82 \mathrm{mmol})$ was added to the cooled solution in one portion, and the suspension was stirred at $-15^{\circ} \mathrm{C}$ for 30 min , then at $0^{\circ} \mathrm{C}$ for an additional 15 min . The EtSH was removed under high vacuum, and a saturated solution of $\mathrm{NaHCO}_{3}(10$ mL) was poured onto the residue, causing the precipitation of insoluble zinc salts. EtOAc (20 mL) was added to the suspension, and the biphasic mixture was filtered through celite, which was washed with additional ethyl acetate. The layers of the filtrate were separated, and the aqueous layer was extracted with ethyl acetate (3 x 10 mL). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by column chromatography (10:1 to 1:1 hexanes / ethyl acetate gradient) to provide $59 \mathrm{mg}(40 \%)$ of trimercaptan 51 as a colorless oil. TLC (1:1 hexanes / ethyl acetate): $\mathrm{R}_{\mathrm{f}}=0.1 ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$
$\delta 3.83(\mathrm{~s}, 1 \mathrm{H}), 3.71-3.64(\mathrm{~m}, 1 \mathrm{H}), 3.68-3.62(\mathrm{~m}, 1 \mathrm{H}), 3.46(\mathrm{dd}, J=11.4,3.7 \mathrm{~Hz}, 1 \mathrm{H})$, 2.82-2.65 (m, 4H), 2.64-2.50 (m, 2H), 2.58-2.44 (br, 2H), 2.02-1.91 (m, 1H), 1.88$1.77(\mathrm{~m}, 1 \mathrm{H}), 1.68-1.51(\mathrm{~m}, 2 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H}), 1.26(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.26(\mathrm{t}, J=7.4$ $\mathrm{Hz}, 3 \mathrm{H}), 1.19(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 72.6,66.8,63.9$, 55.3, 34.8, 28.2, 28.2, 27.7, 24.4, 23.1, 14.5, 14.0.

Acetonide 53

Trimercaptan 51 ($47 \mathrm{mg}, 0.175 \mathrm{mmol}$) was dissolved in 2,2-dimethoxypropane $(430 \mu \mathrm{~L}, 3.5 \mathrm{mmol})$, and to the stirring solution was added (\pm)-10-camphorsulfonic acid ($6 \mathrm{mg}, 0.0027 \mathrm{mmol}$). After the solution had stirred for 12 h at room temperature, a saturated aqueous solution of $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ and EtOAc $(10 \mathrm{~mL})$ were added, and the layers were separated. The aqueous layer was extracted with additional EtOAc ($2 \times 5 \mathrm{~mL}$), and the combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. Column chromatography (1:1 hexanes / ethyl acetate) provided acetonide $53(37 \mathrm{mg}, 67 \%)$ as a clear oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 4.15-4.00(\mathrm{~m}, 1 \mathrm{H}), 4.11-4.01(\mathrm{~m}, 1 \mathrm{H}), 3.84$ $(\mathrm{s}, 1 \mathrm{H}), 3.63-3.50(\mathrm{~m}, 1 \mathrm{H}), 2.87-2.65(\mathrm{~m}, 4 \mathrm{H}), 2.66-2.49(\mathrm{~m}, 2 \mathrm{H}), 2.01-1.57(\mathrm{~m}, 4 \mathrm{H})$, $1.41(\mathrm{~s}, 6 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H}), 1.28(\mathrm{t}, J=9.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.27(\mathrm{t}, J=9.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.21(\mathrm{t}, J=$ $9.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 108.9,76.2,69.5,63.7,55.3,34.7,28.2$, 27.8, 27.1, 25.8, 24.3, 23.0, 14.6, 13.9; ESI-MS m/z 290.82 [M-EtS] ${ }^{+}$; HR-EI-MS: m/z calcd. for $\mathrm{C}_{16} \mathrm{H}_{32} \mathrm{O}_{2} \mathrm{~S}_{3}[\mathrm{M}]^{+}: 352.1559$, found 352.1563 .

Silyl ether 54

To a solution of acetal $46(75 \mathrm{mg}, 0.369 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added pyridine ($33 \mu \mathrm{~L}, 0.41 \mathrm{mmol}$) and 4-dimethylaminopyridine ($2 \mathrm{mg}, 0.016 \mathrm{mmol}$), and the solution was stirred at room temperature. To this solution was added TBDPSCl $(106 \mu \mathrm{~L}, 0.41 \mathrm{mmol})$ via syringe, and the reaction mixture was stirred for 24 h , after which it was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$, and washed sequentially with $2 \% \mathrm{HCl}$, deionized $\mathrm{H}_{2} \mathrm{O}$, sat'd aqueous NaHCO_{3}, and brine. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. Column chromatography (10:1 to $4: 1$ hexanes / ethyl acetate) provided silyl ether 54 (164 $\mathrm{mg}, 99 \%$) as a clear oil. TLC ($1: 1$ hexanes / ethyl acetate): $\mathrm{R}_{\mathrm{f}}=0.6 ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.70$ $7.65(\mathrm{~m}, 4 \mathrm{H}), 7.45-7.34(\mathrm{~m}, 6 \mathrm{H}), 4.49(\mathrm{~s}, 1 \mathrm{H}), 3.94($ septet, $J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.89-3.80$ $(\mathrm{m}, 1 \mathrm{H}), 3.66(\mathrm{dd}, J=10.5,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{dd}, J=10.5,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.82(\mathrm{td}, J=$ $13.0,4.5 \mathrm{~Hz}), 1.68-1.39(\mathrm{~m}, 3 \mathrm{H}), 1.27(\mathrm{~s}, 3 \mathrm{H}), 1.22(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.17(\mathrm{~d}, J=$ $6.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.05(\mathrm{~s}, 9 \mathrm{H})$.

Benzyl ether 55

To a solution of silyl ether $54(118 \mathrm{mg}, 0.267 \mathrm{mmol})$ in THF $(500 \mu \mathrm{~L})$ was added $\mathrm{NaH}(60 \%$ dispersion in oil, $11 \mathrm{mg}, 0.28 \mathrm{mmol})$ and $\mathrm{n}-\mathrm{Bu}_{4} \mathrm{NI}(1 \mathrm{mg}, 0.0027$ mmol), and the solution was stirred at room temperature. To this solution was added $\operatorname{BnBr}(33 \mu \mathrm{~L}, 0.28 \mathrm{mmol})$, and the solution was stirred for 3 hours. At this time, TLC analysis indicated the presence of starting material, so an additional 5 mg of the catalyst $\mathrm{n}-\mathrm{Bu}_{4} \mathrm{NI}$ was added to the solution, which was allowed to stir for an additional 12 hours. The reaction mixture was then diluted with $\mathrm{H}_{2} \mathrm{O}$ and ethyl acetate and the layers were separated. The aqueous layer was extracted with additional ethyl acetate,
and the combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by column chromatography ($10: 1$ hexanes / ethyl acetate) to provide the starting material silyl ether 54 (69 mg) and benzyl ether 55 (68 mg , > 100\% BORSM) which was contaminated with oil from the sodium hydride dispersion and the benzyl bromide reagent. TLC (10:1 hexanes / ethyl acetate): $\mathrm{R}_{\mathrm{f}}=0.5 ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta$ 7.74-7.67 (m, 4H), 7.46-7.28 (m, 11H), $4.78(\mathrm{~s}, 1 \mathrm{H}), 4.59(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.51$ $(\mathrm{d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.99($ septet, $J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.96-3.90(\mathrm{~m}, 1 \mathrm{H}), 3.69(\mathrm{dd}, J=$ $10.5,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{dd}, J=10.5,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.12(\mathrm{td}, J=13.1,5.1 \mathrm{~Hz}, 1 \mathrm{H})$, $1.66-1.49(\mathrm{~m}, 3 \mathrm{H}), 1.38(\mathrm{~s}, 3 \mathrm{H}), 1.26(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.20(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H})$, $1.06(\mathrm{~s}, 9 \mathrm{H})$.

Tribenzoate 57

To a solution of benzoic anhydride $(1.29 \mathrm{~g}, 5.7 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added $\mathrm{MgBr}_{2}(1.06 \mathrm{~g}, 5.7 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(1.4 \mathrm{~mL}, 10 \mathrm{mmol})$. To this stirring suspension was added a solution of acetal $46(292 \mathrm{mg}, 1.43 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$, and the reaction was stirred at room temperature and monitored by TLC. Once the majority of the starting material had been consumed, the reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\mathrm{H}_{2} \mathrm{O}$, and the layers were separated. The aqueous layer was extracted with additional $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. Column chromatography (hexanes / ethyl acetate gradient) provided the starting material acetal $46(53 \mathrm{mg})$ and tribenzoate $57(186 \mathrm{mg}, 33 \% \mathrm{BORSM}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$
$\delta 8.20-8.14(\mathrm{~m}, 4 \mathrm{H}), 8.06-8.01(\mathrm{~m}, 2 \mathrm{H}), 7.72-7.65(\mathrm{~m}, 2 \mathrm{H}), 7.58-7.50(\mathrm{~m}, 5 \mathrm{H}), 7.47-$ $7.40(\mathrm{~m}, 2 \mathrm{H}), 5.87(\mathrm{~s}, 1 \mathrm{H}), 4.57-4.51(\mathrm{~m}, 1 \mathrm{H}), 3.89(\mathrm{dd}, J=7.1,0.5 \mathrm{~Hz}), 3.85-3.80(\mathrm{~m}$, $1 \mathrm{H}), 2.27-2.08(\mathrm{~m}, 2 \mathrm{H}), 1.89-1.78(\mathrm{~m}, 1 \mathrm{H}), 1.57(\mathrm{~s}, 3 \mathrm{H}), 1.52-1.43(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 165.8,162.5,134.7,132.9,130.7,129.8,129.0,129.0,128.4$, $102.4,80.1,73.0,67.6,28.0,25.7,21.6$.

O-benzyl oxime 60

To a solution of the lactol $\mathbf{3 8}(64 \mathrm{mg}, 0.395 \mathrm{mmol})$ in pyridine $(1 \mathrm{~mL})$ was added $\mathrm{BnONH}_{2}{ }^{*} \mathrm{HCl}(95 \mathrm{mg}, 0.593 \mathrm{mmol})$ as a solid, and the solution was stirred for 12 h at room temperature. After this time period, the pyridine was evaporated under reduced pressure, and the residue was purified by column chromatography (100% ethyl acetate) to afford the O-benzyl oxime $\mathbf{6 0}(76 \mathrm{mg}, 72 \%)$ as a clear oil. TLC (ethyl acetate $): \mathrm{R}_{\mathrm{f}}=0.2 ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.44(\mathrm{~s}, 1 \mathrm{H}), 7.39-7.31(\mathrm{~m}, 5 \mathrm{H}), 5.08$ (s, 2H), 3.71-3.62 (m, 1H), 3.63-3.56(m, 1H), 3.44-3.35 (m, 1H), $3.23(\mathrm{br}, 1 \mathrm{H}), 2.62$ $(\mathrm{d}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.92-1.66(\mathrm{~m}, 3 \mathrm{H}), 1.52-1.43(\mathrm{~m}, 2 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 154.6,137.3,128.6,128.5,128.2,76.4,72.3,72.1,66.9,36.7$, 27.3, 27.2.

O-methyl oxime 61

To a solution of the lactol $38(20 \mathrm{mg}, 0.123 \mathrm{mmol})$ in pyridine $(600 \mu \mathrm{~L})$ was added $\mathrm{MeONH}_{2} * \mathrm{HCl}(12 \mathrm{mg}, 0.147 \mathrm{mmol})$ as a solid, and the solution was stirred for 12 h at room temperature. After this time period, the pyridine was evaporated under reduced pressure, and the residue was purified by column chromatography (100%
ethyl acetate) to afford the O-methyl oxime $\mathbf{6 1}(12 \mathrm{mg}, 50 \%)$ as a clear oil. TLC (ethyl acetate): $\mathrm{R}_{\mathrm{f}}=0.1 ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.37(\mathrm{~s}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H})$, 3.74-3.66 (m, 1H), $3.63(\mathrm{dd}, J=11.1,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{dd}, J=11.1,7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $3.06(\mathrm{br}, 3 \mathrm{H}), 1.87-1.67(\mathrm{~m}, 2 \mathrm{H}), 1.60-1.49(\mathrm{~m}, 2 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $100 \mathrm{MHz}) \delta 154.1,72.3,72.0,66.8,62.0,36.8,27.2,27.2 ;$ ESI-MS m/z 214.02 $[\mathrm{M}+\mathrm{Na}]^{+}, 191.70[\mathrm{M}+\mathrm{H}]^{+} ;$HR-FAB-MS m/z calcd. for $\mathrm{C}_{8} \mathrm{H}_{18} \mathrm{O}_{4} \mathrm{~N}_{1}[\mathrm{M}+\mathrm{H}]^{+}$: 192.1230, found 192.1234.

Acetonide 62

The O-benzyl oxime $60(15 \mathrm{mg}, 0.0561 \mathrm{mmol})$ was dissolved in 2,2dimethoxypropane (2 mL) and the solution was stirred at room temperature. A catalytic amount of (\pm)-10-camphorsulfonic acid was added in one portion, and the solution was stirred for 12 h . After this time period, a few drops of $\mathrm{Et}_{3} \mathrm{~N}$ were added, and the solution was concentrated. The residue was purified by column chromatography to provide the acetonide $\mathbf{6 2}(6 \mathrm{mg}, 35 \%) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400\right.$ $\mathrm{MHz}) \delta 7.44(\mathrm{~s}, 1 \mathrm{H}), 7.39-7.28(\mathrm{~m}, 5 \mathrm{H}), 5.08(\mathrm{~s}, 2 \mathrm{H}), 4.11-3.97(\mathrm{~m}, 1 \mathrm{H}), 4.02(\mathrm{dd}, \mathrm{J}=$ $13.4,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.53-3.44(\mathrm{~m}, 1 \mathrm{H}), 3.09(\mathrm{~s}, 1 \mathrm{H}), 1.83-1.73(\mathrm{~m}, 1 \mathrm{H}), 1.72-1.60(\mathrm{~m}$, $2 \mathrm{H}), 1.56-1.47(\mathrm{~m}, 1 \mathrm{H}), 1.39(\mathrm{~s}, 3 \mathrm{H}), 1.34(\mathrm{~s}, 3 \mathrm{H}), 1.34(\mathrm{~s}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100\right.$ $\mathrm{MHz}) \delta 154.6,128.6,128.5,128.2,109.1,76.4,76.1,71.8,69.5,37.0,27.8,27.1$, 27.0, 25.8.

Acetonide 63

To a solution of the lactol $38(15 \mathrm{mg}, 0.0926 \mathrm{mmol})$ in pyridine $(440 \mu \mathrm{~L}, 5.4$ $\mathrm{mmol})$ was added $\mathrm{MeONH}_{2} * \mathrm{HCl}(9 \mathrm{mg}, 0.111 \mathrm{mmol})$ in one portion. The solution was stirred for 12 h at room temperature, and then concentrated under reduced pressure. The residue was dissolved in 2,2-dimethoxypropane, and (\pm)-10camphorsulfonic acid ($4 \mathrm{mg}, 0.018 \mathrm{mmol}$) was added. This solution was stirred for 12 h, and then quenched with a few drops of $E t_{3} \mathrm{~N}$. The solution was concentrated under reduced pressure, and the residue was purified by column chromatography (100% ethyl acetate) to provide the acetonide $\mathbf{6 3}(13 \mathrm{mg}, 62 \%$ over 2 steps $)$ as a clear oil. ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.37(\mathrm{~s}, 1 \mathrm{H}), 4.13-4.02(\mathrm{~m}, 1 \mathrm{H}), 4.08-4.01(\mathrm{~m}, 1 \mathrm{H}), 3.84$ $(\mathrm{s}, 3 \mathrm{H}), 3.56-3.47(\mathrm{~m}, 1 \mathrm{H}), 1.83-1.66(\mathrm{~m}, 2 \mathrm{H}), 1.66-1.53(\mathrm{~m}, 2 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H}), 1.34(\mathrm{~s}$, 3H), $1.34(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 154.0,109.1,76.1,71.7,69.5,62.0$, 37.0, 27.8, 27.0, 25.8; ESI-MS m/z $254.06[\mathrm{M}+\mathrm{Na}]^{+}$; HR-EI-MS m / z calcd. for $\mathrm{C}_{11} \mathrm{H}_{21} \mathrm{O}_{4} \mathrm{~N}_{1}[\mathrm{M}]^{+}: 231.1465$, found 231.1470 .

Silyl ether 64

To a solution of acetonide $\mathbf{6 2}(6 \mathrm{mg}, 0.0195 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added $\mathrm{Et}_{3} \mathrm{~N}$ $(15 \mu \mathrm{~L}, 0.098 \mathrm{mmol})$ via syringe, and the solution was stirred and cooled to $0^{\circ} \mathrm{C}$. To the cooled solution was added TESOTf ($11 \mu \mathrm{~L}, 0.049 \mathrm{mmol}$) via syringe, and the solution was allowed to warm to room temperature, and stirred for 12 h . After this time period, the reaction mixture was diluted with saturated aqueous NaHCO_{3} and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the layers were separated. The aqueous layer was extracted with additional $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the combined organic layers were washed with brine, dried
over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by column chromatography (20:1 to $10: 1$ hexanes / ethyl acetate gradient) to provide the silyl ether $\mathbf{6 4}(6 \mathrm{mg}, 75 \%)$ as a colorless oil. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ $\delta 7.41-7.27(\mathrm{~m}, 6 \mathrm{H}), 5.05(\mathrm{~s}, 2 \mathrm{H}), 4.08-3.97(\mathrm{~m}, 2 \mathrm{H}), 3.61-3.33(\mathrm{~m}, 1 \mathrm{H}), 1.80-1.60(\mathrm{~m}$, $2 \mathrm{H}), 1.61-1.44(\mathrm{~m}, 2 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H}), 0.96(\mathrm{t}, J=7.9 \mathrm{~Hz}$, $3 \mathrm{H}), 0.90(\mathrm{t}, J=7.8 \mathrm{~Hz}, 6 \mathrm{H}), 0.61(\mathrm{q}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 0.52(\mathrm{q}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 155.3,128.5,128.5,128.0,108.9,76.3,76.0,74.1,72.2$, $69.6,67.0,38.6,28.0,27.1,25.9,25.6,7.1,6.6,4.5$.

Bis TBS ether 65

DMF $(50 \mu \mathrm{~L})$ was added to a mixture of O-methyl oxime $\mathbf{6 1}(11 \mathrm{mg}, 0.060$ mmol) and imidazole ($20 \mathrm{mg}, 0.30 \mathrm{mmol}$), and the solution was stirred at room temperature. To this solution was quickly added $\operatorname{TBSCl}(22 \mathrm{mg}, 0.144 \mathrm{mmol})$ in one portion. The solution was stirred at room temperature for 2 days, and then the reaction mixture was partitioned between hexanes / $\mathrm{Et}_{2} \mathrm{O}(1: 1)$ and $\mathrm{H}_{2} \mathrm{O}$. The layers were separated, and the aqueous layer was extracted with an additional portion of hexanes / $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by column chromatography (10:1 to $1: 1$ hexanes / ethyl acetate gradient) to provide the bis-TBS ether $65(9 \mathrm{mg}, 36 \%)$ as a colorless oil. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.36(\mathrm{~s}, 1 \mathrm{H})$, $3.84(\mathrm{~s}, 3 \mathrm{H}), 3.73-3.65(\mathrm{~m}, 1 \mathrm{H}), 3.52(\mathrm{dd}, J=10.0,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.41(\mathrm{dd}, J=10.0,6.7$ $\mathrm{Hz}, 1 \mathrm{H}), 1.80-1.45(\mathrm{~m}, 4 \mathrm{H}), 1.33(\mathrm{~s}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.06(\mathrm{~s}, 6 \mathrm{H}), 0.05$ (s, 3H), $0.04(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta$ 154.1, 79.2, 73.0, 67.0, 61.9,
36.1, 28.2, 26.8, 26.2, 26.2, 18.4, -4.0, -4.4, -5.0; ESI-MS m/z $442.15[\mathrm{M}+\mathrm{Na}]^{+}$, $419.94[\mathrm{M}+\mathrm{H}]^{+}, 402.03\left[\mathrm{M}-\mathrm{H}_{2} \mathrm{O}+\mathrm{H}\right]^{+}$.

BOM ether 66

To a solution of bis-TBS ether $\mathbf{6 5}(3 \mathrm{mg}, 0.007 \mathrm{mmol})$ in THF $(200 \mu \mathrm{~L})$ was added a single crystal of $\mathrm{n}-\mathrm{Bu}_{4} \mathrm{NI}$, and $\operatorname{iPr}_{2} \operatorname{NEt}(5 \mu \mathrm{~L}, 0.021 \mathrm{mmol})$ via syringe. The solution was stirred as $\mathrm{BOMCl}(2 \mu \mathrm{~L}, 0.014 \mathrm{mmol})$ was added via syringe, and the reaction was stirred for 12 h at room temperature. The reaction mixture was applied directly to a preparatory TLC plate, which was eluted with 9:1 hexanes / ethyl acetate to provide the BOM ether $66(3 \mathrm{mg}, 100 \%)$ as a colorless oil. TLC (9:1 hexanes / ethyl acetate): $\mathrm{R}_{\mathrm{f}}=0.2 ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.39-7.29(\mathrm{~m}, 6 \mathrm{H}), 4.79(\mathrm{~s}$, $2 \mathrm{H}), 4.63(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.59(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.70-3.62(\mathrm{~m}$, $1 \mathrm{H}), 3.52(\mathrm{dd}, J=10.0,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.40(\mathrm{dd}, J=10.0,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.86-1.58(\mathrm{~m}$, $3 \mathrm{H}), 1.50-1.36(\mathrm{~m}, 1 \mathrm{H}), 1.39(\mathrm{~s}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}), 0.06(\mathrm{~s}$, 3H), $0.04(\mathrm{~s}, 3 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta$ 153.4, 128.4, 127.9, $127.6,89.8,76.6,73.2,69.6,67.3,35.0,28.2,26.2,26.2,21.8,-5.3 ;$ ESI-MS m/z $562.22[\mathrm{M}+\mathrm{Na}]^{+}, 539.83[\mathrm{M}+\mathrm{H}]^{+}$.

Nitrile 67

To a solution of O-benzyl oxime $\mathbf{6 0}(15 \mathrm{mg}, 0.056 \mathrm{mmol})$ in pyridine $(1.5 \mathrm{~mL})$ was added $\mathrm{TsCl}(13 \mathrm{mg}, 0.067 \mathrm{mmol})$ in one portion, and the solution was stirred at room temperature for 12 h . The solution was then diluted with EtOAc and washed successively with 1% aqueous HCl and brine. The organic layer was dried over
$\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was dissolved in DMF (1 mL) and KCN ($36 \mathrm{mg}, 0.056 \mathrm{mmol}$) was added in one portion. The suspension was heated to $80^{\circ} \mathrm{C}$, and was stirred for 12 h . The suspension was filtered through a short silica gel plug which was washed with ethyl acetate, and the filtered solution was concentrated under reduced pressure, and high vacuum. The residue was purified by column chromatography (1:1 hexanes / ethyl acetate) to provide nitrile $\mathbf{6 7}$ (11 mg, 75\%) as a colorless oil. TLC (1:1 hexanes / ethyl acetate): $\mathrm{R}_{\mathrm{f}}=0.2 ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.43(\mathrm{~s}, 1 \mathrm{H}), 7.41-7.29(\mathrm{~m}, 5 \mathrm{H}), 5.09(\mathrm{~s}, 2 \mathrm{H}), 3.98-3.84(\mathrm{~m}, 1 \mathrm{H})$, $3.20-3.11(\mathrm{~m}, 2 \mathrm{H}), 2.46(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.85-1.62(\mathrm{~m}, 3 \mathrm{H}), 1.61-1.50(\mathrm{~m}, 1 \mathrm{H})$, $1.36(\mathrm{~s}, 3 \mathrm{H})$.

Nitrile 68

To a solution of O-methyl oxime $61(43 \mathrm{mg}, 0.225 \mathrm{mmol})$ in pyridine (2 mL , $24.7 \mathrm{mmol})$ was added $\mathrm{TsCl}(52 \mathrm{mg}, 0.270 \mathrm{mmol})$ in one portion, and the reaction mixture was stirred for 12 h at room temperature. The mixture was diluted with EtOAc, and extracted with 2 N HCl , and then washed with brine. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure to afford 62 mg of crude tosylate that was dissolved in DMF (2 mL). This solution was stirred, and $\mathrm{KCN}(116 \mathrm{mg}, 1.79 \mathrm{mmol})$ was added in one portion, and the suspension was heated to $80^{\circ} \mathrm{C}$ for 12 h . After this period of time, the reaction mixture was cooled to ambient temperature and filtered through a short silica gel plug, which was rinsed with EtOAc. The filtrate was concentrated under reduced pressure, and the residue was purified by column chromatography ($100 \% \mathrm{EtOAc}$) to afford nitrile 68 (18 mg, 51\%, 2
steps) as a colorless oil. TLC (EtOAc): $\mathrm{R}_{\mathrm{f}}=0.4 ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.36$ $(\mathrm{s}, 1 \mathrm{H}), 4.02-3.91(\mathrm{~m}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.30(\mathrm{br}, 1 \mathrm{H}), 3.17(\mathrm{br}, 1 \mathrm{H}), 2.53(\mathrm{dd}, \mathrm{J}=5.8$, $1.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.86-1.60(\mathrm{~m}, 4 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 153.0$, 117.7, 72.0, 67.9, 62.2, 36.2, 30.7, 27.4, 26.3.

Bis-TES ether 70

To a solution of nitrile $\mathbf{6 8}(18 \mathrm{mg}, 0.088 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ was added $\mathrm{Et}_{3} \mathrm{~N}(122 \mu \mathrm{~L}, 0.88 \mathrm{mmol})$ via syringe, and the solution was stirred and cooled to $0{ }^{\circ} \mathrm{C}$. To the cooled solution was added TESOTf ($100 \mu \mathrm{~L}, 0.44 \mathrm{mmol}$) via syringe, and the reaction was monitored by TLC. When the starting material $\left(\mathrm{R}_{\mathrm{f}}<0.1\right.$ in 2:1 hexanes / ethyl acetate) had been consumed and a single product $\left(R_{f}=0.6\right.$ in $2: 1$ hexanes / ethyl acetate) was observed, the reaction was quenched by the addition of saturated aqueous NaHCO_{3}, and diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The layers were separated and the aqueous layer was extracted with additional $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by preparative TLC (10:1 hexanes / ethyl acetate) to afford bis-TES ether 70 (28 mg , $76 \%)$ as a clear oil. TLC (10:1 hexanes / ethyl acetate): $\mathrm{R}_{\mathrm{f}}=0.4 ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $400 \mathrm{MHz}) \delta 7.30(\mathrm{~s}, 1 \mathrm{H}), 4.00-3.90(\mathrm{~m}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 2.46(\mathrm{dd}, J=5.6,3.7 \mathrm{~Hz}$, 2H), 1.77-1.50 (m, 4H), $1.37(\mathrm{~s}, 3 \mathrm{H}), 0.97(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 9 \mathrm{H}), 0.93(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 9 \mathrm{H})$, $0.63(\mathrm{q}, J=8.0 \mathrm{~Hz}, 6 \mathrm{H}), 0.57(\mathrm{q}, J=8.0 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta$ $154.6,117.9,73.9,68.7,61.7,37.8,31.4,26.3,25.8,7.1,6.9,6.6,5.0$.

2-phenylbutyrate ester 77

To a solution of the lactone alcohol $76(72 \mathrm{mg}, 0.554 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added DMAP ($67 \mathrm{mg}, 0.554 \mathrm{mmol}$), CSA ($122 \mathrm{mg}, 0.526 \mathrm{mmol}$), and (R)-2phenylbutyric acid ($94 \mu \mathrm{~L}, 0.61 \mathrm{mmol}$) via syringe, and the solution was cooled to 0 ${ }^{\circ} \mathrm{C}$ as it stirred. To the cooled solution was added DCC ($183 \mathrm{mg}, 0.886 \mathrm{mmol}$) in one portion, and the solution was stirred at $0^{\circ} \mathrm{C}$ for 1 h before being allowed to warm to room temperature over 12 h . After this period of time, the suspension (due to precipitation of dicyclohexylurea during the course of the reaction) was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with 10% aqueous citric acid solution, followed by saturated aqueous NaHCO_{3}, and brine. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was purified by column chromatography ($5: 1$ to $1: 1$ hexanes / ethyl acetate gradient) to afford the 2 phenylbutyrate ester 77 ($105 \mathrm{mg}, 69 \%$) as a $4.7: 1$ mixture of diastereomers as judged by ${ }^{1} \mathrm{H}$ NMR integration. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ major diastereomer δ 7.38-7.22 $(\mathrm{m}, 5 \mathrm{H}), 4.13(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.46(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H})$, 2.43-2.31 (m, 1H), 2.24-2.06(m, 2H), 1.96-1.76(m, 3H), $1.35(\mathrm{~s}, 3 \mathrm{H}), 0.88(\mathrm{t}, \mathrm{J}=7.4$ $\mathrm{Hz}, 3 \mathrm{H})$.

Diol 80

To a stirred mixture of $1.5 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}: 1.5 \mathrm{~mL} t$ - BuOH was added AD-mix- β (442 mg), and the mixture was stirred until the AD-mix dissolved. The stirred mixture was cooled to $0^{\circ} \mathrm{C}$, and benzyl ether $78(60 \mathrm{mg}, 0.316 \mathrm{mmol})$ was added via syringe. The reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 12 h before being quenched by the
addition of $\mathrm{Na}_{2} \mathrm{SO}_{3}(500 \mathrm{mg})$, and warmed to room temperature over 1 h with stirring. The reaction mixture was diluted with $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the layers were separated. The aqueous layer was extracted with additional $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. Column chromatography of the residue (1:1 to $2: 1$ ethyl acetate / hexanes) provided the diol $80(64 \mathrm{mg}, 90 \%)$ as a colorless oil. TLC (1:1 hexanes / ethyl acetate): $\mathrm{R}_{\mathrm{f}}<$ 0.1; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.38-7.27(\mathrm{~m}, 5 \mathrm{H}), 4.52(\mathrm{~s}, 2 \mathrm{H}), 3.55-3.47(\mathrm{~m}, 2 \mathrm{H})$, $3.44(\mathrm{dd}, J=11.0,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{dd}, J=10.9,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.81(\mathrm{~s}, 1 \mathrm{H}), 2.30(\mathrm{t}$, $6.1 \mathrm{~Hz}), 1.79-1.51(\mathrm{~m}, 4 \mathrm{H}), 1.15(\mathrm{~s}, 3 \mathrm{H})$.

Diol 81

To a mixture of $\mathrm{H}_{2} \mathrm{O}(3 \mathrm{~mL})$ and $t-\mathrm{BuOH}(3 \mathrm{~mL})$ was added AD-mix- β (827 mg) and the mixture was stirred until the AD-mix dissolved, and continued to stir as it was cooled to $0^{\circ} \mathrm{C}$. To the cooled reaction mixture was added TBDPS ether 79 (200 $\mathrm{mg}, 0.590 \mathrm{mmol}$), and the reaction was stirred for 12 h at $0^{\circ} \mathrm{C}$. After this period of time, the reaction was quenched by the addition of $\mathrm{Na}_{2} \mathrm{SO}_{3}(900 \mathrm{mg})$, and was allowed to slowly warm to room temperature over 1 h with stirring. The mixture was diluted with $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the layers were separated. The aqueous layer was extracted with additional $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography (ethyl acetate / hexanes gradient) to provide diol 81 (135 $\mathrm{mg}, 62 \%)$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.70-7.64(\mathrm{~m}, 4 \mathrm{H}), 7.47-$
$7.36(\mathrm{~m}, 6 \mathrm{H}), 3.75-3.61(\mathrm{~m}, 2 \mathrm{H}), 3.51-3.37(\mathrm{~m}, 2 \mathrm{H}), 2.61(\mathrm{br}, 1 \mathrm{H}), 1.91(\mathrm{t}, J=5.8 \mathrm{~Hz}$, $1 \mathrm{H}), 1.72-1.53(\mathrm{~m}, 4 \mathrm{H}), 1.18(\mathrm{~s}, 3 \mathrm{H}), 1.05(\mathrm{~s}, 9 \mathrm{H})$.

(Z) - olefin 85 and (E) - olefin 87

To a reaction flask containing THF (2 mL) was added $\mathrm{NaH}(94 \mathrm{mg}$ of a 60% dispersion in oil, 2.36 mmol), and the suspension was cooled to $0{ }^{\circ} \mathrm{C}$. To the suspension was added triethylphosphonoacetate ($485 \mu \mathrm{~L}, 2.44 \mathrm{mmol}$) via syringe, and the solution stirred for 30 min . To the solution was added ketone $\mathbf{8 6}(277 \mathrm{mg}, 0.815$ mmol) as a solution in THF (3 mL) via cannula, and the reaction stirred at $0^{\circ} \mathrm{C}$ with occasional monitoring by TLC. When the starting material ketone 86 was no longer visible, the reaction mixture was partitioned between saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and EtOAc, and the layers were separated. The aqueous layer was extracted with additional EtOAc, and the combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by column chromatography using a 3 component solvent system to effect separation of the product mixture (40:10:1 to 20:10:1 hexanes / toluene / diethyl ether) and in this way (Z) - olefin $85(17 \mathrm{mg}, 5 \%)$ was obtained, and (E) - olefin $87(59 \mathrm{mg}$, 18%) with the remaining mixed fractions ($155 \mathrm{mg}, 46 \%$) being a mixture of $\mathbf{8 7 : 8 5}$ in an approximately $4: 1$ ratio. TLC (4:1 hexanes / ethyl acetate): $\mathrm{R}_{\mathrm{f}}=0.5$ ($\mathbf{8 5}$ and $\mathbf{8 7}$ not distinguishable by TLC); Compound 85: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.74-7.61(\mathrm{~m}$, $4 \mathrm{H}), 7.46-7.33(\mathrm{~m}, 6 \mathrm{H}), 5.64(\mathrm{~s}, 1 \mathrm{H}), 4.11(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.70(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H})$, $2.72-2.65(\mathrm{~m}, 2 \mathrm{H}), 1.86(\mathrm{~s}, 3 \mathrm{H}), 1.77-1.69(\mathrm{~m}, 2 \mathrm{H}), 1.24(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.05(\mathrm{~s}$, 9H). Compound 87: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.72-7.61(\mathrm{~m}, 4 \mathrm{H}), 7.49-7.31$ (m,
$6 \mathrm{H}), 5.67(\mathrm{~s}, 1 \mathrm{H}), 4.15(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.56(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.27-2.20(\mathrm{~m}, 2 \mathrm{H})$, $2.14(\mathrm{~s}, 3 \mathrm{H}), 1.78-1.66(\mathrm{~m}, 2 \mathrm{H}), 1.28(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.05(\mathrm{~s}, 9 \mathrm{H})$.

Diol 88

To a mixture of $\mathrm{H}_{2} \mathrm{O}(730 \mu \mathrm{~L})$ and t - $\mathrm{BuOH}(730 \mu \mathrm{~L})$ was added AD-mix- α (202 mg) and the mixture was stirred until the AD-mix dissolved, and then was cooled to $0{ }^{\circ} \mathrm{C}$. To the cooled solution was added $\mathrm{MeSO}_{2} \mathrm{NH}_{2}(14 \mathrm{mg}, 0.145 \mathrm{mmol})$, and then a solution of (E) - olefin $87(59 \mathrm{mg}, 0.145 \mathrm{mmol})$ in $t-\mathrm{BuOH}(100 \mu \mathrm{~L}) . \mathrm{H}_{2} \mathrm{O}(100 \mu \mathrm{~L})$ was added to maintain the $1: 1$ solvent ratio, and the reaction mixture was stirred at 0 ${ }^{\circ} \mathrm{C}$ for 2 days, at which point starting material $\left(\mathrm{R}_{\mathrm{f}}=0.5\right.$ in $4: 1$ hexanes / ethyl acetate $)$ was still observed by TLC, so additional portions of AD-mix- α (100 mg) and $\mathrm{MeSO}_{2} \mathrm{NH}_{2}(15 \mathrm{mg}, 0.145 \mathrm{mmol})$ were added. After an additional day of stirring at 0 ${ }^{\circ} \mathrm{C}$, the reaction mixture was quenched by the addition of $\mathrm{Na}_{2} \mathrm{SO}_{3}$, and diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\mathrm{H}_{2} \mathrm{O}$. The layers were separated, and the aqueous layer was extracted with additional $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by column chromatography (hexanes / ethyl acetate gradient) to provide diol 88 ($41 \mathrm{mg}, 64 \%$) as a clear oil. TLC ($4: 1$ hexanes / ethyl acetate) $: \mathrm{R}_{\mathrm{f}}=0 ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta$ 7.71-7.61 (m, 4H), 7.49-7.33 (m, 6H), $4.27(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.01(\mathrm{~d}, J=6.6 \mathrm{~Hz}$, $1 \mathrm{H}), 3.68(\mathrm{t}, \mathrm{J}=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.12(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.75(\mathrm{~s}, 1 \mathrm{H}), 1.77-1.60(\mathrm{~m}, 4 \mathrm{H})$, $1.30(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.17(\mathrm{~s}, 3 \mathrm{H}), 1.04(\mathrm{~s}, 9 \mathrm{H})$.

Acetonide 89

The diol 88 ($19 \mathrm{mg}, 0.042 \mathrm{mmol}$) was dissolved in 2,2-dimethoxypropane (3 $\mathrm{mL}, 24 \mathrm{mmol}$), and to the stirred solution was added a catalytic amount of CSA. The solution was stirred for 2 days at room temperature, and TLC analysis indicated the consumption of starting material $\left(\mathrm{R}_{\mathrm{f}}=0\right.$ in $4: 1$ hexanes / ethyl acetate) and the formation of the product $\left(\mathrm{R}_{\mathrm{f}}=0.3\right.$ in $4: 1$ hexanes / ethyl acetate $)$. A few drops of $E t_{3} \mathrm{~N}$ were added to quench the reaction, and the mixture was concentrated. The residue was purified by column chromatography (4:1 hexanes / ethyl acetate) to provide the acetonide 89 ($17 \mathrm{mg}, 85 \%$) as a clear oil. TLC (4:1 hexanes / ethyl acetate): $\mathrm{R}_{\mathrm{f}}=0.3$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.70-7.63(\mathrm{~m}, 4 \mathrm{H}), 7.46-7.34(\mathrm{~m}, 6 \mathrm{H}), 4.36(\mathrm{~s}, 1 \mathrm{H})$, $4.25(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.70(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.88-1.65(\mathrm{~m}, 4 \mathrm{H}), 1.54(\mathrm{~s}, 3 \mathrm{H}), 1.34$ $(\mathrm{s}, 3 \mathrm{H}), 1.29(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.15(\mathrm{~s}, 3 \mathrm{H}), 1.05(\mathrm{~s}, 9 \mathrm{H})$.

Derivative 90

To the acetonide $89(17 \mathrm{mg}, 0.034 \mathrm{mmol})$ was added THF ($300 \mu \mathrm{~L}$) and aqueous $\mathrm{LiOH}(100 \mu \mathrm{~L}$ of a 1 N solution, 0.103 mmol$)$, and the solution was stirred at $0{ }^{\circ} \mathrm{C}$ for 24 hours. After this period of time, TLC analysis indicated that the reaction mixture consisted mostly of unreacted 89. The mixture continued stirring at $0^{\circ} \mathrm{C}$, and solid $\mathrm{LiOH}^{*} \mathrm{H}_{2} \mathrm{O}$ was added in $5 \mathrm{mg}(0.083 \mathrm{mmol})$ portions with occasional TLC monitoring until the starting material was consumed. After the reaction was complete, acetic acid was added dropwise until the reaction mixture was slightly acidic according to pH paper. The reaction mixture was applied to a silica gel column, which was eluted with a 3 component eluent system ($95: 4: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} /$ acetic acid) to provide the intermediate carboxylic acid ($16 \mathrm{mg}, 100 \%$). The purified carboxylic acid
was dissolved in DMF (350 $\mu \mathrm{L}$), and to this solution was added D-(+)- α methylbenzylamine ($9 \mu \mathrm{~L}, 0.069 \mathrm{mmol}$), $\mathrm{HOBt}(7 \mathrm{mg}, 0.052 \mathrm{mmol})$, PyBOP (27 mg , $0.052 \mathrm{mmol})$, and $\mathrm{Et}_{3} \mathrm{~N}(20 \mu \mathrm{~L}, 0.138 \mathrm{mmol})$. The reaction mixture was stirred at room temperature for 12 h , then diluted with $\mathrm{H}_{2} \mathrm{O}$ and EtOAc . The aqueous layer was extracted with additional EtOAc, and the combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. Column chromatography (4:1 hexanes / ethyl acetate) provided the derivative 90 ($12 \mathrm{mg}, 63 \%$) which contained impurities as noted by TLC and NMR. Preparative TLC (4:1 hexanes / ethyl acetate) of this material provided a more pure sample of derivative $\mathbf{9 0}$ ($9 \mathrm{mg}, 47 \%$), which was a 13.5:1 mixture of diastereomers as judged by ${ }^{1} \mathrm{H}$ NMR integration. TLC (4:1 hexanes ethyl acetate): $\mathrm{R}_{\mathrm{f}}=0.3 ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ major diastereomer $\delta 7.70-7.63(\mathrm{~m}, 4 \mathrm{H}), 7.45-7.29(\mathrm{~m}, 11 \mathrm{H}), 6.81(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H})$, $5.17(\mathrm{dq}, J=8.2,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{~s}, 1 \mathrm{H}), 3.68(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.92-1.66(\mathrm{~m}$, $4 \mathrm{H}), 1.52(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.50(\mathrm{~s}, 3 \mathrm{H}), 1.32(\mathrm{~s}, 3 \mathrm{H}), 1.16(\mathrm{~s}, 3 \mathrm{H}), 1.04(\mathrm{~s}, 9 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 142.8,135.7,134.2,129.6,128.9,127.7,127.6,126.4$, 108.7, 83.4, 81.5, 64.2, 48.1, 36.5, 27.2, 27.2, 27.0, 21.9, 21.8, 19.4.

Cinnamate ester 98

Into a round bottom flask were added trans-cinnamic acid ($489 \mathrm{mg}, 3.3 \mathrm{mmol}$), DMAP ($366 \mathrm{mg}, 3.0 \mathrm{mmol}$), CSA ($661 \mathrm{mg}, 2.85 \mathrm{mmol}$), and 4-methylpent-4-en-1-ol ($300 \mathrm{mg}, 3.0 \mathrm{mmol}$). The mixture was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ and cooled to 0 ${ }^{\circ} \mathrm{C}$ with stirring. To the cooled solution was added DCC ($988 \mathrm{mg}, 4.8 \mathrm{mmol}$) in one portion, and the ice-water bath was allowed to slowly melt, and the reaction mixture
stirred for 24 h . The reaction mixture became cloudy due to precipitation of dicyclohexylurea during the course of the reaction, and the suspension was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and extracted sequentially with 10% aqueous citric acid, deionized $\mathrm{H}_{2} \mathrm{O}$, saturated aqueous NaHCO_{3}, and brine. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography (10:1 hexanes / ethyl acetate) to provide the cinnamate ester $98(880 \mathrm{mg},>100 \%)$ which contained a small amount of unreacted DCC, and the mass of the recovered product indicated inaccurate measurements of the starting materials. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.69(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.35$ $(\mathrm{m}, 3 \mathrm{H}), 6.45(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.75(\mathrm{br}, 1 \mathrm{H}), 4.72(\mathrm{br}, 1 \mathrm{H}), 4.21(\mathrm{t}, J=6.7 \mathrm{~Hz}$, $2 \mathrm{H}), 2.17-2.10(\mathrm{~m}, 2 \mathrm{H}), 1.97-1.80(\mathrm{~m}, 2 \mathrm{H}), 1.75(\mathrm{~s}, 3 \mathrm{H})$.

Chloroacetate ester 99

To a reaction flask were added chloroacetic acid ($423 \mathrm{mg}, 4.47 \mathrm{mmol}$), 4-methylpent-4-en-1-ol ($407 \mathrm{mg}, 4.07 \mathrm{mmol}$), DMAP ($496 \mathrm{mg}, 4.07 \mathrm{mmol}$), and CSA ($896 \mathrm{mg}, 3.87 \mathrm{mmol}$). The mixture was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ and cooled to 0 ${ }^{\circ} \mathrm{C}$ with stirring. To the cooled solution was added $\mathrm{DCC}(1.34 \mathrm{~g}, 6.51 \mathrm{mmol})$ in one portion, and the ice-bath was allowed to melt as the reaction mixture stirred for 24 h . The reaction mixture became cloudy with precipitated dicyclohexylurea, and was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and extracted sequentially with 10% aqueous citric acid, deionized $\mathrm{H}_{2} \mathrm{O}$, saturated aqueous NaHCO_{3}, and brine. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by column chromatography (10:1 hexanes / ethyl acetate) to provide the
chloroacetate ester 99 ($479 \mathrm{mg}, 67 \%$). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 4.75(\mathrm{br}, 1 \mathrm{H})$, $4.70(\mathrm{br}, 1 \mathrm{H}), 4.20(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.06(\mathrm{~s}, 2 \mathrm{H}), 2.09(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.87-1.78$ ($\mathrm{m}, 2 \mathrm{H}$), $1.73(\mathrm{~s}, 3 \mathrm{H})$.

Phosphonate 100

The chloroacetate ester 99 ($479 \mathrm{mg}, 2.71 \mathrm{mmol}$) was dissolved in triethylphosphite $(1.4 \mathrm{~mL}, 8.1 \mathrm{mmol})$ and the solution was stirred and heated to reflux for 12 h . The excess triethylphosphite was distilled from the reaction mixture under high vacuum, and the residue was purified by column chromatography (hexanes / ethyl acetate gradient) to provide the phosphonate 100 (1.26 g, <100\%) which was contaminated with triethylphosphite derived impurities. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ $\delta 4.74(\mathrm{br}, 1 \mathrm{H}), 4.69(\mathrm{br}, 1 \mathrm{H}), 4.22-4.06(\mathrm{~m}, 6 \mathrm{H}), 2.97\left(\mathrm{~d},{ }^{2} J_{\mathrm{H}, \mathrm{P}}=21.5 \mathrm{~Hz}, 2 \mathrm{H}\right), 2.09(\mathrm{t}$, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.84-1.75(\mathrm{~m}, 2 \mathrm{H}), 1.72(\mathrm{~s}, 3 \mathrm{H}), 1.34(\mathrm{td}, J=6.0,0.6 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ $\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 144.5,110.7,65.3,62.8\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=6.0 \mathrm{~Hz}\right), 34.5\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}=\right.$ $133.2 \mathrm{~Hz}), 33.9,26.5,22.5,16.5\left(\mathrm{~d},{ }^{3} J_{\mathrm{CP}}=6.4 \mathrm{~Hz}\right)$.

Ketone 101

The crude phosphonate $\mathbf{1 0 0}$ (1.26 g of material, theoretical $754 \mathrm{mg}, 2.71$ mmol) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$, and $\mathrm{NMO}(949 \mathrm{mg}, 8.1 \mathrm{mmol})$ was added to the solution. The solution was cooled to $0^{\circ} \mathrm{C}$, and ozone was bubbled through a pipet for 10 min with stirring. The solution was purged with N_{2}, and concentrated under reduced pressure. Column chromatography of the residue (hexanes / ethyl acetate gradient) provided ketone 101 ($372 \mathrm{mg}, 49 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 4.23-$
$4.08(\mathrm{~m}, 6 \mathrm{H}), 2.96\left(\mathrm{~d},{ }^{2} J_{\mathrm{HP}}=21.6 \mathrm{~Hz}, 2 \mathrm{H}\right), 2.56(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}), 1.97-$ $1.88(\mathrm{~m}, 2 \mathrm{H}), 1.35(\mathrm{td}, J=7.1,0.5 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 207.7$, 64.7, $62.8\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=6.5 \mathrm{~Hz}\right), 39.7,34.4\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}=133.2 \mathrm{~Hz}\right), 30.2,22.7,16.5\left(\mathrm{~d},{ }^{3} J_{\mathrm{CP}}=\right.$ 6.1 Hz).

Crotylation adduct 105

A reaction flask was charged with $t-\mathrm{BuOK}(127 \mathrm{mg}, 1.13 \mathrm{mmol})$ and heated to $110{ }^{\circ} \mathrm{C}$ with a sand bath under high vacuum $(0.1 \mathrm{~mm} \mathrm{Hg})$ for 12 h , then backfilled with Ar , and allowed to cool to ambient temperature under positive pressure of Ar . A dry 10 mL graduated cylinder under Ar was partially submerged in a $-78{ }^{\circ} \mathrm{C}$ dewar bath in order to condense cis-2-butene (3.0 mL) which was transferred from a lecture bottle via cannula. To the condensed cis-2-butene was added THF (5.0 mL) via syringe, and the graduated cylinder indicated a total mixed volume of 7.6 mL . A portion of this solution ($700 \mu \mathrm{~L}$, corresponding to $276 \mu \mathrm{~L}$ of cis-2-butene) was transferred via syringe to the reaction flask containing the t-BuOK and THF (5 mL). The suspension was cooled to $-78^{\circ} \mathrm{C}$, and n - $\mathrm{BuLi}(420 \mu \mathrm{~L}$ of a 2.7 M solution in hexanes, 1.13 mmol) was added, and the solution turned yellow. The solution was allowed to warm to $-45^{\circ} \mathrm{C}$ for 10 minutes, and then recooled to $-78{ }^{\circ} \mathrm{C}$. To the solution was added (-)- $\operatorname{Ipc}_{2} \mathrm{BOMe}(393 \mathrm{mg}, 1.24 \mathrm{mmol})$ as a solution in THF $(1 \mathrm{~mL})$ via cannula, causing the yellow color to fade. The solution was stirred for 0.5 h before $\mathrm{BF}_{3} * \mathrm{OEt}_{2}(190 \mu \mathrm{~L}, 1.50 \mathrm{mmol})$ was added, followed by a solution of aldehyde 34 as a solution in THF (1 mL) via syringe. The reaction mixture stirred for 8 h at $-78{ }^{\circ} \mathrm{C}$ before a saturated aqueous solution of NaBO_{3} was added to quench the reaction. The
solution was allowed to warm to room temperature and was stirred for 12 hours, and then it was diluted with ether and the layers were separated. The aqueous layer was extracted with additional ether, and the combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by column chromatography (10:1 to $1: 1$ hexane / diethyl ether gradient) to provide crotylation adduct $105(6 \mathrm{mg}, 2 \%)$. TLC (1:1 hexanes / diethyl ether): $\mathrm{R}_{\mathrm{f}}=0.4 ;[\alpha]_{\mathrm{D}}{ }^{22}=+10.0\left(c 0.10, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 5.81$ (ddd, $J=17.2,10.3,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.14(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H})$, $3.41(\mathrm{~s}, 3 \mathrm{H}), 3.39-3.31(\mathrm{~m}, 1 \mathrm{H}), 3.18(\mathrm{td}, J=6.5,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.92(\mathrm{dd}, J=8.1,2.3$ $\mathrm{Hz}, 1 \mathrm{H}), 2.85(\mathrm{dd}, J=4.8,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.43(\mathrm{dd}, J=14.1,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.91(\mathrm{~d}, J=$ $6.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.72-1.57(\mathrm{~m}, 1 \mathrm{H}), 1.56-1.38(\mathrm{~m}, 2 \mathrm{H}), 1.13(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{~d}, \mathrm{~J}$ $=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 139.8,116.2$, 83.8, 74.1, 59.7, 59.1, 58.3, 42.9, 39.0, 23.9, 15.9, 10.4, 10.2; ESI-MS m/z 245.94 $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 229.02[\mathrm{M}+\mathrm{H}]^{+}$; HR-EI-MS m/z calcd. for $\mathrm{C}_{13} \mathrm{H}_{23} \mathrm{O}_{3}[\mathrm{M}-\mathrm{H}]^{+}:$227.1642, found 227.1638.

Reduction product 105

To a solution of alkyne $\mathbf{1 0 9}(6 \mathrm{mg}, 0.027 \mathrm{mmol})$ in EtOAc $(4 \mathrm{~mL})$ were added a few drops of quinoline via Pasteur pipet, and a catalytic amount of $\mathrm{Pd}-\mathrm{BaSO}_{4}$. Two balloons of H_{2} were bubbled through the solution with stirring, by the use of a 6 " needle and a vent needle. The solution was filtered and stirred over solid $\mathrm{CuSO}_{4} * \mathrm{xH}_{2} \mathrm{O}$ for 10 min to remove quinoline, filtered through a short plug of silica with EtOAc, and concentrated under reduced pressure. The residue was analyzed by
${ }^{1} \mathrm{H}$ NMR to compare with the crotylation adduct $\mathbf{1 0 5}$, and it appeared to be a roughly 1:1 mixture of the desired olefin $\mathbf{1 0 5}$ and the overreduction product (alkane). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 5.84(\mathrm{ddd}, J=17.2,10.3,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H})$, $5.11(\mathrm{~d}, \mathrm{~J}=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.76-3.62(\mathrm{~m}, 1 \mathrm{H}), 3.41(\mathrm{~s}, 3 \mathrm{H}), 3.26-3.14(\mathrm{~m}, 1 \mathrm{H}), 3.04(\mathrm{t}$, $J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.87(\mathrm{dd}, J=2.5,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.39(\mathrm{dd}, J=14.5,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.88$ $(\mathrm{d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.75-1.38(\mathrm{~m}, 3 \mathrm{H}), 1.14(\mathrm{~d}, 6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.01-0.87(\mathrm{~m}, 5 \mathrm{H}$, obscured because of the 2 compounds).

Reduction product 107

To a solution of the alkyne $114(3 \mathrm{mg}, 0.013 \mathrm{mmol})$ in EtOAc (2 mL) was added a drop of quinoline and a catalytic amount of $\mathrm{Pd}-\mathrm{BaSO}_{4}$. Two balloons of H_{2} were bubbled through the stirring solution, by the use of a 6 " needle connected to the balloon, and a vent needle through the septum. The reaction mixture was directly applied to a silica column packed with hexanes, and was eluted off with a hexanes / ethyl acetate gradient. The product alkene $\mathbf{1 0 7}$ was contaminated with quinoline and overreduction product as seen in the ${ }^{1} \mathrm{H}$ NMR spectrum. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ crude $\delta 5.88(\mathrm{ddd}, J=15.9,10.3,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.14(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{~d}, J=$ $10.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.64-3.54(\mathrm{~m}, 1 \mathrm{H}), 3.40(\mathrm{~s}, 3 \mathrm{H}), 3.22-3.14(\mathrm{~m}, 1 \mathrm{H}), 3.05-2.96(\mathrm{~m}, 1 \mathrm{H})$, $2.87-2.80(\mathrm{~m}, 1 \mathrm{H}), 2.52-2.37(\mathrm{~m}, 1 \mathrm{H}), 1.74-1.35(\mathrm{~m}, 3 \mathrm{H}), 1.14(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$, $0.97-0.86(\mathrm{~m}, 5 \mathrm{H})$.

Alkyne 109

To a stirred solution of aldehyde $34(35 \mathrm{mg}, 0.205 \mathrm{mmol})$ and (M)allenylstannane $113(100 \mathrm{mg}, 0.287 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ was added $\mathrm{BF}_{3}{ }^{*} \mathrm{OEt}_{2}(63 \mu \mathrm{~L}, 0.513 \mathrm{mmol})$ via syringe. The solution was stirred at $-78{ }^{\circ} \mathrm{C}$ for 1 h, and then quenched by the addition of a saturated NaHCO_{3} solution. The mixture was allowed to warm to ambient temperature, and the layers were separated. The aqueous layer was extracted with additional $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the combined organic layers were stirred over solid KF on Celite for 2 h at room temperature. The solution was filtered and concentrated under reduced pressure, and the residue was purified by column chromatography (4:1 to $1: 1$ hexanes / ethyl acetate gradient) to provide alkyne $\mathbf{1 0 9}$ as a clear oil. TLC ($1: 1$ hexanes / ethyl acetate $): \mathrm{R}_{\mathrm{f}} \sim 0.5 ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta$ $3.74-3.68(\mathrm{~m}, 1 \mathrm{H}), 3.41(\mathrm{~s}, 3 \mathrm{H}), 3.18(\mathrm{td}, J=6.4,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.11(\mathrm{dd}, J=3.4,2.5$ $\mathrm{Hz}, 1 \mathrm{H}$), 3.04 (dd, $J=8.1,2.5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.60 (pentet of doublets, $J=7.0,2.4 \mathrm{~Hz}, 1 \mathrm{H}$), $2.15(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.13(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.72-1.43(\mathrm{~m}, 3 \mathrm{H}), 1.31(\mathrm{~d}, J=7.0$ $\mathrm{Hz}, 3 \mathrm{H}), 0.96(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 100\right.$ $\mathrm{MHz}) \delta 84.9,83.9,71.2,71.1,58.5,58.2,57.0,38.8,30.6,23.9,17.0,10.6,10.1$; ESIMS m/z $249.09[\mathrm{M}+\mathrm{Na}]^{+}, 243.96\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 227.02[\mathrm{M}+\mathrm{H}]^{+} ;$HR-EI-MS m/z calcd. for $\mathrm{C}_{13} \mathrm{H}_{23} \mathrm{O}_{3}[\mathrm{M}]^{+}: 226.1563$, found 226.1562; m/z calcd. for $\mathrm{C}_{13} \mathrm{H}_{23} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$: 227.1642, found 227.1641.

Bromohydrin 112

To a stirred solution of aldehyde $34(38 \mathrm{mg}, 0.221 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ at $-25{ }^{\circ} \mathrm{C}$ was added $\mathrm{MgBr}_{2} * \mathrm{OEt}_{2}(114 \mathrm{mg}, 0.442 \mathrm{mmol})$ in one portion, and stirring continued for 5 minutes before the (P)-allenylstannane $\mathbf{1 0 8}(85 \mathrm{mg}, 0.243 \mathrm{mmol})$ in 2
mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added. Stirring continued for 45 minutes at $-25^{\circ} \mathrm{C}$ at which point the reaction was quenched by the addition of saturated aqueous NaHCO_{3}, and the mixture was allowed to warm to room temperature. The aqueous layer was extracted with additional $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the combined organic layers were stirred over KF on Celite for 2 h at room temperature. The solution was filtered and concentrated under reduced pressure, and the residue was purified by column chromatography (3:1 to $1: 1$ hexanes / ethyl acetate gradient) to provide the bromohydrin 112 ($27 \mathrm{mg}, 40 \%$ based on the MW of the actual product). Diffraction quality crystals were obtained by perfusion of hexanes into diethyl ether at $4{ }^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}{ }^{22}+21.7\left(c \quad 0.75, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 4.87(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{~s}, 3 \mathrm{H}), 3.99(\mathrm{td}, J=8.8,3.2$ $\mathrm{Hz}, 1 \mathrm{H}), 3.52$ (ddd, $J=9.6,4.7,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.26-3.14(\mathrm{~m}, 1 \mathrm{H}), 2.46-2.35(\mathrm{~m}, 1 \mathrm{H})$, $2.16(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.89-1.74(\mathrm{~m}, 1 \mathrm{H}), 1.49-1.36(\mathrm{~m}, 2 \mathrm{H}), 1.28(\mathrm{~d}, J=6.9 \mathrm{~Hz}$, $3 \mathrm{H}), 1.06(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta$ 87.0, 83.1, 79.8, 78.6, 69.9, 56.3, 55.4, 34.8, 31.7, 31.1, 22.0, 15.3, 11.0, 9.9; IR (film) vmax: 3441, 2969, 2934, 2873, 1650, 1457, 1431, 1380, 1235, 1082, 933, 636; ESIMS m/z $329.01[\mathrm{M}+\mathrm{Na}]^{+}, 306.93[\mathrm{M}+\mathrm{H}]^{+}$; HR-EI-MS m/z calcd. for $\mathrm{C}_{13} \mathrm{H}_{24} \mathrm{O}_{3} \mathrm{Br}_{1}$ $[\mathrm{M}+\mathrm{H}]^{+}: 307.0903$, found 307.0902.

Figure 1.16 ORTEP stereopair drawing of the X-ray crystal structure of bromohydrin 112, ellipsoids drawn at the 50% probability level.

Structure report for bromohydrin 112 (burk05):

A colorless block $0.12 \times 0.10 \times 0.10 \mathrm{~mm}$ in size was mounted on a Cryoloop with Paratone oil. Data were collected in a nitrogen gas stream at 100(2) K using phi and omega scans. Crystal-to-detector distance was 60 mm and exposure time was 5 seconds per frame using a scan width of 0.3°. Data collection was 97.0% complete to 25.00° in θ. A total of 8399 reflections were collected covering the indices, -$9<=h<=9,-10<=k<=5,-31<=l<=30.3113$ reflections were found to be symmetry independent, with an $\mathrm{R}_{\text {int }}$ of 0.0351 . Indexing and unit cell refinement indicated a primitive, orthorhombic lattice. The space group was found to be P2(1)2(1)2(1) (No. 19). The data were integrated using the Bruker SAINT software program and scaled using the SADABS software program. Solution by direct methods (SIR-2004) produced a complete heavy-atom phasing model consistent with the proposed structure. All non-hydrogen atoms were refined anisotropically by full-matrix leastsquares (SHELXL-97). All hydrogen atoms were placed using a riding model. Their
positions were constrained relative to their parent atom using the appropriate HFIX command in SHELXL-97.

Absolute Configuration of C3	\ldots	R
Absolute Configuration of C4	\ldots	S
Absolute Configuration of C6	\ldots	R
Absolute Configuration of C8	\ldots	S

Table 1.1 Crystal data and structure refinement for burk05.

X-ray ID	burk05
Sample/notebook ID	BDJ4-139-1
Empirical formula	C13 H23 Br O3
Formula weight	307.22
Temperature	100(2) K
Wavelength	0.71073 Å
Crystal system	Orthorhombic
Space group	P2(1)2(1)2(1)
Unit cell dimensions	$a=7.5546(6) \AA \quad \alpha=90^{\circ}$.
	$\mathrm{b}=8.0599(7) \AA \quad \beta=90^{\circ}$.
	$\mathrm{c}=23.4853(18) \AA \chi^{\text {A }}$, $\quad \gamma=90^{\circ}$.
Volume	1430.0(2) \AA^{3}
Z	4
Density (calculated)	$1.427 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$2.870 \mathrm{~mm}^{-1}$
F(000)	640
Crystal size	$0.12 \times 0.10 \times 0.10 \mathrm{~mm}^{3}$
Crystal color/habit	colorless block
Theta range for data collection	1.73 to 28.19°.
Index ranges	$-9<=\mathrm{h}<=9,-10<=\mathrm{k}<=5,-31<=\mathrm{l}<=30$
Reflections collected	8399
Independent reflections	$3113[\mathrm{R}(\mathrm{int})=0.0351]$

Table 1.1 Crystal data and structure refinement for burk05, continued.

Completeness to theta $=25.00^{\circ}$	97.0%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7623 and 0.7245
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	$3113 / 0 / 161$
Goodness-of-fit on F^{2}	1.169
Final R indices [I>2sigma(I)]	$\mathrm{R} 1=0.0325, \mathrm{wR} 2=0.0929$
R indices (all data)	$\mathrm{R} 1=0.0409, \mathrm{wR} 2=0.1190$
Absolute structure parameter	$0.020(15)$
Extinction coefficient	$0.014(2)$
Largest diff. peak and hole	0.716 and $-1.048 \mathrm{e} . \AA^{-3}$

Table 1.2 Atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for burk05. $\mathrm{U}(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	x	y	z	$\mathrm{U}(\mathrm{eq})$
$\mathrm{C}(1)$	$4572(6)$	$-3577(6)$	$9708(2)$	$24(1)$
$\mathrm{C}(2)$	$4366(6)$	$-2160(5)$	$9822(2)$	$18(1)$
$\mathrm{C}(3)$	$4124(5)$	$-418(5)$	$9990(2)$	$18(1)$
$\mathrm{C}(4)$	$5436(5)$	$710(5)$	$9656(2)$	$15(1)$
$\mathrm{C}(5)$	$5024(5)$	$697(5)$	$9018(2)$	$14(1)$
$\mathrm{C}(6)$	$3687(5)$	$2015(5)$	$8816(2)$	$14(1)$
$\mathrm{C}(7)$	$3325(5)$	$2087(5)$	$8176(2)$	$11(1)$
$\mathrm{C}(8)$	$2921(5)$	$375(5)$	$7927(2)$	$13(1)$
$\mathrm{C}(9)$	$2565(5)$	$358(5)$	$7285(2)$	$16(1)$
$\mathrm{C}(10)$	$4051(6)$	$1117(6)$	$6931(2)$	$22(1)$
$\mathrm{C}(11)$	$4389(6)$	$-233(6)$	$10630(2)$	$24(1)$
$\mathrm{C}(12)$	$1853(6)$	$3355(5)$	$8048(2)$	$18(1)$

Table 1.2 Atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for burk05. $\mathrm{U}(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized U^{ij} tensor., continued.

