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Microstructural Design for Stress Wave Energy Management 

 

by 

 

Aref Tehranian 

 

Doctor of Philosophy in Engineering Sciences (Applied Mechanics) 

University of California, San Diego, 2013 

Professor Sia Nemat-Nasser, Chair 

 

Stress-wave propagation in solids can be controlled through imposing a gradual 

change of anisotropy in the material elasticity tensor. In this study, a transversely 

isotropic material is incorporated with a smoothly varying axis of anisotropy. It is shown 

that if this axis initially coincides with the stress wave vector, then the energy of the 

plane waves would closely follow this gradually changing material direction. A fiber-

reinforced composite is used to induce the required anisotropy, and to experimentally 

demonstrate the management of stress-wave energy in a desired trajectory. 

The interface between two strongly anisotropic materials has a great influence on 

the stress wave scattering and can play a potential role in managing stress-waves in 



 

xx 

anisotropic and heterogeneous composites. Wave reflection and transmission at the 

interface of two elastic media has been thoroughly studied in the literature. In this study, 

we apply the theory of wave propagation to the interface of transversely isotropic 

materials, where the group velocity and wave-energy flow are usually close to the 

preferred direction of maximum stiffness. It is established that the anisotropy orientation 

of two interfacing materials can be exploited to control and manage stress wave energy 

by design; for example, the energy of an incident pressure wave can be guided to a 

desirable direction; the scattered longitudinal wave can be evanescent (non-propagating); 

and finally the energy content of stress-waves can be transferred from pressure into shear 

wave energy, which is prone to dissipation.  

Multilayered structures consisting of strongly anisotropic layers can be exploited 

to efficiently manage the stress wave propagation in solids by providing multiple 

interfaces that play key roles in transmission and reflection of pressure and shear waves. 

We have developed a computational platform to efficiently evaluate the transmitted and 

reflected stress-waves in pressure and shear modes based on the anisotropy orientation of 

layers and the incident wave vector direction. We demonstrate that a multilayered 

structure can be tailored to effectively transform the energy of incident pressure wave 

into shear wave energy. Furthermore, by integrating a layer of shear-dissipative material, 

the resulting shear-wave energy can be dissipated within the viscoelastic layer. 



1 

 

 

Chapter 1  

 

Introduction 

 

1.1. Stress-wave energy management 

Wave propagation in continuum mechanics has been an interesting subject of 

research for decades. The subject of this dissertation is to study various techniques to take 

control of stress-wave propagation in solids. The energy carried by a plane-wave may 

constitute pressure wave energy and/or shear wave energy. The proposed techniques 

demonstrate that one can redirect and guide stress-wave energy, transfer pressure wave 

energy into shear wave energy, and dissipate the energy of shear waves; thus managing 

the propagation of stress-wave in solids. The methods are numerically established and 

experimentally verified. 

The application of this technology consists of guiding the energy of the acoustic 

waves either away from or toward a region within the material, depending on whether 

one wishes to avoid or harvest the corresponding stress waves. Sensitive objects or 
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facilities can be protected against undesirable acoustic disturbances and/or remained 

hidden from detection sonar. 

1.2. Microstructural design 

In order to achieve immense control on stress-wave propagation in solids, the 

material properties and the microstructure should be meticulously designed. It is 

established that wave speed and group velocity are strongly directional dependent in a 

highly anisotropic material such as composite materials. One can create heterogeneously 

anisotropic materials by controlling the fiber orientation within a fiber-reinforced 

composite material. Glass and Carbon fiber-reinforced composites are used in this work 

to induce the desired local anisotropy, and yet to create a material that is essentially 

homogeneous at the scale of the considered wavelengths. Also, designing a porous 

microstructure using a shear-dissipative matrix is proposed to further enhance the 

dissipation of stress-wave energy.  

Microstructural designs proposed in this dissertation incorporates distinct 

phenomenon in wave-propagation. In the first design, the preferred axis of a transversely 

isotropic material varies smoothly with location, which imposes a gradual change of 

anisotropy in the material elasticity tensor. The detailed discussion in Chapter 2 exploits 

this design in order to guide the impinging pressure waves. The second design employs 

the significant role of interface discontinuity and elastic anisotropy in stress-wave energy 

management. The transmission and reflection of an incident wave are tailored in Chapter 
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3 to manage stress-waves at the interface of strongly directional carbon-fiber reinforced 

composites. 

1.3. Organization of chapters 

This manuscript is organized in the following manner. In chapter 2, we have 

shown numerically and experimentally that managing the energy of stress-waves is 

possible by designing the preferred axis of a transversely isotropic material to vary 

smoothly with location. In transversely isotropic materials, when the wave vector 

deviates only slightly from the axis of maximum stiffness, almost all the energy of 

longitudinal mode of plane wave will travel along this axis. We have designed a 

specimen in which the anisotropy direction changes smoothly in order to split and 

redirect stress waves around a target object and then re-combine them on the opposite 

side of the object (referred to as “acoustic cloaking” in the literature). It is numerically 

shown and experimentally demonstrated that the acoustic wave energy packet would 

follow a similar gradual change as the axis of anisotropy. 

In chapter 3, the scattering of an incident plane wave at the interface of two 

transversely isotropic materials is studied. Plane wave propagation in anisotropic media is 

decomposed to three supported modes: quasi-longitudinal, quasi-shear, and pure shear. 

The direction of propagation, amplitudes, phase velocity, group velocity, and energy flux 

of reflected and transmitted waves are computed by formulating the theoretical approach 

in a MATLAB based computational platform. It is shown that the direction of 

propagation of the energy in solids can be easily controlled by designing the orientation 
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of anisotropy of interfacing materials, which may be used to redirect and guide the 

energy of stress-waves either away or toward a region within the material, depending on 

whether one wishes to avoid or harvest the corresponding stress waves. Also we show 

that the interface of anisotropic materials can be tailored in order to efficiently transfer 

the energy of pressure waves into shear wave energy, which is susceptible to dissipation.  

In chapter 4, we show that multilayered structures consisting of strongly 

anisotropic layers can be exploited to efficiently manage the stress wave propagation by 

providing multiple interfaces that play key roles in transmission and reflection of pressure 

and shear waves. Anisotropic layers introduce various design parameters which can be 

optimized to control the impinging stress waves as desired. We have developed a 

computational platform to efficiently evaluate the transmitted and reflected stress-waves 

in pressure and shear mode based on the anisotropy orientation of layers and the incident 

wave vector direction. We demonstrate that a multilayered structure can be tailored to 

effectively transform the energy of incident pressure wave into shear wave energy. 

Furthermore, by integrating a layer of shear-dissipative material, the resulting shear-wave 

energy can be dissipated within the viscoelastic layer. 

Finally, in chapter 5, we have studied the chemistry, synthesis, and 

characterization of polyurea based foam. We modified the chemistry reactions 

incorporated to synthesize pure polyurea, in order to create a porous structure with 100-

250μm voids. The broken water droplets in the emulsion of water and Versalink react 

with isocyanate molecules to form CO2 that acts as a blowing agent to create foam. The 

developed synthesis procedure has an inherent issue that leads to non-uniform 
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distribution of voids, and therefore non-uniform mass density in the whole sample. The 

samples were characterized for the developed microstructure as well as mechanical 

properties in macro scale. The porous microstructure was studied to find the void size due 

to each stoichiometry implemented in the material synthesis. Stress-strain behavior under 

uniaxial compression was studied for loading and unloading cycles. Storage and loss 

moduli were measured using DMA; and compared to the numerical predictions using 

micromechanics model for periodic distribution of voids. 
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Chapter 2  

 

Stress-wave Energy Management through Material Anisotropy 

 

Stress-wave propagation in solids can be controlled through imposing a gradual 

change of anisotropy in the material elasticity tensor. In this study, a transversely 

isotropic material is incorporated with a smoothly varying axis of anisotropy. It is shown 

that if this axis initially coincides with the stress wave vector, then the energy of the 

plane waves would closely follow this gradually changing material direction. A fiber-

reinforced composite is used to induce the required anisotropy, and to experimentally 

demonstrate the management of stress-wave energy in a desired trajectory. The material 

has isotropic mass density and is considered homogeneous at the scale of the considered 

wave-lengths, even though microscopically it is highly heterogeneous. 

2.1. Introduction 

In recent years, there have been significant efforts to develop techniques to 

“cloak” an object, making it invisible to electromagnetic waves at a certain wave length. 
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These cloaks are generally based on using heterogeneous composites with gradually 

changing electromagnetic properties [1-4].  Schurig et al. [5] experimentally 

demonstrated EM cloaking at microwave frequencies.  Milton et al. [6] studied the 

properties of conventional elastodynamics equations under curvilinear coordinate-

transformation and found that in general, equations of motion are not form invariant and 

therefore the EM cloaking techniques, based on coordinate transformations, are not 

applicable to elastic stress waves. Cummer and Schurig [7] suggested an acoustic 

cloaking scheme by noting the equivalence of acoustic and electromagnetic equations in 

two-dimensional (2D) geometry, using anisotropic mass density. Chen and Chan [8] 

suggested a design of 3D acoustic cloak by mapping acoustic equation to DC 

conductivity equation, again using anisotropic mass density. Torrent and Sanchez-Dehesa 

[9] proposed a multilayered composite made of sonic crystals which satisfies anisotropic 

density requirements suggested by Cummer. 

Recently, Norris [10] has shown that if the mechanical stiffness of the material is 

isotropic, then the inertial density must be infinite at the inner surface of the cloak.  In 

fact the inertial anisotropy schemes suggested in the literature are of this kind [7-9]. 

Cloaking is suggested by numerical modeling in those cases, but fabricating a 

metamaterial with infinite mass density is challenging, if not impossible. Norris then 

shows that perfect cloaking is possible with finite mass through stiffness anisotropy. 

Pentamode materials (PM) are needed to satisfy the required stiffness anisotropy [6, 10]. 

It can also be used in line with inertial anisotropy (but not infinite mass density) [10]. 

Yet, fabrication of such metamaterials is rather challenging. Five of the six eigenvalues 



8 

 

of the elasticity tensor vanish in PM and therefore it can be strained in 5 independent 

modes without producing any stress which causes instability in the material [6, 10]. 

Tehranian et al. [11] found that it is possible to design the microstructure of a material to 

attain an elasticity tensor which varies smoothly with position; and can be used to guide 

the energy of stress waves. 

Acoustic cloaking can be achieved when stress waves are guided around an object 

and then re-gathered on the far side of the cloaked region to continue traveling in the 

same direction so as to make the object seem invisible or protected from the impinging 

stress waves. A less strict approach may be to seek to minimize the elastodynamic 

scattering cross section of any object within a bounded volume by adjusting the local 

material properties of its surrounding region. The term material properties in this 

description refers to the effective mass-density and elasticity (or viscoelasticity) tensors 

that depend on the microstructure at a length-scale that is at least an order of magnitude 

smaller than the considered window of acoustic wavelengths.  

In the present study, we seek to develop a realistic approach to control stress-

wave propagation in elastic solids of uniform mass-density but anisotropic elasticity, and 

demonstrate its feasibility through numerical simulations and experiments at ultrasonic 

acoustic frequency range. An ideal cloak guides the stress-waves around an obstacle at 

any angle of incidence and at any frequency. The design suggested in this paper limits the 

angle of incidence to a direction normal to the boundary surface on which the wave 

impinges.  But, it does that successfully in a relatively wide frequency band. In general, a 

micro-structurally designed cloak cannot operate over the entire frequency spectrum, not 
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only because of theoretical limitations, but also more simply due to the diffraction limit 

of heterogeneous media. Basic elastodynamic analysis of anisotropic media shows that 

the longitudinal and shear waves may travel in different directions with different 

velocities that depend on the angle between the wave vector and the material’s principal 

anisotropy directions [12-14]. However, if the wave vector makes a very small angle with 

the material’s preferred axis of maximum stiffness, then the resulting longitudinal and 

shear-wave group velocities will make even smaller angles to this direction. In other 

words, the maximum stiffness direction is also a preferred direction for group velocity 

and wave-energy flow. Now, if the material direction changes smoothly (with respect to 

the wavelength) throughout a body, the stress waves will follow the anisotropy direction 

of the material. Thus, we can control stress waves and redirect them to travel along a pre-

designed trajectory. 

Musgrave [14] has performed an extensive study on wave propagation in elastic 

anisotropic media and the corresponding slowness surfaces for different modes.  Norris 

[15] developed a general theory for the propagation and scattering of compact Gaussian 

shaped envelopes in piecewise homogeneous anisotropic solids. Abrahams and Wickham 

[16] used an asymptotic method to solve the problem of refraction and propagation of SH 

waves with relatively large wave-number in a locally transversely isotropic material 

whose direction of the preferred axis varies as a continuously differentiable function of a 

single spatial coordinate. Their work is motivated by failure of ray tracing methods in 

non-destructive testing of austenitic steel welds, which can be modeled as transversely 

isotropic material with smoothly varying axis of symmetry. Their method can produce a 
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geometrical characterization of the refracted wave. Mazzucato and Rachele [17] studied 

intersection of slowness surfaces of different modes using microlocal analysis on 

transversely isotropic materials where the fiber direction may vary smoothly from point 

to point. Norris and Wickham [18] studied the structure and properties of the ray equation 

for transversely isotropic materials with moduli which are uniform up to a rotation of the 

underlying crystallographic base vectors about a common axis. They suggested an 

algorithm for SH waves that can be used to generate a uniform approximation to the point 

source field in a smoothly varying medium.  

In the present work, we are concerned with longitudinal waves, which, in general, 

may involve all three displacement components. Given the complexity of the geometry of 

the problem, we chose to use numerical computation using finite element method. The 

moduli of each element are specified based on its spatial location. In section 2.2, we seek 

to provide a basic understanding of the physics of the phenomena using the classical 

fundamentals of wave propagation in transversely isotropic materials. 

