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Abstract

Selling Random Energy

by

Eilyan Yamen Bitar

Doctor of Philosophy in Engineering–Mechanical Engineering

and the Designated Emphasis in Computational Science and Engineering

University of California, Berkeley

Professor Kameshwar Poolla, Chair

Global warming now poses one of the most serious challenges to the well-being of
humanity at large. The projected increase in the Earth’s mean surface and ocean temperatures
will have a severe impact on human health in both the developed and developing regions of
the world. As the burning of fossil fuels contributes significantly to worldwide greenhouse
gas emissions, there has been a concerted policy reform effort in both the US and abroad to
transform the electricity sector by increasing the displacement of conventional fossil fuel-
based thermal generation with clean renewable generation such as wind and solar. California,
for example, has set a target of 33% renewable energy penetration by the year 2020. Wind
and solar energy will play a key role in realizing such aggressive targets. However, at these
deep penetration levels, the inherent variability of wind and solar power production poses
serious engineering and market challenges. These are due to the uncertainty, intermittency,
and uncontrollability of wind and solar power. They are essentially random – a stark contrast
to conventional thermal power generation.

How is variability in wind an solar power production dealt with today? Today, wind
and solar energy are assimilated into the grid through legislative mandates, feed-in tariffs,
lenient imbalance penalty pricing, guaranteed grid access, tax relief, and/or construction
subsidies. Specifically, in California, the Participating Intermittent Renewable Program
(PIRP) legislation compels the independent system operator (ISO) to accept all produced
wind power subject to certain contractual constraints. This amounts to a system take-all-
wind modus operandi in which wind power is treated as a negative load and the subsequent
increase in the variability of net-load is absorbed by a portfolio of reserve generation
capacity, whose cost is allocated amongst the load serving entities (LSE). Moreover, this
socialization of added reserve costs amongst the LSEs constitutes an implicit subsidy for
variability costs to participating wind power producers. We submit to the reader that the
current extra-market approach to renewable energy integration will become untenable as
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wind and solar energy penetration increases. Under this system-take-all-power regime, the
attendant intermittency and limited forecastability of wind and solar power production will
lead to a significant increase in the reserve generation requirements necessary to maintain
system balance – an unacceptable consequence. It is too expensive. Ergo, it will rapidly
become infeasible to continue the implicit subsidization of the variability costs among the
load serving entities. Moreover, it severely mitigates the net greenhouse gas benefit of
renewable energy, as regulating reserves are normally supplied by fast-acting, fossil fuel
based thermal generators such as natural gas turbines. The current strategy cannot scale.
Clearly, strategies that mitigate the need for additional reserve requirements will be an
essential means to supporting deep integration of variable renewable energy. Throughout
this dissertation, we will focus explicitly on wind, however, much of the analysis is directly
applicable to solar power generation as well.

How will variability be dealt with tomorrow? In the near term, we argue that wind
power producers will be forced to participate in conventional electricity markets alongside
traditional dispatchable generation, where they will face ex-post financial penalties for
deviations from contracts offered ex-ante in forward markets – thus eliminating the implicit
subsidy for variability costs. In response to the financial risk emanating from uncertainty
in wind power production, a rational wind power producer will be forced to curtail its
projected output, thus decreasing the amount of variability that has to be compensated for
with reserve generation by the system operator. However, such a removal of the implicit
subsidy for variability cost may result in significant profit loss to the wind power producer.
Consequently, it will become necessary for the wind power producer to develop and evaluate
strategies that aid in the mitigation of wind power output variability. In this dissertation,
we quantify, within the setting of a perfectly competitive market, the maximal expected
profit achievable by a wind power producer through optimal bidding. Moreover, as wind
is an inherently variable source of energy, we explore the sensitivity of optimal expected
profit to uncertainty in the underlying wind process and quantify the marginal economic
value of various firming mechanisms that aid in the mitigation of power output variability.
Specifically, we appraise the benefit of improved forecasting and quantify the added value
of recourse opportunities afforded by the co-location of an energy storage system and/or
fast-acting thermal generation with the wind power producer. Further, we explore the extent
to which a group of N independent wind power producers can exploit the statistical benefits
of aggregation and risk sharing by forming a willing coalition to pool their variable power
to jointly offer the aggregate output as single entity into a forward energy market.
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CHAPTER 1

Introduction

Global warming now poses one of the most serious challenges to the well-being of humanity
at large. The rising average temperatures of the Earth’s atmosphere, surface, and oceans
threaten to undermine food and water security in tropical and subtropical regions around the
World as these regions are particularly sensitive to the growing risk of drought and floods
[6, 104].

The dramatic increase in global average temperature, as depicted in Figure 1.1 (a), is
attributed largely to the sharp rate of increase of greenhouse gas (GHG) accumulation in the
Earth’s atmosphere – a process that is driven predominantly by human activity associated
with deforestation and the burning of fossil fuels [71]. For a range of climate models, Figure
1.1 (b) depicts the projected global mean temperature increase over the next 100 years, if no
actions are taken to mitigate GHG emissions under sustained economic growth (SRES A2
emissions scenario). These models predict a significant temperature increase ranging from
2◦ C to 5◦ C. The global scale of such a projected increase in mean temperature will likely
lead to global food shortages, reduced fresh water supply, increased coastal flooding, and
increased malnutrition – all of which will have a significant impact on human health in both
the developed and developing regions of the world [51].

The burning of fossil fuels contributes significantly to US greenhouse gas emissions,
as fossil fuel resources comprise 78% of total US energy consumption – measured at 94.6
Quads in 2009 (Figure 1.3). In particular, 38% of total US energy consumption is used for
electricity generation. Clearly, any serious effort to reduce the rate of global warming will
necessarily require a transfiguration of the electricity sector.

1.1 Renewable Power Generation

As the electric energy generation fleet is comprised predominantly (68%, Figure 1.3) of
fossil-fuel based thermal generation (e.g., coal, natural gas), there has been a recent effort in
the US, and worldwide, to increase the displacement of conventional thermal generation
with clean renewable generation such wind, solar, geothermal, and hydroelectric in order
to make significant reductions in total GHG emissions. In addition, nuclear generation has
also been espoused as a source of clean energy, however, concerns regarding the disposal
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Figure 1.1. (a) A plot of global mean land-ocean temperature from 1880 to 2010. The black
line depicts the annual mean, while the red line depicts the five year running mean. Source:
http://data.giss.nasa.gov/gistemp/ (b) Projected global mean temperature increase, for a range
of climate models, over the next 100 years if no actions are taken to mitigate GHG emmisions under
nominal economic growth (SRES A2 emissions scenario). Source: Robert Rohde, Global Warming
Art.

of spent fuel and safety issues are likely to limit its growth in the near term. For example,
the recent meltdown disaster at the Fukushima Daiichi nuclear power plant in Japan has
largely steered public opinion against the proliferation of nuclear power in many regions of
the world. Although nuclear power will play a necessary role in supporting the transition
away from fossil-fuel based generation, it is likely that the addition of renewable generation,
such as wind and solar, will continue to rise at a much sharper rate over the proceeding
decades. Moreover, the conversion of our electricity generation fleet to renewable resources
will have a twofold effect on GHG mitigation as the nation’s transportation sector increases
adoption of plug-in electric and plug-in hybrid electric vehicles. These vehicles will extract
the majority of their energy directly from the electricity grid, thus displacing petroleum as a
primary resource for transportation.

For both environmental and economic reasons, time is of the essence. However, the US
electric power industry is notoriously slow to adopt new technologies requiring significant
capital investment with uncertain returns. In response – exercising the power of legislative
mandate – 30 of the 50 states [62] in the US have adopted Renewable Portfolio Standards
(RPS) that require increased production of electric energy to come from renewable resources.
RPS mechanisms generally require load-serving entities to serve a specified portion of
their load demand from clean renewable energy resources. California, for example, has
one the most ambitious Renewable Portfolio Standards with a target of 33% renewable
energy penetration by the year 2020 [23]. As of 2010, California’s three largest utilities
have collectively served 18% of their load with renewable energy [23]. In comparison,
renewable energy resources nationwide presently comprise only 15% of total electric energy
consumed in the US. Moreover, as indicated by Figure 1.3, over 50% of the renewable energy
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production comes from hydroelectric and geothermal plants, which is due to their competitive
capital/production costs. However, the ability to construct hydroelectric and geothermal
plants is largely constrained by geography and the availability of limited resources.

For example, the construction of hydroelectric plants, in various modalities (e.g., conven-
tional dam, pumped storage, run-of-the-river), generally requires a geography with a massive
river flowing through a moderate elevation change. The inherent potential energy of the
water flowing upstream of the elevation change can be used to generate power as it changes
elevation. Hydroelectric power plants represent clean, renewable sources of energy with
rapid return on investment. In fact, among all sources of electric energy, hydroelectricity
produces the least amount of GHG emissions and negative externality – surpassing both
wind and solar photovoltaic power plants [41]. Moreover, the Three Gorges Dam in China
is estimated to recoup its capital investment from electricity sales within a five to eight
year window following its construction [8]. Unfortunately, the United States, along with
many European countries, has nearly exhausted the land resources capable of supporting
large-scale hydroelectric dams [103].

The expansion of geothermal power is similarly constrained by geography. Essentially,
geothermal power plants operate on the same principle as conventional steam-turbine thermal
power plants. Where they differ is the source of heat – a geothermal plant extracts heat from
the Earth’s core at depths approaching six miles below the Earth’s crust [22]. This represents
a renewable and, to a large extent, clean source of energy. Although the heated fluid drawn
from deep within the earth often carries with it a mixture of GHG gases, the associated
emission intensity is small when compared to conventional fossil fuel based plants [7]. The
challenge in siting geothermal plants arises from the prohibitive cost of drilling at significant
depths. Hence, there is need to identify locations with hot spots near the Earth’s surface.
As shallow heat sources (e.g., volcanoes, hot springs, fault lines) are limited in number and
can be difficult to locate, the process of exploration can take as long as 15 years and can
account for more than half of the plant’s capital investment. Consequently, unless there
occurs a drastic reduction in the cost of drilling at depths beyond five miles, it is unlikely that
geothermal power plants will proliferate at the rate necessary to meet near and long-term
RPS targets. Thus, it looks as if we have begun to approach fundamental limitations –
both geographic and economic – on the construction of cost-competitive hydroelectric and
geothermal renewable generation. There are however alternative sources of clean renewable
energy in the form of wind and solar power plants.

Although wind and solar energy resources currently comprise only a small percentage of
electric energy generation (<1%), such resources represent a viable alternative to meeting
RPS targets and beyond, as they are markedly more plentiful in terms of raw energy
availability (see Figure 1.4) that can be easily accessed. Figure 1.4 presents wind power
and solar energy density maps for the United States. According to the empirical studies
conducted by Archer et al. [3],

“Global wind power generated at locations with mean annual wind speeds ≥
6.9 m/s at 80 m is found to be ∼72 TW for the year 2000. Even if only ∼20%
of this power could be captured, it could satisfy 100% of the World’s energy
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demand for all purposes (6995 – 10177 Million Tonnes of Oil Equivalent) and
over seven times the World’s electricity needs (1.6 – 1.8 TW).”