$\mathrm{C}(13)$	$1342(7)$	$-2020(5)$	$8260(2)$	$23(1)$
$\mathrm{O}(1)$	$5367(4)$	$2382(4)$	$9847(1)$	$20(1)$
$\mathrm{O}(2)$	$2077(4)$	$1756(4)$	$9133(1)$	$17(1)$
$\mathrm{O}(3)$	$1387(4)$	$-245(4)$	$8226(1)$	$18(1)$
$\operatorname{Br}(1)$	$7274(1)$	$998(1)$	$8594(1)$	$18(1)$

Table 1.3 Bond lengths $[\AA]$ and angles $\left[{ }^{\circ}\right]$ for burk05.

$\mathrm{C}(1)-\mathrm{C}(2)$	$1.183(6)$	$\mathrm{C}(8)-\mathrm{H}(8)$	1.0000
$\mathrm{C}(1)-\mathrm{H}(1)$	0.9500	$\mathrm{C}(9)-\mathrm{C}(10)$	$1.525(6)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.469(6)$	$\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~A})$	0.9900
$\mathrm{C}(3)-\mathrm{C}(11)$	$1.524(7)$	$\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~B})$	0.9900
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.557(6)$	$\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~A})$	0.9800
$\mathrm{C}(3)-\mathrm{H}(3)$	1.0000	$\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~B})$	0.9800
$\mathrm{C}(4)-\mathrm{O}(1)$	$1.421(5)$	$\mathrm{C}(10)-\mathrm{H}(10 \mathrm{C})$	0.9800
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.531(6)$	$\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~A})$	0.9800
$\mathrm{C}(4)-\mathrm{H}(4)$	1.0000	$\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~B})$	0.9800
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.540(5)$	$\mathrm{C}(11)-\mathrm{H}(11 \mathrm{C})$	0.9800
$\mathrm{C}(5)-\mathrm{Br}(1)$	$1.985(4)$	$\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~A})$	0.9800
$\mathrm{C}(5)-\mathrm{H}(5)$	1.0000	$\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~B})$	0.9800
$\mathrm{C}(6)-\mathrm{O}(2)$	$1.441(5)$	$\mathrm{C}(12)-\mathrm{H}(12 \mathrm{C})$	0.9800
$\mathrm{C}(6)-\mathrm{C}(7)$	$1.529(6)$	$\mathrm{C}(13)-\mathrm{O}(3)$	$1.433(5)$
$\mathrm{C}(6)-\mathrm{H}(6)$	1.0000	$\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~A})$	0.9800
$\mathrm{C}(7)-\mathrm{C}(8)$	$1.530(5)$	$\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~B})$	0.9800
$\mathrm{C}(7)-\mathrm{C}(12)$	$1.541(6)$	$\mathrm{C}(13)-\mathrm{H}(13 \mathrm{C})$	0.9800
$\mathrm{C}(7)-\mathrm{H}(7)$	1.0000	$\mathrm{O}(1)-\mathrm{H}(1 \mathrm{~A})$	0.8400
$\mathrm{C}(8)-\mathrm{O}(3)$	$1.444(5)$	$\mathrm{O}(2)-\mathrm{H}(2)$	0.8400
$\mathrm{C}(8)-\mathrm{C}(9)$			
	$1.530(6)$		
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{H}(1)$	180.0	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{H}(4)$	108.7
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$177.5(5)$	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$115.5(3)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(11)$	$110.0(4)$	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{Br}(1)$	$108.4(3)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$110.1(4)$	$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{Br}(1)$	$108.8(3)$
$\mathrm{C}(11)-\mathrm{C}(3)-\mathrm{C}(4)$	$110.8(4)$	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{H}(5)$	108.0
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{H}(3)$	108.6	$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{H}(5)$	108.0
$\mathrm{C}(11)-\mathrm{C}(3)-\mathrm{H}(3)$	108.6	$\mathrm{Br}(1)-\mathrm{C}(5)-\mathrm{H}(5)$	108.0

Table 1.3 Bond lengths $[\AA]$ and angles $\left[{ }^{\circ}\right]$ for burk05, continued.

$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{H}(3)$	108.6	$\mathrm{O}(2)-\mathrm{C}(6)-\mathrm{C}(7)$	$111.2(3)$
$\mathrm{O}(1)-\mathrm{C}(4)-\mathrm{C}(5)$	$107.9(3)$	$\mathrm{O}(2)-\mathrm{C}(6)-\mathrm{C}(5)$	$107.1(3)$
$\mathrm{O}(1)-\mathrm{C}(4)-\mathrm{C}(3)$	$111.8(3)$	$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(5)$	$116.5(3)$
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(3)$	$111.0(3)$	$\mathrm{O}(2)-\mathrm{C}(6)-\mathrm{H}(6)$	107.2
$\mathrm{O}(1)-\mathrm{C}(4)-\mathrm{H}(4)$	108.7	$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{H}(6)$	107.2
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{H}(4)$	108.7	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{H}(6)$	107.2
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	$112.2(3)$	$\mathrm{H}(10 \mathrm{~B})-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{C})$	109.5
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(12)$	$110.3(3)$	$\mathrm{C}(3)-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~A})$	109.5
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(12)$	$112.3(3)$	$\mathrm{C}(3)-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~B})$	109.5
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{H}(7)$	107.2	$\mathrm{H}(11 \mathrm{~A})-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~B})$	109.5
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{H}(7)$	107.2	$\mathrm{C}(3)-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{C})$	109.5
$\mathrm{C}(12)-\mathrm{C}(7)-\mathrm{H}(7)$	107.2	$\mathrm{H}(11 \mathrm{~A})-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{C})$	109.5
$\mathrm{O}(3)-\mathrm{C}(8)-\mathrm{C}(7)$	$106.6(3)$	$\mathrm{H}(11 \mathrm{~B})-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{C})$	109.5
$\mathrm{O}(3)-\mathrm{C}(8)-\mathrm{C}(9)$	$109.6(3)$	$\mathrm{C}(7)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~A})$	109.5
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	$114.8(3)$	$\mathrm{C}(7)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~B})$	109.5
$\mathrm{O}(3)-\mathrm{C}(8)-\mathrm{H}(8)$	108.6	$\mathrm{H}(12 \mathrm{~A})-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~B})$	109.5
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{H}(8)$	108.6	$\mathrm{C}(7)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{C})$	109.5
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{H}(8)$	108.6	$\mathrm{H}(12 \mathrm{~A})-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{C})$	109.5
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(8)$	$113.8(4)$	$\mathrm{H}(12 \mathrm{~B})-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{C})$	109.5
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~A})$	108.8	$\mathrm{O}(3)-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~A})$	109.5
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~A})$	108.8	$\mathrm{O}(3)-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~B})$	109.5
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~B})$	108.8	$\mathrm{H}(13 \mathrm{~A})-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~B})$	109.5
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~B})$	108.8	$\mathrm{O}(3)-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{C})$	109.5
$\mathrm{H}(9 \mathrm{~A})-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~B})$	107.7	$\mathrm{H}(13 \mathrm{~A})-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{C})$	109.5
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~A})$	109.5	$\mathrm{H}(13 \mathrm{~B})-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{C})$	109.5
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~B})$	109.5	$\mathrm{C}(4)-\mathrm{O}(1)-\mathrm{H}(1 \mathrm{~A})$	109.5
$\mathrm{H}(10 \mathrm{~A})-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~B})$	109.5	$\mathrm{C}(6)-\mathrm{O}(2)-\mathrm{H}(2)$	109.5
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{C})$	109.5	$\mathrm{C}(13)-\mathrm{O}(3)-\mathrm{C}(8)$	$113.1(4)$
$\mathrm{H}(10 \mathrm{~A})-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{C})$	109.5		

Symmetry transformations used to generate equivalent atoms:

Table 1.4 Anisotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for burk05. The anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[\mathrm{~h}^{2} \mathrm{a}^{*} \mathrm{U}^{11}+\ldots+2 \mathrm{hk}\right.$ $\left.a^{*} b^{*} U^{12}\right]$

	U^{11}	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}
$\mathrm{C}(1)$	$18(2)$	$18(2)$	$37(3)$	$-3(2)$	$-2(2)$	$-1(2)$
$\mathrm{C}(2)$	$13(2)$	$16(2)$	$25(3)$	$4(2)$	$-1(2)$	$-3(2)$
$\mathrm{C}(3)$	$11(2)$	$12(2)$	$30(3)$	$5(2)$	$2(2)$	$0(2)$
$\mathrm{C}(4)$	$13(2)$	$10(2)$	$21(2)$	$1(2)$	$-2(2)$	$-2(2)$
$\mathrm{C}(5)$	$8(2)$	$14(2)$	$19(2)$	$-2(2)$	$1(2)$	$-1(1)$
$\mathrm{C}(6)$	$11(2)$	$12(2)$	$18(2)$	$-1(2)$	$2(2)$	$1(2)$
$\mathrm{C}(7)$	$12(2)$	$9(2)$	$12(2)$	$0(2)$	$0(2)$	$1(1)$
$\mathrm{C}(8)$	$7(2)$	$11(2)$	$19(2)$	$2(2)$	$0(2)$	$0(1)$
$\mathrm{C}(9)$	$16(2)$	$15(2)$	$16(2)$	$-2(2)$	$0(2)$	$1(2)$
$\mathrm{C}(10)$	$21(2)$	$24(2)$	$21(2)$	$-2(2)$	$2(2)$	$1(2)$
$\mathrm{C}(11)$	$29(2)$	$20(2)$	$22(3)$	$-1(2)$	$1(2)$	$1(2)$
$\mathrm{C}(12)$	$16(2)$	$14(2)$	$25(2)$	$3(2)$	$-1(2)$	$3(2)$
$\mathrm{C}(13)$	$25(2)$	$15(2)$	$30(3)$	$3(2)$	$0(2)$	$-6(2)$
$\mathrm{O}(1)$	$25(2)$	$13(1)$	$22(2)$	$-4(1)$	$-10(1)$	$-2(1)$
$\mathrm{O}(2)$	$12(1)$	$19(1)$	$20(2)$	$-2(1)$	$3(1)$	$2(1)$
$\mathrm{O}(3)$	$15(2)$	$13(1)$	$25(2)$	$-1(1)$	$4(1)$	$-4(1)$
$\mathrm{Br}(1)$	$10(1)$	$22(1)$	$23(1)$	$3(1)$	$1(1)$	$-1(1)$

Table 1.5 Hydrogen coordinates ($\mathrm{x} 10^{4}$) and isotropic displacement parameters ($\AA^{2} \times 10^{3}$) for burk05.

	x	y	z	$\mathrm{U}(\mathrm{eq})$
			9617	29
$\mathrm{H}(1)$	4738	-4714	9893	21
$\mathrm{H}(3)$	2887	-76	9714	18
$\mathrm{H}(4)$	6665	280	8919	16
$\mathrm{H}(5)$	4537	-420	8931	16
$\mathrm{H}(6)$	4166	3123	7989	13
$\mathrm{H}(7)$	4430	2497	8008	15
$\mathrm{H}(8)$	3945	-375	7162	19
H(9A)	2381	-803	7209	19
H(9B)	1457	976	6982	33
H(10A)	4054	2323	6529	33
H(10B)	3864	853	7056	33
H(10C)	5190	661	10831	35
H(11A)	3615	-1013	10745	35
H(11B)	4098	904	10726	35
H(11C)	5626	-470	8146	27
H(12A)	700	2875	7642	27
H(12B)	1872	3636	8274	27
H(12C)	2049	4361	7875	35
H(13A)	1409	-2490	8442	35
H(13B)	237	-2372	8485	35
H(13C)	2350	-2412	10139	30
H(1A)	5997	2489	8977	26
H(2)	1479	1004		

Alkyne 114

To a stirred solution of aldehyde $34(27 \mathrm{mg}, 0.157 \mathrm{mmol})$ and (P)allenylstannane $\mathbf{1 0 8}(78 \mathrm{mg}, 0.220 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ was added $\mathrm{BF}_{3} * \mathrm{OEt}_{2}(48 \mu \mathrm{~L}, 0.393 \mathrm{mmol})$ via syringe. The reaction was stirred for 1 h at this temperature and then quenched by the addition of a saturated solution of NaHCO_{3}, and warmed to room temperature. The layers were separated and the aqueous layer was extracted with additional $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the combined organic layers were stirred over KF on Celite for 2 h at room temperature. The solution was filtered and concentrated under reduced pressure, and the residue was purified by column chromatography (4:1 to $1: 1$ hexanes / ethyl acetate gradient) to provide alkyne $\mathbf{1 1 4}(18 \mathrm{mg}, 50 \%) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 3.58(\mathrm{q}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.42(\mathrm{~s}, 3 \mathrm{H}), 3.20(\mathrm{td}, J=6.5,4.1 \mathrm{~Hz}$, $1 \mathrm{H}), 3.07(\mathrm{dd}, J=8.0,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.92(\mathrm{dd}, J=4.5,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.86-2.74(\mathrm{~m}, 1 \mathrm{H})$, $2.17(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.02(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.76-1.56(\mathrm{~m}, 1 \mathrm{H}), 1.56-1.40(\mathrm{~m}$, $2 \mathrm{H}), 1.31(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.97(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.

Aldol adduct 118

To a stirred solution of acetylated auxiliary 116 ($290 \mathrm{mg}, 1.34 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added $\mathrm{PhBCl}_{2}(174 \mu \mathrm{~L}, 1.34 \mathrm{mmol})$ at room temperature. The mixture was stirred for 10 minutes and then (-)-sparteine ($616 \mu \mathrm{~L}, 2.68 \mathrm{mmol}$) was added. The mixture was stirred for 30 minutes at room temperature and then was cooled to $-78{ }^{\circ} \mathrm{C}$, and then 6-heptenal $117(141 \mu \mathrm{~L}, 1.03 \mathrm{mmol})$ was added dropwise. The reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 5 h , then allowed to warm slowly to ambient temperature over a period of 2 h . The mixture was stirred at ambient
temperature for 30 min , then quenched by the addition of $30 \% \mathrm{H}_{2} \mathrm{O}_{2}(3 \mathrm{~mL})$ and was stirred for 3 min before being diluted with $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The layers were separated and the organic layer was washed with deionized $\mathrm{H}_{2} \mathrm{O}$ and then brine. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography on neutral silica gel (4:1 hexanes / ethyl acetate isocratic) to provide aldol adduct $\mathbf{1 1 8}(305 \mathrm{mg}, 90 \%)$ as a yellow oil. TLC (4:1 hexanes / ethyl acetate) $\mathrm{R}_{\mathrm{f}}=0.2 ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta$ $5.81(\mathrm{ddt}, J=17.0,10.2,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.36(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.00(\mathrm{~d}, J=17.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.94(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.08-3.97(\mathrm{~m}, 1 \mathrm{H}), 3.54(\mathrm{dd}, J=8.3,11.8 \mathrm{~Hz}, 1 \mathrm{H})$, $3.46(\mathrm{dd}, J=9.4,17.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.33(\mathrm{dd}, J=17.5,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.22(\mathrm{~d}, J=4.3,1 \mathrm{H})$, $3.12(\mathrm{~d}, \mathrm{~J}=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.11-2.02(\mathrm{~m}, 2 \mathrm{H}), 1.67-1.30(\mathrm{~m}, 6 \mathrm{H}), 1.04(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 205.4,173.3,139.0,114.6,72.2,68.4,45.1,38.1,36.5$, 33.8, 30.7, 29.0, 27.0, 25.2; ESI-MS m/z $352.06[\mathrm{M}+\mathrm{Na}]^{+}, 330.02[\mathrm{M}+\mathrm{H}]^{+}$; HR-EI-MS m / z calcd. for $\mathrm{C}_{16} \mathrm{H}_{27} \mathrm{O}_{2} \mathrm{~N}_{1} \mathrm{~S}_{2}[\mathrm{M}]^{+}: 329.1478$, found 329.1480.

Methyl ester 119

To a solution of aldol adduct $118(204 \mathrm{mg}, 0.619 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added $\mathrm{MeOH}(40 \mu \mathrm{~L}, 0.929 \mathrm{mmol})$ via syringe. To the stirring solution was added imidazole ($126 \mathrm{mg}, 1.86 \mathrm{mmol}$), and the solution stirred at room temperature for 12 hours as the yellow color slowly faded. The reaction mixture was concentrated under reduced pressure and purified by column chromatography to provide the methyl ester 119 ($75 \mathrm{mg}, 65 \%$) which was contaminated with the deacetylated thiazolidinethione auxiliary. ${ }^{1} \mathrm{H}$ NMR crude $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 5.80(\mathrm{ddt}, J=17.1,10.2,6.8 \mathrm{~Hz}, 1 \mathrm{H})$,
$4.99(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.94(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.05-3.95(\mathrm{~m}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H})$, $2.89(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.51(\mathrm{dd}, J=16.5,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{dd}, J=16.5,9.0 \mathrm{~Hz}$, 1H), 2.11-1.98 (m, 2H), 1.59-1.26 (m, 6H); ${ }^{13} \mathrm{C}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 173.7$, 138.9, $114.6,68.1,51.9,41.2,33.8,28.9,26.0,25.1$.

TBS ether 120

To a solution of the methyl ester $119(75 \mathrm{mg}, 0.400 \mathrm{mmol})$ in DMF (2 mL) was added imidazole ($136 \mathrm{mg}, 2 \mathrm{mmol}$) and $\mathrm{TBSCl}(96 \mathrm{mg}, 0.64 \mathrm{mmol})$ and the solution was stirred for 12 h . at room temperature. The reaction mixture was partitioned between $\mathrm{H}_{2} \mathrm{O}$ and a 1:1 mixture of diethyl ether / hexanes. The aqueous layer was extracted with additional portions of the mixture, and the combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by column chromatography to provide the TBS ether 120 ($47 \mathrm{mg}, 39 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 5.79(\mathrm{ddt}, J=17.1,10.2$, 6.6 Hz, 1H), $4.99(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.94(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.17-4.06(\mathrm{~m}, 1 \mathrm{H})$, $3.66(\mathrm{~s}, 3 \mathrm{H}), 2.46(\mathrm{dd}, J=12.6,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{dd}, J=12.6,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.10-1.98$ $(\mathrm{m}, 2 \mathrm{H}), 1.53-1.26(\mathrm{~m}, 6 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $100 \mathrm{MHz}) \delta 139.0,114.6,69.6,51.6,42.7,37.6,31.1,29.0,25.9,24.6,18.1,-4.4,-4.7$.

Carboxylic acid 121

To a solution of methyl ester $120(48 \mathrm{mg}, 0.16 \mathrm{mmol})$ in THF (1.5 mL) was added a solution of $\mathrm{LiOH} * \mathrm{H}_{2} \mathrm{O}(20 \mathrm{mg}, 0.48 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(500 \mu \mathrm{~L})$. The solution was stirred for 24 h at room temperature, and after this period of time TLC analysis
indicated almost no reaction. An additional portion of $\mathrm{LiOH}^{*} \mathrm{H}_{2} \mathrm{O}(82 \mathrm{mg}, 1.95$ mmol) was added, and the mixture was stirred for an additional 12 h at room temperature. After this period of time, acetic acid was added dropwise to the reaction mixture until it was slightly acidic according to pH paper, and the mixture was partitioned between $\mathrm{H}_{2} \mathrm{O}$ and EtOAc. The layers were separated and the aqueous layer was extracted with two additional portions of EtOAc. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography to provide the carboxylic acid $\mathbf{1 2 1}$ (31 mg, 67\%). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 5.79(\mathrm{ddt}, J=17.1,10.0,6.7 \mathrm{~Hz}, 1 \mathrm{H})$, $4.99(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.94(\mathrm{~d}, 10.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.15-4.05(\mathrm{~m}, 1 \mathrm{H}), 2.51(\mathrm{dd}, J=13.3$, $3.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.47(\mathrm{dd}, J=13.3,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.10-1.98(\mathrm{~m}, 2 \mathrm{H}), 1.62-1.18(\mathrm{~m}, 6 \mathrm{H})$, $0.87(\mathrm{~s}, 9 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 177.1,138.8$, 114.7, 69.5, 42.2, 33.8, 25.9, 24.7, 18.1, -4.4, -4.7; ESI-MS m/z $285.10[\mathrm{M}-\mathrm{H}]^{-}$; HR-EI-MS m / z calcd. for $\mathrm{C}_{15} \mathrm{H}_{29} \mathrm{O}_{3} \mathrm{Si}_{1}[\mathrm{M}-\mathrm{H}]^{+}: 285.1880$, found 285.1883.

Diene-ester 122

A solution of carboxylic acid 121 ($31 \mathrm{mg}, 0.108 \mathrm{mmol}$), alcohol $30(24 \mathrm{mg}$, $0.095 \mathrm{mmol})$, DMAP ($13 \mathrm{mg}, 0.108 \mathrm{mmol}$), and CSA ($12 \mathrm{mg}, 0.054 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 mL) was stirred, and cooled to $0^{\circ} \mathrm{C}$. To the cooled solution was added DCC (33 $\mathrm{mg}, 0.162 \mathrm{mmol})$ in one portion, and the ice-bath was allowed to melt as the reaction stirred for 12 h . The reaction mixture became cloudy with precipitated dicyclohexylurea, and the suspension was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and extracted sequentially with 10% aqueous citric acid, deionized $\mathrm{H}_{2} \mathrm{O}$, brine, and then the organic
layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by column chromatography (10:1 hexanes / ethyl acetate) to provide the diene-ester $122(46 \mathrm{mg}, 92 \%)$ as a clear oil. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ $\delta 6.32(\mathrm{~s}, 1 \mathrm{H}), 5.87-5.73(\mathrm{~m}, 1 \mathrm{H}), 5.72-5.60(\mathrm{~m}, 1 \mathrm{H}), 5.18-4.89(\mathrm{~m}, 4 \mathrm{H}), 4.12-4.01(\mathrm{~m}$, $1 \mathrm{H}), 2.56-2.33(\mathrm{~m}, 3 \mathrm{H}), 2.11-1.98(\mathrm{~m}, 2 \mathrm{H}), 1.81(\mathrm{~s}, 3 \mathrm{H}), 1.51-1.21(\mathrm{~m}, 6 \mathrm{H}), 0.92(\mathrm{~d}, \mathrm{~J}$ $=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.052(\mathrm{~s}, 3 \mathrm{H}), 0.033(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ $\delta 170.6,144.5,139.4,139.0,116.0,114.6,81.8,80.5,69.3,42.9,40.3,37.3,33.9$, 26.0, 24.7, 20.3, 18.2, 16.6, -4.5, -4.5; ESI-MS m/z $543.04[\mathrm{M}+\mathrm{Na}]^{+}, 520.74[\mathrm{M}+\mathrm{H}]^{+}$; HR-EI-MS m / z calcd. for $\mathrm{C}_{23} \mathrm{H}_{41} \mathrm{O}_{3} \mathrm{I}_{1} \mathrm{Si}_{1}[\mathrm{M}]^{+}: 520.1864$, found 520.1851.

Vinyl iodide lactone 123

A solution of the diene-ester $122(45 \mathrm{mg}, 0.0864 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(9 \mathrm{~mL})$ was stirred, and a catalytic amount of the second generation Grubbs catalyst was quickly added under a blanket of Ar. A condenser was attached, and the solution was heated to reflux for 2 h , at which point the color had changed from pink to brown. An additional portion (catalytic amount) of the catalyst was added, and the solution was refluxed for an additional 2 h . At this time, TLC of the reaction mixture (100% hexanes) indicated the formation of a lower R_{f} spot, and the disappearance of $\mathbf{1 2 2}$ (higher in R_{f}). The solution was filtered through a silica gel plug (washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) and concentrated under reduced pressure. The residue was purified by column chromatography to provide the vinyl iodide lactone $123(33 \mathrm{mg}, 77 \%)$ as a clear oil. $[\alpha]_{\mathrm{D}}{ }^{22}-3.2\left(c 0.0625, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 6.42(\mathrm{~s}, 1 \mathrm{H})$, $5.37(\mathrm{ddd}, J=14.6,11.0,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.14-5.02(\mathrm{~m}, 1 \mathrm{H}), 5.07(\mathrm{~d}, J=10.7 \mathrm{~Hz}, 1 \mathrm{H})$,
4.09-3.93 (m, 1H), $2.58(\mathrm{dd}, J=12.9,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.49-2.35(\mathrm{~m}, 1 \mathrm{H}), 2.33-2.18(\mathrm{~m}$, $1 \mathrm{H}), 2.27(\mathrm{dd}, J=12.9,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.97-1.77(\mathrm{~m}, 1 \mathrm{H}), 1.81(\mathrm{~s}, 3 \mathrm{H}), 1.74-1.47(\mathrm{~m}$, $2 \mathrm{H}), 1.36-1.19(\mathrm{~m}, 2 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.84(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}), 0.08(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 169.5,144.4,134.3,131.9,83.5,80.1,68.2,43.6$, $40.8,32.9,31.2,25.9,24.4,24.2,19.2,18.2,16.9,-4.3,-4.6$; ESI-MS m/z 515.06 $[\mathrm{M}+\mathrm{Na}]^{+}, 492.92[\mathrm{M}+\mathrm{H}]^{+}$; HR-EI-MS m/z calcd. for $\mathrm{C}_{21} \mathrm{H}_{37} \mathrm{O}_{3} \mathrm{I}_{1} \mathrm{Si}_{1}[\mathrm{M}]^{+}: 492.1551$, found 492.1553 .

Stille adduct 125

A mixture of the stannane $32(16 \mathrm{mg}, 0.0313 \mathrm{mmol})$ and vinyl iodide lactone $123(15 \mathrm{mg}, 0.0313 \mathrm{mmol})$ was prepared in a 5 mL conical shaped flask and the mixture was dried by toluene azeotrope. A reaction flask was charged with LiCl (4 $\mathrm{mg}, 0.094 \mathrm{mmol}$) which had been dried under high vacuum with a heat gun, $\mathrm{Pd}_{2} \mathrm{dba}_{3}$ $(7 \mathrm{mg}, 0.008 \mathrm{mmol})$, and $\mathrm{AsPh}_{3}(19 \mathrm{mg}, 0.063 \mathrm{mmol})$ under an argon atmosphere. The mixture of the stannane $\mathbf{3 2}$ and vinyl iodide lactone $\mathbf{1 2 3}$ was then dissolved in freshly distilled NMP (0.4 mL), and the solution was transferred to the reaction flask containing the solid reagents. The green suspension was then stirred for 6 h at room temperature, which over the course of the reaction turned to black. The reaction mixture was then diluted with $\mathrm{Et}_{2} \mathrm{O}$ and $\mathrm{H}_{2} \mathrm{O}$, and the aqueous layer was extracted with additional $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by column chromatography ($10: 1$ to $4: 1$ hexanes / ethyl acetate gradient) to provide the Stille adduct 125 ($14 \mathrm{mg}, 73 \%$) as an oil which contained an orange colored
impurity. TLC (4:1 hexanes / ethyl acetate): $\mathrm{R}_{\mathrm{f}}=0.2 ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta$ $6.30(\mathrm{dd}, J=14.5,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.08(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.70(\mathrm{dd}, J=15.1,8.2 \mathrm{~Hz})$, $5.35(\mathrm{ddd}, J=14.5,10.9,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.21-5.02(\mathrm{~m}, 1 \mathrm{H}), 4.93(\mathrm{~d}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H})$, 4.09-3.96 (m, 1H), 3.73-3.63(m, 1H), $3.41(\mathrm{~s}, 3 \mathrm{H}), 3.18(\mathrm{td}, J=6.3,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.01$ (dd, $J=8.1,2.3 \mathrm{~Hz}), 2.85(\mathrm{dd}, J=3.0,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.58(\mathrm{dd}, J=12.8,4.1 \mathrm{~Hz}, 1 \mathrm{H})$, 2.52-2.36 (m, 3H), 2.30-2.21 (m, 1H), $2.25(\mathrm{dd}, J=12.8,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.78-1.38(\mathrm{~m}$, $8 \mathrm{H}), 1.71(\mathrm{~s}, 3 \mathrm{H}), 1.16(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.96-0.78(\mathrm{~m}, 9 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.81(\mathrm{~s}$, $6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta$ 169.7, 136.4, 133.8, 132.9, 132.6, 130.1, 126.6, $83.9,82.3,71.8,68.2,59.1,58.2,57.1,44.0,41.4,40.8,38.9,33.0,31.3,26.0,24.5$, $24.3,23.9,18.3,17.1,16.1,12.0,10.7,10.1,-4.3,-4.6$; ESI-MS m/z $615.37[\mathrm{M}+\mathrm{Na}]^{+}$; HR-EI-MS m/z calcd. for $\mathrm{C}_{34} \mathrm{H}_{60} \mathrm{O}_{6} \mathrm{Si}_{1}[\mathrm{M}]^{+}: 592.4154$, found 592.4160.

Stille adduct 126

A mixture of the stannane $\mathbf{3 2}(5 \mathrm{mg}, 0.0097 \mathrm{mmol})$ and vinyl iodide lactone 124 ($3 \mathrm{mg}, 0.0091 \mathrm{mmol}$) was prepared in a 5 mL conical shaped flask and the mixture was dried by toluene azeotrope. A reaction flask was charged with LiCl (1 $\mathrm{mg}, 0.027 \mathrm{mmol}$) which had been dried under high vacuum with a heat $\mathrm{gun}, \mathrm{Pd}_{2} \mathrm{dba}_{3}$ ($2 \mathrm{mg}, 0.002 \mathrm{mmol}$), and $\mathrm{AsPh}_{3}(6 \mathrm{mg}, 0.018 \mathrm{mmol})$ under an argon atmosphere. The mixture of the stannane $\mathbf{3 2}$ and vinyl iodide lactone $\mathbf{1 2 4}$ was then dissolved in freshly distilled NMP (0.2 mL), and the solution was transferred to the reaction flask containing the solid reagents. The green suspension was then stirred for 6 h at room temperature, which over the course of the reaction turned to black. The reaction mixture was then diluted with $\mathrm{Et}_{2} \mathrm{O}$ and $\mathrm{H}_{2} \mathrm{O}$, and the aqueous layer was extracted with
additional $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by column chromatography ($10: 1$ to $4: 1$ hexanes / ethyl acetate gradient) to provide the Stille adduct 126 ($2 \mathrm{mg}, \sim 50 \%$) as an oil which contained an orange colored impurity. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 6.32(\mathrm{dd}, J=15.2,10.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.09(\mathrm{~d}, J=$ $10.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.71(\mathrm{dd}, J=15.2,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.37-5.26(\mathrm{~m}, 1 \mathrm{H}), 5.11(\mathrm{dd}, J=14.9$, $9.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.03(\mathrm{~d}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.73-3.65(\mathrm{~m}, 1 \mathrm{H}), 3.41(\mathrm{~s}, 3 \mathrm{H}), 3.18(\mathrm{td}, J=$ 6.3, 4.4 Hz, 1H), $3.01(\mathrm{dd}, J=8.1,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.86(\mathrm{dd}, J=3.3,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.51-$ $2.34(\mathrm{~m}, 2 \mathrm{H}), 2.25-2.11(\mathrm{~m}, 1 \mathrm{H}), 2.01-1.33(\mathrm{~m}, 12 \mathrm{H}), 1.74(\mathrm{~s}, 3 \mathrm{H}), 1.16(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}$, $3 \mathrm{H}), 0.92(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{t}, J=7.5 \mathrm{~Hz}), 0.84(\mathrm{~d}, J=6.8 \mathrm{~Hz})$.

Model 127

A solution of the Stille adduct $\mathbf{1 2 5}(2.6 \mathrm{mg}, 0.00436 \mathrm{mmol})$ was prepared in $\operatorname{MeCN}(200 \mu \mathrm{~L})$, and was stirred as HF-py ($100 \mu \mathrm{~L}$ of a $70 \% \mathrm{w} / \mathrm{w}$ solution) was added, and the reaction was monitored by TLC (1:1 hexanes / ethyl acetate). When the starting material adduct $\mathbf{1 2 5}\left(\mathrm{R}_{\mathrm{f}}=0.5\right.$ in $1: 1$ hexanes / ethyl acetate $)$ was consumed, the reaction was quenched by the addition of $\mathrm{Et}_{3} \mathrm{~N}(100 \mu \mathrm{~L})$, and the suspension was filtered through a short silica gel plug which was washed with EtOAc. The solution was concentrated under reduced pressure, and the residue was purified by column chromatography (1:1 to $2: 1$ ethyl acetate / hexanes gradient) to provide the model $127(1.2 \mathrm{mg}, 60 \%)$ as a clear oil. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 6.31(\mathrm{dd}, J=$ $15.5,11.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.08(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.73(\mathrm{dd}, J=15.5,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.31-$ $5.24(\mathrm{~m}, 1 \mathrm{H}), 5.18-5.10(\mathrm{~m}, 1 \mathrm{H}), 5.13(\mathrm{~d}, \mathrm{~J}=10.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.84-3.73(\mathrm{~m}, 1 \mathrm{H}), 3.73-$
$3.66(\mathrm{~m}, 1 \mathrm{H}), 3.40(\mathrm{~s}, 3 \mathrm{H}), 3.18(\mathrm{td}, J=6.2,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.00(\mathrm{dd}, J=8.1,2.5 \mathrm{~Hz}$, $1 \mathrm{H}), 2.85(\mathrm{dd}, J=3.2,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.56(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.51-2.40(\mathrm{~m}, 2 \mathrm{H}), 2.24-$ $1.34(\mathrm{~m}, 10 \mathrm{H}), 1.74(\mathrm{~s}, 3 \mathrm{H}), 1.16(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{t}$, $J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.86(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$.

1.7 Selected NMR Spectra

Spectrum $1.1 \quad{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound $\mathbf{3 2}$

Spectrum $1.2{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 32

Spectrum 1.3 ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 39

Spectrum 1.4 ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 39

Spectrum $1.5 \quad{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 46

Spectrum 1.6 ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 46

Spectrum 1.7 NOESY1D NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 46, irradiation at 1.24 ppm , the $\mathrm{C}-6$ methyl singlet

Spectrum $1.8 \quad{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound $\mathbf{5 1}$

Spectrum $1.9{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound $\mathbf{5 1}$

Spectrum $1.10 \quad{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 53

Spectrum $1.11 \quad{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 53

Spectrum $1.12 \quad{ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ gCOSY NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 53

Spectrum $1.13{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 53

Spectrum 1.14 DEPT135 NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 53

Spectrum $1.15 \quad{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 54

Spectrum 1.16 ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ of compound $\mathbf{5 5}$

Spectrum $1.19{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}, 400 \mathrm{MHz}\right)$ of compound 38

Spectrum 1.20 ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound $\mathbf{6 0}$

Spectrum $1.21 \quad{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound $\mathbf{6 0}$

Spectrum 1.22 ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound $\mathbf{6 1}$

Spectrum $1.23{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound $\mathbf{6 1}$

Spectrum 1.24 ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound $\mathbf{6 2}$

Spectrum $1.25{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound $\mathbf{6 2}$

Spectrum $1.26{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 63

Spectrum $1.28 \quad{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 64

Spectrum 1.30 ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound $\mathbf{6 5}$

Spectrum 1.32 ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 66

Spectrum 1.34 ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 67

Spectrum $1.35{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound $\mathbf{6 8}$

Spectrum $1.36{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound $\mathbf{6 8}$

Spectrum $1.37{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 70

Spectrum $1.38{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 70

Spectrum $1.39 \quad{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 77

Spectrum $1.40 \quad{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound $\mathbf{8 0}$

Spectrum $1.41{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound $\mathbf{8 1}$

Spectrum 1.42 ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ of compound $\mathbf{8 5}$

Spectrum 1.43 NOESY1D NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 85, irradiation at 1.86 ppm , the C-6 methyl, mixing time $=0.5 \mathrm{sec}$.

Spectrum 1.44 ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound $\mathbf{8 7}$

Spectrum 1.45 NOESY1D NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound $\mathbf{8 7}$, irradiation at 2.14 ppm , the C-6 methyl

Spectrum $1.46{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound $\mathbf{8 8}$

Spectrum 1.47 ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ of compound $\mathbf{8 9}$

Spectrum $1.48{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 90

Spectrum $1.49{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 90

Spectrum 1.50 ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 98

Spectrum $1.51{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ of compound 99

Spectrum $1.52 \quad{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound $\mathbf{1 0 0}$

Spectrum $1.53{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound $\mathbf{1 0 0}$

Spectrum $1.54 \quad{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound $\mathbf{1 0 1}$

Spectrum $1.55 \quad{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 101

Spectrum $1.56{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of crotylboration product 105

Spectrum $1.57{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of crotylboration product 105

Spectrum $1.58{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$ of reduction product 105

Spectrum $1.59 \quad{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ of compound $\mathbf{1 0 7}$

Spectrum $1.60{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound $\mathbf{1 0 9}$

Spectrum $1.61{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 109

Spectrum $1.62{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 112

Spectrum $1.63{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 112

Spectrum $1.64{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$ of compound 114

Spectrum $1.65{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 118

Spectrum $1.66{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 118

Spectrum $1.67{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 119

Spectrum $1.68{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 119

Spectrum $1.69{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound $\mathbf{1 2 0}$

Spectrum $1.70{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound $\mathbf{1 2 0}$

Spectrum $1.71 \quad{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound $\mathbf{1 2 1}$

Spectrum $1.72{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound $\mathbf{1 2 1}$

Spectrum $1.73{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound $\mathbf{1 2 2}$

Spectrum $1.74{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 122

Spectrum $1.75 \quad{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$ of compound $\mathbf{1 2 3}$

Spectrum $1.76{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$ of compound $\mathbf{1 2 3}$

Spectrum $1.77{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound $\mathbf{1 2 5}$

Spectrum $1.78{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound $\mathbf{1 2 5}$

Spectrum $1.79{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound $\mathbf{1 2 6}$

Spectrum $1.80 \quad{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ of compound $\mathbf{1 2 7}$

Chapter 2

Studies on the spirohexenolides

2.1 Isolation of spirohexenolides A and B

2.1.1 Abstract

In this report, we describe the discovery of a pair of bioactive spirotetronates, spirohexenolides $A(\mathbf{1 2 8})$ and $B(\mathbf{1 2 9)}$ that arose from the application of mutagenesis, clonal selection techniques and media optimization to strains of Streptomyces platensis. The structures of spirohexenolides A (128) and B (129) were elucidated through X-ray crystallography and confirmed by 1D and 2D NMR studies. Under all examined culture conditions, spirohexenolide A (128) was the major metabolite with traces of spirohexenolide B (129) arising in cultures containing increased loads of adsorbent resins. Spirohexenolide $\mathrm{A}(\mathbf{1 2 8})$ inhibited tumor cell growth with a GI_{50} values spanning from 0.1 to $17 \mu \mathrm{M}$ across the NCI 60 cell line panel. An increased activity was observed in leukemia (GI_{50} value of 254 nM in RPMI- 8226 cells), lung cancer $\left(\mathrm{GI}_{50}\right.$ value of 191 nM in HOP-92 cells) and colon cancer $\left(\mathrm{GI}_{50}\right.$ value of 565 nM in SW-620 cells) tumor cells. Metabolite $\mathbf{1 2 8}$ was fluorescent and could be examined on a confocal fluorescent microscope using conventional laser excitation and filter sets. Time lapse imaging studies indicated that spirohexenolide A (128) was readily taken up by tumor cells, appearing through the cell immediately after dosing and subcellularly localizing in the lysosomes. This activity, combined with a unique
selectivity in NCI 60 cancer cell line screening, indicates that $\mathbf{1 2 8}$ warrants further chemotherapeutic evaluation.

2.1.2 Introduction

Since its classification in $1956,{ }^{83}$ Streptomyces platensis has demonstrated a remarkable ability to produce biologically active polyketides including the dorrigocins, ${ }^{84,}{ }^{85}$ the migrastatins, ${ }^{86-88}$ the pladienolides, ${ }^{9,21,31}$ leustroducin $\mathrm{B},{ }^{89} \mathrm{TPU}$ $0037,{ }^{90}$ platensimide A, ${ }^{91}$ and platensimycin. ${ }^{92}$ Many of these compounds, ${ }^{93}$ including synthetic analogs, ${ }^{94}$ have demonstrated potent activity against tumor progression, and an analog of pladienolide D, E7107, has recently entered clinical trials. ${ }^{10}$ Given this track record, we were interested in evaluating associated strains of S. platensis for the production of yet undiscovered polyketides.

Recently, genome sequencing studies suggest that the bacterial secondary metabolomes are far more complicated than previously recognized by evaluation of their natural product content. ${ }^{95-98}$ This, combined with further genetic screening programs, suggests that only a fraction of the potential natural products produced in bacteria have been identified. ${ }^{99,100}$ The cause for this lack in production is complex. First, media and environmental stimuli can contribute to bacterial secondary metabolism either up- or down- regulating the production of specific metabolites based on external cues or morphological reponses. ${ }^{101}$ Second, evolutionary pressures are often key in regulating a microbe's ability to access secondary metabolism. ${ }^{102-104}$ Mutagenesis offers a strong potential to circumvent the lack in production, ${ }^{105-111}$ as mutant strains can be directed, through associated screening efforts, to enhance
production. In this study, we demonstrate how applications of such strain improvement techniques can be used to access the production of new metabolites.

2.1.3 Results

Our studies began by evaluating a panel of S. platensis strains from available culture collections. An antibiotic assay using the inhibition of Bacillus subtilis growth was eventually chosen (comparable methods have been used in the discovery of spirotetronate natural products). ${ }^{112-114}$ Due to the presence of only traces of compound 128 from the parent strain (often less than $1 \mathrm{mg} / \mathrm{L}$), we applied both UV irradiation and NTG (N-methyl- N^{\prime}-nitrosoguanidine) chemical mutagenesis for strain improvement. From UV irradiation analysis, we identified three mutant strains, MJ1A (1A, Figure 2.1a), MJ2B (2B, Figure 2.1a), and MJ6 (6, Figure 2.1a) that displayed an increased zone of inhibition over their parent S. platensis strain MJ (wt, Figure 2.1a). Subsequent efforts led to the production of two stable morphologies of MJ1A noted as strains MJ1A1 and MJ1A2. ${ }^{115}$ 16S rRNA gene sequence data indicated that MJ1A strain showed high sequence identity to S. platensis NBRC12901 (99\%), ${ }^{116}$ S. hygroscopicus subsp. glebosus LMG 19950 (99\%), ${ }^{117}$ S. libani subsp. rufus NBRC $15424(99 \%),{ }^{118}$ and S. caniferus NBRC 15389 (99\%). ${ }^{119}$

Figure 2.1 Production of metabolite $\mathbf{1 2 8}$ from Streptomyces platensis strains MJ1A1 and MJ1A2.
a) Ultraviolet light mutagenesis provided mutants with an increased ability to inhibit the growth of Bacllius subtilis 6633. An enhanced zone of growth inhibition was observed from mutant strains MJ1A, MJ2B, and MJ6 as compared to their parent strain (wt). b) TLC analysis of extracts from S. platensis strains cultures. A direct comparison of crude extracts from these cultures indicates that metabolite $\mathbf{1 2 8}$ (lane 1) was enhanced in S. platensis strain MJ1A1 (lane 2) and strain MJ1A2 (lane 3), as compared to their parental strain (lane 4) or two morphologically different colonies of S. platensis FERM BP-8442 (lanes 5-6). An arrow denotes position of metabolite $\mathbf{1 2 8}$ and stars denote the position of lipids and acylglycerides. The TLC observations were confirmed by preparative isolation, which after multiple repeats failed to return traces of $\mathbf{1 2 8}$ from cultures of the strains in lanes 5-6. c) HPLC traces collected with UV detection at 254 nm confirmed the presence of $\mathbf{1 2 8}$ in both parent S. platensis MJ and mutant S. platensis MJ1A2 strains while not in S. platensis FERM BP-8442. The MIC of pure $\mathbf{1 2 8}$ against Bacillus subtilis was determined to be $12.25 \mu \mathrm{M}$ (see Experimental section), therein supporting the viability of the screening procedure.

${ }^{1} \mathrm{H}$ NMR-guided fractionation was applied to extracts from cultures of the S. platensis MJ1A1 and S. platensis MJ1A2. Metabolite 128, with a unique signature of olefinic protons in the NMR spectrum, was identified in the ethyl acetate (EtOAc) extract from both cultures. TLC analysis indicated that metabolite $\mathbf{1 2 8}$ (lane 1, Figure 2.1b) was more abundant in extracts from strains MJ1A1 (lane 2, Figure 2.1b) and MJ1A2 (lane 3, Figure 2.1b) than their parent strain S. platensis MJ (lane 4, Figure 2.1b). Control experimentation indicated that $\mathbf{1 2 8}$ also did not appear in related strains such as FERM BP-8442 (lanes 5-6, Figure 2.1b), indicating that the production of $\mathbf{1 2 8}$ was restricted to strains MJ1A1 and MJ1A2. Similarly, HPLC analyses using UV detection at 254 nm confirmed the presence of $\mathbf{1 2 8}$ in both parent (S. platensis strain MJ) and mutant strains but not in other strains of S. platensis (Figure 2.1c). While 128 was observed in parent (traces) and mutant extracts, TLC evidence (Figure 2.1b) indicates that the mutants offered a significant increase in production of $\mathbf{1 2 8}$ relative to their lipid content (lipids could not be detected under our HPLC methods).

Figure 2.2 Structures of spirohexenolides A (128) and B (129)
Structures of spirohexenolides A (128) and B (129), and corresponding ORTEP drawings of their X-ray crystal structures with ellipsoids drawn at the 50% probability level. The drawings represent absolute configuration as the Flack x parameter was $0.0(3) .{ }^{120}$

After identification by ${ }^{1} \mathrm{H}$ NMR and MS analyses, small yellow needles of compound $\mathbf{1 2 8}$ were obtained by perfusion of a chloroform solution of $\mathbf{1 2 9}$ with benzene. Yellow plates were more effectively obtained by recrystallization from ethanol, $m p=280-285{ }^{\circ} \mathrm{C}(\mathrm{dec})$. Samples of these crystals were then evaluated by Xray crystallography. The structure of $\mathbf{1 2 8}$ was refined to a final R1 of 4.6%. Using
anomalous copper dispersion effects, ${ }^{121}$ absolute stereochemical information was obtained as depicted in Figure 2.2.

Spectroscopic methods confirmed the crystal structure as follows. A molecular formula for $\mathbf{1 2 8}$ of $\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{O}_{5}$ was determined from high resolution EI-MS analysis $\left(m / z=408.1947, \mathrm{M}^{+}, \Delta 3.7 \mathrm{ppm}\right)$. Strong absorption bands at $1754 \mathrm{~cm}^{-1}$ and $1702 \mathrm{~cm}^{-1}$ in the FT-IR spectrum confirmed the presence of both ester and ketone groups, respectively.

b) NOESY

Figure 2.3 Select NMR data.
a) Key gCOSY and HMBC correlations for spirohexenolide A (128) and b) Nuclear Overhauser effects identified through analysis of a NOESY spectrum as mapped on the X-ray crystal structure of $\mathbf{1 2 8}$. Both proximal (green) and transannluar (blue) NOEs are shown. c) $\Delta \delta_{\mathrm{S}-\mathrm{R}}$ values for the Mosher esters 130a and $\mathbf{1 3 0 b}$.

An NMR data set including ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, gCOSY, TOCSY, NOESY, ROESY, HMQC, HSQC, DEPT, and HMBC spectra was collected for spirohexenolide A (128) in CDCl_{3} (Table 2.1). Twenty-five resonances were observed in the ${ }^{13} \mathrm{C}$ spectrum as expected from the HRMS data. The DEPT spectrum indicated sixteen protonated carbons including four methyl carbons, an oxymethylene, two aliphatic methylene
carbons, an aliphatic methine, an oxymethine, and seven olefin methine carbons.
Three of the nine quaternary carbons were observed in the olefin region for a total of ten olefinic carbon resonances, indicating five double bonds.

Table $2.1 \quad{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, gCOSY, NOESY and HMBC NMR data for spirohexenolide A (128) in CDCl_{3}.

Spectra were collected at 296 K in $\mathrm{CDCl}_{3} \cdot{ }^{a}{ }^{1} \mathrm{H}$ NMR data was collected at $500 \mathrm{MHz} .{ }^{\mathrm{b}}$ ${ }^{13} \mathrm{C}$ NMR data was collected at $100 \mathrm{MHz} .{ }^{13} \mathrm{C}$ NMR multiplicities were determined by the DEPT spectrum. ${ }^{\text {c }}$ gCOSY, HMBC, and NOESY spectra were collected at 800 $\mathrm{MHz} .{ }^{\mathrm{d}}$ Overlapping signals detected ${ }^{\mathrm{e}} \mathrm{A}$ weak crosspeak was detected. ${ }^{\mathrm{f}} \mathrm{HMBC}$ data was collected with an evolution delay optimized for ${ }^{2,3} J_{\mathrm{CH}}=8 \mathrm{~Hz}$.

C/H no.	δ_{H} mult. $(J, \mathrm{~Hz})^{\mathrm{a}}$	$\delta_{\text {C }}$ (mult. $^{\text {b }}$	$\mathrm{COSY}^{\text {c }}$	NOESY ${ }^{\text {c }}$	$\mathrm{HMBC}^{\text {c,f }}$
1		169.3 (C)			
2		100.8 (C)			
3		165.7 (C)			
4	7.44 d (10.0)	120.3 (CH)	5	5	3,6
5	$7.02 \mathrm{~d} \mathrm{(10.0}, \mathrm{<1)}$	142.1 (CH)	4,21a	4,7	3,6,7,21
6		126.7 (C)			
7	5.72 d (8.4)	139.3 (CH)	8	5,21b	5,21
8	4.60 m	69.3 (CH)	7,9a,9b	9a,9b,10	9
9 a	2.60 m		8,9b,10	$8,9 \mathrm{~b}, 10,11^{\text {e }}$	8,10,11
9b	$2.17 \mathrm{dt}(10.6,12.3)$	$42.6\left(\mathrm{CH}_{2}\right)$	8,9a,10	8,9a,10,11	8,10,11
10	5.55 ddd (5.4, 10.6, 15.5)	120.8 (CH)	9a,9b, 11	$8^{\text {d }}, 9 \mathrm{a}, 9 \mathrm{~b}, 13^{\text {e }}, 21 \mathrm{a}, 21 \mathrm{~b}^{\mathrm{d}}, 22^{\text {d }}$	9,11,12
11	5.69 d (15.5)	140.9 (CH)	9a,10	$9 \mathrm{~b}, 13$	9,10,13,22
12		136.2 (C)			
13	5.07 s	134.8 (CH)	22	10,11,15 ${ }^{\text {e }}, 23^{\text {e }}$	11,14,15,22,23
14		44.3 (C)			

Table $2.1 \quad{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, gCOSY, NOESY and HMBC NMR data for spirohexenolide A (128) in CDCl_{3}, continued.

C/H no.	δ_{H} mult. $(J, \mathrm{~Hz})^{\mathrm{a}}$	$\delta_{\mathrm{C}}(\text { mult. })^{\mathrm{b}}$	COSY $^{\mathrm{c}}$	NOESY $^{\mathrm{c}}$	HMBC $^{\mathrm{c}, \mathrm{f}}$
15	5.29 s	$128.0(\mathrm{CH})$	17,24	$13,23,24$	$13,14,17,19,24$
16		$133.4(\mathrm{C})$			
17	2.39 m	$33.5(\mathrm{CH})$	$15,18 \mathrm{a}, 18 \mathrm{~b}, 25$	$18 \mathrm{a}, 25$	$15,16,18,19,25$
18 a	2.35 m		$17,18 \mathrm{~b}$	$17,18 \mathrm{~b}, 23$	$14,17,19,20,25$
18 b	$1.71 \mathrm{~d}(13.6)$	$33.3\left(\mathrm{CH}_{2}\right)$	$17,18 \mathrm{a}$	$18 \mathrm{a}, 25$	$14,16,17,19,20,25$
19		$89.2(\mathrm{C})$			
20	$196.0(\mathrm{C})$				
21 a	$4.73 \mathrm{~d}(12.5)$		$5,21 \mathrm{~b}$	$10,21 \mathrm{~b}^{\mathrm{d}}$	$3,5,6,7$
21 b	$4.57 \mathrm{~d}(12.5)$	$64.8\left(\mathrm{CH}_{2}\right)$	21 a	$7,10,21 \mathrm{a}$	$5,6,7$
22	1.76 s	$14.1\left(\mathrm{CH}_{3}\right)$	13	10	11,12
23	1.19 s	$27.2\left(\mathrm{CH}_{3}\right)$		$13,15,18 \mathrm{a}$	$13,14,15,19$
24	1.76 s	$22.0\left(\mathrm{CH}_{3}\right)$	15	15,25	$15,16,17,18$
25	$1.34 \mathrm{~d}(7.2)$	$19.6\left(\mathrm{CH}_{3}\right)$	17	$17,18 \mathrm{~b}, 24^{\mathrm{d}}$	$16,17,18$
25					

Three of the six remaining quaternary carbons appeared in the carbonyl region of the spectrum, one of which was the conjugated ketone at $\delta_{\mathrm{C}} 196.0$ and two of which appeared in the ester/lactone region at $\delta_{\mathrm{C}} 169.3$ and $\delta_{\mathrm{C}} 165.7$; this was supported by the carbonyl peaks in the FT-IR spectrum. The fourth was thought to be a quaternary center due to its upfield shift at $\delta_{\mathrm{C}} 44.3$. The two quaternary carbons at $\delta_{\mathrm{C}} 100.8$ and δ_{C} 89.2 remained ambiguous.

Analysis of the ${ }^{1} \mathrm{H}$ and gCOSY spectra of $\mathbf{1 2 8}$ (Figure 2.3a) revealed four spin systems. The first system began with the two downfield olefin methine protons H-4 $\left(\delta_{\mathrm{H}} 7.44, \mathrm{~d}, 10.0 \mathrm{~Hz}\right)$ and $\mathrm{H}-5\left(\delta_{\mathrm{H}} 7.02, \mathrm{~d}, 10.0 \mathrm{~Hz}\right)$. H-5 showed allylic coupling to oxymethylene proton $\mathrm{H}-21 \mathrm{a}\left(\delta_{\mathrm{H}} 4.73\right.$, $\mathrm{d}, 12.5 \mathrm{~Hz}$), implicating a four-carbon subunit
for this spin system with a junction at quaternary olefinic C-6. The $J=10.0 \mathrm{~Hz}$ coupling constant between $\mathrm{H}-4$ and $\mathrm{H}-5$ was consistent with a cis-olefin.

The second spin system comprised a linear subunit including olefinic methine H-7 ($\delta_{\mathrm{H}} 5.72, \mathrm{~d}, 8.4 \mathrm{~Hz}$), oxymethine $\mathrm{H}-8\left(\delta_{\mathrm{H}} 4.60, \mathrm{~m}\right)$, aliphatic methylene pair $\mathrm{H}_{2}-9$ $\left(\delta_{\mathrm{H}-9 \mathrm{a}} 2.60, \mathrm{~m}, \delta_{\mathrm{H}-9 \mathrm{~b}} 2.17, \mathrm{dt}, 12.3,10.6 \mathrm{~Hz}\right)$, olefinic methine $\mathrm{H}-10\left(\delta_{\mathrm{H}} 5.55\right.$, ddd, 5.4 , $10.6,15.5 \mathrm{~Hz}$), and olefinic methine $\mathrm{H}-11\left(\delta_{\mathrm{H}} 5.69\right.$, d, 15.5 Hz$)$. The $J=15.5 \mathrm{~Hz}$ coupling constant between $\mathrm{H}-10$ and $\mathrm{H}-11$ established the E configuration for the $\Delta^{10,11}$ olefin. The third spin system was an isolated two-resonance spin system including olefinic methine $\mathrm{H}-13\left(\delta_{\mathrm{H}} 5.07\right.$, s) and vinyl methyl $\mathrm{H}_{3}-22\left(\delta_{\mathrm{H}} 1.76\right.$, s), presumably connected via quaternary olefinic C-12.

The fourth spin system was a branched subunit beginning with olefinic methine $\mathrm{H}-15\left(\delta_{\mathrm{H}} 5.29\right.$, s), which displayed allylic coupling to vinyl methyl $\mathrm{H}_{3}-24\left(\delta_{\mathrm{H}}\right.$ $1.76, \mathrm{~s})$ and to aliphatic methine $\mathrm{H}-17\left(\delta_{\mathrm{H}} 2.39, \mathrm{~m}\right) . \mathrm{H}-17$ also coupled to methyl $\mathrm{H}_{3}-$ $25\left(\delta_{\mathrm{H}} 1.34, \mathrm{~d}, 7.2 \mathrm{~Hz}\right)$ and methylene pair $\mathrm{H}_{2}-18\left(\delta_{\mathrm{H}-18 \mathrm{a}} 2.35, \mathrm{~m}, \delta_{\mathrm{H}-18 \mathrm{~b}} 1.71, \mathrm{~d}, 13.6\right.$ $\mathrm{Hz})$. The C-23 methyl group was not in any of the spin systems, indicating that it was attached to a quaternary center.

Figure 2.3a depicts several of the key HMBC correlations that validated the structure. The HMBC data confirmed the assignments of the C-3 and C-6 ${ }^{13} \mathrm{C}$ signals at $\delta_{\mathrm{C}} 165.7$ and $\delta_{\mathrm{C}} 126.7$, respectively, based on the correlations from $\mathrm{H}-4, \mathrm{H}-5$ and $\mathrm{H}-$ 21a, all in the first spin system. Tethering of the first and second spin systems hinged on the HMBC correlation from $\mathrm{H}-5$ and $\mathrm{H}-21 \mathrm{~b}$ to olefinic methine $\mathrm{C}-7$, suggesting quaternary C-6 as the junction. This C-3 to C-11 segment could be extended to include the $\mathrm{CH}-13 / \mathrm{CH}_{3}-22$ system based on reciprocal HMBC correlations between olefinic
$\mathrm{H}-11$ and $\mathrm{H}-13$ and their respective carbons. Quaternary olefinic C-12 ($\delta_{\mathrm{C}} 136.2$) was assigned as the link due to correlations from $\mathrm{H}-10$ and $\mathrm{H}_{3}-22$. Mutual HMBC correlations between olefinic $\mathrm{H}-13$ and $\mathrm{H}-15$ and their respective carbons combined with their additional correlation to the upfield quaternary center $\mathrm{C}-14\left(\delta_{\mathrm{C}} 44.3\right)$, indicated that C-14 was the link to the fourth spin system. Correlation from the isolated $\mathrm{CH}_{3}-23$ methyl group to $\mathrm{C}-14$ established its position. Quaternary $\mathrm{C}-16\left(\delta_{\mathrm{C}}\right.$ 133.4) was assigned due to HMBC correlations from $\mathrm{H}-17, \mathrm{H}-18 \mathrm{~b}, \mathrm{H}_{3}-24$ and $\mathrm{H}_{3}-25$. Fourth spin system protons $\mathrm{H}-15, \mathrm{H}-17, \mathrm{H}_{2}-18$ and the isolated methyl $\mathrm{H}_{3}-23$ correlated to the downfield quaternary carbon C-19 ($\delta_{\mathrm{C}} 89.2$), placing it adjacent to $\mathrm{CH}_{2}-18$, indicating a bond to quaternary $\mathrm{C}-14$ and thus a cyclohexene ring. The ketone carbonyl at C-20 ($\delta_{\mathrm{C}} 196.0$) was assigned adjacent to C -19 due to correlations from $\mathrm{CH}_{2}-18$. The chemical shift of $\mathrm{C}-19$ suggested oxidation, which implicated it as the quaternary center of a spirotetronate system due to its inclusion in the cyclohexene ring. C-1 ($\delta_{\mathrm{C}} 169.3$) and C-2 ($\delta_{\mathrm{C}} 100.8$) were assigned based on their chemical shifts since no protons were within HMBC correlation distance to them.

The NOESY spectrum (Table 2.1, Figure 2.3b) revealed an NOE correlation between methylene proton $\mathrm{H}-18 \mathrm{a}$ and the $\mathrm{H}_{3}-23$ isolated methyl group, providing additional support for the presence of the cyclohexene ring. The transannular NOE correlation between olefinic methine $\mathrm{H}-10$ and oxymethylene $\mathrm{H}_{2}-21$ was indicative of the macrocycle in 128. Key NOESY interactions are shown in Figure 2.3b. Taken together, the NMR data was consistent the X-ray crystal structure. The absolute configuration of $\mathbf{1 2 8}$ was confirmed by preparing (S)-MTPA (130a) and (R)-MTPA (130b) esters (Figure 2.3c). ${ }^{27,122}$

With structure elucidation studies complete, we returned to culturing to produce additional quantities of compound $\mathbf{1 2 8}$ for biological studies. Using our optimized strains, we screened for media that provided an optimal yield of 128. After evaluating over 50 different liquid cultures, we found that culturing S. platensis MJ1A in a rich media ($6 \% \mathrm{w} / \mathrm{v}$ soluble starch, $1 \% \mathrm{w} / \mathrm{v}$ dry yeast, $1 \% \mathrm{w} / \mathrm{v} \beta$-cyclodextrin) containing 2\% of Amberlite XAD-16 resin provided 128 at up to $325 \mathrm{mg} / \mathrm{L}$ (see Experimental section for further details). By increasing the resin content to 10%, we were able to obtain $15-20 \mathrm{mg} / \mathrm{L}$ of a second metabolite spirohexenolide B (129) from these cultures. The structure of $\mathbf{1 2 9}$ was characterized by X-ray crystallography (Figure 2.2) and subsequent NMR analyses (Table 2.2) indicating that 129 failed to undergo oxidation at C-8, suggesting that $\mathbf{1 2 9}$ is a biosynthetic precursor to $\mathbf{1 2 8}$.

Table $2.2 \quad{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, gCOSY, and HMBC data for spirohexenolide $\mathrm{B}(\mathbf{1 2 9})$ in $\mathrm{C}_{6} \mathrm{D}_{6}$.
Spectra were collected at 296 K in $\mathrm{C}_{6} \mathrm{D}_{6}$. Due to a slow decomposition of $\mathbf{1 2 9}$ in $\mathrm{CDCl}_{3}, \mathrm{C}_{6} \mathrm{D}_{6}$ was required for extended times required to collect ${ }^{13} \mathrm{C}$ NMR, HMBC and HSQC data. ${ }^{\text {a }}{ }^{1} \mathrm{H}$ NMR data was collected at $500 \mathrm{MHz} .{ }^{\mathrm{b}}{ }^{13} \mathrm{C}$ NMR data was collected at $125 \mathrm{MHz} .{ }^{\mathrm{c}}$ gCOSY and HMBC spectra were collected at $800 \mathrm{MHz} .{ }^{\text {d }}$ The HMBC spectrum was collected with an evolution delay of ${ }^{2,3} J_{\mathrm{CH}}=6 \mathrm{~Hz}$.

C/H no.	δ_{H} mult. $(J, \mathrm{~Hz})^{\mathrm{a}}$	$\delta_{\mathrm{C}}(\text { mult. })^{\mathrm{b}}$	$\mathrm{COSY}^{\mathrm{c}}$	$\mathrm{HMBC}^{\mathrm{c}, \mathrm{d}}$
1		$168.9(\mathrm{C})$		
2		$101.1(\mathrm{C})$		
3		$165.5(\mathrm{C})$		
4	$7.59 \mathrm{~d}(10.0)$	$119.3(\mathrm{CH})$	5	3,6
5	$6.20 \mathrm{~d}(10.0)$	$142.2(\mathrm{CH})$	$4,21 \mathrm{~b}$	$3,6,7,21$

Table $2.2{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, gCOSY, and HMBC data for spirohexenolide $\mathrm{B}(\mathbf{1 2 9})$ in $\mathrm{C}_{6} \mathrm{D}_{6}$, continued.