Fiber-reinforced composites are used in this work to induce the desired local 

anisotropy, and yet to create a material that is essentially homogeneous at the scale of the 

considered wavelengths. One can then change the preferred material axis by controlling 

the fiber orientation within a sample. In a composite material with a spatially uniform 

preferred direction, longitudinal waves and shear waves travel in certain directions 

depending on the angle between the wave vector and the preferred axis (fiber orientation 

in this case). However, if continuous fibers are oriented in smoothly curved shapes, both 

longitudinal and shear waves will travel on paths that approximately follow the fibers. 
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The acoustic waves tend to travel close to the direction of the highest stiffness and wave 

speed. It must be emphasized that unlike wave-guides which exploit geometric surfaces 

with material discontinuities, the wave redirection considered here is achieved in the 

absence of discontinuous boundaries. The present three-dimensional solid sample is 

essentially a homogeneous but highly anisotropic at the scale of the considered 

wavelengths. Note that the sample is fabricated such that its (varying) elastic modulus 

tensor at any point is obtained by a pre-designed rotation of its principal directions. It is 

important to realize that the macroscopic anisotropy of the material guides the acoustic 

waves, not the microscopic heterogeneity in the composite material. In fact, the scale of 

the material heterogeneity is what limits the wavelength at which the stress-wave energy 

can be managed. Fortunately, this range is extremely wide for a fiberglass/epoxy 

composite material, covering stress waves of up to about 5MHz frequency. In principle, 

smaller fibers will allow one to surpass this limit. Applications of acoustic cloaking may 

include hiding under-water objects such as submarines, protecting a particularly sensitive 

section of a structure against blast or shock waves, acoustic noise reduction by creating 

sound-shielding materials, and seismic isolation of civil infrastructure. 

2.2. Elastic waves in anisotropic materials 

In anisotropic materials with spatially uniform density, elastic wave propagation 

is strongly affected by the local principal directions of the material anisotropy.  This fact 

can be used to redirect and manage the elastic stress-wave energy within a material, 

essentially as is desired.  Here, we illustrate this phenomenon using an elastic material 
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which is locally transversely isotropic, but whose local principal plane of isotropy 

spatially varies from point to point. 

With respect to a rectangular Cartesian coordinate system, 
jx , j = 1, 2, 3, the 

equations of motion are, 

2

2
,

ij i

j

σ u
ρ

x t

 


 
                                                  (2-1) 

where 
ijσ , iu , , 1,2,3,i j   and   respectively denote the Cartesian components of the 

stress tensor, displacement vector, and  mass-density [14, 19].  The generalized Hooke’s 

Law is 
,ij ijkl k lC u  , where comma followed by an index denotes partial differentiation 

with respect to the corresponding coordinate.  Since the elasticity tensor, 
ijklC , is spatially 

variable, 
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                                       (2-2)  

For numerical finite-element simulations, it is convenient to consider a typical 

finite element, 
jx , j = 1, 2, 3, denote the local rectangular Cartesian coordinate system, 

and examine plane wave propagation within this element which is now assumed to be 

uniform.  Then integrate the results into the large-scale finite-element code, LS-DYNA, 
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to solve the corresponding elastic waves propagating through an elastic solid whose 

principal axes of elasticity tensor may vary from element to element.  

We now focus on a transversely isotropic material.  Plane wave solution to the 

equation of motion is in the following form: 

 i i j ju g n x Vt  ,                                      (2-3)                                                                                                                   

where 
jn are components of the unit vector normal to the wave-plane, moving with speed 

V, and repeated indices are summed [12]. Substituting this solution into the equation of 

motion, and noting that the elasticity tensor in the considered element is constant, we 

obtain,  

2( ) 0ijkl l j ik kC n n V g    .                                  (2-4)                                                                                                      

For nontrivial solutions, we must have, 

2det( ) 0ijkl l j ikC n n V   .                                                                                (2-5) 

For an element with transversely isotropic elasticity, we chose the x3-axis normal to the 

plane of isotropy. The elastic modulus matrix [ ]abC  is 
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These equations involve 5 independent elastic constants.  These are: Young moduli E in 

the x1 and x2 , and E3 in the x3 directions;  Poisson ratios, ν the x1 and x2 , and ν3 in the x3 

directions, respectively, and shear modulus, μ3 , in the x1,x3 and x2,x3 planes, the shear 

modulus in the plane of isotropy being 11 12μ=E/2(1+ν)=(C -C )/2.
   

Taking n = (sin 0 cos )θ, , θ for a plane-wave which makes an angle θ with the x3 

axis in the x1x3-plane, we obtain the characteristic equation,                

 2 2 2 4 2 2 2 21
244 11 12 44 33 44 11 33 13 44

4 2 2 2 2 2 2

44 11 33 44 11 44

cos ( )sin cos ( ) sin cos

sin ( ) cos ( ) sin ( ) 0.

C θ C C θ ρV C C θ C C C C C θ θ

C C θ ρV C C θ ρV C C θ ρV

          

      

(2-7) 

The roots of this equation now yield the inverse (i.e., the slowness) of the velocities of 

three different plane waves that can travel in a transversely isotropic material, as follows 

[13]: 

1- Quasi-shear mode:   
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2- Pure Shear mode: 
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3- Quasi-longitudinal mode: 
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 .       (2-10) 

As an illustration, Figure 2.1 shows the variation of these three quantities for 

various values of the angle . These curves are drawn for the following elastic constants: 

E = 15.37GPa, E3 = 48.46GPa, ν = 0.34, ν3 = 0.24, 3μ = 5.47GPa. These values are 

obtained by characterizing a transversely isotropic composite material, as discussed in 

Section 2.4.  Also, these values are used to produce results discussed in the rest of this 

section, as well as for all other experimental results that are reported in this paper.  

For anisotropic media, the wave vector k = kn (where k is its magnitude) and the 

group velocity Vg with magnitude Vg do not always have a common direction, where 
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[13, 20]. Since δk must always lie in the slowness surface, the group velocity is 

normal to the slowness surface, as shown in Figure 2.1. It can be seen that the direction of 

the group velocity is different for different modes corresponding to the same angle, .  A 

more detailed discussion of creating such slowness curve is provided in [12], Auld [13] 

and Mazzucato and Rachele [17] ; see however Payton [12] who focuses on transversely 

isotropic media. 

 

Figure 2.1: Slowness curves for a transversely isotropic material 

 

As a simple example, consider a transversely isotropic sample shown in Figure 

2.2, with the x3-axis making an angle θ = 45° with the wave vector k.  In this case, θ is 
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uniform throughout the sample. The wave packet travels with a group velocity that makes 

an angle α with the x3-direction, as displayed in Figure 2.1 for the three waves mentioned 

above.  

 

Figure 2.2: Deflected acoustic wave trajectory in anisotropic material 

 

Pure shear waves travel almost in the k-direction at a velocity of V2 = 1755m/s. 

Quasi-longitudinal waves travel at V3 = 4070m/s, making an angle α3 = 11°, and the 

quasi-shear waves at V1 = 2344m/s making an angle of about α1 = 65° relative to the x3-

direction, as shown in Figure 2.1.  In this case, plane strain is assumed and the 

displacement in the y-direction (vertical direction in Figure 2.2) is prescribed over a 20 

mm strip as a harmonic sinusoidal wave with 1MHz frequency. The rest of the boundary 

is stress-free. 

The simulations give V3 = 4300m/s, and V1 = 2322m/s, with the corresponding 

angles α3 = 13°, and α1 = 67°. None of the waves travel in the anisotropy (x3-direction) of 
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the material, as the wave vector does not coincide with the x3-direction. These are plotted 

in Figure 2.3, which shows the effective stress (von Mises) at a specific time after the 

excitation begins. Red fringes show higher effective stresses (von Mises) while blue 

shows zero effective stress. The maximum effective stress experienced at each element 

on the bottom side of the sample is found and plotted (blue dots) below the sample in 

Figure 2.3. Points B and C (marked on the sample) correspond to two local maxima. Line 

AB shows the direction of propagation of quasi-longitudinal waves and line AC that of 

quasi-shear waves.  Also, the time it takes for waves to travel from point A to B and C is 

computed based on the 5
th

 sine wave peak. Pure shear waves are traveling slower than the 

other modes and cannot be seen in Figure 2.3, as effective stress in the model is 

dominated by quasi-longitudinal waves. However, theoretical values show that these 

waves make an angle α2 = 45°.with x3. 

 In numerical simulation, wave speeds and deflection angles are calculated based 

on the von Mises stress which represents distortional energy. This may be one reason for 

the slight difference between numerical results and the analytical values which are 

calculated based on slowness curves. Displacement of the nodes can be decomposed in 

three discussed modes to obtain angles and speeds of the waves. 
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Figure 2.3: Numerical simulation of wave propagation in a transversely isotropic material 

 

When the wave vector deviates only slightly from the material’s principal x3-

direction, as shown in Figure 2.4, then pure shear, quasi-longitudinal, and quasi-shear 

waves all travel more or less in the x3-direction.  Now, if the material anisotropy direction 

changes slightly, the group velocity will follow the same and changes accordingly. If 

initially the wave vector coincides with the material’s principal direction and undergoes 

smooth changes, then the acoustic wave energy packet would follow a similar path. Thus, 

it is possible to control the elastic energy path by the judicious design of material 
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anisotropy. This is illustrated, both experimentally and numerically, in the next two 

sections. 

 

Figure 2.4: Slowness curves analysis where k is applied close to x3-axis 

  

2.3. Numerical computation 

The objective of this section is to design and numerically simulate a possible 

specimen, which can split, when necessary, and redirect acoustic stress waves around a 

target object and then re-combine them on the opposite side of the object to produce 

waves that have their original spatial distribution, although they may be partially 

attenuated. We want to ensure that the interior object would be minimally excited by 

incident waves and thus remain protected and hidden to ultrasonic excitations. We use 

anisotropic materials to achieve this goal.  We focus on transversely isotropic materials 
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and consider cases where the anisotropy direction (referred to as the axis of anisotropy) 

smoothly and gradually changes within the solid and hence redirects the waves as 

desired.  Except for the direction of the elastic anisotropy, the material appears 

homogeneous at the scale of the considered wave lengths.  In the following subsections 

we first present a simple model and then analyze a sample which we have fabricated for 

experimental verification, as discussed in section 2.4. 

2.3.1. Circularly varying axis of anisotropy 

A simple model is presented in this section to illustrate acoustic energy 

management in a transversely isotropic cube, shown in Figure 2.5. In this model, the axis 

of elastic anisotropy at each point is tangent to a circle of a common center. The LS-

DYNA finite-element model is a cube with 10cm long sides as shown in Figure 2.5. The 

local material x3-axis, which coincides with the direction of maximum stiffness, is 

changing throughout the model. At each element, the x3-axis would be normal to the 

radial line connecting that element to the specimen’s axis of radial symmetry [21].  A 

load-free boundary condition is prescribed at all surface nodes; except for those on a 2cm 

× 2cm area centered at T. These nodes are oscillated with a single 100kHz sinusoidal 

pulse (from t = 1μsec to t = 11μsec) along the global Y-direction with 10μm amplitude, 

followed by zero Y-displacement throughout the rest of the simulation. We are going to 

look at the effective stress on the mid-plane made by TRGL in Figure 2.5. 
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Figure 2.5: Cubic sample with circular anisotropy. At each point in a plane normal to the x2-axis, 

the axis of anisotropy, x3, is normal to the radial line connecting that point to the corresponding  

point on the edge BB’.  

 

The maximum stiffness direction, x3, changes smoothly as the wave is 

propagating in the model.  It can be seen from Figure 2.6 that acoustic-wave energy is 

directed along the x3-direction. Initially, both the wave vector k and the x3-direction are in 

the Y-direction, but the group velocity of acoustic waves gradually changes its direction  

and follows the local material’s axis of anisotropy, x3. The normal displacement of the 

nodes at the center of cube’s faces, i.e., points T, R, G, L, are plotted in Figure 2.7; i.e., 
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the X-displacement for R and L, and the Y-displacement for T and G. The displacement of 

node L is much larger than that of the others, as the acoustic wave is redirected towards 

L.  

 

Figure 2.6: The von Mises stress in mid-plane, TRLG, of the model shown in Figure 2.5. 
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2.3.2. Stress-wave redirection 

In this section, we consider a sample with an interior cavity and examine two 

transversely isotropic cases to illustrate and contrast the effect of variation of the axis of 

anisotropy (maximum stiffness direction, the x3-axis) on the acoustic wave path.  The 

general geometry of the sample is shown in Figure 2.8a; see also Figure 2.14 for an actual 

fabricated sample.  One sample, (model A), has its x3-axis parallel to the X-direction at 

each point within the sample, Figure 2.8a, while in the other sample, (model B), the 

direction of the x3-axis follows a smoothly curving path around the central cavity, Figure 

2.8b.  The density and degree of anisotropy (E3/E1) are constant throughout both models. 

That is, any two elements taken from different parts of each model have identical density 

and elasticity tensors in their corresponding local principal anisotropy coordinate system. 

Only the axes x1 and x3 change with respect to the global coordinate system for model B, 

but not for model A, while their x2-direction remains uniform in both cases. 
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Figure 2.7: Normal displacement at the center of four faces of the cube, as identified in Figure 2.5 

 

Model A, (the sample with a unidirectional transverse isotropy, Figure 2.8a), is 

simulated as a baseline to contrast the results with the stress-wave path in model B of 

Figure 2.8b.  The local elastic constants at each point are the same as those in Section 

2.4.1, Figure 2.5.  Both models are 11cm long in the X-direction, and 5cm wide in the Y-

direction.   

Model B has the same geometry, same homogeneous mass density, and same 

elastic moduli in local material coordinates as model A, but with different local material 

axes x1 and x3; while x2 remains constant throughout the model (Figure 2.8b). Solid lines 

in Figure 2.8b show how the x3-axis varies in the model in order to conform to the 

geometry of central cavity. The x1-axis is chosen such as to render the 123 coordinate 

system right-handed and orthogonal. 
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Each of the models is subjected to a single 1MHz sinusoidal pulse of 100N force 

in the X-direction over each node on a 1cm strip centered at point M, of one face of the 

sample (left face in Figure 2.8a and b). The sinusoidal load is applied from t = 2μsec to t 

= 3μsec, and after that all nodes are load-free. The rest of the boundary, including the 

central cavity is stress-free in both cases. In order to solve the problem in plain strain, 

out-of-plane degrees of freedom (the Z-displacement) are constrained for all the solid 

elements. 

Finite-element calculation is performed using LS-DYNA. The effective stress 

(von Mises) is computed in each element at each time-increment. The von Mises stress 

represents distortional energy and can be used to study the acoustic energy trajectory in 

the medium. The results are discussed below, starting with model A. 
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Figure 2.8: Orientation of the elastic anisotropy axis, the x3-axis, in: (a) the baseline model with 

uniformly straight anisotropy axis, and (b) with an anisotropy axis that follow the indicated 

curved path around the central cavity. 

Model A:  The results for this baseline case are illustrated in Figure 2.9a. Red 

fringes show higher effective stresses while blue shows zero effective stress. The 

considered loading induces plane waves propagating in the direction of elastic anisotropy, 

i. e., at each point, the wave vector, k, coincides with the corresponding x3-axis. Slowness 
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curves in Section 2.2 with θ = 0 can be used to predict the direction of the group velocity. 

All three modes of the plane wave travel in the x3-direction, as confirmed by Figure 2.9a. 