1.1.1 Challenges to Integration
Although the raw power and energy availability of renewable energy resources such as wind
and solar is essentially inexhaustible, there exist serious engineering and market challenges
to their large-scale integration into the electricity grid.

Variability: Wind and solar energy are fundamentally different from conventional genera-
tion such as coal, nuclear, and natural gas. Such renewable resources are

1. Non-dispatchable [cannot be controlled on demand]

2. Intermittent [exhibit large fluctuations on short time-scales]

3. Uncertain [random and difficult to predict into the future]

We will use the term variable generation [73] to encompass these characteristics of wind and
solar power. The most serious manifestation of generator output variability is the occurrence
of large unpredicted ramps in power output, as these disturb the balance of supply and
demand. With respect to solar power generation, the passage of cloud formations over a
solar farm can cause significant ramps in solar insolation and subsequent electric power
output. Moreover, as cloud formations are patchy in nature, the subsequent intermittency
of solar insolation can lead to highly non-stationary behavior of the solar power process.
Specifically, solar insolation can change by more than 80% of the peak insolation in a matter
of seconds, and vice versa [63].

A wind power plant’s output can also exhibit significant ramps up or down within
minutes [54]. For example, on December 29-30, 2008, wind power output experienced
95% drop in two hours in the Bonneville Power Administration (BPA) [80]. In addition,
severe weather events can cause wind speed to become dangerously high making operation
of wind turbines unsafe, forcing shutdown. More commonly, the output of a wind farm
ranges from 10% to 90% of nameplate capacity over a typical day and even the best wind
forecasting technologies are only able to predict wind power 24 hours ahead to within 20%
(mean-absolute error).

Given the prospect of such large disturbances arising from difficult-to-predict ramps in
wind or solar power output, the system operator must schedule costly reserve generation to
ensure the availability sufficient generating capacity necessary to maintain balance of gener-
ation and load in real time. Consequently, the timing of large wind and solar ramps in power
is a central problem, as it is critical to improving the efficiency of reserve procurement. In
our opinion, variability is the single most challenging obstacle to the large-scale integration
of variable renewable resources.
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Capital Cost: Wind and solar generation resources require significantly higher capital
investment than conventional fossil fuel based generators. The Energy Information Ad-
ministration estimates the levelized capital costs of onshore wind and solar photovoltaic
generation resources to fall to $83/MWh and $195/Mwh, respectively, by 2016 (in 2009
dollars) [37] – significantly higher than that of conventional coal ($65/MWh) and natural
gas conventional combined cycle ($17/MWh) [37]. Consequently, in the near term, subsidy
mechanisms will remain integral to spurring investment in renewable generating resources
such as wind and solar.

Limited Access to Transmission: As is apparent from Figure 1.4, areas of high quality
wind and solar energy tend to be distant from major load centers and, thus, have limited
access to the bulk transmission system. Consequently, the construction of new wind a solar
generation resources will require the construction of new high voltage transmission lines – a
costly proposal. Moreover, as the added transmission lines will be principally carrying wind
and solar power, they will likely be acutely underutilized as the the capacity factors of wind
and solar PV generation resources are approximately 34% and 25%, respectively [31].

Environmentalist Opposition: Ironically, there is growing opposition from environmental
conservation groups to the construction of large-scale wind farms in particular locations,
because of the potential collateral environmental damage to local wildlife habitats and
disruption of migratory patterns for certain avian species. For example, just recently, the
Central Huron Council in the Province of Ontario passed a resolution declaring a moratorium
on all current and future projects for the development of on and off-shore wind farms, until
an independent third party can guarantee that “human and animal populations are protected
from the direct and indirect negative effects of being in proximity to those wind-energy
facilities” [14] – an interesting contention pitting environmentalist against environmentalist.

The preceding points are all central issues that must be resolved in order to realize the
renewable energy penetration goals of various RPS portfolios. In the discussion to follow,
we will focus primarily on the impact of generator output variability on central system
operations and the corresponding implications to competitive trading of variable energy in
electricity markets.

1.2 The Variability Challenge

As indicated in the previous section, wind and solar power plants are inherently variable
in their power output. They are non-dispatchable, highly intermittent, and difficult to
forecast on horizons beyond five minutes. At levels of deep renewable penetration, these
generation variability characteristics will pose formidable challenges to the preservation of
instantaneous balance between supply and demand, while simultaneously respecting system
security constraints.
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In contrast to variable renewable generators, the majority of conventional thermal
generators in use today are fundamentally dispatchable and, to a large extent, predictable.
Nonetheless, the power system architecture and attending operations have been designed
to explicitly deal with the variability emanating from natural fluctuations in load and
unplanned contingency events such as branch and/or generation outages. Generally speaking,
imbalances arising between generation and load are compensated for by reserve generation
capacity procured by the independent system operator (ISO) through ancillary services (AS)
markets. The various aforementioned phenomena responsible for system imbalances occur
on differing time scales and thus require the procurement of reserve resources with a variety
of response capabilities [74, 85]. The subsequent cost of the procured reserve capacity is then
socialized among the participating participating load serving entities (LSE) based on each
LSE’s relative contribution to the total demand [47]. To a large extent, the current approach
to compensating variability amounts to a paradigm in which generation is tailored to follow
load. Given the relative success of the modus operandi, it is tempting to presume that the
added variability of renewable generation can be similarly compensated for with existing
reserve mechanisms. In fact, this is the approach taken by many balancing authorities within
the United States: all wind and solar power production is taken by the system operator and
the attendant variability is compensated for with existing reserve margins. As we will see in
the following section, this approach to renewable energy integration will become untenable
at deep penetration levels.
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Figure 1.2. (a) Plot of 31 consecutive daily wind power trajectories for aggregate wind power
production in the BPA balancing authority. The output is normalized to one by the aggregate
nameplate capacity of the wind farms. Source: BPA, 2008 (b) Histograms depicting simulated
projection of the increase in PJM regulating reserve requirements under 20% wind power penetration.
Source:NREL, “EWITS,” Final Report 2010.

6



1.2.1 Dealing With Variability Today
Today, wind and solar energy are assimilated into the grid through legislative mandates,
feed-in tariffs, lenient penalty pricing, guaranteed grid access, and/or construction subsidies.
Specifically, in California, the Participating Intermittent Renewable Program (PIRP) legis-
lation compels the independent system operator (ISO) to accept all produced wind power
subject to certain contractual constraints. This amounts to a system take-all-wind scenario in
which wind power is treated as a negative load and the subsequent increase in the variability
of net-load is absorbed by a portfolio of reserve generation capacity, whose cost is allocated
among the load serving entities (LSE). This socialization of added reserve costs among the
LSEs can be interpreted as an implicit subsidy for variability costs to participating wind
power producers. Accordingly, there are ongoing public policy and operational procedure
debates regarding the fair allocation of the costs of these increased reserves [100, 42].

Even at today’s modest levels of penetration, the added variability due to wind results in
systemic operational problems. For example, on February 26, 2008, the Electric Reliability
Council of Texas (ERCOT) had to declare an emergency load curtailment plan due in part
to an inaccurate forecast of wind power production [38]. The impact of intermittency and
inaccurate forecasting on reserve margins will only become more pronounced as wind
energy penetration increases [44, 45, 40]. In order to quantify this statement, several wind
integration studies have computed detailed estimates of the increase in reserve requirements
needed to compensate the added variability due to wind under a system-take-all wind
regime. For example, the 2010 EWITS report [40] by NREL projects that regulating reserve
requirements will increase by 1500 MW (on average) under a 20% percent wind energy
penetration scenario in the PJM interconnection (see Figure 1.2). Such an increase in reserve
requirements is unacceptable. It is too expensive. Ergo, it will rapidly become infeasible to
continue the implicit subsidization of the variability costs among the load serving entities.
Moreover, it severely mitigates the net greenhouse gas benefit of renewable energy, as
regulating reserves are normally supplied by fast-acting, fossil fuel based thermal generators
such as natural gas turbines. Clearly, the current strategy cannot scale.

1.2.2 Dealing With Variability Tomorrow
As renewable energy penetration increases, how must the assimilation of variable power
evolve, so as to minimize integration costs, while maximizing the net environmental benefit?
Clearly, strategies that mitigate additional reserve requirements will be an essential means to
this end. Such strategies will fundamentally fall into one of two categories. Those which (1)
lead to direct reduction of variability in generation and those which (2) utilize demand-side
flexibility to adapt to variability in generation.

In the near term, it is likely that wind and solar power producers will be faced with
increased exposure to market signals that incentivize reduction in output variability – a stark
contrast to the California Participating Intermittent Renewable Program (PIRP). For example,
in the United Kingdom, large wind power producers are forced to participate in conventional
wholesale electricity markets where they are subject to ex-post financial penalties for
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deviations from contracts offered ex-ante in forward markets [1] – thus eliminating the
implicit subsidy for variability costs. The implementation of imbalance penalty mechanisms
represents an initial departure from the system-take-all-wind approach. In response to
the financial risk emanating from uncertainty in wind power production, a rational wind
power producer will be forced to curtail its projected output, thus decreasing the amount of
variability that has to be compensated for with reserve generation by the system operator.
However, such a removal of the implicit subsidy for variability cost may result in significant
profit loss to the wind power producer. Consequently, it will become necessary for the wind
power producer to develop and evaluate strategies that aid in the mitigation of generation
variability. We refer to this as firming of variable renewable power. Potential approaches to
firming include:

• Improved Forecasting

• Storage

• Renewable Resource Aggregation

• Local Generation

A fundamental question arises in this setting: What is the marginal value of a given firming
strategy? For example, what is the subsequent increase in expected profit to a renewable
power producer per MWh of co-located storage capacity? What is the sensitivity of expected
profit to forecast uncertainty? Such a monetization of the aforementioned firming strategies
will play a central role in shaping investment decisions.

Firming mechanisms, alone, may prove impactful in the near term. However, if we
are to transition to a power system with >50% of the energy supply coming from variable
renewable resources, we will have to fundamentally rethink the way the electricity grid
is operated. In the long-term, we argue that new market systems and instruments to ex-
plicitly address the difficulties with variable generation are required. For example, wind
power forecast accuracy tends to steadily decrease with the shortening of the prediction
horizon below five hours. Hence, the creation of intra-day energy and ancillary service
markets (spanning the day-ahead and real-time markets) will introduce additional trading
opportunities to leverage on improved forecast accuracy on shorter horizons. In this manner,
renewable power producers will have the opportunity to incrementally offer their variable
energy in a sequence of intra-day markets – allowing for a more efficient balance of marginal
risk and return.