C/H no.	δ_{H} mult. $(J, \mathrm{~Hz})^{\text {a }}$	$\delta_{\text {C }}(\text { mult. })^{\text {b }}$	$\operatorname{cosy}^{\text {c }}$	HMBC ${ }^{\text {c,d }}$
6		128.8 (C)		
7	4.97 t (8.5)	135.4 (CH)	8,21a	
8	1.53 m	$27.8\left(\mathrm{CH}_{2}\right)$	7,9a,9b	
9 a	1.92 m		8,9b,10	
9 b	1.40 m	$32.3\left(\mathrm{CH}_{2}\right)$	8,9a,10	
10	5.16 ddd (4.9, 10.9, 15.4)	125.3 (CH)	9a,9b, 11	12
11	5.46 d (15.4)	139.7 (CH)	10	13,22
12		135.5 (C)		
13	5.13 s	134.8 (CH)	22	11,14,15,22,23
14		44.5 (C)		
15	5.33 s	129.0 (CH)	17,24	17,19,24
16		133.3 (C)		
17	2.10 m	33.9 (CH)	15,18a, 18b, 25	16,25
18a	$2.30 \mathrm{dd}(8.6,14.6)$		17,18b	14,17,19,20,25
18b	1.62 d (14.6)	$33.7\left(\mathrm{CH}_{2}\right)$	18a	14,16,17,19,20,25
19		88.4 (C)		
20		195.3 (C)		
21a	4.13 d (12.6)		5,21b	3,5,6,7
21b	3.72 d (12.6)	$63.4\left(\mathrm{CH}_{2}\right)$	7,21a	6,7
22	1.96 s	$14.6\left(\mathrm{CH}_{3}\right)$	13	11,12
23	1.30 s	$27.4\left(\mathrm{CH}_{3}\right)$		13,14,15,19
24	1.65 s	$22.0\left(\mathrm{CH}_{3}\right)$	15	15,16,17
25	1.43 d (6.9)	$19.9\left(\mathrm{CH}_{3}\right)$	17	16,17

Figure 2.4 Uptake and subcellular localization of spirohexenolide A (128) in HCT116 cells.

Confocal fluorescent images from HCT-116 cells treated with $10 \mu \mathrm{M} \mathbf{1 2 8}$ for a) $1 \mathrm{~h}, \mathrm{~b}$) 6 h and c) 12 h . Cells were washed twice with media prior to imaging. Live cell images were collected with excitation from a laser at 488 nm (emission filtered at $524 \pm 40 \mathrm{~nm}$). Co-staining with LysoTracker Red DND-99 indicates that compound $\mathbf{1 2 8}$ localizes within the lysosomes. HCT-116 cells were treated with $10 \mu \mathrm{M} \mathbf{1 2 8}$ for 6 h and washed before staining with $10 \mu \mathrm{M}$ LysoTracker Red DND- 99^{23} for 20 min . d) Fluorescence from $\mathbf{1 2 8}$ collected with excitation from a laser at 488 nm (emission filtered at $524 \pm 40 \mathrm{~nm}$); e) Fluorescence from LysoTracker Red DND-99 collected with excitation from a laser at 568 nm (emission filtered at $624 \pm 40 \mathrm{~nm}$). f) Two-color overlap depicting the fluorescence from 128 (red) and LysoTracker Red DND-99 (green). Yellow color denotes overlap of both probes. Bars denote $10 \mu \mathrm{~m}$.

With access to the natural product, we were able to characterize its biological activity. While we identified $\mathbf{1 2 8}$ using an antibiotic screen, the activity of $\mathbf{1 2 8}$ was more significant in tumor cell lines. Initial activity studies used the human colon tumor HCT-116 cell line, and $\mathbf{1 2 8}$ displayed cytotoxicity activity with a GI_{50} value of 36.0 $\pm 5.1 \mu \mathrm{M}$ using the MTT assay. Submission of $\mathbf{1 2 8}$ to the single and multiple dose screens NCI-60 human tumor cell line screen ${ }^{6}$ identified the enhanced activity as given by lower GI_{50} values in leukemia (CCRF-CEM, MOLT-4 and RPMI-8226), lung
cancer (HOP-92), and colon cancer (SW-629) cell lines. Subsequent COMPARE analysis failed to provide a match to a known compound and any associated mechanism of action, suggesting a novel anticancer action for 128. In vivo studies in athymic nude mice produced toxicity after a single dose of $128(6-10 \mathrm{mg} / \mathrm{kg})$, indicating the threshold for further in vivo applications.

We then turned to evaluate the cellular uptake and localization of $\mathbf{1 2 8}$ in HCT116 tumor cells using fluorescence microscopy. Fortunately, spirohexenolide A (128) was natively fluorescent, with an excitation maximum $\lambda_{\max }=435 \mathrm{~nm}$ and emission maximum at $\lambda_{\max }=466 \mathrm{~nm}$. HCT-116 cells were treated with $10 \mu \mathrm{M} 128$ in DMEM containing 10% FCS, $100 \mathrm{U} / \mathrm{mL}$ penicillin-G and $100 \mu \mathrm{~g} / \mathrm{mL}$ streptomycin and analyzed by fluorescence microscopy. Spirohexenolide A (128) was readily uptaken and appeared within minutes throughout the cell (Figure 2.4a). Within 6-12 h, fluorescence from 128 concentrated within vesicles surrounding the nucleus and remained in these structures (Figure 2.4b). This staining could not be washed from the cells by repetitive incubation with media and remained consistent thereafter (Figure 2.4 c). Co-staining experiments using a panel of organelle probes provided a direct correlation with LysoTracker Red DND-99 ${ }^{123}$ (Figure 2.4d-e) indicating that the localization occurred in the lysosomes.

2.1.4 Discussion

Spirohexenolide A (128) belongs to a large class of spirotetronate natural products that includes A88696F,,${ }^{124}$ abyssomicins, ${ }^{125}$ chlorothricin, ${ }^{126}$ decatromicins, ${ }^{127}$
pyrrolosporin $\mathrm{A},{ }^{128} \mathrm{PA}-46101-\mathrm{A},{ }^{129}$ tetronomycin ${ }^{130}$ and versipelostatin. ${ }^{131}$ While structural similarities exist, spirohexenolide A (128) contains a unique and functionally compact carbon framework and offers a new carbon skeleton. Its salient features include a unique pyran, a high degree of unsaturation, and a tetrasubstituted olefin juncture between its tetronic acid and the adjacent pyran. This juncture may be the result of an intramolecular dehydration reaction of an appropriately spaced distal alcohol onto the 3-keto portion of the spirotetronate, such as in carolic acid. ${ }^{132}$

The biosynthesis of $\mathbf{1 2 8}$ may be derived through a late-stage intramolecular Diels-Alder (IMDA) cycloaddition. Application of IMDA reactions to the syntheses of spirotetronate natural products is well established, such as in the total synthesis of abyssomicin C by Sorensen ${ }^{133}$ and an approach to chlorothricolide by Yoshii. ${ }^{134}$ To date, the biosynthetic gene clusters of four metabolites of this family (chlorothricin, ${ }^{135}$ kijanimicin, ${ }^{136}$ tetronomycin, ${ }^{137}$ and tetrocarcin A^{138}) have been elucidated and several of these pathways include a putative IMDA biogenesis. The isolation of spirohexenolide B (129) suggests that oxidation at C-8 arose at a late stage by oxidation via a cytochrome P450 or related enzyme. ${ }^{139-141}$

In conclusion, we have discovered two new spirotetronate polyketides, spirohexenolide A (128) and B (129), from S. platensis. We have elucidated their structures through spectroscopic and X-ray crystallographic analyses. We have shown that mutagenesis can be used in conjunction with culture optimization to provide viable quantities of trace metabolites. ${ }^{142}$ Activity analyses indicated that $\mathbf{1 2 8}$ displayed significant activity against tumor cell growth with a unique specificity to select tumor cell lines (cf. NCI-60 cell line screening data in the Supporting Information). The fact
that $\mathbf{1 2 9}\left(\mathrm{GI}_{50}\right.$ value of $61.2 \pm 7.8 \mu \mathrm{M}$ in HCT116 cells) also displayed comparable activity to $\mathbf{1 2 8}\left(\mathrm{GI}_{50}\right.$ value of $36.0 \pm 5.1 \mu \mathrm{M}$ in HCT 116 cells) when screened in house using the MTT assay indicates that the C-8 hydroxyl group may serve as a site for reporter attachment for identifying its cellular targets. ${ }^{143-145}$ The combination of the unique structure and activity of these spirohexenolides serve as the starting point for the development of both chemical synthesis and mechanism of action studies.

2.1.5 Experimental methods

Mutagenesis of S. platensis. Spore suspensions were prepared from glycerol stocks of S. platensis MJ. While a series of strains were examined, we have only obtained compounds 128 and 129 from this parent strain and its mutants. A $1 \mu \mathrm{~L}$ aliquot of these suspensions was added to 1 mL in sterilized water and further diluted by addition of $10 \mu \mathrm{~L}$ of this solution into 10 mL of water to yield a solution containing approximately 6×10^{5} spores $/ \mathrm{mL}$. This solution was then poured onto a sterile 9 cm glass Petri dish and UV irradiated (Stratalinker 1800) at $8000 \mu \mathrm{~J}$ at 12 cm distance while being stirred. Samples were taken every 6 seconds over a 3 min period. After serial dilution of UV-irradiated spore suspension in deionized $\mathrm{H}_{2} \mathrm{O}$, the sample was spread onto Bennett's agar ($1.0 \% \mathrm{w} / \mathrm{v}$ glucose, $0.2 \% \mathrm{w} / \mathrm{v}$ pancreatic digest of casein, $0.1 \mathrm{w} / \mathrm{v}$ of yeast extract, $0.1 \% \mathrm{w} / \mathrm{v}$ beef extract, $1.5 \% \mathrm{w} / \mathrm{v}$ of agar in deionized $\mathrm{H}_{2} \mathrm{O}$ at $\mathrm{pH} 7.0)$, YEMED agar ($0.4 \% \mathrm{w} / \mathrm{v}$ yeast extract, $1.0 \% \mathrm{w} / \mathrm{v}$ malt extract, $0.4 \% \mathrm{w} / \mathrm{v}$ glucose, $1.5 \% \mathrm{w} / \mathrm{v}$ agar in deionized $\mathrm{H}_{2} \mathrm{O}$ at pH 7.2) and ISP4 agar ($1.0 \% \mathrm{w} / \mathrm{v}$ soluble starch, $0.2 \% \mathrm{w} / \mathrm{v} \mathrm{CaCO}_{3}, 0.1 \% \mathrm{w} / \mathrm{v} \mathrm{K}_{2} \mathrm{HPO}_{4}, 0.1 \% \mathrm{w} / \mathrm{v} \mathrm{MgSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}, 0.1 \% \mathrm{w} / \mathrm{v}$
$\mathrm{NaCl}, 0.2 \% \mathrm{w} / \mathrm{v}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}, 0.001 \% \mathrm{w} / \mathrm{v} \mathrm{FeSO} 4 \cdot 7 \mathrm{H}_{2} \mathrm{O}, 0.001 \% \mathrm{w} / \mathrm{v} \mathrm{MnCl}_{2} \bullet 4 \mathrm{H}_{2} \mathrm{O}$ and $0.001 \% \mathrm{w} / \mathrm{v}$ of $\mathrm{ZnSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$ in deionized $\mathrm{H}_{2} \mathrm{O}$ at pH 7.2) for examining the morphologically differentiating colonies. In order to prevent photoreactivation, the plates were wrapped with foil for 24 h and then incubated at $30^{\circ} \mathrm{C}$ for 15 days.

Mutant screening identifies producer strains S. platensis MJ1A1 and MJ1A2. After 15 days of incubation, survival colonies were transferred onto R2YE media ($10.3 \% \mathrm{w} / \mathrm{v}$ sucrose, $0.5 \% \mathrm{w} / \mathrm{v}$ yeast extract (Difco), $0.01 \% \mathrm{w} / \mathrm{v}$ casaminoacids (Difco), $0.025 \% \mathrm{w} / \mathrm{v} \mathrm{K}_{2} \mathrm{SO}_{4}, 1.01 \% \mathrm{w} / \mathrm{v} \mathrm{MgCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}, 1 \% \mathrm{w} / \mathrm{v}$ glucose, $0.025 \% \mathrm{w} / \mathrm{v}$ $\mathrm{KH}_{2} \mathrm{PO}_{4}, 0.29 \% \mathrm{w} / \mathrm{v} \mathrm{CaCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}, 0.0008 \% \mathrm{w} / \mathrm{v} \mathrm{ZnCl} 2,0.004 \% \mathrm{w} / \mathrm{v} \mathrm{FeCl} 3 \cdot 6 \mathrm{H}_{2} \mathrm{O}$, $0.0004 \% \mathrm{w} / \mathrm{v} \mathrm{CuCl} 2 \cdot 2 \mathrm{H}_{2} \mathrm{O}, 0.0004 \% \mathrm{w} / \mathrm{v} \mathrm{MnCl}_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}, 0.0004 \% \mathrm{w} / \mathrm{v} \mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7} \cdot 10$ $\mathrm{H}_{2} \mathrm{O}, 0.0004 \% \mathrm{w} / \mathrm{v}\left(\mathrm{NH}_{4}\right)_{5} \mathrm{Mo}_{7} \mathrm{O}_{24} \cdot 4 \mathrm{H}_{2} \mathrm{O} 0.3 \% \mathrm{w} / \mathrm{v}$ L-proline, $0.573 \% \mathrm{w} / \mathrm{v} \mathrm{N}-$ tris(hydroxymethyl)methyl-2-aminoethane-sulfonic acid (TES), $0.005 \% \mathrm{v} / \mathrm{v} 1 \mathrm{~N}$ NaOH to provide a pH 7.2). Once the mutants had sporulated, agar cones (3 mm OD x 5 mm height) were excised containing a single colony and stamped on top of a glucose basal salt ($1 \% \mathrm{~g}$ of glucose, 0.01% yeast extract, 1.5% agar, $0.02 \% \mathrm{MgSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$, $0.001 \% \mathrm{NaCl}, 0.001 \% \mathrm{FeSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}, 0.001 \% \mathrm{MnSO} \cdot 4 \mathrm{H}_{2} \mathrm{O} 0.2 \% \mathrm{NH}_{4} \mathrm{Cl}, 0.465 \%$ $\mathrm{K}_{2} \mathrm{HPO}_{4}, 0.09 \%$ of $\mathrm{KH}_{2} \mathrm{PO}_{4}$ at pH 7.0) agar seeded with $\sim 8 \times 10^{7}$ of Bacillus subtilis 6633 per cm^{2}. After incubation at $37{ }^{\circ} \mathrm{C}$ for 24 h , colonies showing a zone of inhibition were compared against their parent strain. Using this method, strains MJ1A, MJ2B and MJ6 (Figure 1a) were obtained.

Minimum Inhibitory Concentration (MIC) assay of spirohexenolide A (128) using Bacillus subtilis 6633. Spirohexenolide A (128) in dimethyl sulfoxide (DMSO) was diluted to $10,15,30,60,120,250,500$ and $1000 \mu \mathrm{~g} / \mathrm{ml}$ stocks in tryptic
soy broth with a final concentration of 1% DMSO. B. subtilis, cultured for 18 h at 37 ${ }^{\circ} \mathrm{C}$ in tryptic soy broth, was inoculated at $1 / 10,000$ to a final volume of $200 \mu \mathrm{~L}$ per well on 96 well plate and then treated with $2 \mu \mathrm{~L}$ of a stock solution of $\mathbf{1 2 8}(10,15,30$, 60, 120, 250, 500 and $1000 \mu \mathrm{~g} / \mathrm{ml}$ in tryptic soy broth containing 1% DMSO). The plate was incubated in $37^{\circ} \mathrm{C}$ for 18 hours indicating that pure $\mathbf{1 2 8}$ had an MIC value of $12.25 \mu \mathrm{M}$ (no visible bacterial growth). The compound was tested in duplicates. Negative control comprised of DMSO solvent did not show any effect on the bacterial growth.

Culturing of spirohexenolide A (128) from S. platensis strain MJ1A1. A

 single colony of S. platensis MJ1A1 grown on yeast extract-malt extract-dextrose (YEMED) agar was resuspended in $50 \mu \mathrm{l}$ of sterilized water using a sterilized pellet pestle and inoculated into 3 mL of tryptic soy broth (BD Biosciences) and shaken at 220 rpm at $28^{\circ} \mathrm{C}$ for 40 hours. An aliquot $(2 \mathrm{~mL})$ of this starter culture was transferred into a 250 mL baffled Erlenmeyer flask containing 100 mL of seed medium containing $1 \% \mathrm{w} / \mathrm{v}$ glucose, $2.4 \% \mathrm{w} / \mathrm{v}$ soluble starch, $0.3 \% \mathrm{w} / \mathrm{v}$ beef extract, $0.5 \% \mathrm{w} / \mathrm{v}$ tryptone, $0.5 \% \mathrm{w} / \mathrm{v}$ yeast extract and $2.0 \% \mathrm{w} / \mathrm{v}_{\mathrm{CaCO}}^{3}$ adjusted to pH 7.2 . After shaking the seed medium for 48 h at 220 rpm and $28^{\circ} \mathrm{C}$, a 50 mL aliquot was transferred to 2.8 L baffled Erlenmeyer flask containing 500 mL of fermentation media ($6 \% \mathrm{w} / \mathrm{v}$ soluble starch, $1 \% \mathrm{w} / \mathrm{v}$ dry yeast, $1 \% \mathrm{w} / \mathrm{v} \beta$-cyclodextrin, $0.2 \% \mathrm{w} / \mathrm{v}$ CaCO_{3} adjusted to pH 6.8 prior to sterilization) and $2 \% \mathrm{w} / \mathrm{v}$ of Amberlite XAD-16 resin (Alfa Aesar) that was washed repetitively with deionized water prior to sterilization. The fermentation media was shaken for 72 h at 220 rpm at $28^{\circ} \mathrm{C}$. The cultures were filtered through cheesecloth to collect the resin. The resin was thenreturned to the baffled flask and acetone $(250 \mathrm{~mL})$ and EtOAc $(250 \mathrm{~mL})$ were added. The flask was shaken for 2 h at 220 rpm . The resin was filtered again through cheesecloth, and the filtrate was concentrated on a rotary evaporator until only insoluble solids and water remained. EtOAc was added until most of the solids were dissolved, and the mixture was poured into a separatory funnel. The aqueous layer was extracted with additional EtOAc ($2 \times 100 \mathrm{~mL}$), and the combined organic layers were concentrated to provide a crude extract. Crude extract was dissolved in a minimum amount of $1: 1$ hexanes:EtOAc (sonication was used to facilitate dissolution). A 2 inch ID column containing silica gel (EM Sciences) was packed with $1: 1$ hexanes:EtOAc, and the solution of the crude extract was loaded. The column was run with 1:1 hexanes:EtOAc for at least two column volumes before EtOAc was used to elute $\mathbf{1 2 8}$ with an $\mathrm{R}_{\mathrm{f}}=0.29$ (EtOAc). Compounds 128 and $\mathbf{1 2 9}$ could be visualized by ceric ammonium molybdate, 2,4-dinitrophenylhydrazine, iodine, and potassium permanganate stains, and short wave UV (excitation at 254 nm). Pure spirohexenolide A (128) was obtained after a second flash column using a gradient from hexanes to EtOAc or trituration with small amounts of absolute ethanol.

Isolation of spirohexenolide B(129) from cultures of S. platensis strain
MJ1A1. S. platensis strain MJ1A1 was cultured in the same manner on the same scale used to produce spirohexenolide $\mathrm{A}(\mathbf{1 2 8})$, (above), but the fermentation media was supplemented with $10 \% \mathrm{w} / \mathrm{v}$ of Amberlite XAD-16 resin (Alfa Aesar) that was washed repetitively with deionized water prior to sterilization. The fermentation media was shaken for 72 h at in 220 rpm at $28^{\circ} \mathrm{C}$. The crude extract of the resin was processed in the same manner as used for the isolation of spirohexenolide A (128), as
described in the preceding paragraph. A 2 inch ID column containing silica gel (EM Sciences) was packed with 1:1 hexanes:EtOAc, and the solution of the crude extract was loaded. The column was run with 1:1 hexanes:EtOAc for two column volumes, and spirohexenolide B (129) was obtained from the eluted and concentrated material by subjecting it to a second Flash purification on a 2 inch ID column with a gradient from hexanes to $1: 1$ hexanes:EtOAc with elution of $\mathbf{1 2 9}$ in 1:1 hexanes:EtOAc with an $\mathrm{R}_{\mathrm{f}}=0.68$ (EtOAc), followed by crystallization from either EtOH or a mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and hexanes to obtain yellow crystals.

Synthesis of Mosher esters 130a and 130b. The (S) - and (R)-MTPA derivatives 130a and 130b were prepared using a slight modification of the standard procedure. ${ }^{21}(S)$-MTPA ester 130a: To a sample of compound $\mathbf{1 2 8}(30.3 \mathrm{mg}, 0.0743$ mmol) in a dry 25 mL round bottom flask with a teflon-coated magnetic stirbar, were added a few crystals of 4-dimethylaminopyridine and the flask was sealed with a rubber septum and flushed with argon. $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$, and pyridine $(0.120 \mathrm{~mL}, 1.5$ mmol) were added at rt , and the mixture was stirred until a yellow solution was achieved. Stirring was then continued as $70 \mu \mathrm{~L}$ of (R)-MTPA-Cl (0.374 mmol) was added via syringe at rt . After 30 minutes the solution turned dark green. After 50 min , TLC indicated a new compound had formed with an $\mathrm{R}_{\mathrm{f}}=0.76$ (EtOAc), and that compound $\mathbf{1 2 8}$ had been consumed. The reaction mixture was then poured into a separatory funnel containing half-saturated $\mathrm{NaHCO}_{3}(30 \mathrm{~mL})$, and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$, and the organic layer became yellow again upon shaking. The aqueous layer was extracted with another 20 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was dissolved in

3:1 Hexanes:EtOAc (5 mL), and standard flash chromatography with 3:1 Hexanes:EtOAc provided pure 130a ($16.3 \mathrm{mg}, 35 \%$). The same procedure was used on 128 and (S)-MTPA-Cl to make the (R)-MTPA ester $\mathbf{1 3 0 b}(13.5 \mathrm{mg}, 40 \%)$.

Spirohexenolide A (128): yellow needles, $\mathrm{mp}=280-285{ }^{\circ} \mathrm{C}($ dec. $) ;[\alpha]_{25}{ }^{\mathrm{D}}=$ $+551.3\left(c 0.4, \mathrm{CHCl}_{3}\right)$; UV $\lambda_{\max }(\mathrm{MeOH}): 339(\varepsilon=8650), 236(\varepsilon=25583) \mathrm{nm} ; \mathrm{IR}$ (film) $v_{\max } 3469,1754,1702,1582,1550,1059,1043,988$, and $968 \mathrm{~cm}^{-1} ;$ ESIMS m / z $409.03[\mathrm{M}+\mathrm{H}]^{+}, 431.03,[\mathrm{M}+\mathrm{Na}]^{+}$; HR-EI-MS m/z 408.1947, $[\mathrm{M}]^{+}$(calcd for $\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{O}_{5}[\mathrm{M}]{ }^{+}, 408.1931$); ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR (Table 2.1).

Spirohexenolide B (129): yellow rhomboid crystals recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and hexanes, $\mathrm{mp}=219-221^{\circ} \mathrm{C}(\mathrm{dec})$; IR (film) $v_{\max } 2922,2852,1735,1707$, 1587, $1551,1466,1410 \mathrm{~cm}^{-1} ;$ ESIMS m/z $392.91[\mathrm{M}+\mathrm{H}]^{+} ;$HR-ESI-MS $m / z 415.1888$, $[\mathrm{M}+\mathrm{Na}]^{+}$(calcd for $\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{O}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}, 415.1885$); ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR (Table 2.2).

Spirohexenolide A (S)-MTPA derivative (130a): yellow solid, $\mathrm{mp}=$ 208-211 ${ }^{\circ} \mathrm{C}$ (dec.); $\left.\alpha\right]_{23}{ }^{\mathrm{D}}=+159.3\left(c 1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; IR (film) $v_{\text {max }} 2936,1750,1709,1594,1554$, 1252, 1168, 1056, 1014, and $722 \mathrm{~cm}^{-1}$; ESI-MS m/z: $624.92[\mathrm{M}+\mathrm{H}]+, 647.04$ $[\mathrm{M}+\mathrm{Na}]^{+}$; HR-ESI-FT-MS (Orbit-trap-MS) m/z calcd for $\mathrm{C}_{35} \mathrm{H}_{35} \mathrm{~F}_{3} \mathrm{O}_{7} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$ 647.2227, found 647.2218 ; See Section 2.6 for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra.

Spirohexenolide A (R)-MTPA derivative (130b): yellow solid, $\mathrm{mp}=246$ $250{ }^{\circ} \mathrm{C}$ (dec.); $[\alpha]_{23}{ }^{\mathrm{D}}=+223.5\left(c 1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; IR (film) $v_{\max } 2936,1750,1709,1594$, 1554, 1252, 1169, 1056, and $1014 \mathrm{~cm}^{-1}$; ESI-MS m/z: $625.18[\mathrm{M}+\mathrm{H}]+, 647.21$ $[\mathrm{M}+\mathrm{Na}]^{+}$; HR-ESI-FT-MS (Orbit-trap-MS) m / z calcd for $\mathrm{C}_{35} \mathrm{H}_{36} \mathrm{~F}_{3} \mathrm{O}_{7}[\mathrm{M}+\mathrm{H}]^{+}$ 625.2408, found 625.2419; See Section 2.6 for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra.

Uptake and localization in HeLa cells. HCT-116 cells (ATCC CCL-247) were cultured in Dulbecco's modification of Eagle's medium (DMEM) with $4.5 \mathrm{~g} \mathrm{~L}^{-1}$ glucose, $4.5 \mathrm{~g} \mathrm{~L}^{-1}$ L-glutamine and 5\% heat inactivated fetal calf serum (FCS) in glassbottom dishes. Fluorescent images were collected on a Leica (Wetzlar, Germany) DMI6000 inverted confocal microscope with a Yokogawa (Tokyo, Japan) spinning disk confocal head, Orca ER High Resolution B\&W Cooled CCD camera (6.45 $\mu \mathrm{m} /$ pixel at 1X) (Hamamatsu, Sewickley, PA), Plan Apochromat 40x/1.25 na and 63x/1.4 na objective, and a Melles Griot (Carlsbad, CA) Argon/Krypton 100 mW aircooled laser for 488, 568, and 647 nm excitations. Confocal z-stacks were acquired in all experiments. Co-staining was conducted by treating cells exposed to $\mathbf{1 2 8}$ to either Syto-60 (nucleus), LysoTracker Red DND-99 (lysosomes), BODIPY TR glibenclamide (endoplasmic reticulum), or MitoTracker Red 580 (mitochondria) for 20 min and washing the cells three times with media and collecting images in two colors.

X-ray crystallography. A yellow needle of compound $1280.25 \times 0.10 \times 0.10$ mm in size was mounted on a Cryoloop with Paratone oil. Data were collected in a nitrogen gas stream at $100(2) \mathrm{K}$ using phi and omega scans. Crystal-to-detector distance was 50 mm and exposure time was 10 seconds per frame using a scan width of 0.5°. Data collection was 99.3% complete to 67.00° in θ. A total of 7195 reflections were collected covering the indices, $-8<=\mathrm{h}<=8,-15<=\mathrm{k}<=14,-13<=1<=13.3065$ reflections were found to be symmetry independent, with a $\mathrm{R}_{\text {int }}$ of 0.0366 . Indexing and unit cell refinement indicated a primitive, monoclinic lattice. The space group was found to be P2(1) (No. 4). The data were integrated using the Bruker SAINT software
program and scaled using the SADABS software program. Solution by direct methods (SIR-2004) produced a complete heavy-atom phasing model consistent with the proposed structure. All non-hydrogen atoms were refined anisotropically by fullmatrix least squares (SHELXL-97). All hydrogen atoms were placed using a riding model. Their positions were constrained relative to their parent atom using the appropriate HFIX command in SHELXL-97.

A colorless plate of compound $1290.33 \times 0.28 \times 0.08 \mathrm{~mm}^{3}$ in size was mounted on a Cryoloop with Paratone oil. Data were collected in a nitrogen gas stream at 100(2) K using phi and omega scans. Crystal-to-detector distance was 50 mm and exposure time was 10 seconds per frame using a scan width of 0.5°. Data collection was 99.9% complete to 25.00° in θ. A total of 24117 reflections were collected covering the indices, $-8<=\mathrm{h}<=8,-15<=\mathrm{k}<=15,-27<=1<=27.7549$ reflections were found to be symmetry independent, with a $\mathrm{R}_{\text {int }}$ of 0.0363 . Indexing and unit cell refinement indicated a primitive, monoclinic lattice. The space group was found to be P2(1). The data were integrated using the Bruker SAINT software program and scaled using the SADABS software program. Solution by direct methods (SIR-2004) produced a complete heavy-atom phasing model consistent with the proposed structure. All non-hydrogen atoms were refined anisotropically by full-matrix least squares (SHELXL-97). All hydrogen atoms were placed using a riding model. Their positions were constrained relative to their parent atom using the appropriate HFIX command in SHELXL-97.

2.1.6 Acknowledgements

Financial support from the American Cancer Society (RSG-06-011-01-CDD) is gratefully acknowledged. We thank Dr. Yongxuan Su (UC San Diego) for mass spectrometric analyses, and Drs. Anthony Mrse and Xuemei Huang (UC San Diego) for assistance with acquiring NMR data.

2.2 Spirotetronate biosynthesis

Spirotetronate natural products such as spirohexenolide A (128) consist of a polyketide chain tied into a macrocycle by a tetronic acid moiety (Figure 2.5) spiro fused at the 5 position to a cyclohexene ring. A few months prior to the discovery of 128, the research groups of Tang and Liu reported the characterization of the biosynthetic gene cluster for the spirotetronate chlorothricin (135). ${ }^{135}$ These studies confirmed previous feeding studies which had suggested that spirotetronates are of polyketide origin. ${ }^{146-148}$

4-hydroxyfuran-2(5H)-one (Tetronic acid)

Figure 2.5 Tetronic acid numbering scheme

They showed that after chain elongation, the β-keto thioester intermediate 131 is condensed with an enzyme bound glycerate derived three-carbon unit $\mathbf{1 3 2}$ resulting in release of the chain from the polyketide synthase and formation of the tetronate ring
(Scheme 2.1). Tetronates biosynthesized in this way form intermediates such as $\mathbf{1 3 3}$ which have a 5-exo methylene unit (see Figure 2.5 for tetronate numbering) that is sufficiently activated by the 3 -acyl group to serve as a dienophile in intramolecular Diels-Alder reactions, provided there is an available diene.

131

134

Chlorothricin, 135

Scheme 2.1 Biosynthesis of chlorothricin (135)

One notable exception is the antibiotic ionophore tetronasin, which is thought to be constructed in the same way, but loses this carbon at some point after tetronate closure to form a 5 -unsubstituted tetronate. ${ }^{149}$ Candidate "Diels-Alderase" enzymes ${ }^{150}$
have not yet been proposed in the context of spirotetronates, but the Liu group hypothesized (in their report of the characterization of the kijanimicin gene cluster) that one or more of the synthetase's domains with other assigned functionality may either catalyze the reaction or assist it by guiding the substrate via proximity effects. ${ }^{136}$ In the case of chlorothricin, the product of cycloaddition is pre-chlorothricolide 134, which is processed by several post-synthase enzymes to the fully functionalized natural product $\mathbf{1 3 5}$ (Scheme 2.1). To date, there is no evidence to show whether the biosynthesis of these natural products occurs by the concerted Diels-Alder mechanism, or a stepwise Michael-aldol type mechanism. ${ }^{151}$

2.3 IMDA approaches to spirotetronate natural products

Confirmation of this biosynthetic pathway prompted us to consider the use of an intramolecular Diels-Alder approach in a synthetic route to $\mathbf{1 2 8}$. Examination of spirotetronate syntheses in the literature provided some encouraging precedent. The Sorensen group had recently utilized this type of approach with great success in their elegant synthesis of abyssomicin $C\left(\mathbf{1 3 8}\right.$, Scheme 2.2). ${ }^{133}$ They prepared the biosynthetic precursor of $\mathbf{1 3 8}$, trienone $\mathbf{1 3 6}$ in 12 steps from meso-2,4dimethylglutaric anhydride. They also found that 136 could be generated from a dienone intermediate in-situ during the thermal Diels-Alder reaction. They observed that the cyclization of $\mathbf{1 3 6}$ proceeded in moderate to good yield (50-79\%) depending on the conditions used, and total diastereoselectivity to provide the desired endo-

IMDA adduct spirotetronate 137. It was then shown that substrate-controlled epoxidation of the cyclohexene ring of 137 and demethylation of the tetronate provided the oxabicyclo[2.2.2] octane core of 138, as a $1: 1$ mixture together with what was later determined by the Nicolaou group to be its atropisomer (about the enone moiety in the macrocycle), under acid-catalyzed conditions. Atrop-abyssomicin C was shown to equilibrate to abyssomicin C upon standing at room temperature in unstabilized $\mathrm{CDCl}_{3 .}{ }^{152}$

1. DMDO, acetone
2. $\mathrm{LiCl}, \mathrm{DMSO}, 50^{\circ} \mathrm{C}$
3. $p-\mathrm{TsOH}, \mathrm{LiCl}$,
$\mathrm{MeCN}, 50^{\circ} \mathrm{C}$
(34\%)

Scheme 2.2 The Sorensen group's synthesis of abyssomicin C (138)

Prior to Sorensen's studies, Takeda and Yoshii described an IMDA approach applied to chlorothricolide, which required the precursor triene / tetronate intermediate 139 (Scheme 2.3). ${ }^{134}$ The synthesis of 139 involved an IMDA cyclization of a precursor triene to form the octalin system, which proceeded in 87% yield as a mixture
of four separable diastereomers, and the desired stereoisomer comprised 47% of the product mixture. The route to $\mathbf{1 3 9}$ totalled 17 linear steps in 2.82% overall yield, but enough product was obtained to examine the IMDA reaction. The thermal conditions employed for cyclization resulted in complete conversion of the mixed terminal olefin to the E isomer, and the reaction provided a 51% combined yield of four diastereomers. The desired exo cycloadduct $\mathbf{1 4 0}$ was isolated in a 9% yield after MPLC of the mixture, and its stereochemistry was confirmed by X-ray crystallographic analysis after it had been converted to the methyl ester of chlorothricolide.

139

Scheme 2.3 Yoshii's IMDA approach to chlorothricolide

The modest result obtained by the Yoshii group may have been partially due to substituent effects on the tetronate ring. As illustrated in Scheme 2.1, the true biosynthetic precursor to chlorothricolide is 3-acyl tetronate 133, and the cyclization product pre-chlorothricolide $\mathbf{1 3 4}$ is processed to the natural product by the action of several post-synthetase modification enzymes, including a Baeyer-Villagerase that
installs the oxygenation on the tetronate ring. It is thought that the 3 -acyl group plays a significant role in the reactivity of the tetronate dienophile in these IMDA reactions. A computational study on substrate $\mathbf{1 3 6}$ in Sorensen's synthesis of abyssomicin C indicated that the anti relationship between the two carbonyl groups on the acyl tetronate dictates the preferred conformation, leading to the stereochemical outcome. ${ }^{133}$ The other existing stereochemistry in the IMDA precursors also contributes to the result, and it should be noted that in contrast to the complicated octalin system of chlorothricolide precursor $\mathbf{1 3 9}$, the abyssomicin C precursor $\mathbf{1 3 6}$ has only two pre-existing stereocenters, but they were enough to influence the outcome such that a single product was observed.

2.4 Synthetic approaches to the spirohexenolides

2.4.1 An IMDA approach to spirohexenolide A

Spirohexenolide A(128) is unique among the spirotetronates, in that the C-8 hydroxyl group is the only stereocenter that is not part of the spirotetronate system. When we discovered 128, a standard bioretrosynthetic analysis indicated that it was likely that both the C-8 hydroxyl group and the C-21 oxygen of the pyran system were installed by the action of post-synthetase enzymes, such that the IMDA precursor would be achiral. An IMDA approach to $\mathbf{1 2 8}$ would thus be a racemic synthesis, unless some other method could be devised of setting the stereochemistry during the
reaction. We set out to construct the linear IMDA precursor to $\mathbf{1 2 8}$ with the understanding that if the penultimate cyclization step was difficult or unsuccessful, there are ample asymmetric methods available for the construction of spirotetronate systems that do not involve IMDA reactions. ${ }^{153}$

The first strategy involved the preparation of linear precursor 141, which would form $\mathbf{1 2 8}$ upon IMDA and deprotection of the C-8 -OPMB ether (Scheme 2.4). An HWE coupling of phosphonate 142 and aldehyde $\mathbf{1 4 3}$ would provide the C-10/C11 E-olefin, a strategy that was used with good results in Yoshii's chlorothricolide synthesis.

Scheme 2.4 First generation IMDA approach to $\mathbf{1 2 8}$

The known tetronate fragment $\mathbf{1 4 4},{ }^{154}$ which has been used in several spirotetronate syntheses, can be lithiated at the C-2 position with LDA and added to
aldehydes. We thought it could be possible to add tetronate $\mathbf{1 4 4}$ to lactol $\mathbf{1 4 5}$ (or alternatively, the ring opened aldehyde form if this proved to not be feasible). In turn, lactol $\mathbf{1 4 5}$ could be derived from an asymmetric aldol reaction on the unreported aldehyde 146, and the acetylated thiazolidinethione 147 developed by the Sammakia group. ${ }^{155}$ Although aldehyde $\mathbf{1 4 6}$ had not been reported, there were reports of the corresponding C-8 acid in the older literature. The acetylated auxiliary $\mathbf{1 4 7}$ is the "pseudo-enantiomer" of $\mathbf{1 1 6}$ (Scheme 1.36) that we planned to use in our synthesis of the core of FD-895 (1), prepared in a slightly different way due to the prohibitive cost of D-tert-leucine, the required enantiomer of the starting material for 116. There have not been reports of switching the selectivity of $\mathbf{1 1 6}$ by changing the aldol reaction conditions, as there have been for the versatile propionylated thiazolidinethiones (see Scheme 1.27) described by Crimmins. ${ }^{156}$

Scheme 2.5 Retrosynthetic analysis of aldehyde $\mathbf{1 4 6}$

The plan for the generation of aldehyde 146 was based on a report that described isomerization about the C-6/C-7 trisubstituted olefin of ester 149 under saponification conditions to form the acid, such that the Z-trisubstituted olefin was observed in the product $148 .{ }^{157}$ The older reports on these muconic acid derivatives
described the formation of $\mathbf{1 4 9}$ by oxidation of vanillin $\mathbf{1 5 0}$ with chlorous acid. ${ }^{158,159}$ The characterization of the stereochemistry about the C-6/C-7 trisubstituted olefin in 148/149 was based on long-range coupling constants between the H-7 methine and the H-4/H-5 methines. These compounds had not been used in the last 20 years, so we sought to determine if ester $\mathbf{1 4 9}$ could be easily prepared as described, and if the isomerization proceeded as described. If an efficient route to $\mathbf{1 4 8}$ could be secured, a method for the selective reduction of the acid in the presence of the olefins and the lactone would need to be found.

Scheme 2.6 Preparation of lactone ester 149

Efforts commenced with the oxidation of vanillin 150, but after a few repetitions, it was observed that various undesired quinones were the major products, and it was difficult to purify the desired lactol product 151 , which still needed to be reduced with sodium borohydride to obtain lactone 149 . The first report on these
compounds described the direct formation of $\mathbf{1 4 9}$ by the oxidation of vanillyl alcohol 152 under similar conditions, but again quinones were observed as the major product and purification was difficult. ${ }^{160}$ A more efficient method was found, the $\mathrm{BF}_{3} * \mathrm{OEt}_{2}$ mediated ozonolysis of 3,4-dimethoxybenzyl alcohol 153. ${ }^{161}$ This reaction proceeded in reproducible moderate yields to provide 149 in gram quantities (Scheme 2.6).

In the original report of the saponification of $\mathbf{1 4 9}$, the reaction was run in an NMR tube to monitor the formation of the intermediates, and it was found that the first step is the opening of the lactone as evidenced by the dramatic upfield shift of the hydroxymethylene unit almost immediately upon treatment with base (Scheme 2.7).

Scheme 2.7 Saponification of ester 149

The C-6/C-7 double bond is thought to isomerize by formation of the intermediate γ-lactone 154, and any formation of the cis, cis diene intermediate $\mathbf{1 5 5}$ is immediately trapped by the favorable 5-exo-trig lactonization to form lactone 156 with
loss of methanol. Lactone $\mathbf{1 5 6}$ can be isolated by acidification of the reaction mixture after brief exposure of $\mathbf{1 4 9}$ to 1 equivalent of sodium hydroxide. The addition of a second equivalent of sodium hydroxide is thought to generate the double salt 157, which is converted to the δ-lactone $\mathbf{1 4 8}$ upon acidification of the reaction mixture.

We were able to generate $\mathbf{1 4 8}$ in this way, and X-ray crystallographic analysis showed that the olefin isomerization occurred as reported. Unfortunately, the yields were consistently poor (ca. $5-15 \%$ range), and could not be improved by altering the concentration, reaction times, or temperature. However, because this essentially constituted a 2 step synthesis of $\mathbf{1 4 8}$ from the readily available 3,4-dimethoxybenzyl alcohol 153, we looked for methods to reduce the acid.

Scheme 2.8 Attempts to convert acid $\mathbf{1 4 8}$ to aldehyde $\mathbf{1 4 6}$

It was quickly discovered that neither $\mathrm{BH}_{3} * \mathrm{SMe}_{2}$ or $\mathrm{BH}_{3} * \mathrm{THF}$ would be viable, because concurrent reduction of one or both of the double bonds always took place (Scheme 2.8). Conversion to the S-ethyl thioester $\mathbf{1 5 9}$ was effected in modest
yield, but the reduction under Fukuyama's conditions failed to provide any detectable aldehyde 146. ${ }^{162}$ Coupling of N,O-dimethylhydroxylamine formed a single pure product with a mass spectrum consistent with 158 , but the ${ }^{13} \mathrm{C}$ NMR spectrum appeared to be missing the oxymethylene peak, which also did not appear in its usual location in the ${ }^{1} \mathrm{H}$ spectrum, suggesting the product obtained was not Weinreb amide 158. These disappointments combined with the inefficient saponification step to form 148 caused us to turn to the intermediate γ-lactone 156. This lactone had the correct geometry for both olefins and could be produced in reproducible good yields (>70\%) quickly from treatment of $\mathbf{1 4 9}$ with a single equivalent of NaOH . We sought to protect the carboxylic acid of $\mathbf{1 5 6}$ and then find a method to homologate at C-8, the lactone carbonyl.

Scheme 2.9 Attempts to homologate lactone 156

The carboxylic acid of $\mathbf{1 5 6}$ could be protected as its methyl ester $\mathbf{1 6 3}$ in good yield with TMSCHN_{2}, but attempted DIBAL-H reduction of $\mathbf{1 6 3}$ resulted in a complex mixture, apparently due to the roughly equal reactivity of the ester and the lactone. On
the other hand, the t-butyl ester $\mathbf{1 6 0}$ could be formed in low yield under acid-catalyzed conditions. ${ }^{163}$ Several alterations were made to the reaction conditions to try to push the esterification reaction to completion without success, and no other esterification technique could be found to produce 160. Interestingly, the bulk of the t-butyl ester does in fact block the approach of DIBAL-H to this carbonyl at low temperature such that selective reduction to the lactol $\mathbf{1 6 1}$ is favored, although the recovered yield was low. It was found that lactol 161 was unstable, tending to spontaneously aromatize to the furan, presumably by acid catalysis from unstabilized CDCl_{3}. It was envisioned that $\mathbf{1 6 1}$ might be homologated to an allylic alcohol precursor such as $\mathbf{1 6 2}$, which might then allow installation of the C-8 hydroxyl group by asymmetric epoxidation. Unfortunately, standard alcohol/aldehyde lactols are not reactive to Julia-Kocienski olefination reagents in the same fashion as acid/aldehyde lactols, a strategy used in the synthesis of cassiol. ${ }^{164}$

At this point it was realized that too much effort was being spent on obtaining the C-6/C-7 trisubstituted olefin by known intermediates from lactone 149 without substantial progress. We turned to a different aspect of the project, installation of the C-10/C-11 E-olefin by Julia-Kocienski methods, which was thought to be a better approach than the HWE method for this coupling (Scheme 2.10). In addition, it was thought that we could acquire the C-8 hydroxyl group from the chiral pool thus eliminating the need for asymmetric synthesis.

Scheme 2.10 The Julia method applied to the C-10/C-11 olefin

We reasoned that a sulfone should be easy to install at C-10 of the lowerportion fragment, and to explore this method we targeted the four-carbon subunit 168, which could be prepared by manipulations on D-(+)-malic acid 169. Aldehyde 167, which had been prepared by the Baldwin group during their studies on polyene natural products, ${ }^{165}$ seemed to be a better choice for the upper-portion fragment than phosphonate 142 (Scheme 2.4). The preparation of 142 would presumably have involved Arbuzov displacement of the corresponding volatile and unstable halide, most likely resulting in scrambling at the terminal olefin which had been observed in similar cases. ${ }^{166}$ If this route could provide access to $\mathbf{1 6 6}$, a C-7 aldehyde could be generated upon which HWE-type homologations could be examined for the installation of the C-6/C-7 trisubstituted olefin.

It was found that reduction of malic acid 169 to (R)-1,2,4-butanetriol proceeded as reported, which favors the formation of the 6 membered p methoxybenzylidene acetal $\mathbf{1 7 0}$ (Scheme 2.11). ${ }^{167}$ The primary hydroxyl group at C-7
was silylated, and product $\mathbf{1 7 1}$ was converted to sulfone $\mathbf{1 6 8}$ by reduction of the PMP acetal, conversion of the C-10 hydroxyl group to the mesylate, substitution of the phenyltetrazolyl sulfide nucleophile, and oxidation. It was observed that sulfone $\mathbf{1 6 8}$ coupled to aldehyde 167 with complete E-selectivity about the C-10/C-11 olefin in 67% yield. Unfortunately the polyene product 166 was not very stable, and was deemed unsuitable for the examination of a long linear sequence to install the righthand portion of the molecule. While the coupling result was promising, our judgement was that fragment 167 should be installed closer to the end of the IMDA route to avoid multiple steps handling polyene intermediates.

Scheme 2.11 Testing the Julia method for the C-10/C-11 olefination

We searched for a phosphorane or phosphonate reagent that could deliver the required C-6/C-7 E-olefin on various aldehydes derived from 170, without success. The solution to this problem came from a method developed by the Marshall group involving the hydrostannation of propargylic alcohols. ${ }^{168}$

172

173: $\mathrm{R}_{3}=\mathrm{H}, \mathrm{R}_{4}=\mathrm{SnBu}_{3}$
174: $\mathrm{R}_{3}=\mathrm{SnBu}_{3}, \mathrm{R}_{4}=\mathrm{H}$

Scheme 2.12 Hydrostannation regioselectivity influenced by propargylic alcohols

When propargylic alcohols such as $\mathbf{1 7 2}$ were hydrostannylated under the standard conditions, regioselectivity of $\mathbf{1 7 3 : 1 7 4}>20: 1$ was observed on several substrates, especially with substituents at R_{1} and R_{2}. Stannanes such as $\mathbf{1 7 3}$ represent the regioisomer required for the $\mathrm{C}-6 / \mathrm{C}-7$ trisubstituted olefin of $\mathbf{1 2 8}$, and could be suitable for Stille couplings.

Scheme 2.13 Second generation IMDA approach to spirohexenolide A

The retrosynthetic scheme was modified to accommodate Marshall's method. A fragment such as $\mathbf{1 7 9}$ (Scheme 2.13) should thus be accessible from a precursor propargylic alcohol, and we envisioned coupling it to acetal 178, which can be prepared in good yield from the commercially available ethyl cis-3-iodoacrylate. The development of the necessary propargylic alcohol began with malic acid, but C-10 was left as a protected alcohol to focus efforts on homologation at C-7.

Scheme 2.14 Preparation of stannane $\mathbf{1 8 3}$
$(R)-1,2,4$-butanetriol was prepared by the reduction of malic acid, and regioselectively silylated at the less hindered primary hydroxyl group via the dibutylstannanediyl acetal. The 1,2-diol of $\mathbf{1 8 0}$ was converted to the 3,4dimethoxybenzylidene acetal which was reduced to form the secondary -ODMB ether 181. With position 7 available for homologation, the primary alcohol was oxidized and converted to the terminal alkyne using the modified Ohira-Bestmann protocol in
which the diazophosphonate reagent $\mathbf{1 8 5}$ is generated by a mixture of tosyl azide and the commercially available phosphonate. ${ }^{169}$ The terminal alkyne was then converted to the propargylic alcohol $\mathbf{1 8 2}$ in poor yield over the 4 step homologation sequence, mostly due to the unoptimized 30% yield at the Ohira-Bestmann step. Marshall's methodology provided stannane $\mathbf{1 8 3}$ as the only detectable regioisomer, which gave us confidence in this approach to the C-6/C-7 olefin, but attempted coupling to acetal $\mathbf{1 7 8}$ (Scheme 2.13) only returned unreacted 183.

The sequence shown in Scheme 2.14 to $\mathbf{1 8 3}$ was lengthy, and even if it could be optimized it suffered from the major drawback that it begins with the unnatural and expensive D-(+)-malic acid. A better approach to fragments such as $\mathbf{1 8 2}$ would be the addition of a propargyl alcohol equivalent such as $\mathbf{1 8 7}$ to a protected 3hydroxypropionaldehyde unit 186, for which an asymmetric method utilizing N methylephedrine $\mathbf{1 8 8}$ was developed by the Carreira group. ${ }^{170}$

186

187

188

Scheme 2.15 A different approach to the propargylic alcohol fragment

A few attempts at the Carreira reaction indicated that it would require some troubleshooting to get the reaction conditions right for the addition to work, time that
would be better spent evaluating the later stage fragment couplings. The racemic approach shown in the bottom portion of Scheme 2.15 was adopted due to its expediency and high efficiency, and a few modifications were made to the protecting group scheme used in Scheme 2.14.

Scheme 2.16 Synthesis of stannane $\mathbf{1 9 5}$

An efficient 6 step linear route to stannane 195 was developed (Scheme 2.16), and material throughput was good enough to allow the evaluation of its coupling to 178 and other vinyl iodides. Every Stille coupling attempted using stannane 195 either failed to produce adduct, or did so in very low yields even under forcing conditions. This may be due to hinderance of the stannane, and it is known that terminal stannanes are more reactive than internal ones such as 195. ${ }^{171}$

As an alternative to using stannane 195, the corresponding vinyl iodide 196 was prepared by tin-halogen exchange after hydrostannation of 194 (Scheme 2.17).

Vinyl iodides are highly reactive under Sonogashira conditions, and we envisioned that if an enyne could be formed at this position, the C-4/C-5 cis-olefin could be obtained by Lindlar hydrogenation.

Scheme 2.17 Preparation of polyene 202

Iodide 196 was observed to couple with propargyl benzoate in good yield to afford Sonogashira adduct 197. Silylation of the primary hydroxyl group and deprotection of the $\mathrm{C}-10-\mathrm{ODMB}$ ether with DDQ provided the desired enyne substrate to test hydrogenation, and it was found that Rosenmund's $\mathrm{Pd}-\mathrm{BaSO}_{4}$ catalyst in the presence of quinoline was the preferred set of conditions to afford the diene $\mathbf{1 9 9}$. Installation of the PT-sulfide under Mitsunobu conditions and oxidation provided sulfone 200, which coupled in moderate yield to Baldwin's aldehyde $\mathbf{1 6 7}$ to provide the polyene product 201. Deprotection of the benzoate proceeded in low yield, but we neglected to optimize this step due to the unfortunate 6π electrocyclic rearrangement of the intermediate aldehyde 203 to form the undesired pyran 204, effectively bringing the route to its demise because we had no way of adding the tetronate to the rest of the molecule.

Scheme 2.18 Attempts to install the tetronate earlier in the route

We thought that including the tetronate ring on the alkyne partner as in 205 might provide a solution to this problem, because the C-3 carbonyl would not need to be generated in the presence of the adjacent diene (Scheme 2.18). Although we were able to prepare alkyne 205 in 3 steps from 144, it was not stable under the Sonogashira coupling conditions with vinyl iodide 196. None of the desired enyne 206 was detected, and $\mathbf{2 0 5}$ was not recovered from the reaction mixture. As an alternative to this method, we generated ene-yn-al 207 in 3 steps from $\mathbf{1 9 6}$ to see if we could access adduct 208, essentially the same idea as with the Sonogashira strategy. The failure of this approach brought us to the realization that it would be prudent to examine Stille couplings using iodide 196.

In particular, a literature search showed that aldehyde $\mathbf{2 0 9}$ was available in 2 steps from propargyl alcohol. ${ }^{172}$ It was found that the lithiated tetronate fragment 144 added in good yield to this aldehyde to provide racemic stannane $\mathbf{2 1 0}$, which was exactly the coupling piece we needed for a Stille reaction with iodide 196. Before coupling, iodide 196 was silylated to compound 211 in order to differentiate the hydroxyl groups. In contrast to the reversed-partner situation with stannane 195, the coupling of $\mathbf{2 1 0}$ and $\mathbf{2 1 1}$ proceeded in excellent yield to give Stille adduct $\mathbf{2 1 2}$ as a 1:1 mixture of separable diastereomers (Scheme 2.19). At this point, it was discovered that protecting the C-3 hydroxyl group was going to be difficult. A protecting group orthogonal to the DMB group at C-10 (oxidative cleavage conditions) and the silyl groups was needed, which led us to consider esters. The benzoate ester was chosen because of its lability under mild alkaline conditions, and non-enolizability, which was desired because the Julia-Kocienski coupling uses the strong base KHMDS.

Scheme 2.19 Preparation of IMDA precursor 217

Strangely, installation of the benzoate proved to be quite difficult, and only one of the $\mathbf{2 1 2}$ diastereomers gave any product $\mathbf{2 1 3}$, and in poor yield. No other conditions were found to produce 213 , but since we had a good route to 212 , it was decided that we could optimize the protecting group steps later, after the fragment coupling steps had been examined. Removal of the C-10 ODMB ether also proved to be difficult, possibly due to the instability of product $\mathbf{2 1 4}$ under the mildly acidic conditions of the deprotection, as the hydroquinone byproducts may catalyze the $\mathrm{S}_{\mathrm{E}} 2$, elimination of the
benzoate at C-3, by the 5-exo-trig formation of a tetrahydrofuran byproduct. This byproduct was not fully characterized. If $\mathbf{2 1 4}$ was quickly subjected to the Mitsunobu conditions to install the PT-sulfide at C-10, enough material throughput was possible to carry on with the route, and the sulfide product 215 and sulfone 216 were both stable intermediates. Coupling of Baldwin's aldehyde 167 occurred in low yield, but on a larger scale campaign through the route (Scheme 2.19), we were able to secure over 10 mg of the IMDA precursor 217. The precursor polyene was thought to be delicate, and was immediately subjected to mild IMDA conditions (Toluene, $110{ }^{\circ} \mathrm{C}$, 12h.) in a sealed tube, in the presence of the radical inhibitor BHT. There were two potential products analyzed after chromatography of the crude reaction mixture, but in both of these products the clearly distinguishable 5-exo methylene unit of the tetronate dienophile had not reacted (section 2.8 - see Figure 2.11 and Figure 2.12).

Scheme 2.20 Attempted IMDA cyclization of $\mathbf{2 1 7}$

In addition to the lack of observation of any cyclized product 218 in the reaction mixture, there were several problems with the route to precursor $\mathbf{2 1 7}$ shown in Scheme 2.19. The fact that only one of the diastereomers could be carried forward
from the Stille coupling, combined with the poor yields in the protecting group steps did not bode well for this being a viable route to complete the synthesis of 128. It was unknown which diastereomer (relative stereochemistry about C-3 and C-8) was being carried forward, and what influence if any this relative stereochemistry would play in the cycloaddition step. Further, the previous studies on abyssomicin and chlorothricolide (Section 2.3) had shown that the substituent at the 3-position of the tetronate ring (acyl in abyssomicin precursor 136, oxygen in chlorothricolide precursor 139) plays an influential role on the reactivity of the tetronate in the IMDA step. During the synthesis of $\mathbf{2 1 7}$, we tested the oxidation of the C-3 hydroxyl group on Stille adduct 212, and pyran 219 was the only isolated product as a single diastereomer, which had formed presumably by the same type of rearrangement that we had observed in the Sonogashira route (Scheme 2.17) 203 -> 204.

Scheme 2.21 Oxidation of Stille adduct 212

It is likely that a 3-acyl tetronate IMDA precursor would have had better success than 217 under thermal conditions, but this rearrangement chemistry
prevented us from preparing such a precursor. We were forced to leave a protected oxymethine group at this position, which is presumably less reactive. Also, the precursors for abyssomicin (136) and chlorothricolide (139) had only 4 and 5 total olefins, respectively, whereas spirohexenolide precursor 217 has 7, all in a compact framework. A number of side reactions and dimerization / polymerization reactions could be possible in such a system. A lower risk approach to the spirotetronate system was needed.

2.4.2 A Lewis acid catalyzed Diels-Alder approach to (\pm)-spirohexenolide B

During roughly the same time period these disappointing results were being observed in our synthetic studies on 128, its biosynthetic precursor 129 was discovered during efforts to increase production titers of $\mathbf{1 2 8}$ for bioactivity studies (see Section 2.1). To our knowledge, $\mathbf{1 2 9}$ is the only known spirotetronate where the only stereocenters are in the spirotetronate system, and its existence proves that the linear precursor to the spirohexenolides is achiral. Because the stereocenters in the spirotetronate system are installed in the Diels-Alder reaction, a diastereoselective route to the spirotetronate fragment would secure a synthesis of $(\pm) \mathbf{- 1 2 9}$, if the rest of the molecule could be built around it. To implement this strategy, we retained the retrosynthetic disconnections used in our synthesis of 217, but substituted fragment 224 for the tetronate $\mathbf{1 4 4}$, and the simplified vinyl iodide 222 would substitute for fragment 211 (Scheme 2.22).

Scheme 2.22 Retrosynthetic analysis of spirohexenolide B

We had already prepared fragment $\mathbf{2 0 9}$ for our synthesis of 217, and fragment 222 could be prepared in an analogous way to fragment 211. A diastereoselective route to $\mathbf{2 2 4}$ was needed, and for this we turned to methodology developed for the spiroteteronate systems of abyssomicin C (138), and quartromicin. ${ }^{173,174}$ Although they appeared to be very similar to the system that we needed, serious problems were encountered in attempts to mimic these syntheses.

The first option explored was the use of an $\mathrm{Al}(\mathrm{III})$ tethered Lewis acid catalyzed Diels-Alder reaction, which had been reported to proceed with complete endo selectivity in the construction of the abyssomicin core. ${ }^{173}$ This reaction is a modification of methodology developed by the Roush group for the diastereoselective construction of the spirotetronate systems of the quartromicins. ${ }^{175}$ This reaction
utilizes the same Lewis acid and dienophile (α-acetoxy acrolein 226), but the tethered reaction involves an unprotected diene-alcohol 225, which is thought to promote a rigid, highly ordered transition state 227.

Scheme 2.23 Zografos' route to the abyssomicin core

Scheme 2.23 illustrates the efficient route to the oxabicyclo[2.2.2]octane core of the abyssomicins, modeled by $(\pm) \mathbf{- 2 3 3}$, developed by the Zografos group using this methodology. The endo Diels-Alder adduct 228 was oxidized to the lactone 229 and the cyclohexene ring was epoxidized in a two step sequence through the intermediate bromohydrin to form 230. Dieckmann cyclization was effective in forming the tetronate ring, but it is especially noteworthy that if the resulting alkoxide was not
trapped in situ as its silyl ether, formation of the tricyclic lactol 232 was the only observed product. Lactol $\mathbf{2 3 2}$ was very stable and proved recalcitrant to all attempts to open it to an intermediate such as spirotetronate 231.

Adaptation of this strategy to the spirohexenolides began with the reaction of dienol 234 with α-acetoxy acrolein 226 to provide the Diels Alder adduct (\pm)-235 in good yield as a mixture of epimers (Scheme 2.24).

Scheme 2.24 First Lewis acid catalyzed Diels-Alder approach

Oxidation of adduct $\mathbf{2 3 5}$ to the lactone $\mathbf{2 3 6}$ proceeded in good yield, and the complete endo selectivity of the Diels-Alder reaction was confirmed by X-ray crystallographic analysis of 236. The Dieckmann cyclization and trapping of the C-13 alkoxide as its silyl ether proceeded as in the Zografos route, and the tetronic acid moiety was protected as its methyl ether. It was not entirely unexpected that deprotection of the C-13 hydroxyl group, which was necessary for homologation at that position, resulted in Michael addition to the tetronate ring to form acetal 238.

This represented a dead end to the route, unless a method of blocking addition to C-20 could be devised. We thought it could be possible to convert the Diels-Alder adduct 235 to a protected aldehyde form, generate the necessary $\mathrm{C}-12 / \mathrm{C}-13$ trisubstituted olefin by HWE/Wittig type methods, and then deprotect and form the tetronate afterward. The corresponding dithiane was generated and the 5 -membered dithiolane. Unfortunately, both of these reactions proceeded in poor yields (35\% and 34% respectively) and both occurred with cleavage of the acetate. These yields could not be improved by altering the Lewis acids, temperatures, stoichiometry, or other reaction parameters despite much effort. No other method was found to be successful in protecting the C-20 lactol, and so it was clear that new dienes for the Diels-Alder reaction needed to be explored.

It was thought that if the aldol adduct 241 could act as the diene in the DielsAlder reaction, it might be possible to activate the lactol of the adduct 243 (as its triflate, tosylate, or halide, for example), and eliminate to form the C-12/C-13 olefin. A racemic syn selective aldol was carried out between the dibutylboron enolate of ethyl propionate 239 and aldehyde $\mathbf{2 4 0}$ to provide the aldol product $\mathbf{2 4 1}$ in modest yield. ${ }^{176}$ Use of $\mathbf{2 4 1}$ as the diene in the Diels-Alder reaction with α-acetoxy acrolein 226 provided the adduct $\mathbf{2 4 3}$ in low yield together with unreacted starting material. Oxidation of 243 to the lactone 244 showed that the Diels-Alder reaction had proceeded in a disappointing 1.7:1 d.r. We reduced the ester of aldol adduct 241 and protected the primary alcohol as the silyl ether 242, and tried the Diels-Alder reaction with this substrate. Oxidation of the product $\mathbf{2 4 5}$ indicated similar results to those obtained using the ester substrate.

Scheme 2.25 Use of aldol adduct derived dienes in the Diels-Alder reaction

Because low diastereoselectivity was observed with these dienes, but total diastereoselectivity was observed with diene $\mathbf{2 3 4}$, it seemed reasonable that we could achieve better results by removing either the $\mathrm{C}-13$ hydroxyl group or the $\mathrm{C}-12$ methyl group of $\mathbf{2 4 1}$ or $\mathbf{2 4 2}$. One of these functional groups had to be responsible for the poor results obtained with the aldol derived dienes, and based on previous studies from the Roush laboratory on the endo (galacto) quartromicin subunit, it seemed more likely that it was the C-13 hydroxyl group. ${ }^{174}$

Scheme 2.26 The Roush group's synthesis of endo-spirotetronate 249

The Roush group had used diene 247 in a comparable reaction with α-acetoxy acrolein 226 and achieved almost complete diastereoselectivity in the formation of Diels-Alder adduct 248. Adduct 248 was then processed to the spirotetronate fragment 249 in a 10 step linear sequence that involved generation of the E disubstituted olefin through the intermediate aldehyde, which was converted to its α phenylselenide via the enamine (by the Williams procedure). ${ }^{177}$

The analogous route to the spirohexenolide subunit 224 began with the dieneol 234, which was converted to the mesylate and LiBr was added, generating a mixture of the mesylate and bromide $\mathbf{2 5 0}$, which was then added to a solution of the lithium enolate of ethyl propionate $\mathbf{2 3 9}$ to form the adduct 251. ${ }^{178}$ The adduct $\mathbf{2 5 1}$ was reduced and silylated to form 252, which was subjected to the Diels-Alder reaction with α-acetoxy acrolein $\mathbf{2 2 6}$, and the adduct $\mathbf{2 5 3}$ was observed as a 1.6:1 mixture of diastereomers. It was thought that these diastereomers were probably the $\alpha / \beta \mathrm{C}-12$ methyl isomers, which would not be an issue if the unsaturation reaction proceeded as planned later. The adduct $\mathbf{2 5 3}$ was prepared for the Dieckmann reaction by oxidation and conversion to the methyl ether 254.
i. n-BuLi, THF,
$-78{ }^{\circ} \mathrm{C}->0^{\circ} \mathrm{C}$

i. LDA, THF $-78^{\circ} \mathrm{C}$,

239
ii. Add mixture 250,

251

1. DIBAL-H, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ 2. TIPSCl,

252

Scheme 2.27 Use of diene $\mathbf{2 5 1}$ and processing to the spirotetronate fragment

It was discovered that introduction of unsaturation by the Williams procedure resulted in formation of the undesired regioisomer 256, likely due to the greater accessibility of the methyl protons to the selenoxide that forms in the reaction mixture.