As the plane wave encounters the stress-free surface of the central cavity, it is reflected 

off that surface, scattering throughout the model as can be seen in Figure 2.9a(1-6).  

 

Figure 2.9a: The von Mises stress contours from numerical simulation of model A, plotted for a 

selected time sequence. 

 

Model B: Here again, the wave vector is initially in the X-direction that coincides 

with the local material x3-axis. As the acoustic wave propagates in model B, it follows the 

direction of the x3-axis that is changing, travels around the cavity, and finally returns to 

its initial direction. As suggested by the discussion on slowness curves in Section 2.2, the 
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acoustic wave packet should follow the x3-direction. Figure 2.9b shows selected 

snapshots of the von Mises stress-contour plots for model B. Figure 2.9b(1, 2) are 

essentially the same as those for the baseline model A; see Figure 2.9a(1, 2), since the 

anisotropy of the path traveled by the waves is similar. Since for model B the x3-axis 

conforms to the geometry of the boundary of the central cavity, the wave path similarly 

changes and is redirected around the cavity. There is a small sudden change in x3-

direction at the transition from linear to curvilinear anisotropy along the sample. Figure 

2.9b(3-5) show how most of the energy of the acoustic wave has followed the x3-axis of 

the model. There are small reflections off the cavity surface that may be the result of 

small sudden changes in x3-direction.  However, the energy of the reflected waves is 

small compared to the bulk of the energy that travels around the cavity. Figure 2.9b(6, 7) 

show how each of the two wave packets has traveled, one above and the other below the 

central cavity, finally join to form a single packet of the plane wave that then travels 

along the x3- or k-direction, with most of the energy being concentrated at its center. 

Also, the sharp peaks in Figure 2.10c show that most of the energy of the acoustic waves 

has traveled very close to the opening surface. (Figure 2.9b(4) is the corresponding state.) 
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Figure 2.9b: The von Mises stress contours from numerical simulation of model B, plotted for a 

selected time sequence. 

In Figure 2.10 we have plotted the maximum values of the εXX–strain attained 

over the considered time interval, at the end section of model (Figure 2.10a), in Figure 

2.10b, and for section A-A (mid-section of the model), in Figure 2.10c. As can be seen in 

Figure 2.9a, most of the energy of the acoustic waves is scattered in the left half of the 

sample in model A. The light solid lines in Figure 2.10b and c represent the numerical 

results for the baseline model A.  
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The heavy solid lines represent the simulation results for model B. In comparison 

with similar graphs for model A, the wave redirection and re-formation is clearly 

demonstrated. Furthermore, we have normalized the signal measured experimentally 

using ultrasonic transducers (see Section 2.4 for details), in such a way that the peak of 

the experimental and the numerical profiles are equal. The experimental signals are 

shown by solid squares in the Figure 2.10b and c. After peak calibration, the 

experimental and numerical profiles are in good agreement. 
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Figure 2.10: Numerical results in central excitation and comparison with experimental data. The 

light and heavy solids lines are the time maximum of the axial strain as calculated in numerical 

simulation for models A and B. The solid squares and triangles are experimentally measured 

voltage signals by ultrasonic transducers (see section 2.4). In b the numerical simulation results 

and experimental data are taken at the end surface of the sample, while c shows these quantities at 

cross section A-A. In each of the two graphs, only the peak experimental and numerical values for 

sample B are normalized to have the same geometric magnitude. The normalization factors for 

graphs (b) and (c) are different. The experimental and numerical profiles for model B are in close 

agreement, but they are substantially different than those in model A. 

 

Figure 2.10b and c show that the strain peak for model B is about 10 times greater 

than for model A at the A-A-cross section; and more than three times greater on the 

surface of the model. Furthermore, comparing Figure 2.9a and b it is seen that, in model 
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B, the amount of energy transferred from the left-half of the model to the right-half is 

considerably greater than that of the baseline model. In fact, the small disturbance 

observed on the surface of the baseline model might be the result of surface waves and 

strongly depends on the boundary conditions, whereas in model B, the acoustic wave is 

guided in the designed direction and therefore most of its energy is concentrated in its 

trajectory. Thus, the transfer of the ultrasonic stress-waves is managed in this example by 

controlling the material anisotropy only and not the mass-density.  

 

2.3.3. Off-center excitation 

It is of interest to examine a case where the excitation in model B is applied off-

center on its left face.  Figure 2.11a shows the position of the nodes on which the 

sinusoidal excitation is imposed. The center of the excitation is 6.3mm off center of the 

model’s left face. The maximum values of the εXX-strain over the considered time interval 

are plotted in Figure 2.11b and c at the end surface and mid-section of the model, 

respectively. The peak in maximum axial strain occurs at about 6.4mm off center, on the 

right face of the sample, very close to the eccentricity of the incident input pulse. The 

solid squares in Figure 2.11 correspond to the normalized measured data discussed in 

Section 2.4.  Figure 2.12 shows how the effective stress is distributed in the model at a 

selected time sequence. Essentially, the same phenomenon that occurred in the centrally 

excited case is observed in the present case. The ultrasonic wave packet is guided around 
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the central cavity of model B, and is delivered on the right-face over almost the same 

exact location as the corresponding location of the incident pulse. 

 

 

Figure 2.11: Numerical results in off-center excitation. In b and c, the solid lines are the results of 

numerical simulations; while the solid squares are experimentally measured signals (see Section 

2.4). In each of the two graphs, only the peak experimental and numerical values are normalized 

to have the same geometric magnitude. The normalization factors are different in graphs (b) and 

(c).  
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Figure 2.12: The von Mises stress contours from off-center numerical simulation of model B, 

plotted for a selected time sequence. 

 

2.4. Acoustic Waves in Anisotropic Composites  

We have fabricated transversely isotropic fiber-reinforced composites, using 

fiberglass-epoxy prepregs, to produce a macroscopically homogeneous solid with desired 

direction of the principal axis of anisotropy.  This direction, which corresponds to the 

fiber orientation, is associated with the direction of the highest overall stiffness, and can 
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be controlled by adjusting the orientation of the prepreg layups. In this manner we have 

designed and fabricated samples that clearly show how the overall anisotropy can be used 

to guide stress waves within a material that, at the scale of the wave length, is essentially 

homogeneous; even though microscopically (i.e., at smaller length-scales) it is highly 

heterogeneous. The main objective of this paper is to show this phenomenon 

experimentally, and qualitatively confirm the results by numerical simulations. 

Figure 2.13 shows the micrograph of our fiberglass-epoxy composite. As is seen, 

the diameter of the glass fibers is less than 20μm, having less than 10μm spacing. The 

ultrasonic waves that we have used are in the low MHz frequency range. The minimum 

measured longitudinal and shear wave speeds in this composite are around 3000 and 

1500m/s respectively. With these speeds, the corresponding wavelengths are about 3 and 

1.5mm for 1MHz ultrasonic waves. Thus, for this kind of ultrasonic waves, the material 

is effectively homogeneous, yet highly anisotropic. In fact, in a fiberglass-epoxy 

composite, acoustic-wave redirection is possible for stress waves up to about 5MHz 

frequency. 

 

Figure 2.13: Optical micrograph of fiberglass-epoxy composite, cut normal to the unidirectional 

fibers; the fiber diameter is less than 20μm and the fiber spacing less than 10μm, hence to waves 

with 1 or more millimeter wave lengths, the material appears effectively homogeneous, yet 

anisotropic. 
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Based on available data, we have assumed Poisson ratios of ν3 = 0.24 and ν = 0.34 

for the fiberglass-epoxy composite, and calculated the other elastic moduli from the 

measured wave velocities: two longitudinal velocities, one in the x3- and the other normal 

to this direction (V1 = 5310 and V2 = 3150m/s respectively); and one shear velocity in the 

x1,x3-plane with the x1-polarization (V3 = 1735m/s). Samples of different lengths were 

used for velocity measurements. These measurements verified that this composite 

behaves essentially as a transversely isotropic material with Young’s moduli, E3 = 

48.46GPa and E = 15.37GPa, and the shear modulus, μ3 = 5.47GPa. The basic equations 

used to obtain these constants, are, 

2 2 2

33 1 11 2 44 3, , ,C V C V C V                                                (2-11) 

where density ρ is measured to be 1820kg/m
3
, and C11, C33, and C44 are given in terms of 

the elastic moduli in Equation (6). 

2.4.1. Sample Fabrication  

Unidirectional composite plates of various thicknesses but a common glass 

volume fraction (49%) were fabricated and used to characterize the overall properties of 

the material.  To experimentally verify wave redirection through elastic anisotropy that is 

suggested by the numerical simulations, we designed and fabricated a locally 

unidirectional fiber-reinforced composite sample of the geometry used for simulations; 

see Section 2.3, Figure 2.8b. An aluminum mold of the desired geometry was first 

fabricated (Figure 2.14a). Then unidirectional glass/epoxy prepreg sheets of suitable 
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lengths were stacked on the mold in a pre-calculated sequence to ensure that the fiber 

content of the resulting composite sample would be essentially uniform throughout the 

sample;  thus the fiberglass areal density would be uniform on any cross section taken 

normal to the fibers (i.e., normal to the sample’s long axis).    Since the smallest thickness 

of the sample is half its greatest thickness, every other pregreg sheet was continuous 

while every other one consisted of two equal-length sheets, cut to a size to ensure the 

uniform glass-fiber density.  Table 2.1 gives the length of 127 prepreg sheets in the layup.  

We used prepreg layers consisting of thin sheets of S-2 glass fibers impregnated with 

uniformly distributed epoxy matrix and then partially cured.  They were then cut, placed 

in the mold, and processed as its final stage of curing. Before placement of the prepreg 

layers, the mold was covered with Teflon sheets. The mold with prepreg layers is then 

vacuum-bagged and pumped down to 10mmHg pressure. The layup was then placed in a 

125ton Wabash laminating hot press, and subjected to a pressure of 0.35MPa while 

curing. The composite panels were processed in accordance with the manufacturer’s 

recommendations. The curing was done using a 3°C/min heating rate up to a final 

temperature of 121°C.  Then the sample was kept at this temperature for 1.5 hours. The 

setup remained in the hot press under pressure and cooled to room temperature [22]. The 

cured composite was taken out of the mold and the surfaces were machined to achieve 

smooth faces. The panel was then cut into top and bottom pieces which were then glued 

together with AeroMarine 300/21 Cylcoaliphatic epoxy.  The fiber volume fraction of the 

composite material was measured to be %49, by ignition loss testing, in accordance with 

ASTM D 2584-02. 
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 Figure 2.14a shows the mold, and Figure 2.14b the resulting composite after it 

has been hot-pressed, cooled, trimmed, and its surfaces machined.  Then the composite 

was sectioned into three parts, two of these were glued together with epoxy to obtain 

sample B in Figure 2.14c, and the third part was cut and glued to obtain sample C of 

Figure 2.14d.    The final sample B consists of two end segments with uniform preferred 

x3-direction and middle sections with a gradually changing elastic anisotropy axis (the x3-

axis). This sample was used to investigate acoustic wave trajectories. In addition, sample 

C was used to measure the acoustic waves as they cross a plane normal to the fibers, half-

way through the length of the sample. In this study, the geometry of the sample is 

particularly selected to illustrate the phenomenon of guiding elastic waves (with an angle 

of incidence normal to the sample boundary) around a region within an anisotropic (yet 

homogeneous) solid. The geometry of the curved molds is calculated and the molds are 

designed to provide a smooth change in the orientation of the anisotropy directions of the 

resulting samples, in order to accomplish this. As demonstrated in Figure 2.15, the mold 

surfaces consist of circular arcs and straight-line segments. This design can be machined 

with high precession, and is suitable for the hand lay-up composite fabrication. In 

general, it is possible to vary the shape of the internal (cloaked) region to a great extent, 

as long as the composite volume can be filled with a stack of properly cut prepreg layers 

without creating voids. The current design is chosen for geometric simplicity of 

alternating cut and uncut prepreg stacks. External surfaces of the molds are flat for ease 

of use with the hot press processing technique. 
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Figure 2.14: Sample fabrication (a) aluminum mold, (b) resulting composite after being hot-

pressed, cooled, trimmed, and its surface machined, (c) sample B, (d) sample C. 
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Figure 2.15: Geometry of the molds surrounding the composite material 

 

Table 2.1: Length of prepreg sheets in layups in centimeters. 

# L # L # L # L # L # L # L 

1 12.10 21 12.12 41 12.00 61 11.82 81 11.68 101 11.57 121 11.48 

2 3.97 22 3.90 42 4.18 62 4.33 82 4.42 102 4.65 122 5.18 

3 12.09 23 12.11 43 11.98 63 11.81 83 11.67 103 11.56 123 11.48 

4 4.00 24 3.93 44 4.20 64 4.33 84 4.44 104 4.68 124 5.29 

5 12.08 25 12.10 45 11.97 65 11.79 85 11.66 105 11.55 125 11.48 

6 4.03 26 3.97 46 4.21 66 4.34 86 4.46 106 4.72 126 5.43 

7 12.06 27 12.09 47 11.95 67 11.78 87 11.64 107 11.54 127 11.47 

8 4.06 28 4.00 48 4.23 68 4.35 88 4.47 108 4.76 

  

9 12.05 29 12.08 49 11.93 69 11.76 89 11.63 109 11.53 

10 4.09 30 4.03 50 4.24 70 4.35 90 4.49 110 4.80 

11 12.04 31 12.06 51 11.91 71 11.75 91 11.62 111 11.52 

12 4.11 32 4.06 52 4.26 72 4.36 92 4.52 112 4.85 

13 12.03 33 12.05 53 11.90 73 11.74 93 11.61 113 11.51 

14 4.13 34 4.09 54 4.27 74 4.37 94 4.54 114 4.90 

15 12.01 35 12.04 55 11.88 75 11.72 95 11.60 115 11.50 

16 4.16 36 4.11 56 4.28 76 4.38 96 4.56 116 4.96 

17 12.00 37 12.03 57 11.86 77 11.71 97 11.59 117 11.50 

18 4.18 38 4.13 58 4.29 78 4.40 98 4.59 118 5.02 

19 11.98 39 12.01 59 11.84 79 11.70 99 11.58 119 11.49 

20 4.20 40 4.16 60 4.32 80 4.41 100 4.62 120 5.10 



42 

 

2.4.2. Experiment 

Olympus Panametrics-NDT ultrasonic transducers were used to send and receive 

the ultrasound-frequency stress waves through the samples. These transducers are based 

on piezoelectric or ferroelectric materials that can convert electrical signals to mechanical 

signals and vice versa. The transducers create a normal or tangential surface 

displacement, producing mostly longitudinal or polarized shear waves in the sample. The 

input signal is produced using a Matec TB1000 tone-burst generator card. The tone can 

be adjusted with 100Hz frequency resolution. The line is split and one line modulates the 

input transducer, while the other is reduced and sent to a digitizer for measurement. The 

output transducer signal is also sent to the digitizer. Olympus V103 transducers are 

optimized to modulate pulses around 1MHz frequency content. Low viscosity oil was 

applied to the interfaces of the transducers and the sample to facilitate the transmission of 

acoustic waves. The received signals were measured on a square reference-grid with 

0.25" spacing to establish the propagation path of the stress waves within the composite; 

see Figure 2.14c, d.  The receiving transducer was placed on the grid points and affixed 

to the sample. The incidence transducer was placed at a number of fixed points as 

described below. The amplitude of the received electrical signals was measured and 

compared to other measurements for the same placement of the incidence transducer. The 

electrical voltage pulse created in the transducer due to the mechanical oscillation at the 

interface was measured. Since the system is fully linear, the maximum voltage is 

proportional to the maximum particle velocity and maximum displacement. Comparison 

of the amplitude of the received signals demonstrates how the energy of the stress wave 
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is transmitted to the opposite surface of the sample. The graphs shown in what follows 

are therefore drawn with arbitrary units. 