More radically, we envision that market systems will evolve to allow for price dif-
ferentiated quality of supply. Traditionally, the electric grid has been operated such that
generation is tailored to counteract the variability in load. Load is largely treated as inelastic.
However, there exists significant flexibility inherent to load that is currently not utilized. The
power requirements of many commercial and residential loads are such that a fraction of
instantaneous power demand at any given moment is inherently deferrable in time (subject
to certain deadlines on delivery). Examples include thermal systems such as refrigerators,
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water heaters, HVAC systems, and, assuming mass adoption of plug-in electric vehicles,
batteries. Given the inherent deferrability of such loads, certain customers may be willing
to accept varying degrees of interruptible power supply in exchange for a lower price, all
without experiencing significant loss of utility. Clearly, there is an opportunity and need to
design novel market systems that provide flexible consumers the option to purchase multiple
quantities of energy – with varying degrees of reliability – from variable generators. Initial
work, along these lines, on efficient pricing of interruptible power service contracts can be
found in Tan et al. [98]. Further, in addition to participating in such novel market systems,
flexible load devices – if intelligently controlled in aggregate – may be capable of providing
various ancillary services (e.g., regulation, load-following) to the system operator at a much
lower cost than conventional reserve generation, [24].

As the penetration of variable renewable generation continues to increase, we must
necessarily transition to a modus operandi in which load is elevated to the equivalent status
of dispatchable generation. In this way, load can be tailored to absorb variability in supply.

1.3 Summary of Contributions and Dissertation Organi-
zation

In this dissertation, we analyze the setting in which a wind power producer is forced to
participate in a two-settlement wholesale market for energy, where it faces financial penalties
for unscheduled deviations from offered contracts. As wind power production is inherently
variable, we identify and analyze various firming mechanisms that in aid in mitigating power
output variability so as to attenuate market risk, while increasing expected profits. Firming
mechanisms considered in this dissertation include improved forecasting, energy storage,
local generation, and aggregation strategies. The dissertation is organized as follows.

In Chapter 2, Electricity Markets Background , we provide the reader with a brief
introduction to electricity markets, with an emphasis on wholesale markets for energy. We
consider a two-settlement market system operated as a centrally managed power exchange
and provide a brief description of the welfare properties associated with locational marginal
pricing.

In Chapter 3, Selling Random Energy in a Two-Settlement System, we explore how
an independent wind power producer might optimally offer it’s variable power so as to
maximize its expected profit in a two-settlement market energy. We start with a general
stochastic model for wind power production and a model for a perfectly competitive two-
settlement market. With these models, we derive explicit formulae for optimal contract
offerings and the corresponding optimal expected profit – results that make explicit the
trade-off between imbalance prices and the need to spill some of the wind energy to increase
the probability of meeting the contract. Our analytical characterization of the optimal
contract offering is a generalization of the quantile rule presented in [81, 32], as it holds
on the entire space of expected imbalance prices. We also provide analytical expressions
for optimal contract offerings in a multi-period setting in which the WPP has a recourse
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opportunity to adjust its DA commitment in an additional intra-day market – offering greater
analytical tractability than the LP characterization in [68]. Moreover, we show that extra
information from meteorological models and data increases expected optimal profit. We
also make explicit the relationship between penalty for contract shortfall and the marginal
impact of wind uncertainty on optimal expected profit. For a uniform characterization of
wind uncertainty, we show that the optimal expected profit is affine in the forecast standard
deviation. We consider the scenario in which the WPP has installed a fast-acting co-located
thermal generator to “hedge” against potential shortfalls corresponding to offered contracts
and derive a formula for optimal contract size. In this setting, we also explore the role of
local generation in managing the operational and financial risk driven by the uncertainty
in generation and obtain analytical expressions for marginal profits from investing in local
generation. The formulae make explicit the relationship between price signals and the value
of various firming strategies. A treatment of energy storage in this context is discussed in
Chapter 5.

In Chapter 4, Wind Energy Aggregation and Profit Sharing, we explore the extent to
which a group of N independent wind power producers can exploit the statistical bene-
fits of aggregation and risk sharing by forming a willing coalition to pool their variable
power to jointly offer the aggregate output as single entity into a forward energy market.
Assuming that coalitional bidding results in profit increase beyond that achievable through
individual market participation, a central question arise in this setting. What are fair sharing
mechanisms to allocate the additional profit among the coalition members? We formalize
this question in the setting of cooperative games using tools from coalitional game theory
[77, 79]. We define the value of a coalition of WPPs as the maximum expected profit
achievable joint bidding of the aggregate wind power in a two-settlement market. Using this
value function, it can be shown that, except for degenerate cases, coalition formation always
results in a net increase in expected profit and that there always exist stabilizing rules for
sharing the profit. Moreover, via a counterexample, we show that this game is not convex and
that the famous Shapley mechanism is not satisfactory. Alternatively, we propose the use of
the imputation, which minimizes the worst-case dissatisfaction (excess), as a profit sharing
mechanism and show that it is satisfactory for every coalition member in that it satisfies
certain fairness axioms. As the value function, associated with our coalitional game for
wind energy aggregation, is defined in the metric of optimal expected profit, an imputation
belonging to the corresponding core, represents the payment that each wind power producer
should receive in expectation. In practice, however, the realized profit for will vary day
to day, as the profit is inherently a random variable given its explicit dependence on the
stochastic wind power production and imbalance prices. To account for this issue, in Section
4.4.3 we propose a daily payoff allocation mechanism to distribute the realized profit among
the coalition members, such that the payment that each member receives – averaged over an
increasing number of days – approaches an imputation in the core, almost surely.

In Chapter 5, The Role of Co-located Energy Storage, we extend the results in Chapter
3 by exploring the extent to which co-located energy storage can be used to mitigate the
inherent financial risk associated with contract imbalances emanating from fluctuations in
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wind power output. Our goal is to formulate and solve problems of optimal contract sizing
for wind power producers with dedicated co-located electric energy storage capacity. Using
a simple first order model for the storage system dynamics and a stochastic model for wind
power production, we analyze the impact of optimal storage operation on contract sizing and
profit. We show that the problem of determining optimal contract offerings for WPP with
co-located energy storage reduces to convex programming. Moreover, we also show that
the expected profit acquired by the wind power producer for optimal contract offerings is
concave, non-decreasing in the parameter of energy storage capacity – revealing that greatest
marginal benefit from energy storage is derived for a small amount of storage capacity. In
fact, we show that the marginal optimal expected profit with respect to the energy storage
capacity can be analytically computed for small capacities – an expression that is closely
related to the spectral properties of the underlying wind process. Such results provide a
mechanism for empirical calculation of return on investment – an important quantity, as the
capital cost of electrical energy storage can be quite large
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Figure 1.3. Breakdown of U.S. Energy consumption in 2009. A quad is 1015 BTU, or 1.055 1018
joules. Source:LLNL, 2010
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Figure 1.4. Wind power and solar energy density maps for the United States. Source:NREL, 2004.
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CHAPTER 2

Electricity Markets Background

2.1 Introduction

The deregulation of the electric power industry in various countries has led to the devel-
opment of open markets through which electric power and energy are traded. The design
of contemporary electricity markets is based on the assumption that both electrical power
and energy can be treated as a commodity, as electrons are inherently uniform across sup-
pliers. However, unlike traditional commodities (e.g., agricultural products, petroleum,
copper, etc.), electrical energy cannot be efficiently stored in large quantities and its phys-
ical transferal between suppliers and consumers is constrained by the physical laws (e.g.,
Kirchoff’s Current and Voltage Laws) that govern the electrical network through which
it flows. Moreover, reliable and safe operation of the electricity grid necessitates nearly
instantaneous balance of power supply (generation) and demand (load) subject to system
capacity constraints. These unique characteristics and constraints imposed by the underlying
physical system play a central role in the organization of electricity markets.

2.2 Fundamentals of Electricity Markets

Generally speaking, an electricity market is defined as a system through which suppliers (i.e.,
generators) and consumers (i.e., load-serving entities) – through offers to sell and bids to
buy energy – enter into contractual obligations for the physical production and consumption
of power over pre-specified intervals of time at their respective buses (e.g., typical interval
lengths = 1 hr, 15 min, 5 min). The majority of these transactions within a particular control
area are mediated – to varying degrees – by an independent system operator (ISO) whose
primary function is to operate the transmission system and maintain instantaneous balance
between generation and load across the control area. These transactions can be executed
in various market types and occur with various leads times on delivery – from years to
minutes. The market types range over the spectrum – from decentralized bilateral trading
structures to centrally mediated power exchanges and pools. Generally, decentralized
markets tend to exhibit greater flexibility in contract specification and price determination,
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while centrally mediated markets permit more rapid, lower cost transactions with increased
price transparency. In practice, many electricity market systems are comprised of a mix
these differing market types enacted at different timescales.

In addition to energy markets, the ISO also implements and manages ancillary service
(AS) markets to procure reserve capacity from various system resources to ensure that the
system remains in continuous balance despite uncertainty in demand and the occurrence of
unplanned contingency events such as transmission line loss or generation failure. These
inherently random phenomena result in system imbalances that occur at differing time-scales
with varying degrees of uncertainty – requiring the ISO to procure a broad range of ancillary
services to cope with this heterogeneity in variability. These include: regulation, load-
following, spinning reserve, non-spinning reserve, voltage, reactive power, and installed
capacity. Alongside the AS markets for reliability, the ISO also manages markets for the
trading of transmission congestion and electricity derivatives with the aim of improving
liquidity and efficiency of spot markets.

In the sequel, we will focus our exposition on the structure and functioning of energy
markets in a two-settlement system. For a more detailed description of AS and derivatives
markets, see [57, 95].

2.2.1 Bilateral Markets
In a bilateral market, two parties (a seller and a buyer) independently negotiate a price,
quantity, and auxiliary conditions for the physical production and consumption of energy
at their respective bus locations over a future interval of time. Because of the significant
time-overhead associated with contract negotiation, bilateral markets are not well suited
for near real-time operation and balancing. Lead times on delivery for bilateral contracts
range from hours to years. From the perspective of the parties involved, the primary benefit
of bilateral trading resides in the flexibility in negotiation of the contract terms – price in
particular. However, as the transmission network is capacity constrained, these contracted
power quantities must be communicated to the ISO to be approved and incorporated into
operational schedules and planning in order to maintain secure and balanced operation of
the electrical network. For example, the ISO may have to limit the amount of power that
a generator can inject at a particular bus, because of insufficient transmission capacity. In
certain bilateral markets, two parties entering into a bilateral contract can purchase physical
transmission rights (PTR) at a public auction to guarantee the right to transmit a specified
amount of power through various transmission links in the network over a particular time
interval. A potential drawback is that PTRs can lead the exercise of market power by their
owners. For a detailed analysis of PTRs, see [52, 57].

2.2.2 Power Exchange Markets: Single Bus Formulation
In contrast to bilateral markets, a centrally managed power exchange market consists of
numerous buyers and sellers participating in a single market in which bids and offers for
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energy are cleared and settled by the ISO in the form of a uniform price auction [95]. To
delineate the basic operation of a power exchange, consider a simplified power network
in which all generators and loads are connected to a single bus – or equivalently, a power
network with a lossless transmission system of infinite capacity. Working under this idealized
setting, we now delineate the basic operation and properties of a power exchange.