Scheme 2.28 Attempt to introduce unsaturation to aldehyde 255

The isolation of $\mathbf{2 5 6}$ as a single diastereomer showed that the Diels-Alder reaction had proceeded with complete endo selectivity, but the result from the unsaturation procedure was troubling. After a survey of a number of literature examples, it was discovered that this is the usual outcome for α-methylated aldehydes, and so it became clear that this method could not be used to form the C-12/C-13 trisubstituted olefin.

A synthesis of the spirotetronate subunit of kijanolide described by the Marshall group showed that a triene substrate could be used in Lewis acid catalyzed Diels-Alder reactions with α-bromoacrolein as the dienophile. They had used Corey's tryptophan derived oxazaborolidine Lewis acid catalyst, and observed complete regioselectivity for the desired spirotetronate, and 72% e.e. in the reaction. ${ }^{179}$

It had been observed earlier by the Roush group that α-acetoxy acrolein 226 behaves the same way in the Diels-Alder reactions as α-bromoacrolein, ${ }^{175}$ so based on these observations we reasoned that reaction of a triene substrate such as $\mathbf{2 5 7}$ might provide adduct $\mathbf{2 5 8}$ directly by reaction with 226.

257

2, $-78^{\circ} \mathrm{C}$
\cdots

258

Scheme 2.29 The triene substrate Diels-Alder strategy

The triene ester $\mathbf{2 5 9}$ was reduced and protected as its benzoate ester 260, and its reaction with α-acetoxy acrolein 226 provided the adduct 261 in reproducible
moderate yields; 60% is typical for the reaction, which has been performed on 100 mg - 10 g scale. It should be noted that use of the TBS protecting group instead of the benzoate $\mathbf{2 6 0}$ did not affect the reaction, but it was impossible to separate the desired adduct from the other isomers either from the reaction or in subsequent steps. In contrast, $\mathbf{2 6 1}$ can be recovered as a single isomer from the Diels-Alder reaction.

Scheme 2.30 Implementation of the triene Diels-Alder strategy

A number of oxidations were attempted to provide either 262 or the corresponding acid from 261. None of the chromium methods, oxone, KMnO_{4}, or NaClO_{2} were satisfactory. Only the alkaline iodine method provided sufficient yields of the oxidized products, and only with complete deprotection of the acetate, and partial deprotection of the benzoate. ${ }^{180}$ After further exploration of the route it was discovered that the diol 263 would be used as the intermediate; in practice, after workup of the reaction, 262 is methanolyzed to 263 . The diol 263 was derivatized as its p-bromobenzoate ester 264, which confirmed the regio- and diastereoselectivity of
the Diels-Alder reaction by X-ray crystallographic analysis. The diol 263 could be converted to the bis-acetate 265 and selectively reduced to the mono-acetate $\mathbf{2 6 6}$. Further exploration of the route demonstrated that the TBS protecting group was needed at C-11, so 266 was silylated to 267 , and converted to the spirotetronate system by Dieckmann cyclization and methylation to form 268.
$\mathrm{Sc}(\mathrm{OTf})_{3}$ $\mathrm{Ac}_{2} \mathrm{O}, \mathrm{MeCN}$
263

DIBAL-H

265

267

1. LiHMDS, HMPA-THF

269

Scheme 2.31 Generation of the spirotetronate fragment 268

Although variable reactivity of endo-spirotetronate subunits similar to 268 has been reported, ${ }^{181}$ we were pleased to observe that $\mathbf{2 6 8}$ can be directly lithiated with t BuLi and added in high efficiency to the aldehyde 209, to provide the required stannane partner 269 for the Stille coupling.

1. PTSH, DIAD
PPh_{3}, THF

271

Scheme 2.32 Synthesis of the iodide 274 and Stille coupling with 269

A route to an iodide such as 222 (Scheme 2.22) was still needed, and for this fragment a survey of the literature revealed a convenient starting material 270, available from a ring opening reaction of oxetane. ${ }^{182}$ Installation of the PT-sulfide, oxidation, and removal of the THP group provided propargylic alcohol 272, which after hydrostannation and tin-iodine exchange provided vinyl iodide $\mathbf{2 7 3}$ in low yield with other regioisomers. We identified 273 as the desired isomer from this mixture based on the ${ }^{1} \mathrm{H}$ NMR spectrum and selective NOESY1D spectra. We selected the SEM protecting group for fragment 274 as it would be orthogonal to the C-11 OTBS
group as well as a C-3 OTBS group, in our later schemes. Coupling of the stannane $\mathbf{2 6 9}$ to $\mathbf{2 7 4}$ proceeded in good yield to the Stille adduct 275 using the conditions from Marshall's synthesis of Bafilomycin $\mathrm{V}_{1} .{ }^{79}$

275
$\xrightarrow[\substack { \text { TBSOTf, } \\ \begin{subarray}{c}{\text { TBr } \\ \mathrm{iPr}_{2} \mathrm{NEt,} \\ \mathrm{CH}_{2} \mathrm{Cl}{ \text { TBSOTf, } \\ \begin{subarray} { c } { \text { TBr } \\ \mathrm { iPr } _ { 2 } \mathrm { NEt, } \\ \mathrm { CH } _ { 2 } \mathrm { Cl } } }\end{subarray}]{\substack{\text { 2 } \\ \hline}}$

Scheme 2.33 Processing of Stille adduct 275 through Julia adduct 279

It was discovered that the more active silylating reagent TBSOTf was needed to protect the hindered secondary C-3 hydroxyl group as $\mathbf{2 7 6}$, and that removal of the primary C-11 OTBS ether proceeded in good yield and selectivity to provide 277. Oxidation to 278 allowed the critical intramolecular Julia-Kocienski reaction to be tested. The reaction has only been run twice, and both times the yield of $\mathbf{2 7 9}$ appears to be less than 50%. The ${ }^{1} \mathrm{H}$ NMR spectrum indicates the presence of impurities, but the ${ }^{13} \mathrm{C}$ NMR shows what appears to be a single diastereomer, indicating that only one of the α / β C-3 OTBS diastereomers cyclizes under the reaction conditions. The rest of the material has not yet been identified. Removal of the C-3 OTBS group with TBAF provides 280, which has a better but still not completely pure ${ }^{1} \mathrm{H}$ NMR spectrum. At this stage, the characteristic ddd of $\mathrm{H}-10$ in the ${ }^{1} \mathrm{H}$ spectrum of $\mathbf{2 8 0}$ can be matched to the natural 129 (section 2.9 - Figure 2.13). Efforts are in progress to convert 280 to (\pm)-129.

2.5 Concluding remarks

The spirohexenolides are a new, biologically active class of spirotetronate natural products that have shown moderate antitumor and antibiotic activity. Their structures were elucidated by NMR and X-ray crystallographic methods, and to further study and understand the chemistry of these structures, a synthetic campaign toward 128 and 129 was begun. A route toward (\pm)-128 culminated in the synthesis of the linear IMDA precursor 217, which failed to cyclize in the desired way under thermal
conditions. A route toward $(\pm) \mathbf{- 1 2 9}$ which is still ongoing, has progressed to intermediate $\mathbf{2 8 0}$, which has the complete carbon skeleton of $\mathbf{1 2 9}$, and a method needs to be developed to form the fused pyran-tetronate system in order to complete the molecule.

2.6 Acknowledgements

I wish to thank Professor Michael Burkart and Dr. James La Clair for useful guidance and assistance on this project. All of the culturing work described in section 2.1 and manipulations of the S. Platensis strains was done by Dr. Min Jin Kang.

Section 2.1, in full, is a reprint of the material as it appears in J Org Chem., 74, 23, pp. 9054-9061, 2009. The dissertation author was the second author of this paper.

2.7 Experimental techniques and characterization data

General experimental methods:

Unless otherwise noted, all reagents and chemical compounds were purchased from commercial sources and used without further purification. High purity anhydrous solvents (tetrahydrofuran, dichloromethane, diethyl ether, and toluene) were obtained by passing through a solvent column composed of activated A-1 alumina. ${ }^{80}$ Anhydrous N, N-dimethylformamide was obtained by passage over activated molecular sieves and a subsequent sodium isocyanate column to remove
traces of dimethylamine. Triethylamine $\left(\mathrm{Et}_{3} \mathrm{~N}\right)$ was dried over sodium and freshly distilled. Ethyl- N, N-diisopropylamine ($\left(-\mathrm{Pr}_{2} \mathrm{NEt}\right)$ was distilled from ninhydrin, then from potassium hydroxide. All air or moisture sensitive reactions were performed under positive pressure of dry argon in oven-dried glassware sealed with septa. Reactions were magnetically stirred with Teflon coated stir bars. Flash chromatography was performed on EMD Geduran Silica Gel 60 (40-63 mesh) according to the method of Still. ${ }^{81}$ Analytical TLC was performed on Silica Gel 60 F254 pre-coated glass plates. Visualization was achieved with UV light and/or an appropriate stain (I_{2} on $\mathrm{SiO}_{2}, \mathrm{KMnO}_{4}$, bromocresol green, dinitrophenylhydrazine, ninhydrin, and ceric ammonium molybdate). Yields and characterization data correspond to isolated, chromatographically and spectroscopically homogeneous materials unless otherwise noted. ${ }^{1} \mathrm{H}$ NMR spectra were recorded on Varian Mercury 300 MHz or 400 MHz spectrometers, or a Varian Mercury Plus 400 MHz spectrometer, or a JEOL ECA 500 MHz spectrometer, or a Varian VX 500 MHz spectrometer. ${ }^{13} \mathrm{C}$ NMR spectra were recorded at 125 MHz on the JEOL ECA 500 instrument or the Varian VX 500 spectrometer, or at 100 MHz on either a Varian Mercury or the Mercury Plus instrument, or at 75 MHz on a Varian Mercury spectrometer. Chemical shifts for ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR analyses were referenced to the reported values of Gottlieb et. al., using the signal from the residual protonated solvent for ${ }^{1} \mathrm{H}$ spectra, or to the ${ }^{13} \mathrm{C}$ signal from the deuterated solvent. ${ }^{82}$ Chemical shift δ values for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra are reported in parts per million (ppm) relative to these referenced values, and multiplicities are abbreviated as $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, t $=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet, $\mathrm{br}=$ broad. All ${ }^{13} \mathrm{C}$ NMR spectra were recorded
with complete proton decoupling. FID files were processed using MestReNova software version 5.3.0-4399. Electrospray (ESI) mass spectrometric analyses were performed using a ThermoFinnigan LCQdeca mass spectrometer, and high resolution analyses were conducted using a ThermoFinnigan MAT900XL mass spectrometer with electron impact (EI) ionization. A Thermo Scientific LTQ Orbitrap XL mass spectrometer was used for high resolution electrospray ionization mass spectrometry analysis (HR-ESI-MS). Optical rotations were measured on a Perkin-Elmer polarimeter (Model 241) using a 1 mL quartz cell with a 10 cm path length. FTIR spectra were obtained on a Nicolet magna-550 series II spectrometer with samples prepared as thin films on either KBr or NaCl discs, and peaks are reported in wavenumbers $\left(\mathrm{cm}^{-1}\right)$.

Structure report for spirohexenolide A (128) (burk03)

Figure 2.6 ORTEP stereopair drawing of the X-ray crystal structure of compound 128 with ellipsoids drawn at the 50% probability level

A yellow needle $0.25 \times 0.10 \times 0.10 \mathrm{~mm}$ in size was mounted on a Cryoloop with Paratone oil. Data were collected in a nitrogen gas stream at 100(2) K using phi
and omega scans. Crystal-to-detector distance was 50 mm and exposure time was 10 seconds per frame using a scan width of 0.5°. Data collection was 99.3% complete to 67.00° in θ. A total of 7195 reflections were collected covering the indices, -$8<=h<=8,-15<=k<=14,-13<=l<=13$. 3065 reflections were found to be symmetry independent, with an $\mathrm{R}_{\text {int }}$ of 0.0366 . Indexing and unit cell refinement indicated a primitive, monoclinic lattice. The space group was found to be P2(1) (No. 4). The data were integrated using the Bruker SAINT software program and scaled using the SADABS software program. Solution by direct methods (SIR-2004) produced a complete heavy-atom phasing model consistent with the proposed structure. All nonhydrogen atoms were refined anisotropically by full-matrix least-squares (SHELXL97). All hydrogen atoms were placed using a riding model. Their positions were constrained relative to their parent atom using the appropriate HFIX command in

SHELXL-97.

Table 2.3 Crystal data and structure refinement for burk03.

X-ray ID
Sample/notebook ID
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions
burk03
ESMedin_cmpd1
C25 H28 O5
408.47

100(2) K
$1.54178 \AA$
Monoclinic
P2(1)

$$
\begin{array}{ll}
\mathrm{a}=7.0073(4) \AA & \alpha=90^{\circ} . \\
\mathrm{b}=13.0187(9) \AA & \beta=105.946(4)^{\circ} . \\
\mathrm{c}=12.0229(7) \AA & \gamma=90^{\circ} .
\end{array}
$$

Table 2.3 Crystal data and structure refinement for burk03, continued

Volume	$1054.60(11) \AA^{3}$
Z	2
Density (calculated)	$1.286 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.718 \mathrm{~mm}^{-1}$
$\mathrm{~F}(000)$	436
Crystal size	$0.25 \times 0.10 \times 0.10 \mathrm{~mm}^{3}$
Crystal color/habit	yellow needle
Theta range for data collection	5.12 to 67.00°.
Index ranges	$-8<=\mathrm{h}<=8,-15<=\mathrm{k}<=14,-13<=\mathrm{l}<=13$
Reflections collected	7195
Independent reflections	$3065[\mathrm{R}(\mathrm{int})=0.0366]$
Completeness to theta $=67.00^{\circ}$	99.3%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9317 and 0.8409
Refinement method	$\mathrm{Full-matrix} \mathrm{least-squares} \mathrm{on} \mathrm{F}^{2}$
Data / restraints / parameters	$3065 / 1 / 276$
Goodness-of-fit on F^{2}	1.048
Final R indices [I>2sigma(I)]	$\mathrm{R} 1=0.0460, \mathrm{wR} 2=0.1062$
R indices (all data)	$\mathrm{R} 1=0.0570, \mathrm{wR} 2=0.1114$
Absolute structure parameter	$0.0(3)$
Largest diff. peak and hole	0.248 and $-0.171 \mathrm{e} . \AA^{-3}$

Table 2.4 Atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for burk03. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

	x	y	z	$U(e q)$
$C(1)$	$8990(4)$	$4153(3)$	$3792(3)$	$38(1)$
$C(2)$	$7680(5)$	$3370(3)$	$3022(3)$	$40(1)$
$C(3)$	$8162(5)$	$2424(3)$	$2767(3)$	$43(1)$

Table 2.4 Atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for burk03. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor, continued.

	x	y	z	$\mathrm{U}(\mathrm{eq})$
C(4)	10243(5)	2013(3)	3206(3)	44(1)
C(5)	11618(5)	2723(3)	4092(3)	47(1)
C(6)	11209(5)	3876(3)	3927(2)	39(1)
C(7)	8546(6)	4092(3)	4978(3)	54(1)
C(8)	6633(5)	1698(3)	2054(3)	54(1)
C(9)	11157(5)	1684(3)	2239(3)	47(1)
C(10)	8605(4)	5245(3)	3357(3)	33(1)
$\mathrm{C}(11)$	7932(4)	5643(3)	2289(3)	32(1)
C(12)	$7280(5)$	5043(3)	1174(3)	39(1)
C(13)	7826(4)	6758(3)	2163(3)	34(1)
C(14)	7316(4)	7280(3)	1180(3)	39(1)
C(15)	7267(5)	8425(3)	1064(3)	42(1)
C(16)	8970(5)	8832(3)	611(3)	42(1)
C(17)	10857(5)	8798(3)	1589(3)	42(1)
C(18)	12153(4)	8032(3)	1844(3)	39(1)
$\mathrm{C}(19)$	12228(4)	7109(3)	1115(2)	36(1)
C(20)	13624(5)	7981(3)	2971(3)	44(1)
C(21)	14163(4)	7083(3)	3454(3)	43(1)
$\mathrm{C}(22)$	13250(4)	6161(3)	2895(2)	34(1)
C(23)	13064(4)	5274(3)	3468(2)	36(1)
C(24)	11885(4)	4391(3)	2962(2)	31(1)
$\mathrm{C}(25)$	13514(5)	5180(3)	4719(3)	45(1)
$\mathrm{O}(1)$	8581(4)	9867(2)	223(2)	50(1)
$\mathrm{O}(2)$	12343(3)	6157(2)	1763(2)	35(1)
$\mathrm{O}(3)$	12460(3)	4370(2)	4971(2)	47(1)
$\mathrm{O}(4)$	11460(3)	4092(2)	1963(2)	34(1)
$\mathrm{O}(5)$	14569(4)	5668(2)	5494(2)	59(1)

Table 2.5 Bond lengths $[\AA]$ and angles $\left[{ }^{\circ}\right]$ for burk03.

$\mathrm{C}(1)-\mathrm{C}(2)$	$1.508(5)$	$\mathrm{C}(12)-\mathrm{H}(12 \mathrm{C})$	0.9800
$\mathrm{C}(1)-\mathrm{C}(10)$	$1.513(5)$	$\mathrm{C}(13)-\mathrm{C}(14)$	$1.325(4)$
$\mathrm{C}(1)-\mathrm{C}(7)$	$1.542(4)$	$\mathrm{C}(13)-\mathrm{H}(13)$	0.9500
$\mathrm{C}(1)-\mathrm{C}(6)$	$1.561(4)$	$\mathrm{C}(14)-\mathrm{C}(15)$	$1.496(5)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.335(5)$	$\mathrm{C}(14)-\mathrm{H}(14)$	0.9500
$\mathrm{C}(2)-\mathrm{H}(2)$	0.9500	$\mathrm{C}(15)-\mathrm{C}(16)$	$1.536(5)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.506(4)$	$\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~A})$	0.9900
$\mathrm{C}(3)-\mathrm{C}(8)$	$1.507(5)$	$\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~B})$	0.9900
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.534(5)$	$\mathrm{C}(16)-\mathrm{O}(1)$	$1.427(4)$
$\mathrm{C}(4)-\mathrm{C}(9)$	$1.534(5)$	$\mathrm{C}(16)-\mathrm{C}(17)$	$1.509(4)$
$\mathrm{C}(4)-\mathrm{H}(4)$	1.0000	$\mathrm{C}(16)-\mathrm{H}(16)$	1.0000
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.531(5)$	$\mathrm{C}(17)-\mathrm{C}(18)$	$1.327(5)$
$\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~A})$	0.9900	$\mathrm{C}(17)-\mathrm{H}(17)$	0.9500
$\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~B})$	0.9900	$\mathrm{C}(18)-\mathrm{C}(20)$	$1.461(4)$
$\mathrm{C}(6)-\mathrm{O}(3)$	$1.468(4)$	$\mathrm{C}(18)-\mathrm{C}(19)$	$1.496(5)$
$\mathrm{C}(6)-\mathrm{C}(24)$	$1.523(4)$	$\mathrm{C}(19)-\mathrm{O}(2)$	$1.454(4)$
$\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~A})$	0.9800	$\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~A})$	0.9900
$\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~B})$	0.9800	$\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~B})$	0.9900
$\mathrm{C}(7)-\mathrm{H}(7 \mathrm{C})$	0.9800	$\mathrm{C}(20)-\mathrm{C}(21)$	$1.314(6)$
$\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A})$	0.9800	$\mathrm{C}(20)-\mathrm{H}(20)$	0.9500
$\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~B})$	0.9800	$\mathrm{C}(21)-\mathrm{C}(22)$	$1.437(5)$
$\mathrm{C}(8)-\mathrm{H}(8 \mathrm{C})$	0.9800	$\mathrm{C}(21)-\mathrm{H}(21)$	0.9500
$\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~A})$	0.9800	$\mathrm{C}(22)-\mathrm{O}(2)$	$1.334(3)$
$\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~B})$	0.9800	$\mathrm{C}(22)-\mathrm{C}(23)$	$1.369(5)$
$\mathrm{C}(9)-\mathrm{H}(9 \mathrm{C})$	0.9800	$\mathrm{C}(23)-\mathrm{C}(24)$	$1.448(5)$
$\mathrm{C}(10)-\mathrm{C}(11)$	$1.345(4)$	$\mathrm{C}(23)-\mathrm{C}(25)$	$1.454(4)$
$\mathrm{C}(10)-\mathrm{H}(10)$	0.9500	$\mathrm{C}(24)-\mathrm{O}(4)$	$1.220(3)$
$\mathrm{C}(11)-\mathrm{C}(13)$	$1.459(4)$	$\mathrm{C}(25)-\mathrm{O}(5)$	$1.200(4)$
$\mathrm{C}(11)-\mathrm{C}(12)$	$1.510(5)$	$\mathrm{C}(25)-\mathrm{O}(3)$	$1.368(5)$
$\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~A})$	0.9800	$\mathrm{O}(1)-\mathrm{H}(1)$	0.8400
$\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~B})$	0.9800		

$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(10)$	$113.7(3)$	$\mathrm{C}(10)-\mathrm{C}(1)-\mathrm{C}(7)$	$107.8(3)$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(7)$	$106.8(3)$	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(6)$	$109.1(3)$
$\mathrm{C}(10)-\mathrm{C}(1)-\mathrm{C}(6)$	$109.3(3)$	$\mathrm{H}(8 \mathrm{~A})-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{C})$	109.5
$\mathrm{C}(7)-\mathrm{C}(1)-\mathrm{C}(6)$	$109.9(2)$	$\mathrm{H}(8 \mathrm{~B})-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{C})$	109.5
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	$128.0(3)$	$\mathrm{C}(4)-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~A})$	109.5
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{H}(2)$	116.0	$\mathrm{C}(4)-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~B})$	109.5
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{H}(2)$	116.0	$\mathrm{H}(9 \mathrm{~A})-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~B})$	109.5
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$121.9(3)$	$\mathrm{C}(4)-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{C})$	109.5
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(8)$	$121.6(3)$	$\mathrm{H}(9 \mathrm{~A})-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{C})$	109.5
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(8)$	$116.5(3)$	$\mathrm{H}(9 \mathrm{~B})-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{C})$	109.5
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$113.1(3)$	$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(1)$	$132.4(3)$

Table 2.5 Bond lengths $\left[\AA\right.$] and angles $\left[{ }^{\circ}\right]$ for burk03, continued.

$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(9)$	113.5(3)	$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{H}(10)$	113.8
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(9)$	112.3(3)	$\mathrm{C}(1)-\mathrm{C}(10)-\mathrm{H}(10)$	113.8
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{H}(4)$	105.7	$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(13)$	118.5(3)
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{H}(4)$	105.7	$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	126.1(3)
$\mathrm{C}(9)-\mathrm{C}(4)-\mathrm{H}(4)$	105.7	$\mathrm{C}(13)-\mathrm{C}(11)-\mathrm{C}(12)$	115.4(3)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	116.2(3)	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~A})$	109.5
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~A})$	108.2	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~B})$	109.5
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~A})$	108.2	$\mathrm{H}(12 \mathrm{~A})-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~B})$	109.5
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~B})$	108.2	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{C})$	109.5
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~B})$	108.2	$\mathrm{H}(12 \mathrm{~A})-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{C})$	109.5
$\mathrm{H}(5 \mathrm{~A})-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~B})$	107.4	$\mathrm{H}(12 \mathrm{~B})-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{C})$	109.5
$\mathrm{O}(3)-\mathrm{C}(6)-\mathrm{C}(24)$	102.7(3)	$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(11)$	126.6(3)
$\mathrm{O}(3)-\mathrm{C}(6)-\mathrm{C}(5)$	105.8(2)	$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{H}(13)$	116.7
$\mathrm{C}(24)-\mathrm{C}(6)-\mathrm{C}(5)$	116.4(3)	$\mathrm{C}(11)-\mathrm{C}(13)-\mathrm{H}(13)$	116.7
$\mathrm{O}(3)-\mathrm{C}(6)-\mathrm{C}(1)$	109.3(2)	$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	126.0(3)
$\mathrm{C}(24)-\mathrm{C}(6)-\mathrm{C}(1)$	109.2(2)	$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{H}(14)$	117.0
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(1)$	112.7(3)	$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{H}(14)$	117.0
$\mathrm{C}(1)-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~A})$	109.5	$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	112.1(3)
$\mathrm{C}(1)-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~B})$	109.5	$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~A})$	109.2
$\mathrm{H}(7 \mathrm{~A})-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~B})$	109.5	$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~A})$	109.2
$\mathrm{C}(1)-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{C})$	109.5	$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~B})$	109.2
$\mathrm{H}(7 \mathrm{~A})-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{C})$	109.5	$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~B})$	109.2
$\mathrm{H}(7 \mathrm{~B})-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{C})$	109.5	$\mathrm{H}(15 \mathrm{~A})-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~B})$	107.9
$\mathrm{C}(3)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A})$	109.5	$\mathrm{O}(1)-\mathrm{C}(16)-\mathrm{C}(17)$	109.2(3)
$\mathrm{C}(3)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~B})$	109.5	$\mathrm{O}(1)-\mathrm{C}(16)-\mathrm{C}(15)$	110.1(3)
$\mathrm{H}(8 \mathrm{~A})-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~B})$	109.5	$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{C}(15)$	108.3(3)
$\mathrm{C}(3)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{C})$	109.5	$\mathrm{O}(1)-\mathrm{C}(16)-\mathrm{H}(16)$	109.7
$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{H}(16)$	109.7	$\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{H}(21)$	120.0
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{H}(16)$	109.7	$\mathrm{C}(22)-\mathrm{C}(21)-\mathrm{H}(21)$	120.0
$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{C}(16)$	126.8(3)	$\mathrm{O}(2)-\mathrm{C}(22)-\mathrm{C}(23)$	115.2(3)
$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{H}(17)$	116.6	$\mathrm{O}(2)-\mathrm{C}(22)-\mathrm{C}(21)$	120.4(3)
$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{H}(17)$	116.6	$\mathrm{C}(23)-\mathrm{C}(22)-\mathrm{C}(21)$	124.1(3)
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(20)$	120.8(3)	$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{C}(24)$	125.4(3)
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)$	126.8(3)	$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{C}(25)$	124.6(3)
$\mathrm{C}(20)-\mathrm{C}(18)-\mathrm{C}(19)$	$112.2(3)$	$\mathrm{C}(24)-\mathrm{C}(23)-\mathrm{C}(25)$	107.7(3)
$\mathrm{O}(2)-\mathrm{C}(19)-\mathrm{C}(18)$	112.1(2)	$\mathrm{O}(4)-\mathrm{C}(24)-\mathrm{C}(23)$	128.6(3)
$\mathrm{O}(2)-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~A})$	109.2	$\mathrm{O}(4)-\mathrm{C}(24)-\mathrm{C}(6)$	124.5(3)
$\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~A})$	109.2	$\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{C}(6)$	106.9(3)
$\mathrm{O}(2)-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~B})$	109.2	$\mathrm{O}(5)-\mathrm{C}(25)-\mathrm{O}(3)$	119.4(3)
$\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~B})$	109.2	$\mathrm{O}(5)-\mathrm{C}(25)-\mathrm{C}(23)$	132.1(4)
$\mathrm{H}(19 \mathrm{~A})-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~B})$	107.9	$\mathrm{O}(3)-\mathrm{C}(25)-\mathrm{C}(23)$	108.5(3)
$\mathrm{C}(21)-\mathrm{C}(20)-\mathrm{C}(18)$	119.6(3)	$\mathrm{C}(16)-\mathrm{O}(1)-\mathrm{H}(1)$	109.5
$\mathrm{C}(21)-\mathrm{C}(20)-\mathrm{H}(20)$	120.2	$\mathrm{C}(22)-\mathrm{O}(2)-\mathrm{C}(19)$	118.9 (3)
$\mathrm{C}(18)-\mathrm{C}(20)-\mathrm{H}(20)$	120.2	$\mathrm{C}(25)-\mathrm{O}(3)-\mathrm{C}(6)$	112.3(2)
$\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{C}(22)$	120.0(3)		

Table 2.6 Anisotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for burk03. The anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{* 2} U^{11}+\ldots+2 h k\right.$ $\left.a^{*} b^{*} U^{12}\right]$

	U^{11}	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}
$\mathrm{C}(1)$	$39(2)$	$44(2)$	$34(2)$	$12(2)$	$16(1)$	$12(2)$
$\mathrm{C}(2)$	$36(2)$	$53(2)$	$36(2)$	$20(2)$	$18(1)$	$10(2)$
$\mathrm{C}(3)$	$48(2)$	$46(2)$	$38(2)$	$16(2)$	$20(2)$	$0(2)$
$\mathrm{C}(4)$	$55(2)$	$45(2)$	$33(2)$	$13(2)$	$13(1)$	$11(2)$
$\mathrm{C}(5)$	$52(2)$	$55(2)$	$31(2)$	$15(2)$	$6(1)$	$25(2)$
$\mathrm{C}(6)$	$41(2)$	$57(2)$	$19(1)$	$6(1)$	$6(1)$	$19(2)$
$\mathrm{C}(7)$	$68(2)$	$59(3)$	$44(2)$	$22(2)$	$33(2)$	$27(2)$
$\mathrm{C}(8)$	$53(2)$	$57(2)$	$54(2)$	$17(2)$	$21(2)$	$-2(2)$
$\mathrm{C}(9)$	$51(2)$	$47(2)$	$43(2)$	$4(2)$	$13(2)$	$14(2)$
$\mathrm{C}(10)$	$31(2)$	$45(2)$	$28(2)$	$10(2)$	$14(1)$	$7(1)$
$\mathrm{C}(11)$	$21(1)$	$46(2)$	$31(2)$	$10(2)$	$9(1)$	$5(1)$
$\mathrm{C}(12)$	$32(2)$	$46(2)$	$34(2)$	$10(2)$	$2(1)$	$4(2)$
$\mathrm{C}(13)$	$24(1)$	$44(2)$	$36(2)$	$12(2)$	$11(1)$	$4(1)$
$\mathrm{C}(14)$	$29(2)$	$50(2)$	$36(2)$	$12(2)$	$7(1)$	$5(2)$
$\mathrm{C}(15)$	$42(2)$	$47(2)$	$35(2)$	$15(2)$	$10(1)$	$9(2)$
$\mathrm{C}(16)$	$66(2)$	$35(2)$	$26(2)$	$3(2)$	$14(2)$	$-1(2)$
$\mathrm{C}(17)$	$46(2)$	$48(2)$	$34(2)$	$-7(2)$	$17(1)$	$-7(2)$
$\mathrm{C}(18)$	$31(2)$	$49(2)$	$42(2)$	$-10(2)$	$19(1)$	$-10(2)$
$\mathrm{C}(19)$	$36(2)$	$45(2)$	$28(1)$	$-5(2)$	$9(1)$	$-5(2)$
$\mathrm{C}(20)$	$35(2)$	$61(3)$	$38(2)$	$-22(2)$	$13(1)$	$-10(2)$
$\mathrm{C}(21)$	$30(2)$	$66(3)$	$33(2)$	$-19(2)$	$8(1)$	$-4(2)$
$\mathrm{C}(22)$	$22(1)$	$55(2)$	$26(2)$	$-13(2)$	$6(1)$	$2(2)$
$\mathrm{C}(23)$	$22(1)$	$59(2)$	$24(1)$	$-10(2)$	$2(1)$	$7(2)$
$\mathrm{C}(24)$	$24(1)$	$51(2)$	$17(1)$	$3(1)$	$2(1)$	$12(1)$
$\mathrm{C}(25)$	$35(2)$	$70(3)$	$24(2)$	$-8(2)$	$-2(1)$	$16(2)$
$\mathrm{O}(1)$	$81(2)$	$44(2)$	$28(1)$	$7(1)$	$18(1)$	$0(1)$
$\mathrm{O}(2)$	$30(1)$	$47(1)$	$26(1)$	$-6(1)$	$5(1)$	$-3(1)$
$\mathrm{O}(3)$	$51(1)$	$67(2)$	$19(1)$	$1(1)$	$1(1)$	$17(1)$
$\mathrm{O}(4)$	$32(1)$	$47(1)$	$22(1)$	$-1(1)$	$5(1)$	$4(1)$

Table 2.6 Anisotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for burk03. The anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{* 2} U^{11}+\ldots+2 h k\right.$ $\left.a^{*} b^{*} U^{12}\right]$, continued.

	U^{11}	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}
$\mathrm{O}(5)$	$52(1)$	$87(2)$	$29(1)$	$-18(1)$	$-6(1)$	$11(1)$

Table 2.7 Hydrogen coordinates ($\times 10^{4}$) and isotropic displacement parameters ($\AA^{2} \times 10^{3}$) for burk03.

	x	y	z	$\mathrm{U}(\mathrm{eq})$
H(2)	6348	3575	2676	47
H(4)	10126	1369	3637	53
H(5A)	13001	2594	4071	56
H(5B)	11527	2530	4872	56
H(7A)	8861	3402	5301	80
H(7B)	7138	4238	4882	80
H(7C)	9358	4599	5504	80
H(8A)	5347	2048	1805	80
H(8B)	6518	1096	2521	80
H(8C)	7039	1479	1374	80
H(9A)	11358	2291	1802	70
H(9B)	10261	1204	1719	70
H(9C)	12436	1348	2579	70
H(10)	8894	5746	3954	40
H(12A)	7573	4313	1332	59
H(12B)	7993	5293	632	59
H(12C)	5849	5133	834	59
H(13)	8157	7149	2857	41

Table 2.7 Hydrogen coordinates ($\mathrm{x} 10^{4}$) and isotropic displacement parameters ($\AA^{2} \times 10^{3}$) for burk03, continued.

	x	y	z	$U(e q)$
$H(14)$	6947	6892	485	47
$H(15 A)$	7358	8737	1828	50
$H(15 B)$	5984	8635	528	50
$H(16)$	9116	8391	-42	51
$H(17)$	11148	9388	2071	50
$H(19 A)$	11027	7097	449	43
$H(19 B)$	13399	7162	809	43
$H(20)$	14187	8593	3353	53
$H(21)$	15156	7042	4173	52
$H(1)$	8377	9890	-498	75

Structure report for spirohexenolide B (129) (burk08)

Figure 2.7 ORTEP drawing of the X-ray crystal structure of compound $\mathbf{1 2 9}$ with ellipsoids drawn at the 50% probability level

Table 2.8 Crystal data and structure refinement for burk08.

Table 2.9 Atomic coordinates ($\mathrm{x} 10^{4}$) and equivalent isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for burk08. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	x	y	z	U(eq)
$\mathrm{O}\left(1^{\prime}\right)$	447(3)	2307(1)	841(1)	28(1)
$\mathrm{O}(1)$	4626(3)	7013(1)	4048(1)	30(1)
$\mathrm{O}\left(2^{\prime}\right)$	2334(3)	1184(1)	1325(1)	37(1)
$\mathrm{O}(2)$	2742(3)	6013(1)	3478(1)	45(1)
$\mathrm{O}\left(3{ }^{\prime}\right)$	1417(3)	4729(1)	1463(1)	28(1)
$\mathrm{O}(3)$	3575(2)	9556(1)	3649(1)	29(1)
$\mathrm{O}(4)$	2532(2)	8890(1)	2511(1)	28(1)
$\mathrm{O}\left(4^{\prime}\right)$	2350(3)	3748(1)	2539(1)	28(1)
$\mathrm{C}\left(1^{\prime}\right)$	230(4)	3786(2)	242(1)	27(1)
C(2^{\prime})	-506(4)	4877(2)	114(1)	27(1)
C(3^{\prime})	-2293(4)	5127(2)	426(1)	28(1)
C(4')	-3035(3)	4520(2)	822(1)	28(1)
C(5')	-2264(4)	3483(2)	1014(1)	25(1)
C(6')	-2397(3)	3260(2)	1661(1)	27(1)
C(7')	-2408(4)	3874(2)	2125(1)	28(1)
$\mathrm{C}\left(8^{\prime}\right)$	-2457(4)	3380(2)	2701(1)	33(1)
$\mathrm{C}\left(9^{\prime}\right)$	-2349(4)	3852(3)	3212(1)	39(1)
$\mathrm{C}\left(10^{\prime}\right)$	-2390(4)	3326(3)	3791(1)	46(1)
$\mathrm{C}\left(11^{\prime}\right)$	-362(4)	3318(3)	4120(1)	44(1)
$\mathrm{C}\left(12{ }^{\prime}\right)$	885(4)	2543(2)	3853(1)	39(1)
C(13')	2026(4)	2701(2)	3409(1)	33(1)
C(14')	2799(4)	1839(2)	3094(1)	34(1)
$\mathrm{C}\left(15^{\prime}\right)$	3130(4)	1954(2)	2535(1)	31(1)
C(16')	2597(3)	2895(2)	2236(1)	26(1)
$\mathrm{C}\left(17^{\prime}\right)$	2562(4)	3710(2)	3169(1)	30(1)
C(18')	2091(3)	2946(2)	1655(1)	25(1)
C(19')	1721(4)	2053(2)	1291(1)	28(1)
C(20')	1215(3)	3821(2)	1352(1)	23(1)

Table 2.9 Atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for burk08. $\mathrm{U}(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized U^{ij} tensor, continued.

	x	y	z	U(eq)
C(21')	-110(4)	3389(2)	853(1)	24(1)
C(22')	1105(4)	5677(2)	211(1)	32(1)
C(23')	-3284(4)	6119(2)	252(1)	36(1)
C(24')	-3522(4)	2670(2)	683(1)	31(1)
C(25')	-2335(4)	5034(2)	2126(1)	37(1)
C(1)	4851(4)	8331(2)	4757(1)	27(1)
C(2)	5579(4)	9381(2)	4974(1)	29(1)
C(3)	7381(4)	9712(2)	4686(1)	27(1)
C(4)	8104(4)	9213(2)	4245(1)	27(1)
C(5)	7314(4)	8244(2)	3963(1)	27(1)
C(6)	7413(4)	8228(2)	3304(1)	29(1)
C(7)	7372(3)	8976(2)	2905(1)	29(1)
C(8)	7371(4)	8684(2)	2291(1)	35(1)
C(9)	7181(4)	9322(3)	1837(1)	39(1)
C(10)	7177(4)	9013(3)	1210(1)	46(1)
$\mathrm{C}(11)$	5129(4)	9057(2)	901(1)	40(1)
C(12)	3961(5)	8173(2)	1093(1)	43(1)
C(13)	2858(4)	8141(2)	1549(1)	34(1)
C(14)	2165(4)	7177(2)	1782(1)	42(1)
C(15)	1877(4)	7102(2)	2346(1)	39(1)
$\mathrm{C}(16)$	2372(4)	7954(2)	2729(1)	28(1)
C(17)	2276(4)	9046(2)	1892(1)	31(1)
C(18)	2928(4)	7841(2)	3305(1)	27(1)
C(19)	3338(4)	6860(2)	3585(1)	32(1)
C(20)	3800(3)	8632(2)	3675(1)	23(1)
C(21)	5159(4)	8089(2)	4122(1)	27(1)
$\mathrm{C}(22)$	3978(4)	10203(2)	4947(1)	35(1)

Table 2.9 Atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for burk08. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor, continued.

	x	y	z	$U(e q)$
$C(23)$	$8343(4)$	$10664(2)$	$4927(1)$	$35(1)$
$\mathrm{C}(24)$	$8571(4)$	$7343(2)$	$4211(1)$	$34(1)$
$\mathrm{C}(25)$	$7311(4)$	$10107(2)$	$3031(1)$	$35(1)$

Table 2.10 Bond lengths $[\AA]$ and angles $\left[{ }^{\circ}\right]$ for burk08.

$\mathrm{O}\left(1^{\prime}\right)-\mathrm{C}\left(9^{\prime}\right)$	$1.363(3)$
$\mathrm{O}\left(1^{\prime}\right)-\mathrm{C}\left(21^{\prime}\right)$	$1.465(3)$
$\mathrm{O}(1)-\mathrm{C}(19)$	$1.365(3)$
$\mathrm{O}(1)-\mathrm{C}(21)$	$1.460(3)$
$\mathrm{O}\left(2^{\prime}\right)-\mathrm{C}\left(19^{\prime}\right)$	$1.211(3)$
$\mathrm{O}(2)-\mathrm{C}(19)$	$1.201(3)$
$\mathrm{O}\left(3^{\prime}\right)-\mathrm{C}\left(20^{\prime}\right)$	$1.219(3)$
$\mathrm{O}(3)-\mathrm{C}(20)$	$1.217(3)$
$\mathrm{O}(4)-\mathrm{C}(16)$	$1.329(3)$
$\mathrm{O}(4)-\mathrm{C}(17)$	$1.444(3)$
$\mathrm{O}\left(4^{\prime}\right)-\mathrm{C}\left(16^{\prime}\right)$	$1.330(3)$
$\mathrm{O}\left(4^{\prime}\right)-\mathrm{C}\left(17^{\prime}\right)$	$1.453(3)$
$\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(21^{\prime}\right)$	$1.533(3)$
$\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)$	$1.535(3)$
$\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)$	$1.500(3)$
$\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(22^{\prime}\right)$	$1.534(3)$
$\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)$	$1.333(3)$
$\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(23^{\prime}\right)$	$1.508(3)$
$\mathrm{C}\left(4^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)$	$1.512(3)$

Table 2.10 Bond lengths $[\AA]$ and angles [${ }^{\circ}$] for burk08, continued.

$\mathrm{C}\left(5^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)$	1.530(3)
$\mathrm{C}\left(5^{\prime}\right)$ - $\mathrm{C}\left(24^{\prime}\right)$	1.545(3)
$\mathrm{C}\left(5^{\prime}\right)$ - $\mathrm{C}\left(21^{\prime}\right)$	1.558(3)
$\mathrm{C}\left(6^{\prime}\right)-\mathrm{C}\left(7^{\prime}\right)$	1.337(3)
$\mathrm{C}\left(7^{\prime}\right)-\mathrm{C}\left(8^{\prime}\right)$	1.480(3)
$\mathrm{C}\left(7^{\prime}\right)$ - $\mathrm{C}\left(25^{\prime}\right)$	1.515(4)
$\mathrm{C}\left(8^{\prime}\right)-\mathrm{C}\left(9^{\prime}\right)$	1.329(4)
$\mathrm{C}\left(9^{\prime}\right)$-C(10')	1.502(4)
$\mathrm{C}\left(10^{\prime}\right)-\mathrm{C}\left(11^{\prime}\right)$	1.554(4)
$\mathrm{C}\left(11^{\prime}\right)-\mathrm{C}\left(12^{\prime}\right)$	1.485(4)
$\mathrm{C}\left(12^{\prime}\right)-\mathrm{C}\left(13^{\prime}\right)$	1.343(4)
$\mathrm{C}\left(13^{\prime}\right)-\mathrm{C}\left(14^{\prime}\right)$	1.457(4)
$\mathrm{C}\left(13^{\prime}\right)-\mathrm{C}\left(17^{\prime}\right)$	1.485(4)
$\mathrm{C}\left(14^{\prime}\right)-\mathrm{C}\left(15^{\prime}\right)$	1.330(4)
$\mathrm{C}\left(15^{\prime}\right)-\mathrm{C}\left(16^{\prime}\right)$	1.447(3)
$\mathrm{C}\left(16^{\prime}\right)-\mathrm{C}\left(18^{\prime}\right)$	1.369(3)
$\mathrm{C}\left(18^{\prime}\right)-\mathrm{C}\left(19^{\prime}\right)$	1.450(3)
$\mathrm{C}\left(18{ }^{\prime}\right)-\mathrm{C}\left(20^{\prime}\right)$	1.452(3)
$\mathrm{C}\left(20^{\prime}\right)-\mathrm{C}\left(21^{\prime}\right)$	1.536(3)
$\mathrm{C}(1)-\mathrm{C}(21)$	1.526(3)
$\mathrm{C}(1)-\mathrm{C}(2)$	1.535(3)
$\mathrm{C}(2)-\mathrm{C}(3)$	1.508(3)
$\mathrm{C}(2)-\mathrm{C}(22)$	1.540(3)
$\mathrm{C}(3)-\mathrm{C}(4)$	1.329(3)
$\mathrm{C}(3)-\mathrm{C}(23)$	1.500(3)
$\mathrm{C}(4)-\mathrm{C}(5)$	1.510(3)
$\mathrm{C}(5)-\mathrm{C}(6)$	1.525(3)
$\mathrm{C}(5)-\mathrm{C}(24)$	1.551(3)
$\mathrm{C}(5)-\mathrm{C}(21)$	1.567(3)
$\mathrm{C}(6)-\mathrm{C}(7)$	1.341(4)
$\mathrm{C}(7)-\mathrm{C}(8)$	1.468(3)
$\mathrm{C}(7)-\mathrm{C}(25)$	1.505(4)
$\mathrm{C}(8)-\mathrm{C}(9)$	1.339(4)
$\mathrm{C}(9)-\mathrm{C}(10)$	1.502(4)

Table 2.10 Bond lengths $\left[\AA\right.$] and angles [${ }^{\circ}$] for burk08, continued.

$\mathrm{C}(10)-\mathrm{C}(11)$	1.548(4)
$\mathrm{C}(11)-\mathrm{C}(12)$	$1.489(4)$
$\mathrm{C}(12)-\mathrm{C}(13)$	1.336(4)
$\mathrm{C}(13)-\mathrm{C}(14)$	1.460(4)
$\mathrm{C}(13)-\mathrm{C}(17)$	$1.490(4)$
$\mathrm{C}(14)-\mathrm{C}(15)$	1.331(4)
$\mathrm{C}(15)-\mathrm{C}(16)$	1.449 (4)
$\mathrm{C}(16)-\mathrm{C}(18)$	$1.369(3)$
$\mathrm{C}(18)-\mathrm{C}(20)$	1.449 (3)
$\mathrm{C}(18)-\mathrm{C}(19)$	$1.455(3)$
$\mathrm{C}(20)-\mathrm{C}(21)$	1.527(3)
$\mathrm{C}\left(19{ }^{\prime}\right)-\mathrm{O}\left(1^{\prime}\right)-\mathrm{C}\left(21^{\prime}\right)$	112.29(18)
$\mathrm{C}(19)-\mathrm{O}(1)-\mathrm{C}(21)$	112.34(18)
$\mathrm{C}(16)-\mathrm{O}(4)-\mathrm{C}(17)$	119.78(19)
$\mathrm{C}\left(16^{\prime}\right)-\mathrm{O}\left(4^{\prime}\right)-\mathrm{C}\left(17^{\prime}\right)$	119.12(18)
$\mathrm{C}\left(21^{\prime}\right)-\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)$	115.04(19)
$\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(22^{\prime}\right)$	113.1(2)
$\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(1^{\prime}\right)$	112.5(2)
$\mathrm{C}\left(22^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(1^{\prime}\right)$	112.0(2)
$\mathrm{C}\left(4^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)$	123.9(2)
$\mathrm{C}\left(4^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(23^{\prime}\right)$	120.4(2)
$\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(23^{\prime}\right)$	115.7(2)
$\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)$	126.2(2)
$\mathrm{C}\left(4^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)$	114.6(2)
$\mathrm{C}\left(4^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)-\mathrm{C}\left(24^{\prime}\right)$	106.9(2)
$\mathrm{C}\left(6^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)-\mathrm{C}\left(24^{\prime}\right)$	106.75(19)
$\mathrm{C}\left(4^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)-\mathrm{C}\left(21^{\prime}\right)$	109.02(19)
$\mathrm{C}\left(6^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)-\mathrm{C}\left(21^{\prime}\right)$	109.20(19)
$\mathrm{C}\left(24^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)-\mathrm{C}\left(21^{\prime}\right)$	110.29(19)
$\mathrm{C}\left(7^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)$	132.1(2)
$\mathrm{C}\left(6^{\prime}\right)-\mathrm{C}\left(7^{\prime}\right)-\mathrm{C}\left(8^{\prime}\right)$	117.3(2)
$\mathrm{C}\left(6^{\prime}\right)-\mathrm{C}\left(7^{\prime}\right)-\mathrm{C}\left(25^{\prime}\right)$	126.7(2)
$\mathrm{C}\left(8^{\prime}\right)-\mathrm{C}\left(7^{\prime}\right)-\mathrm{C}\left(25^{\prime}\right)$	115.9(2)

Table 2.10 Bond lengths $\left[\AA\right.$] and angles [${ }^{\circ}$] for burk08, continued.

$\mathrm{C}\left(9^{\prime}\right)-\mathrm{C}\left(8^{\prime}\right)-\mathrm{C}\left(7^{\prime}\right)$	126.3(3)
$\mathrm{C}\left(8^{\prime}\right)-\mathrm{C}\left(9^{\prime}\right)-\mathrm{C}\left(10^{\prime}\right)$	125.0(3)
$\mathrm{C}\left(9^{\prime}\right)-\mathrm{C}\left(10^{\prime}\right)-\mathrm{C}\left(11^{\prime}\right)$	112.0(3)
$\mathrm{C}\left(12^{\prime}\right)-\mathrm{C}\left(11^{\prime}\right)-\mathrm{C}\left(10^{\prime}\right)$	109.3(2)
$\mathrm{C}\left(13^{\prime}\right)-\mathrm{C}\left(12^{\prime}\right)-\mathrm{C}\left(11^{\prime}\right)$	126.2(3)
$\mathrm{C}\left(12^{\prime}\right)-\mathrm{C}\left(13^{\prime}\right)-\mathrm{C}\left(14^{\prime}\right)$	120.7(3)
$\mathrm{C}\left(12^{\prime}\right)-\mathrm{C}\left(13^{\prime}\right)-\mathrm{C}\left(17^{\prime}\right)$	126.2(3)
$\mathrm{C}\left(14^{\prime}\right)-\mathrm{C}\left(13^{\prime}\right)-\mathrm{C}\left(17^{\prime}\right)$	113.0(2)
$\mathrm{C}\left(15^{\prime}\right)-\mathrm{C}\left(14^{\prime}\right)-\mathrm{C}\left(13^{\prime}\right)$	119.1(2)
$\mathrm{C}\left(14^{\prime}\right)-\mathrm{C}\left(15^{\prime}\right)-\mathrm{C}\left(16^{\prime}\right)$	120.3(2)
$\mathrm{O}\left(4^{\prime}\right)-\mathrm{C}\left(16^{\prime}\right)-\mathrm{C}\left(18^{\prime}\right)$	116.1(2)
$\mathrm{O}\left(4^{\prime}\right)-\mathrm{C}\left(16^{\prime}\right)-\mathrm{C}\left(15^{\prime}\right)$	119.9(2)
$\mathrm{C}\left(18^{\prime}\right)-\mathrm{C}\left(16^{\prime}\right)-\mathrm{C}\left(15^{\prime}\right)$	123.5(2)
$\mathrm{O}\left(4^{\prime}\right)-\mathrm{C}\left(17^{\prime}\right)-\mathrm{C}\left(13^{\prime}\right)$	113.1(2)
$\mathrm{C}\left(16^{\prime}\right)-\mathrm{C}\left(18^{\prime}\right)-\mathrm{C}\left(19^{\prime}\right)$	123.7(2)
$\mathrm{C}\left(16^{\prime}\right)-\mathrm{C}\left(18^{\prime}\right)-\mathrm{C}\left(20^{\prime}\right)$	125.8(2)
$\mathrm{C}\left(19{ }^{\prime}\right)-\mathrm{C}\left(18^{\prime}\right)-\mathrm{C}\left(20^{\prime}\right)$	107.4(2)
$\mathrm{O}\left(2^{\prime}\right)-\mathrm{C}\left(19^{\prime}\right)-\mathrm{O}\left(1^{\prime}\right)$	119.0(2)
$\mathrm{O}\left(2^{\prime}\right)-\mathrm{C}\left(19^{\prime}\right)-\mathrm{C}\left(18^{\prime}\right)$	131.8(2)
$\mathrm{O}\left(1^{\prime}\right)-\mathrm{C}\left(19^{\prime}\right)-\mathrm{C}\left(18^{\prime}\right)$	109.2(2)
$\mathrm{O}\left(3^{\prime}\right)-\mathrm{C}\left(20^{\prime}\right)-\mathrm{C}\left(18^{\prime}\right)$	128.7(2)
$\mathrm{O}\left(3^{\prime}\right)-\mathrm{C}\left(20^{\prime}\right)-\mathrm{C}\left(21^{\prime}\right)$	124.7(2)
$\mathrm{C}\left(18^{\prime}\right)-\mathrm{C}\left(20^{\prime}\right)-\mathrm{C}\left(21^{\prime}\right)$	106.61(19)
$\mathrm{O}\left(1^{\prime}\right)-\mathrm{C}\left(21^{\prime}\right)-\mathrm{C}\left(1^{\prime}\right)$	104.72(18)
$\mathrm{O}\left(1^{\prime}\right)-\mathrm{C}\left(21^{\prime}\right)-\mathrm{C}\left(20^{\prime}\right)$	102.81(18)
$\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(21^{\prime}\right)-\mathrm{C}\left(20^{\prime}\right)$	116.7(2)
$\mathrm{O}\left(1^{\prime}\right)-\mathrm{C}\left(21^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)$	109.58(18)
$\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(21^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)$	113.01(19)
$\mathrm{C}\left(20^{\prime}\right)-\mathrm{C}\left(21^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)$	109.23(17)
$\mathrm{C}(21)-\mathrm{C}(1)-\mathrm{C}(2)$	115.9(2)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	112.1(2)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(22)$	113.1(2)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(22)$	112.9(2)
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(23)$	120.8(2)

Table 2.10 Bond lengths $\left[\AA\right.$] and angles [${ }^{\circ}$] for burk08, continued.

$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(2)$	123.6(2)
$\mathrm{C}(23)-\mathrm{C}(3)-\mathrm{C}(2)$	115.7(2)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	126.8(2)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	114.0(2)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(24)$	107.1(2)
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(24)$	107.53(19)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(21)$	109.38(19)
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(21)$	109.17(19)
$\mathrm{C}(24)-\mathrm{C}(5)-\mathrm{C}(21)$	109.6(2)
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(5)$	132.3(2)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	118.1(2)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(25)$	125.6(2)
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(25)$	116.3(2)
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(7)$	126.0(3)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	125.5(3)
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	112.6(2)
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(10)$	109.3(2)
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(11)$	127.0(3)
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	122.1(3)
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(17)$	125.2(3)
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(17)$	112.6(2)
$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{C}(13)$	119.6(3)
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	119.8(3)
$\mathrm{O}(4)-\mathrm{C}(16)-\mathrm{C}(18)$	116.2(2)
$\mathrm{O}(4)-\mathrm{C}(16)-\mathrm{C}(15)$	119.8(2)
$\mathrm{C}(18)-\mathrm{C}(16)-\mathrm{C}(15)$	123.6(2)
$\mathrm{O}(4)-\mathrm{C}(17)-\mathrm{C}(13)$	113.1(2)
$\mathrm{C}(16)-\mathrm{C}(18)-\mathrm{C}(20)$	125.4(2)
$\mathrm{C}(16)-\mathrm{C}(18)-\mathrm{C}(19)$	124.2(2)
$\mathrm{C}(20)-\mathrm{C}(18)-\mathrm{C}(19)$	107.5(2)
$\mathrm{O}(2)-\mathrm{C}(19)-\mathrm{O}(1)$	119.8(2)
$\mathrm{O}(2)-\mathrm{C}(19)-\mathrm{C}(18)$	131.5(2)
$\mathrm{O}(1)-\mathrm{C}(19)-\mathrm{C}(18)$	108.7(2)
$\mathrm{O}(3)-\mathrm{C}(20)-\mathrm{C}(18)$	129.0(2)

Table 2.10 Bond lengths $[\AA \AA]$ and angles [${ }^{\circ}$] for burk08, continued.

$\mathrm{O}(3)-\mathrm{C}(20)-\mathrm{C}(21)$	$124.4(2)$
$\mathrm{C}(18)-\mathrm{C}(20)-\mathrm{C}(21)$	$106.58(19)$
$\mathrm{O}(1)-\mathrm{C}(21)-\mathrm{C}(1)$	$105.19(19)$
$\mathrm{O}(1)-\mathrm{C}(21)-\mathrm{C}(20)$	$103.15(19)$
$\mathrm{C}(1)-\mathrm{C}(21)-\mathrm{C}(20)$	$115.9(2)$
$\mathrm{O}(1)-\mathrm{C}(21)-\mathrm{C}(5)$	$109.48(19)$
$\mathrm{C}(1)-\mathrm{C}(21)-\mathrm{C}(5)$	$112.6(2)$
$\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{C}(5)$	$109.76(18)$

Table 2.11 Anisotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for burk08. The anisotropic displacement factor exponent takes the form: $-2 \square^{2}\left[h^{2} a^{* 2} U^{11}+\ldots+2 h k\right.$ $a^{*} b^{*} U^{12}$]

	U^{11}	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}
$\mathrm{O}\left(1^{\prime}\right)$	$35(1)$	$21(1)$	$28(1)$	$-2(1)$	$2(1)$	$3(1)$
$\mathrm{O}(1)$	$41(1)$	$21(1)$	$29(1)$	$4(1)$	$-1(1)$	$-2(1)$
$\mathrm{O}\left(2^{\prime}\right)$	$53(1)$	$25(1)$	$34(1)$	$-1(1)$	$3(1)$	$11(1)$
$\mathrm{O}(2)$	$68(2)$	$24(1)$	$43(1)$	$2(1)$	$-6(1)$	$-13(1)$
$\mathrm{O}\left(3^{\prime}\right)$	$31(1)$	$24(1)$	$30(1)$	$2(1)$	$-1(1)$	$-3(1)$
$\mathrm{O}(3)$	$32(1)$	$23(1)$	$32(1)$	$-1(1)$	$2(1)$	$2(1)$
$\mathrm{O}(4)$	$29(1)$	$25(1)$	$28(1)$	$2(1)$	$-1(1)$	$0(1)$
$\mathrm{O}\left(4^{\prime}\right)$	$32(1)$	$24(1)$	$28(1)$	$1(1)$	$-2(1)$	$2(1)$
$\mathrm{C}\left(1^{\prime}\right)$	$25(1)$	$30(1)$	$25(1)$	$1(1)$	$5(1)$	$3(1)$
$\mathrm{C}\left(2^{\prime}\right)$	$28(1)$	$28(1)$	$26(1)$	$4(1)$	$0(1)$	$3(1)$
$\mathrm{C}\left(3^{\prime}\right)$	$26(1)$	$30(1)$	$27(1)$	$0(1)$	$-2(1)$	$3(1)$
$\mathrm{C}\left(4^{\prime}\right)$	$22(1)$	$33(1)$	$28(1)$	$-5(1)$	$1(1)$	$3(1)$
$\mathrm{C}\left(5^{\prime}\right)$	$25(1)$	$26(1)$	$25(1)$	$-2(1)$	$1(1)$	$-3(1)$
$\mathrm{C}\left(6^{\prime}\right)$	$23(1)$	$30(1)$	$28(1)$	$0(1)$	$3(1)$	$-3(1)$
$\mathrm{C}\left(7^{\prime}\right)$	$22(1)$	$34(1)$	$29(1)$	$-1(1)$	$3(1)$	$-1(1)$
$\mathrm{C}\left(8^{\prime}\right)$	$20(1)$	$48(2)$	$31(1)$	$-1(1)$	$5(1)$	$0(1)$

Table 2.11 Anisotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for burk08. The anisotropic displacement factor exponent takes the form: $-2 \square^{2}\left[h^{2} a^{* 2} U^{11}+\ldots+2 h k\right.$ $a^{*} b^{*} U^{12}$], continued.

	U^{11}	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}
$\mathrm{C}\left(9^{\prime}\right)$	$29(2)$	$58(2)$	$30(1)$	$-5(1)$	$3(1)$	$3(1)$
$\mathrm{C}\left(10^{\prime}\right)$	$34(2)$	$80(2)$	$25(1)$	$-1(1)$	$6(1)$	$4(2)$
$\mathrm{C}\left(11^{\prime}\right)$	$38(2)$	$68(2)$	$28(1)$	$-1(1)$	$2(1)$	$1(1)$
$\mathrm{C}\left(12^{\prime}\right)$	$41(2)$	$45(2)$	$31(1)$	$8(1)$	$-3(1)$	$-2(1)$
$\mathrm{C}\left(13^{\prime}\right)$	$29(1)$	$38(2)$	$32(1)$	$6(1)$	$-6(1)$	$0(1)$
$\mathrm{C}\left(14^{\prime}\right)$	$37(2)$	$28(1)$	$38(1)$	$6(1)$	$-4(1)$	$2(1)$
$\mathrm{C}\left(1^{\prime}\right)$	$33(1)$	$26(1)$	$35(1)$	$1(1)$	$-3(1)$	$5(1)$
$\mathrm{C}\left(16^{\prime}\right)$	$19(1)$	$26(1)$	$33(1)$	$1(1)$	$4(1)$	$1(1)$
$\mathrm{C}\left(17^{\prime}\right)$	$29(1)$	$32(1)$	$30(1)$	$-5(1)$	$-2(1)$	$0(1)$
$\mathrm{C}\left(18^{\prime}\right)$	$23(1)$	$24(1)$	$30(1)$	$1(1)$	$4(1)$	$2(1)$
$\mathrm{C}\left(19^{\prime}\right)$	$32(1)$	$26(1)$	$26(1)$	$0(1)$	$8(1)$	$4(1)$
$\mathrm{C}\left(20^{\prime}\right)$	$23(1)$	$22(1)$	$26(1)$	$1(1)$	$3(1)$	$1(1)$
$\mathrm{C}\left(21^{\prime}\right)$	$28(1)$	$19(1)$	$26(1)$	$0(1)$	$2(1)$	$1(1)$
$\mathrm{C}\left(22^{\prime}\right)$	$32(2)$	$31(1)$	$33(1)$	$7(1)$	$1(1)$	$-2(1)$
$\mathrm{C}\left(23^{\prime}\right)$	$34(2)$	$34(2)$	$41(1)$	$5(1)$	$2(1)$	$8(1)$
$\mathrm{C}\left(24^{\prime}\right)$	$31(1)$	$34(1)$	$28(1)$	$-2(1)$	$3(1)$	$-9(1)$
$\mathrm{C}\left(25^{\prime}\right)$	$43(2)$	$36(2)$	$31(1)$	$-7(1)$	$1(1)$	$1(1)$
$\mathrm{C}(1)$	$26(1)$	$30(1)$	$25(1)$	$2(1)$	$3(1)$	$-1(1)$
$\mathrm{C}(2)$	$26(1)$	$34(1)$	$26(1)$	$-5(1)$	$1(1)$	$-2(1)$
$\mathrm{C}(3)$	$26(1)$	$30(1)$	$26(1)$	$1(1)$	$-2(1)$	$0(1)$
$\mathrm{C}(4)$	$23(1)$	$33(1)$	$26(1)$	$6(1)$	$1(1)$	$-3(1)$
$\mathrm{C}(5)$	$25(1)$	$30(1)$	$26(1)$	$3(1)$	$1(1)$	$6(1)$
$\mathrm{C}(6)$	$27(1)$	$30(1)$	$29(1)$	$-4(1)$	$2(1)$	$4(1)$
$\mathrm{C}(7)$	$20(1)$	$39(2)$	$28(1)$	$3(1)$	$1(1)$	$2(1)$
$\mathrm{C}(8)$	$23(2)$	$49(2)$	$33(1)$	$1(1)$	$5(1)$	$3(1)$
$\mathrm{C}(9)$	$30(2)$	$60(2)$	$28(1)$	$3(1)$	$0(1)$	$0(1)$
$\mathrm{C}(10)$	$32(2)$	$75(2)$	$31(1)$	$4(1)$	$5(1)$	$5(1)$

Table 2.11 Anisotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for burk08. The anisotropic displacement factor exponent takes the form: $-2 \square^{2}\left[h^{2} a^{* 2} U^{11}+\ldots+2 h k\right.$ $\left.a^{*} b^{*} U^{12}\right]$, continued.