2.4.2.1 Central excitation 

In the first set of experiments, the actuating transducer is placed at point M 

(Figure 2.14c, d) on sample B or C. In each test, the receiver is placed at one of the grid 

points shown in Figure 2.14c, d, and the received signal is recorded. For each received 

electrical signal, the maximum instantaneous amplitude is found and normalized with 

respect to the amplitude of the incident pulse. The results are summarized in Figure 2.16. 

Experimental results in Figure 2.16a demonstrate that the measured transmitted 

signal is maximum at the center of the opposite sample-face, in a small neighborhood of 

point P, although a straight line from this point to the actuating transducer passes through 

the central cavity of the sample. To better understand the wave propagation trajectory in 

the sample that produced the peak signal at P, we measured the transmitted signal on the 

opposite faces of sample C.  

As Figure 2.16b shows, the maximum acoustic energy is measured in sample C 

around points denoted by R and R', very close to the surface of the central cavity. 

Therefore, the stress wave travels essentially along a path defined by the axis of elastic 

anisotropy (maximum stiffness), in this transversely isotropic material. At the beginning 

of the path, the ultrasonic pulse travels along the fibers (which define the x3-direction) in 

the locally unidirectional composite material. As the fiber orientation (and hence the x3-

direction) gradually changes, the stress pulse is redirected to travel along the material’s 
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preferred x3-direction. The wave energy splits into two parts near the central cavity and 

travels along the surface of the cavity that coincides with the curved direction of highest 

stiffness (the x3-direction). Traveling acoustic waves on the two sides of the opening then 

join together and finally follow the constant direction of anisotropy at the end, giving rise 

to a single peak at point P of sample B in Figure 2.16a, and two peaks in Figure 2.16b (at 

points denoted by R and R') in sample C.  
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Figure 2.16: Central excitation: maximum instantaneous amplitude of the received electrical 

signal, normalized with respect to the amplitude of the incident pulse in (a) sample B, and (b) 

sample C. The plots are drawn by interpolating the experimental data measured on a square 

reference-grid with 6.3mm spacing. 

2.4.2.2 Off-center excitation 

In the second set of experiments, the actuating transducer was shifted 0.25 inch 

from the center of the surface away from the hollow part (point T); see Figure 2.17. The 

maximum amplitudes of the received waves are normalized similar to the previous tests. 
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The result can be seen in Figure 2.17. The peak response is measured at 0.25 inch from 

the middle, exactly at the same point as excitation happens but on the opposite face (Point 

H), demonstrating that the acoustic wave trajectory in the material falls in the direction of 

highest stiffness. 
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Figure 2.17: Off-center excitation: maximum instantaneous amplitude of the received electrical 

signal, normalized with respect to the amplitude of the incident pulse in (a) sample B, and (b) 

sample C. The plots are drawn by interpolating the experimental data measured on a square 

reference-grid with 6.3mm spacing. Point T is 6.3mm away from the center of the lower face M. 

Note that different scales are used for the left- and right-plot. 

The results of central and off-center excitation experiments shown here suggest 

that wherever on one face, normal to the axis of greatest stiffness of sample B, an 

acoustic wave is modulated, it will be mainly received at the same position on its 
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opposing face. In other words, the curved free surface of the central cavity only 

minimally scatters the acoustic stress waves.  The anisotropy of the composite redirects 

the incoming acoustic stress waves around the cavity and directs them towards the 

opposite face. Thus, controlling anisotropy of the material allows for management of 

acoustic stress-wave energy.  

2.4.3. Fabrication and experiment on baseline model 

Two baseline samples were fabricated by mimicking the geometry and anisotropy 

configuration of baseline model A proposed in section 2.3.2 (Figure 2.8a). Unidirectional 

composite sample is made by hot-pressing a prepreg layup in flat molds. The cured 

product is carved with a CNC mill to attain the same internal geometry of the cavity in 

model B as shown Figure 2.14a, and then cut into top and bottom pieces which were 

glued together to reproduce the same geometry as samples in Figure 2.14b, c. Theses 

samples make it possible to observe the geometrical effect of cavity on wave propagation 

in a unidirectional anisotropic material. The ultrasonic experiments are performed on 

these samples and the results are shown with solid triangles in Figure 2.10b, c. These data 

may be compared with experimental results on section 2.4.2.1 (solid squares in Figure 

2.10b, c). It is seen that in the baseline model, the inside cavity scatters the incident 

stress-waves and only small disturbance is measured on the end faces; while the 

experiments on the sample with designed anisotropy shows that the incident stress-wave 

is guided around the cavity, and relatively large axial strains are measured on the faces.  
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2.5. Summary 

In this work we have shown numerically and experimentally that managing the 

energy of stress-waves is possible by designing the preferred axis of a transversely 

isotropic material to vary smoothly with location. This controlled anisotropy is induced 

by a heterogeneous microstructure, however, when the wavelength of stress waves is long 

enough, the overall response is an effective homogeneous one. In transversely isotropic 

materials, when the wave vector deviates only slightly from the axis of maximum 

stiffness, almost all the energy of different modes of plane wave will travel along this 

axis. We have designed a specimen in which the anisotropy direction changes smoothly 

in order to split and redirect stress waves around a target object and then re-combine 

them on the opposite side of the object (referred to as “acoustic cloaking” in the 

literature). It is numerically shown and experimentally demonstrated that the acoustic 

wave energy packet would follow a similar gradual change as the axis of anisotropy. 

A fiber-reinforced composite is fabricated to produce a macroscopically 

homogeneous solid, with fiber orientation creating the axis of maximum stiffness in the 

locally transversely isotropic material. We can design the heterogeneous microstructure 

of the specimen by adjusting the orientation of the prepreg layups. The purpose of the 

design is to redirect all the stress-waves with a given wave-vector direction around a 

cavity inside the specimen and deliver it on the opposite side of the cavity.  It is shown 

that the cavity which may be filled with any desired material remains hidden to ultrasonic 

measurement tools and scatters stress waves minimally. The immediate application of 
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such technology is to protect sensitive objects or facilities against undesirable acoustic 

disturbances.  
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Chapter 3  

 

Stress Wave Management at the Interface of Anisotropic 

Materials 

 

The interface between two strongly anisotropic materials has a great influence on 

the stress wave scattering and can play a potential role in managing stress-waves in 

anisotropic and heterogeneous composites. Wave reflection and transmission at the 

interface of two elastic media has been thoroughly studied in the literature. In this study, 

we apply the theory of wave propagation to the interface of transversely isotropic 

materials, where the group velocity and wave-energy flow are usually close to the 

preferred direction of maximum stiffness. It is established that the anisotropy orientation 

of two interfacing materials can be exploited to control and manage stress wave energy 

by design; for example, the energy of an incident pressure wave can be guided to a 

desirable direction; the scattered longitudinal wave can be evanescent (non-propagating); 

and finally the energy content of stress-waves can be transferred from pressure into shear 

wave energy, which is prone to dissipation. It is important to note that wave scattering at 
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the interface of isotropic materials is dictated by the density and elastic moduli of 

interfacing materials while strongly anisotropic materials provide several design 

parameters to achieve desirable stress wave control, including the anisotropy ratio and the 

direction of maximum or minimum stiffness. 

3.1. Introduction 

In recent years, there have been efforts to effectively control stress-wave 

propagation in solids by tailoring elastic anisotropy [1, 2]. Amirkhizi et al. [1] established 

the possibility of guiding the direction of stress-wave propagation through imposing 

gradually changing anisotropy direction in an essentially otherwise homogeneous 

material. The purpose of this study is to incorporate scattering of stress waves at the 

interface of anisotropic materials for guiding the direction of energy travel in the media, 

and also transferring pressure wave energy into shear wave energy. 

Wave propagation in layered media is extensively studied in the literature. The 

early works by Ewing et al. [3] and Berkhovskikh [4] have significant contribution to this 

field. Layered media consisting of isotropic layers have been extensively studied by 

researchers. For example, the works by Thomson [5], Haskell [6], and Gilbert and 

Backus [7] develop transfer matrix method to solve the problem of wave propagation in 

arbitrary number of isotropic layers.  Yamada and Nemat-Nasser[8] studied periodic 

layered orthotropic media, where the wave-vector direction makes an arbitrary angle with 

respect to the layers, by solving a twelfth order characteristic determinant. In their work, 

one axis of anisotropic material is restricted to be normal to the plane of the layers. This 
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may be used to study wave propagation in earth’s crust layers or in a conventional 

laminated composite structure where axes of anisotropy for each ply are rotated around 

the vector normal to the layers. Nayfeh [9, 10] studied the general multilayered 

anisotropic media, which provides the theoretical formulation necessary for the present 

work. 

In the present paper, we will study the case where the preferred axes of the two 

transversely isotropic media and the normal to the interface are coplanar. Each axis may 

make an arbitrary specified angle with the normal to the interface. A few representative 

examples are then shown to demonstrate the potential of stress-wave energy management 

through scattering of impinging waves at the interface of properly designed anisotropic 

layers. It is established that the direction of energy travel in the media can be controlled 

by simply designing the orientation of anisotropy of interfacing media. Furthermore, as 

the scattered waves have different modes (pressure or shear) from that of incident wave, 

partial transfer of the energy from pressure mode into shear mode may be optimized. This 

can be integrated with a viscoelastic material which dissipates the energy of shear waves; 

thus enabling us to dissipate a significant portion of an incident stress-wave energy as a 

future application of the present study. 

3.2. Theory and formulation 

We consider two semi-infinite elastic media bonded together with a rigid 

interface, where the displacement and the traction are continuous. As shown in Figure 

3.1, each media is transversely isotropic, where the axes of isotropy makes a specified 



55 

 

angle (  or  ) with the vector normal to the interface plane (  ) (the three axes are 

assumed coplanar). Incident plane wave propagating in originating medium (A) travels 

toward the interface with continuing medium (B), with the wave-vector making an angle 

  with   . In order to satisfy the displacement and stress continuity at the interface, there 

will be plane waves reflected to the medium A and plane waves transmitted to the 

medium B. In this paper we present the solutions for amplitude and direction of 

propagation of these scattered waves, based on the established work by Nayfeh [10].  

 

Figure 3.1: An incident plane wave propagating in originating medium A travels toward the 

interface of two transversely isotropic materials with specified axis of isotropies. The scattering at 

the interface results in reflected waves in medium A and transmitted waves in continuing medium 

B. 

Nayfeh has formulated the stress wave propagation in general anisotropic 

materials and applied it to solve for the amplitude and direction of propagation of 

scattered waves at the interface of semi-infinite anisotropic media. Here, we consider 

transversely isotropic media (only 5 independent elastic moduli), and show how to 

effectively manage stress waves by designing the orientation of anisotropy of. The flux of 
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the energy transmitted or reflected away from the interface is then calculated for 

longitudinal and shear waves. A computational platform using MATLAB is constructed 

to numerically solve the wave scattering at the interface based on the elastic moduli of 

interfacing medium and their orientation of anisotropies. 

3.2.1. Wave propagation in a transversely isotropic material 

The constitutive equation for a transversely isotropic material with axis of 

anisotropy along    is given by equation (3-1) in terms of 5 independent elastic moduli. 
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(3-1) 

 For a transversely isotropic material whose preferred axis (normal to the isotropic 

plane) makes an angle   with    axis as shown in Figure 3.1, the constitutive relationship 

can be written by rotating the material coordinate system around   : 
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(3-2) 

where the specific form of each entry may be found easily [11, 12]. Now we consider a 

plane wave propagating in the   -   plane where the motion is independent of   : 
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  (      -  )              . The components of the wave-vector in the   and    

directions are   and    respectively; and c is the common phase velocity along the 

interface of the incident and associated scattered waves. The frequency and wavelength 

can be written as      and   
  

 √    
 respectively. The variables   and c, together, 

determine the direction of propagation and speed of each mode. This displacement 

formulation simplifies the analysis of reflection and transmission at the interface of two 

media by satisfying the pointwise compatibility at the interface plane      regardless of 

the specific wave vector (  . Combining the equation of motion:  
    

   
  

    

   
 , constitutive 

equation, strain-displacement relation, and the displacement of a plane wave, we arrive at 

a simple matrix equation:                            ,where K is a 3х3 matrix whose 

elements depend only on the elastic moduli and α, and we have used the summation 

convention over repeated indices. The polarizations of the propagating waves in such 

medium, Ui, are the non-trivial solutions of this equation, which exist only when the 

determinant of the matrix K is zero. The matrix has a special simple form: 

  [
       

     
       

] 
(3-3) 

Solving       gives two roots    and   , which correspond to pure anti-plane 

shear mode. A positive    defines a plane wave with phase velocity in the     direction 

and a negative    defines a wave moving in the -   direction. In a similar manner, 
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solving (       -   
 )   gives four other roots    for   1-4. Eigenvectors 

(             ) for quasi-longitudinal and quasi-shear modes (in addition to the much 

simpler anti-plane shear,          ) can then be computed from this equation. We 

can rewrite the displacement and stress as the following superposition of the plane wave 

modes: 

           ∑(             )   
  (          )

 

   

 

                ∑  (              )   
             

 

   

 

(3-4) 

Figure 3.2 demonstrates the solution to the eigenvalue problem for a given 

transversely isotropic material whose axis of anisotropy makes γ=  ˚ angle clockwise 

with vertical axis   . The horizontal and vertical axes in Figure 3.2 show the inverse of 

phase velocity (i.e. slowness) along    and    axis respectively [13]. It can be seen that 

for a given c ( 
 

  
), the ratios    

  

  
  are calculated. There are three modes of plane 

wave: quasi-longitudinal (   and   ), quasi-shear (   and   ) and pure shear (   and   ). 