Market Bids and Offers

We consider a system with Ns ∈ N and Nc ∈ N suppliers and consumers, respectively.
Each supplier submits to the ISO, an offer curve relating the minimum price p ($/MWh)
required to produce at a power level x (MW) over a pre-specified interval of time. Similarly,
each consumer submits to the ISO, a bid curve relating the maximum price p ($/MWh)
that the consumer is willing to pay for the consumption of power at a level x (MW) over a
pre-specified interval of time. These offer and bid curves can be interpreted as the inverse of
the market participants’ supply and demand functions, which are defined as follows.

Definition 2.2.1 (Demand function). For each consumer n ∈ Nc, the demand function

Dn : R+ −→ [ 0, dn ]

is a monotone, non-increasing function that relates the quantity of power x ∈ [0, dn] that
consumer n is able and willing to purchase at a price p ∈ R+, where dn ∈ R+ represents
the maximum consumption capacity. The inverse demand function,

D−1n (x) = sup{ p ∈ R+ | Dn(p) ≥ x},
is correspondingly defined as the maximum price p that consumer n is willing to pay for a
quantity of power x.

Definition 2.2.2 (Supply function). For each supplier n ∈ Ns, the supply function

Sn : R+ −→ [ 0, sn ]

is a monotone, non-decreasing function that relates the quantity of power x ∈ [0, sn] that
supplier n is able and willing to sell at a price p ∈ R+, where sn ∈ R+ represents the
maximum production capacity. The inverse supply function,

S−1n (x) = inf{ p ∈ R+ | Sn(p) ≥ x},
is correspondingly defined as the minimum price p at which supplier n is willing to sell a
quantity of power x.

Remark 2.2.3. (Block Bids and Continuity). It is important to note that in many electricity
markets, the suppliers and consumers are required to provide their offer and bid curves in
a block format that consists of, at most, M price/quantity pairs [93]. This block format
amounts to a piecewise constant approximation of the inverse supply and demand functions.
However, from the perspective of our work, it suffices to restrict our attention to continuous
supply and demand functions, as issues arising from discontinuity do not pertain materially
to our analysis. �
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Market Clearing

The ISO then combines these bids and offers to construct aggregate supply and demand
curves, respectively. The aggregate supply curve is constructed by stacking energy offers
in order of increasing offer price. The aggregate demand curve is similarly constructed by
stacking energy bids in order of decreasing bid price. Equivalently, the aggregate supply
S(p) and aggregate demand D(p) curves can be constructed as sums of the individual supply
and demand functions, respectively.

S(p) =
Ns∑
n=1

Sn(p) (1)

D(p) =
Nc∑
n=1

Dn(p) (2)

Finally, the ISO determines a price-quantity pair (p∗, x∗) to clear the market such that the
the quantity that consumers are willing to consume is equal the quantity that suppliers are
willing to produce, in aggregate.

Definition 2.2.4 (Market equilibrium). A market clearing price or equilibrium price is
defined as a price p∗ at which the quantity that consumers are willing to consume is equal to
the quantity that suppliers are willing to produce. An equilibrium price-quantity pair (p∗, x∗)
is given by

p∗ ∈ { p ∈ R+ | D(p) = S(p) } (3)
x∗ ∈ { x ∈ R+ | D−1(x) = S−1(x) } (4)

All suppliers that submitted offers at prices at or below the MCP are scheduled. Conversely,
all consumers that submitted bids at prices at or above the MCP get scheduled. In accordance
with a uniform price auction, all parties scheduled pay or are paid at the MCP.

Assuming strictly monotone supply {Sn} and demand {Dn} functions, individual con-
sumption y∗ ∈ RNc and supply z∗ ∈ RNs quantity allocations, associated with the market
clearing price p∗ in equation (3), are given by

y∗n = Dn(p∗), for all n ∈ {1, · · · , Nc} (5)
z∗n = Sn(p∗), for all n ∈ {1, · · · , Ns}. (6)

It is straightforward to see that the allocations (y∗, z∗) clear the market at the aggregate
quantity allocation x∗, i.e.,

Nc∑
n=1

y∗n =
Ns∑
n=1

z∗n = x∗.
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2.2.3 Welfare Properties of the Market Clearing Equilibrium
We now show that, under the additional assumption of a perfectly competitive market, the
equilibrium price-quantity pair (p∗, x∗) as defined by equations (3) and (4) constitutes a
competitive equilibrium and, in accordance with the first welfare theorem of economics,
maximizes the total social welfare of the suppliers and consumers. To aid in the formalization
of this statement, we now present a set of definitions. Generally speaking, a perfectly
competitive market describes a market in which none of the participants are large enough
to set the price. In such a market environment, participants are assumed to behave as price
takers.

Definition 2.2.5 (Price taker). A market participant is defined to be a price taker if he treats
the market price as being independent of his bid/offer actions.

Definition 2.2.6 (Consumer utility). For each consumer n ∈ {1, · · · , Nc}, we define the
utility Un(y) derived from the consumption of a quantity of power y as a continuous, concave,
monotone non-decreasing function, Un : R+ −→ R+.

In order to derive consumer demand preferences {Dn} under the presumption of a
perfectly competitive market, we must first characterize the net benefit to each consumer
derived from purchasing a particular quantity of power at a price p – commonly referred to
as consumer surplus.

Definition 2.2.7 (Consumer surplus). For each consumer n ∈ {1, · · · , Nc}, the associated
surplus hn is defined as the utility Un(y) derived from consumption of power at a level
y ∈ R+, less the cost of purchasing that quantity at a price p ∈ R+. More specifically,

hn(y, p) = Un(y) − py. (7)

We are now in a position to compute each consumer’s (n = 1, · · · , Nc) demand function
Dn. It follows that, under the supposition of a perfectly competitive market and rational
behavior, consumer n will act as a price taker and will demand a quantity y∗(p) to maximize
his surplus hn for a given price p.

Dn(p) := y∗(p) = arg max
y∈R+

hn(y, p). (8)

To simplify analysis, we assume no upper constraint on consumption capacity (i.e., dn =∞
for all n). It follows from concavity of hn that the a demand quantity y ∈ R+ is optimal if
and only if the following first order condition is satisfied:

(d− y)

(
dUn
dy
− p
)
≤ 0 for all d ∈ R+. (9)
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Further, assuming that the consumer surplus hn exhibits a stationary point on its domain
R+, we have that in a competitive market setting, consumer n will demand energy up to the
point at which the buy price p equals his marginal utility of consumption dUn/dy – yielding
an inverse demand function given by

D−1n (y) =
dUn
dy

. (10)

In an analogous fashion, the derivation of generator supply schedules {Sn} requires the
characterization of the net benefit derived from producing and selling a particular quantity
of power at a price p.

Definition 2.2.8 (Supplier production cost). For each supplier n ∈ {1, · · · , Ns}, we define
the cost Cn(z) of producing a quantity of power z as a continuous, convex, monotone
non-decreasing function, Cn : R+ −→ R+.

Definition 2.2.9 (Supplier profit). For each supplier n ∈ {1, · · · , Ns}, the profit πn derived
from producing and selling a quantity of power z is defined as the revenue acquired from
selling a quantity of power z at a price p less the cost Cn(z) of producing that quantity of
power. More specifically,

πn(z, p) = pz − Cn(z). (11)

For a detailed description of generator production costs, see [59]. In accordance with
the assumption of a perfectly competitive market, a rational supplier n will sell a quantity
z∗(p) to maximize his profit πn for a given price p. More specifically, the supply schedule is
given by

Sn(p) := z∗(p) = arg max
z∈R+

πn(z, p). (12)

Again, in the interest of technical clarity, we assume no upper bound on production capacity
(i.e., sn =∞ for all n). This assumption can be easily relaxed, at the expense of increased
notation. It is straightforward to prove concavity of the profit function πn in the variable z.
Hence, it follows that the supply quantity z ∈ R+ is optimal if and only if

(s− z)

(
p− dCn

dz

)
≤ 0 for all s ∈ R+. (13)

For a profit function πn exhibiting a stationary point on its domain R+, we have that in
a competitive market setting, supplier n will supply energy up to the point at which the
sell price p equals his marginal cost of production dCn/dz – resulting in an inverse supply
function given by

S−1n (z) =
dCn
dz

. (14)
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Definition 2.2.10 (Competitive equilibrium). The quantity allocations z∗ =
[
z∗1 , · · · , z∗Ns

]
∈

RNs
+ , y∗ =

[
y∗1, · · · , y∗Nc

]
∈ RNc

+ and price p∗ ∈ R+ constitute a competitive equilibirium
if the following conditions are satisfied:

(a) (Market clearing) The total consumption of power by consumers is equal to the total
production of power by suppliers, i.e.,

1T z∗ = 1Ty∗.

(b) (Individual profit maximization) For each supplier n, the allocation z∗n is profit
maximizing (12) with respect to the price p∗.

(c) (Individual surplus maximization) For each consumer n, the allocation y∗n is surplus
maximizing (8) with respect to the price p∗.

Remark 2.2.11. (Competitive Equilibrium and Total Social Welfare). It is straightforward
to see that under the assumption of a perfectly competitive market, the market clearing
equilibrium defined by the price p∗ ∈ R+ (3) and allocations y ∈ RNc

+ (5) and z ∈ RNs
+

(6) constitutes a competitive equilibrium. In addition, as indicated by Theorem 2.2.13,
said market equilibrium also maximizes the total social welfare defined as the sum of the
consumers’ surplus and suppliers’ profit. �

Definition 2.2.12 (Social Welfare). The total social welfareW is defined as the sum of the
consumers’ surplus and suppliers’ profit. More specifically,

W(p, z, y) =
Nc∑
n=1

hn(yn, p) +
Ns∑
n=1

πn(zn, p) (15)

where y ∈ RNc
+ and z ∈ RNs

+ are vector representations of individual consumer consumption
and supplier production quantities.

Theorem 2.2.13. (First welfare theorem of economics). Assuming a perfectly competitive
market, the market equilibrium defined by the price p∗ ∈ R+ (3) and allocations y ∈ RNc

+ (5)
and z ∈ RNs

+ (6) maximizes the total social welfare subject to a market clearing constraint,
i.e.,

(p∗, z∗, y∗) = arg max
p,z,y

W(p, z, y) subject to 1T z = 1Ty (16)
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Proof: The result follows immediately when the first order conditions associated with
welfare maximization problem (16)

∂W
∂zn

= −dCn
dzn

+ p = 0 for n = 1, · · · , Ns (17)

∂W
∂yn

=
dUn
dyn

− p = 0 for n = 1, · · · , Nc (18)

∂W
∂p

= 1T z − 1Ty = 0 (19)

are combined with our behavioral assumptions of a perfectly competitive market, in which
consumers and suppliers were shown to bid and offer their marginal utilities (10) and pro-
duction costs (14), respectively. Note that the equilibrium price p∗ is given by the KKT
multiplier associated with the market clearing constraint 1T z − 1Ty. A more detailed proof
can be found in Chapter 5 of [102]. �

Clearly then, under the behavioral assumption of a competitive market, the independent
system operator (ISO) – in clearing the market in such a way – is implicitly maximizing the
total social welfare of the generators (suppliers) and loads (consumers). In the following
section, we consider an extension of the total social welfare formulation to the network
setting, in which generators and loads are located at different buses connected by a lossy,
capacity constrained transmission network. Essentially, the network capacity constraints
limit the volume of energy that can be traded between generators and loads connected
to distinct buses in the network. This, coupled with heterogeneous generator production
cost functions, naturally results in the marginal cost of production to depend on bus lo-
cation. Consequently, many system operators (e.g., CAISO, PJM, MISO) have adopted
the market framework of locational marginal pricing (LMP) or nodal pricing [95] – a
pricing mechanism that efficiently prices the incremental demand of energy at each bus in
the network while accounting for transmission constraints and loss effects. The primary
idea behind LMPs is as follows. Consider a lossless power network in which some of the
transmission lines have constraints on the permissible amount of power flow. Now, consider
two distinct nodes in the network A and B and two scenarios where demand at either of
these nodes increases incrementally (by 1 MWh). The least cost generation increase to
meet the increased demand at A vs. B may well be different as the cheapest producer for
supplying increased demand at A may be different from that for B. The incremental cost of
supplying an additional MWh of energy at a given node is called the locational marginal (or
nodal) price at that node. In the next Section 2.2.4, using a general model for active power
flow, we systematically describe how nodal prices are computed in a power exchange and
provide a simple argument demonstrating efficiency of such prices.