	U^{11}	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}
$\mathrm{C}(11)$	$38(2)$	$58(2)$	$25(1)$	$2(1)$	$0(1)$	$8(1)$
$\mathrm{C}(12)$	$52(2)$	$44(2)$	$32(1)$	$-6(1)$	$-6(1)$	$8(1)$
$\mathrm{C}(13)$	$38(2)$	$34(1)$	$30(1)$	$-3(1)$	$-6(1)$	$3(1)$
$\mathrm{C}(14)$	$54(2)$	$34(2)$	$37(1)$	$-10(1)$	$-10(1)$	$-5(1)$
$\mathrm{C}(15)$	$49(2)$	$27(1)$	$40(1)$	$-1(1)$	$-8(1)$	$-10(1)$
$\mathrm{C}(16)$	$24(1)$	$25(1)$	$35(1)$	$-1(1)$	$0(1)$	$-4(1)$
$\mathrm{C}(17)$	$26(1)$	$33(1)$	$32(1)$	$3(1)$	$-1(1)$	$2(1)$
$\mathrm{C}(18)$	$25(1)$	$24(1)$	$31(1)$	$1(1)$	$5(1)$	$-4(1)$
$\mathrm{C}(19)$	$39(2)$	$29(1)$	$26(1)$	$2(1)$	$3(1)$	$-3(1)$
$\mathrm{C}(20)$	$22(1)$	$23(1)$	$26(1)$	$2(1)$	$4(1)$	$0(1)$
$\mathrm{C}(21)$	$31(2)$	$21(1)$	$29(1)$	$1(1)$	$1(1)$	$-1(1)$
$\mathrm{C}(22)$	$29(2)$	$36(2)$	$39(1)$	$-10(1)$	$5(1)$	$1(1)$
$\mathrm{C}(23)$	$32(2)$	$38(2)$	$34(1)$	$-5(1)$	$2(1)$	$-7(1)$
$\mathrm{C}(24)$	$34(2)$	$36(2)$	$32(1)$	$7(1)$	$2(1)$	$10(1)$
$\mathrm{C}(25)$	$37(2)$	$35(1)$	$33(1)$	$8(1)$	$0(1)$	$-2(1)$

Table 2.12 Hydrogen coordinates $\left(\times 10^{4}\right)$ and isotropic displacement parameters $\left(\AA^{2}\right.$ x 10^{3}) for burk08.

	x	y	z	$U(e q)$
$H\left(1^{\prime} A\right)$	-415	3314	-45	32
$H\left(1^{\prime} B\right)$	1638	3765	184	32
$H\left(2^{\prime} A\right)$	-899	4896	-310	33
$H\left(4^{\prime} A\right)$	-4155	4761	999	33

Table 2.12 Hydrogen coordinates $\left(\times 10^{4}\right)$ and isotropic displacement parameters $\left(\AA^{2}\right.$ x 10^{3}) for burk 08 , continued.

	x	y	z	U(eq)
H(6'A)	-2490	2552	1750	32
$\mathrm{H}\left(8^{\prime} \mathrm{A}\right)$	-2578	2655	2706	39
H(9'A)	-2238	4577	3212	47
H(10C)	-2841	2612	3731	56
H(10D)	-3326	3680	4031	56
H(11C)	241	4004	4098	53
H(11D)	-499	3150	4534	53
H(12B)	875	1871	4011	47
H(14B)	3062	1205	3284	41
H(15B)	3719	1415	2332	37
H(17C)	1735	4246	3330	36
H(17D)	3925	3864	3294	36
H(22D)	580	6361	125	48
H(22E)	2153	5530	-45	48
H(22F)	1613	5652	617	48
H(23D)	-4425	6214	480	55
H(23E)	-3688	6096	-162	55
H(23F)	-2383	6690	326	55
H(24D)	-4872	2738	787	47
H(24E)	-3044	1984	788	47
H(24F)	-3449	2774	264	47
H(25D)	-2309	5283	1726	55
H(25E)	-1165	5264	2349	55
H(25F)	-3484	5304	2303	55
H(1A)	5509	7796	5000	33
H(1B)	3446	8284	4817	33
H(2A)	5972	9291	5395	34
H(4A)	9236	9494	4092	33
H(6A)	7523	7560	3146	34

Table 2.12 Hydrogen coordinates $\left(\times 10^{4}\right)$ and isotropic displacement parameters $\left(\AA^{2}\right.$ x 10^{3}) for burk 08 , continued.

	x	y	z	U(eq)
H(8A)	7520	7976	2208	42
H(9A)	7036	10030	1918	47
H(10A)	7689	8307	1184	55
H(10B)	8053	9473	1006	55
H(11A)	4484	9707	997	48
H(11B)	5233	9030	475	48
H(12A)	4006	7567	866	51
H(14A)	1921	6607	1533	51
H(15A)	1349	6492	2497	47
H(17A)	3056	9645	1783	37
H(17B)	897	9204	1790	37
H(22A)	4520	10857	5088	52
H(22B)	2931	9993	5190	52
H(22C)	3464	10283	4545	52
H(23A)	9495	10813	4713	52
H(23B)	8725	10560	5338	52
H(23C)	7436	11240	4886	52
H(24A)	9919	7442	4112	51
H(24B)	8081	6697	4043	51
H(24C)	8507	7321	4634	51
H(25A)	7318	10215	3451	53
H(25B)	6128	10402	2845	53
H(25C)	8448	10439	2878	53

δ-lactone acid 148

Crystals of the ester-lactone $149(176 \mathrm{mg}, 1.04 \mathrm{mmol})$ were weighed into a scintillation vial, and a solution of $\mathrm{NaOH}(3.48 \mathrm{~mL}$ of a 0.3 N aqueous solution, 1.04 mmol) was added via syringe, with stirring. The crystals immediately dissolved, and the solution was stirred for 10 min room temperature. After this period of time, a solution of $\mathrm{NaOH}(348 \mu \mathrm{~L}$ of a 3 N aqueous solution, 1.04 mmol) was added dropwise over 10 min . and the orange solution stirred for an additional 20 min with the second equivalent. After this period of time, the solution was acidified with 2 N HCl solution (until acidic by pH paper), which caused the precipitation of the δ-lactone acid $\mathbf{1 4 8}$ (63 $\mathrm{mg}, 39 \%$) from the solution. The solid was collected by vacuum filtration, and it was washed with 3 mL of deionized $\mathrm{H}_{2} \mathrm{O}$. Diffraction quality crystals were obtained by perfusion of hexanes into an ethyl acetate solution of 148. ${ }^{1} \mathrm{H}$ NMR (DMSO-d6, 300 $\mathrm{MHz}) \delta 7.33(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.18(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.15(\mathrm{~s}, 1 \mathrm{H}), 5.58(\mathrm{~d}, J=$ $2.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (DMSO-d6, 75 MHz) δ 173.0, 166.7, 161.8, 143.4, 142.3, 122.4, 68.3.

Structure report for compound 148 (burk04)

Figure 2.8 ORTEP stereopair drawing of the X-ray crystal structure of compound 148 with ellipsoids drawn at the 50% probability level

A colorless plate $0.10 \times 0.10 \times 0.02 \mathrm{~mm}$ in size was mounted on a Cryoloop with Paratone oil. Data were collected in a nitrogen gas stream at 100(2) K using phi and omega scans. Crystal-to-detector distance was 60 mm and exposure time was 10 seconds per frame using a scan width of 0.5°. Data collection was 97.8% complete to 67.00° in θ. A total of 2132 reflections were collected covering the indices, -$12<=h<=11,-7<=k<=7,-11<=l<=11$. 620 reflections were found to be symmetry independent, with an $R_{\text {int }}$ of 0.0134 . Indexing and unit cell refinement indicated a primitive, orthorhombic lattice. The space group was found to be Pnma (No. 62). The data were integrated using the Bruker SAINT software program and scaled using the SADABS software program. Solution by direct methods (SHELXS-97) produced a complete heavy-atom phasing model consistent with the proposed structure. All nonhydrogen atoms were refined anisotropically by full-matrix least-squares (SHELXL97). All hydrogen atoms were placed using a riding model. Their positions were constrained relative to their parent atom using the appropriate HFIX command in SHELXL-97.

Table 2.13 Crystal data and structure refinement for burk04.

X-ray ID
Sample/notebook ID
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
burk04
BDJ4-46-1
C7 H6 O4
154.12

100(2) K
$1.54178 \AA$
Orthorhombic
Pnma

Table 2.13 Crystal data and structure refinement for burk04, continued.

Table 2.14 Atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for burk04. $\mathrm{U}(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized Uij tensor.

	x	y	z	$\mathrm{U}(\mathrm{eq})$
$\mathrm{C}(1)$	$2885(2)$	2500	$2898(2)$	$18(1)$
$\mathrm{C}(2)$	$4224(2)$	2500	$3271(2)$	$20(1)$
$\mathrm{C}(3)$	$4595(2)$	2500	$4597(2)$	$19(1)$
$\mathrm{C}(4)$	$3694(2)$	2500	$5735(2)$	$18(1)$
$\mathrm{C}(5)$	$2311(2)$	2500	$5375(2)$	$18(1)$
$\mathrm{C}(6)$	$4144(2)$	2500	$7047(2)$	$18(1)$
$\mathrm{C}(7)$	$3347(2)$	2500	$8298(2)$	$18(1)$
$\mathrm{O}(1)$	$2014(1)$	2500	$3895(1)$	$20(1)$
$\mathrm{O}(2)$	$2511(1)$	2500	$1696(1)$	$22(1)$
$\mathrm{O}(3)$	$2202(1)$	2500	$8293(1)$	$24(1)$
$\mathrm{O}(4)$	$4035(1)$	2500	$9460(1)$	$22(1)$

Table 2.15 Bond lengths $[\AA]$ and angles [${ }^{\circ}$] for burk04.

$\mathrm{C}(1)-\mathrm{O}(2)$	$1.221(2)$	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{H}(2)$	119.3
$\mathrm{C}(1)-\mathrm{O}(1)$	$1.329(2)$	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{H}(2)$	119.3
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.461(3)$	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$121.76(17)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.333(3)$	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{H}(3)$	119.1
$\mathrm{C}(2)-\mathrm{H}(2)$	0.9500	$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{H}(3)$	119.1
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.450(3)$	$\mathrm{C}(6)-\mathrm{C}(4)-\mathrm{C}(3)$	$118.23(17)$
$\mathrm{C}(3)-\mathrm{H}(3)$	0.9500	$\mathrm{C}(6)-\mathrm{C}(4)-\mathrm{C}(5)$	$123.96(17)$
$\mathrm{C}(4)-\mathrm{C}(6)$	$1.348(3)$	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$117.82(16)$
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.504(2)$	$\mathrm{O}(1)-\mathrm{C}(5)-\mathrm{C}(4)$	$115.73(15)$
$\mathrm{C}(5)-\mathrm{O}(1)$	$1.456(2)$	$\mathrm{O}(1)-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~A})$	108.3
$\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~A})$	0.9900	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~A})$	108.3
$\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~B})$	0.9900	$\mathrm{O}(1)-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~B})$	108.3
$\mathrm{C}(6)-\mathrm{C}(7)$	$1.468(3)$	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~B})$	108.3
$\mathrm{C}(6)-\mathrm{H}(6)$	0.9500	$\mathrm{H}(5 \mathrm{~A})-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~B})$	107.4
$\mathrm{C}(7)-\mathrm{O}(3)$	$1.212(2)$	$\mathrm{C}(4)-\mathrm{C}(6)-\mathrm{C}(7)$	$124.27(17)$
$\mathrm{C}(7)-\mathrm{O}(4)$	$1.332(2)$	$\mathrm{C}(4)-\mathrm{C}(6)-\mathrm{H}(6)$	117.9
$\mathrm{O}(4)-\mathrm{H}(4)$	$0.94(3)$	$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{H}(6)$	117.9

Table 2.15 Bond lengths $[\AA]$ and angles $\left[{ }^{\circ}\right]$ for burk04, continued.

		$\mathrm{O}(3)-\mathrm{C}(7)-\mathrm{O}(4)$	$123.32(16)$
$\mathrm{O}(2)-\mathrm{C}(1)-\mathrm{O}(1)$	$117.27(17)$	$\mathrm{O}(3)-\mathrm{C}(7)-\mathrm{C}(6)$	$124.83(16)$
$\mathrm{O}(2)-\mathrm{C}(1)-\mathrm{C}(2)$	$123.06(18)$	$\mathrm{O}(4)-\mathrm{C}(7)-\mathrm{C}(6)$	$111.85(16)$
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	$119.67(17)$	$\mathrm{C}(1)-\mathrm{O}(1)-\mathrm{C}(5)$	$123.67(14)$
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	$121.34(17)$	$\mathrm{C}(7)-\mathrm{O}(4)-\mathrm{H}(4)$	$107.1(16)$

Symmetry transformations used to generate equivalent atoms:

Table 2.16 Anisotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for burk04. The anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{*} U^{11}+\ldots+2 h k\right.$ $\left.a^{*} b^{*} U^{12}\right]$

	U^{11}	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}
$\mathrm{C}(1)$	$22(1)$	$14(1)$	$19(1)$	0	$2(1)$	0
$\mathrm{C}(2)$	$17(1)$	$20(1)$	$23(1)$	0	$4(1)$	0
$\mathrm{C}(3)$	$16(1)$	$18(1)$	$23(1)$	0	$1(1)$	0
$\mathrm{C}(4)$	$16(1)$	$14(1)$	$23(1)$	0	$1(1)$	0
$\mathrm{C}(5)$	$15(1)$	$22(1)$	$15(1)$	0	$0(1)$	0
$\mathrm{C}(6)$	$14(1)$	$19(1)$	$22(1)$	0	$0(1)$	0
$\mathrm{C}(7)$	$17(1)$	$17(1)$	$19(1)$	0	$-1(1)$	0
$\mathrm{O}(1)$	$15(1)$	$29(1)$	$17(1)$	0	$0(1)$	0
$\mathrm{O}(2)$	$22(1)$	$28(1)$	$17(1)$	0	$-1(1)$	0
$\mathrm{O}(3)$	$16(1)$	$34(1)$	$21(1)$	0	$1(1)$	0
$\mathrm{O}(4)$	$18(1)$	$32(1)$	$17(1)$	0	$-1(1)$	0

Table 2.17 Hydrogen coordinates ($\times 10^{4}$) and isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for burk04.

	x	y	z	U(eq)
$H(2)$	4842	2500	2555	24
$H(3)$	5474	2500	4803	23
$H(5 A)$	1916	1249	5803	21
$H(5 B)$	1916	3751	5803	21
$H(6)$	5035	2500	7170	22
$H(4)$	$3470(20)$	2500	$10210(30)$	33

γ-lactone acid 156

Crystals of the ester-lactone 149 ($291 \mathrm{mg}, 1.74 \mathrm{mmol}$) were added to a scintillation vial, and an aqueous solution of $\mathrm{NaOH}(5.79 \mathrm{~mL}$ of a 0.3 M solution, 1.74 mmol) was added slowly with stirring. The solution stirred for 20 min at room temperature, then was acidified by the dropwise addition of 2 N HCl until the mixture was acidic to pH paper. A precipitate formed, and the γ-lactone acid $156(190 \mathrm{mg}$, 71%) was collected by vacuum filtration. ${ }^{1} \mathrm{H}$ NMR (DMSO-d6, 500 MHz$) \delta 6.85(\mathrm{~d}, \mathrm{~J}$ $=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{~s}, 1 \mathrm{H}), 6.21(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (DMSO-d6, 100 MHz$) \delta 172.8,166.4,129.9,127.5,122.0,72.6$.

Weinreb amide 158

A mixture of δ-lactone acid $148(21 \mathrm{mg}, 0.134 \mathrm{mmol}), \quad \mathrm{N}, \mathrm{O}-$ dimethylhydroxylamine hydrochloride ($26 \mathrm{mg}, 0.268 \mathrm{mmol}$), and PyBOP (78 mg , $0.150 \mathrm{mmol})$ in a scintillation vial was cooled to $-20^{\circ} \mathrm{C}$. DMF (2 mL) was added via syringe, followed by $\mathrm{i}-\operatorname{Pr}_{2} \mathrm{NEt}(80 \mu \mathrm{~L}, 0.470 \mathrm{mmol}$), and the solution was allowed to slowly warm to room temperature as it stirred for 12 h . The solution was partitioned between $\mathrm{H}_{2} \mathrm{O}$ and EtOAc , and the layers were separated. The aqueous layer was extracted with additional EtOAc, and the combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by column chromatography (1:1 hexanes / ethyl acetate) to provide compound $\mathbf{1 5 8}$ ($11 \mathrm{mg}, 42 \%$), for which the structure was not conclusively determined by NMR. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.40-7.31(\mathrm{~m}, 2 \mathrm{H}), 6.31(\mathrm{~d}, \mathrm{~J}=$ $10.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.43(\mathrm{~s}, 2 \mathrm{H}), 3.20(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta$ 170.6, 161.6, 149.7, 145.9, 116.1, 113.4, 61.6, 32.4; ESI-MS m/z $198.13[\mathrm{M}+\mathrm{H}]^{+}$.

t-butyl ester 160

To a solution of the γ-lactone acid $156(157 \mathrm{mg}, 1.0 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ was added $\mathrm{MgSO}_{4}(491 \mathrm{mg}, 4.1 \mathrm{mmol})$, freshly distilled $t-\mathrm{BuOH}(481 \mu \mathrm{~L}, 5.1 \mathrm{mmol})$, and $\mathrm{H}_{2} \mathrm{SO}_{4}(54 \mu \mathrm{~L}, 1.0 \mathrm{mmol})$, and the reaction flask was tightly stoppered and allowed to stir for 12 h . After this period of time, a saturated NaHCO_{3} solution was added to quench the catalyst, and the mixture was partitioned between EtOAc and $\mathrm{H}_{2} \mathrm{O}$. The aqueous layer was extracted with additional EtOAc, and the combined
organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by column chromatography (1:1 to $2: 1$ ethyl acetate / hexanes) to provide the t-butyl ester $\mathbf{1 6 0}(89 \mathrm{mg}, 41 \%)$ as a clear oil. TLC $(100 \% \mathrm{EtOAc}): \mathrm{R}_{\mathrm{f}}=0.6 ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 6.64(\mathrm{dd}, J=12.5,0.8 \mathrm{~Hz}$, $1 \mathrm{H}), 6.23(\mathrm{~s}, 1 \mathrm{H}), 6.04(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.21(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.50(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta$ 173.1, 164.3, 159.7, 129.8, 128.3, 123.5, 82.3, 73.4, 28.1.

Lactol 161

A solution of t-butyl ester $160(131 \mathrm{mg}, 0.62 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was cooled to $-78^{\circ} \mathrm{C}$, and to this stirred solution was added DIBAL-H $(600 \mu \mathrm{~L}$ of a 1.0 M solution in hexanes, 0.06 mmol) in three $200 \mu \mathrm{~L}$ portions over 1 h . A new, higher R_{f} DNP active spot was observed on TLC of the reaction mixture, which was quenched at this time by the addition of a few drops of MeOH followed by a saturated aqueous solution of Rochelle's salt, and allowed to warm to ambient temperature. When the layers had separated, the aqueous layer was extracted with additional portions of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by column chromatography (1:1 to 2:1 ethyl acetate / hexanes gradient) to provide the lactol $\mathbf{1 6 1}$ ($55 \mathrm{mg}, 42 \%$), which decomposed slowly in CDCl_{3} to an aromatic product, presumably the corresponding furan. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 6.47(\mathrm{~d}, \mathrm{~J}=12.5$ $\mathrm{Hz}, 1 \mathrm{H}), 6.11-6.02(\mathrm{~m}, 2 \mathrm{H}), 5.80(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.03(\mathrm{~d}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.81$
$(\mathrm{d}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.83(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.48(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 75\right.$ $\mathrm{MHz}) \delta 165.2,141.3,132.7,131.4,123.9,102.4,81.4,74.6,28.2$.

Sulfone 168

The primary alcohol ($203 \mathrm{mg}, 0.573 \mathrm{mmol}$) obtained by the reduction of acetal 171 was dissolved in THF (5 mL). To the solution was added $\operatorname{iPr}_{2} \mathrm{NEt}(300 \mu \mathrm{~L}, 1.72$ mmol), and the stirred solution was cooled to $0^{\circ} \mathrm{C}$. To this solution was added MsCl $(53 \mu \mathrm{~L}, 0.687 \mathrm{mmol})$, and the solution was allowed to slowly warm to room temperature with stirring. When none of the starting material remained by TLC analysis, the reaction mixture was partitioned between $\mathrm{H}_{2} \mathrm{O}$ and EtOAc, and the aqueous layer was extracted with additional EtOAc. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure.

The crude mesylate residue was further dried by toluene azeotrope, and then was dissolved in THF (3 mL). A separate flask was charged with NaH (34 mg of a 60% dispersion in oil, 0.86 mmol), THF (2 mL), and PTSH ($112 \mathrm{mg}, 0.63 \mathrm{mmol}$), and the solution was stirred for 30 min and cooled to $0^{\circ} \mathrm{C}$. The solution of the crude mesylate was added to the reaction flask via syringe, and the reaction was allowed to warm to room temperature with stirring over 12 h . After this period of time the reaction mixture was partitioned between EtOAc and $\mathrm{H}_{2} \mathrm{O}$, the layers were separated, and the aqueous layer was extracted with additional EtOAc. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under
reduced pressure. The residue was purified by column chromatography to provide the pure sulfide ($155 \mathrm{mg}, 52 \%$ over 2 steps) and recovered mesylate (88 mg) which accounted for most of the material balance.

Sulfide ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.59-7.49(\mathrm{~m}, 5 \mathrm{H}), 7.25(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, 2H), $6.84(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.65(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H})$, $3.77(\mathrm{~s}, 3 \mathrm{H}), 3.75-3.36(\mathrm{~m}, 5 \mathrm{H}), 2.17-2.06(\mathrm{~m}, 1 \mathrm{H}), 2.01-1.89(\mathrm{~m}, 1 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H})$, $0.05(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 159.3,154.5,133.8,130.7,130.1,129.8$, 129.7, 123.9, 113.9, 72.0, 55.4, 31.3, 29.9, 26.0, 18.4, -5.3, -5.3.

The purified sulfide ($100 \mathrm{mg}, 0.202 \mathrm{mmol}$) was then dissolved in EtOH (1 mL) and cooled to $0{ }^{\circ} \mathrm{C}$. To this solution was added a solution of $\left(\mathrm{NH}_{4}\right)_{6} \mathrm{Mo}_{7} \mathrm{O}_{24} * 4 \mathrm{H}_{2} \mathrm{O}(50$ $\mathrm{mg}, 0.0404 \mathrm{mmol})$ in $30 \% \mathrm{w} / \mathrm{w} \mathrm{H}_{2} \mathrm{O}_{2}(210 \mu \mathrm{~L}, 2.02 \mathrm{mmol})$, and the solution was allowed to warm to room temperature over 12 h . The reaction mixture was then extracted into $\mathrm{Et}_{2} \mathrm{O}$ and $\mathrm{H}_{2} \mathrm{O}$, and the aqueous layer was extracted with additional $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by column chromatography (hexanes / ethyl acetate gradient) to provide sulfone $\mathbf{1 6 8}$ as a clear oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.71-7.52(\mathrm{~m}, 5 \mathrm{H}), 7.25(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.88$ $(\mathrm{d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.61(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.89-3.54(\mathrm{~m}$, $5 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 2.33-2.19(\mathrm{~m}, 1 \mathrm{H}), 2.17-2.04(\mathrm{~m}, 1 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.06(\mathrm{~s}, 6 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 159.5,153.6,133.2,131.6,130.2,129.8,129.7,125.2$, $114.1,71.9,64.7,55.4,52.8,26.0,24.5,18.4,-5.3,-5.3$; ESI-MS m/z $571.03[\mathrm{M}+\mathrm{K}]^{+}$, $555.12[\mathrm{M}+\mathrm{Na}]^{+}$.

Julia adduct 166

To a solution of the sulfone $168(81 \mathrm{mg}, 0.152 \mathrm{mmol})$ in THF $(2 \mathrm{~mL})$ was added a solution of the aldehyde $167(35 \mathrm{mg}, 0.213 \mathrm{mmol})$ and the stirred solution was cooled to $-78{ }^{\circ} \mathrm{C}$. To this solution was added KHMDS (273 $\mu \mathrm{L}$ of a $15 \% \mathrm{w} / \mathrm{w}$ solution in toluene, 0.182 mmol) dropwise via syringe and the reaction was stirred at $-78^{\circ} \mathrm{C}$ for 90 min , and then was allowed to warm to room temperature. The reaction stirred for 30 min at room temperature, and then was quenched by the addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(3 \mathrm{~mL})$, and the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography (10:1 to 5:1 hexanes / ethyl acetate) to provide the Julia adduct $\mathbf{1 6 6}$ (49 mg, 67\%) as a clear oil, containing a small amount of the aldehyde $\mathbf{1 6 7}$ as observed by ${ }^{1} \mathrm{H}$ NMR. TLC (10:1 hexanes / ethyl acetate): $\mathrm{R}_{\mathrm{f}}=0.4 ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $400 \mathrm{MHz}) \delta 7.27(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.14(\mathrm{~d}, J=15.6 \mathrm{~Hz}$, $1 \mathrm{H}), 5.86(\mathrm{~s}, 1 \mathrm{H}), 5.81(\mathrm{~s}, 1 \mathrm{H}), 5.64(\mathrm{dt}, J=15.6,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.45(\mathrm{q}, J=6.9 \mathrm{~Hz}$, $1 \mathrm{H}), 4.60(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.66(\mathrm{dd}, J=$ $10.5,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{dd}, J=10.5,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.50(\mathrm{dq}, J=11.2,5.4 \mathrm{~Hz}, 1 \mathrm{H})$, $2.46-2.23(\mathrm{~m}, 2 \mathrm{H}), 1.93(\mathrm{~s}, 3 \mathrm{H}), 1.90(\mathrm{~s}, 3 \mathrm{H}), 1.78(\mathrm{~s}, 3 \mathrm{H}), 1.72(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$, $0.91(\mathrm{~s}, 9 \mathrm{H}), 0.06(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 159.2,138.1,135.3,134.7$, $133.8,133.4,132.2,131.2,129.5,125.1,124.9,113.8,79.7,71.8,65.4,55.4,35.3$, 26.1, 19.3, 18.5, 16.9, 14.4, 14.0, -5.2, -5.2; ESI-MS m/z $487.99\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 471.20$ $[\mathrm{M}+\mathrm{H}]^{+} ;$HR-EI-MS m / z calcd. for $\mathrm{C}_{29} \mathrm{H}_{46} \mathrm{O}_{3} \mathrm{Si}_{1}[\mathrm{M}]^{+}: 470.3211$, found 470.3217 .

Alcohol 181

To a solution of the diol $180(241 \mathrm{mg}, 1.10 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added a solution of veratraldehyde dimethyl acetal ($280 \mathrm{mg}, 1.30 \mathrm{mmol}$) in 2 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The solution was cooled to $0{ }^{\circ} \mathrm{C}$, PPTS ($28 \mathrm{mg}, 0.11 \mathrm{mmol}$) was added, and the reaction stirred for 30 min . After this period of time, TLC analysis of the reaction indicated the disappearance of starting material, and the formation of a new, higher R_{f} UV active product. The reaction mixture was partitioned between saturated NaHCO_{3} and EtOAc, and the aqueous layer was extracted with additional EtOAc. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by column chromatography ($10: 1$ to $5: 1$ hexanes ethyl acetate gradient) to provide the DMP acetal $(416 \mathrm{mg},>100 \%$, contaminated with the reagent) as a $\sim 1.2: 1$ epimeric mixture.

A solution of the DMP acetal ($400 \mathrm{mg}, 1.10 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ was cooled to $-78{ }^{\circ} \mathrm{C}$, and DIBAL-H (4.4 mL of a 1.0 M solution in hexanes, 4.40 mmol) was added via syringe. The solution was allowed to warm to $0{ }^{\circ} \mathrm{C}$, and stirred for 30 min, after which time the reaction mixture was quenched by the dropwise addition of MeOH , followed by saturated aqueous Rochelle's salt solution. Once the layers had completely separated, the aqueous layer was extracted with additional $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by column chromatography (1:1 to $1: 2$ hexanes / ethyl acetate gradient) to provide the alcohol

181 (203 mg, 50\% over 2 steps) as a clear oil. TLC (100% ethyl acetate): $\mathrm{R}_{\mathrm{f}}=0.5 ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 6.92-6.80(\mathrm{~m}, 3 \mathrm{H}), 4.55(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{~d}, J=$ $11.3,1 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.79-3.52(\mathrm{~m}, 5 \mathrm{H}), 2.42(\mathrm{t}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.92-$ $1.67(\mathrm{~m}, 2 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.06(\mathrm{~s}, 6 \mathrm{H})$.

Propargylic alcohol 182

To a suspension of powdered $4 \AA$ molecular sieves (20 mg) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added NMO ($39 \mathrm{mg}, 0.335 \mathrm{mmol}$), and a solution of the alcohol $181(82 \mathrm{mg}$, $0.223 \mathrm{mmol})$. To the stirring solution was added TPAP ($4 \mathrm{mg}, 0.012 \mathrm{mmol}$), and the green solution turned black over 10 minutes. TLC analysis of the reaction mixture indicated the formation of the aldehyde (active with DNP stain), and so the mixture was filtered through a silica gel plug with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and concentrated under reduced pressure to provide the aldehyde ($61 \mathrm{mg}, 74 \%$) which was used without further purification in the next step. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 9.65(\mathrm{~d}, \mathrm{~J}=9.65 \mathrm{~Hz}, 1 \mathrm{H})$, 6.97-6.77 (m, 3H), $4.61(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.99-3.94(\mathrm{~m}$, $1 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.81-3.68(\mathrm{~m}, 2 \mathrm{H}), 2.01-1.80(\mathrm{~m}, 2 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H})$, $0.04(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 203.6,149.2,149.0,130.1,120.8,111.4$, $111.0,80.6,72.7,58.2,56.0,56.0,33.9,26.0,18.4,-5.3,-5.3$.

To a suspension of $\mathrm{K}_{2} \mathrm{CO}_{3}(57 \mathrm{mg}, 0.414 \mathrm{mmol})$ and $\mathrm{TsN}_{3}(33 \mathrm{mg}, 0.166$ mmol) in $\mathrm{MeCN}(2 \mathrm{~mL})$ was added dimethyl-2-oxopropylphosphonate ($23 \mu \mathrm{~L}, 0.166$ mmol). The suspension was stirred at room temperature for 2 h , after which a solution of the above described aldehyde ($51 \mathrm{mg}, 0.138 \mathrm{mmol}$) in $\mathrm{MeOH}(500 \mu \mathrm{~L})$ was added
via syringe. The solution was allowed to stir for 12 h , and then was partitioned between EtOAc and $\mathrm{H}_{2} \mathrm{O}$. The aqueous layer was extracted with additional EtOAc, and the combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by column chromatography (5:1 hexanes / ethyl acetate) to provide the terminal alkyne (14 mg , 29\%). TLC (5:1 hexanes / ethyl acetate): $\mathrm{R}_{\mathrm{f}}=0.3 ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta$ 6.96-6.76 (m, 3H), $4.74(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.34-4.22(\mathrm{~m}$, $1 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.81-3.70(\mathrm{~m}, 2 \mathrm{H}), 2.48(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 0.86(\mathrm{~s}$, 9H), $0.03(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 149.0,148.8,130.4,120.9,111.5$, $110.9,83.1,74.0,70.9,65.3,59.1,56.0,55.9,38.9,26.0,18.4,-5.2$.

A solution of the above described alkyne ($14 \mathrm{mg}, 0.038 \mathrm{mmol}$) in THF (2 mL) was cooled to $-78^{\circ} \mathrm{C}$, and to the stirred solution was added $\mathrm{n}-\mathrm{BuLi}(27 \mu \mathrm{~L}$ of a 1.54 M solution in hexanes, 0.042 mmol), and the solution was stirred for 30 min to effect complete deprotonation, after which a suspension of paraformaldehyde ($2 \mathrm{mg}, 0.058$ $\mathrm{mmol})$ in THF $(100 \mu \mathrm{~L})$ was added via syringe. The solution was allowed to warm to room temperature, and after 1 h TLC analysis indicated that a new lower R_{f} product had formed, and that some starting material remained. The reaction mixture was allowed to stir for an additional 12 h at room temperature, after which it was partitioned between $\mathrm{H}_{2} \mathrm{O}$ and EtOAc, and the aqueous layer was extracted with additional EtOAc. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. Column chromatography of the residue (5:1 hexanes / ethyl acetate to 100% ethyl acetate gradient) provided recovered alkyne (6
mg) and the propargylic alcohol $182(5 \mathrm{mg}, 63 \%$ BORSM). TLC (5:1 hexanes / ethyl acetate $): \mathrm{R}_{\mathrm{f}}=0 ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 6.94-6.45(\mathrm{~m}, 3 \mathrm{H}), 4.72(\mathrm{~d}, \mathrm{~J}=11.2$ $\mathrm{Hz}, 1 \mathrm{H}), 4.42(\mathrm{~d}, \mathrm{~J}=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.37-4.30(\mathrm{~m}, 3 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.80-$ $3.68(\mathrm{~m}, 2 \mathrm{H}), 2.08-1.82(\mathrm{~m}, 2 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}), 0.02(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 149.0,130.5,120.8,111.4,110.9,85.1,84.2,70.9,65.6,59.1$, $56.0,55.9,51.4,39.0,26.0,18.4,-5.2$.

Stannane 183

To a reaction flask was charged $\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{PdCl}_{2}(1 \mathrm{mg}, 0.001 \mathrm{mmol})$, followed by a solution of the propargylic alcohol $182(5 \mathrm{mg}, 0.013 \mathrm{mmol})$ in THF $(500 \mu \mathrm{~L})$ via syringe. To the stirred solution was added $\mathrm{n}-\mathrm{Bu}_{3} \mathrm{SnH}(5 \mu \mathrm{~L}, 0.017 \mathrm{mmol})$ dropwise via syringe. The solution darkened, and was stirred for 20 min at room temperature. The solution was concentrated under reduced pressure, and the residue was purified by column chromatography (hexanes / ethyl acetate gradient) to provide the stannane $\mathbf{1 8 3}$ (9 mg, 93\%). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 6.90-6.77(\mathrm{~m}, 3 \mathrm{H}), 5.50(\mathrm{dt}, J=8.9,1.8$ $\mathrm{Hz}, 1 \mathrm{H}), 4.52(\mathrm{~d}, \mathrm{~J}=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.42-4.22(\mathrm{~m}, 4 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.76-$ $3.56(\mathrm{~m}, 2 \mathrm{H}), 1.95(\mathrm{t}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.97-1.84(\mathrm{~m}, 1 \mathrm{H}), 1.64-1.40(\mathrm{~m}, 6 \mathrm{H}), 1.40-$ $1.21(\mathrm{~m}, 6 \mathrm{H}), 1.04-0.78(\mathrm{~m}, 24 \mathrm{H}), 0.03(\mathrm{~s}, 6 \mathrm{H})$.

Aldehyde 191

To a $-78{ }^{\circ} \mathrm{C}$ solution of oxalyl chloride $(335 \mu \mathrm{~L}, 3.95 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10$ $\mathrm{mL})$ was added DMSO ($590 \mu \mathrm{~L}, 8.26 \mathrm{mmol}$) dropwise via syringe, and the solution
was stirred for 10 min . To this solution was added a solution of the alcohol $(813 \mathrm{mg}$, $3.59 \mathrm{mmol})$ derived from the DIBAL-H reduction of acetal 190 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$, and the reaction was stirred for 20 min . After this period of time, $\mathrm{Et}_{3} \mathrm{~N}(2.40 \mathrm{~mL}, 17.2$ mmol) was added via syringe, and the solution was allowed to warm to room temperature with stirring. The solution was then diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed successively with saturated aqueous NaHCO_{3}, deionized $\mathrm{H}_{2} \mathrm{O}$, and brine. The organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure to provide the aldehyde $191(620 \mathrm{mg}, 78 \%) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 9.80(\mathrm{t}, J=$ $1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.90-6.81(\mathrm{~m}, 3 \mathrm{H}), 4.47(\mathrm{~s}, 2 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{t}, J=6.1$ $\mathrm{Hz}, 2 \mathrm{H}), 2.70(\mathrm{td}, J=6.1,1.8 \mathrm{~Hz}, 2 \mathrm{H})$.

Propargylic alcohol 193

To a stirred $-78{ }^{\circ} \mathrm{C}$ solution of t-butyldimethyl(2-propynyloxy)silane (1.07 g , 7.08 mmol) in THF (80 mL) was added $\mathrm{n}-\mathrm{BuLi}(3.10 \mathrm{~mL}$ of a 2.31 M solution in hexanes, 7.08 mmol) via syringe, and the solution stirred for 30 min to ensure complete deprotonation. To this solution was added a solution of aldehyde 191 (930 $\mathrm{mg}, 4.15 \mathrm{mmol}$) in THF (5 mL) via cannula, and the reaction stirred for 1 h at $-78^{\circ} \mathrm{C}$, after which time TLC analysis indicated the disappearance of 191 . The reaction was quenched by the addition of a saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution, and warmed to room temperature. The mixture was diluted with EtOAc, and the layers were separated. The aqueous layer was extracted with additional EtOAc, and the combined organic layers were washed with deionized water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. Column chromatography of the residue
(hexanes / ethyl acetate gradient) provided the propargylic alcohol 193 ($1.14 \mathrm{~g}, 70 \%$) together with mixed fractions $(0.41 \mathrm{~g})$ that had additional 193 with unidentified impurities. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 6.90-6.80(\mathrm{~m}, 3 \mathrm{H}), 4.68-4.60(\mathrm{~m}, 1 \mathrm{H}), 4.48$ $(\mathrm{d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H})$, $3.88(\mathrm{~s}, 3 \mathrm{H}), 3.87-3.79(\mathrm{~m}, 1 \mathrm{H}), 3.70-3.62(\mathrm{~m}, 1 \mathrm{H}), 3.02(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.13-2.02$ $(\mathrm{m}, 1 \mathrm{H}), 2.00-1.89(\mathrm{~m}, 1 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.11(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta$ $149.2,148.8,130.5,120.5,111.1,111.0,85.2,83.7,73.4,67.6,61.7,60.6,56.1,56.0$, 51.9, 36.8, 26.0, 21.2, 18.4, 14.4, -5.0; ESI-MS m/z $412.01\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$; HR-ESI-MS m / z calcd. for $\mathrm{C}_{21} \mathrm{H}_{34} \mathrm{O}_{5} \mathrm{Si}_{1} \mathrm{Na}_{1}:[\mathrm{M}+\mathrm{Na}]^{+}: 417.2068$, found 417.2072.

Alcohol 194

To a solution of the propargylic alcohol $193(1.14 \mathrm{~g}, 2.89 \mathrm{mmol})$ in DMF (15 $\mathrm{mL})$ was added imidazole ($530 \mathrm{mg}, 7.80 \mathrm{mmol}$) and $\mathrm{TBSCl}(565 \mathrm{mg}, 3.75 \mathrm{mmol})$. The solution was stirred at room temperature for 12 h , and then was partitioned between saturated aqueous NaHCO_{3} and a 1:1 mixture of hexanes / diethyl ether. The aqueous layer was extracted with an additional portion of this mixture, and the combined organic layers were washed successively with deionized $\mathrm{H}_{2} \mathrm{O}$ and brine. The solution was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by column chromatography (hexanes / ethyl acetate gradient) to provide the bis-TBS ether ($1.34 \mathrm{~g}, 91 \%$) as a clear oil. Bis-TBS ether ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 6.91-6.79(\mathrm{~m}, 3 \mathrm{H}), 4.62-4.56(\mathrm{~m}, 1 \mathrm{H}), 4.43(\mathrm{~d}, \mathrm{~J}=11.4 \mathrm{~Hz}, 1 \mathrm{H})$, $4.40(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{~d}, \mathrm{~J}=1.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.63-$ $3.52(\mathrm{~m}, 2 \mathrm{H}), 1.96(\mathrm{dd}, J=12.8,6.3 \mathrm{~Hz}, 2 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.13(\mathrm{~s}, 3 \mathrm{H})$,
$0.10(\mathrm{~s}, 6 \mathrm{H}), 0.10(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta$ 149.1, 148.6, 131.1, 120.4, $111.1,111.0,86.2,82.8,73.1,66.3,60.1,56.1,55.9,51.9,38.8,31.7,25.9,22.8,18.4$, 18.3, 14.3, -4.3, -4.9, -5.0.

A stock solution of $70 \% \mathrm{w} / \mathrm{w}$ HF-pyridine $(0.5 \mathrm{~mL})$ in THF (3 mL) and pyridine (3 mL) was prepared in a plastic vial, which corresponded to $85 \mathrm{mg} \mathrm{HF} / \mathrm{mL}$ of the solution. A solution of the above described bis-TBS ether ($340 \mathrm{mg}, 0.668$ mmol) in 1:1 THF-pyridine (3 mL) was stirred, as portions of the HF-pyridine stock solution ($2.3 \mathrm{~mL}, 0.668 \mathrm{mmol}$) were added as needed based on occasional monitoring by TLC. When the starting material had been consumed, the reaction was quenched by the addition of saturated aqueous NaHCO_{3}. The mixture was partitioned between $\mathrm{H}_{2} \mathrm{O}$ and EtOAc , and the aqueous layer was extracted with additional EtOAc. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by column chromatography (hexanes / ethyl acetate gradient) to provide the alcohol 194 (244 mg , $92 \%)$ as a clear oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 6.91-6.80(\mathrm{~m}, 3 \mathrm{H}), 4.64-4.58(\mathrm{~m}$, $1 \mathrm{H}), 4.45(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{dd}, J=6.2,1.7 \mathrm{~Hz}$, $1 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.63-3.52(\mathrm{~m}, 2 \mathrm{H}), 1.96(\mathrm{q}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.49(\mathrm{t}, \mathrm{J}=$ 6.2 Hz, 1H), $0.90(\mathrm{~s}, 9 \mathrm{H}), 0.13(\mathrm{~s}, 3 \mathrm{H}), 0.10(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta$ $149.1,148.7,131.1,120.4,111.2,110.9,87.4,82.4,73.1,66.1,60.1,56.0,51.3,38.8$, 25.9, 18.4, -4.4, -4.9.

Stannane 195

To a reaction flask was charged $\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{PdCl}_{2}(34 \mathrm{mg}, 0.048 \mathrm{mmol})$, and a solution of the alcohol 194 (191 mg, 0.484 mmol) in THF (5 mL). The suspension was stirred at room temperature as $\mathrm{n}-\mathrm{Bu}_{3} \mathrm{SnH}(170 \mu \mathrm{~L}, 0.629 \mathrm{mmol})$ was added dropwise via syringe. The solution darkened and was stirred for 20 min , then concentrated under reduced pressure. Column chromatography of the residue (hexanes / ethyl acetate gradient) provided the pure stannane 195 (207 mg, 62\%). ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 6.90-6.80(\mathrm{~m}, 3 \mathrm{H}), 5.53(\mathrm{dt}, J=8.1,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.61(\mathrm{td}$, $J=7.8,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.45-4.35(\mathrm{~m}, 3 \mathrm{H}), 4.27(\mathrm{ddd}, J=13.6,5.4,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{~s}$, $3 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.57-3.41(\mathrm{~m}, 2 \mathrm{H}), 1.92-1.78(\mathrm{~m}, 1 \mathrm{H}), 1.81(\mathrm{t}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.70-$ $1.57(\mathrm{~m}, 1 \mathrm{H}), 1.55-1.42(\mathrm{~m}, 6 \mathrm{H}), 1.37-1.23(\mathrm{~m}, 6 \mathrm{H}), 0.94-0.83(\mathrm{~m}, 24 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H})$, $0.03(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 149.1,148.7,145.4,143.1,131.1,120.3$, $111.2,111.0,73.0,67.1,66.8,63.8,56.1,55.9,38.2,29.4,27.5,26.0,18.4,13.9,10.2$, -4.2, -4.7.

Iodide 196

To a reaction flask was charged $\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{PdCl}_{2}(302 \mathrm{mg}, 0.430 \mathrm{mmol})$ and a solution of the alcohol $194(1.70 \mathrm{~g}, 4.30 \mathrm{mmol})$ in THF $(50 \mathrm{~mL})$. The solution stirred at room temperature as $\mathrm{n}-\mathrm{Bu}_{3} \mathrm{SnH}(1.51 \mathrm{~mL}, 5.60 \mathrm{mmol})$ was added slowly via syringe, and the darkened solution stirred for an additional 20 min . The solution was then concentrated under reduced pressure and redissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (50 mL), and cooled to $0{ }^{\circ} \mathrm{C}$. A solution of $\mathrm{I}_{2}(1.15 \mathrm{~g}, 4.50 \mathrm{mmol})$ was added via cannula, and the ice bath was allowed to melt. After the mixture had stirred for 30 min at room
temperature, solid KF on celite was added to adsorb the tin byproducts, and the suspension stirred for 2 h at room temperature. The reaction mixture was filtered and then concentrated under reduced pressure. Column chromatography of the residue (hexanes / ethyl acetate gradient) provided the iodide $196(1.63 \mathrm{~g}, 72 \%)$ and 660 mg of impure material from mixed fractions. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 6.90-6.98(\mathrm{~m}$, $3 \mathrm{H}), 6.25(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.72(\mathrm{dt}, J=9.2,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H})$, $4.39(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{dd}, J=13.7,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{dd}, J=13.7,6.9 \mathrm{~Hz}$, $1 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.56-3.46(\mathrm{~m}, 2 \mathrm{H}), 2.81(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.85-1.87$ $(\mathrm{m}, 1 \mathrm{H}), 1.70-1.61(\mathrm{~m}, 1 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $125 \mathrm{MHz}) \delta 149.1,145.8,130.4,120.5,111.2,111.2,110.9,103.5,73.0,68.1,67.0$, 66.1, 56.0, 55.9, 37.7, 25.9, 18.3, -4.3, -4.8.

Enyne 197

To a solution of the iodide $196(849 \mathrm{mg}, 1.62 \mathrm{mmol})$ and propargyl benzoate $(359 \mathrm{mg}, 2.24 \mathrm{mmol})$ in $\mathrm{Et}_{3} \mathrm{~N}(10 \mathrm{~mL})$ was added $\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{PdCl}_{2}(114 \mathrm{mg}, 0.162 \mathrm{mmol})$ and $\mathrm{CuI}(93 \mathrm{mg}, 0.486 \mathrm{mmol})$, and the reaction was stirred at room temperature. When TLC analysis indicated the consumption of iodide 196, the reaction mixture was diluted with EtOAc and filtered through a celite plug. The solution was concentrated under reduced pressure, and the residue was purified by column chromatography (hexanes / ethyl acetate gradient) to provide the enyne 197 (719 mg, 80\%). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 8.08(\mathrm{~d}, J=8.0,2 \mathrm{H}), 7.58(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{t}, J=8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 6.90-6.80(\mathrm{~m}, 3 \mathrm{H}), 5.95(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{~s}, 2 \mathrm{H}), 4.72(\mathrm{dt}, J=8.6,7.0$ $\mathrm{Hz}, 1 \mathrm{H}), 4.42(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.22-4.12(\mathrm{~m}, 2 \mathrm{H}), 3.89$
(s, 3H), 3.87 (s, 3H), 3.56-3.43(m, 2H), 2.56(t, $J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.99-1.87(\mathrm{~m}, 1 \mathrm{H})$, $1.72-1.63(\mathrm{~m}, 1 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125\right.$ $\mathrm{MHz}) \delta 166.1,149.1,148.7,143.2,133.5,130.6,130.0,129.6,128.6,122.2,120.5$, $111.2,110.9,86.2,83.1,73.0,66.2,66.1,60.8,56.0,55.9,53.4,38.0,25.9,18.3,-4.3$, -4.8.

Bis-TBS ether 198

To a solution of the enyne $197(719 \mathrm{mg}, 1.30 \mathrm{mmol})$ in DMF $(10 \mathrm{~mL})$ was added imidazole ($265 \mathrm{mg}, 3.90 \mathrm{mmol}$) and $\mathrm{TBSCl}(294 \mathrm{mg}, 1.95 \mathrm{mmol}$), and the reaction mixture was stirred at room temperature until no more starting material was visible by TLC. The reaction mixture was partitioned between saturated aqueous NaHCO_{3} and a 1:1 mixture of hexanes / diethyl ether, and the layers were separated. The aqueous layer was extracted with an additional portion of the solvent mixture, and the combined organic layers were washed successively with deionized $\mathrm{H}_{2} \mathrm{O}$ and brine. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. Column chromatography (hexanes / ethyl acetate gradient) provided the bis TBS ether 198 ($644 \mathrm{mg}, 74 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 8.08(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 7.58(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.89-6.80(\mathrm{~m}, 3 \mathrm{H}), 5.91(\mathrm{~d}, J=$ 8.6 Hz, 1H), $5.05(\mathrm{~s}, 2 \mathrm{H}), 4.70(\mathrm{dt}, J=8.4,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H})$, $4.39(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~s}$, $3 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.58-3.42(\mathrm{~m}, 2 \mathrm{H}), 1.86-1.66(\mathrm{~m}, 2 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H})$, $0.06(\mathrm{~s}, 6 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 166.1,149.0$,
$148.6,143.4,133.3,131.2,130.0,129.8,128.5,121.6,120.3,111.0,110.9,87.2,82.0$, $73.0,66.4,66.0,60.9,56.0,55.9,53.5,38.1,26.0,25.9,18.5,18.3,-4.2,-4.8,-5.1$.

Diene 199

To a stirred solution of bis-TBS ether 198 ($256 \mathrm{mg}, 0.383 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{H}_{2} \mathrm{O}(9: 1$ ratio, 10 mL) was added DDQ ($95 \mathrm{mg}, 0.421 \mathrm{mmol}$), and the initially green suspension faded to colorless with precipitation over the course of about 10 min . The suspension was filtered through a silica gel plug with $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}$ (1:1), and the filtrate was concentrated under reduced pressure. The residue was purified by column chromatography (hexane / ethyl acetate gradient) to provide the primary alcohol (166 mg, 83\%). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 8.08(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 7.58(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.99(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{~s}$, $2 \mathrm{H}), 4.85(\mathrm{dt}, J=8.9,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{~d}, J=12.1 \mathrm{~Hz}$, $1 \mathrm{H}), 3.79-3.62(\mathrm{~m}, 2 \mathrm{H}), 2.72(\mathrm{t}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.92-1.78(\mathrm{~m}, 1 \mathrm{H}), 1.75-1.64(\mathrm{~m}$, $1 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.11(\mathrm{~s}, 3 \mathrm{H}), 0.10(\mathrm{~s}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 166.0,143.7,133.4,130.0,129.7,128.5,121.3,87.1$, 82.3, 68.2, 61.6, 59.9, 53.4, 40.0, 26.0, 25.9, 18.5, 18.2, -4.1, -4.8, -5.0, -5.2; ESI-MS $\mathrm{m} / \mathrm{z} 541.33[\mathrm{M}+\mathrm{Na}]^{+}, 536.12\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$; HR-ESI-MS m/z calcd. for $\mathrm{C}_{28} \mathrm{H}_{46} \mathrm{O}_{5} \mathrm{Si}_{2} \mathrm{Na}_{1}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 541.2776$, found 541.2766.

To a solution of the above described alcohol ($63 \mathrm{mg}, 0.12 \mathrm{mmol}$) in MeOH (5
 room temperature. One balloon filled with H_{2} was bubbled through the solution using
a 6 " needle and a vent needle through the septum, and then the reaction mixture was filtered through celite with EtOAc. The resulting solution was stirred over $\mathrm{CuSO}_{4} * \mathrm{xH}_{2} \mathrm{O}$ and filtered again through celite with EtOAc , and the solution was concentrated under reduced pressure. The residue was purified by column chromatography (hexane / ethyl acetate gradient) to provide the diene 199 (58 mg , $92 \%) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 8.05(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{t}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.44(\mathrm{t}, J=7.44 \mathrm{~Hz}, 2 \mathrm{H}), 6.18(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.80(\mathrm{dt}, J=11.6,6.7 \mathrm{~Hz}$, $1 \mathrm{H}), 5.51(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.00(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.84(\mathrm{dt}, J=8.7,5.6 \mathrm{~Hz}, 1 \mathrm{H})$, $4.23(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.86-3.66(\mathrm{~m}, 2 \mathrm{H}), 2.64(\mathrm{t}, J=5.6$ $\mathrm{Hz}, 1 \mathrm{H}), 1.96-1.69(\mathrm{~m}, 2 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.10(\mathrm{~s}, 3 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H}), 0.08$ $(\mathrm{s}, 3 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 166.5,136.5,134.1,134.0$, $133.1,130.4,129.8,128.5,126.0,68.6,62.0,61.1,60.2,40.5,26.0,25.9,18.4,18.2,-$ 4.1, -4.7, -5.2, -5.2; ESI-MS m/z $543.28[\mathrm{M}+\mathrm{Na}]^{+}$; HR-ESI-MS m / z calcd. for $\mathrm{C}_{28} \mathrm{H}_{48} \mathrm{O}_{5} \mathrm{Si}_{2} \mathrm{Na}_{1}[\mathrm{M}+\mathrm{Na}]^{+}: 543.2932$, found 543.2920.

Sulfone 200

To a reaction flask was charged $\mathrm{PPh}_{3}(46 \mathrm{mg}, 0.179 \mathrm{mmol})$ and PTSH (42 mg , $0.238 \mathrm{mmol})$. A solution of the diene $199(62 \mathrm{mg}, 0.119 \mathrm{mmol})$ in THF (5 mL) was added via syringe to the reaction flask, and the stirred solution was cooled to $0^{\circ} \mathrm{C}$. To the cooled solution was added DIAD ($42 \mu \mathrm{~L}, 0.214 \mathrm{mmol}$) dropwise via syringe, and the solution was allowed to warm to room temperature as it stirred for 12 h . The reaction mixture was then partitioned between aqueous saturated NaHCO_{3} and EtOAc , and the aqueous layer was extracted with additional EtOAc. The combined organic
layers were washed with deionized $\mathrm{H}_{2} \mathrm{O}$ and brine, and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The organic layer was filtered and concentrated under reduced pressure, and the residue was purified by column chromatography (hexanes / ethyl acetate gradient) to provide the sulfide intermediate ($79 \mathrm{mg}, 97 \%$). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 8.04(\mathrm{~d}, \mathrm{~J}=8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 7.62-7.48(\mathrm{~m}, 6 \mathrm{H}), 7.42(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.18(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.78$ (dt, $J=11.7,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.44(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.98(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.72$ (td, J $=8.4,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{t}, J=7.1$ $\mathrm{Hz}, 2 \mathrm{H}), 2.18-1.87(\mathrm{~m}, 2 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}), 0.05(\mathrm{~s}, 9 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 166.4,154.5,135.6,134.9,133.8,133.7,133.0,130.4$, $130.2,129.9,129.7,128.5,125.9,123.9,67.8,62.0,60.8,37.8,29.6,26.1,26.0,25.9$, 18.4, 18.2, -4.1, -4.7, -5.2; ESI-MS m/z $703.27[\mathrm{M}+\mathrm{Na}]^{+}$; HR-ESI-MS m / z calcd. for $\mathrm{C}_{35} \mathrm{H}_{52} \mathrm{O}_{4} \mathrm{~N}_{4} \mathrm{Si}_{2} \mathrm{~S}_{1} \mathrm{Na}_{1}[\mathrm{M}+\mathrm{Na}]^{+}: 703.3140$, found 703.3126 .

A solution of the above described sulfide intermediate ($124 \mathrm{mg}, 0.182 \mathrm{mmol}$) in $\mathrm{EtOH}(5 \mathrm{~mL})$ was cooled to $0{ }^{\circ} \mathrm{C}$ as it stirred. A separate solution of $\left(\mathrm{NH}_{4}\right)_{6} \mathrm{Mo}_{7} \mathrm{O}_{24} * 4 \mathrm{H}_{2} \mathrm{O}(45 \mathrm{mg}, 0.036 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}_{2}(278 \mu \mathrm{~L}$ of a $30 \% \mathrm{w} / \mathrm{w}$ aqueous solution, 2.73 mmol) was prepared, and then added to the cooled reaction flask. The ice bath was allowed to melt and the reaction warmed to room temperature as it stirred for 12 h . After this period of time the reaction mixture was partitioned between deionized $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{Et}_{2} \mathrm{O}$, and the layers were separated. The aqueous layer was extracted with additional $\mathrm{Et}_{2} \mathrm{O}$, and the combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by column chromatography (hexanes / ethyl acetate gradient) to
provide the sulfone $200(91 \mathrm{mg}, 70 \%) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 8.03(\mathrm{~d}, J=7.6$ $\mathrm{Hz}, 2 \mathrm{H}), 7.72-7.51(\mathrm{~m}, 6 \mathrm{H}), 7.43(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.17(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.80$ (dt, $J=12.6,6.8 \mathrm{~Hz}), 5.41(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.03-4.91(\mathrm{~m}, 2 \mathrm{H}), 4.84(\mathrm{dt}, J=8.3,6.0$ $\mathrm{Hz}, 1 \mathrm{H}), 4.25(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.91-3.80(\mathrm{~m}, 2 \mathrm{H}), 2.21-$ $2.13(\mathrm{~m}, 2 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H}), 0.07(\mathrm{~s}, 6 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H})$.

Julia adduct 201

To a solution of the sulfone $200(87 \mathrm{mg}, 0.122 \mathrm{mmol})$ in THF (2 mL) was added a solution of the aldehyde $167(2 \mathrm{~mL}$ of a $13.3 \mathrm{mg} / \mathrm{mL}$ stock solution, 0.162 mmol) in THF, and the solution was stirred and cooled to $-78{ }^{\circ} \mathrm{C}$. To the cooled reaction mixture was added KHMDS (222 $\mu \mathrm{L}$ of a $15 \% \mathrm{w} / \mathrm{w}$ solution in toluene, 0.146 mmol), and the yellow solution stirred for 1 h at $-78^{\circ} \mathrm{C}$ before being allowed to warm to room temperature, and was stirred for 30 min at room temperature. The reaction mixture was quenched by the addition of a saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution, and then was diluted with $\mathrm{Et}_{2} \mathrm{O}$ and deionized $\mathrm{H}_{2} \mathrm{O}$. The layers were separated and the aqueous layer was extracted with additional $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by column chromatography (hexane / diethyl ether gradient) to provide the Julia adduct $201(52 \mathrm{mg}, 66 \%) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 8.05(\mathrm{~d}, \mathrm{~J}$ $=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.55(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.21(\mathrm{~d}, J=11.6 \mathrm{~Hz}$, $1 \mathrm{H}), 6.14(\mathrm{~d}, \mathrm{~J}=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.85(\mathrm{~s}, 1 \mathrm{H}), 5.81-5.72(\mathrm{~m}, 1 \mathrm{H}), 5.77(\mathrm{~s}, 1 \mathrm{H}), 5.63(\mathrm{dt}$, $J=15.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.47-5.38(\mathrm{~m}, 1 \mathrm{H}), 5.43(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.06-4.94(\mathrm{~m}, 2 \mathrm{H})$, 4.59-4.49 (m, 1H), $4.27(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.46-2.24(\mathrm{~m}$,
$2 \mathrm{H}), 1.89(\mathrm{~s}, 6 \mathrm{H}), 1.74(\mathrm{~s}, 3 \mathrm{H}), 1.70(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H})$, $0.07(\mathrm{~s}, 6 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H})$; ESI-MS m/z $689.40[\mathrm{M}+\mathrm{K}]^{+}, 673.39[\mathrm{M}+\mathrm{Na}]^{+}$, $668.17\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$; HR-ESI-MS m / z calcd. for $\mathrm{C}_{39} \mathrm{H}_{62} \mathrm{O}_{4} \mathrm{Na}_{1} \mathrm{Si}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$: 673.4079, found 673.4091.

Alcohol 202

To the Julia adduct $201(7 \mathrm{mg}, 0.0106 \mathrm{mmol})$ was added $\mathrm{NaOH}(4 \mathrm{~mL}$ of a 1% w / v solution in MeOH), and the solution stirred at room temperature for 30 min , at which time TLC analysis indicated the disappearance of starting material. The reaction mixture was then partitioned between EtOAc and deionized $\mathrm{H}_{2} \mathrm{O}$, and the aqueous layer was extracted with additional EtOAc. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by column chromatography to provide the alcohol 202 ($4 \mathrm{mg}, 71 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 6.11(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.03(\mathrm{~d}, J$ $=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.87(\mathrm{~s}, 1 \mathrm{H}), 5.80(\mathrm{~s}, 1 \mathrm{H}), 5.74(\mathrm{dt}, J=11.7,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.61(\mathrm{dt}, J=$ $16.0,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.45(\mathrm{q}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.28(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.54-4.45(\mathrm{~m}$, $1 \mathrm{H}), 4.28(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.22(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H})$, 2.44-2.17 (m, 2H), $1.92(\mathrm{~s}, 3 \mathrm{H}), 1.90(\mathrm{~s}, 3 \mathrm{H}), 1.77(\mathrm{~s}, 3 \mathrm{H}), 1.71(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H})$, $1.64(\mathrm{t}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}), 0.05(\mathrm{~s}$, $3 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H})$.

Pyran 204

To the alcohol $202(4 \mathrm{mg}, 0.007 \mathrm{mmol})$ was added $\mathrm{NMO}(1 \mathrm{mg}, 0.011 \mathrm{mmol})$, and a small portion of powdered $4 \AA$ molecular sieves, and the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mu \mathrm{~L})$. To this stirred suspension was added a catalytic amount of TPAP and the green solution turned black over a few min of stirring at room temperature. The suspension was filtered through a short silica gel plug, and the solution was concentrated under reduced pressure to yield a few mg of what is tentatively thought to be pyran 204, possibly as an undetermined ratio of diastereomers. ${ }^{1} H$ NMR spectral scans: Spectrum 2.73 - Spectrum 2.75, the lack of any aldehyde signal was noted. ESI-MS m/z $567.33[\mathrm{M}+\mathrm{Na}]^{+}$; HR-ESI-MS m / z calcd. for $\mathrm{C}_{32} \mathrm{H}_{56} \mathrm{O}_{3} \mathrm{Na}_{1} \mathrm{Si}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$: 567.3660, found 567.3663.

Alkyne 205

A stirred solution of freshly distilled diisopropylamine $(811 \mu \mathrm{~L}, 5.80 \mathrm{mmol})$ in THF (10 mL) was cooled to $0{ }^{\circ} \mathrm{C}$, and $\mathrm{n}-\mathrm{BuLi}(2.63 \mathrm{~mL}$ of a 2.2 M solution in hexanes, 5.85 mmol) was added via syringe. The LDA solution stirred at $0{ }^{\circ} \mathrm{C}$ for 30 min. A separate reaction flask was charged with tetronate 144 ($696 \mathrm{mg}, 5.52 \mathrm{mmol}$), which was dissolved in THF (5 mL) and cooled to $-78{ }^{\circ} \mathrm{C}$. The LDA solution was added to the cooled reaction flask via cannula, and the reaction mixture was stirred for 30 min at $-78{ }^{\circ} \mathrm{C}$. A solution of tert-butyldimethylsilylpropynal ($929 \mathrm{mg}, 5.52 \mathrm{mmol}$) in THF (3 mL) was added to the reaction flask via syringe. The reaction mixture stirred at $-78^{\circ} \mathrm{C}$ for 1 h , and then was quenched by the addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$. The mixture was warmed to room temperature and partitioned between

EtOAc and deionized $\mathrm{H}_{2} \mathrm{O}$. The aqueous layer was extracted with additional EtOAc, and the combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by column chromatography to provide the propargylic alcohol precursor (773 mg, 48\%). ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 5.57(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.14(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{~d}$, $J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{~s}, 3 \mathrm{H}), 3.16(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H}), 0.10(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 168.9,162.9,149.4,104.8,103.9,94.2,90.5,61.5,55.5$, 26.1, 16.6, -4.7.