It is important to note that if c becomes smaller than a critical value, there will not be a 

real solution for quasi-longitudinal mode. In other words    and    will be imaginary and 

the quasi-longitudinal mode will be non-propagating or evanescent, while there are still 

propagating solutions (real  ) for quasi-shear and pure shear modes. 
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Figure 3.2: Slowness curves for a transversely isotropic material: E=15.37GPa, Ea=48.46GPa, 

ν=0.34, νa=0.24, µa=5.47GPa with an axis of isotropy making 30˚ angle with vertical axis x3. 

3.2.2. Scattering at the interface 

Now consider an incident plane wave (I) travelling in an originating medium 

toward the interface with a continuing medium (Figure 3.1). Reflected (R) and 

transmitted plane waves (T) are produced in order to satisfy the boundary conditions at 

the interface:  

Displacement continuity at the interface:          
      

      
               for i=1, 2, 3 

(3-5) 

Traction continuity at the interface:                 
       

       
            for i=1, 2, 3 

(3-6) 
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In order for scattered waves to satisfy boundary conditions, they should have the 

same phase velocity along the interface as the incident wave (Generalized Snell’s law). 

The wave equations as defined in section 3.2.1 automatically satisfy this condition at 

     and both the projected wave number     and phase velocity (c) along the boundary 

are the same for all scattered waves and the incident wave. This can be used to find the 

direction of propagation of each mode (    as graphically shown in Figure 3.2. Since the 

slowness curves provide the relationship between the wave number and direction of 

propagation of a given mode, we draw a vertical dashed line in Figure 3.2 representing 

constant wave number along the interface, whose intersection with the curves for each 

corresponding mode gives   . 

Now we write the displacement equations for incident, reflected, and transmitted 

waves: 

Incident wave (I):                 
  ∑     

     
     

    
           (  -  )

          
(3-7) 

Reflected wave ( ):              
  ∑     

     
     

    
           (  -  )

          
(3-8) 

Transmitted wave ( ):           
  ∑   ̅  

 
  ̅  

 
  ̅  

 
  ̅ 

 
    ̅      (  -  )

          
(3-9) 

Note that the over bars denote quantities in the continuing medium B. We have 

incorporated odd indices for    to refer to the incident wave and transmitted wave, which 

travel toward -  , and even indices to refer to the reflected waves, which travels along 

    coordinates. Rewriting 3 displacement and 3 stress continuity conditions in matrix 

form for the general case of incident wave, we have: 



61 

 

 

[
 
 
 
 
 
 
    

    
    

 

   
    

    
 

   
    

    
 

  ̅  
 

  ̅  
 

  ̅  
 

  ̅  
 

  ̅  
 

  ̅  
 

  ̅  
 

  ̅  
 

  ̅  
 

   
    

    
 

   
    

    
 

   
    

    
 

  ̅  
 

  ̅  
 

  ̅  
 

  ̅  
 

  ̅  
 

  ̅  
 

  ̅  
 

  ̅  
 

  ̅  
 
]
 
 
 
 
 
 
 

(

 
 
 
 
 

  
 

  
 

  
 

 ̅ 
 

 ̅ 
 

 ̅ 
 
)

 
 
 
 
 

 

[
 
 
 
 
 
     

     
     

 

    
     

     
 

    
     

     
 

    
     

     
 

    
     

     
 

    
     

     
 ]
 
 
 
 
 
 

(

  
 

  
 

  
 

) 

 

(3-10) 

 

The specific expressions for D (stress) components are long and may be found in [10]. 

We may consider special cases such as incident quasi-longitudinal wave:   
    

   ; 

incident quasi-shear wave:   
    

   ; or incident pure shear wave:   
    

     

Solving the system of linear equation may result in propagating or evanescent 

(non-propagating) scattered waves. For evanescent modes,         
  (α       -  ), the 

parameter α      becomes purely imaginary, whereas in the propagating modes         

is real. The amplitudes          and         are both complex in general. Here f, g,  , 

 , m and   are real numbers. 

The displacement field in a non-propagating mode       -       (  -  )    implies 

a surface wave which propagates along the interface (  ) and its amplitude decays 

exponentially as it gets deeper in the medium (in either positive or negative x3 

direction).The displacement in the propagating scattered modes,        (      -  )    

demonstrates a finite shift in the phase angle. 
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3.2.3. Energy flux at the interface of anisotropic layers 

In this section, we calculate the energy transferred or reflected away from the 

boundary of two anisotropic materials corresponding to each plane wave mode discussed 

above. Consider traction vector  ⃗ at the interface of layers (    ) and the vector  ⃗⃗ 

normal to the interface (Figure 3.3). 

 

Figure 3.3: Traction vector acting at the interface of two anisotropic layers 

 

The displacement, velocity and stress components may be written for a given 

mode q in the form of equation (3-4). The components of traction vector may then be 

derived:         ; and the energy flux per unit time is calculated for a given period T as 

                          ∫ ∫   ( ⃗)    ⃗⃗    

  

   
 

 

 
(3-11) 

Therefore, the average energy flux per unit time (for incident or reflected wave) would 

be: 

x1

x3



63 

 

             
  

 
    |  |

 
         ̅̅ ̅̅        ̅̅ ̅̅        ̅̅ ̅̅     

(3-12) 

However, it is important to note that for evanescent mode (imaginary   ), there will not 

be any energy transfer to the semi-infinite layer, and the energy flux for a non-

propagating mode diminishes. 

3.3. Numerical computation 

A computational platform using MATLAB is developed to solve the system of 

linear equations (3-10) in order to find the amplitude and direction of wave energy flow 

of the transmitted and reflected waves in longitudinal and shear modes. The input 

parameters include material properties for the two media (density, and elastic constants), 

orientation of the preferred axis (Figure 3.1) corresponding to the two media (angles   

and  ), and the incident wave vector direction (angle  ). The flux of the energy of 

transmitted and reflected stress-waves away from the interface is also calculated. The 

program is exploited to establish the significant role of interface discontinuity and elastic 

anisotropy in stress-wave management; i.e. redirecting stress-waves, transferring the 

energy of pressure wave into shear components, and trapping the energy of scattered 

longitudinal waves. 

3.3.1. Redirecting the energy of stress-waves  

In this section, we demonstrate redirection of an incident quasi-longitudinal plane 

wave at the interface of transversely isotropic materials, which have the same density and 
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elastic moduli, but oriented differently with respect to each other. The concept is 

theoretically established and confirmed through finite element analysis using LS-DYNA. 

Consider wave scattering at the interface of two transversely isotropic materials 

(Figure 3.1) with        and variable  , where the incident quasi-longitudinal plane 

wave travels normal to the interface. The slowness curves for a glass fiber reinforced 

composite in Figure 3.4 show the inverse of phase velocity in a given direction of wave 

propagation with a wave vector in   -   plane. Group velocity is defined as    
  

  
 and 

indicates the direction of energy propagation, which is normal to the slowness curves [12, 

13]. The dashed lines show the slowness curves for originating medium A, while the 

solid lines show the slowness curves for continuing medium B. Figure 3.5 shows the 

variation of the deflection angle of the energy of transmitted quasi-longitudinal waves ( ) 

as a function of anisotropy direction of the continuing medium ( ). It is observed that the 

energy of stress-waves can be easily redirected and managed at the interface of 

anisotropic materials, since for most angles, the flux vector is essentially parallel to the 

preferred axis (of maximum stiffness) in the second medium. We have exploited this 

phenomenon in previous work for continuous redirection of stress waves [1]. 

Numerical simulation has been performed using LS-DYNA to investigate and 

confirm the wave propagation and scattering at the interface of anisotropic materials. As 

an example, a snapshot of pressure contours at a selected time after the start of simulation 

is shown in Figure 3.5b. Finite element calculations showed that the deflection of group 
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velocity         for the case       which is in very close agreement with the values 

found by the slowness curves method discussed above (Figure 3.5a). 

 

Figure 3.4: Computing the deflection of group velocity direction corresponding to a quasi-

longitudinal plane wave (δ) at the interface of two transversely isotropic media with the same 

elastic moduli whose axes of highest stiffness make an angle β, and one of the material axes in 

one medium is normal to the interface. 
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Figure 3.5: (a) Managing the direction of stress-waves energy propagation (δ) by changing 

anisotropy direction of the continuing medium (β). The plot is derived theoretically using the 

slowness curves shown in Figure 3.4; (b) Numerical computation using LS-DYNA confirms the 

theoretical result. As an example, a snapshot of pressure contours for β=30  is shown. 

 

3.3.2. Transferring the energy of pressure waves into shear waves 

 The energy content of stress-waves can be transferred from pressure into shear at 

the interface of anisotropic materials. This transfer is desired since shear wave energy can 

be dissipated using viscoelastic materials. 

 Figure 3.6 shows an example of wave scattering at the interface of identical 

transversely isotropic materials with the specified orientation of local material axes. The 

formulation discussed in section 3.2 is implemented in a MATLAB program in order to 

find the flux of the energy of transmitted and reflected waves at the interface of identical 

transversely isotropic materials, for which the elastic moduli of a glass fiber reinforced 
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composite were used. It is noted that a smart choice of anisotropy orientation results in 

transferring almost half of the pressure wave energy into shear wave energy. While the 

transfer of the energy in isotropic solids is dictated by the density and elastic modulus of 

the interfacing materials, directional materials provide a very versatile design parameter 

in order to control stress-wave scattering. 

 

Figure 3.6: An incident pressure wave is propagating with an angle of θ = 15° with respect to the 

normal to the interface of two transversely isotropic materials with highest axis of anisotropy of γ 

= 30° in the incident medium and variable β in the continuing one. The energy fluxes of scattered 

wave (transmitted and reflected) in pressure and shear modes are plotted as functions of β of the 

second semi-infinite medium. It is observed that a significant portion of energy of impinging 

pressure wave is transferred into shear wave energy (up to 50%). The elastic moduli correspond 

to a glass fiber reinforced composite sample. 
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3.3.3. Evanescent mode of pressure wave and energy transfer into 

shear mode 

 It is well established in the literature [14] that dilatational waves may become 

evanescent (non-propagating) at the free boundary of isotropic materials or at the 

interface of isotropic materials, if the angle of incidence of impinging plane waves 

become greater than a critical angle. The critical angle is dictated by the dilatational and 

distortional wave speeds in the two interfacing isotropic materials. In this section, we 

exploit the expansion of this phenomenon to anisotropic media in order to control the 

stress-waves by trapping the energy of impinging pressure waves and transferring energy 

of impinging pressure waves into the reflected and refracted shear wave energy. 
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Figure 3.7: The energy flux of reflected and transmitted wave for longitudinal and shear modes 

are plotted for two identical transversely isotropic materials as in Figure 3.1 with θ=60°, β =90°, 

and variable γ. The effect of anisotropy of originating medium A is studied. It is observed that the 

transmitted longitudinal wave becomes evanescent and carries no energy where 0<γ<25° or 

94°<γ<180°.  Remarkably, at γ=26° the transmitted longitudinal mode is evanescent and the 

reflected longitudinal mode carries minimal amount of energy, while the scattered shear modes 

carry almost all of the energy. Therefore, longitudinal waves are trapped in the interface and the 

incident longitudinal wave energy is transferred into shear wave energy. 

Figure 3.7 illustrates an example of stress-wave management by taking advantage 

of the total reflection of the longitudinal waves. The design of anisotropy orientation of 

interfacing materials is optimized to also minimize the reflected longitudinal wave; thus, 

transferring the energy of incident wave into scattered shear waves. This is of special 

interest, since the shear waves are prone to dissipation by viscoelasticity mechanism. 

We have studied the sensitivity of the design suggested above, with respect to the 

incidence angle θ of the longitudinal plane wave. Figure 3.8 shows that the incidence 

angle is a governing factor while managing the energy of stress-waves. Given a fixed 
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angle of incidence, we are able to design the anisotropy of interfacing layers in order to 

transfer almost all of the energy of longitudinal waves into shear waves, yet, the range of 

variation of angle of incidence is rather limited for the provided design. 

 

Figure 3.8: The energy flux of scattered waves for two identical transversely isotropic materials 

as in Figure 3.1 with γ=26°, β =90°, and variable angle of incidence θ. The sensitivity of the 

highlighted design in Figure 3.7 is analyzed with respect to the incidence angle. It is observed that 

for 60°<θ<70° or 130°<θ<140°, the dominant energy carrying modes are scattered shear waves. 

The transmitted longitudinal mode is significant for the wide range of -40°<θ<60°; and for 

70°<θ<130°, most of the impinging waves gets reflected at the interface. This analysis highlights 

the significance of incidence angle for stress-wave management at the interface of anisotropic 

media. 
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3.4. Wave scattering at Fluid-Solid interface 

The wave reflection and transmission for plane waves, originated from the fluid 

onto the fluid-solid interface are studied. The fluids only support pressure wave 

propagation, while the general anisotropic solid supports propagation of quasi-

longitudinal, quasi-shear and pure shear waves. The formulation is based on Nayfeh [10] 

notation and programmed in a MATLAB code. One of the applications of this study is to 

design a material that minimizes the reflection of an incident acoustic wave by providing 

an impedance matched properties with water. We would like to study the effect of 

incidence angle on the reflection of pressure wave off of the fluid-solid interface. 

The displacement and stress in the fluid may be written as follows for the incident 

wave (and similarly for reflected wave) in the fluid: 

           
                

             
(3-13) 

The continuity of normal displacement and stresses impose 4 equations for boundary 

conditions: 

Normal displacement continuity at the interface:    
      

      
         

Traction continuity at the interface:                
       

       
            for i=1, 2, 3 

(3-14) 

The linear system could then be solved to compute for the amplitude of the 

reflected pressure wave and 3 modes of transmitted wave: 
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Figure 3.9: An incident pressure wave propagates with an angle of incidence θ with respect to the interface 

of a transversely isotropic material with a fluid (water). The energy fluxes of scattered wave (transmitted 

and reflected) in pressure and shear modes are plotted as functions of incidence angle (θ). It is observed 

that the energy of reflected longitudinal wave is minimized for a wide range of incidence angle (0°<θ<45°); 

however, for higher angles (45°<θ<90°), the transmitted quasi-longitudinal become evanescent, and gives 

rise to the energy of reflected longitudinal wave. The elastic moduli of the anisotropic solid is proportional 

to those of a glass fiber reinforced composite, and the density is adjusted so that the impedance of fluid and 

solid is matched at θ=0°. 