Remark 2.2.14. (Ancillary Services). Beyond the procurement of energy to satisfy bulk
load forecasts, the system operator is also obliged to procure ancillary services (AS) to hedge
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against uncertainty emanating from fluctuations in load/supply and unplanned contingency
events such as branch and/or generator outages. These various phenomena responsible
for system imbalances occur on differing time scales and thus require the procurement of
reserve resources with a variety of response capabilities [74, 85]. The California Independent
System Operator (CAISO), for example, co-optimizes the procurement of energy with three
ancillary service resources in the day-ahead forward market: regulation (dispatched every
four seconds under automatic generation control), spinning reserve (available in ten minutes
for synchronized resources) , and non-spinning reserve (available in ten minutes). These AS
resources are priced as call options in the sense that participating generators receive ex-ante
a capacity payment for making available a certain amount of power capacity (MW); if said
generators are dispatched in real-time by the system operator, they receive an additional
energy payment proportional to the amount of energy (MWh) they provide. Moreover,
because certain dispatchable generators can offer both energy and ancillary services, there
exists arbitrage opportunities between energy and AS markets. However, as much of the
analysis in this dissertation is concerned with the competitive integration of wind – an
inherently variable resource not suitable for AS – we’ll focus on energy markets as the
primary medium for integration. �

2.2.4 Power Exchange Markets: Locational Marginal Pricing
The previous characterization of a power network with a lossless transmission system of
infinite capacity is useful for basic intuition, but is unrealistic. A more general networked
formulation of the power exchange market involves generators and loads participating
in the market at different buses connected by lossy capacity constrained transmission
lines. In a manner analogous to the single bus setting described above, the ISO forms
aggregate supply and demand curves, based on generator offers and load bids, at each bus
in the network. Using a social welfare maximization approach, the ISO computes optimal
consumption/production decisions and a nodal price at each bus in the network.

Remark 2.2.15. (Centralized vs. Decentralized). Take note that a centrally managed power
exchange or pool, in which the ISO centrally determines energy prices, is not the only path
to efficient nodal pricing. Decentralized multilateral trading has also been proven to result
in efficient nodal prices under certain assumptions [106]. However, in practice, a centrally
managed power exchange can be cleared more rapidly than a decentralized bilateral market,
which necessarily implies reduced minimum lead times on delivery of power for real-time
markets. Additionally, the centralized approach leads to reduced complexity of trading
for buyers and sellers, while increasing the burden on the ISO. For a detailed comparison
between decentralized bilateral and centralized power exchange trading, see [95, 57]. �

Power Network Model

Consider the setting in which generators and loads are connected to differing buses in a
capacity constrained transmission network. In our analysis, we will consider an AC power
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network with (N + 1) ∈ N buses connected by M ∈ N transmission lines. Moreover, we
assume that the system is operating in sinusoidal steady state, where the voltage phasor at
each bus is denoted by Vnejθn for n = 0, 1, · · · , N . We denote bus 0 as the slack bus and
set its voltage phasor angle to θ0 = 0. The array of all remaining bus voltage phasor angles
is denoted by

θ =
[
θ1, · · · , θN

]
∈ RN .

In an analogous manner to [106], we restrict our attention to active power flows by assuming
the bus voltages {Vn} to be held constant through unlimited reactive power support and
assume lossless lines [53]. Accordingly, the active power flow from Iij node i to node j is i
is equal to

Iij = ViVjYij sin(θi − θj), (20)

where Yij ∈ R+ is the electrical admittance of the line connecting node i and j. Note that
Yij = −Yji. Moreover, we take Iij to be positive if power flows from node i to j. It follows
then, that we can express the active net power injection at each bus as

In =
N∑
i=0

Ini =
N∑
i=0

VnViYni sin(θn − θi) for all n = 0, 1, · · · , N. (21)

The sign convention is such that In is positive if the active power generation exceeds load at
bus n. The array of all net power injections is denoted by the vector

I =
[
I0, I1, · · · , IN

]
∈ RN+1.

Remark 2.2.16. Note that only N of these equations are independent, because of the
network balance constraint

∑N
n=0 In = 0. �

We additionally assume that the active power flow across a line connecting node i and node j
cannot exceed the capacity lij = lji ∈ R+ – a constraint which is predominantly determined
by the line’s thermal limitation. Accordingly, we express the thermal capacity constraint on
each line as

Iij = ViVjYij sin(θi − θj) ≤ lij for all i, j = 0, 1, · · · , N. (22)

Working within our assumption of unlimited reactive power support [53], for the remainder
of the section, we set bus voltage magnitudes to Vn = 1 for all n, without loss of generality.
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Consumption Model

In our formulation of the power exchange market, we treat the consumers as perfectly
inelastic. In other words, consumption decisions are independent of price – a characteristic
feature of many market systems. As a result, we denote the aggregate active power demand
at each bus in the network as

Ln ∈ R+, for all n = 0, 1, · · · , N.

Production Model

Although there may be several generators connected to each bus, without loss of generality
we consider active power production in aggregate at each bus in the network. Let Cn :
R+ −→ R+ denote the aggregate cost of active power production at bus n. Denote the
active power produced at bus n by xn ∈ R+. The array of active power injections across all
buses in the network is denoted by the vector

x =
[
x0, x1, · · · , xN

]
∈ RN+1

+ .

It follows then that the net injection at bus n is given by In = xn − Ln.

Total Social Welfare and Locational Marginal Pricing

As consumer active power demand is treated as perfectly inelastic to variations in price and
fixed at {Ln | n = 0, 1, · · · , N}, it follows that consumer surplus is infinite for any choice
of market price. Consequently, aggregate consumer surplus is omitted from total social
welfare objective. It follows that the social welfare objective is given by the total cost of
producing active power sufficient to satisfy the inelastic load. More specifically, the social
welfare associated with a given production allocation x is given by

W(x) = −
N∑
n=0

Cn(xn) (23)

The independent system operator’s (ISO) objective is to maximize total social welfare (or
equivalently, minimize total production costs) subject to power balance (21) and transmis-
sion capacity (22) constraints.

min
x,θ
−W(x) :

{
xi − Li =

∑N
j=0 Yij sin(θi − θj), for all i = 0, · · · , N

Yij sin(θi − θj) ≤ lij, for all i, j = 0, 1, · · · , N
(24)
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Note that were are omitting (N−1) contingency based constraints. In its more general form,
this nonlinear programming (NL) problem is referred to as security constrained economic
dispatch (SCED) or optimal power flow (OPF).

Now, if we consider the Karush-Kuhn-Tucker (KKT) optimality conditions associated
with NL programming problem (24) in conjunction with our assumption of a perfectly
competitive market, we can readily derive a set of allocations and prices that comprise a
competitive equilibrium. The Lagrangian associated with problem (24), is given by

L(x, θ, λ, µ) = (25)
N∑
i=0

Ci(xi) + λi

[
N∑
j=0

Yij sin(θi − θj)− xi + Li

]
+

N∑
i,j=0

µij [Yij sin(θi − θj)− lij] .

It follows that if (x∗, θ∗) represent a local minimum satisfying some regularity conditions
[19], then there exist KKT multipliers (λ, µ) satisfying:

Stationarity
dCi(x

∗
i )

dxi
− λi = 0 (26)

N∑
j=0

Yij cos(θ∗i − θ∗j )[λi − λj + µij − µji] = 0 (27)

Primal feasibility xi − Li =
N∑
j=0

Yij sin(θ∗i − θ∗j ) (28)

Yik sin(θ∗i − θ∗k) ≤ lik (29)
Dual feasibility µik ≥ 0 (30)

Complementary slackness µik [Yik sin(θ∗i − θ∗k)− lik] = 0 (31)

for all i, k = 0, · · · , N .

Remark 2.2.17. (Competitive Equilibrium). Under the assumption of a perfectly competi-
tive market, each supplier will behave as a price taker and will necessarily offer its marginal
production cost as its supply function to the ISO. Hence, it follows from the stationarity
condition (26) that the quantity x∗i maximizes supplier i’s profit with respect to the price
given by the KKT multiplier, λi, associated with the corresponding nodal power balance
constraint (21) at bus i. It follows then that the quantity allocation x∗ and nodal prices given
by the associated KKT multipliers {λi} comprise a competitive equilibrium. Not that the
competitive equilibrium is not necessarily unique. �

Remark 2.2.18. (Efficiency). If (x∗, θ∗) represents a global minimum, then such a price-
quantity allocation (x∗, θ∗, λ) is also an efficient equilibrium – assuming the generators offer
up their true marginal costs to the system operator. We don’t consider issues of global

25



optimality here. See [97] for analytical characterizations of power network topologies that
guarantee a zero duality gap. �

Remark 2.2.19. (Congestion Effects). If for any local minimum (x∗, θ∗), the line loading
constraints are non-binding for all lines – i.e., Yij sin(θ∗i − θ∗j ) < lij for all i, j – then
then corresponding KKT multipliers {µij} are necessarily zero by the complementarity
slackness condition. It follows then by the stationarity condition (27) that the multipliers
{λi} associated with the power balance constraints are all equal:

λ0 = λ1 = · · · = λN

In other words, in an uncongested network, the nodal prices are uniform. However, a single
congested line can lead to different prices at each node in the network. �

2.3 The Two-Settlement System

Throughout much of the dissertation, we’ll be exploring how a variable wind power producer
might participate in conventional electricity markets alongside traditional dispatchable gen-
eration. To structure our analysis, we consider a competitive two-settlement energy market
operated as a centrally managed power exchange employing a nodal pricing mechanism
[95] described in the previous section. Generally, the two-settlement structure consists of
two ex-ante markets – a day-ahead (DA) forward market and a real-time (RT) spot market –
in which generators can offer power for sale with various lead times on delivery. Ex-post,
an imbalance settlement mechanism is employed to penalize uninstructed deviations from
contracts scheduled ex-ante.