To a solution of the above described propargylic alcohol precursor (773 mg, 2.63 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$ was added DMAP ($16 \mathrm{mg}, 0.132 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}$ $(732 \mu \mathrm{~L}, 5.26 \mathrm{mmol})$, and the solution was stirred at room temperature. To the stirred solution was added benzoyl chloride ($336 \mu \mathrm{~L}, 2.89 \mathrm{mmol}$) dropwise via syringe, and the reaction mixture stirred until TLC analysis indicated the disappearance of starting material. The reaction mixture was then partitioned between $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and saturated aqueous NaHCO_{3}. The aqueous layer was extracted with additional $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the combined organic layers were washed successively with deionized $\mathrm{H}_{2} \mathrm{O}$ and brine, and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The organic layer was filtered and concentrated under reduced pressure, and the residue was purified by column chromatography to provide the benzoate intermediate $(539 \mathrm{mg}, 54 \%) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 8.04(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.59(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.72(\mathrm{~s}, 1 \mathrm{H}), 5.15(\mathrm{~d}, J=$ $2.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{~s}, 3 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H}), 0.12(\mathrm{~s}, 6 \mathrm{H})$.

A solution of the above described benzoate intermediate ($23 \mathrm{mg}, 0.057 \mathrm{mmol}$) in THF (2 mL) was stirred and cooled to $0^{\circ} \mathrm{C}$. To the solution was added TBAF (60 $\mu \mathrm{L}$ of a 1.0 M solution in THF), and the darkened reaction mixture stirred for about 10 min, at which time TLC analysis indicated the disappearance of starting material. The reaction was quenched by the dropwise addition of AcOH , and the mixture was partitioned between deionized $\mathrm{H}_{2} \mathrm{O}$ and EtOAc. The aqueous layer was extracted with additional EtOAc, and the combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by column chromatography to provide the alkyne $205(5 \mathrm{mg}, 33 \%)$ which had an unidentified contaminant observed in the ${ }^{1} \mathrm{H}$ spectrum. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500\right.$ $\mathrm{MHz}) \delta 8.05(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.60(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $6.75(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.18(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.15(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{~s}$, 3H), $2.73(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 167.4,164.8,164.5$, $149.4,133.8,130.3,130.0,128.8,100.8,94.6,79.7,76.4,61.6,56.2$.

Ene-yn-al 207

To a stirred solution of the bis-TBS ether 211 ($290 \mathrm{mg}, 0.455 \mathrm{mmol}$) and propargyl alcohol ($34 \mu \mathrm{~L}, 0.592 \mathrm{mmol}$) in $\mathrm{Et}_{3} \mathrm{~N}(5 \mathrm{~mL})$ at room temperature were added $\mathrm{CuI}(26 \mathrm{mg}, 0.137 \mathrm{mmol})$ and $\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{PdCl}_{2}(32 \mathrm{mg}, 0.0455 \mathrm{mmol})$. The reaction stirred until the complete disappearance of the starting material 211 was observed by TLC, and then was filtered through a silica gel plug with EtOAc. The filtrate was concentrated under reduced pressure, and the residue was purified by column chromatography to provide the enyne intermediate ($250 \mathrm{mg}, 97 \%$). ${ }^{1} \mathrm{H}$ NMR
$\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 6.92-6.77(\mathrm{~m}, 3 \mathrm{H}), 5.86(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.70(\mathrm{td}, J=8.7,5.1$ $\mathrm{Hz}, 1 \mathrm{H}), 4.41-4.36(\mathrm{~m}, 4 \mathrm{H}), 4.23(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.88$ (s, 3H), $3.87(\mathrm{~s}, 3 \mathrm{H}), 3.58-3.42(\mathrm{~m}, 2 \mathrm{H}), 1.87-1.64(\mathrm{~m}, 2 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H})$, $0.07(\mathrm{~s}, 6 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 149.1,148.6$, $142.9,131.2,121.7,120.3,111.2,111.0,86.3,73.0,66.1,61.1,55.9,51.8,38.1,26.0$, $26.0,18.5,18.3,-4.2,-4.8,-5.1$.

To a reaction flask was charged the enyne intermediate described above (239 $\mathrm{mg}, 0.422 \mathrm{mmol})$, NMO ($74 \mathrm{mg}, 0.634 \mathrm{mmol}$), and powdered $4 \AA$ molecular sieves ($\sim 50 \mathrm{mg}$). The mixture was suspended in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and TPAP ($7 \mathrm{mg}, 0.021$ mmol) was added with stirring at room temperature. The suspension turned from green to black, and when TLC analysis indicated the disappearance of starting material, the mixture was filtered through a short plug of silica gel with $1: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2}$: EtOAc. The filtrate was concentrated under reduced pressure to provide the ene-yn-al 207 (186 mg, 78\%). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 9.30(\mathrm{~s}, 1 \mathrm{H}), 6.89-6.79(\mathrm{~m}, 3 \mathrm{H})$, $6.23(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.74(\mathrm{dt}, J=8.6,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.38$ $(\mathrm{d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H})$, $3.87(\mathrm{~s}, 3 \mathrm{H}), 3.58-3.44(\mathrm{~m}, 2 \mathrm{H}), 1.88-1.66(\mathrm{~m}, 2 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.08(\mathrm{~s}$, $3 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 176.9$, $150.0,149.0,148.6,131.0,120.4,111.1,111.0,96.3,87.7,73.1,66.2,66.0,60.3,55.9$, 37.8, 25.9, 25.8, 18.4, 18.2, -4.3, -4.8, -5.2.

Stannane 210

A solution of $i-\mathrm{Pr}_{2} \mathrm{NH}(1.02 \mathrm{~mL}, 7.32 \mathrm{mmol})$ in THF $(50 \mathrm{~mL})$ was cooled to 0 ${ }^{\circ} \mathrm{C}$ with stirring, and then $\mathrm{n}-\mathrm{BuLi}(3.58 \mathrm{~mL}$ of a 2.0 M solution in hexanes, 7.32 mmol) was added slowly via syringe, and the solution stirred for 30 min at $0^{\circ} \mathrm{C}$. A separate reaction flask was charged with tetronate $\mathbf{1 4 4}(885 \mathrm{mg}, 7.03 \mathrm{mmol})$, and THF $(50 \mathrm{~mL})$, and the stirred solution was cooled to $-78^{\circ} \mathrm{C}$. The LDA solution was added to the reaction flask via cannula, and the reaction stirred at $-78{ }^{\circ} \mathrm{C}$ for 10 min as the solution darkened. A solution of aldehyde $209(2.02 \mathrm{~g}, 5.9 \mathrm{mmol})$ in THF (20 mL) was then added via cannula, and the reaction stirred at $-78{ }^{\circ} \mathrm{C}$ for 2 h , at which point TLC analysis indicated that the reaction mixture consisted mostly of a new product with different R_{f} than both of the starting materials. The reaction mixture was quenched by the addition of a saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution, and then warmed to room temperature. The mixture was partitioned between deionized $\mathrm{H}_{2} \mathrm{O}$ and EtOAc, and the aqueous layer was extracted with additional EtOAc. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by column chromatography (5:1 to $2: 1$ hexane / ethyl acetate gradient) to provide the stannane $210(1.86 \mathrm{~g}, 68 \%)$ as a colorless oil. TLC (2:1 hexanes / ethyl acetate): $\mathrm{R}_{\mathrm{f}}=0.6 ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ $\delta 6.76(\mathrm{dd}, J=12.6,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.21(\mathrm{dd}, J=12.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.24-5.20(\mathrm{~m}, 1 \mathrm{H})$, 5.10-5.08 (m, 2H), $4.18(\mathrm{~s}, 3 \mathrm{H}), 2.88(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.57-1.42(\mathrm{~m}, 6 \mathrm{H}), 1.36-1.25$ $(\mathrm{m}, 6 \mathrm{H}), 1.01-0.83(\mathrm{~m}, 15 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 169.4,162.3,149.5$, 146.6, 133.7, 106.7, 93.8, 67.6, 61.2, 29.3, 27.5, 13.9, 11.1; HR-ESI-MS m/z calcd. for $\mathrm{C}_{21} \mathrm{H}_{37} \mathrm{O}_{4} \mathrm{Sn}_{1}[\mathrm{M}+\mathrm{H}]^{+}: 473.1708$, found 473.1712 .

Bis-TBS ether 211

To a solution of the iodide $196(335 \mathrm{mg}, 0.641 \mathrm{mmol})$ in DMF (6 mL) were added imidazole ($131 \mathrm{mg}, 1.92 \mathrm{mmol}$) and $\mathrm{TBSCl}(144 \mathrm{mg}, 0.961 \mathrm{mmol})$. The solution stirred at room temperature until no more of the starting material was visible by TLC, and then the reaction mixture was partitioned between saturated aqueous NaHCO_{3} and a 1:1 hexanes / diethyl ether solvent mixture. The aqueous layer was extracted with an additional portion of this mixture, and the combined organic layers were washed with deionized $\mathrm{H}_{2} \mathrm{O}$ and brine, and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The solution was concentrated under reduced pressure, and the residue was purified by column chromatography to provide the bis-TBS ether 211 ($349 \mathrm{mg}, 86 \%$) as a clear oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 6.89-6.79(\mathrm{~m}, 3 \mathrm{H}), 6.23(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.68$ (dt, $J=8.6,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{~d}$, $J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.58-3.41(\mathrm{~m}$, $2 \mathrm{H}), 1.86-1.64(\mathrm{~m}, 2 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}), 0.04(\mathrm{~s}$, $6 \mathrm{H}) ;{ }^{13} \mathrm{C}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 149.1,148.7,145.7,131.1,120.3,111.0,111.0,103.5$, $73.1,68.0,66.2,65.7,56.1,56.0,38.0,26.0,25.9,18.5,18.3,-4.3,-4.8,-5.0$; HR-ESIMS m / z calcd. for $\mathrm{C}_{27} \mathrm{H}_{49} \mathrm{I}_{1} \mathrm{O}_{5} \mathrm{Si}_{2} \mathrm{Na}_{1}[\mathrm{M}+\mathrm{Na}]^{+}: 659.2055$, found 659.2072.

Stille adduct 212

To a reaction flask was charged $\mathrm{LiCl}(69 \mathrm{mg}, 1.64 \mathrm{mmol}$), which was dried under high vacuum $(0.1 \mathrm{~mm} \mathrm{Hg})$ with a heat gun for $\sim 30 \mathrm{~min}, \mathrm{AsPh}_{3}(335 \mathrm{mg}, 1.10$ $\mathrm{mmol})$, and $\mathrm{Pd}_{2} \mathrm{dba}_{3}(125 \mathrm{mg}, 0.137 \mathrm{mmol})$. A solution of the bis-TBS ether 211 (349
$\mathrm{mg}, 0.547 \mathrm{mmol})$ and the stannane $210(258 \mathrm{mg}, 0.548 \mathrm{mmol})$ in freshly distilled NMP (5.5 mL) was prepared, and this solution was added to the reaction flask containing the solid reagents. The reaction mixture was stirred for 12 h at room temperature, during which time the solution changed from green to black. The reaction mixture was partitioned between $\mathrm{Et}_{2} \mathrm{O}$ and deionized $\mathrm{H}_{2} \mathrm{O}$, and the aqueous layer was extracted twice with additional $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by column chromatography (4:1 to $2: 1$ hexanes / ethyl acetate) to provide the stille adduct 212a ($55 \mathrm{mg}, 15 \%$, "diastereomer A"), 212a/b (202 mg, 53\%, mix of diastereomers), and 212b ($91 \mathrm{mg}, 24 \%$, "diastereomer B") for a combined yield of 92%. Diastereomer A 212a: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ $\delta 6.91-6.78(\mathrm{~m}, 3 \mathrm{H}), 6.06(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.92(\mathrm{dd}, J=11.3,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.76$ (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.68(\mathrm{t}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.04(\mathrm{~d}, J=2.6$ $\mathrm{Hz}, 1 \mathrm{H}), 4.69(\mathrm{td}, J=8.5,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{~d}, J=11.5 \mathrm{~Hz}$, $1 \mathrm{H}), 4.22(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{~s}, 3 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H})$, $3.87(\mathrm{~s}, 3 \mathrm{H}), 3.62-3.47(\mathrm{~m}, 2 \mathrm{H}), 1.89-1.66(\mathrm{~m}, 2 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.85(\mathrm{~s}, 9 \mathrm{H}), 0.04(\mathrm{~s}$, 3H), $0.03(\mathrm{~s}, 6 \mathrm{H}), 0.01(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta$ 169.4, 161.5, 149.6, $149.1,148.7,136.7,133.1,131.1,131.1,120.5,111.3,111.0,106.2,93.3,73.1,66.3$, $61.8,61.1,60.7,56.0,55.9,38.9,26.0,25.9,18.5,18.2,-4.1,-4.7,-5.3,-5.3$; ESI-MS m/z $713.39[\mathrm{M}+\mathrm{Na}]^{+}, 708.11\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$. Diastereomer B 212b: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $500 \mathrm{MHz})$ - see Spectrum 2.91, impure and difficult to analyze, ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $100 \mathrm{MHz}) \delta 169.4,161.9,149.6,149.0,148.6,136.8,133.0,131.2,131.0,130.9$,
$120.3,111.2,111.0,106.6,93.4,73.1,73.0,66.5,66.3,61.8,60.9,59.5,56.1,55.9$, 38.7, 26.0, 25.9, 18.5, 18.4, 18.2, -4.2, -4.7, -5.3.

Benzoate 213

A stirred solution of the stille adduct 212a Diastereomer A (55 mg, 0.080 $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ was cooled to $0{ }^{\circ} \mathrm{C}$, and DMAP ($1 \mathrm{mg}, 0.008 \mathrm{mmol}$) was added. To the solution was added $\mathrm{Et}_{3} \mathrm{~N}(45 \mu \mathrm{~L}, 0.32 \mathrm{mmol})$ followed by benzoyl chloride ($18 \mu \mathrm{~L}, 0.16 \mathrm{mmol}$) via syringe. The solution was stirred until no more starting material was visible by TLC, and then was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and saturated aqueous NaHCO_{3}, and the aqueous layer was extracted with an additional portion of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were washed with deionized $\mathrm{H}_{2} \mathrm{O}$ and brine, then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by column chromatography (4:1 to $2: 1$ hexanes / ethyl acetate gradient) to provide the benzoate $213(24 \mathrm{mg}, 38 \%) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta$ $8.05(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.58-7.37(\mathrm{~m}, 3 \mathrm{H}), 7.03(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.92-6.80(\mathrm{~m}$, $3 \mathrm{H}), 6.35(\mathrm{dd}, J=11.3,9.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.22(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.43(\mathrm{~d}, J=8.6 \mathrm{~Hz}$, $1 \mathrm{H}), 5.04(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.02(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\mathrm{td}, J=8.6,4.4 \mathrm{~Hz}, 1 \mathrm{H})$, $4.42(\mathrm{~s}, 2 \mathrm{H}), 4.37(\mathrm{~s}, 3 \mathrm{H}), 4.25(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{~s}$, $3 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.62-3.46(\mathrm{~m}, 2 \mathrm{H}), 1.85-1.60(\mathrm{~m}, 2 \mathrm{H}), 0.83(\mathrm{~s}, 9 \mathrm{H}), 0.76(\mathrm{~s}, 9 \mathrm{H})$, $0.02(\mathrm{~s}, 3 \mathrm{H}), 0.01(\mathrm{~s}, 3 \mathrm{H}),-0.01(\mathrm{~s}, 3 \mathrm{H}),-0.08(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta$ $167.4,165.9,162.4,149.6,149.1,148.7,136.4,135.7,134.1,133.3,130.1,128.5$, $120.4,111.3,111.1,103.1,93.3,73.0,66.4,66.0,64.5,61.1,60.3,56.1,56.0,38.6$,
25.9, 25.9, 18.5, 18.2, -4.2, -4.7, -5.3, -5.3; HR-ESI-MS m / z calcd. for $\mathrm{C}_{43} \mathrm{H}_{62} \mathrm{O}_{10} \mathrm{Si}_{2} \mathrm{Na}_{1}[\mathrm{M}+\mathrm{Na}]^{+}: 817.3774$, found 817.3794.

Alcohol 214

The benzoate 213 ($128 \mathrm{mg}, 0.160 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.5 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(166 \mu \mathrm{~L})$, and DDQ ($40 \mathrm{mg}, 0.176 \mathrm{mmol}$) was added at room temperature. The suspension turned from green to colorless, and TLC analysis indicated the formation of a new product and veratraldehyde. The reaction mixture was filtered through silica gel with $1: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2}$: EtOAc, and the filtrate was concentrated under reduced pressure. The residue was purified by column chromatography to provide the alcohol 214 ($45 \mathrm{mg}, 43 \%) .{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 8.07(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$, $7.56(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.01(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.35(\mathrm{dd}, J$ $=11.3,9.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.20(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.50(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{~d}, J=$ $2.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.04(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.74(\mathrm{td}, J=8.8 \mathrm{~Hz}, 5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{~s}, 3 \mathrm{H})$, $4.30(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.80-3.69(\mathrm{~m}, 2 \mathrm{H}), 1.89-1.58(\mathrm{~m}$, $2 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.78(\mathrm{~s}, 9 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}),-0.06(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 167.4,165.9,162.5,149.5,136.2,135.6,134.1,133.4$, $128.6,126.1,103.1,93.5,68.2,64.3,61.3,60.3,60.1,40.5,25.9,25.8,18.5,18.1,-$ 4.1, -4.8, -5.3.

Sulfide 215

To a reaction flask was charged PTSH ($21 \mathrm{mg}, 0.121 \mathrm{mmol}$) and $\mathrm{PPh}_{3}(24 \mathrm{mg}$, $0.091 \mathrm{mmol})$, and a solution of the alcohol $214(39 \mathrm{mg}, 0.060 \mathrm{mmol})$ in THF (2 mL)
was added, and the mixture was stirred at room temperature. The solution was cooled to $0^{\circ} \mathrm{C}$, and DIAD $(21 \mu \mathrm{~L}, 0.108 \mathrm{mmol})$ was added via syringe. The reaction mixture was allowed to warm to room temperature as it stirred for 12 h , after which it was partitioned between saturated aqueous NaHCO_{3} and EtOAc. The aqueous layer was extracted with additional EtOAc, and the combined organic layers were washed with deionized $\mathrm{H}_{2} \mathrm{O}$ and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by column chromatography (hexanes / ethyl acetate gradient) to provide the sulfide $215(25 \mathrm{mg}, 52 \%) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300\right.$ $\mathrm{MHz}) \delta 8.04(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.64-7.50(\mathrm{~m}, 6 \mathrm{H}), 7.41(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.02(\mathrm{~d}$, $J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.37(\mathrm{dd}, J=11.1,9.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.20(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.43(\mathrm{~d}, J=$ $8.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.02(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.66(\mathrm{td}, J=8.5,4.6$ $\mathrm{Hz}, 1 \mathrm{H}), 4.35(\mathrm{~s}, 3 \mathrm{H}), 4.25(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{~d}, \mathrm{~J}=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.53-3.35$ $(\mathrm{m}, 2 \mathrm{H}), 2.11-1.95(\mathrm{~m}, 2 \mathrm{H}), 0.82(\mathrm{~s}, 9 \mathrm{H}), 0.77(\mathrm{~s}, 9 \mathrm{H}), 0.00(\mathrm{~s}, 9 \mathrm{H}),-0.08(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 167.5,165.8,162.5,154.4,149.5,135.4,135.3,134.9$, $133.9,133.4,130.0,130.0,128.6,126.3,124.0,102.8,93.5,67.5,64.2,61.1,60.4$, 37.6, 29.9, 29.7, 25.9, 25.8, 18.5, 18.1, -4.1, -4.6, -5.3.

Sulfone 216

A stirred solution of the sulfide $215(25 \mathrm{mg}, 0.031 \mathrm{mmol})$ in $\mathrm{EtOH}(1 \mathrm{~mL})$ was cooled to $0{ }^{\circ} \mathrm{C}$, and then a solution of $\left(\mathrm{NH}_{4}\right)_{6} \mathrm{Mo}_{7} \mathrm{O}_{24} * 4 \mathrm{H}_{2} \mathrm{O}(8 \mathrm{mg}, 0.006 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}_{2}(48 \mu \mathrm{~L}$ of a $30 \% \mathrm{w} / \mathrm{w}$ aqueous solution, 0.471 mmol$)$ was added slowly. The reaction mixture was allowed to warm to room temperature as it stirred for 12 h , and then it was partitioned between deionized $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{Et}_{2} \mathrm{O}$. The aqueous layer was
extracted twice with additional portions of $\mathrm{Et}_{2} \mathrm{O}$, and the combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. Column chromatography (hexanes / ethyl acetate gradient) provided the sulfone $216(17 \mathrm{mg}, 65 \%) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 8.03(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, 7.76-7.51 (m, 6H), $7.42(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.02(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.38(\mathrm{dd}, J=$ $11.2,10.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.17(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.40(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{~d}, J=2.6$ $\mathrm{Hz}, 1 \mathrm{H}), 5.04(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.79(\mathrm{dt}, J=8.5,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{~s}, 3 \mathrm{H}), 4.29(\mathrm{~d}$, $J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.00-3.77(\mathrm{~m}, 2 \mathrm{H}), 2.21-2.08(\mathrm{~m}, 2 \mathrm{H})$, $0.84(\mathrm{~s}, 9 \mathrm{H}), 0.78(\mathrm{~s}, 9 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}),-0.07(\mathrm{~s}, 3 \mathrm{H})$.

Julia adduct 217

A reaction flask was charged with the sulfone 216 ($30 \mathrm{mg}, 0.036 \mathrm{mmol}$), and then a solution of the aldehyde $\mathbf{1 6 7}(1.8 \mathrm{~mL}$ of a $20 \mathrm{mg} / 5.5 \mathrm{~mL}$ solution in THF, ~ 6 $\mathrm{mg}, 0.039 \mathrm{mmol}$). The stirred solution was cooled to $-78^{\circ} \mathrm{C}$, and then KHMDS (65 $\mu \mathrm{L}$ of a $15 \% \mathrm{w} / \mathrm{w}$ solution in toluene, 0.043 mmol) was added slowly via syringe causing the solution to turn yellow. The solution was stirred at $-78^{\circ} \mathrm{C}$, then was allowed to warm to room temperature, and stirred at room temperature for 0.5 h . The reaction mixture was quenched at $0{ }^{\circ} \mathrm{C}$ by the addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$, then partitioned between deionized $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{Et}_{2} \mathrm{O}$. The aqueous layer was extracted twice with additional $\mathrm{Et}_{2} \mathrm{O}$, and the combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by column chromatography (100% toluene) to provide the Julia adduct 217 (10 mg, 37\%) which eluted before mixed fractions with unreacted aldehyde $167 .{ }^{1} \mathrm{H}$

NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 8.07(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.55(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{t}, J$ $=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.04(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.36(\mathrm{dd}, J=11.3,9.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.21(\mathrm{~d}, J=$ $11.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.12(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.87(\mathrm{~s}, 1 \mathrm{H}), 5.80(\mathrm{~s}, 1 \mathrm{H}), 5.64(\mathrm{dt}, J=15.6$, $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.48(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.50-5.40(\mathrm{~m}, 1 \mathrm{H}), 5.04(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H})$, $5.02(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{td}, J=8.4,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{~s}, 3 \mathrm{H}), 4.29(\mathrm{~d}, J=11.7$ $\mathrm{Hz}, 1 \mathrm{H}), 4.12(\mathrm{~d}, \mathrm{~J}=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.45-2.12(\mathrm{~m}, 2 \mathrm{H}), 1.92(\mathrm{~s}, 3 \mathrm{H}), 1.89(\mathrm{~s}, 3 \mathrm{H}), 1.77$ $(\mathrm{s}, 3 \mathrm{H}), 1.72(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.78(\mathrm{~s}, 9 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H})$, $0.01(\mathrm{~s}, 3 \mathrm{H}),-0.07(\mathrm{~s}, 3 \mathrm{H})$.

Pyran 219

A reaction flask was charged with powdered $4 \AA$ molecular sieves (10 mg), NMO ($13 \mathrm{mg}, 0.111 \mathrm{mmol}$), and a solution of stille adduct 212b "Diastereomer B" ($51 \mathrm{mg}, 0.074 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$. To the stirred suspension was added TPAP $(1 \mathrm{mg}, 0.004 \mathrm{mmol})$ at room temperature, and the solution turned from green to black. The reaction mixture was filtered through a plug of silica with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the filtrate was concentrated under reduced pressure to provide the pyran $219(10 \mathrm{mg}, 20 \%)$ as a yellow oil, it fluoresced a bright yellow under long wave (365 nm) irradiation. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 6.90-6.79(\mathrm{~m}, 3 \mathrm{H}), 5.99(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.94(\mathrm{~d}, J=$ $5.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.82(\mathrm{~d}, J=4.6 \mathrm{~Hz}$, $1 \mathrm{H}), 4.42(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.30-4.24(\mathrm{~m}, 1 \mathrm{H}), 4.15(\mathrm{br}$, $2 \mathrm{H}), 4.13(\mathrm{~s}, 3 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.64-3.50(\mathrm{~m}, 2 \mathrm{H}), 2.03-1.90(\mathrm{~m}, 2 \mathrm{H})$, $0.89(\mathrm{~s}, 9 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.04(\mathrm{br}, 9 \mathrm{H}), 0.02(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta$ $167.2,162.2,149.7,149.0,148.6,142.2,131.2,130.1,120.1,120.3,118.3,111.1$,
$110.9,105.4,102.1,93.4,79.8,72.9,69.4,66.3,64.5,62.3,56.0,55.9,32.7,26.0$, 18.5, 18.2, -4.2, -4.7, -5.1, -5.2.

Lactol 235

To a stirred $-78{ }^{\circ} \mathrm{C}$ solution of the dienol $234(1.06 \mathrm{~g}, 8.4 \mathrm{mmol})$ and $\alpha-$ acetoxy acrolein $226(1.15 \mathrm{~g}, 10 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(75 \mathrm{~mL})$ was added $\mathrm{MeAlCl}_{2}(10$ mL of a 1.0 M solution in hexanes, 10 mmol) dropwise via syringe. The solution stirred for 0.5 h at this temperature after which time no 234 was visible by TLC. The reaction was quenched by the addition of a saturated aqueous NaHCO_{3} solution and allowed to warm to room temperature. The mixture was partitioned between deionized water and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the aqueous layer was extracted with an additional portion of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. Column chromatography of the residue provided the lactol $235(1.4 \mathrm{~g}, 69 \%)$ as a mixture of epimers. Major epimer ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 5.79(\mathrm{~s}, 1 \mathrm{H}), 5.08(\mathrm{br}, 1 \mathrm{H}), 3.92(\mathrm{~d}, J=8.6 \mathrm{~Hz}$, $1 \mathrm{H}), 3.76(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.48-2.37(\mathrm{~m}, 1 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H}), 1.90(\mathrm{dd}, J=13.7,4.6$ $\mathrm{Hz}, 1 \mathrm{H}), 1.70(\mathrm{~s}, 3 \mathrm{H}), 1.49(\mathrm{t}, \mathrm{J}=13.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.22(\mathrm{~s}, 3 \mathrm{H}), 1.05(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 170.2,137.4,125.9,101.3,81.3,77.8,43.3,39.9,29.2$, 21.9, 21.6, 21.0, 19.1.

Lactone 236

A reaction flask was charged with powdered $4 \AA$ molecular sieves (100 mg), NMO ($301 \mathrm{mg}, 2.60 \mathrm{mmol}$), and then a solution of the lactol $235(412 \mathrm{mg}, 1.71 \mathrm{mmol})$
in freshly distilled $\mathrm{MeCN}(4 \mathrm{~mL})$. To the stirred suspension was added TPAP (30 mg , 0.086 mmol) at room temperature, and the color slowly changed from green to black over 3-4 hours, and stirring continued until 235 was no longer visible by TLC. The suspension was concentrated to about 1 mL of liquid volume, and then was filtered through a short plug of silica with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$: EtOAc (4:1) to provide the lactone 236 ($329 \mathrm{mg}, 81 \%$) as an oil which solidified at $4^{\circ} \mathrm{C}$. Diffraction quality crystals were obtained by perfusion of hexanes into an ethyl acetate solution of $\mathbf{2 3 6} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 5.08(\mathrm{~s}, 1 \mathrm{H}), 4.24(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H})$, 2.31-2.20 (m, 1H), $2.07(\mathrm{br}, 1 \mathrm{H}), 2.06(\mathrm{~d}, \mathrm{~J}=0.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.72(\mathrm{~s}, 3 \mathrm{H}), 1.06(\mathrm{~s}, 3 \mathrm{H})$, $1.04(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 175.8,170.0,139.0,126.2$, 79.6, 78.7, 43.1, 35.2, 31.8, 21.7, 20.9, 20.7, 19.3.

Figure 2.9 ORTEP stereopair drawing of the X-ray crystal structure of lactone 236 with ellipsoids drawn at the 50% probability level

Structure report for lactone 236 (Burk10):

Table 2.18 Crystal data and structure refinement for burk10.

Identification code	burk10
Empirical formula	C13 H18 O4
Formula weight	238.27
Temperature	123(2) K
Wavelength	0.71073 £
Crystal system	Monoclinic
Space group	P2(1)
Unit cell dimensions	$\begin{array}{ll} \mathrm{a}=6.507(5) \AA & \alpha=90^{\circ} \\ \mathrm{b}=12.432(9) \AA & \beta=100.905(10)^{\circ} \\ \mathrm{c}=7.892(6) \AA & \gamma=90^{\circ} \end{array}$
Volume	626.9(8) \AA^{3}
Z	2
Density (calculated)	$1.262 \mathrm{~g} / \mathrm{cm}^{3}$
Absorption coefficient	$0.093 \mathrm{~mm}^{-1}$
F(000)	256
Crystal size	$0.24 \times 0.14 \times 0.12 \mathrm{~mm}^{3}$
Crystal color, habit	Colorless block
Theta range for data collection	2.63 to 25.36°
Index ranges	$-7<=\mathrm{h}<=7,-14<=\mathrm{k}<=9,-8<=\mathrm{l}<=9$
Reflections collected	5126
Independent reflections	$1806[\mathrm{R}(\mathrm{int})=0.0306]$
Completeness to theta $=25.00^{\circ}$	96.9 \%
Absorption correction	Multi-scan
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	1806 / 1/158
Goodness-of-fit on F^{2}	1.041
Final R indices [I>2sigma(I)]	$\mathrm{R} 1=0.0314, \mathrm{wR} 2=0.0811$
R indices (all data)	$\mathrm{R} 1=0.0329, w R 2=0.0828$
Absolute structure parameter	0.4(10)
Largest diff. peak and hole	0.204 and $-0.180 \mathrm{e} \AA^{-3}$

Table 2.19 Atomic coordinates ($\mathrm{x} 10^{4}$) and equivalent isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for burk10. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	x	y	z (eq)	
$\mathrm{O}(1)$	$-1066(2)$	$8723(1)$	$6855(2)$	$19(1)$
$\mathrm{O}(2)$	$2377(2)$	$8292(1)$	$7381(2)$	$31(1)$
$\mathrm{O}(3)$	$1191(2)$	$7238(1)$	$4105(2)$	$23(1)$
$\mathrm{O}(4)$	$782(2)$	$9007(1)$	$3625(2)$	$24(1)$
$\mathrm{C}(1)$	$-5914(3)$	$6124(2)$	$1560(3)$	$32(1)$
$\mathrm{C}(2)$	$-4470(3)$	$6775(2)$	$2893(2)$	$22(1)$
$\mathrm{C}(3)$	$-4492(3)$	$7986(2)$	$2645(2)$	$21(1)$
$\mathrm{C}(4)$	$-3567(3)$	$8555(2)$	$4335(2)$	$19(1)$
$\mathrm{C}(5)$	$-1512(3)$	$8072(2)$	$5287(2)$	$18(1)$
$\mathrm{C}(6)$	$931(3)$	$8792(2)$	$7755(2)$	$23(1)$
$\mathrm{C}(7)$	$1073(3)$	$9564(2)$	$9219(2)$	$27(1)$
$\mathrm{C}(8)$	$-3225(3)$	$6306(2)$	$4227(2)$	$23(1)$
$\mathrm{C}(9)$	$-1605(3)$	$6846(2)$	$5596(2)$	$21(1)$
$\mathrm{C}(10)$	$578(3)$	$6460(2)$	$5296(3)$	$25(1)$
$\mathrm{C}(11)$	$289(3)$	$8192(2)$	$4271(2)$	$18(1)$
$\mathrm{C}(12)$	$-2001(4)$	$6544(2)$	$7394(2)$	$29(1)$
$\mathrm{C}(13)$	$-3496(3)$	$8310(2)$	$1097(2)$	$27(1)$

Table 2.20 Bond lengths $[\AA]$ and angles $\left[{ }^{\circ}\right]$ for burk10.

$\mathrm{O}(1)-\mathrm{C}(6)$	$1.361(2)$	$\mathrm{C}(3)-\mathrm{C}(4)$	$1.529(3)$
$\mathrm{O}(1)-\mathrm{C}(5)$	$1.461(2)$	$\mathrm{C}(3)-\mathrm{C}(13)$	$1.541(2)$
$\mathrm{O}(2)-\mathrm{C}(6)$	$1.210(2)$	$\mathrm{C}(4)-\mathrm{C}(5)$	$1.527(3)$
$\mathrm{O}(3)-\mathrm{C}(11)$	$1.341(3)$	$\mathrm{C}(5)-\mathrm{C}(11)$	$1.547(2)$
$\mathrm{O}(3)-\mathrm{C}(10)$	$1.455(3)$	$\mathrm{C}(5)-\mathrm{C}(9)$	$1.547(3)$
$\mathrm{O}(4)-\mathrm{C}(11)$	$1.205(3)$	$\mathrm{C}(6)-\mathrm{C}(7)$	$1.492(3)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.507(3)$	$\mathrm{C}(8)-\mathrm{C}(9)$	$1.516(3)$
$\mathrm{C}(2)-\mathrm{C}(8)$	$1.335(3)$	$\mathrm{C}(9)-\mathrm{C}(12)$	$1.536(3)$

Table 2.20 Bond lengths $[\AA]$ and angles $\left[{ }^{\circ}\right]$ for burk10, continued.

$\mathrm{C}(2)-\mathrm{C}(3)$	$1.518(3)$	$\mathrm{C}(9)-\mathrm{C}(10)$	$1.559(3)$
$\mathrm{C}(6)-\mathrm{O}(1)-\mathrm{C}(5)$	$119.60(13)$	$\mathrm{O}(2)-\mathrm{C}(6)-\mathrm{O}(1)$	$123.39(18)$
$\mathrm{C}(11)-\mathrm{O}(3)-\mathrm{C}(10)$	$110.25(14)$	$\mathrm{O}(2)-\mathrm{C}(6)-\mathrm{C}(7)$	$125.64(19)$
$\mathrm{C}(8)-\mathrm{C}(2)-\mathrm{C}(1)$	$121.4(2)$	$\mathrm{O}(1)-\mathrm{C}(6)-\mathrm{C}(7)$	$110.96(16)$
$\mathrm{C}(8)-\mathrm{C}(2)-\mathrm{C}(3)$	$121.65(19)$	$\mathrm{C}(2)-\mathrm{C}(8)-\mathrm{C}(9)$	$127.2(2)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$116.91(19)$	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(12)$	$109.54(17)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$110.71(16)$	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(5)$	$111.52(17)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(13)$	$111.49(16)$	$\mathrm{C}(12)-\mathrm{C}(9)-\mathrm{C}(5)$	$113.89(16)$
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(13)$	$114.54(16)$	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	$106.63(16)$
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(3)$	$114.27(16)$	$\mathrm{C}(12)-\mathrm{C}(9)-\mathrm{C}(10)$	$112.46(17)$
$\mathrm{O}(1)-\mathrm{C}(5)-\mathrm{C}(4)$	$102.36(14)$	$\mathrm{C}(5)-\mathrm{C}(9)-\mathrm{C}(10)$	$102.42(15)$
$\mathrm{O}(1)-\mathrm{C}(5)-\mathrm{C}(11)$	$109.69(15)$	$\mathrm{O}(3)-\mathrm{C}(10)-\mathrm{C}(9)$	$105.24(16)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(11)$	$112.71(15)$	$\mathrm{O}(4)-\mathrm{C}(11)-\mathrm{O}(3)$	$123.13(15)$
$\mathrm{O}(1)-\mathrm{C}(5)-\mathrm{C}(9)$	$114.82(15)$	$\mathrm{O}(4)-\mathrm{C}(11)-\mathrm{C}(5)$	$126.06(18)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(9)$	$114.07(16)$	$\mathrm{O}(3)-\mathrm{C}(11)-\mathrm{C}(5)$	$110.71(15)$
$\mathrm{C}(11)-\mathrm{C}(5)-\mathrm{C}(9)$	$103.46(14)$		

Table 2.21 Anisotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for burk10. The anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{* 2} U^{11}+\ldots+2 h k\right.$ $a^{*} b^{*} U^{12}$]

	U^{11}	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}
$\mathrm{O}(1)$	$20(1)$	$20(1)$	$18(1)$	$-5(1)$	$2(1)$	$1(1)$
$\mathrm{O}(2)$	$24(1)$	$37(1)$	$30(1)$	$-9(1)$	$-1(1)$	$7(1)$
$\mathrm{O}(3)$	$21(1)$	$21(1)$	$28(1)$	$-2(1)$	$8(1)$	$4(1)$
$\mathrm{O}(4)$	$23(1)$	$22(1)$	$28(1)$	$0(1)$	$8(1)$	$-3(1)$
$\mathrm{C}(1)$	$24(1)$	$34(2)$	$37(1)$	$-14(1)$	$5(1)$	$-3(1)$
$\mathrm{C}(2)$	$20(1)$	$25(1)$	$22(1)$	$-5(1)$	$7(1)$	$-2(1)$
$\mathrm{C}(3)$	$18(1)$	$24(1)$	$22(1)$	$-1(1)$	$3(1)$	$1(1)$
$\mathrm{C}(4)$	$17(1)$	$19(1)$	$22(1)$	$0(1)$	$4(1)$	$1(1)$
$\mathrm{C}(5)$	$18(1)$	$18(1)$	$18(1)$	$-3(1)$	$4(1)$	$-1(1)$
$\mathrm{C}(6)$	$23(1)$	$25(1)$	$20(1)$	$1(1)$	$3(1)$	$0(1)$
$\mathrm{C}(7)$	$27(1)$	$29(1)$	$23(1)$	$-3(1)$	$2(1)$	$2(1)$

Table 2.21 Anisotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for burk10. The anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{*} 2 \mathrm{U}^{11}+\ldots+2 \mathrm{hk}\right.$ $\left.a^{*} b^{*} U^{12}\right]$, continued.

	U^{11}	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}
$\mathrm{C}(8)$	$26(1)$	$18(1)$	$28(1)$	$-5(1)$	$12(1)$	$-4(1)$
$\mathrm{C}(9)$	$26(1)$	$15(1)$	$23(1)$	$1(1)$	$6(1)$	$3(1)$
$\mathrm{C}(10)$	$26(1)$	$21(1)$	$27(1)$	$2(1)$	$5(1)$	$6(1)$
$\mathrm{C}(11)$	$17(1)$	$21(1)$	$17(1)$	$-3(1)$	$1(1)$	$0(1)$
$\mathrm{C}(12)$	$46(1)$	$20(1)$	$23(1)$	$4(1)$	$10(1)$	$1(1)$
$\mathrm{C}(13)$	$26(1)$	$36(1)$	$20(1)$	$4(1)$	$4(1)$	$-1(1)$

Table 2.22 Hydrogen coordinates $\left(\mathrm{x} 10^{4}\right)$ and isotropic displacement parameters $\left(\AA^{2}\right.$ x 10^{3}) for burk10.

	x	y	z	U(eq)
$H(1 A)$	-5783	5360	1868	48
$H(1 B)$	-5537	6232	427	48
H(1C)	-7361	6358	1518	48
H(3)	-5997	8204	2350	25
H(4A)	-3329	9320	4084	23
H(4B)	-4603	8530	5106	23
H(7A)	2405	9461	10021	40
H(7B)	-87	9437	9825	40
H(7C)	995	10302	8774	40
H(8)	-3371	5549	4330	28
H(10A)	1604	6449	6396	30
H(10B)	481	5729	4790	30
H(12A)	-3318	6868	7569	44

Table 2.22 Hydrogen coordinates ($\mathrm{x} 10^{4}$) and isotropic displacement parameters $\left(\AA^{2}\right.$ x 10^{3}) for burk10, continued.

	x	y	z	$U(e q)$
$H(12 B)$	-847	6811	8276	44
$H(12 C)$	-2090	5760	7485	44
$H(13 A)$	-2110	7978	1213	41
$H(13 B)$	-3357	9094	1068	41
$H(13 C)$	-4388	8063	25	41

Spirotetronate 237

To a stirred $-30^{\circ} \mathrm{C}$ solution of the lactone $236(200 \mathrm{mg}, 0.839 \mathrm{mmol})$ in THF (7 mL) was added a solution of $\mathrm{TBSCl}(328 \mathrm{mg}, 2.18 \mathrm{mmol})$ in THF $(7 \mathrm{~mL})$. To this stirred solution was added KHMDS (3.31 mL of a $15 \% \mathrm{w} / \mathrm{w}$ solution in toluene, 2.18 mmol) slowly via syringe, and the solution was allowed to slowly warm to room temperature. The solution stirred at room temperature for 3 h , and then was quenched by the addition of a saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution, and then the mixture was diluted with EtOAc and deionized $\mathrm{H}_{2} \mathrm{O}$. The aqueous layer was extracted with additional EtOAc, and the combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure to provide the intermediate spirotetronic acid. Crude Dieckmann product intermediate: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ see Spectrum 2.107

The crude intermediate described above was dissolved in toluene (10 mL) and $\mathrm{MeOH}(4 \mathrm{~mL})$, and to the stirred solution was added $\mathrm{TMSCHN}_{2}(840 \mu \mathrm{~L}$ of a 2.0 M solution in hexanes, 1.67 mmol) via syringe. The solution stopped bubbling and retained the yellow color part of the way through the addition. The solution stirred for 30 min at room temperature, and then the excess TMSCHN_{2} was quenched by the dropwise addition of AcOH . When the yellow color had faded, the reaction mixture was concentrated under reduced pressure and the residue was purified by column chromatography to provide the spirotetronate 237 ($86 \mathrm{mg}, 28 \%$ over 2 steps) and an unidentified lower R_{f} product. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 5.05(\mathrm{~s}, 1 \mathrm{H}), 4.99(\mathrm{~s}$, $1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.52(\mathrm{~d}, \mathrm{~J}=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{~d}, J=3.38 \mathrm{~Hz}, 1 \mathrm{H}), 2.51-2.35(\mathrm{~m}$, $1 \mathrm{H}), 1.73-1.66(\mathrm{~m}, 2 \mathrm{H}), 1.69(\mathrm{~s}, 3 \mathrm{H}), 1.02(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.01(\mathrm{~s}$, $6 \mathrm{H})$.

Tricyclic acetal 238

To a cooled $\left(0^{\circ} \mathrm{C}\right)$ and stirred solution of the spirotetronate $237(86 \mathrm{mg}, 0.235$ mmol) in THF (2 mL) was added TBAF ($469 \mu \mathrm{~L}$ of a 1.0 M solution in THF, 0.469 mmol) slowly via syringe. When no more starting material remained by TLC, the reaction was partitioned between EtOAc and deionized water, and the aqueous layer was extracted with additional EtOAc. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by column chromatography (hexanes / ethyl acetate gradient) to provide the tricyclic acetal 238. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 5.10(\mathrm{~s}, 1 \mathrm{H}), 3.60(\mathrm{~s}$, $2 \mathrm{H}), 3.32(\mathrm{~s}, 3 \mathrm{H}), 2.86(\mathrm{~s}, 2 \mathrm{H}), 2.48-2.35(\mathrm{~m}, 1 \mathrm{H}), 1.80-1.75(\mathrm{~m}, 2 \mathrm{H}), 1.71(\mathrm{~s}, 3 \mathrm{H})$,
$1.06(\mathrm{~s}, 3 \mathrm{H}), 1.05(\mathrm{~d}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 173.2,139.7,124.0,110.7$, $94.9,51.1,47.8,39.6,36.5,29.3,25.8,22.3,20.9,18.7$.

Aldol adduct 241

To a stirred $-78^{\circ} \mathrm{C}$ solution of freshly distilled ethyl propionate $239(356 \mu \mathrm{~L}$, $3.10 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(11 \mathrm{~mL})$ was added $\mathrm{Bu}_{2} \operatorname{BOTf}(1.23 \mathrm{~g}, 4.50 \mathrm{mmol})$ slowly via syringe. The solution stirred for 30 min , and then $\mathrm{i}-\mathrm{Pr}_{2} \mathrm{NEt}(1.08 \mathrm{~mL}, 6.20 \mathrm{mmol})$ was added dropwise via syringe. The solution stirred at $-78^{\circ} \mathrm{C}$ for 4 h , and then a solution of the aldehyde $\mathbf{2 4 0}(500 \mathrm{mg}, 4.0 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ slowly via syringe, and the solution continued to stir at this temperature for 2 h , and then was allowed to warm to $0^{\circ} \mathrm{C}$ over 3 h . The reaction was quenched by the addition of a pH 7 buffered solution, and MeOH . The quenched reaction mixture was cooled to $0^{\circ} \mathrm{C}$, then a solution of 30 mL of a $2: 1 \mathrm{MeOH} / 30 \%$ aqueous $\mathrm{H}_{2} \mathrm{O}_{2}$ mixture was slowly added. The solution was then diluted with deionized $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the layers were separated. The aqueous layer was extracted with additional $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the combined organic layers were washed with a saturated aqueous NaHCO_{3} solution, brine, and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The organic layer was then filtered and concentrated under reduced pressure, and column chromatography of the residue provided the aldol adduct 241 (368 mg , $53 \%) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 5.93(\mathrm{~s}, 1 \mathrm{H}), 5.37(\mathrm{q}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{~m}$, $1 \mathrm{H}), 4.13(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.71-2.68(\mathrm{~m}, 1 \mathrm{H}), 2.40(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.73(\mathrm{~s}$, $3 \mathrm{H}), 1.73(\mathrm{~s}, 3 \mathrm{H}), 1.67(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.25(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.15(\mathrm{~d}, J=7.4$ Hz, 3H).

Diels-Alder adduct 243

To a stirred $-78{ }^{\circ} \mathrm{C}$ solution of the aldol adduct $241(366 \mathrm{mg}, 1.62 \mathrm{mmol})$ and α-acetoxy acrolein $226(221 \mathrm{mg}, 1.94 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ was added MeAlCl_{2} $(1.94 \mathrm{~mL}$ of a 1.0 M solution in hexanes, 1.94 mmol$)$, and the solution stirred at -78 ${ }^{\circ} \mathrm{C}$ for 30 min . After this period of time, TLC analysis indicated that starting material was still present, so the reaction was warmed to $-50^{\circ} \mathrm{C}$ and monitored by TLC. The reaction was quenched by the addition of a saturated aqueous NaHCO_{3} solution and warmed to room temperature. The mixture was partitioned between deionized water and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the aqueous layer was extracted with an additional portion of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. Column chromatography of the residue provided the Diels-Alder adduct 243 ($202 \mathrm{mg}, 37 \%$) as a mixture of epimers and diastereomers and unreacted aldol adduct $241(177 \mathrm{mg})$ so that the yield was 70.8% BORSM. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ - mixture of epimers and diastereomers, see Spectrum 2.119, and ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ - Spectrum 2.120.

Lactone 244

A reaction flask was charged with powdered $4 \AA$ molecular sieves (30 mg), NMO ($28 \mathrm{mg}, 0.242 \mathrm{mmol}$) , and then a solution of the Diels-Alder adduct $243(55 \mathrm{mg}$, $0.162 \mathrm{mmol})$ in freshly distilled $\mathrm{MeCN}(1 \mathrm{~mL})$. The suspension was stirred at room temperature as TPAP ($3 \mathrm{mg}, 0.008 \mathrm{mmol}$) was added, and the suspension slowly turned from green to black. The reaction mixture was filtered through a short silica gel plug with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$: EtOAc (4:1) and the filtrate was concentrated to provide the
lactone 244 (49 mg, 90\%) as a 1.7:1 mixture of diastereomers. ${ }^{1} \mathrm{H}$ NMR diastereomers, see Spectrum 2.121. ESI-MS m/z $361.12[\mathrm{M}+\mathrm{Na}]^{+}, 355.99\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$, $338.87[\mathrm{M}+\mathrm{H}]^{+}$.

Diels-Alder adduct 245

To a stirred $-78{ }^{\circ} \mathrm{C}$ solution of the silyl ether $242(64 \mathrm{mg}, 0.188 \mathrm{mmol})$ and $\alpha-$ acetoxy acrolein $226(26 \mathrm{mg}, 0.225 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added MeAlCl_{2} $(225 \mu \mathrm{~L}$ of a 1.0 M solution in hexanes, 0.225 mmol) slowly via syringe. The reaction was allowed to warm to $-50^{\circ} \mathrm{C}$ for 30 min , and then was quenched by the addition of saturated aqueous NaHCO_{3} and warmed to room temperature. The mixture was partitioned between deionized $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the aqueous layer was extracted with an additional portion of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by column chromatography to provide the Diels-Alder adduct $245(14 \mathrm{mg}, 17 \%)$ as a mixture of epimers and diastereomers, and the silyl ether 242 $(33 \mathrm{mg})$ such that the yield was 34% BORSM. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ - mixture of epimers and diastereomers, see Spectrum 2.122.

Lactone 246

The Diels-Alder adduct $245(14 \mathrm{mg}, 0.0315 \mathrm{mmol})$ was oxidized in the same fashion as the oxidation of $\mathbf{2 4 3}$ to $\mathbf{2 4 4}$ described above. The lactone $\mathbf{2 4 6}(12 \mathrm{mg}$, 90%) was obtained, and the ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ - see Spectrum 2.123 indicated a 1.9:1 mixture of diastereomers.

Ester 251

A stirred solution of the dienol $234(1.05 \mathrm{~g}, 8.36 \mathrm{mmol})$ in THF $(15 \mathrm{~mL})$ was cooled to $-78{ }^{\circ} \mathrm{C}$, and then $\mathrm{n}-\mathrm{BuLi}(4.70 \mathrm{~mL}$ of a 1.96 M solution in hexanes, 9.2 mmol) was added slowly via syringe. The solution stirred at this temperature for 15 \min before $\mathrm{MsCl}(712 \mu \mathrm{~L}, 9.2 \mathrm{mmol})$ was added, and reaction stirred for an additional 15 min . To the reaction mixture was then transferred a solution of $\operatorname{LiBr}(3.27 \mathrm{~g}, 37.6$ mmol) in THF (7 mL) via cannula, and the mixture was allowed to warm to room temperature, and stirred for 1 h .

A separate reaction flask was charged with THF (25 mL) and freshly distilled ethyl propionate $(885 \mu \mathrm{~L}, 7.69 \mathrm{mmol})$, and stirred as it was cooled to $-78{ }^{\circ} \mathrm{C}$. LiHMDS (7.89 mL of a 1.06 M solution in THF, 8.36 mmol) was added via syringe, and the reaction mixture stirred at this temperature for 30 min . After this period of time, the solution of the crude mesylate / bromide described above was transferred via cannula to the reaction flask, and the reaction stirred at $-78{ }^{\circ} \mathrm{C}$ for 10 min , then was allowed to warm to room temperature. The mixture stirred at room temperature for 12 h, then was quenched by the addition of a saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The mixture was partitioned between deionized $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{Et}_{2} \mathrm{O}$, and the aqueous layer was extracted with additional $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. Column chromatography of the residue ($15: 1$ hexanes $/ \mathrm{Et}_{2} \mathrm{O}$) provided the ester $251(460 \mathrm{mg}$, $28 \%) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 5.64(\mathrm{~s}, 1 \mathrm{H}), 5.31(\mathrm{q}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{q}, J$
$=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.67-2.58(\mathrm{~m}, 1 \mathrm{H}), 2.39(\mathrm{dd}, J=13.4,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.07(\mathrm{dd}, J=13.4$, $7.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.73(\mathrm{~s}, 3 \mathrm{H}), 1.69(\mathrm{~s}, 3 \mathrm{H}), 1.66(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.24(\mathrm{t}, J=7.1 \mathrm{~Hz}$, $3 \mathrm{H}), 1.11(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$.

Silyl ether 252

To a stirred $-78{ }^{\circ} \mathrm{C}$ solution of the ester $\mathbf{2 5 1}(460 \mathrm{mg}, 2.20 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(20$ mL) was added DIBAL-H (5.1 mL of a 1.5 M solution in toluene, 7.66 mmol) slowly via syringe. The reaction stirred until no more $\mathbf{2 5 1}$ remained by TLC analysis (2:1 hexanes $/ \mathrm{Et}_{2} \mathrm{O}$), and then was quenched by the dropwise addition of MeOH until gas evolution stopped, and then a saturated aqueous solution of Rochelle's salt. The mixture was allowed to warm to room temperature and stirred until the layers separated. The aqueous layer was extracted twice with additional $\mathrm{Et}_{2} \mathrm{O}$, and the combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by column chromatography to provide the intermediate alcohol ($310 \mathrm{mg}, 84 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 5.66(\mathrm{~s}, 1 \mathrm{H}), 5.32(\mathrm{q}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.52(\mathrm{dt}, J=10.9,5.5 \mathrm{~Hz}$, $1 \mathrm{H}), 3.44(\mathrm{dt}, J=10.9,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.17-2.05(\mathrm{~m}, 1 \mathrm{H}), 1.93-1.80(\mathrm{~m}, 2 \mathrm{H}), 1.75(\mathrm{~s}$, $3 \mathrm{H}), 1.73(\mathrm{~s}, 3 \mathrm{H}), 1.67(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.39(\mathrm{t}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 0.89(\mathrm{~d}, J=6.5$ $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 133.9,133.6,130.7,123.6,68.7,45.4,34.0$, 17.9, 16.9, 16.9, 13.8.

To a solution of the above described intermediate alcohol ($310 \mathrm{mg}, 1.84 \mathrm{mmol}$) in DMF (5 mL) was added imidazole ($238 \mathrm{mg}, 3.49 \mathrm{mmol}$) and $\operatorname{TIPSCl}(433 \mu \mathrm{~L}, 2.00$
mmol). The solution stirred for 12 h at room temperature, and then it was partitioned between saturated aqueous NaHCO_{3} and $1: 1$ hexanes $/ \mathrm{Et}_{2} \mathrm{O}$. The organic layer was washed with deionized $\mathrm{H}_{2} \mathrm{O}$ and then brine, and then was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by column chromatography (100% hexanes to $30: 1$ hexanes $/ \mathrm{Et}_{2} \mathrm{O}$ gradient) to provide the silyl ether $252(460 \mathrm{mg}, 78 \%) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 5.61(\mathrm{~s}, 1 \mathrm{H}), 5.31(\mathrm{q}, \mathrm{J}=6.8$ $\mathrm{Hz}, 1 \mathrm{H}), 3.53(\mathrm{dd}, J=9.5,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.46(\mathrm{dd}, J=9.5,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.21(\mathrm{dd}, J=$ $12.6,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.89-1.75(\mathrm{~m}, 2 \mathrm{H}), 1.72(\mathrm{~s}, 3 \mathrm{H}), 1.70(\mathrm{~s}, 3 \mathrm{H}), 1.67(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}$, $3 H), 1.10-0.99(\mathrm{~m}, 21 \mathrm{H}), 0.86(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H})$.

Diels-Alder adduct 253

To a stirred $-78{ }^{\circ} \mathrm{C}$ solution of the silyl ether $252(460 \mathrm{mg}, 1.42 \mathrm{mmol})$ and $\alpha-$ acetoxy acrolein $226(290 \mathrm{mg}, 2.51 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(12 \mathrm{~mL})$ was added MeAlCl_{2} (1.70 mL of a 1.0 M solution in hexanes, 1.70 mmol) slowly via syringe. The reaction was monitored by TLC, and after 0.5 h , no more starting material 252 was visible. The reaction was quenched by the addition of a saturated aqueous NaHCO_{3} solution, and allowed to warm to room temperature. The mixture was partitioned between deionized $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the aqueous layer was extracted with an additional portion of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by column chromatography to provide the Diels-Alder adduct 253 ($330 \mathrm{mg}, 53 \%$) as a 1:1 mixture of diastereomers. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ - see Spectrum 2.128, mixture of diastereomers.

Ester 254

The Diels-Alder adduct $253(400 \mathrm{mg}, 0.912 \mathrm{mmol})$ was dissolved in $t-\mathrm{BuOH}$ $(18.8 \mathrm{~mL})$ and acetone $(6.3 \mathrm{~mL})$, and the stirred solution was cooled to $0^{\circ} \mathrm{C}$. To the solution was added $\mathrm{KH}_{2} \mathrm{PO}_{4}$ (4.74 mL of a 1.25 M aqueous solution, 5.93 mmol), followed by $\mathrm{KMnO}_{4}(6.38 \mathrm{~mL}$ of a 0.5 M aqueous solution, 3.19 mmol), and the solution was stirred at $0{ }^{\circ} \mathrm{C}$ for 10 min , then allowed to warm to room temperature and stirred for 1 h . The reaction was quenched by the addition of a 10% aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution, and the mixture was partitioned between deionized $\mathrm{H}_{2} \mathrm{O}$ and EtOAc. The aqueous layer was extracted with three portions of EtOAc, and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The crude residue was taken up in toluene $(10 \mathrm{~mL})$ and $\mathrm{MeOH}(2 \mathrm{~mL})$, and the stirred mixture was cooled to $0^{\circ} \mathrm{C}$. To the mixture was added $\mathrm{TMSCHN}_{2}(5.8 \mathrm{~mL}$ of a 10% w / w solution in hexanes, 3.65 mmol) and the solution was allowed to warm to room temperature and stirred an additional 0.5 h . The reaction was re-cooled to $0{ }^{\circ} \mathrm{C}$, quenched by the addition of saturated aqueous NaHCO_{3}, and partitioned between deionized $\mathrm{H}_{2} \mathrm{O}$ and EtOAc. The aqueous layer was extracted twice with additional EtOAc, and the combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by column chromatography to provide the ester $\mathbf{2 5 4}(157 \mathrm{mg}, 37 \%)$ still as the mixture of diastereomers. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ - see Spectrum 2.129. Mixture of diastereomers.

Aldehyde 255

A solution of the ester $254(180 \mathrm{mg}, 0.384 \mathrm{mmol})$ in $\mathrm{MeCN}(2 \mathrm{~mL})$ was stirred in a plastic vial. To the solution was added HF-py (0.1 mL of a $70 \% \mathrm{w} / \mathrm{w}$ solution, 3.84 mmol), and the solution was stirred until no more of the starting material 254 could be observed by TLC. The solution was quenched by the cautious addition of saturated aqueous NaHCO_{3}, and then was partitioned between deionized $\mathrm{H}_{2} \mathrm{O}$ and EtOAc. The aqueous layer was extracted with two additional portions of EtOAc, and the combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by column chromatography to provide the intermediate alcohol ($101 \mathrm{mg}, 84 \%$), still as the mixture of diastereomers. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ - see Spectrum 2.130. Mixture of diastereomers. ESI-MS m/z $335.11[\mathrm{M}+\mathrm{Na}]^{+}, 329.93\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 312.94$ $[\mathrm{M}+\mathrm{H}]^{+}$.

A reaction flask was charged with powdered $4 \AA$ molecular sieves (50 mg), NMO ($18 \mathrm{mg}, 0.149 \mathrm{mmol}$), and a solution of the above described intermediate alcohol ($31 \mathrm{mg}, 0.099 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$. The suspension was stirred at room temperature as TPAP (single crystal, catalytic amount) was added. The suspension turned from green to black and a new higher R_{f}, DNP active spot was observed by TLC concurrently with the disappearance of the intermediate alcohol. The suspension was filtered through a short silica gel plug with $4: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2}$: EtOAc , and the filtrate was concentrated under reduced pressure to provide the aldehyde $255(32 \mathrm{mg}$,
quantitative) still as the mixture of diastereomers. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ - see Spectrum 2.131. Mix of diastereomers.

Aldehyde 256

A reaction flask was charged with $4 \AA$ molecular sieves, aldehyde $255(30 \mathrm{mg}$, 0.097 mmol as a solution in 2 mL toluene), and freshly distilled piperidine ($12 \mu \mathrm{~L}$, $0.121 \mathrm{mmol})$. The stirred mixture was heated to $80^{\circ} \mathrm{C}$ for 3 h , then cooled to room temperature and filtered through a celite plug, which was washed with a few mL of THF. The filtrate was concentrated under reduced pressure, and the crude enamine residue was taken up in THF (2 mL), and the solution was stirred and cooled to $-95^{\circ} \mathrm{C}$ with a liquid N_{2} / hexanes bath. To the cooled solution was added $\mathrm{PhSeCl}(23 \mathrm{mg}$, 121 mmol , solution in $300 \mu \mathrm{LHF}$) slowly over 5 min . The solution was warmed to $78{ }^{\circ} \mathrm{C}$ where it was stirred for 20 min , then was quenched by the addition of $\mathrm{H}_{2} \mathrm{O}(500$ $\mu \mathrm{L})$ and $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mL})$. The mixture was warmed to room temperature and stirred for 3 h, then diluted with $\mathrm{Et}_{2} \mathrm{O}$ and deionized $\mathrm{H}_{2} \mathrm{O}$. The aqueous layer was extracted with three portions of additional $\mathrm{Et}_{2} \mathrm{O}$ and the combined organic layers were washed successively with aqueous saturated NaHCO_{3} and brine. The solution was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was then suspended in MeOH:THF: $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL}: 1 \mathrm{~mL}: 1 \mathrm{~mL})$ and stirred at $0{ }^{\circ} \mathrm{C}$ while NaIO_{4} ($41 \mathrm{mg}, 0.193 \mathrm{mmol}$) was added, and the solution was allowed to warm to room temperature and stirred for 1 h . Two more additions of $\mathrm{NaIO}_{4}(41 \mathrm{mg}, 0.193 \mathrm{mmol})$ each at $0{ }^{\circ} \mathrm{C}$, then stirring at room temperature for 1 h were needed to consume the starting α-selenoaldehydes by TLC analysis. When the starting material had been
consumed, the reaction was cooled to $0^{\circ} \mathrm{C}$ and diluted with $\mathrm{Et}_{2} \mathrm{O}$, and quenched by the addition of saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(3 \mathrm{~mL})$. The mixture was partitioned between deionized $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{Et}_{2} \mathrm{O}$, and the aqueous layer was extracted with two additional portions of $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. Column chromatography (hexane $/ \mathrm{Et}_{2} \mathrm{O}$ gradient) of the residue provided the aldehyde $\mathbf{2 5 6}$, as a single diastereomer. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 9.49(\mathrm{~s}, 1 \mathrm{H}), 6.25(\mathrm{~s}, 1 \mathrm{H}), 6.13(\mathrm{~s}, 1 \mathrm{H})$, $4.66(\mathrm{~s}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 2.66(\mathrm{dd}, J=14.6,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.48(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H})$, 2.14-1.96 (m, 3H), 2.06(s, 3H), $1.62(\mathrm{~s}, 3 \mathrm{H}), 1.06(\mathrm{~s}, 3 \mathrm{H}), 1.06(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H})$.