Consider the fluid as water, where the longitudinal wave speed is 

   √
  

  
         , interfacing with a transversely isotropic material which is 

impedance matched with water, when the incident wave travels normal to the interface 

(θ=0°); i.e.            . Figure 3.9 shows the energy of reflected and transmitted pressure 

and shear waves as functions of the angle of incidence θ. It is observed that the energy of 

reflected longitudinal wave is minimized for a wide range of incidence angle (0°<θ<45°); 
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however, for higher angles (45°<θ<90°), the transmitted quasi-longitudinal become 

evanescent, and gives rise to the energy of reflected longitudinal wave. 

We also studied the wave scattering at the interface of an isotropic material with a 

fluid in order to seek a configuration that minimizes the reflected longitudinal wave for a 

wide range of incidence angle. The same formulation and computational platform stated 

for anisotropic materials is used and simplified for isotropic materials. Figure 3.10 shows 

an example that has successfully minimized the reflected longitudinal wave for a broad 

band of incidence angle.  

 

Figure 3.10: An incident pressure wave propagates with an angle of incidence θ with respect to the 

interface of water and an isotropic material (E=1 GPa, ν=0.3, ρ=1630 kg/m
3
). The energy fluxes of 

scattered wave (transmitted and reflected) in pressure and shear modes are plotted as functions of incidence 

angle (θ). It is observed that the energy of reflected longitudinal wave is minimized for a wide range of 

incidence angle (0°<θ<50°); however, for higher angles (45°<θ<90°), the energy of reflected longitudinal 

wave becomes significant.  
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3.5. Summary 

The scattering of an incident plane wave at the interface of two transversely 

isotropic materials is studied. Plane wave propagation in transversely isotropic media is 

decomposed to three supported modes: quasi-longitudinal, quasi-shear, and pure shear. 

The direction of propagation, amplitudes, phase velocity, group velocity, and energy flux 

of reflected and transmitted waves are computed by formulating the theoretical approach 

in a MATLAB based computational platform. It is shown that the direction of 

propagation of the energy in solids can be easily controlled by designing the orientation 

of anisotropy of interfacing materials, which may be used to redirect and guide the 

energy of stress-waves either away or toward a region within the material, depending on 

whether one wishes to avoid or harvest the corresponding stress waves.  

The interface of anisotropic materials can be tailored in order to efficiently 

transfer the energy of pressure waves into shear wave energy, which is susceptible to 

dissipation. It is also established that a bi-layered structure can be designed to trap the 

pressure component of the reflected and refracted stress-waves and transfer it into shear 

components. We show that, while the transmitted and reflected shear waves are still 

present, the transmitted quasi-longitudinal wave can be rendered to be evanescent (non-

propagating) and travel as a surface wave along the interface (not carrying any energy). 

The optimal choice of anisotropic properties of the interfacing layers can be selected in 

order to minimize reflected quasi-longitudinal wave energy. This traps the energy of the 

longitudinal component of the transmitted and reflected plane wave in the two-layer 
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anisotropic material and transfer the energy of impinging longitudinal wave into shear 

wave energy. 
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Chapter 4  

 

Controlling Stress Waves through multilayered anisotropic 

structure 

 

Multilayered structures consisting of strongly anisotropic layers can be exploited 

to efficiently manage the stress wave propagation in solids by providing multiple 

interfaces that play key roles in transmission and reflection of pressure and shear waves. 

Anisotropic layers introduce various design parameters which can be optimized to control 

the impinging stress waves as desired. The configuration of layers may include 

inclination to add an extra design parameter of great potential, since it provides a 

deviation angle between the wave vector and the vector normal to the interface. We have 

developed a computational platform to efficiently evaluate the transmitted and reflected 

stress-waves in pressure and shear modes based on the anisotropy orientation of layers 

and the incident wave vector direction. We demonstrate that a multilayered structure can 

be tailored to effectively transform the energy of incident pressure wave into shear wave 
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energy. Furthermore, by integrating a layer of shear-dissipative material, the resulting 

shear-wave energy can be dissipated within the viscoelastic layer. 

Keywords: Multilayered structure, anisotropy, stress wave, reflection, transmission. 

 

4.1. Introduction 

Wave propagation has been thoroughly studied in elastic media by Achenbach 

[1], Auld [2] and Musgrave [3] and also in layered structure by Ewing et al [4], 

Brekhovskikh [5], and Nayfeh [6-7] who formulated the wave scattering at the interface 

of general anisotropic materials. Recently, there have been efforts to control and redirect 

the stress-wave energy by smoothly changing the elastic anisotropy of the solid [8-9].  

In the present study, we utilize wave propagation in layered media consisting of 

anisotropic elastic materials in order to manage the transmission and reflection of stress-

wave energy in pressure and shear modes. The direction of propagation and the mode of 

stress-wave energy can be controlled at the interface of anisotropic layers. Particularly, it 

is extremely beneficial to transfer the energy of pressure wave into shear waves, since 

viscoelastic materials may be employed with the purpose of dissipating the shear waves 

as desired. 
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4.2. Numerical computation 

We consider a representative three-layered anisotropic structure in order to 

illustrate the immense control of stress-wave scattering in pressure and shear modes. 

First, we present a 3-layered structure consisting of elastic anisotropic layers with no 

dissipation; and discuss how the energy of impinging pressure-waves can be redistributed 

among scattered quasi-longitudinal and quasi-shear modes. Next, we introduce a shear-

dissipative layer into the multilayered structure and discuss its effectiveness in dissipating 

the energy of an initially pressure wave. 

 

4.2.1. Elastic layered structure 

In this subsection, we present a three-layered elastic structure consisting of 

identical anisotropic materials, which are strongly directional. (Figure 4.1) The 

orientation of material axes for layers A and C are fixed, while the orientation of the axis 

of highest stiffness in the middle layer B is selected as a design variable (angle α). We 

aim to investigate the effect of anisotropy of one layer on the reflection and transmission 

of an incident longitudinal wave impinging on the surface of the multilayered structure 

(side PQ, centered at point R). It is important to note that an inclined interface between 

the layers is chosen to provide the capacity for scattering of a longitudinal wave in both 

longitudinal and shear modes. This is possible due to the angle β between the wave vector 
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and the vector normal to the interface. However it is chosen to be relatively small to 

reduce the thickness of the multilayered structure. (β=15°) 

The strong directionality of constituent layers plays a key role in managing wave 

propagation in the proposed layered structure. Among industrial composites, 

unidirectional Carbon fiber reinforced plastic (CFRP) offers the strongest directionality 

of elastic stiffness. Therefore, the elastic moduli used in the numerical computation 

mimics samples of unidirectional CFRP, fabricated to verify the predictions 

experimentally. The 5 independent elastic moduli of the transversely isotropic material 

are as follows: E3=72.4GPa, E1= E2=5.8GPa, G13=6.0GPa, G12=2.1GPa, and ν12=0.3875. 

The material preparation and experiments are further discussed in section 4.4.  

 

 

Figure 4.1: (a) Elastic 3-layered structure composed of transversely isotropic materials with 

preferred axis E3, (b) integrated multilayered anisotropic structure with a layer of viscoelastic 

material to dissipate shear wave energy. While the axis of highest stiffness (E3) is fixed for layer 

A and C, the orientation of anisotropy of middle layer B is defined by variable angle α. We show 

that by changing α, we can control the wave-scattering in the multilayered structure as desired. 

We have chosen wedge angle β=15° to introduce a small deviation between the wave-vector and 

the vector normal to the layers’ interfaces. Dimensions are as follows MN=100mm; NP=46.6mm, 

and the depth of the model is 12mm out of the plane shown. 
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A series of numerical simulation has been carried out using LS-DYNA to find the 

effect of anisotropy orientation of the middle layer (α) on the quasi-longitudinal and 

quasi-shear waves that are transmitted to the opposite face (MN) or reflected back to the 

originating face (PQ). For any α ∈{0, ±15, ±30, ±45, ±60, ±75, 90}, an input file is 

generated reflecting the elastic moduli of the middle layer B, and the solution using finite 

element analysis is derived, and the results are post-processed individually using LS-

PrePost. A MATLAB code was developed to automate the complete process and 

compare the results. 

The boundary condition on the surfaces of the block in Figure 4.1 is stress-free, 

except for the excited area around R, where a single sinusoidal pulse of load is applied 

with 1μsec period. The amplitude of the pulse is 10N. The interfaces between the layers 

are considered rigid, which results in continuity of displacement and stress. 

Each numerical simulation for a given α provides the data for the displacement in 

X and Y directions for the elements located on the top and bottom of the block in Figure 

4.1. As an example, for α=0, the histogram of the displacement in Y-direction for an 

element located in the middle of the top surface MN is shown in Figure 4.2. Likewise, the 

histogram of all other elements located on the surface MN is considered and the signal 

peak is recorded. We now plot these peaks versus the location of each element in the top 

surface in Figure 4.3.  
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Figure 4.2: Histogram of the signal received in an element located in the middle of top surface 

MN. 

 

Figure 4.3: The histogram of the signals received at any elements located on the top surface MN 

is considered and then, the signal peaks are computed. The peaks are plotted versus the element 

number, where element 1 corresponds to the leftmost element at M, and element 97 corresponds 

to the rightmost element at N. 
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The final outcome of the numerical simulation results for α =0 is the maximum 

peak observed in Figure 4.3, since we are interested in the highest peak of the received 

signal transmitted through the block (shown in Figure 4.1a). We use this data as an 

indicator of the transmission of an incident pulse for a given anisotropy angle α. A 

MATLAB program has been developed to process the simulation results to find the 

indicators of transmitted and reflected signal for all 12 choice of α ∈{0, ±15, ±30, ±45, 

±60, ±75, 90}. The effect of the anisotropy of the middle layer B on the transmission of 

the incident wave is shown in Figure 4.4. 

 

Figure 4.4: Transmission of longitudinal wave through the block of elastic multilayered structure 

shown in Figure 4.1a as received in MN. 
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Figure 4.5: Longitudinal wave reflected back from the block of elastic multilayered structure 

shown in Figure 4.1a as received in PQ. 

In order to examine the propagation of an incident pressure wave in the 

multilayered structure, we have studied the stress-waves reflected back to the originating 

side PQ of Figure 4.1 in addition to the transmitted wave through the layers at the 

opposite side MN. The protocol to compute the indicators of reflection wave for any 

configuration of middle layer’s anisotropy is similar to that of transmitted wave. We 

consider the peaks of signals received at any element located on PQ and find their 

maximum. The indicators of reflected waves are plotted for any given angle of anisotropy 

α in Figure 4.5.  

The objective of designing a multilayered anisotropic structure with inclined 

interfaces, as discussed in the introduction section, is to redistribute the energy of 
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displacement in the Y-direction (normal displacement) as an indicator of longitudinal 

waves, we consider the transverse displacement in the X-direction as an indicator of shear 

waves. Similar to the computation of longitudinal waves, the maximum peaks of 

transverse displacement are plotted for transmitted waves in Figure 4.6 and reflected 

waves in Figure 4.7. 

 

Figure 4.6: Transmission of shear wave through the block of elastic multilayered structure shown 

in Figure 4.1a as received in MN. 
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Figure 4.7: Shear wave reflected back from the block of elastic multilayered structure shown in 

Figure 4.1a as received in PQ. 

4.2.2. Dissipative layered structure 

In this subsection, we introduce a shear dissipative material into the multilayered 

structure discussed in section 4.2.1, in order to study the attenuation of scattered 

longitudinal and shear waves. The purpose is to transfer a portion of the energy of 

incident pressure wave into scattered shear waves, which will then be attenuated in a 

shear dissipative layer. The viscoelastic properties of this layer are as following: density: 

ρ=1.1 g/cm
3
, bulk modulus: K=5GPa, short time shear modulus: G0=0.2GPa, long time 

(infinite) shear modulus: G∞=0.4GPa, and decay constant β=0.4μsec. The dashed line in 

Figure 4.8 shows the transmitted longitudinal wave; Figure 4.9 shows the reflected 

longitudinal wave; Figure 4.10 shows the transmitted shear wave, and finally, Figure 4.11 
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shows the reflected shear wave for the multilayered structure integrated with a dissipative 

layer. 

 

Figure 4.8: Transmission of longitudinal wave through the block of dissipative multilayered 

structure showed in Figure 4.1b as received in MN. 
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Figure 4.9: Longitudinal wave reflected back from the block of dissipative multilayered structure 

shown in Figure 4.1b as received in PQ. 

 

Figure 4.10: Transmission of shear wave through the block of dissipative multilayered structure 

showed in Figure 4.1b as received in MN. 
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Figure 4.11: Shear wave reflected back from the block of dissipative multilayered structure 

shown in Figure 4.1b as received in PQ. 
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Figure 4.12: Pieces of customized Carbon Fiber reinforced composites are stacked and bonded 

together using Scotch-Weld epoxy under 2 MPa pressure at 66°C.  

Unidirectional CFRP plates were fabricated by DragonPlate, a manufacturing firm 

specializing in design and custom fabrication of Carbon fiber components. The thickness 

of CFRP sheets is an important design parameter, since we intend to perform in-plane 

ultrasonic experiments using piezoelectric transducers with 12mm diameter. Due to the 

manufacturing limitations on customized composites, the synthesized CFRP plates were 

3mm thick.  Therefore, we stacked 4 manufactured plates of unidirectional composites 

and used Scotch-Weld gray epoxy adhesive in order to achieve a final thickness of 12mm 

(Figure 4.12). The epoxy was applied evenly to the surfaces in contact, which were then 

put under 2MPa pressure. The epoxy was fully cured after 2 hours at 66°C, based on the 

manufacturer’s recommendation. 
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We aim to produce samples that possess specific orientations of anisotropy in 

order to investigate the effect of elastic anisotropy of the constituents of a multilayered 

structure. As shown in Figure 4.13, a rectangular cuboid can be cut out of a unidirectional 

CFRP at a specific angle ψ in order to achieve the desired orientation of anisotropy. 

Furthermore, wedges with desirable angles are cut out of the same plate, which will 

provide the capability of sending an incident plane-wave at a given angle of incidence. 

The cutting process involves water jetting the CFRP plate and then machining the parts to 

the final dimensions with smooth surfaces, which is handled in collaboration with the 

Campus Research Machine Shop at UCSD. Figure 4.14 shows a picture of the machined 

parts resulting in the samples with α=±45°. 

 

Figure 4.13: Water jetting rectangular cuboids and triangular wedges out of a unidirectional 

CFRP plate in order to develop customized orientation of anisotropy depending on the angle ψ. 
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Figure 4.14: CFRP samples with the desired orientation of anisotropy are cut using water-jet and 

machined to attain the final size and geometry. This figure corresponds to α=±45°. 