2.3.1 Day-Ahead Market
The DA market permits suppliers to submit offers to sell energy for delivery the following
day as constant power over time intervals, typically, of length one hour. As the supplier must
submit an individual offer for each hour of the following day, accepted offers are scheduled
as constant power levels over their corresponding hour-long time intervals. Note that in
the absence of energy storage capabilities for possible price arbitrage, the decision of how
much constant power to offer over any individual hour-long time interval is independent
of the decision for every other time interval. However, the presence of generator ramping
constraints, start-up costs, and no-load costs result in an inter-temporal coupling of generator
production cost functions across contract intervals. For a discussion of such effects on
competition in the DA forward market, see [95].

Depending on the region, the DA market closes for bids and offers by 10 AM and clears
by 1 PM on the day prior to the operating day. We denote the nodal clearing price in the DA
forward market at the bus of interest as p1 ∈ R+ ($/MWh).
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2.3.2 Real-Time Market
As the offers submitted to the DA market are cleared well in advance of the operating day,
a real-time (RT) spot market is employed to ensure the balance of supply and demand in
real-time. Consequently, market participants can adjust their DA schedules based on current
(and more accurate) supply, load, and price forecasts. The RT market is cleared five to 15
minutes before the operating interval, which is on the order of five minutes. We denote the
nodal clearing price in the RT market at the bus of interest as p2 ∈ R+ ($/MWh).

2.3.3 Ex-Post Settlement
The resulting contracts are financially binding and are subject to imbalance penalties for
uninstructed deviations. For those market participants who deviate from their scheduled
transactions agreed upon in the ex-ante markets, the independent system operator (ISO)
normally employs an ex-post settlement mechanism to compute imbalance prices for positive
and negative deviations from the generator’s offered contract. Generally, the pricing scheme
for penalizing contract deviations is a function of the energy imbalance of the control area as
a whole and the spot price of balancing energy in the RT market. For example, if the overall
system imbalance is negative, those power producers with a positive imbalance with respect
to their particular schedules will receive a more favorable price than those producers who
have negatively deviated from their schedules, and vice-versa. Depending on the region,
imbalance prices may be symmetric or asymmetric. Negative deviations are charged at a
price q ∈ R ($/MWh) and positive deviations are charged at price λ ∈ R ($/MWh). The
imbalance prices (q, λ) are assumed unknown during the DA forward market and are not
revealed until the RT spot market, on which they are based, is cleared.

2.3.4 Profit Criterion
The profit derived by a wind power producer (WPP) participating in such a two-settlement
market system is comprised of revenue extracted from the ex-ante sale of energy in the DA
and RT markets less the ex-post penalties incurred for deviating from contracted forward
positions. The recourse opportunity afforded by the RT market allows the WPP to more
effectively manage quantity risk by leveraging improved forecasts to incrementally offer a
cumulative contract C = C1 + C2 across the DA and RT markets. More specifically, the
WPP initially offers a constant power contract C1 at a price p1 ≥ 0 in the DA market. In the
successive RT market, the WPP can leverage improved forecasts of then ensuing wind power
production to provide an additional offer C2 at a price p2. A basic assumption that we’ll
maintain throughout the dissertation, is that the wind power producer is taken to behave as a
price taker. This assumption is reasonable as the individual WPP capacity is assumed small
relative to the whole market. Moreover, we assume that the WPP has a zero marginal cost
of production. It follows then that the profit Π derived from a contract offering (C1, C2), is
given by

27



Π(C1, C2) =

∫ tf

t0

p1C1 + p2C2 − q[C1 + C2 − w(t)]+ − λ[w(t)− C1 − C2]
+ dt, (32)

where [t0, tf ] denotes the time interval over which the contracted power C1 + C2 is to
be delivered and w(t) denotes the realized wind power at time t. Notice that the profit
criterion is inherently uncertain as is depends on the realization of wind power production
and imbalance prices, which are assumed unknown during ex-ante market transactions.
Much of the analysis to follow in the dissertation will be based on variants of (32).

Remark 2.3.1. (Notation). Note that the collection of prices (p1, p2, q, λ) are, in LMP-based
markets, bus specific. However, as we will be taking the perspective of a single price taking
producer participating at a single bus, we will omit the bus index in the price notation. �
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CHAPTER 3

Selling Random Energy in a Two-Settlement
System

3.1 Introduction

Global warming, widely regarded as one of the most critical problems we face, has led to
great emphasis on clean renewable energy resources such as solar, wind, and geothermal.
Many nations have set ambitious goals for increasing the share of renewable energy in
electric power generation – wind energy is expected to be a major contributor to the
realization of these goals. However, at deep penetration levels, the significant uncertainty
and inherent variability in wind power pose major challenges to its integration into the
electricity grid.

In many regions around the world, wind power receives extra-market treatment in the
form of feed-in tariffs which guarantee grid access and favorable fixed feed-in prices. Specif-
ically, in California, the Participating Intermittent Renewable Program (PIRP) legislation
compels the system operator to accept all produced wind power subject to certain contractual
constraints. This amounts to a system take-all-wind scenario in which wind power is treated
as a negative load and the burden of balancing costs falls largely on the shoulders of the
load serving entities (LSE). This socialization of added reserve costs among the LSEs will
become untenable at levels of deep wind energy penetration. Hence, as penetration contin-
ues to increase, it is likely that wind power producers (WPP) will be faced with increased
exposure to market signals that incentivize reduction in output variability. For example,
in the United Kingdom, large WPPs are forced to participate in conventional wholesale
electricity markets where they are subject to ex-post financial penalties for deviations from
contracts offered ex-ante in forward markets [1].

Motivated by this transition away from a system take-all-wind regulatory environment,
we study the setting in which wind power producers (WPP) must sell their variable energy
using contract mechanisms in competitive two-settlement electricity markets. Our goal is
to formulate and solve problems of optimal contract sizing and analytically quantify the
relationship between market price signals and the value of improved forecasting, value of
local auxiliary generation, value of storage, and the cost of increased reserves needed to
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accommodate uncertainty in wind power production.

3.2 Related Work and Contributions

There is a considerable literature covering many important aspects of wind power ranging
from comprehensive integration studies, forecasting methods, and technology issues. Repre-
sentative references include [17, 18, 29, 35, 40, 44, 45, 46, 49, 65]. In the narrower context
of this chapter, there exist multiple contributions that study the problem of optimizing
contract offering strategies in a competitive two-settlement market system in the face of
wind power production uncertainty. A scenario-based stochastic programming approach to
numerically compute DA contract offers that maximize expected profit in a two-settlement
market setting is studied in [5, 64, 68]. Two papers [68, 16] go a step further by introducing
a risk-sensitive term (conditional value-at-risk) to the profit function to control variability in
expected profit. Additionally, Morales et al. [68] extend these formulations by considering a
market system with an additional intra-day market that allows for contract adjustment (i.e.,
recourse) before the delivery time – resulting in a two-stage stochastic programming formu-
lation, which they show reduces to linear programming (LP). The aforementioned results are
primarily computational in nature. In a more general formulation, Sethi et al. [89] consider
an analogous problem in which a load-serving entity (LSE) must incrementally purchase a
bundle of energy ex-ante in a sequence of N staged markets (with increasing information)
subject to consumption uncertainty ex-post. They use stochastic dynamic programming
to derive a closed form condition for optimality of purchase amounts. Additionally, in the
single forward market setting, Pinson et al. [81] show that the optimal forward contract can
be analytically expressed as a probabilistic quantile on prices – a well established result in
the field of inventory theory [83]. Also, it has recently come to our attention that Dent et al
[32] extend the quantile result of [81] by allowing for stochastic correlation between the
wind and imbalance prices. Our work is in the spirit of these latter papers. Our aim is to
derive provably optimal analytical expressions to explain the interplay between production
uncertainty and profitability.

Our contributions are as follows. We start with a general stochastic model for wind
power production and a model for a competitive two-settlement electricity market for energy,
as described in Chapter 2. With these models, we derive explicit formulae for optimal
contract offerings and the corresponding optimal expected profit – results that make explicit
the trade-off between imbalance prices and the need to spill some of the wind energy to
increase the probability of meeting the contract. Our analytical characterization of the
optimal contract offering is a generalization of that in [81, 32] as it holds on the entire space
of expected imbalance prices. We also provide analytical expressions for optimal contract
offerings in a multi-period setting in which the WPP has a recourse opportunity to adjust its
DA commitment in an intra-day market – offering greater analytical tractability than the
LP characterization in [68]. Moreover, we show that extra information from meteorological
models and data increases the expected optimal profit. We also make explicit the relationship
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between penalty for contract shortfall and the marginal impact of wind uncertainty on optimal
expected profit. For a uniform characterization of wind uncertainty, we show that the optimal
expected profit is affine in the forecast standard deviation. We consider the scenario in which
the WPP has installed a fast-acting co-located thermal generator to “hedge” against potential
shortfalls corresponding to offered contracts and derive a formula for optimal contract size.
In this setting, we also explore the role of local generation in managing the operational
and financial risk driven by the uncertainty in generation and obtain analytical expressions
for marginal profits from investing in local generation. The formulae make explicit the
relationship between price signals and the value of various firming strategies. A treatment
of energy storage in this context can be found in Chapter 5 and Bitar et al. [11].

The remainder of this chapter is organized as follows. In Section 3.3, we present a
stochastic model for wind power production along with a model for the energy market.
Our main results are contained in Sections 3.4 through 3.7. In section 3.8, we conduct an
empirical study of our strategies on wind power data obtained from the Bonneville Power
Administration. Concluding comments and discussion of current and future research are
contained in Section 3.9.

3.3 Problem Formulation

3.3.1 Wind Power Model
Wind power w(t) is modeled as a scalar-valued stochastic process. We normalize w(t) by
the nameplate capacity of the wind power plant, so w(t) ∈ [0, 1]. For a fixed t ∈ R, w(t) is
a random variable (RV) whose cumulative distribution function (CDF) is assumed known
and defined as

Φ(w; t) = P{w(t) ≤ w}. (1)

The corresponding density function is denoted by φ(w; t). In this paper, we will work with
marginal distributions defined on the time interval [t0, tf ] of width T = tf − t0. Of particular
importance are the time-averaged density and distribution defined as

f(w) =
1

T

∫ tf

t0

φ(w; t) dt (2)

F (w) =
1

T

∫ tf

t0

Φ(w; t) dt =

∫ w

0

f(x) dx (3)

Let µw denote the mean of the time-averaged distribution. Also, define F−1 : [0, 1]→ [0, 1]
as the quantile function corresponding to the CDF F . More precisely, for β ∈ [0, 1], the
β-quantile of F is given by

F−1(β) = inf {x ∈ [0, 1] : β ≤ F (x)} (4)
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The quantile function corresponding to the time-averaged CDF will play a central role in
our results.