Benzoate 260

To a stirred $-78{ }^{\circ} \mathrm{C}$ solution of the triene-ester $259(839 \mathrm{mg}, 4.03 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(40 \mathrm{~mL})$ was added DIBAL-H (5.9 mL of a 1.5 M solution in toluene, 8.86 mmol) slowly via syringe, and the reaction was stirred for 1.5 h at this temperature. The reaction was quenched by the dropwise addition of MeOH , and then a saturated aqueous Rochelle's salt solution, and then allowed to warm to room temperature with stirring. When the layers had separated, the aqueous layer was extracted twice with additional $\mathrm{Et}_{2} \mathrm{O}$, and the combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue (670 mg) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and to the solution was added DMAP ($49 \mathrm{mg}, 0.403 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}(841 \mu \mathrm{~L}, 6.04 \mathrm{mmol})$ and the solution was stirred and cooled to $0{ }^{\circ} \mathrm{C}$. To the cooled solution was added $\mathrm{BzCl}(557 \mu \mathrm{~L}, 4.83 \mathrm{mmol})$ via syringe, and the solution stirred until no more of the alcohol intermediate $\left(\mathrm{R}_{\mathrm{f}}<0.1\right.$ in 5:1 hexanes $\left./ \mathrm{Et}_{2} \mathrm{O}\right)$ was
visible, and the product $260\left(\mathrm{R}_{\mathrm{f}}=0.5\right.$ in $5: 1$ hexanes $\left./ \mathrm{Et}_{2} \mathrm{O}\right)$ was the predominant component of the mixture. The mixture was then partitioned between $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and saturated NaHCO_{3}, and the aqueous layer was washed with additional $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were washed with deionized $\mathrm{H}_{2} \mathrm{O}$, brine, and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The organic layer was then filtered and concentrated under reduced pressure, and the residue was purified by column chromatography ($8: 1$ to $6: 1$ hexanes $/ \mathrm{Et}_{2} \mathrm{O}$) to provide the benzoate $\mathbf{2 6 0}(700 \mathrm{mg}, 64 \%$ over 2 steps $)$. TLC ($5: 1$ hexanes $\left./ \mathrm{Et}_{2} \mathrm{O}\right)$: $\mathrm{R}_{\mathrm{f}}=$ 0.5; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 8.07(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.45(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.05(\mathrm{~s}, 1 \mathrm{H}), 5.84(\mathrm{~s}, 1 \mathrm{H}), 5.45(\mathrm{q}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.76(\mathrm{~s}$, $2 \mathrm{H}), 1.92(\mathrm{~s}, 6 \mathrm{H}), 1.77(\mathrm{~s}, 3 \mathrm{H}), 1.71(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}),{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ $\delta 166.6,135.0,133.9,133.5,133.0,131.2,130.5,129.9,129.8,128.5,125.2,71.5$, 18.8, 16.9, 16.0, 14.0; FTIR (film) $v \max 2969,2917,2855,1719,1449,1265,1178$, 1108, 1020, $715 \mathrm{~cm}^{-1}$; ESI-MS m/z $292.79[\mathrm{M}+\mathrm{Na}]^{+}$; HR-ESI-MS m/z calcd. for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{O}_{2} \mathrm{Na}_{1}[\mathrm{M}+\mathrm{Na}]^{+}: 293.1512$, found 293.1513.

Diels-Alder adduct 261

To a stirred $-78{ }^{\circ} \mathrm{C}$ solution of the benzoate $260(913 \mathrm{mg}, 3.38 \mathrm{mmol})$ and $\alpha-$ acetoxy acrolein $226(770 \mathrm{mg}, 6.75 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$ was added MeAlCl_{2} (3.56 mL of a 1.0 M solution in hexanes, 3.55 mmol) slowly via syringe, and the solution stirred at this temperature for 0.5 h . The reaction was then quenched by the addition of a saturated aqueous NaHCO_{3} solution and allowed to warm to room temperature. The mixture was then partitioned between deionized $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the aqueous layer was extracted with additional $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic
layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by column chromatography (4:1 to $3: 1$ hexanes $/ \mathrm{Et}_{2} \mathrm{O}$) to provide the Diels-Alder adduct $261(747 \mathrm{mg}, 58 \%)$ as a single diastereomer. TLC (3:1 hexanes / $\left.\mathrm{Et}_{2} \mathrm{O}\right): \mathrm{R}_{\mathrm{f}}=0.2 ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 9.66$ $(\mathrm{s}, 1 \mathrm{H}), 8.06(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.57(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.33$ $(\mathrm{s}, 1 \mathrm{H}), 5.20(\mathrm{~s}, 1 \mathrm{H}), 4.62(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.52(\mathrm{dd}, J=$ $14.0,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H}), 2.05-1.95(\mathrm{~m}, 1 \mathrm{H}), 1.89(\mathrm{dd}, J=14.0,11.3 \mathrm{~Hz}, 1 \mathrm{H})$, $1.83(\mathrm{~s}, 3 \mathrm{H}), 1.73(\mathrm{~s}, 3 \mathrm{H}), 1.29(\mathrm{~s}, 3 \mathrm{H}), 1.05(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $100 \mathrm{MHz}) \delta 199.4,170.7,166.4,135.9,133.1,132.8,130.9,130.3,129.8,128.5$, $127.7,86.3,71.6,44.9,31.9,30.5,23.1,21.0,18.1,15.3$; FTIR (film) $v \max 2966$, 2932, 2878, 1663, 1602, 1448, 1374, 1112, 1025, $716 \mathrm{~cm}^{-1}$; ESI-MS m/z 407.15 $[\mathrm{M}+\mathrm{Na}]^{+}, 384.92[\mathrm{M}+\mathrm{H}]^{+}, 408.17 \quad\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+} ; \quad$ HR-ESI-MS m / z calcd. for $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{O}_{5} \mathrm{Na}_{1}[\mathrm{M}+\mathrm{Na}]^{+}: 407.1829$, found 407.1833.

Ester 262

To a stirred $0^{\circ} \mathrm{C}$ solution of the Diels-Alder adduct 261 (1.69 g, 4.40 mmol$)$ in $\mathrm{MeOH}(50 \mathrm{~mL})$ were added successively $\mathrm{KOH}(44 \mathrm{~mL}$ of a 0.78 M solution in MeOH , $34.3 \mathrm{mmol})$ and $\mathrm{I}_{2}(22 \mathrm{~mL}$ of a 0.78 M solution in $\mathrm{MeOH}, 17.2 \mathrm{mmol})$, and the darkened solution stirred at this temperature for 45 min . At this time, additional portions of $\mathrm{KOH}(8.8 \mathrm{~mL}$ of the 0.78 M solution in $\mathrm{MeOH}, 6.86 \mathrm{mmol})$ and $\mathrm{I}_{2}(4.4 \mathrm{~mL}$ of the 0.78 M solution in $\mathrm{MeOH}, 3.43 \mathrm{mmol}$) were added, and stirring continued for 30 min at $0^{\circ} \mathrm{C}$. After this period of time, $\mathrm{H}_{2} \mathrm{SO}_{4}(41 \mathrm{~mL}$ of a 2 N aqueous solution, 82 mmol) was added, and the mixture was allowed to warm to room temperature. The
mixture was diluted with deionized $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{Et}_{2} \mathrm{O}$, and the aqueous layer was extracted with two additional portions of $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were washed with saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$, then brine, then were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by column chromatography (5:2 hexanes $/ \mathrm{Et}_{2} \mathrm{O}$ to $100 \% \mathrm{Et}_{2} \mathrm{O}$ gradient) to provide the ester 262 ($546 \mathrm{mg}, 33 \%$) and then the diol 263 (193 mg, 16\%). Ester 262: TLC (1:1 hexanes / $\left.\mathrm{Et}_{2} \mathrm{O}\right): \mathrm{R}_{\mathrm{f}}=0.4 ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 8.05(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.57(\mathrm{t}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.31(\mathrm{~s}, 1 \mathrm{H}), 5.19(\mathrm{~s}, 1 \mathrm{H}), 4.64(\mathrm{~d}, J=12.8 \mathrm{~Hz}$, $1 \mathrm{H}), 4.60(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.12(\mathrm{~s}, 1 \mathrm{H}), 2.41-2.28(\mathrm{~m}, 1 \mathrm{H}), 1.94-1.87$ $(\mathrm{m}, 2 \mathrm{H}), 1.84(\mathrm{~s}, 3 \mathrm{H}), 1.75(\mathrm{~s}, 3 \mathrm{H}), 1.19(\mathrm{~s}, 3 \mathrm{H}), 1.05(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 176.0,166.4,136.0,133.1,133.0,130.8,130.5,129.7,128.5$, 127.6, 78.1, 72.1, 52.5, 45.7, 37.3, 30.3, 22.8, 21.1, 18.3, 15.0; FTIR (film) $v \max 3429$ br, 2959, 2872, 1716, 1643, 1448, 1367, 1273, 1112, 1031, $716 \mathrm{~cm}^{-1}$; ESI-MS m/z $395.05[\mathrm{M}+\mathrm{Na}]^{+}, 389.90\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$, HR-ESI-MS m/z calcd. for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{O}_{5} \mathrm{Na}_{1}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 395.1829$, found 395.1825.

Diol 263

To a stirred $0^{\circ} \mathrm{C}$ solution of ester $262(511 \mathrm{mg}, 1.37 \mathrm{mmol})$ in $\mathrm{MeOH}(29 \mathrm{~mL})$ was added $\mathrm{KOH}(13.7 \mathrm{~mL}$ of a 1.0 M solution in $\mathrm{MeOH}, 13.7 \mathrm{mmol})$, and the solution was stirred at $0^{\circ} \mathrm{C}$ for 2 h , then at room temperature for 2 h . The reaction was then diluted with deionized $\mathrm{H}_{2} \mathrm{O}$ and EtOAc , and the aqueous layer was washed with three additional portions of EtOAc. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. Column
chromatography ($1: 1$ hexanes / EtOAc) provided the diol $263(310 \mathrm{mg}, 84 \%)$ and starting ester 262 (79 mg), such that the yield was 99% BORSM. TLC (1:1 hexanes / EtOAc): $\mathrm{R}_{\mathrm{f}}=0.3 ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 5.17(\mathrm{~s}, 2 \mathrm{H}), 3.89(\mathrm{~d}, J=5.8 \mathrm{~Hz}$, $2 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.04(\mathrm{~s}, 1 \mathrm{H}), 2.39-2.28(\mathrm{~m}, 1 \mathrm{H}), 1.90-1.87(\mathrm{~m}, 2 \mathrm{H}), 1.76(\mathrm{~s}, 3 \mathrm{H})$, $1.74(\mathrm{~s}, 3 \mathrm{H}), 1.18(\mathrm{~s}, 3 \mathrm{H}), 1.05(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta$ $175.8,135.6,135.5,130.1,127.9,78.3,70.8,52.4,45.5,37.3,30.2,22.9,21.1,18.3$, 14.8; FTIR (film) vmax 3456 br, 2959, 2872, 1723, 1441, 1381, 1260, 1152, 1125, 1025, 863, 756; ESI-MS m/z $307.09[\mathrm{M}+\mathrm{K}]^{+}, 291.07[\mathrm{M}+\mathrm{Na}]^{+}, 285.90\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$, $268.90[\mathrm{M}+\mathrm{H}]^{+}$; HR-ESI-MS m/z calcd. for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{O}_{4} \mathrm{Na}_{1}[\mathrm{M}+\mathrm{Na}]^{+}: 291.1567$, found 291.1570.
p-bromobenzoate 264
To a reaction flask were charged p-bromobenzoic acid ($32 \mathrm{mg}, 0.160 \mathrm{mmol}$), CSA ($18 \mathrm{mg}, 0.080 \mathrm{mmol}$), DMAP ($21 \mathrm{mg}, 0.168 \mathrm{mmol}$), and a solution of the diol $263(43 \mathrm{mg}, 0.160 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$. The solution was stirred as DCC $(53 \mathrm{mg}$, 0.256 mmol) was added in one portion. The reaction was allowed to stir for 3 h at room temperature, and then was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and 10% aqueous citric acid. The layers were separated, and the organic layer was washed successively with saturated aqueous NaHCO_{3}, deionized $\mathrm{H}_{2} \mathrm{O}$, and then brine. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography ($5: 3$ hexanes $/ \mathrm{Et}_{2} \mathrm{O}$) to provide the p bromobenzoate 264 ($57 \mathrm{mg}, 80 \%$). Diffraction quality crystals were obtained by perfusion of hexanes into an EtOAc solution of 264, and a neat sample of 264
solidified in the freezer (mp of the amorphous solid $=49-51^{\circ} \mathrm{C}$ (uncorrected). TLC (5:3 hexanes $\left./ \mathrm{Et}_{2} \mathrm{O}\right): \mathrm{R}_{\mathrm{f}}=0.2 ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.91(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H})$, $7.59(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.30(\mathrm{~s}, 1 \mathrm{H}), 5.18(\mathrm{~s}, 1 \mathrm{H}), 4.63(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{~d}$, $J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.11(\mathrm{~s}, 1 \mathrm{H}), 2.40-2.29(\mathrm{~m}, 1 \mathrm{H}), 1.91-1.87(\mathrm{~m}, 2 \mathrm{H})$, $1.83(\mathrm{~s}, 3 \mathrm{H}), 1.75(\mathrm{~s}, 3 \mathrm{H}), 1.19(\mathrm{~s}, 3 \mathrm{H}), 1.05(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right.$, $100 \mathrm{MHz}) \delta 175.8,165.7,136.1,133.4,131.9,131.2,130.6,129.4,128.2,127.5,78.1$, $72.5,52.5,45.7,37.4,30.3,22.8,21.1,18.3,15.1$; ESI-MS m/z $474.95[\mathrm{M}+\mathrm{Na}]^{+}$, $467.76[\mathrm{M}+\mathrm{H}]^{+}$; HR-ESI-MS m / z calcd. for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{Br}_{1} \mathrm{O}_{5} \mathrm{Na}_{1}[\mathrm{M}+\mathrm{Na}]^{+}$: 473.0934, found 473.0929.

Figure 2.10 ORTEP stereopair drawing of the X-ray crystal structure of compound 264 with ellipsoids drawn at the 50% probability level

Structure report for compound 264 (burk12):

Sample bdj7-134-1
Data collected on June 16-17, 2009

A colorless crystal of sample bdj7-134-1 was mounted on a Cryoloop with Paratone-N oil. Data were collected on a Bruker APEX II CCD systems using Mo K alpha radiation in a nitrogen gas stream at 100(2) K using phi and omega scans. Crystal-to-detector distance was 60 mm and exposure time was 10 seconds per frame using a scan width of 0.5°. Indexing and unit cell refinement indicated a primitive, triclinic, P-1. The data were integrated using the Bruker SHELXTL software program and scaled using the SADABS software program. Solution by direct methods (SHELXS) and all non-hydrogen atoms were refined anisotropically by full-matrix least-squares (SHELXL-97).

All hydrogen atoms were placed using a riding model except hydrogen atom on O 5 which was allowed to refine. Intramolecular hydrogen bonding noted between O5-H5A and O4. Two residual electron density peaks of $1.47 \mathrm{e} / \mathrm{A}^{3}$ found at 0.91 and 0.93 Angstroms from atom Br 1 .

Table 2.23 Crystal data and structure refinement for BURK12.

Identification code	burk12	
Empirical formula	C 22 H 27 Br O 5	
Formula weight	451.35	
Temperature	$100(2) \mathrm{K}$	
Wavelength	$0.71073 \AA$	
Crystal system	Triclinic	
Space group	$\mathrm{P}-1$	$\alpha=69.894(5)^{\circ}$.
Unit cell dimensions	$\mathrm{a}=9.745(3) \AA$	$\beta=67.400(6)^{\circ}$.
	$\mathrm{b}=10.404(3) \AA$	$\gamma=87.178(5)^{\circ}$.
	$\mathrm{c}=11.659(4) \AA$	
Volume	$1020.2(6) \AA^{3}$	
Z	2	

Table 2.23 Crystal data and structure refinement for BURK12, continued.

Density (calculated)	$1.469 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$2.045 \mathrm{~mm}^{-1}$
$\mathrm{~F}(000)$	468
Crystal size	$0.10 \times 0.10 \times 0.10 \mathrm{~mm}^{3}$
Crystal color and habit	Colorless $/ . \mathrm{block}$
Theta range for data collection	2.02 to 27.43°.
Index ranges	$-12<=\mathrm{h}<=12,-13<=\mathrm{k}<=13,-14<=\mathrm{l}<=11$
Reflections collected	7424
Independent reflections	$4169[\mathrm{R}(\mathrm{int})=0.0458]$
Completeness to theta $=25.00^{\circ}$	96.9%
Absorption correction	$\mathrm{multi-scan} / \mathrm{sadabs}$
Max. and min. transmission	0.8216 and 0.8216
Refinement method	$\mathrm{Full-matrix} \mathrm{least-squares} \mathrm{on} \mathrm{F}^{2}$
Data / restraints / parameters	$4169 / 0 / 261$
Goodness-of-fit on F^{2}	1.052
Final R indices [I>2sigma(I)]	$\mathrm{R} 1=0.0594, \mathrm{wR} 2=0.1469$
R indices (all data)	$\mathrm{R} 1=0.0717, \mathrm{wR} 2=0.1568$
Largest diff. peak and hole	1.474 and -1.580 e. \AA^{-3}

Table 2.24 Atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for BURK12. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	x	y	z	$U(e q)$
$\mathrm{Br}(1)$	$6266(1)$	$5115(1)$	$-3092(1)$	$30(1)$
$\mathrm{O}(1)$	$-375(3)$	$6063(3)$	$1416(3)$	$28(1)$
$\mathrm{O}(2)$	$124(3)$	$4046(3)$	$2615(3)$	$24(1)$
$\mathrm{O}(3)$	$-5403(3)$	$2105(3)$	$7061(3)$	$28(1)$
$\mathrm{O}(4)$	$-6312(3)$	$64(3)$	$7272(3)$	$29(1)$
$\mathrm{O}(5)$	$-4526(3)$	$-1220(3)$	$8450(3)$	$21(1)$

Table 2.24 Atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for BURK12. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor, continued.

	x	y	z	$\mathrm{U}(\mathrm{eq})$
$\mathrm{C}(1)$	$2717(4)$	$4004(4)$	$556(4)$	$23(1)$
$\mathrm{C}(2)$	$4025(4)$	$3998(4)$	$-488(4)$	$24(1)$
$\mathrm{C}(3)$	$4470(4)$	$5112(4)$	$-1660(4)$	$22(1)$
$\mathrm{C}(4)$	$3647(4)$	$6242(4)$	$-1816(4)$	$22(1)$
$\mathrm{C}(5)$	$2338(4)$	$6229(4)$	$-766(4)$	$22(1)$
$\mathrm{C}(6)$	$1866(4)$	$5119(4)$	$417(4)$	$20(1)$
$\mathrm{C}(7)$	$431(4)$	$5154(4)$	$1508(4)$	$21(1)$
$\mathrm{C}(8)$	$-1287(4)$	$3978(4)$	$3705(4)$	$22(1)$
$\mathrm{C}(9)$	$-1354(4)$	$2721(4)$	$4860(4)$	$19(1)$
$\mathrm{C}(10)$	$-2339(4)$	$1662(4)$	$5243(4)$	$18(1)$
$\mathrm{C}(11)$	$-2673(4)$	$227(4)$	$6294(4)$	$18(1)$
$\mathrm{C}(12)$	$-1405(4)$	$-319(3)$	$6719(4)$	$18(1)$
$\mathrm{C}(13)$	$-1283(4)$	$-408(4)$	$7832(4)$	$19(1)$
$\mathrm{C}(14)$	$-2416(4)$	$124(4)$	$8839(4)$	$20(1)$
$\mathrm{C}(15)$	$-3547(4)$	$904(4)$	$8321(4)$	$19(1)$
$\mathrm{C}(16)$	$-4041(4)$	$176(3)$	$7590(4)$	$18(1)$
$\mathrm{C}(17)$	$-5375(4)$	$766(4)$	$7285(4)$	$20(1)$
$\mathrm{C}(18)$	$-6693(5)$	$2703(5)$	$6824(5)$	$40(1)$
$\mathrm{C}(19)$	$-254(4)$	$2873(4)$	$5434(4)$	$24(1)$
$\mathrm{C}(20)$	$-3025(4)$	$-744(4)$	$5683(4)$	$21(1)$
$\mathrm{C}(22)$	$-1677(5)$	$1031(4)$	$9778(4)$	$24(1)$
				$29(1)$

Table 2.25 Bond lengths [$\AA \AA$] and angles [${ }^{\circ}$] for BURK12.

```
Br(1)-C(3) 1.898(4) C(11)-C(16) 1.570(5)
O(1)-C(7) 1.202(4) C(12)-C(13) 1.320(5)
```

Table 2.25 Bond lengths $[\AA]$ and angles $\left[{ }^{\circ}\right]$ for BURK12, continued.

$\mathrm{O}(2)-\mathrm{C}(7)$	$1.341(4)$	$\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~A})$	0.9500
$\mathrm{O}(2)-\mathrm{C}(8)$	$1.455(4)$	$\mathrm{C}(13)-\mathrm{C}(21)$	$1.495(5)$
$\mathrm{O}(3)-\mathrm{C}(17)$	$1.328(4)$	$\mathrm{C}(13)-\mathrm{C}(14)$	$1.515(5)$
$\mathrm{O}(3)-\mathrm{C}(18)$	$1.454(5)$	$\mathrm{C}(14)-\mathrm{C}(15)$	$1.524(5)$
$\mathrm{O}(4)-\mathrm{C}(17)$	$1.204(5)$	$\mathrm{C}(14)-\mathrm{C}(22)$	$1.525(5)$
$\mathrm{O}(5)-\mathrm{C}(16)$	$1.429(4)$	$\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~A})$	1.0000
$\mathrm{O}(5)-\mathrm{H}(5 \mathrm{~A})$	$0.82(5)$	$\mathrm{C}(15)-\mathrm{C}(16)$	$1.527(5)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.385(5)$	$\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~A})$	0.9900
$\mathrm{C}(1)-\mathrm{C}(6)$	$1.393(5)$	$\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~B})$	0.9900
$\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~A})$	0.9500	$\mathrm{C}(16)-\mathrm{C}(17)$	$1.523(5)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.380(5)$	$\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~A})$	0.9800
$\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~A})$	0.9500	$\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~B})$	0.9800
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.390(5)$	$\mathrm{C}(18)-\mathrm{H}(18 \mathrm{C})$	0.9800
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.384(5)$	$\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~A})$	0.9800
$\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~A})$	0.9500	$\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~B})$	0.9800
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.385(5)$	$\mathrm{C}(19)-\mathrm{H}(19 \mathrm{C})$	0.9800
$\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~B})$	0.9500	$\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~A})$	0.9800
$\mathrm{C}(6)-\mathrm{C}(7)$	$1.494(5)$	$\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~B})$	0.9800
$\mathrm{C}(8)-\mathrm{C}(9)$	$1.503(5)$	$\mathrm{C}(20)-\mathrm{H}(20 \mathrm{C})$	0.9800
$\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A})$	0.9900	$\mathrm{C}(21)-\mathrm{H}(21 \mathrm{~A})$	0.9800
$\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~B})$	0.9900	$\mathrm{C}(21)-\mathrm{H}(21 \mathrm{~B})$	0.9800
$\mathrm{C}(9)-\mathrm{C}(10)$	$1.331(5)$	$\mathrm{C}(21)-\mathrm{H}(21 \mathrm{C})$	0.9800
$\mathrm{C}(9)-\mathrm{C}(19)$	$1.504(5)$	$\mathrm{C}(22)-\mathrm{H}(22 \mathrm{~A})$	0.9800
$\mathrm{C}(10)-\mathrm{C}(11)$	$1.523(5)$	$\mathrm{C}(22)-\mathrm{H}(22 \mathrm{~B})$	0.9800
$\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~A})$	0.9500	$\mathrm{C}(22)-\mathrm{H}(22 \mathrm{C})$	0.9800
$\mathrm{C}(11)-\mathrm{C}(12)$	$1.518(5)$		
$\mathrm{C}(11)-\mathrm{C}(20)$	$1.536(5)$		

$\mathrm{C}(7)-\mathrm{O}(2)-\mathrm{C}(8)$	$115.8(3)$	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~A})$	119.9
$\mathrm{C}(17)-\mathrm{O}(3)-\mathrm{C}(18)$	$115.4(3)$	$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~A})$	119.9
$\mathrm{C}(16)-\mathrm{O}(5)-\mathrm{H}(5 \mathrm{~A})$	$104(3)$	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	$119.0(3)$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(6)$	$120.2(4)$	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~A})$	120.5

$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~A})$	120.5	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~A})$	116.5
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$121.7(4)$	$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(21)$	$121.5(3)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{Br}(1)$	$119.3(3)$	$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	$122.1(3)$
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{Br}(1)$	$119.0(3)$	$\mathrm{C}(21)-\mathrm{C}(13)-\mathrm{C}(14)$	$116.4(3)$
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(3)$	$118.5(4)$	$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	$111.8(3)$
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~A})$	120.7	$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(22)$	$112.2(3)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~A})$	120.7	$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{C}(22)$	$109.8(3)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$120.7(3)$	$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~A})$	107.6
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~B})$	119.6	$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~A})$	107.6
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~B})$	119.6	$\mathrm{C}(22)-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~A})$	107.6
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(1)$	$119.7(3)$	$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	$111.3(3)$
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	$118.3(3)$	$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~A})$	109.4

Table 2.25 Bond lengths $[\AA]$ and angles $\left[{ }^{\circ}\right]$ for BURK12, continued.

$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(7)$	$121.9(3)$	$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~A})$	109.4
$\mathrm{O}(1)-\mathrm{C}(7)-\mathrm{O}(2)$	$123.0(4)$	$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~B})$	109.4
$\mathrm{O}(1)-\mathrm{C}(7)-\mathrm{C}(6)$	$124.4(4)$	$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~B})$	109.4
$\mathrm{O}(2)-\mathrm{C}(7)-\mathrm{C}(6)$	$112.6(3)$	$\mathrm{H}(15 \mathrm{~A})-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~B})$	108
$\mathrm{O}(2)-\mathrm{C}(8)-\mathrm{C}(9)$	$106.9(3)$	$\mathrm{O}(5)-\mathrm{C}(16)-\mathrm{C}(17)$	$106.1(3)$
$\mathrm{O}(2)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A})$	110.3	$\mathrm{O}(5)-\mathrm{C}(16)-\mathrm{C}(15)$	$107.6(3)$
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A})$	110.3	$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{C}(15)$	$112.8(3)$
$\mathrm{O}(2)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~B})$	110.3	$\mathrm{O}(5)-\mathrm{C}(16)-\mathrm{C}(11)$	$109.8(3)$
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~B})$	110.3	$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{C}(11)$	$111.6(3)$
$\mathrm{H}(8 \mathrm{~A})-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~B})$	108.6	$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(11)$	$108.9(3)$
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(8)$	$118.4(3)$	$\mathrm{O}(4)-\mathrm{C}(17)-\mathrm{O}(3)$	$124.2(3)$
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(19)$	$129.1(3)$	$\mathrm{O}(4)-\mathrm{C}(17)-\mathrm{C}(16)$	$122.4(3)$
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(19)$	$112.5(3)$	$\mathrm{O}(3)-\mathrm{C}(17)-\mathrm{C}(16)$	$113.4(3)$
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	$133.4(3)$	$\mathrm{O}(3)-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~A})$	109.5
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~A})$	113.3	$\mathrm{O}(3)-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~B})$	109.5
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~A})$	113.3	$\mathrm{H}(18 \mathrm{~A})-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~B})$	109.5
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(10)$	$115.5(3)$	$\mathrm{O}(3)-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{C})$	109.5
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(20)$	$107.2(3)$	$\mathrm{H}(18 \mathrm{~A})-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{C})$	109.5
$\mathrm{C}(10)-\mathrm{C}(111)-\mathrm{C}(20)$	$106.3(3)$	$\mathrm{H}(18 \mathrm{~B})-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{C})$	109.5
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(16)$	$106.4(3)$	$\mathrm{C}(9)-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~A})$	109.5
$\mathrm{C}(10)-\mathrm{C}(111)-\mathrm{C}(16)$	$110.8(3)$	$\mathrm{C}(9)-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~B})$	109.5
$\mathrm{C}(20)-\mathrm{C}(11)-\mathrm{C}(16)$	$110.5(3)$	$\mathrm{H}(19 \mathrm{~A})-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~B})$	109.5
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(11)$	$126.9(3)$	$\mathrm{C}(9)-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{C})$	109.5
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~A})$	116.5	$\mathrm{H}(19 \mathrm{~A})-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{C})$	109.5
$\mathrm{H}(19 \mathrm{~B})-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{C})$	109.5	$\mathrm{H}(21 \mathrm{~A})-\mathrm{C}(21)-\mathrm{H}(21 \mathrm{C})$	109.5
$\mathrm{C}(11)-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~A})$	109.5	$\mathrm{H}(21 \mathrm{~B})-\mathrm{C}(21)-\mathrm{H}(21 \mathrm{C})$	109.5
$\mathrm{C}(11)-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~B})$	109.5	$\mathrm{C}(14)-\mathrm{C}(22)-\mathrm{H}(22 \mathrm{~A})$	109.5
$\mathrm{H}(20 \mathrm{~A})-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~B})$	109.5	$\mathrm{C}(14)-\mathrm{C}(22)-\mathrm{H}(22 \mathrm{~B})$	109.5
$\mathrm{C}(11)-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{C})$	109.5	$\mathrm{H}(22 \mathrm{~A})-\mathrm{C}(22)-\mathrm{H}(22 \mathrm{~B})$	109.5
$\mathrm{H}(20 \mathrm{~A})-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{C})$	109.5	$\mathrm{C}(14)-\mathrm{C}(22)-\mathrm{H}(22 \mathrm{C})$	109.5
$\mathrm{H}(20 \mathrm{~B})-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{C})$	109.5	$\mathrm{H}(22 \mathrm{~A})-\mathrm{C}(22)-\mathrm{H}(22 \mathrm{C})$	109.5
$\mathrm{C}(13)-\mathrm{C}(21)-\mathrm{H}(21 \mathrm{~A})$	109.5	$\mathrm{H}(22 \mathrm{~B})-\mathrm{C}(22)-\mathrm{H}(22 \mathrm{C})$	109.5
$\mathrm{C}(13)-\mathrm{C}(21)-\mathrm{H}(21 \mathrm{~B})$	109.5		
$\mathrm{H}(21 \mathrm{~A})-\mathrm{C}(21)-\mathrm{H}(21 \mathrm{~B})$	109.5		
$\mathrm{C}(13)-\mathrm{C}(21)-\mathrm{H}(21 \mathrm{C})$	109.5		

Symmetry transformations used to generate equivalent atoms:

Table 2.26 Anisotropic displacement parameters ($\AA^{2} \times 10^{3}$)for BURK12. The anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{*} U^{11}+\ldots+2 h k\right.$ $\left.a^{*} b^{*} U^{12}\right]$

	U^{11}	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}
$\operatorname{Br}(1)$	34(1)	21(1)	29(1)	-7(1)	-8(1)	7(1)
$\mathrm{O}(1)$	31(2)	17(1)	31(2)	-2(1)	-14(1)	10(1)
$\mathrm{O}(2)$	28(1)	17(1)	20(1)	-1(1)	-10(1)	11(1)
$\mathrm{O}(3)$	28(1)	21(1)	43(2)	-11(1)	-24(1)	17(1)
$\mathrm{O}(4)$	28(1)	27(2)	40(2)	-9(1)	-24(1)	9(1)
$\mathrm{O}(5)$	26(1)	13(1)	25(1)	-2(1)	-15(1)	4(1)
C(1)	30(2)	13(2)	24(2)	-3(1)	-14(2)	10(1)
C(2)	29(2)	16(2)	29(2)	-6(2)	-15(2)	11(2)
C(3)	28(2)	17(2)	23(2)	-8(2)	-13(2)	6(1)
C(4)	31(2)	16(2)	23(2)	-4(2)	-17(2)	4(1)
C(5)	32(2)	15(2)	26(2)	-6(2)	-19(2)	10(2)
C(6)	25(2)	16(2)	22(2)	-6(2)	-13(2)	6(1)
C(7)	23(2)	15(2)	25(2)	-4(2)	-14(2)	7(1)
C(8)	23(2)	17(2)	26(2)	-6(2)	-12(2)	11(1)
C(9)	24(2)	15(2)	19(2)	-7(1)	-12(2)	12(1)
C(10)	23(2)	18(2)	18(2)	-8(1)	-14(1)	11(1)
C(11)	23(2)	14(2)	20(2)	-6(1)	-14(1)	9(1)
C(12)	23(2)	12(2)	23(2)	-6(1)	-12(2)	8(1)
C(13)	21(2)	12(2)	28(2)	-8(1)	-14(2)	8(1)
C(14)	22(2)	19(2)	22(2)	-7(2)	-14(2)	8(1)
C(15)	23(2)	17(2)	22(2)	-8(1)	-13(2)	10(1)
C(16)	23(2)	12(2)	19(2)	-3(1)	-13(1)	9(1)
$\mathrm{C}(17)$	26(2)	17(2)	20(2)	-5(1)	-14(2)	9(1)
C(18)	41(3)	34(2)	60(3)	-17(2)	-38(2)	27(2)
C(19)	30(2)	17(2)	27(2)	-4(2)	-17(2)	5(2)
C(20)	27(2)	17(2)	26(2)	-10(2)	-16(2)	9(1)
C(21)	26(2)	24(2)	27(2)	-9(2)	-17(2)	12(2)
C(22)	31(2)	35(2)	32(2)	-21(2)	-18(2)	12(2)

Table 2.27 Hydrogen coordinates ($\times 10^{4}$) and isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for BURK12.

	x	y	z	$\mathrm{U}(\mathrm{eq})$
H(1A)	2399	3245	1369	27
H(2A)	4607	3238	-398	29
H(4A)	3975	7006	-2625	26
H(5B)	1758	6990	-858	27
H(8A)	-2133	3909	3451	26
H(8B)	-1340	4813	3939	26
$\mathrm{H}(10 \mathrm{~A})$	-2963	1838	4760	22
H(12A)	-615	-630	6120	22
H(14A)	-2975	-689	9644	23
$\mathrm{H}(15 \mathrm{~A})$	-3095	1845	7712	23
H(15B)	-4429	983	9075	23
H(18A)	-6594	3696	6629	60
H(18B)	-7603	2283	7615	60
H(18C)	-6751	2532	6067	60
$\mathrm{H}(19 \mathrm{~A})$	-233	1988	6091	36
H(19B)	-555	3561	5862	36
$\mathrm{H}(19 \mathrm{C})$	742	3169	4722	36
$\mathrm{H}(20 \mathrm{~A})$	-2161	-701	4877	31
H(20B)	-3892	-462	5459	31
H(20C)	-3246	-1687	6324	31
H(21A)	530	-1516	7544	36
H(21B)	-433	-1758	9076	36
H(21C)	639	-368	8140	36
$\mathrm{H}(22 \mathrm{~A})$	-1064	485	9719	43
H(22B)	-2448	1398	9874	43
H(22C)	-1045	1793	8484	43
H(5A)	-5150(50)	-1450(50)	8230(40)	22(12)

Table 2.28 Hydrogen bonds for BURK12 [\AA and $\left.{ }^{\circ}\right]$.

D-H...A	$\mathrm{d}(\mathrm{D}-\mathrm{H})$	$\mathrm{d}(\mathrm{H} \ldots \mathrm{A})$	$\mathrm{d}(\mathrm{D} \ldots \mathrm{A})$	$<(\mathrm{DHA})$
$\mathrm{O}(5)-\mathrm{H}(5 \mathrm{~A}) \ldots \mathrm{O}(4)$	$0.82(5)$	$2.14(5)$	$2.655(4)$	$120(4)$

Symmetry transformations used to generate equivalent atoms:

Bis-acetate 265

To a stirred $0{ }^{\circ} \mathrm{C}$ solution of the diol $263(310 \mathrm{mg}, 1.16 \mathrm{mmol})$ in $\mathrm{Ac}_{2} \mathrm{O}(9.8$ $\mathrm{mL}, 104 \mathrm{mmol})$ was added $\mathrm{Sc}(\mathrm{OTf})_{3}(284 \mathrm{mg}$ dissolved in $1.8 \mathrm{~mL} \mathrm{MeCN}, 0.577$ mmol) via cannula, and the solution stirred for 30 seconds at this temperature. The reaction was quenched by the addition of a saturated aqueous NaHCO_{3} solution, and was transferred to a beaker so that the gas evolution could be more easily controlled. Solid $\mathrm{NaHCO}_{3}(5 \mathrm{~g})$ was also added, and the mixture stirred until gas evolution ceased. The mixture was then diluted with $\mathrm{Et}_{2} \mathrm{O}$ and deionized $\mathrm{H}_{2} \mathrm{O}$, and the aqueous layer was extracted twice with additional portions of $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by column chromatography (3:2 hexanes / EtOAc, isocratic) to provide the bis-acetate 265 ($393 \mathrm{mg}, 97 \%$). TLC (1:1 hexanes / EtOAc): $\mathrm{R}_{\mathrm{f}}=0.5 ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 5.15(\mathrm{~s}, 1 \mathrm{H}), 5.10(\mathrm{~s}, 1 \mathrm{H}), 4.36(\mathrm{~d}, \mathrm{~J}$ $=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 2.60(\mathrm{dd}, J=14.0,4.9 \mathrm{~Hz}$, $1 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H}), 1.98-1.87(\mathrm{~m}, 1 \mathrm{H}), 1.82(\mathrm{dd}, J=14.0,11.6 \mathrm{~Hz}, 1 \mathrm{H})$,
$1.74(\mathrm{~s}, 3 \mathrm{H}), 1.70(\mathrm{~s}, 3 \mathrm{H}), 1.28(\mathrm{~s}, 3 \mathrm{H}), 1.01(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $100 \mathrm{MHz}) \delta 171.0,170.9,170.3,135.4,132.2,131.1,127.7,83.4,71.5,52.0,45.1$, 34.0, 30.6, 23.2, 21.1, 20.8, 18.0, 14.9; FTIR (film) vmax 2948, 1736, 1440, 1370, 1230, 1111, 1021, 913, $733 \mathrm{~cm}^{-1}$; ESI-MS m/z $375.05[\mathrm{M}+\mathrm{Na}]^{+}, 369.91\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$; HR-ESI-MS m/z calcd. for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{6} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 375.1778$, found 375.1782.

Mono-acetate 266

To a stirred $-78{ }^{\circ} \mathrm{C}$ solution of the bis-acetate $265(98 \mathrm{mg}, 0.276 \mathrm{mmol})$ in THF (5.5 mL) was added DIBAL-H ($738 \mu \mathrm{~L}$ of a 1.5 M solution in toluene, 1.10 mmol) dropwise via syringe over 10 min , and the solution stirred for 2 h at this temperature. The reaction was quenched by the dropwise addition of MeOH followed by a saturated aqueous solution of Rochelle's salt, and then was allowed to warm to room temperature. When the layers had separated, the mixture was diluted with deionized $\mathrm{H}_{2} \mathrm{O}$ and EtOAc, and the aqueous layer was extracted with additional portions of EtOAc. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. Column chromatography of the residue (3:1 to 1:1 hexanes / ethyl acetate gradient) provided the mono-acetate 266 (54 $\mathrm{mg}, 63 \%)$. TLC ($1: 1$ hexanes / EtOAc $): \mathrm{R}_{\mathrm{f}}=0.3 ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 5.16$ $(\mathrm{s}, 1 \mathrm{H}), 5.08(\mathrm{~s}, 1 \mathrm{H}), 3.88(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 2.59(\mathrm{dd}, J=13.8,4.7 \mathrm{~Hz}$, $1 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}), 2.00-1.86(\mathrm{~m}, 1 \mathrm{H}), 1.85(\mathrm{dd}, J=13.8,11.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.75(\mathrm{~s}, 3 \mathrm{H})$, $1.71(\mathrm{~s}, 3 \mathrm{H}), 1.43(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.28(\mathrm{~s}, 3 \mathrm{H}), 1.02(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 171.3,170.4,137.1,135.1,128.2,128.1,83.6,70.6,52.0,45.0$,
34.0, 30.6, 23.4, 21.1, 20.8, 18.0, 14.7; FTIR (film) vmax 2949, 1734, 1438, 1370, 1268, 1016, 909, $732 \mathrm{~cm}^{-1}$; ESI-MS m/z $348.97[\mathrm{M}+\mathrm{K}]^{+}, 333.06[\mathrm{M}+\mathrm{Na}]^{+}, 327.94$ $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 292.87\left[\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right]^{+}$; HR-ESI-MS m/z calcd. for $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{O}_{5} \mathrm{Na}_{1}[\mathrm{M}+\mathrm{Na}]^{+}:$ 333.1672, found 333.1675.

Silyl ether 267

To a stirred solution of the mono-acetate $266(205 \mathrm{mg}, 0.660 \mathrm{mmol})$ in DMF (7 mL) were added imidazole ($112 \mathrm{mg}, 1.65 \mathrm{mmol}$) and $\mathrm{TBSCl}(200 \mathrm{mg}, 1.32 \mathrm{mmol})$ at room temperature. The solution stirred until only the product was visible by TLC, and then was diluted with saturated aqueous NaHCO_{3} and $1: 1$ hexanes $/ \mathrm{Et}_{2} \mathrm{O}$. The aqueous layer was extracted with an additional portion of the solvent mixture, and the combined organic layers were washed with deionized $\mathrm{H}_{2} \mathrm{O}$, then brine, then were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. Column chromatography of the residue (5:1 to 3:1 hexanes / EtOAc gradient) provided the silyl ether 267 (229 mg, 82\%). TLC (1:1 hexanes / EtOAc): $\mathrm{R}_{\mathrm{f}}=0.7 ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $400 \mathrm{MHz}) \delta 5.18(\mathrm{~s}, 1 \mathrm{H}), 5.12(\mathrm{~s}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 2 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 2.59(\mathrm{dd}, J=13.3$, $4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H}), 2.01-1.80(\mathrm{~m}, 2 \mathrm{H}), 1.70(\mathrm{~s}, 3 \mathrm{H}), 1.67(\mathrm{~s}, 3 \mathrm{H}), 1.28(\mathrm{~s}, 3 \mathrm{H})$, $1.01(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.04(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta$ $171.1,170.4,136.3,134.6,128.6,126.3,83.7,69.7,52.0,44.9,34.0,30.6,26.1,23.3$, 20.8, 18.5, 18.1, 14.5, -5.1, -5.2; FTIR (film) vmax 2956, 2857, 1738, 1437, 1370, 1256, 1106, 908, 837, 777, $733 \mathrm{~cm}^{-1}$; ESI-MS m/z $447.09[\mathrm{M}+\mathrm{Na}]^{+}, 441.87$ $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$; HR-ESI-MS m/z calcd. for $\mathrm{C}_{23} \mathrm{H}_{40} \mathrm{O}_{5} \mathrm{Si}_{1} \mathrm{Na}_{1}[\mathrm{M}+\mathrm{Na}]^{+}: 447.2537$, found 447.2540 .

Spirotetronate 268

To a stirred $-78{ }^{\circ} \mathrm{C}$ solution of the silyl ether $267(229 \mathrm{mg}, 0.539 \mathrm{mmol})$ in THF (5.4 mL) and freshly distilled HMPA (2 mL) was added LiHMDS $(1.17 \mathrm{~mL}$ of a 1.06 M solution in THF, 1.24 mmol) slowly via syringe, and the reaction was stirred at this temperature for 30 min , then allowed to warm to room temperature slowly over 1 h. The reaction was allowed to stir at room temperature for 15 min , and then $(\mathrm{MeO})_{2} \mathrm{SO}_{2}(128 \mu \mathrm{~L}, 1.35 \mathrm{mmol})$ was added via syringe, and the reaction stirred for an additional 2 h at room temperature before being partitioned between deionized $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{Et}_{2} \mathrm{O}$. The aqueous layer was extracted with two portions of additional $\mathrm{Et}_{2} \mathrm{O}$, and the combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by column chromatography (4:1 to $1: 1$ hexanes / EtOAc) to provide the spirotetronate 268 (155 $\mathrm{mg}, 71 \%) . \operatorname{TLC}(1: 1$ hexanes / EtOAc $): \mathrm{R}_{\mathrm{f}}=0.6 ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 5.54$ $(\mathrm{s}, 1 \mathrm{H}), 5.30(\mathrm{~s}, 1 \mathrm{H}), 5.06(\mathrm{~s}, 1 \mathrm{H}), 3.91(\mathrm{~s}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 2.50-2.36(\mathrm{~m}, 1 \mathrm{H}), 1.96$ $(\mathrm{dd}, J=13.7,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.78(\mathrm{dd}, J=13.7,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.70(\mathrm{~s}, 3 \mathrm{H}), 1.66(\mathrm{~s}, 3 \mathrm{H})$, $1.06(\mathrm{~s}, 3 \mathrm{H}), 1.01(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.06(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, 100 MHz) $\delta 184.7,172.1,135.1,134.6,128.4,127.4,89.6,88.0,69.7,59.5,44.3$, 37.2, 31.6, 26.1, 22.3, 21.1, 18.5, 18.4, 14.8, -5.1, -5.1; FTIR (film) vmax 2957, 2858, $1747,1625,1440,1361,1253,1207,1173,1093,1019,961,909,837,808,778,732$ cm^{-1}; ESI-MS m/z $429.08[\mathrm{M}+\mathrm{Na}]^{+}, 406.82[\mathrm{M}+\mathrm{H}]^{+}$; HR-ESI-MS m/z calcd. for $\mathrm{C}_{23} \mathrm{H}_{38} \mathrm{O}_{4} \mathrm{Si}_{1} \mathrm{Na}_{1}[\mathrm{M}+\mathrm{Na}]^{+}: 429.2432$, found 429.2436.

Stannane 269

To a stirred $-78{ }^{\circ} \mathrm{C}$ solution of the spirotetronate $\mathbf{2 6 8}(155 \mathrm{mg}, 0.381 \mathrm{mmol})$ in THF (5 mL) was added $t-\mathrm{BuLi}(305 \mu \mathrm{~L}$ of a 1.5 M solution in pentane, 0.457 mmol) slowly via syringe, and the solution turned lemon yellow. The lithiation was allowed to proceed at this temperature for 30 min , and then the aldehyde $\mathbf{2 0 9}(967 \mu \mathrm{~L}$ of a 150 $\mathrm{mg} / \mathrm{mL}$ solution in THF, 0.419 mmol) was added via syringe, and the reaction stirred at $-78{ }^{\circ} \mathrm{C}$ for 20 min . The reaction was quenched by the addition of a saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution and allowed to warm to room temperature. The mixture was partitioned between deionized $\mathrm{H}_{2} \mathrm{O}$ and EtOAc, and the aqueous layer was extracted twice with additional EtOAc. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by column chromatography ($2: 1$ to $1: 1$ hexanes / EtOAc gradient) to provide the stannane $269(274 \mathrm{mg}, 96 \%)$ as a $1: 1$ mixture of diastereomers. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $400 \mathrm{MHz})$ - Spectrum 2.151. (diastereomeric mixture) and ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125\right.$ MHz) - Spectrum 2.152. ESI-MS m/z $775.19[\mathrm{M}+\mathrm{Na}]^{+}, 752.95[\mathrm{M}+\mathrm{H}]^{+}$; HR-ESI-MS m / z calcd. for $\mathrm{C}_{38} \mathrm{H}_{68} \mathrm{O}_{5} \mathrm{Si}_{1} \mathrm{Sn}_{1} \mathrm{Na}_{1}[\mathrm{M}+\mathrm{Na}]^{+}: 775.3750$, found 775.3763 .

Sulfone 271

To a reaction flask was charged $\mathrm{PPh}_{3}(846 \mathrm{mg}, 3.23 \mathrm{mmol})$, PTSH (766 mg , 4.30 mmol), and the primary alcohol $270(427 \mathrm{mg}$ dissolved in 10 mL THF, 2.15 mmol), and the solution was stirred as it cooled to $0^{\circ} \mathrm{C}$. To the solution was added DIAD ($762 \mu \mathrm{~L}, 3.87 \mathrm{mmol}$) slowly via syringe, and the reaction was allowed to warm to room temperature as it stirred for 12 h . The mixture was then partitioned between
saturated aqueous NaHCO_{3} and EtOAc , and the aqueous layer was extracted with an additional portion of EtOAc. The combined organic layers were washed with deionized water, then brine, then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography (3:1 to $2: 1$ hexanes / EtOAc) to provide the sulfide intermediate ($540 \mathrm{mg}, 70 \%$). Sulfide intermediate TLC (1:1 hexanes / EtOAc): $\mathrm{R}_{\mathrm{f}}=0.5 ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta$ 7.64-7.49 (m, 5H), 4.81-4.76 (m, 1H), $4.28(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{~d}, J=15.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.87-3.80(\mathrm{~m}, 1 \mathrm{H}), 3.56-3.48(\mathrm{~m}, 1 \mathrm{H}), 3.50(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.46-2.38(\mathrm{~m}$, $2 \mathrm{H}), 2.07(\mathrm{p}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.88-1.48(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta$ $154.2,133.8,130.3,129.9,124.0,96.9,84.5,62.2,54.7,32.3,30.4,27.9,25.5,19.2$, 17.9; FTIR (film) $v \max 2946,2865,1602,1501,1387,1119,1022,765,693 \mathrm{~cm}^{-1}$; ESI-MS m/z $396.94[\mathrm{M}+\mathrm{K}]^{+}, 380.99[\mathrm{M}+\mathrm{Na}]^{+}, 358.78[\mathrm{M}+\mathrm{Na}]^{+}$; HR-ESI-MS m/z calcd. for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}_{1} \mathrm{Na}_{1}[\mathrm{M}+\mathrm{Na}]^{+}: 381.1356$, found 381.1357.

The above described sulfide intermediate ($540 \mathrm{mg}, 1.50 \mathrm{mmol}$) was dissolved in $\mathrm{EtOH}(15 \mathrm{~mL})$ and the solution was stirred and cooled to $0^{\circ} \mathrm{C}$. To the cooled solution was added $\left(\mathrm{NH}_{4}\right)_{6} \mathrm{Mo}_{7} \mathrm{O}_{24} * 4 \mathrm{H}_{2} \mathrm{O}(370 \mathrm{mg}, 0.300 \mathrm{mmol}$ dissolved in $2.3 \mathrm{~mL} /$ $22.5 \mathrm{mmol} 30 \% \mathrm{w} / \mathrm{w}$ aqueous $\mathrm{H}_{2} \mathrm{O}_{2}$), and the solution warmed to room temperature as it stirred for 12 h . The mixture was partitioned between EtOAc and deionized $\mathrm{H}_{2} \mathrm{O}$, and the aqueous layer was extracted with an additional portion of EtOAc. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by column chromatography (3:1 to $1: 1$ hexanes / EtOAc) to provide the sulfone 271 (540 mg ,

92\%). TLC (1:1 hexanes / EtOAc $): \mathrm{R}_{\mathrm{f}}=0.5 ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.72-7.57$ $(\mathrm{m}, 5 \mathrm{H}), 4.81-4.75(\mathrm{~m}, 1 \mathrm{H}), 4.30(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.92-$ $3.79(\mathrm{~m}, 2 \mathrm{H}), 3.57-3.48(\mathrm{~m}, 1 \mathrm{H}), 2.50(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.24-2.14(\mathrm{~m}, 2 \mathrm{H}), 1.91-$ $1.48(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 153.5,133.1,131.7,129.9,125.2,97.1$, 83.2, 78.7, 62.2, 55.1, 54.6, 30.4, 25.5, 21.5, 19.2, 17.8; FTIR (film) vmax 2952, 2872, 1500, 1343, 1155, 1022, 768, $693 \mathrm{~cm}^{-1}$; ESI-MS m/z $412.93[\mathrm{M}+\mathrm{Na}]^{+}, 407.86$ $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 390.43[\mathrm{M}+\mathrm{H}]^{+}$; HR-ESI-MS m/z calcd. for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}_{1} \mathrm{Na}_{1}[\mathrm{M}+\mathrm{Na}]^{+}$: 413.1254, found 413.1252.

Propargylic alcohol 272

To a stirred solution of the sulfone $271(4.74 \mathrm{~g}, 12.1 \mathrm{mmol})$ in EtOH (100 mL) was added PPTS ($305 \mathrm{mg}, 1.21 \mathrm{mmol}$) and the reaction was heated to $60^{\circ} \mathrm{C}$. The deprotection was monitored by TLC, and when no more of the starting material 271 remained, the reaction was cooled to room temperature and evaporated under reduced pressure. Column chromatography of the residue (1:1 hexanes / EtOAc) provided the pure propargylic alcohol $272(3.56 \mathrm{~g}, 95 \%)$. TLC ($1: 1$ hexanes / EtOAc): $\mathrm{R}_{\mathrm{f}}=0.3 ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.73-7.56(\mathrm{~m}, 5 \mathrm{H}), 4.26(\mathrm{dt}, J=6.1,2.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.93-$ $3.85(\mathrm{~m}, 2 \mathrm{H}), 2.49(\mathrm{tt}, J=6.8,2.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.23-2.13(\mathrm{~m}, 2 \mathrm{H}), 1.72(\mathrm{t}, J=6.1 \mathrm{~Hz}$, $1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 153.5,133.1,131.7,129.9,125.2,83.1,81.0$, 55.1, 51.3, 21.5, 17.7; FTIR (film) vmax 3369 br, 2912, 1723, 1495, 1340, 1155, 1014, 765, 691; ESI-MS m/z $344.80[\mathrm{M}+\mathrm{K}]^{+}, 328.90[\mathrm{M}+\mathrm{Na}]^{+}, 306.91[\mathrm{M}+\mathrm{H}]^{+}$; HR-ESI-MS m/z calcd. for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{~S}_{1}[\mathrm{M}+\mathrm{H}]^{+}: 307.0859$, found 307.0861.

Vinyl iodide 273

To a reaction flask was charged $\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{PdCl}_{2}(22 \mathrm{mg}, 0.031 \mathrm{mmol})$ and a solution of the propargylic alcohol $272(188 \mathrm{mg}, 0.614 \mathrm{mmol})$ in THF $(6.5 \mathrm{~mL})$. The solution was stirred as $\mathrm{n}-\mathrm{Bu}_{3} \mathrm{SnH}(190 \mu \mathrm{~L}, 0.706 \mathrm{mmol})$ was added slowly via syringe, and the darkened solution was stirred for 20 min at room temperature. The reaction mixture was concentrated under reduced pressure, then dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and cooled to $0{ }^{\circ} \mathrm{C}$. The cooled solution stirred as $\mathrm{I}_{2}\left(155 \mathrm{mg}\right.$ solution in $8 \mathrm{~mL} \mathrm{CH} \mathrm{Cl}_{2}$, 0.614 mmol) was added via cannula, and the reaction mixture was allowed to warm to room temperature, and stirred at room temperature for 30 min . Solid KF on celite was added, and the suspension stirred an additional 2 h at room temperature. The suspension was filtered and concentrated under reduced pressure, and column chromatography of the residue (2:1 to $1: 1$ hexanes / ethyl acetate) provided the iodide 273 ($68 \mathrm{mg}, 26 \%$) and undesired byproducts and regioisomers (132 mg). TLC (1:1 hexanes / EtOAc $): \mathrm{R}_{\mathrm{f}}=0.4 ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.70-7.60(\mathrm{~m}, 5 \mathrm{H}), 6.29(\mathrm{t}$, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.78-3.74(\mathrm{~m}, 2 \mathrm{H}), 2.40(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$, $2.11(\mathrm{p}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.94(\mathrm{t}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta$ $153.5,140.2,133.1,131.7,129.9,125.2,105.2,65.3,55.0,29.2,21.7$; FTIR (film) $v \max 3402 \mathrm{br}, 2946,1730,1496,1341,1157,1043,769,691$; ESI-MS m/z 456.79 $[\mathrm{M}+\mathrm{Na}]^{+}, 451.70\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 434.78[\mathrm{M}+\mathrm{H}]^{+}, 416.71\left[\mathrm{M}-\mathrm{H}_{2} \mathrm{O}+\mathrm{H}\right]^{+} ;$HR-ESI-MS m / z calcd. for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{I}_{1} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{~S}_{1} \mathrm{Na}_{1}[\mathrm{M}+\mathrm{Na}]^{+}$: 456.9802, found 456.9797.

SEM ether 274

To a stirred solution of the vinyl iodide 273 ($690 \mathrm{mg}, 1.59 \mathrm{mmol}$) was added i$\operatorname{Pr}_{2} \operatorname{NEt}(1.38 \mathrm{~mL}, 7.95 \mathrm{mmol})$, and then $\operatorname{SEMCl}(843 \mu \mathrm{~L}, 4.77 \mathrm{mmol})$ via syringe. The solution stirred at room temperature for 12 h , and then was partitioned between $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and saturated aqueous NaHCO_{3}. The aqueous layer was extracted with an additional portion of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the combined aqueous layers were washed with deionized $\mathrm{H}_{2} \mathrm{O}$, brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography (hexanes / ethyl acetate gradient) to provide the SEM ether $275(594 \mathrm{mg}, 66 \%) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500\right.$ $\mathrm{MHz}) \delta 7.74-7.57(\mathrm{~m}, 5 \mathrm{H}), 6.40(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.68(\mathrm{~s}, 2 \mathrm{H}), 4.24(\mathrm{~s}, 2 \mathrm{H}), 3.88-$ $3.72(\mathrm{~m}, 2 \mathrm{H}), 3.70-3.65(\mathrm{~m}, 2 \mathrm{H}), 2.40(\mathrm{q}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.13-2.06(\mathrm{~m}, 2 \mathrm{H}), 0.98-$ $0.91(\mathrm{~m}, 2 \mathrm{H}), 0.02(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 153.4,142.4,133.1,131.7$, $129.9,125.1,99.9,93.3,68.6,65.9,55.0,29.4,21.7,18.2,-1.2 ;$ ESI-MS m/z 586.80 $[\mathrm{M}+\mathrm{Na}]^{+}, 581.73\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$; HR-ESI-MS m / z calcd. for $\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{I}_{1} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}_{1} \mathrm{Si}_{1} \mathrm{Na}_{1}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 587.0620$, found 587.0616.

Stille adduct 275

A reaction flask was charged with $\mathrm{LiCl}(463 \mathrm{mg}, 1.09 \mathrm{mmol})$ that was dried under high vacuum $(0.1 \mathrm{~mm} \mathrm{Hg})$ with a heat gun for $\sim 30 \mathrm{~min}$. After the reaction flask had cooled to room temperature, $\mathrm{AsPh}_{3}(222 \mathrm{mg}, 0.728 \mathrm{mmol})$ and $\mathrm{Pd}_{2} \mathrm{dba}_{3}(83$ $\mathrm{mg}, 0.091 \mathrm{mmol})$ were added, followed by a solution of the stannane $269(274 \mathrm{mg}$, $0.364 \mathrm{mmol})$ and the SEM ether $274(205 \mathrm{mg}, 0.364 \mathrm{mmol})$ in freshly distilled NMP (5 mL) which was transferred to the reaction flask via syringe. The mixture stirred for

12 h at room temperature, after which it was partitioned between $\mathrm{Et}_{2} \mathrm{O}$ and deionized $\mathrm{H}_{2} \mathrm{O}$, and the aqueous layer was extracted with two additional portions of $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. Column chromatography of the residue provided the Stille adduct $275(137 \mathrm{mg}, 42 \%)$ and stannane $269(44 \mathrm{mg})$ such that the BORSM yield was 49%. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ - Spectrum 2.163; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$ - Spectrum 2.164 (mixture of diastereomers); ESI-MS m/z 921.18 $[\mathrm{M}+\mathrm{Na}]^{+}$; HR-ESI-MS m/z calcd. for $\mathrm{C}_{45} \mathrm{H}_{70} \mathrm{~N}_{4} \mathrm{O}_{9} \mathrm{~S}_{1} \mathrm{Si}_{2} \mathrm{Na}_{1}[\mathrm{M}+\mathrm{Na}]^{+}: 921.4294$, found 921.4306.

Bis TBS ether 276

To a stirred $0{ }^{\circ} \mathrm{C}$ solution of the Stille adduct $275(85 \mathrm{mg}, 0.095 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.5 \mathrm{~mL})$ was added $i-\mathrm{Pr}_{2} \mathrm{NEt}(74 \mu \mathrm{~L}, 0.425 \mathrm{mmol})$ and then TBSOTf $(43 \mu \mathrm{~L}$, 0.189 mmol) via syringe. The reaction stirred at this temperature for 2 h , and then was partitioned between $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and saturated aqueous NaHCO_{3}. The aqueous layer was extracted with additional $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the combined organic layers were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solution was filtered and concentrated under reduced pressure, and the residue was purified by column chromatography to provide the bis-TBS ether $276(59 \mathrm{mg}, 62 \%) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ - Spectrum 2.165; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$ - Spectrum 2.166 (mix of diastereomers); FTIR (film) $v \max 2952,2932,2858,1740,1638,1348,1249,1152,1058,841,779 \mathrm{~cm}^{-1} ;$ ESI-MS $m / z \quad 1051.43 \quad[\mathrm{M}+\mathrm{K}]^{+}, \quad 1035.47 \quad[\mathrm{M}+\mathrm{Na}]^{+} ; \quad$ HR-ESI-MS m / z calcd. for $\mathrm{C}_{51} \mathrm{H}_{84} \mathrm{~N}_{4} \mathrm{O}_{9} \mathrm{~S}_{1} \mathrm{Si}_{3} \mathrm{Na}_{1}[\mathrm{M}+\mathrm{Na}]^{+}: 1035.5159$, found 1035.5174.

Primary alcohol 277

To a mixture of pyridine (1 mL) and THF (4 mL) in a plastic vial was added HF-py ($450 \mu \mathrm{~L}$ of a $70 \% \mathrm{w} / \mathrm{w}$ solution) and the mixture was stirred, to make a 3.2 M solution of HF in THF-py. To a solution of the bis-TBS ether $276(70 \mathrm{mg}, 0.069$ mmol) in THF $(300 \mu \mathrm{~L})$ and pyridine $(100 \mu \mathrm{~L})$ was added 5 equivalents of the HF-py stock solution $(100 \mu \mathrm{~L})$ and the mixture was stirred at room temperature for 2 h , after which time only starting material was visible by TLC. An additional $300 \mu \mathrm{~L}$ of the stock solution was then added, and the mixture stirred for 12 h , after which time it was partitioned between saturated aqueous NaHCO_{3} and EtOAc , and the aqueous layer was extracted with two additional portions of EtOAc. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by column chromatography to provide the primary alcohol $277(53 \mathrm{mg}, 86 \%) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ - Spectrum 2.167; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$ - Spectrum 2.168 (mix of diastereomers); ESI-MS m/z 937.30 $[\mathrm{M}+\mathrm{K}]^{+}, 921.36[\mathrm{M}+\mathrm{Na}]^{+}$; HR -ESI-MS m/z calcd. for $\mathrm{C}_{45} \mathrm{H}_{70} \mathrm{~N}_{4} \mathrm{O}_{9} \mathrm{~S}_{1} \mathrm{Si}_{2} \mathrm{Na}_{1}[\mathrm{M}+\mathrm{Na}]^{+}$: 921.4294, found 921.4297.

Aldehyde 278

To a reaction flask was charged powdered $4 \AA$ molecular sieves (5 mg), NMO ($10 \mathrm{mg}, 0.088 \mathrm{mmol}$), and a solution of the primary alcohol $277(53 \mathrm{mg}, 0.059 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$. To this stirred suspension was added TPAP ($1 \mathrm{mg}, 0.003 \mathrm{mmol}$) and the color changed from green to black over a few minutes, and the consumption of

277 was observed by TLC. Filtration of the reaction mixture through a short silica gel plug with $4: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ and concentration of the filtrate under reduced pressure provided the aldehyde $278(44 \mathrm{mg}, 84 \%) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ - Spectrum $2.169 ;{ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 125 \mathrm{MHz}$) - Spectrum 2.170 (mix of diastereomers); ESI-MS m/z $935.26[\mathrm{M}+\mathrm{K}]^{+}, 919.35[\mathrm{M}+\mathrm{Na}]^{+}$; HR-ESI-MS m/z calcd. for $\mathrm{C}_{45} \mathrm{H}_{68} \mathrm{~N}_{4} \mathrm{O}_{9} \mathrm{~S}_{1} \mathrm{Si}_{2} \mathrm{Na}_{1}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 919.4138$, found 919.4151.