4.4. Experiments 

In subsection 4.4.1, we explain the experimental setup for the measurements of 

ultrasonic wave propagation in the anisotropic multilayered structures. We present the 

elastic moduli in subsection 4.4.2 by measuring time of travel of longitudinal and shear 

waves. In subsection 4.4.3 we show that the incident pulse duration is short enough 

compared to the sample size to make meaningful measurements. Finally in subsection 

4.4.4 we present the experimental results of transmitted and reflected pressure and shear 

waves. 
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4.4.1. Experimental setup 

The experimental setup, as shown in Figure 4.15 is comprised of piezoelectric 

transducers, signal generators, an RF amplifier, and an oscilloscope. A customized 

electrical signal is generated with most of its energy concentrated at 1MHz frequency, 

which is then amplified to excite the piezoelectric transducer. The contact transducer 

induces mechanical perturbation to the samples. In order to facilitate such transfer, proper 

ultrasonic couplants are applied at the interface of samples with pressure or shear 

transducers. An ultrasonic transceiver can then be placed on designated locations on the 

outer surfaces of the multilayered structure in order to detect the transmitted or reflected 

signal in pressure or shear mode. 

  

Figure 4.15: Experimental setup for evaluating pressure and shear wave propagation in around 

1MHz frequency. 
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 We characterized the behavior of ultrasonic transducers before making any 

measurement on the actual model. We measured the electrical signal generated by a high 

frequency RF amplifier and recorded it through the oscilloscope (solid blue line in Figure 

4.16). The piezoelectric transducer (PZT) takes this signal as an input and generates a 

mechanical perturbation that we measure. We use another identical transducer and place 

the two PZT tightly together. The transceiver measures the mechanical signal and 

transfers it to an electrical signal recorded through the oscilloscope (solid red line in 

Figure 4.16). The two shown signals are not physically comparable, yet this exercise 

allows us to understand the actual signal travelling through the samples of interest. 

 

Figure 4.16: Measuring the transmission of a signal between two identical pressure transducers. 

The measurement of the electrical signal generated by an RF amplifier is shown for the sender. 

This signal is then transferred to a mechanical perturbation of the sender and transmitted to a 

transceiver. The measurement from the receiver is recorder using the oscilloscope and plotted 

here.  
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4.4.2. Elastic moduli Measurements  

The elastic moduli of the unidirectional CFRP were calculated by measuring the 

longitudinal and shear wave speed in the samples. The unidirectional fiber reinforced 

composite behaves as a transversely isotropic material with 5 independent elastic moduli.  

We used two identical rectangular cuboid samples of CFRP with the fibers 

making 0° or 90° angle with the surfaces. The time of travel of quasi-longitudinal waves 

along the fiber direction, and also normal to the fibers were measured. The quasi-

longitudinal wave speed was measured as 8850 m/s in the stiffest direction and 2590 m/s 

normal to the fibers. The quasi-shear wave speed along the fiber direction was measured 

as 2116 m/s and the speed of a pure shear wave in the plane of isotropy was measured as 

1250 m/s. We can compute four of the five elastic moduli using the measured wave 

speed. In order to find the fifth independent elastic modulus, a sample of unidirectional 

CFRP with fibers oriented at 45° angle with respect to the rectangular cuboid sample was 

tested. The quasi-longitudinal wave speed for the 45° angle was measured as 6560 m/s. 

The wave speed measurements yielded the following elastic moduli: E3=72.4GPa, 

E1= E2=5.8GPa, G13=6.0GPa, G12=2.1GPa, and ν12=0.3875. This confirms the strong 

anisotropy we require to manage the stress-wave propagation at the interface of the 

layered structure. 
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4.4.3. Time of travel and pulse duration 

Since we intend to propagate a pulse of finite duration and measure reflection and 

transmission, it is necessary to ensure that the pulse duration is smaller than its time of 

travel from a transducer to a transceiver. This guarantees that the incident and scattered 

waves do not interfere. The sinusoidal pulse that we intend to use as an incident wave has 

1μsec duration. However, we observed that in piezoelectric transducers for our setup, the 

intended signal duration extends to 2μsec when the RF signal is transferred to a 

mechanical signal. The wave speed along the fiber direction in the CFRP is measured as 

8850m/s. The minimum distance in any of the performed ultrasonic measurement is 

26mm, which translates to a time of travel of 2.9μsec. Therefore, we conclude that the 

considered pulse duration is short enough to make meaningful measurements. 

4.4.4. Measuring transmitted and reflected signals 

The purpose of the experiments using ultrasound equipment is to verify the 

numerical prediction of the behavior of multilayered structure as a whole. We consider 

the 3-layered structure as a black box, and we are interested in characterizing the 

transmission and reflection of an incident wave generated through a piezoelectric 

transducer.  The transmission and reflection waves are measured at the outer boundary of 

the multilayered structure shown in Figure 4.1. 

Here, we present the procedure for collecting the individual measurements and 

build up the platform for presenting the processed data. We consider the numerical model 
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discussed in section 4.2 with a wedge angle of 15°; and produce its experimental 

counterpart as shown in Figure 4.17. We have used two industrial C-clamps to hold the 

pieces of unidirectional carbon fiber reinforced composite tightly together. Ultrasonic 

couplant was applied at the interface of pieces to facilitate the wave propagation through 

the layers. The setup including the layers A and C are fixed throughout all the 

experiments, except for the middle layer B which is the subject of our study. 

We performed one set of experiment for each 12 choices of α ∈{0, ±15, ±30, ±45, 

±60, ±75, 90} in order to study the effect of the orientation of anisotropy of layer B. Here 

we present the data collection for a representative case of α=0°. A Panametrics ultrasonic 

transducer (V103) with a diameter of 12 mm is used to propagate a sinusoidal pulse of 

1MHz dominant frequency. The piezoelectric transducer is placed on the boundary 

surface of layer A between the two clamps, simulating the excitation at point R in the 

numerical model (Figure 4.1). An identical transducer to the mentioned PZT is placed on 

the outer boundary of layer C facing the transmitter, which is used to receive the signal 

transmitted through the multilayered structure. The received signal at the middle of PQ in 

layer C is shown in Figure 4.18. We take the average of positive and negative peak as the 

recorded amplitude of the transmission wave for this single measurement.  
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Figure 4.17: (a) Three-layered elastic structure and (b) integrated multilayered structure with a 

dissipative layer assembled using clamps. This figure shows the experimental counterpart of the 

numerical models shown in Figure 4.1. 

 

Figure 4.18: An example of a transmitted signal at the middle of MN in Figure 4.1 for the case 

α=0°. 

We now repeat a similar measurement by keeping all the setup including the 

position of signal generating transducer constant and changing the position of transceiver 

on a grid of points on the outer boundary of layer C in order to scan the transmission 
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wave on PQ in in Figure 4.1. The amplitude of all the recorded measurements are 

computed as explained in the last paragraph. Then the maximum of these amplitudes is 

considered as the data point for the transmitted wave at α=0°. In order to compare the 

experimental results and numerical simulations, we normalize this data point (voltage) to 

attain displacement. 

We performed the explained experiment with all other considered orientations of 

anisotropy for the layer B, and plot the normalized measurements in Figure 4.4 with solid 

triangles. The normalization factor is chosen such that the numerical and experimental 

value matches each other for α=0°. It is observed that the trend of experimental 

measurements and numerical predictions strongly agree with each other. 

The reflection measurements follow a very similar procedure as the data 

collection for transmission. A transducer is placed on the layer A close to the signal 

generating transmitter to measure the signal reflected off of the multilayered structure as 

a whole. Although we are not able to measure the reflection exactly at point R of Figure 

4.1, due to the interference with the transducer generating incident wave, we can scan the 

rest of the outer boundary of layer A. These measurements are normalized with respect to 

the normal displacement predicted by the numerical predictions at the corresponding 

elements. The result is shown in Figure 4.5 with square dots. 

The measurement of scattered shear waves is a crucial component of our 

ultrasonic experiments. While the signal generating transducer (V103) produces 

longitudinal waves, the transceiver is a Panametrics shear transducer (V153). We are 
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replicating the conditions in the numerical model, where the incident longitudinal wave is 

scattered as partly longitudinal and partly shear waves. The procedure for processing the 

individual measurements is exactly the same as that of longitudinal waves. Figure 4.6 and 

Figure 4.7 show the transmitted and reflected shear waves respectively. 

In the second set of experiments, we introduced a thin layer of dissipative 

polymer (Polyurea) in between the layers B and C, as shown in Figure 4.17b. The 

experimental procedure is exactly the same as that of elastic case. The triangles in Figure 

4.8 show the normalized maximum transmitted longitudinal wave; the square dots in 

Figure 4.9 show the normalized maximum reflected longitudinal wave; the triangles in 

Figure 4.10 show the normalized maximum transmitted shear wave; and finally the 

square dots in Figure 4.11 show the normalized maximum reflected shear wave. 

4.5. Discussion and summary 

We have shown that the orientation of anisotropy of a layer in a multilayered 

structure has an immense impact on the wave scattering in longitudinal and shear modes. 

We have performed numerical computations using the Finite Element Method and 

experiments using ultrasound equipment to verify the possibility of designing a layered 

structure that enables us to manage the stress wave propagation in solids. 

We are particularly interested in a design that can transfer a significant portion of 

longitudinal stress-wave energy of the impinging perturbation into shear wave energy. 

The comparison of the amplitude of scattered longitudinal wave for the elastic case and 
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dissipative case is shown in Figure 4.19, while Figure 4.20 shows similar comparison for 

shear waves. It is observed that by selecting α around 45°, we have the most transfer of 

longitudinal wave energy into shear wave energy. The amplitudes of transmitted and 

reflected longitudinal waves are simultaneously minimized in the elastic multilayered 

structure. The transmitted shear wave, on the other hand, is maximized in order to satisfy 

energy conservation. 

 

Figure 4.19: Comparison of the scattered longitudinal waves in elastic (solid lines) and dissipative 

cases (dashed lines). While the reflected longitudinal waves are remained almost the same, the 

transmitted longitudinal waves are diminished by a significant factor. Thus, combination of 

stress-wave management via layering of anisotropic materials and viscoelastic shear dissipation 

resulted in significantly reduced transmitted longitudinal wave amplitude. 

 The initial intent for introducing a shear dissipative material in a multilayered 

structure was to dissipate the energy of scattered shear waves. We have shown that a 
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specific design results in the maximum transfer of stress-wave energy from longitudinal 

modes into shear modes. The comparison of the amplitudes of the scattered shear waves 

between the elastic and dissipative case (Figure 4.20) proves that the shear-dissipative 

layer performs a good job in terms of diminishing the transmitted shear wave at α=50°. 

 

Figure 4.20: Comparison of the scattered shear waves in elastic (solid lines) and dissipative cases 

(dashed lines). The amplitude of the transmitted shear wave in the dissipative case is diminished 

by a significant factor relative to the elastic multilayered structure. 

We proved that the combination of stress-wave management via layering of 

anisotropic materials and viscoelastic shear dissipation resulted in immense control on 

impinging stress-waves. The energy of incident longitudinal wave is transferred into 

shear waves, which are then dissipated by integrating a shear-dissipative material. 
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Chapter 5  

 

Polyurea Foam 

 

Recently, there have been extensive studies on mechanical properties and 

microstructure of Polyurea, a copolymer of hard segments slightly cross-linked and 

embedded in a soft matrix. The shear stiffness of materials of this kind can change by at 

least two orders of magnitude under large pressure encountered under shock wave. In the 

current study, we are introducing non-uniform distributed voids in polyurea to create a 

lighter and softer material that has the potential to improve shock mitigation. The new 

microstructure is achieved through a chemical process by introducing CO2 bubbles as a 

result of the chemical reaction of constituents of Polyurea (Versalink and Isonate) and 

water molecules. The size and the volume fraction of the voids are measured for different 

stoichiometry of the reaction. 

Storage modulus and loss modulus of the new materials are measured using 

Dynamic Mechanical Analysis (DMA); and the elastic properties were measured under 

compression at temperatures higher and lower than the glass transition temperature of the 
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material. The fabricated material is generally softer than pure Polyurea and has lower 

storage and loss modulus. The size and the spacing of the voids are measured using the 

micrograph of the material. These are incorporated in a micromechanics model to achieve 

the bulk properties of the copolymer with distributed voids, which will then be compared 

with the experimental measurements. 

5.1. Introduction 

In the recent years, there has been an interest in understanding mild Traumatic 

Brain Injury (TBI) caused by blast explosions [1] and consequently in developing 

materials or structures to reinforce helmets in order to mitigate the shock waves [2]. 

Schimizzea et al. [3] notes the importance of density and impedance of a material for 

helmet padding in mitigating an air shock wave. It is crucial to incorporate a low density 

and porous material in order to attenuate the impinging wave by absorptive and 

dissipative mechanism. Polyurea has been proven effective in mitigating blast-induced 

shock wave. Therefore, a porous structure with Polyurea as its matrix is an excellent 

candidate for research. 

The motivation for synthesizing Polyurea based foam consists of several factors 

including high energy absorption, light weight, higher elastic modulus to density ratio 

(compared with Polyurea), and collapsible voids under extreme loading. Pure Polyurea 

offers unique properties such as increased shear stiffness under large pressure, which is 

beneficial in controlling elastic stress-waves and shock waves. A porous structure with 
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Polyurea matrix can be integrated into a layered structure to enhance management of 

stress-waves. 

5.2. Material synthesis 

Polyurea is a copolymer of hard segments slightly cross-linked and embedded in a 

soft matrix. Fragiadakis et al. [4] studied the effect of stoichiometry of hard and soft 

segments in the mechanical properties of Polyurea chain. The reaction is shown in Figure 

5.1. In the current study, we intend to modify the chemical reactions by introducing a 

substance that would result in a product in gaseous phase that can play the role of a 

blowing agent in order to create foam. 

 

Figure 5.1: The reaction of isocyanate and Versalink resulting in Polyurea. 

5.2.1. Synthesis procedure 

The most accessible substance that can react with isocyanate is H2O molecules. 

We found that the reaction of water and isocyanate is very favorable and releases CO2. 

Each mole of isocyanate reacts with 2 moles of H2O, which results in the release of 2 

moles of CO2 as a product. In order to have a uniform distribution of Carbon dioxide in 

the final product, it is important to have water molecules dispersed in the mixture as 
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much as possible. Since Versalink P-1000 oligomeric diamine does not react with water, 

we have chosen to mix calculated amount of water with Versalink in our synthesis 

procedure. 