3.3.2 Market Model and Metrics

Market Description

We assume that the wind power producer (WPP) is participating in a competitive two-
settlement market system operated as a power exchange (see Chapter 2, Section 2.3 for a
detailed description of such markets). Generally, the two-settlement system consists of two
ex-ante markets (a day-ahead (DA) forward market and a real-time (RT) spot market) and an
ex-post imbalance settlement mechanism to penalize uninstructed deviations from contracts
scheduled ex-ante. Negative deviations are charged at a price q ∈ R ($/MWh) and positive
deviations are charged at price λ ∈ R ($/MWh). The imbalance prices can be positive or
negative depending on system conditions.

This pricing scheme for penalizing contract deviations reflects the energy imbalance of
the control area as a whole and the spot price of balancing energy in the RT market. Hence,
the imbalance prices (q, λ) are assumed unknown during the DA forward market and are
not revealed until the RT spot market, on which they are based, is cleared.

Market Model

In the bulk of this chapter, we analyze the problem of optimizing the offering of a constant
power contract C in a single ex-ante DA forward market, scheduled to be delivered continu-
ously over a single time interval [t0, tf ] (typically of length one hour). As the WPP has no
energy storage capabilities for possible price arbitrage, the decision of how much constant
power to offer over any individual hour-long time interval is independent of the decision for
every other time interval. Hence, the problems decouple with respect to contract intervals.

We assume that deviations from said contract C are penalized ex-post according to the
imbalance prices (q, λ). Market prices ($/MWh) are denoted as follows.

p : clearing price in the DA forward market

q : ex-post settlement price for negative imbalance (w(t) ≤ C)

λ : ex-post settlement price for positive imbalance (w(t) > C)

We make the following assumptions regarding prices and production costs.

A1 The WPP is assumed to be a price taker in the forward market, as the individual
WPP capacity is assumed small relative to the whole market. As such, the forward
settlement price p is assumed fixed and known.
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A2 The WPP is assumed to have a zero marginal cost of production.

A3 As imbalance prices (q, λ) ∈ R2 tend to exhibit volatility and are difficult to forecast,
they are modeled as random variables, with expectations denoted by

µq = E[ q ]

µλ = E[ λ ]

The imbalance prices (q, λ) are assumed to be statistically independent of the wind
w(t).

Remark 3.3.1. (Value of excess wind) The positive imbalance price λ can be alternatively
interpreted to represent the economic value of surplus wind power in different markets
(e.g., ancillary services) or as a stored commodity – assuming the WPP has energy storage
capabilities. �

Metrics

The profit acquired, the energy shortfall, and the energy surplus associated with the contract
C on the time interval [t0, tf ] are defined respectively as

Π(C,w, q, λ) = pCT − q Σ−(C,w) − λ Σ+(C,w) (5)

Σ−(C,w) =

∫ tf

t0

[C − w(t)]+ dt (6)

Σ+(C,w) =

∫ tf

t0

[w(t)− C]+ dt (7)

where x+ := max{x, 0} for all x ∈ R. As wind power w(t) is modeled as a random process,
we will be concerned with the expected profit J(C), the expected energy shortfall S−(C)
and the expected surplus wind energy, S+(C):

J(C) = E Π(C,w, q, λ) (8)
S−(C) = E Σ−(C,w) (9)
S+(C) = E Σ+(C,w) (10)

Here, the expectation is taken with respect to the random prices (q, λ) and wind power
process

w = {w(t) | t0 ≤ t ≤ tf} .
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3.4 Optimal Contract Offerings

We begin by defining a profit maximizing contract C∗ as

C∗ = arg max
C≥0

J(C). (11)

In the following theorem, we show that C∗ can be expressed analytically using a partition of
the space of expected imbalance prices π = (µq, µλ) ∈ R2. Consider the disjoint partion of
R2 defined by

M1 = { (x, y) ∈ R2 | x(µw − 1) + yµw ≤ −p, y < −p }
M2 = { (x, y) ∈ R2 | x ≥ p, y ≥ −p }
M3 = { (x, y) ∈ R2 | x(µw − 1) + yµw > −p, x < p }

where µw is the mean of the time-averaged distribution (3).

M3
¹¸

¹q

M2

M1

(p;¡p)

C¤ = 1 C¤ = F¡1(°)

C¤ = 0

1¡ ¹w

¹w

Figure 3.1. Graphical illustration of the optimal bidding policy C∗ as a function of the expected
imbalance prices (µq, µλ).

Theorem 3.4.1. Define the time-averaged distribution F (w) as in (3). For an expected
imbalance price pair π = (µq, µλ),

(a) an optimal contract C∗ is given by

C∗ =


0, π ∈M1

F−1(γ), π ∈M2

1, π ∈M3

where γ =
p+ µλ
µq + µλ

(12)
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(b) The optimal expected profit is given by

J (C∗)

T
=
J∗

T
=


−µλµw, π ∈M1

µq

∫ γ

0

F−1(x)dx − µλ

∫ 1

γ

F−1(x)dx, π ∈M2

p− µq(1− µw), π ∈M3

(13)

(c) The optimal expected shortfall and surplus are

S− (C∗) = S∗− = T

∫ F (C∗)

0

[
C∗ − F−1(x)

]
dx (14)

S+ (C∗) = S∗+ = T

∫ 1

F (C∗)

[
F−1(x)− C∗

]
dx. (15)

Proof: Part (a): Using the assumption of independence between the imbalance prices
(q, λ) and wind power w(t), notice that J(C) can be rewritten in terms of the time-averaged
density f(w) as defined in (2).

J(C)

T
= pC − 1

T

∫ 1

0

∫ tf

t0

(
E[q][C − w]+ + E[λ][w − C]+

)
φ(w; t) dtdw

= pC − µq

∫ C

0

(C − w)f(w) dw − µλ

∫ 1

C

(w − C)f(w) dw

Clearly J(C) is continuous in C on [0, 1] for any probability density function f(w). For
technical simplicity in the proof, we additionally assume that the density f(w) is continuous
on [0, 1] – from which it follows that J(C) is also differentiable in C on [0, 1]. Straight-
forward application of the Leibniz integral rule yields the first and second derivatives of
J(C).

dJ

dC
= T (p+ µλ − (µq + µλ)F (C)) (16)

d2J

dC2
= −T (µq + µλ)f(C) (17)

As f(C) ≥ 0 for all C ∈ [0, 1], J(C) is concave ⇐⇒ µq + µλ ≥ 0. Similarly, J(C) is
convex ⇐⇒ µq + µλ ≤ 0. We now consider the optimization problem on each half-space
of expected imbalance prices, separately.

(i): Assume µq + µλ > 0. As J(C) is concave on this half-space of expected imbalance
prices, it follows that C∗ ∈ [0, 1] is optimal if and only if

(x− C∗) dJ
dC

∣∣∣∣
C=C∗

≤ 0 ∀ x ∈ [0, 1] (18)
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We now evaluate this optimality criterion on three subsets {B1,B2,B3} that partition the
half-space {µq + µλ > 0}.

B1 = {µq < p} ∩ {µq + µλ > 0}
B2 = {µq ≥ p} ∩ {µλ ≥ −p}
B3 = {µλ < −p} ∩ {µq + µλ > 0}

For all (µq, µλ) ∈ B1, it is straightforward to show that J(C) is non-decreasing on [0, 1],
which yields an optimal point C∗ = 1 satisfying (18). Conversely, J(C) is non-increasing
on [0, 1] for all (µq, µλ) ∈ B3 – yielding C∗ = 0. Finally, for (µq, µλ) ∈ B2, the expected
profit exhibits a stationary point given by C = F−1(γ). Notice that B2 =M2.

(ii): Now, assume that µq + µλ ≤ 0. As J(C) is convex on this half-space of expected
imbalance prices, the optimum will necessarily occur at the boundary of the feasible set
[0, 1]. This leads to a simple test for optimality:

C∗ =

{
1, J(1) ≥ J(0)

0, otherwise

Evaluation of the expected profit criterion J(C) at the boundary points yields

J(1)− J(0) = T (p− µq(1− µw) + µλµw)

Hence, for µq + µλ ≤ 0, we have

C∗ =

{
1, µq(µw − 1) + µλµw ≥ −p
0, µq(µw − 1) + µλµw < −p

Combining this threshold result with those of part (i), we recover the desired result in
Theorem 3.4.1-(a).

Part (b): For (µq, µλ) ∈ M1,M3, the result is easily proven by direct substitution of C∗

into the expected profit criterion (8). For (µq, µλ) ∈M2, consider the change of variables
θ = F (w).

J∗

T
= pC∗ − µq

∫ C∗

0

(C∗ − w)f(w)dw − µλ

∫ 1

C∗
(w − C∗)f(w)dw

= pC∗ − µq

∫ γ

0

(C∗ − F−1(θ))dθ − µλ

∫ 1

γ

(F−1(θ)− C∗)dθ

= (p+ µλ − (µq + µλ)γ)︸ ︷︷ ︸
=0

C∗ + µq

∫ γ

0

F−1(θ)dθ − µλ

∫ 1

γ

F−1(θ)dθ
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which gives us the desired result.

Part (c): The proof is analogous to that of part (b). �

Remark 3.4.2. (Newsvendor) The profit criterion and quantile structure of the optimal
policy (12) are closely related to the classical Newsvendor inventory problem in operations
research [83]. �

Remark 3.4.3. (Graphical Interpretation) Parts (b) and (c) of Theorem 3.4.1 provide
explicit characterizations of the optimal expected profit J∗, energy shortfall S∗−, and energy
surplus S∗+. These three quantities can be graphically represented as areas bounded by the
time-averaged CDF F (w) as illustrated in Figure 3.2 for F (C∗) = γ = 0.5. An equivalent
characterization of these quantities in terms of the areas {A1, A2, A3, A4} is given by

J∗/T =

{
µqA1 − µλ(A3 + A4), π ∈M1,M2

p− µq + µqA1, π ∈M3

S∗−/T = A2

S∗+/T = A3

From Figure (3.2), it is apparent that a reduction of statistical dispersion in the time-averaged
distribution F (w) will generally result in an increase in area (A1) and a decrease in areas
{A2, A3} – all of which are favorable consequences that result in an increase in optimal
expected profit and decrease in expected energy shortfall and surplus. This intuition will be
made more precise the section 3.5 where we derive an analytical expression for the marginal
value of uncertainty reduction (i.e. improved forecasting). �

Remark 3.4.4. (Price Elasticity of Supply) Under certain assumptions, the quantile rule (12)
in Theorem 3.4.1 can be interpreted as the optimal supply curve for the WPP. Of primary
importance is the assumption that the WPP is a price taker in the forward market, ensuring
that it wields no influence over the market price p. For a fixed a pair of expected imbalance
prices (µq, µλ), one can interpret the optimal quantile rule (12) as indicating the amount
of energy that the WPP is willing to supply at a price p. Specifically, for imbalance prices
µq + µλ ≥ 0, the WPP’s supply curve is given by

C(p) =


0, p < −µλ
F−1(γ), µλ ≤ p ≤ µq

1, p > µq

where γ =
p+ µλ
µq + µλ

With this explicit characterization of the WPP’s supply curve, it’s straightforward to see that
the WPP is perfectly inelastic for prices p /∈ [−µλ, µq]. Conversely, for prices p ∈ [−µλ, µq],
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Figure 3.2. Graphical interpretation of (A1) proportional to optimal profit J∗, (A2) deficit S∗−, and
(A3) surplus S∗+ for F (C∗) = 0.5.

the price elasticity of supply, EC , can be readily derived as

EC :=
d lnC(p)

d ln p
=

γ

F−1(γ)

dF−1(γ)

dγ
=

γ

Cf(C)
.