Macrocycle 279

To a stirred $-78{ }^{\circ} \mathrm{C}$ solution of the aldehyde $278(43 \mathrm{mg}, 0.048 \mathrm{mmol})$ in THF $(10 \mathrm{~mL})$ was slowly added KHMDS $(105 \mu \mathrm{~L}$ of a 0.5 M solution in toluene, 0.053 mmol) via syringe. The solution stirred for 1 h at $-78{ }^{\circ} \mathrm{C}$ and then was allowed to warm to room temperature. The reaction stirred at room temperature for 1 h , and then was quenched by the addition of a saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The mixture was partitioned between EtOAc and deionized $\mathrm{H}_{2} \mathrm{O}$, and the aqueous layer was extracted with two additional portions of EtOAc. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. Column chromatography of the residue provided the crude macrocycle 279 ($16 \mathrm{mg}, 50 \%$) which appeared to be a single diastereomer by ${ }^{13} \mathrm{C}$ NMR. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ crude $\delta 6.13(\mathrm{dd}, J=12.5,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.91(\mathrm{dd}, J=8.3,1.3 \mathrm{~Hz}$, $1 \mathrm{H}), 5.83(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.61(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.56(\mathrm{~s}, 1 \mathrm{H}), 5.53(\mathrm{~d}, J=7.8$ $\mathrm{Hz}, 1 \mathrm{H}), 5.40-5.31(\mathrm{~m}, 1 \mathrm{H}), 5.09(\mathrm{~s}, 1 \mathrm{H}), 4.53(\mathrm{~s}, 2 \mathrm{H}), 4.16-4.09(\mathrm{~m}, 2 \mathrm{H}), 4.07(\mathrm{~s}$, $3 \mathrm{H}), 3.68-3.57(\mathrm{~m}, 2 \mathrm{H}), 2.63(\mathrm{dd}, J=14.6,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.49-2.14(\mathrm{~m}, 5 \mathrm{H}), 1.84(\mathrm{~s}$, $3 \mathrm{H}), 1.82-1.76(\mathrm{~m}, 1 \mathrm{H}), 1.73(\mathrm{~s}, 3 \mathrm{H}), 1.22(\mathrm{~s}, 3 \mathrm{H}), 1.13(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.96-0.90$
$(\mathrm{m}, 2 \mathrm{H}), 0.85(\mathrm{~s}, 9 \mathrm{H}), 0.06-0.00(\mathrm{~m}, 15 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 177.9$, $171.3,140.5,135.0,134.5,134.3,133.2,132.7,131.9,128.7,127.9,124.4,105.7$, $92.0,85.7,65.1,62.7,61.7,60.5,59.2,43.9,36.3,32.8,31.7,29.9,28.5,27.4,25.9$, 22.1, 21.2, 20.5, 18.3, 18.2, 18.1, 14.4, 12.9, -1.2, -3.1, -4.4; ESI-MS m/z 693.52 $[\mathrm{M}+\mathrm{Na}]^{+}$; HR-ESI-MS m/z calcd. for $\mathrm{C}_{38} \mathrm{H}_{62} \mathrm{O}_{6} \mathrm{Si}_{2} \mathrm{Na}_{1}[\mathrm{M}+\mathrm{Na}]^{+}:$693.3977, found 693.3984.

Alcohol 280

To a stirred solution of the macrocycle $279(17 \mathrm{mg}, 0.025 \mathrm{mmol})$ in THF (1 mL) in a plastic vial was added TBAF ($50 \mu \mathrm{~L}$ of a 1.0 M solution in THF, 0.050 mmol) and the solution stirred at room temperature for 2 h , after which time TLC analysis indicated the consumption of starting material. The reaction mixture was partitioned between deionized $\mathrm{H}_{2} \mathrm{O}$ and EtOAc , and the aqueous layer was extracted with additional EtOAc. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by column chromatography to provide the crude alcohol $\mathbf{2 8 0}(8 \mathrm{mg}, 57 \%) .{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ crude $\delta 6.06(\mathrm{dd}, J=12.2,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.87(\mathrm{~d}, J=12.2 \mathrm{~Hz}$, $1 \mathrm{H}), 5.61-5.54(\mathrm{~m}, 1 \mathrm{H}), 5.57(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.53(\mathrm{~s}, 1 \mathrm{H}), 5.35(\mathrm{ddd}, J=15.5$, $10.3,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.29-5.20(\mathrm{~m}, 1 \mathrm{H}), 5.08(\mathrm{~s}, 1 \mathrm{H}), 4.53(\mathrm{~s}, 2 \mathrm{H}), 4.26-4.08(\mathrm{~m}, 2 \mathrm{H})$, $4.14(\mathrm{~s}, 3 \mathrm{H}), 3.67-3.45(\mathrm{~m}, 2 \mathrm{H}), 2.63(\mathrm{dd}, J=14.6,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.48-2.12(\mathrm{~m}, 5 \mathrm{H})$, $1.84(\mathrm{~s}, 3 \mathrm{H}), 1.75-1.71(\mathrm{~m}, 1 \mathrm{H}), 1.73(\mathrm{~s}, 3 \mathrm{H}), 1.21(\mathrm{~s}, 3 \mathrm{H}), 1.14(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}, 3 \mathrm{H})$, $0.95-0.88(\mathrm{~m}, 2 \mathrm{H}), 0.02(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta$ 178.7, 172.0, 140.4, $136.0,134.4,134.3,133.6,132.7,130.1,129.8,127.9,124.5,104.5,92.2,86.7,65.3$,
$62.1,61.2,59.9,43.8,35.9,32.8,31.7,28.5,27.5,22.0,20.5,18.3,13.0,-1.2$; ESI-MS $m / z 579.32[\mathrm{M}+\mathrm{Na}]^{+} ;$HR-ESI-MS m / z calcd. for $\mathrm{C}_{32} \mathrm{H}_{48} \mathrm{O}_{6} \mathrm{Si}_{1} \mathrm{Na}_{1}[\mathrm{M}+\mathrm{Na}]^{+}: 579.3112$, found 579.3114.
2.8 Spectral overlays of compound 217 with IMDA reaction products

Figure 2.11 Compound 217 (left) and IMDA product 1 (right)

Figure 2.12 Compound 217 (left) and IMDA product 2 (right)

2.9 Spectral overlay of compound 280 with spirohexenolide B (129)

Figure 2.13 Spectral overlay of compound $\mathbf{2 8 0}$ with spirohexenolide B (129)

2.10 Selected NMR spectra

Spectrum $2.1 \quad{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ of spirohexenolide A 128

Spectrum $2.2 \quad{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of spirohexenolide A 128
Figure S19. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of $2\left(500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$

Spectrum $2.3 \quad{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, 500 \mathrm{MHz}\right)$ of spirohexenolide B $\mathbf{1 2 9}$

Spectrum 2.4 ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, 125 \mathrm{MHz}\right)$ of spirohexenolide B 129

Spectrum $2.5 \quad{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ of compound $\mathbf{1 3 0 a}$

Spectrum $2.6{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$ of compound 130a
Figure S27. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of $\mathbf{3 b}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Spectrum $2.7{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ of compound $\mathbf{1 3 0 b}$

Spectrum $2.8{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$ of compound $\mathbf{1 3 0 b}$

Spectrum $2.9 \quad{ }^{1} \mathrm{H}$ NMR $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}, 400 \mathrm{MHz}\right)$ of compound 151

Spectrum $2.10 \quad{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 149

Spectrum 2.11 NOESY1D $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 149 , irradiation at $\mathrm{H}-7$ methine $\delta 5.93 \mathrm{ppm}$

Spectrum 2.12 ${ }^{1} \mathrm{H}$ NMR (DMSO-d6, 300 MHz) of compound 148

Spectrum $2.13{ }^{13} \mathrm{C}$ NMR (DMSO-d6, 75 MHz) of compound 148

Spectrum 2.14 ${ }^{1}$ H NMR (DMSO-d6, 500 MHz) of compound 156

Spectrum $2.16{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 158

Spectrum $2.18 \quad{ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ gHMQC NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}-100 \mathrm{MHz}\right)$ of compound 158

Spectrum $2.19{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound $\mathbf{1 5 9}$

Spectrum $2.20 \quad{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound $\mathbf{1 6 0}$

Spectrum $2.21 \quad{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 160

Spectrum $2.22 \quad{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$ of compound $\mathbf{1 6 1}$

Spectrum $2.24 \quad{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$ of compound $\mathbf{1 7 1}$

Spectrum $2.26{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$ of reduction product of $\mathbf{1 7 1}$

Spectrum $2.28{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ of sulfide precursor to $\mathbf{1 6 8}$

Spectrum 2.29 ${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of sulfide precursor to $\mathbf{1 6 8}$

Spectrum $2.30 \quad{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound $\mathbf{1 6 8}$

Spectrum $2.32{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound $\mathbf{1 6 6}$

Spectrum $2.34 \quad{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound $\mathbf{1 8 0}$

Spectrum $2.35{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of the DMP acetal of $\mathbf{1 8 0}$

Spectrum $2.36{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound $\mathbf{1 8 1}$

Spectrum $2.37{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of oxidation product of $\mathbf{1 8 1}$

Spectrum $2.39{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$ of the alkyne precursor to $\mathbf{1 8 2}$

Spectrum $2.41{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound $\mathbf{1 8 2}$

Spectrum $2.43{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound $\mathbf{1 8 3}$

Spectrum $2.44{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 191

Spectrum $2.45{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound $\mathbf{1 9 3}$

Spectrum $2.47{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of the TBS ether of compound 193

Spectrum $2.48{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of the TBS ether of compound 193

Spectrum $2.49{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 194

Spectrum $2.51 \quad{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound $\mathbf{1 9 5}$

Spectrum $2.53 \quad{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ of compound 196

Spectrum $2.54{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$ of compound 196

Spectrum $2.55 \quad{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ of compound 197

Spectrum 2.56 gCOSY NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ of compound 197

Spectrum $2.57{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$ of compound 197

Spectrum $2.58 \quad{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ of compound 198

Spectrum 2.59 gCOSY NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ of compound 198

Spectrum $2.60{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$ of compound 198

Spectrum $2.61{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of the enyne precursor to $\mathbf{1 9 9}$

Spectrum 2.62 gCOSY NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of the enyne precursor to $\mathbf{1 9 9}$

Spectrum $2.63{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of the enyne precursor to 199

Spectrum $2.64{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 199

Spectrum $2.65{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 199

Spectrum $2.66{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of the sulfide precursor to $\mathbf{2 0 0}$

Spectrum $2.67{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of the sulfide precursor to 200

Spectrum $2.68{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound $\mathbf{2 0 0}$

Spectrum $2.69 \mathrm{gCOSY} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound $\mathbf{2 0 0}$

Spectrum $2.70 \quad{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 201

Spectrum 2.71 gCOSY NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 201

Spectrum $2.72{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 202

Spectrum $2.73{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of oxidation product 204

Spectrum $2.74{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ expansion of Spectrum 2.73

Spectrum $2.75{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ expansion of Spectrum 2.73

Spectrum $2.76{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ of the adduct precursor to 205

Spectrum $2.78{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ of the benzoate precursor to $\mathbf{2 0 5}$

Spectrum $2.79{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ of compound 205

Spectrum $2.80{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$ of compound 205

Spectrum $2.81{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of Sonogashira adduct precursor to 207

Spectrum $2.83{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ of compound $\mathbf{2 0 7}$

Spectrum $2.84{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$ of compound 207

Spectrum $2.85{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ of compound 210

Spectrum $2.86{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 210

Spectrum $2.87{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ of compound 211

Spectrum $2.88{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 211

Spectrum $2.89{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 212a

Spectrum $2.91 \quad{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ of compound 212b

Spectrum $2.93{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 213

Spectrum $2.94 \quad{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 213

Spectrum $2.95{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 214

Spectrum $2.97{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$ of compound $\mathbf{2 1 5}$

Spectrum $2.99{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 216

Spectrum 2.101 ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ of compound 219

Spectrum $2.102{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$ of compound 219

Spectrum 2.103 ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ of compound 235

Spectrum 2.105 ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 236

Spectrum $2.107{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of the crude Dieckmann precursor to compound 237

Spectrum 2.108 ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ of compound 237

Spectrum $2.109{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ of side product obtained with 237

Spectrum 2.110 ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 238

Spectrum 2.111 Expansion of Spectrum 2.110

Spectrum 2.112 Expansion of Spectrum 2.110

Spectrum $2.113{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 238

Spectrum 2.115 Expansion of Spectrum 2.113

Spectrum $2.116{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ of compound 241

Spectrum $2.117{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of diol precursor to $\mathbf{2 4 2}$

Spectrum $2.118{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$ of compound 242

Spectrum $2.119{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 243

Spectrum $2.120 \quad{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 243

Spectrum 2.121 ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 244

Spectrum 2.122 ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ of compound 245

Spectrum 2.123 ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 246

Spectrum 2.124 ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 251

Spectrum $2.125 \quad{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of alcohol precursor to 252

Spectrum $2.126{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of alcohol precursor to $\mathbf{2 5 2}$

Spectrum 2.127 ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 252

Spectrum $2.128{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 253

Spectrum 2.129 ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 254

Spectrum 2.130 ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ of the alcohol precursor to $\mathbf{2 5 5}$

Spectrum $2.131{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 255

Spectrum 2.132 ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$ of compound 256

Spectrum 2.134 ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 260

Spectrum $2.135{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 261

Spectrum $2.136{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 261

Spectrum $2.137{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 262

Spectrum 2.139 ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ of compound 263

Spectrum $2.140 \quad{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$ of compound 263

Spectrum $2.141{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ of compound 264

Spectrum $2.142{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 264

Spectrum $2.143{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 265

Spectrum $2.144{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 265

Spectrum 2.145 ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 266

Spectrum 2.147 ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 267

Spectrum $2.148{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 267

Spectrum $2.149{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 268

Spectrum $2.151{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 269

Spectrum $2.153{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ of sulfide precursor to 271

Spectrum $2.154 \quad{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$ of sulfide precursor to 271

Spectrum 2.155 ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 271

Spectrum $2.158{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$ of compound 272

Spectrum $2.159{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ of compound 273

Spectrum 2.161 ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ of compound 274

Spectrum 2.163 ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ of compound 275

Spectrum 2.165 ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 276

Spectrum 2.167 ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ of compound 277

Spectrum 2.169 ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ of compound 278

Spectrum $2.171{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ of compound 279

Spectrum $2.172{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$ of compound 279

Spectrum 2.173 ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ of compound 280

REFERENCES

1. Sekiasano, M.; Okazaki, T.; Yamagishi, M.; Sakai, N.; Takayama, Y.; Hanada, K.; Morimoto, S.; Takatsuki, A.; Mizoue, K., Isolation and Characterization of a New 12-Membered Macrolide FD-895. J. Antibiot. 1994, 47, (12), 1395-1401.
2. Sakai, T.; Sameshima, T.; Matsufuji, M.; Kawamura, N.; Dobashi, K.; Mizui, Y., Pladienolides, New Substances from Culture of Streptomyces Platensis Mer-11107 I. Taxonomy, Fermentation, Isolation and Screening. J. Antibiot. 2004, 57, (3), 173179.
3. Semenza, G. L., Targeting HIF-1 for Cancer Therapy. Nat. Rev. Cancer 2003, 3, (10), 721-732.
4. Sakai, T.; Asai, N.; Okuda, A.; Kawamura, N.; Mizui, Y., Pladienolides, New Substances from Culture of Streptomyces Platensis Mer-11107 II. Physico-Chemical Properties and Structure Elucidation. J. Antibiot. 2004, 57, (3), 180-187.
5. Boyd, M. R.; Pauli, K. D., Some Practical Considerations and Applications of the National-Cancer-Institute in-Vitro Anticancer Drug Discovery Screen. Drug Development Research 1995, 34, (2), 91-109.
6. Shoemaker, R. H., The NCI60 Human Tumour Cell Line Anticancer Drug Screen. Nat. Rev. Cancer 2006, 6, (10), 813-823.
7. Mizui, Y.; Sakai, T.; Iwata, M.; Uenaka, T.; Okamoto, K.; Shimizu, H.; Yamori, T.; Yoshimatsu, K.; Asada, M., Pladienolides, New Substances from Culture of Streptomyces Platensis Mer-11107 III. In Vitro and in Vivo Antitumor Activities. J. Antibiot. 2004, 57, (3), 188-196.
8. Kotake, Y.; Niijima, J.; Nagai, M.; Okano, K.; Sakai, T.; Yoshida, M.; Tsuchida, T.; Nakashima, T.; Dobashi, K.; Mizui, Y.; Shimizu, H.; Uenaka, T.; Iwata, M.; Asada, M.; Yoshimatsu, K., Enhanced in Vivo Activity of Pladienolide B; Synthesis, in Vitro and in Vivo Activities of 7-Urethane Derivatives of Pladienolide B. Clin. Cancer Res. 2003, 9, (16), 6208S-6208S.
9. Kanada, R. M.; Itoh, D.; Nagai, M.; Niijima, J.; Asai, N.; Mizui, Y.; Abe, S.; Kotake, Y., Total Synthesis of the Potent Antitumor Macrolides Pladienolide B and D. Angew. Chem.-Int. Edit. 2007, 46, (23), 4350-4355.
10. Kotake, Y.; Sagane, K.; Owa, T.; Mimori-Kiyosue, Y.; Shimizu, H.; Uesugi, M.; Ishihama, Y.; Iwata, M.; Mizui, Y., Splicing Factor SF3b as a Target of the Antitumor Natural Product Pladienolide. Nat. Chem. Biol. 2007, 3, (9), 570-575.
11. Kaida, D.; Motoyoshi, H.; Tashiro, E.; Nojima, T.; Hagiwara, M.; Ishigami, K.; Watanabe, H.; Kitahara, T.; Yoshida, T.; Nakajima, H.; Tani, T.; Horinouchi, S.; Yoshida, M., Spliceostatin A Targets SF3b and Inhibits Both Splicing and Nuclear Retention of Pre-mRNA. Nat. Chem. Biol. 2007, 3, (9), 576-583.
12. Rymond, B., Targeting the Spliceosome. Nat. Chem. Biol. 2007, 3, (9), 533535.
13. van Alphen, R. J.; Wiemer, E. A. C.; Burger, H.; Eskens, F., The Spliceosome as Target for Anticancer Treatment. British Journal of Cancer 2009, 100, (2), 228232.
14. Thompson, C. F.; Jamison, T. F.; Jacobsen, E. N., FR901464: Total Synthesis, Proof of Structure, and Evaluation of Synthetic Analogues. J. Am. Chem. Soc. 2001, 123, (41), 9974-9983.
15. Motoyoshi, H.; Horigome, M.; Ishigami, K.; Yoshida, T.; Horinouchi, S.; Yoshida, M.; Watanabe, H.; Kitahara, T., Structure-Activity Relationship for FR901464: A Versatile Method Tor the Conversion and Preparation of Biologically Active Biotinylated Probes. Biosci. Biotechnol. Biochem. 2004, 68, (10), 2178-2182.
16. Albert, B. J.; Sivaramakrishnan, A.; Naka, T.; Czaicki, N. L.; Koide, K., Total Syntheses, Fragmentation Studies, and Antitumor/Antiproliferative Activities of FR901464 and Its Low Picomolar Analogue. J. Am. Chem. Soc. 2007, 129, (9), 26482659.
17. Lagisetti, C.; Pourpak, A.; Jiang, Q.; Cui, X. L.; Goronga, T.; Morris, S. W.; Webb, T. R., Antitumor Compounds Based on a Natural Product Consensus Pharmacophore. J. Med. Chem. 2008, 51, (19), 6220-6224.
18. Tsuchida, T. Y., Masashi; Ohta, Kazuo; Kaneko, Katsura; Kominato, Kaichiro. Process for Producing Macrolides and Intermediates Therefor. WO 2009008492, 01-15-2009, 2009.
19. Machida, K.; Aritoku, Y.; Nakashima, T.; Arisawa, A.; Tsuchida, T., Increase in Pladienolide D Production Rate Using a Streptomyces Strain Overexpressing a Cytochrome P450 Gene. J. Biosci. Bioeng. 2008, 105, (6), 649-654.
20. Regina Mikie Kanada, D. I., Takashi Sakai, Naoki Asai, Yoshihiko Kotake, Jun Niijima Process for Total Synthesis of Pladienolide B and Pladienolide D. US20080021226A1, Jan. 24, 2008, 2008.
21. Asai, N.; Kotake, Y.; Niijima, J.; Fukuda, Y.; Uehara, T.; Sakai, T., Stereochemistry of Pladienolide B. J. Antibiot. 2007, 60, (6), 364-369.
22. Sarandeses, L. A.; Mourino, A.; Luche, J. L., Cleavage of 2,3Epoxyalkylhalides by the Sonochemical Zinc Copper Couple. J. Chem. Soc.-Chem. Commun. 1991, (12), 818-820.
23. Nicolaou, K. C.; Bulger, P. G.; Sarlah, D., Metathesis Reactions in Total Synthesis. Angew. Chem.-Int. Edit. 2005, 44, (29), 4490-4527.
24. Gaul, C.; Njardarson, J. T.; Danishefsky, S. J., The Total Synthesis of (+)Migrastatin. J. Am. Chem. Soc. 2003, 125, (20), 6042-6043.
25. Paterson, I.; Wallace, D. J.; Cowden, C. J., Polyketide Synthesis Using the Boron-Mediated, Anti-Aldol Reactions of Lactate-Derived Ketones: Total Synthesis of (-)-ACRL, Toxin IIIB. Synthesis 1998, 639-652.
26. Fukuzawa, S.; Matsuzawa, H.; Yoshimitsu, S., Asymmetric SamariumReformatsky Reaction of Chiral Alpha-Bromoacetyl-2-Oxazolidinones with Aldehydes. J. Org. Chem. 2000, 65, (6), 1702-1706.
27. Ohtani, I.; Kusumi, T.; Kashman, Y.; Kakisawa, H., High-Field FT NMR Application of Mosher Method - the Absolute-Configurations of Marine Terpenoids. J. Am. Chem. Soc. 1991, 113, (11), 4092-4096.
28. Skaanderup, P. R.; Jensen, T., Synthesis of the Macrocyclic Core of (-)Pladienolide B. Org. Lett. 2008, 10, (13), 2821-2824.
29. Kolb, H. C.; Vannieuwenhze, M. S.; Sharpless, K. B., Catalytic Asymmetric Dihydroxylation. Chem. Rev. 1994, 94, (8), 2483-2547.
30. Mandel, A. L., Burkart, M.D. In Stereo-Divergent Synthesis as a Tool for the Stereochemical Evaluation of the Pladienolide B Sidechain, 232nd ACS National Meeting, San Francisco, CA, United States, Sept. 10-14, 2006, 2006; American Chemical Society: San Francisco, CA, United States, 2006.
31. Mandel, A. L.; Jones, B. D.; La Clair, J. J.; Burkart, M. D., A Synthetic Entry to Pladienolide B and FD-895. Bioorg. Med. Chem. Lett. 2007, 17, (18), 5159-5164.
32. Mandel, A. L., Jones, B.D., La Clair, J.J., Burkart, M.D. In Studies on the Syntheses of the Pladienolides and FD-895, 234th ACS National Meeting, Boston, MA, United States, August 19-23, 2007, 2007; American Chemical Society: Boston, MA, United States, 2007.
33. Mandel, A. L. Synthetic Studies Applied to Polyketide Natural Products. Dissertation, University of California, San Diego, San Diego, 2007.
34. Bifulco, G.; Dambruoso, P.; Gomez-Paloma, L.; Riccio, R., Determination of Relative Configuration in Organic Compounds by NMR Spectroscopy and Computational Methods. Chem. Rev. 2007, 107, (9), 3744-3779.
35. Marquez, B. L.; Gerwick, W. H.; Williamson, R. T., Survey of NMR Experiments for the Determination of $(\mathrm{N}) \mathrm{J}(\mathrm{C}, \mathrm{H})$ Heteronuclear Coupling Constants in Small Molecules. Magn. Reson. Chem. 2001, 39, (9), 499-530.
36. Kawauchi, N.; Hashimoto, H., Reaction of Enohexopyranoside Acetates with Lithium Dimethylcuprate(I) and Its Application to Synthesis of Prelog-Djerassi Lactone. Bull. Chem. Soc. Jpn. 1987, 60, (4), 1441-1447.
37. Defina, G. M.; Varela, O.; Delederkremer, R. M., Convenient Synthesis of Chiral Pyranones from Carbohydrates. Synthesis 1988, (11), 891-894.
38. Meng, D. F.; Bertinato, P.; Balog, A.; Su, D. S.; Kamenecka, T.; Sorensen, E. J.; Danishefsky, S. J., Total Syntheses of Epothilones A and B. J. Am. Chem. Soc. 1997, 119, (42), 10073-10092.
39. Inghardt, T.; Frejd, T., Organoaluminum Induced Ring-Opening of Epoxypyranosides .5. Formal Total Synthesis of Antimycin-A3 and Synthesis of (+)Blastmycinone. Tetrahedron 1991, 47, (32), 6483-6492.
40. Weitz, D. J.; Bednarski, M. D., Synthesis of Acyclic Sugar Aldehydes by Ozonolysis of Oximes. J. Org. Chem. 1989, 54, (20), 4957-4959.
41. Grigg, R.; Markandu, J.; Surendrakumar, S.; Thorntonpett, M.; Warnock, W. J., X=Y-Zh Systems as Potential 1,3-Dipoles .37. Generation of Nitrones from Oximes - Tandem Intramolecular 1,3-Azaprotio Cyclotransfer Intramolecular 1,3-Dipolar Cycloaddition Reactions - Class-4 Processes. Tetrahedron 1992, 48, (47), 1039910422.
42. Cook, F. L.; Bowers, C. W.; Liotta, C. L., Chemistry of Naked Anions .3. Reactions of 18-Crown-6 Complex of Potassium Cyanide with Organic Substrates in Aprotic Organic-Solvents. J. Org. Chem. 1974, 39, (23), 3416-3418.
43. Reetz, M. T., Chelation or Non-Chelation Control in Addition-Reactions of Chiral Alpha-Alkoxy and Beta-Alkoxy Carbonyl-Compounds. Angew. Chem.-Int. Edit. Engl. 1984, 23, (8), 556-569.
44. Horton, D.; Norris, P.; Berrang, B., Characterization and Interconversions of 2-S-Ethyl-2-Thio-D-Mannose Diethyl Dithioacetal and the Facile Epimerization of 2-Thio-D-Mannopyranose Derivatives. Carbohydr. Res. 1996, 283, 53-71.
45. Vedejs, E.; Daugulis, O., Dual Activation in the Esterification of Hindered Alcohols with Anhydrides Using MgBr2 and a Tertiary Amine. J. Org. Chem. 1996, 61, (17), 5702-5703.
46. Manthorpe, J. M.; Szpilman, A. M.; Carreira, E. M., Scalable Synthesis of a Mycosamine Donor. Overcoming Difficult Reactivity in Allose Systems. Synthesis 2005, (19), 3380-3388.
47. Sakamoto, T.; Kikugawa, Y., Synthesis of Aldehydes from Carboxylic-Acids Via N-Methoxyimidoyl Bromides - Deoximation of O-Methyloximes. Synthesis 1993, (6), 563-564.
48. Bashiardes, G.; Cano, C.; Mauze, B., Regio- and Enantioselective Synthesis of Novel Functionalized Pyranopyrrolidines by 1,3-Dipolar Cycloaddition of Carbohydrates. Synlett 2005, (4), 587-590.
49. Bondar, D.; Liu, J.; Muller, T.; Paquette, L. A., Pectenotoxin-2 Synthetic Studies. 2. Construction and Conjoining of ABC and DE Eastern Hemisphere Subtargets. Org. Lett. 2005, 7, (9), 1813-1816.
50. Tan, H. S.; Espenson, J. H., Regioselective Hydroxylactonization of Gamma,Delta-Unsaturated Carboxylic Acids with Hydrogen Peroxide Catalyzed by Methyltrioxorhenium. Journal of Molecular Catalysis a-Chemical 1999, 142, (3), 333-338.
51. Smith, M. B.; Dembofsky, B. T.; Son, Y. C., 5(R)-Methyl-1-(Chloromethyl)-2Pyrrolidinone - A New Reagent for the Determination of Enantiomeric Composition of Alcohols. J. Org. Chem. 1994, 59, (7), 1719-1725.
52. Hammarst.S; Hamberg, M., Steric Analysis of 3-Hydroxy Acids, Omega-4Hydroxy Acids, Omega-3-Hydroxy Acids and Omega-2-Hydroxy Acids and Various Alkanols by Gas-Liquid Chromatography. Anal. Biochem. 1973, 52, (1), 169-179.
53. Fukuda, Y.; Sasaki, H.; Shindo, M.; Shishido, K., Diastereoselective RingClosing Metathesis for the Construction of a Quaternary Carbon Stereogenic Center. Tetrahedron Lett. 2002, 43, (11), 2047-2049.
54. Touchard, F. P., Phosphonate Modification for a Highly (Z)-Selective Synthesis of Unsaturated Esters by Horner-Wadsworth-Emmons Olefination. Eur. J. Org. Chem. 2005, (9), 1790-1794.
55. Still, W. C.; Gennari, C., Direct Synthesis of Z-Unsaturated Esters - A Useful Modification of the Horner-Emmons Olefination. Tetrahedron Lett. 1983, 24, (41), 4405-4408.
56. Mandel, A. L.; La Clair, J. J.; Burkart, M. D., Modular Synthesis of Pantetheine and Phosphopantetheine. Org. Lett. 2004, 6, (26), 4801-4803.
57. White, J. D.; Takabe, K.; Prisbylla, M. P., Stereoselective Synthesis of Trisporic Acid-A and Acid-B Their Methyl-Esters, and Trisporol-A and Trisporol-B,

Hormones and Prohormones of Mucoraceous Fungi. J. Org. Chem. 1985, 50, (25), 5233-5244.
58. Fouque, E.; Rousseau, G.; Seydenpenne, J., Iterative Synthesis of Selectively Substituted Alpha,Beta-Unsaturated and Saturated Medium-Ring Lactones. J. Org. Chem. 1990, 55, (16), 4807-4817.
59. Maier, M. E., Synthesis of Medium-Sized Rings by the Ring-Closing Metathesis Reaction. Angew. Chem.-Int. Edit. 2000, 39, (12), 2073-2077.
60. Trnka, T. M.; Grubbs, R. H., The Development of L2X2Ru = CHR Olefin Metathesis Catalysts: An Organometallic Success Story. Accounts Chem. Res. 2001, 34, (1), 18-29.
61. Chatterjee, A. K.; Morgan, J. P.; Scholl, M.; Grubbs, R. H., Synthesis of Functionalized Olefins by Cross and Ring-Closing Metatheses. J. Am. Chem. Soc. 2000, 122, (15), 3783-3784.
62. Alam, M. M.; Varala, R.; Adapa, S. R., Bi(OTf)(3)-Catalyzed Baeyer-Villiger Oxidation of Carbonyl Compounds with m-CPBA. Synth. Commun. 2003, 33, (17), 3035-3040.
63. Hirano, M.; Yakabe, S.; Satoh, A.; Clark, J. H.; Morimoto, T., MMPP (Magnesium Monoperoxyphthalate) in Acetonitrile; A New Approach to the Synthesis of Lactones Via Baeyer-Villiger Oxidation of Cyclic Ketones. Synth. Commun. 1996, 26, (24), 4591-4596.
64. Inokuchi, T.; Kanazaki, M.; Sugimoto, T.; Torii, S., Baeyer-Villiger Type Oxidation in A Dioxygen-Arenecarbaldehyde-Ruthenium Dioxide or ManganeseDioxide System. Synlett 1994, (12), 1037-1038.
65. Crimmins, M. T.; King, B. W.; Tabet, E. A.; Chaudhary, K., Asymmetric Aldol Additions: Use of Titanium Tetrachloride and (-)-Sparteine for the Soft Enolization of N-Acyl Oxazolidinones, Oxazolidinethiones, and Thiazolidinethiones. J. Org. Chem. 2001, 66, (3), 894-902.
66. Gao, Y.; Hanson, R. M.; Klunder, J. M.; Ko, S. Y.; Masamune, H.; Sharpless, K. B., Catalytic Asymmetric Epoxidation and Kinetic Resolution - Modified Procedures Including Insitu Derivatization. J. Am. Chem. Soc. 1987, 109, (19), 57655780.
67. Zhang, W.; Basak, A.; Kosugi, Y.; Hoshino, Y.; Yamamoto, H., Enantioselective Epoxidation of Allylic Alcohols by a Chiral Complex of Vanadium: An Effective Controller System and a Rational Mechanistic Model. Angew. Chem.-Int. Edit. 2005, 44, (28), 4389-4391.
68. Brown, H. C.; Bhat, K. S., Enantiomeric (Z)-Crotyldiisopinocampheylborane and (E)-Crotyldiisopinocampheylborane - Synthesis in High Optical Purity of All 4 Possible Stereoisomers of Beta-Methylhomoallyl Alcohols. J. Am. Chem. Soc. 1986, 108, (2), 293-294.
69. Brown, H. C.; Ramachandran, P. V., Versatile Alpha-Pinene-Based Borane Reagents for Asymmetric Syntheses. J. Organomet. Chem. 1995, 500, (1-2), 1-19.
70. Marshall, J. A., Chiral Allylic and Allenic Stannanes as Reagents for Asymmetric Synthesis. Chem. Rev. 1996, 96, (1), 31-47.
71. Marshall, J. A.; Wang, X. J., Highly Diastereoselective Se' Additions of Enantioenriched Allenylstannanes to (S)-2-(Benzyloxy)Propanal. J. Org. Chem. 1991, 56, (10), 3211-3213.
72. Marshall, J. A.; Wang, X. J., Synthesis of Enantioenriched Homopropargylic Alcohols through Diastereoselective-Se' Additions of Chiral Allenylstannanes to Aldehydes. J. Org. Chem. 1992, 57, (4), 1242-1252.
73. Righi, G.; Pescatore, G.; Bonadies, F.; Bonini, C., A Study on the Chelation Control in the Regioselective Opening of 2,3-Bifunctionalized Epoxides. Tetrahedron 2001, 57, (26), 5649-5656.
74. Wang, S. M.; Howe, G. P.; Mahal, R. S.; Procter, G., Stereoselective Reactions of Alpha,Beta-Epoxy-Aldehydes - the Formation of Chelation Controlled Products. Tetrahedron Lett. 1992, 33, (23), 3351-3354.
75. Yamamoto, Y.; Asao, N., Selective Reactions Using Allylic Metals. Chem. Rev. 1993, 93, (6), 2207-2293.
76. Marshall, J. A.; Schaaf, G. M., Synthesis of Stereopentad Analogues of the C14-C22 Segment of Callystatin A through Additions of Chiral Allenylzinc Reagents to Stereotriads. J. Org. Chem. 2001, 66, (23), 7825-7831.
77. Marshall, J. A.; Ellis, K. C., Total Synthesis of (-)- and (+)-Membrenone C. Org. Lett. 2003, 5, (10), 1729-1732.
78. Zhang, Y. C.; Phillips, A. J.; Sammakia, T., Highly Selective Asymmetric Acetate Aldol Reactions of an N-Acetyl Thiazolidinethione Reagent. Org. Lett. 2004, 6, (1), 23-25.
79. Marshall, J. A.; Adams, N. D., Total Synthesis of Bafilomycin V-1: A Methanolysis Product of the Macrolide Bafilomycin C-2. J. Org. Chem. 2002, 67, (3), 733-740.
80. Pangborn, A. B.; Giardello, M. A.; Grubbs, R. H.; Rosen, R. K.; Timmers, F. J., Safe and Convenient Procedure for Solvent Purification. Organometallics 1996, 15, (5), 1518-1520.
81. Still, W. C.; Kahn, M.; Mitra, A., Rapid Chromatographic Technique for Preparative Separations with Moderate Resolution. J. Org. Chem. 1978, 43, (14), 2923-2925.
82. Gottlieb, H. E.; Kotlyar, V.; Nudelman, A., NMR Chemical Shifts of Common Laboratory Solvents as Trace Impurities. J. Org. Chem. 1997, 62, (21), 7512-7515.
83. Tresner, H. D.; Backus, E. J., A Broadened Concept of the Characteristics of Streptomyces-Hygroscopicus. Applied Microbiology 1956, 4, (5), 243-250.
84. Hochlowski, J. E.; Whittern, D. N.; Hill, P.; McAlpine, J. B., Dorrigocins Novel Antifungal Antibiotics That Change the Morphology of Ras-Transformed NIH/3T3 Cells to That of Normal-Cells .2. Isolation and Elucidation of Structures. J. Antibiot. 1994, 47, (8), 870-874.
85. Karwowski, J. P.; Jackson, M.; Sunga, G.; Sheldon, P.; Poddig, J. B.; Kohl, W. L.; Kadam, S., Dorrigocins - Novel Antifungal Antibiotics That Change the Morphology of Ras-Transformed NIH/3T3 Cells to That of Normal-Cells .1. Taxonomy of the Producing Organism, Fermentation and Biological-Activity. J. Antibiot. 1994, 47, (8), 862-869.
86. Woo, E. J.; Starks, C. M.; Carney, J. R.; Arslanian, R.; Cadapan, L.; Zavala, S.; Licari, P., Migrastatin and a New Compound, Isomigrastatin, from Streptomyces Platensis. J. Antibiot. 2002, 55, (2), 141-146.
87. Ju, J. H.; Lim, S. K.; Jiang, H.; Shen, B., Migrastatin and Dorrigocins Are Shunt Metabolites of Iso-Migrastatin. J. Am. Chem. Soc. 2005, 127, (6), 1622-1623.
88. Gaul, C.; Njardarson, J. T.; Shan, D.; Dorn, D. C.; Wu, K. D.; Tong, W. P.; Huang, X. Y.; Moore, M. A. S.; Danishefsky, S. J., The Migrastatin Family: Discovery of Potent Cell Migration Inhibitors by Chemical Synthesis. J. Am. Chem. Soc. 2004, 126, (36), 11326-11337.
89. Kohama, T.; Maeda, H.; Sakai, J. I.; Shiraishi, A.; Yamashita, K., Leustroducsin B, a New Cytokine Inducer Derived from an Actinomycetes, Induces Thrombocytosis in Mice. J. Antibiot. 1996, 49, (1), 91-94.
90. Furumai, T.; Eto, K.; Sasaki, T.; Higuchi, H.; Onaka, H.; Saito, N.; Fujita, T.; Naoki, H.; Igarashi, Y., TPU-0037-A, B, C and D, Novel Lydicamycin Congeners with Anti-MRSA Activity from Streptomyes Platensis TP-A0598. J. Antibiot. 2002, 55, (10), 873-880.
91. Herath, K. B.; Zhang, C.; Jayasuriya, H.; Ondeyka, J. G.; Zink, D. L.; Burgess, B.; Wang, J.; Singh, S. B., Structure and Semisynthesis of Platensimide A, Produced by Streptomyces Platensis. Org. Lett. 2008, 10, (9), 1699-1702.
92. Wang, J.; Soisson, S. M.; Young, K.; Shoop, W.; Kodali, S.; Galgoci, A.; Painter, R.; Parthasarathy, G.; Tang, Y. S.; Cummings, R.; Ha, S.; Dorso, K.; Motyl, M.; Jayasuriya, H.; Ondeyka, J.; Herath, K.; Zhang, C. W.; Hernandez, L.; Allocco, J.; Basilio, A.; Tormo, J. R.; Genilloud, O.; Vicente, F.; Pelaez, F.; Colwell, L.; Lee, S. H.; Michael, B.; Felcetto, T.; Gill, C.; Silver, L. L.; Hermes, J. D.; Bartizal, K.; Barrett, J.; Schmatz, D.; Becker, J. W.; Cully, D.; Singh, S. B., Platensimycin Is a Selective FabF Inhibitor with Potent Antibiotic Properties. Nature 2006, 441, (7091), 358-361.
93. Ju, J. H.; Rajski, S. R.; Lim, S. K.; Seo, J. W.; Peters, N. R.; Hoffmann, F. M.; Shen, B., Evaluation of New Migrastatin and Dorrigocin Congeners Unveils Cell Migration Inhibitors with Dramatically Improved Potency. Bioorg. Med. Chem. Lett. 2008, 18, (22), 5951-5954.
94. Metaferia, B. B.; Chen, L.; Baker, H. L.; Huang, X. Y.; Bewley, C. A., Synthetic Macrolides That Inhibit Breast Cancer Cell Migration in Vitro. J. Am. Chem. Soc. 2007, 129, (9), 2434-2435.
95. Li, M. H. T.; Ung, P. M. U.; Zajkowski, J.; Garneau-Tsodikova, S.; Sherman, D. H., Automated Genome Mining for Natural Products. BMC Bioinformatics 2009, 10, 10.
96. Gulder, T. A. M.; Moore, B. S., Chasing the Treasures of the Sea - Bacterial Marine Natural Products. Curr. Opin. Microbiol. 2009, 12, (3), 252-260.
97. Jones, A. C.; Gu, L. C.; Sorrels, C. M.; Sherman, D. H.; Gerwick, W. H., New Tricks from Ancient Algae: Natural Products Biosynthesis in Marine Cyanobacteria. Curr. Opin. Chem. Biol. 2009, 13, (2), 216-223.
98. Udwary, D. W.; Zeigler, L.; Asolkar, R. N.; Singan, V.; Lapidus, A.; Fenical, W.; Jensen, P. R.; Moore, B. S., Genome Sequencing Reveals Complex Secondary Metabolome in the Marine Actinomycete Salinispora Tropica. Proc. Natl. Acad. Sci. U. S. A. 2007, 104, (25), 10376-10381.
99. Gust, B., Cloning and Analysis of Natural Product Pathways. In Complex Enzymes in Microbial Natural Product Biosynthesis, Part A: Overview Articles and Peptides, Elsevier Academic Press Inc: San Diego, 2009; Vol. 458, pp 159-180.
100. Baltz, R. H., Genetic Methods and Strategies for Secondary Metabolite Yield Improvement in Actinomycetes. Antonie Van Leeuwenhoek 2001, 79, (3-4), 251-259.
101. van Wezel, G. P.; Krabben, P.; Traag, B. A.; Keijser, B. J. F.; Kerste, R.; Vijgenboom, E.; Heijnen, J. J.; Kraal, B., Unlocking Streptomyces Spp. For Use as Sustainable Industrial Production Platforms by Morphological Engineering. Appl. Environ. Microbiol. 2006, 72, (8), 5283-5288.
102. Poele, E. M. T.; Bolhuis, H.; Dijkhuizen, L., Actinomycete Integrative and Conjugative Elements. Antonie Van Leeuwenhoek 2008, 94, (1), 127-143.
103. Demain, A. L., Induction of Microbial Secondary Metabolism. International Microbiology 1998, 1, (4), 259-264.
104. Hopwood, D. A., Antibiotics - Opportunities for Genetic Manipulation. Philos. Trans. R. Soc. Lond. Ser. B-Biol. Sci. 1989, 324, (1224), 549-562.
105. Wang, L. Y.; Yun, B. S.; George, N. P.; Wendt-Pienkowski, E.; Galm, U.; Oh, T. J.; Coughlin, J. M.; Zhang, G. D.; Tao, M. F.; Shen, B., Glycopeptide Antitumor Antibiotic Zorbamycin from Streptomyces Flavoviridis ATCC 21892: Strain Improvement and Structure Elucidation. J. Nat. Prod. 2007, 70, (3), 402-406.
106. Malina, H.; Tempete, C.; Robertgero, M., Enhanced Sinefungin Production by Medium Improvement, Mutagenesis, and Protoplast Regeneration of StreptomycesIncarnatus NRRL 8089. J. Antibiot. 1985, 38, (9), 1204-1210.
107. Lee, S. D.; Park, S. W.; Oh, K. K.; Hong, S. I.; Kim, S. W., Improvement for the Production of Clavulanic Acid by Mutant Streptomyces Clavuligerus. Lett. Appl. Microbiol. 2002, 34, (5), 370-375.
108. Lyutskanova, D. G.; Stoilova-Disheva, M. A.; Peltekova, V. T., Increase in Tylosin Production by a Commercial Strain of Streptomyces Fradiae. Appl. Biochem. Microbiol. 2005, 41, (2), 165-168.
109. Kieser, T. B., Mervyn J.; Buttner, Mark J.; Chater, Keith F.; Hopwood, David A. , Practical Streptomyces Genetics. The John Innes Foundation: Norwich, UK, 2000; p 613.
110. Lal, R.; Khanna, R.; Kaur, H.; Khanna, M.; Dhingra, N.; Lal, S.; Gartemann, K. H.; Eichenlaub, R.; Ghosh, P. K., Engineering Antibiotic Producers to Overcome the Limitations of Classical Strain Improvement Programs. Crit. Rev. Microbiol. 1996, 22, (4), 201-255.
111. Hopwood, D. A.; Chater, K. F., Fresh Approaches to Antibiotic Production. Philos. Trans. R. Soc. Lond. Ser. B-Biol. Sci. 1980, 290, (1040), 313-328.
112. Schindle.Pw; Zahner, H., Mode of Action of Macrolide-Type Antibiotic, Chlorothricin - Kinetic Study of Inhibition of Pyruvate Carboxylase from BacillusStearothermophilus. Eur. J. Biochem. 1973, 39, (2), 591-600.
113. Gary, N. D.; Bard, R. C., Effect of Nutrition on the Growth and Metabolism of Bacillus Subtilis. J. Bacteriol. 1952, 64, (4), 501-512.
114. Sundaram, T. K.; Cazzulo, J. J.; Kornberg, H. L., Anaplerotic CO2 Fixation in Mesophilic and Thermophilic Bacilli. Biochimica Et Biophysica Acta 1969, 192, (2), 355-\&.
115. Pang, X. H.; Aigle, B.; Girardet, J. M.; Mangenot, S.; Pernodet, J. L.; Decaris, B.; Leblond, P., Functional Angucycline-Like Antibiotic Gene Cluster in the Terminal Inverted Repeats of the Streptomyces Ambofaciens Linear Chromosome. Antimicrob. Agents Chemother. 2004, 48, (2), 575-588.
116. Shirling, E. B.; Gottlieb, D., Cooperative Description of Type Cultures of Streptomyces III. Additional Species Descriptions from First and Second Studies. Int J Syst Bacteriol 1968, 18, (4), 279-392.
117. Kumar, Y.; Goodfellow, M., Five New Members of the Streptomyces Violaceusniger 16s rRNA Gene Clade: Streptomyces Castelarensis sp. Nov., Comb. Nov., Streptomyces Himastatinicus sp. Nov., Streptomyces Mordarskii sp. Nov., Streptomyces Rapamycinicus sp. Nov. And Streptomyces Ruanii sp. Nov. Int J Syst Evol Microbiol 2008, 58, (6), 1369-1378.
118. Skerman, V. B. D.; McGowan, V.; Sneath, P. H. A., Approved Lists of Bacterial Names. Int J Syst Bacteriol 1980, 30, (1), 225-420.
119. Validation of the Publication of New Names and New Combinations Previously Effectively Published Outside the Ijsb: List No. 22. Int J Syst Bacteriol 1986, 36, (4), 573-576.
120. Flack, H. D., On Enantiomorph-Polarity Estimation. Acta Crystallogr. Sect. A 1983, 39, (NOV), 876-881.
121. Niu, X. M.; Li, S. H.; Gorls, H.; Schollmeyer, D.; Hilliger, M.; Grabley, S.; Sattler, I., Abyssomicin E, a Highly Functionalized Polycyclic Metabolite from Streptomyces Species. Org. Lett. 2007, 9, (13), 2437-2440.
122. Dale, J. A.; Mosher, H. S., Nuclear Magnetic-Resonance Enantiomer Reagents - Configurational Correlations Via Nuclear Magnetic-Resonance Chemical-Shifts of Diastereomeric Mandelate, O-Methylmandelate, and Alpha-Methoxy-AlphaTrifluoromethylphenylacetate (MTPA) Esters. J. Am. Chem. Soc. 1973, 95, (2), 512519.
123. Lemieux, B.; Percival, M. D.; Falgueyret, J. P., Quantitation of the Lysosomotropic Character of Cationic Amphiphilic Drugs Using the Fluorescent Basic Amine Red Dnd-99. Anal. Biochem. 2004, 327, (2), 247-251.
124. Bonjouklian, R., Chemistry of the Microbial Metabolite A88696F, A New 2-(Alpha-Hydroxyalkyl) Tetronic Acid. Tetrahedron Lett. 1993, 34, (49), 7861-7864.
125. Bister, B.; Bischoff, D.; Strobele, M.; Riedlinger, J.; Reicke, A.; Wolter, F.; Bull, A. T.; Zahner, H.; Fiedler, H. P.; Sussmuth, R. D., Abyssomicin C - A Polycyclic Antibiotic from a Marine Verrucosispora Strain as an Inhibitor of the PAminobenzoic Acid/Tetrahydrofolate Biosynthesis Pathway. Angew. Chem.-Int. Edit. 2004, 43, (19), 2574-2576.
126. Brufani, M.; Cerrini, S.; Muntwyle.R; Fedeli, W.; Mazza, F., Metabolites of Microorganisms .108. Crystal-Structure Analysis of Chlorothricolide Methyl-Ester. Helv. Chim. Acta 1972, 55, (6), 2094-2102.
127. Momose, I.; Hirosawa, S.; Nakamura, H.; Naganawa, H.; Iinuma, H.; Ikeda, D.; Takeuchi, T., Decatromicins A and B, New Antibiotics Produced by Actinomadura sp. MK73-NF4 - II. Structure Determination. J. Antibiot. 1999, 52, (9), 787-796.
128. Schroeder, D. R.; Colson, K. L.; Klohr, S. E.; Lee, M. S.; Matson, J. A.; Brinen, L. S.; Clardy, J., Pyrrolosporin A, a New Antitumor Antibiotic from Micromonospora sp. C39217-R109-7 .2. Isolation, Physico-Chemical Properties, Spectroscopic Study and X-Ray Analysis. J. Antibiot. 1996, 49, (9), 865-872.
129. Matsumoto, M.; Kawamura, Y.; Yoshimura, Y.; Terui, Y.; Nakai, H.; Yoshida, T.; Shoji, J., Isolation, Characterization and Structures of PA-46101-A and PA-46101B. J. Antibiot. 1990, 43, (7), 739-747.
130. Kellerjuslen, C.; King, H. D.; Kuhn, M.; Loosli, H. R.; Pache, W.; Petcher, T. J.; Weber, H. P.; Vonwartburg, A., Tetronomycin, a Novel Polyether of Unusual Structure. J. Antibiot. 1982, 35, (2), 142-150.
131. Park, H. R.; Chijiwa, S.; Furihata, K.; Hayakawa, Y.; Shin-Ya, K., Relative and Absolute Configuration of Versipelostatin, a Down-Regulator of Molecular Chaperone GRP78 Expression. Org. Lett. 2007, 9, (8), 1457-1460.
132. Clutterbuck, P. W.; Raistrick, H.; Reuter, F., Studies in the Biochemistry of Micro-Organisms. XLI. The Metabolic Products of Penicillium Charlesii G. Smith. II. The Molecular Constitution of Carolic and Carolinic Acids. Biochem. J. 1935, 29, 300-321.
133. Zapf, C. W.; Harrison, B. A.; Drahl, C.; Sorensen, E. J., A Diels-Alder Macrocyclization Enables an Efficient Asymmetric Synthesis of the Antibacterial Natural Product Abyssomicin C. Angew. Chem.-Int. Edit. 2005, 44, (40), 6533-6537.
134. Takeda, K.; Igarashi, Y.; Okazaki, K.; Yoshii, E.; Yamaguchi, K., An Intramolecular Diels-Alder Approach to the Synthesis of Chlorothricolide - Synthesis of (+/-)-24-O-Methylchlorothricolide. J. Org. Chem. 1990, 55, (11), 3431-3434.
135. Jia, X. Y.; Tian, Z. H.; Shao, L.; Qu, X. D.; Zhao, Q. F.; Tang, J.; Tang, G. L.; Liu, W., Genetic Characterization of the Chlorothricin Gene Cluster as a Model for Spirotetronate Antibiotic Biosynthesis. Chem. Biol. 2006, 13, (6), 575-585.
136. Zhang, H.; White-Phillip, J. A.; Melancon, C. E.; Kwon, H. J.; Yu, W. L.; Liu, H. W., Elucidation of the Kijanimicin Gene Cluster: Insights into the Biosynthesis of Spirotetronate Antibiotics and Nitrosugars. J. Am. Chem. Soc. 2007, 129, (47), 1467014683.
137. Demydchuk, Y.; Sun, Y. H.; Hong, H.; Staunton, J.; Spencer, J. B.; Leadlay, P. F., Analysis of the Tetronomycin Gene Cluster: Insights into the Biosynthesis of a Polyether Tetronate Antibiotic. ChemBioChem 2008, 9, (7), 1136-1145.
138. Fang, J.; Zhang, Y. P.; Huang, L. J.; Jia, X. Y.; Zhang, Q.; Zhang, X.; Tang, G. L.; Liu, W., Cloning and Characterization of the Tetrocarcin a Gene Cluster from Micromonospora Chalcea NRRL 11289 Reveals a Highly Conserved Strategy for Tetronate Biosynthesis in Spirotetronate Antibiotics. J. Bacteriol. 2008, 190, (17), 6014-6025.
139. Machida, K.; Aritoku, Y.; Tsuchida, T., One-Pot Fermentation of Pladienolide D by Streptomyces Platensis Expressing a Heterologous Cytochrome P450 Gene. J. Biosci. Bioeng. 2009, 107, (6), 596-598.
140. Lin, X.; Cane, D. E., Biosynthesis of the Sesquiterpene Antibiotic Albaflavenone in Streptomyces Coelicolor. Mechanism and Stereochemistry of the Enzymatic Formation of Epi-Isozizaene. J. Am. Chem. Soc. 2009, 131, (18), 63326333.
141. Henry, K. M.; Townsend, C. A., Ordering the Reductive and Cytochrome P450 Oxidative Steps in Demethylsterigmatocystin Formation Yields General Insights into the Biosynthesis of Aflatoxin and Related Fungal Metabolites. J. Am. Chem. Soc. 2005, 127, (11), 3724-3733.
142. Bode, H. B.; Bethe, B.; Hofs, R.; Zeeck, A., Big Effects from Small Changes: Possible Ways to Explore Nature's Chemical Diversity. ChemBioChem 2002, 3, (7), 619-627.
143. Hughes, C. C.; MacMillan, J. B.; Gaudencio, S. P.; Fenical, W.; La Clair, J. J., Ammosamides A and B Target Myosin. Angew. Chem.-Int. Edit. 2009, 48, (4), 728732.
144. Leslie, B. J.; Hergenrother, P. J., Identification of the Cellular Targets of Bioactive Small Organic Molecules Using Affinity Reagents. Chem. Soc. Rev. 2008, 37, (7), 1347-1360.
145. Alexander, M. D.; Burkart, M. D.; Leonard, M. S.; Portonovo, P.; Liang, B.; Ding, X. B.; Joullie, M. M.; Gulledge, B. M.; Aggen, J. B.; Chamberlin, A. R.; Sandler, J.; Fenical, W.; Cui, J.; Gharpure, S. J.; Polosukhin, A.; Zhang, H. R.; Evans, P. A.; Richardson, A. D.; Harper, M. K.; Ireland, C. M.; Vong, B. G.; Brady, T. P.; Theodorakis, E. A.; La Clair, J. J., A Central Strategy for Converting Natural Products into Fluorescent Probes. ChemBioChem 2006, 7, (3), 409-416.
146. Holzbach, R.; Pape, H.; Hook, D.; Kreutzer, E. F.; Chang, C.; Floss, H. G., Biosynthesis of Macrolide Antibiotic Chlorothricin - Basic Building-Blocks. Biochemistry 1978, 17, (3), 556-560.
147. Mascaretti, O. A.; Chang, C. J.; Hook, D.; Otsuka, H.; Kreutzer, E. F.; Floss, H. G., Biosynthesis of the Macrolide Antibiotic Chlorothricin. Biochemistry 1981, 20, (4), 919-924.
148. Lee, J. J.; Lee, J. P.; Keller, P. J.; Cottrell, C. E.; Chang, C. J.; Zahner, H.; Floss, H. G., Further-Studies on the Biosynthesis of Chlorothricin. J. Antibiot. 1986, 39, (8), 1123-1134.
149. Rawlings, B. J., Biosynthesis of Polyketides. Nat. Prod. Rep. 1997, 14, (5), 523-556.
150. Oikawa, H.; Tokiwano, T., Enzymatic Catalysis of the Diels-Alder Reaction in the Biosynthesis of Natural Products. Nat. Prod. Rep. 2004, 21, (3), 321-352.
151. Kelly, W. L., Intramolecular Cyclizations of Polyketide Biosynthesis: Mining for A "Diels-Alderase"? Org. Biomol. Chem. 2008, 6, (24), 4483-4493.
152. Nicolaou, K. C.; Harrison, S. T., Total Synthesis of Abyssomicin C, AtropAbyssomicin C, and Abyssomicin D: Implications for Natural Origins of AtropAbyssomicin C. J. Am. Chem. Soc. 2007, 129, (2), 429-440.
153. Zografos, A. L.; Georgiadis, D., Synthetic Strategies Towards Naturally Occurring Tetronic Acids. Synthesis 2006, (19), 3157-3188.
154. Takeda, K.; Yano, S.; Sato, M.; Yoshii, E., Synthesis of the Upper Spirotetronic Acid Fragment of Kijanolide. J. Org. Chem. 1987, 52, (18), 4135-4137.
155. Zhang, Y. C.; Sammakia, T., Synthesis of a New N-Acetyl Thiazolidinethione Reagent and Its Application to a Highly Selective Asymmetric Acetate Aldol Reaction. Org. Lett. 2004, 6, (18), 3139-3141.
156. Crimmins, M. T.; She, J., An Improved Procedure for Asymmetric Aldol Additions with N-Acyl Oxazolidinones, Oxazolidinethiones and Thiazolidinethiones. Synlett 2004, (8), 1371-1374.
157. Ainswort.At; Kirby, G. W., Stereochemistry of Beta-Carboxy-and Beta-Hydroxymethyl-Muconic Derivatives. Journal of the Chemical Society C-Organic 1968, (12), 1483-\&.
158. Jaroszewski, J. W., Oxidation of Some 2-Methoxyphenols with Chlorous Acid. J. Org. Chem. 1982, 47, (11), 2013-2018.
159. Jaroszewski, J. W.; Ettlinger, M. G., Medium Effects on Formation of Cyclic Enolates from (2E,4Z)-3-Formyl-2,4-Hexadienedioates, A Novel Ring-Chain Equilibrium - Importance of Hydrogen-Bonding, Solvent Dipolarity-Polarizability, and Ion-Pairing Effects - Stereoisomerism of 3-Formyl-2,4-Hexadienedioates. J. Org. Chem. 1989, 54, (7), 1506-1518.
160. Dence C.W., G. M. K., Sarkanen K.V., Studies on Oxidative Delignification Mechanisms Part II. Reactions of Vanillyl Alcohol with Chlorine Dioxide and Sodium Chlorite. Tappi 1962, 45, (1), 29-38.
161. Isobe, K.; Mohri, K.; Tokoro, K.; Fukushima, C.; Higuchi, F.; Taga, J.; Tsuda, Y., Selective Cleavage of Aromatic Rings by Ozonolysis .1. Application to OrthoDimethoxybenzene Derivatives. Chem. Pharm. Bull. 1988, 36, (4), 1275-1282.
162. Fukuyama, T.; Lin, S. C.; Li, L. P., Facile Reduction of Ethyl Thiol Esters to Aldehydes - Application to A Total Synthesis of (+)-Neothramycin-A Methyl-Ether. J. Am. Chem. Soc. 1990, 112, (19), 7050-7051.
163. Wright, S. W.; Hageman, D. L.; Wright, A. S.; McClure, L. D., Convenient Preparations of T-Butyl Esters and Ethers from T-Butanol. Tetrahedron Lett. 1997, 38, (42), 7345-7348.
164. Colombo, M. I.; Zinczuk, J.; Bohn, M. L.; Ruveda, E. A., Detours En Route to a Total Synthesis of (+)-Cassiol. Tetrahedron: Asymmetry 2003, 14, (6), 717-725.
165. Moses, J. E.; Baldwin, J. E.; Bruckner, S.; Eade, S. J.; Adlington, R. M., Biomimetic Studies on Polyenes. Org. Biomol. Chem. 2003, 1, (21), 3670-3684.
166. Roush, W. R.; Sciotti, R. J., Enantioselective Total Synthesis of (-)Chlorothricolide Via the Tandem Inter- and Intramolecular Diels-Alder Reaction of a Hexaenoate Intermediate. J. Am. Chem. Soc. 1998, 120, (30), 7411-7419.
167. Gustafsson, T.; Schou, M.; Almqvist, F.; Kihlberg, J., A Total Synthesis of Hydroxylysine in Protected Form and Investigations of the Reductive Opening of PMethoxybenzylidene Acetals. J. Org. Chem. 2004, 69, (25), 8694-8701.
168. Marshall, J. A.; Bourbeau, M. P., Directed Pd(0)-Catalyzed Hydrostannations of Internal Alkynes. Tetrahedron Lett. 2003, 44, (5), 1087-1089.
169. Roth, G. J.; Liepold, B.; Muller, S. G.; Bestmann, H. J., Further Improvements of the Synthesis of Alkynes from Aldehydes. Synthesis 2004, (1), 59-62.
170. Frantz, D. E.; Fassler, R.; Carreira, E. M., Facile Enantioselective Synthesis of Propargylic Alcohols by Direct Addition of Terminal Alkynes to Aldehydes. J. Am. Chem. Soc. 2000, 122, (8), 1806-1807.
171. Flohr, A., Stille Coupling Versus Cine Substitution. Electronic Effects Also Influence Coupling Sterically Hindered Stannanes. Tetrahedron Lett. 1998, 39, (29), 5177-5180.
172. Franci, X.; Martina, S. L. X.; McGrady, J. E.; Webb, M. R.; Donald, C.; Taylor, R. J. K., A Comparison of the Still-Gennari and Ando HWE-Methodologies with Alpha,Beta-Unsaturated Aldehydes; Unexpected Results with Stannyl Substituted Systems. Tetrahedron Lett. 2003, 44, (42), 7735-7740.
173. Zografos, A. L.; Yiotakis, A.; Georgiadis, D., Rapid Access to the Tricyclic Spirotetronic Core of Abyssomicins. Org. Lett. 2005, 7, (20), 4515-4518.
174. Roush, W. R.; Limberakis, C.; Kunz, R. K.; Barda, D. A., Diastereoselective Synthesis Endo- and Exo-Spirotetronate of the Quartromicins. The First Enantioselective Diels-Alder Reaction of an Acyclic (Z)-1,3-Diene. Org. Lett. 2002, 4, (9), 1543-1546.
175. Roush, W. R.; Barda, D. A., Highly Selective Lewis Acid Catalyzed DielsAlder Reactions of Acyclic (Z)-1,3-Dienes. J. Am. Chem. Soc. 1997, 119, (31), 74027403.
176. Funel, J. A.; Prunet, J., Enyne Versus Diene RCM in the Synthesis of Cyclopentene Derivatives toward the a Ring of FR182877. J. Org. Chem. 2004, 69, (13), 4555-4558.
177. Williams, D. R.; Nishitani, K., A Mild Oxidation of Aldehydes to Alpha,BetaUnsaturated Aldehydes. Tetrahedron Lett. 1980, 21, (46), 4417-4420.
178. Wender, P. A.; Christy, J. P., Rhodium(I)-Catalyzed [4+2+2] Cycloadditions of 1,3-Dienes, Alkenes, and Alkynes for the Synthesis of Cyclooctadienes. J. Am. Chem. Soc. 2006, 128, (16), 5354-5355.
179. Marshall, J. A.; Xie, S. P., An Enantioselective Synthesis of the Spirotetronate Subunit of Kijanolide. J. Org. Chem. 1992, 57, (11), 2987-2989.
180. Yamada, S.; Morizono, D.; Yamamoto, K., Mild Oxidation of Aldehydes to the Corresponding Carboxylic-Acids and Esters - Alkaline Iodine Oxidation Revisited. Tetrahedron Lett. 1992, 33, (30), 4329-4332.
181. Trullinger, T. K.; Qi, J.; Roush, W. R., Studies on the Synthesis of Quartromicins A(3) and D-3: Synthesis of the Vertical and Horizontal BisSpirotetronate Fragments. J. Org. Chem. 2006, 71, (18), 6915-6922.
182. Yamaguchi, M.; Nobayashi, Y.; Hirao, I., A Ring-Opening Reaction of Oxetanes with Lithium Acetylides Promoted by Boron-Trifluoride Etherate. Tetrahedron 1984, 40, (21), 4261-4266.