We developed the following procedure for synthesizing polyuria foam:  

1. Degas Versalink and Isonate components separately for 1 hour under 1 Torr 

vacuum. 

2. Remove vacuum from Versalink, add water to Versalink, and stir using a 

magnetic stir bar while physically rotating bottom portion of reaction flask in 

order to mechanically integrate water into Versalink – mix for 5 minutes 

3. Add Isonate to Versalink/Water mixture and mix for 1.5 minutes – in open air 

(not under vacuum) 

4. Pour the products into Teflon  molds in order to obtain desired sample geometries 

5. Place the molds in the environmental chamber for curing 

Since the Versalink and H2O molecules both compete for the isocyanate 

molecules during the synthesis procedure, it is required to account for the excess Isonate 

143L enough to form Polyurea matrix as well as CO2 bubbles. In order to calculate the 

amount of reactants, we start with the stoichiometry of synthesizing pure polyurea as a 

baseline. The amount of excess Isonate is assumed as a weight percentage of the baseline 

polyurea. Then the weight of required water is computed based on the molecular weight 

of water and Isonate 143L. The equivalent weight of Isonate 143L is 144.5 g/mol, while 
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that of water is 18 g/mol. The stoichiometry of synthesized samples is discussed in 

section 5.2.2. 

5.2.2. Synthesized samples 

We incorporated the synthesis procedure discussed in section 5.2.1 to synthesize 

polyurea foam consisting of 50% excess Isonate in material B, and 100% excess Isonate 

in material C as noted in Figure 5.2. The weight percentage of water added to react with 

excess Isonate is calculated as 1.1% and 2% respectively. Table 5.1 shows the mass of 

each component used in synthesizing the samples. We considered synthesis of pure 

polyurea samples as a baseline for comparison purposes (material A). Finally, we 

synthesized material D with no excess Isonate, where the water molecules and Versalink 

compete for isocyanate molecules. The expectation is that the insufficient amount of 

Isonate results in limited cross-linking and a weak matrix surrounding the voids created 

by CO2 gas.  

We used two types of Teflon molds to achieve samples for both uniaxial 

compression test, and dynamic mechanical analysis. We used a cylindrical mold with a 

clamped bottom piece and open-top to fabricate samples with 2.54cm diameter and 

2.54cm in height (Figure 5.3).  The materials are poured into the molds while the 

reactions and foaming process is in progress. Additionally we fabricated rectangular 

cuboid with cross section of 10mm х 3mm and 140mm long. 
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Figure 5.2: Diagram of the building blocks of synthesized materials, including the matrix, and the 

blowing agent (CO2 gas). 

Table 5.1: The mass of each component involved in synthesizing the samples. 

Material Versalink (g) Isonate (g) Water (g) Total mass (g) 

A 46 11.6 0 57.6 

B 40.3 14.56 0.606 55.47 

C 40.3 20.5 1.228 62.03 

D 40.3 10.2 1.212 51.7 

 

Figure 5.3: Synthesized cylindrical samples with a diameter of 2.54cm, and height of 2.54cm. 

Material A:   Versalink + Isonate Pure Polyurea (PU)

Material B:   Versalink + Isonate + 50% excess Isonate+ 1.1% water

Polyurea                 releases gas that result in voids 

Material C:   Versalink + Isonate + 100% excess Isonate+ 2% water

Material D:   Versalink + Isonate + 2.3% water

Insufficient Isonate releases gas, and creates voids
to create Polyurea

A B C D



110 

 

5.2.3. Non-uniformity of the distributed voids 

The synthesized foam samples were observed to have non-uniform distribution of 

pores. There are several factors contributing to this phenomenon. The most important 

contributing factor is that the Teflon molds used in synthesizing the samples have an 

open top surface exposing the reactant to atmospheric pressure. Therefore, the CO2 

bubbles prefer to travel vertically (upward) in order to balance the air pressure in the 

reactants until the matrix builds up its structural integrity. The material pushed upward 

forms a mushroom-like geometry at the open top surface of the mold. We cut this part 

with a razor in order to achieve a cylindrical sample. It is important to note that the 

synthesized foam samples have a gradient in density and voids volume fraction in vertical 

direction. 

Another important factor resulting in the non-uniformity of pores distribution in 

the samples is the boundary layer of the materials close to Teflon mold surfaces. While 

the reactants flow in the molds until the products reach structural stability, their boundary 

layer facing the mold is constrained. This results in different pore size shown in Figure 

5.4. 
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Figure 5.4: Non-uniform distribution of pores facing the Teflon molds and pores in the bulk 

material. 

 

5.2.4. Containment of blowing agent 

We discussed in section 5.2.3 that the blowing agent (CO2) was not contained in 

the samples per the configuration of open-top molds. Therefore, only a small portion of 

produced carbon dioxide contributes to the volume fraction of voids in the final samples. 

Here, we present an ideal case where all the produced gas is contained in the sample, and 

back calculate what weight percentage of water and Isonate would have created a similar 

volume fraction of voids if the carbon dioxide was completely contained in a pressurized 

and bounded molds. 

Facing the Teflon molds
Smaller bubble size

Bulk material
Larger bubble size

Facing Teflon molds
Smaller bubble size

Top view Side view
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We consider a synthesized cylindrical sample with a diameter of D=2.54 cm and 

height of H=2.54 cm with a given volume fraction of voids (Vf). We then calculate the 

volume of the CO2 voids:     
      

    . We use the equation of state for ideal gas 

(PV=nRT) to calculate the number of moles of CO2 assuming 1 atm pressure and 300°K 

temperature. According to the discussion in section 5.2.1, the number of moles of water 

required to produce CO2 is found:        
          . The volume fraction of voids in 

materials A through D in Table 5.1 are measured 0, 27%, 44%, and 45% respectively; the 

amount of water that is calculated using the above calculations give: 0, 7.5mg, 12.3 mg, 

and 12.5 mg respectively. 

5.3. Material characterization 

The synthesized samples of polyuria foam were characterized to find mechanical 

properties of interest such as density, microstructure, storage and loss modulus, and 

stress-strain behavior under compression. We considered 3 different stoichiometry for 

synthesizing polyuria samples with distributed voids (described in section 5.2); and 

compared the results with pure polyurea. In the following sections, we describe these 

properties in detail: 

5.3.1. Microstructure 

The microstructure of the synthesized materials was studied using Dino Lite 

digital microscope. The porous structures of the materials are shown in Figure 5.5. The 

void sizes are measured about 100μm for materials B and D, and 250μm for material C. 
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The density of cylindrical samples with dimensions D=H=2.54cm were measured as 

shown in Figure 5.5. Assuming the matrix of porous structure has the same density as 

pure polyurea, we calculated the volume fraction of voids in each sample.  

 

Figure 5.5: Micrograph of fabricated polyurea and polyurea based foam. The stoichiometry of 

synthesizing Polyurea is modified to calculate the required weight percentage of Versalink, 

Isonate, and added water to produce CO2 bubbles which results in a porous microstructure. 

5.3.2. Storage and loss modulus 

Dynamic Mechanical Analysis (DMA) is used to characterize the storage and loss 

modulus of the material. The tests were done with single cantilever method at 10Hz 

frequency of the clamp oscillation. The loss modulus, storage modulus, and tan (δ) are 

shown in Figure 5.6 for a range of temperature from -80°C all the way to 50°C. Both 

moduli are smaller in foam samples than those in pure polyurea. However, the modulus 

D 45% void volume 
fraction

Without excess Isonate

A Pure polyurea
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to density ratio is higher for material B with closed-cell microstructure than pure 

polyurea. 

 

 

Figure 5.6: Loss Modulus, Storage modulus, and Tan (δ) versus temperature for samples shown 

in Figure 5.5. In porous samples, both moduli are lower than those in pure Polyurea. 

We used a micromechanics model for a matrix with periodic distribution of voids 

and computed the storage and loss modulus of a porous polyurea. The solid lines in 

Figure 5.7 show the numerical model prediction for a range of void volume fraction. The 

square dots show the experimental results from the synthesized samples. It is observed 
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that the actual matrix of material B is stiffer than pure polyurea, while materials C and D 

show close agreement with numerical predictions. 

 

Figure 5.7: Micromechanics periodic model to estimate moduli of porous materials and 

comparison with measured value (square dots). 

5.3.3. Stress strain relationship 

The stress-strain relationships for the synthesized materials were studied at -50°C, 

18°C, and 50°C temperatures. The cylindrical samples of dimensions D=H=2.54cm were 

placed under compression with load-controlled clamps. The samples were loaded to 

0.35MPa compressive stress and then unloaded in a chamber equipped with temperature 

controller using liquid nitrogen and heater. The uniaxial stress and strain were measured 

and plotted in Figure 5.8. 
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Figure 5.8: Stress-strain behavior under uniaxial compression at 50°C, 18°C, and -50°C. 

 

5.4. Experiments to study critical parameters affecting void size 

One of the most important characteristics of the porous polyurea foam is the size 

of the voids in the microstructure. Depending on the volume fraction of voids and their 

sizes, we may have an open-cell foam or closed-cell foam. Smaller void sizes are 

favorable to enhance the structural integrity of the material.  

There are several parameters in the synthesis process affecting the void size of 

polyurea foam. First, the emulsion of water and Versalink determines the size of water 
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droplets that will react with isocyanates later in the process. According to Taylor’s 

formula [5], the water droplet can be broken to smaller size in a shear flow. The viscosity 

of Versalink and the interfacial surface tension between the two components of emulsion 

are the deciding factors in addition to the shear rate enforced by a mixer. We conducted 

experiments to study both critical parameters, which are furthere discussed in sections 

5.4.1 and 5.4.2. 

Another critical parameter affecting the foaming process is the amount of time it 

takes to cure the polyurea matrix in order to maintain its structural integrity, which will 

lock out the bubbles in the porous structure. We studied the initial stage of curing 

Polyurea using a rotational viscometer. The experiment is further discussed in section 

5.4.3. 

5.4.1. Viscosity of Versalink P-1000 vs. temperature 

We measured the viscosity of Versalink P-1000 using a falling sphere viscometer. 

The velocity of a sphere was measured while falling through a 25 mL graduated cylinder 

filled with Versalink. We performed a total of 6 tests using 2 sphere sizes (0.79 mm, 

1.59mm ball bearing) at 3 given temperatures (13.3°C, 22.8°C, 42.0°C). A snapshot of 

the test setup was taken every 4.0 sec. The series of pictures taken for 1.59mm sphere at 

22.8°C is shown in Figure 5.9. 
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Figure 5.9: Measuring the viscosity of Versalink P-1000 in a 25 mL graduated cylinder using a 

falling 1.59mm sphere at 22.8°C. Snapshots of the cylinder are shown with 4 sec intervals. 

 The viscosity is calculated using the following equation:    
           

  
, where 

  is viscosity,   is gravity constant (9.81 m/s
2
),   is the sphere radius (0.79 mm, 

1.59mm),    is the sphere mass density (7.9 g/cm
3
, 7.6 g/cm

3
 respectively),    is the mass 

density of Versalink (1.04 g/cm
3
),   is the measured speed of spheres in m/s,     

     (
  

 
)      (

  

 
)
 

 is the corrective factor for the finite size of sphere relative to the 

cylinder, given by ASTM D 1343-95, and   is the inner diameter of the cylinder (18.90 

mm). The results of the measurements are averaged for the two sphere sizes and are 

shown in Figure 5.10. 
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Figure 5.10: Viscosity of Versalink P-1000 oligomeric diamine as a function of temperature. 

 

5.4.2. Surface tension between water and Versalink P-1000 

The interfacial surface tension between a droplet of water and Versalink was 

measured. A thin layer of Versalink was retained on a lab slide in contact with air, and a 

water droplet was placed on top of Versalink (Figure 5.11). The interfacial surface 

tension was calculated using the following equation: γ=∆ρ.g. Ze
2
/2=1.4 mN/m = 1.4 

dyne/cm, where Ze was measured 538μm as shown in Figure 5.11.  
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Figure 5.11: Measurement of the interfacial surface tension between water and Versalink P-1000 

oligomeric diamine: Ze =538μm, and γ=1.4 dyne/cm. 

 

5.4.3. Rate of reaction of Versalink P-1000 and Isonate 143L 

The rate of reaction of Versalink P-1000 oligomeric diamine and Isonate 143L 

was measured using a rotational viscometer shown in Figure 5.12. It is important to note 

that we considered the initial stage (45 min) of curing the Polyurea up until the mixture 

reaches high viscosity measurable by our setup.  

We started the experiment procedure by degasing Versalink and Isonate for 1 

hour. Then the degassed components were mixed for 1 minute using a magnetic stirrer 

under vacuum. A syringe was used to intake 0.4 gr of the mixture and then injected to the 

bottom of a vial. The viscometer’s spindle was placed slowly into the vial to avoid 

trapping of air bubbles. The viscosity of the mixture was measured by recording the 

rotational speed and the applied torque (Figure 5.12). As the viscosity of the mixture 

increases in curing process, the rotational speed of the viscometer should be adjusted to 
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keep the applied torque below the machine capacity. The rotational speed starts at 

10RPM and is decreased to 5, 1, and 0.1 RPM as time passes. The viscosity of Polyurea 

mixture versus time is plotted in Logarithmic scale in Figure 5.13. 

 

Figure 5.12: Rotational viscometer consisting of a rotating spindle, and a fixed glass vial. The 

rotational speed can be adjusted to measure a wide range of viscosity. 
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Figure 5.13: Rate of reaction of Versalink P-1000 oligomeric diamine and Isonate 143L in the 

initial curing process of Polyurea. The viscosity of the sample is measured versus time. 

5.5. Summary 

We studied the chemistry, synthesis, and characterization of polyurea based foam. 

We modified the chemistry reactions incorporated to synthesize pure polyurea, in order to 

create a porous structure with 100-250μm voids. The broken water droplets in the 

emulsion of water and Versalink react with isocyanate molecules to form CO2 that acts as 

a blowing agent to create foam. The developed synthesis procedure has an inherent issue 

that leads to non-uniform distribution of voids, and therefore non-uniform mass density 

in the whole sample. 

The samples were characterized for the developed microstructure as well as 

mechanical properties in macro scale. The porous microstructure was studied to find the 

void size due to each stoichiometry implemented in the material synthesis. Stress-strain 
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behavior under uniaxial compression was studied for loading and unloading cycles. 

Storage and loss moduli were measured using DMA; and compared to the numerical 

predictions using micromechanics model for periodic distribution of voids. Additionally, 

a number of experiments were performed to study the critical parameters affecting the 

size of water droplets in the emulsion with Versalink, which has a direct impact in the 

size of pores in the foam. 
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