�

Remark 3.4.5. (Non-uniqueness of C∗ for π ∈ M2) For any pair of expected imbalance
prices π = (µq, µλ) ∈ M2, it follows that any contract C that solves γ = F (C) is profit
maximizing with respect to problem (13). Because the CDF F is only guaranteed to be
monotone non-decreasing on it’s domain [0, 1], it may have intervals in its domain on which
it is constant, which allows for non-uniqueness of the optimizer C∗. Hence, it is straight
forward to see that C∗ is unique if and only if the set

Γ(F, γ) := {x ∈ [0, 1] : γ = F (x)}

is a singleton. As stated in Theorem 3.4.1-(a), a particular choice for an optimal contract is

C∗ = F−1(γ), γ =
p+ µλ
µq + µλ

the γ-quantile of F , as specified in equation (4). Although the optimal expected profit J∗ is
independent of the choice of C∗ ∈ Γ(F, γ), it is straightforward to see that C∗ = F−1(γ) is
the minimizer of the expected optimal shortfall S∗− among all contracts C ∈ Γ(F, γ). The
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opposite is true for S∗+. The effect of alternative choices of C∗ from Γ(F, γ) on S∗+ and S∗−
is quantified as

S− (C∗) = S−
(
F−1(γ)

)
+ γ

(
C∗ − F−1(γ)

)
(19)

S+ (C∗) = S+

(
F−1(γ)

)
− (1− γ)

(
C∗ − F−1(γ)

)
(20)

for C∗ ∈ Γ(F, γ). �

Remark 3.4.6. (Role of γ) Consider the set of expected imbalance prices (µq, µλ) ∈ M2.
It follows from the quantile structure (12) of the optimal solution that C∗ is chosen to be the
largest contract C such that the probability of shorting on said contract – with respect to the
time averaged distribution F (w) – is less than or equal to γ = (p+ µλ)/(µq + µλ). 1− γ is
interpreted as a confidence level.

Clearly then, the imbalance price ratio γ plays a critical role in implicitly controlling
the probability of shortfall associated with optimal contracts C∗ = F−1 (γ). Consider the
scenario in which the ISO has direct control over the shortfall imbalance price price q. As
the expected short price µq becomes more harsh, (i.e., larger), the price ratio γ decreases –
resulting in smaller offered contractsC∗. This follows from the fact that the quantile function
F−1(γ) is non-decreasing in γ (non-increasing in µq). Consequently, the probability of
shortfall Φ(C∗; t) with respect to the optimal contract C∗, is non-increasing in µq. �

3.4.1 Market Simplifying Assumption
We have thus far considered all possible combinations of forward prices p and expected
imbalance prices (µq, µλ), as depicted in Figure 3.1. In the remainder of this paper, we
assume that

A4 the WPP has curtailment capability and restrict our attention to the case λ = 0.

We of course realize that in some circumstances surplus wind has economic value (λ < 0),
while in cases of systemic overproduction, excess wind must be curtailed or has negative
value (λ > 0). Nevertheless, in the remaining sections we assume λ = 0. We make this
choice to make our exposition more transparent, and to isolate our studies to one issue at a
time. We remark that all of our results generalize to the case λ 6= 0 at the expense of clarity
in exposition. Note that under our assumption λ = 0, the price penalty ratio simplifies to

γ =
p

µq

– a quantity that will play a central role in the interpretation of the results to follow.

3.4.2 Market Based Curtailment
A key consequence of Theorem 3.4.1 is that the price penalty ratio, γ = p/µq – in addition
to controlling the reliability of offered contracts – also controls the degree to which wind
power is curtailed in a competitive market.
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It is natural then to consider a scenario in which the ISO has direct control over the
deviation penalty price q and can directly communicate a statistical description of the
shortfall price q (e.g., CDF of q) to the WPP during the DA forward market. As the ISO
increases the expected penalty price µq, the price ratio γ decreases – resulting in increased
wind energy curtailment through a smaller optimal contract C∗. From a public policy
perspective, it is informative to interpret the shortfall imbalance price q as a continuous knob
that controls the degree to which WPPs receive extra-market support. For example, setting
q = p with probability one (i.e. γ = 1) recovers the system-take-all-wind scenario in which
the WPPs pay no penalty for contract imbalances. Moreover, as governments begins to
transition away from legislation guaranteeing extra-market support for WPPs, Theorem 3.4.1
provides the machinery key to understanding how an incremental increase in the penalty
price will impact WPP profitability.

Figure 3.2 offers a graphical illustration that makes explicit the trade-off between the
optimal expected profit J∗, wind energy shortfall S∗−, and wind energy curtailment S∗+ – as
controlled by the price-penalty ratio γ. A straightforward corollary of Theorem 3.4.1 is
that the expected optimal shortfall S∗− and surplus S∗+ are monotonically non-decreasing
and non-increasing in γ, respectively. This makes explicit the claim that some wind energy
must be curtailed in order to reduce the amount of operational reserve capacity needed to
hedge against uncertainty in the wind power. Moreover, it opens the possibility of shaping
operational reserves requirements through more advanced penalty mechanisms.

Remark 3.4.7. (Imbalance Penalty Design) How can we design intelligent deviation penalty
mechanisms that incentivize the WPP to limit their injected variability? The conventional
imbalance penalty mechanisms considered in this chapter impose a financial penalty that
is linear in the cumulative energy imbalance. An inherent shortcoming of this approach is
that penalty mechanisms of this type do not accurately represent the cost associated with the
rate of deviation (i.e., power). Generally speaking, more rapid excursions from scheduled
contracts require more costly (fast-acting) spinning reserves to maintain system balance.
The general message is that imbalances of equivalent energy deviation may incur drastically
different balancing costs from the ISO’s perspective.

We suggest that deviation penalties that penalize both deviation magnitude (energy) and
rate (power) would offer an effective mechanism to more accurately represent the stratified
operational cost incurred by the system operator as financial risk to the WPP. In future work,
we plan to explore these choices using the framework developed in this chapter. �

3.5 Role of Information

Intuitively, an increase in uncertainty in future wind power production will increase contract
sensitivity to imbalance prices. Hence, it is of vital importance to understand the effect of
information [such as available implicitly through forecasts] on expected optimal profit. More
explicitly, consider a simple scenario in which the WPP observes a random variable Y that is
statistically correlated to the wind process w(t). The random variable Y can be interpreted
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as an observation of a meteorological variable relevant to the wind. As Y is observed prior
to the contract offering, the WPP will naturally base its contract on the distribution of the
wind F (w|y) conditional on the observation Y = y, which is defined as

F (w|y) =
1

T

∫ tf

t0

Φ(w; t|y)dt (21)

where Φ(w; t|y) is the CDF of w(t) conditioned on the realization Y = y. It follows then
from Theorem 3.4.1 that the optimal contract offering and corresponding expected profit are
given by

C∗(y) = F−1(γ|y), where γ =
p

µq

J∗(y) = µqT

∫ γ

0

F−1(w|y)dw.

Using this construction, it is straightforward to show that information has economic value.

Lemma 3.5.1. Information in the form of observations Y helps in the metric of expected
optimal profit.

E [ J∗(Y ) ] ≥ J∗, (22)

where J∗ denotes the unconditional optimal expected profit. �

Proof: Define C∗(y) as a profit maximizing contract conditional on the observation Y = y.
More precisely,

C∗(y) = arg max
C∈[0,1]

E[Π(C,w, q) | Y = y],

where expectation is taken with respect to the time-averaged conditional distribution. The
following inequality holds for all C0 ∈ [0, 1] by optimality of C∗(y).

J∗(y) = pC∗(y)− µq
∫ 1

0

[C∗(y)− w]+f(w|y)dw

≥ pC0 − µq
∫ 1

0

[C0 − w]+f(w|y)dw

Taking expectation with respect to y of both sides of the inequality yields

E[J∗(Y )] ≥ pC0 − µq
∫
y

∫ 1

0

[C0 − w]+f(w|y)dwf(y)dy

= pC0 − µq
∫ 1

0

[C0 − w]+
∫
y

f(w, y)dy dw

= pC0 − µq
∫ 1

0

[C0 − w]+f(w)dw.
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The first equality follows from a straightforward application of Bayes rule and the second
equality comes from a marginalization over y. Finally, setting C0 = F−1(γ) yields the
desired result, as this corresponds to the unconditional optimal expected profit J∗. �

Clearly then, information helps in the metric of expected profit. Moreover, Figure 3.2
offers some intuition as to how a reduction in “statistical dispersion” of the CDF F results
in increased expected optimal profit. In the limit as the time-averaged distribution F (w)
approaches the Heaviside function H(w − w) (i.e. the associated random variable takes on
the realization w with probability one, which is equivalent to no uncertainty), we have that
the optimal expected profit goes to J∗ = µqT (γw) = pTw.

3.5.1 Quantifying the Effect of Uncertainty
It is of interest to more generally quantify the marginal improvement of expected optimal
profit with respect to information increase in various metrics of dispersion. In practice, there
are numerous deviation measures of dispersion of probability distributions (e.g. standard
deviation, mean absolute deviation). In [86], the authors take an axiomatic approach to
construct a class of deviation measures for which there is a one-to-one correspondence with
a well known class of functionals known as expectation-bounded risk measures.

Definition 3.5.2 (General Deviation Measures). A deviation measure is any functional
D : L2 → [0,∞) satisfying

1. D(X + C) = D(X) for constant C

2. D(λX) = λD(X) for all λ > 0.

3. D(X + Y ) ≤ D(X) +D(Y )

4. D(X) ≥ 0

for all X, Y ∈ L2.

Standard deviation and mean-absolute deviation are examples that belong to this class of
general deviation measures. We refer the reader to [4, 86] for a detailed exposition. For our
purposes, it suffices to realize that

Dγ(X) = E[X]− E[X | X ≤ F−1(γ)] (23)

= E[X]− 1

γ

∫ γ

0

F−1(x)dx (24)

is a general deviation measure for all square-integrable random variables X with CDF F (x)
and γ ∈ (0, 1). It is sometimes referred to as the conditional value-at-risk (CVaR) deviation

42



measure. It measures the distance between the unconditional mean and the mean in the γ
probability tail of the distribution.

The particular choice of the CVaR deviation measure Dγ is special in that it permits the
analytical characterization of the marginal improvement of optimal expect profit J∗ with
respect to the wind uncertainty, as measured by Dγ . Simple algebraic manipulation of the
formula for optimal expected profit (13) reveals J∗ to be an affine function inDγ(W ), where
W is distributed according to the time averaged distribution F (w).

J∗ = pT E[W ]︸ ︷︷ ︸
expected revenue

− pT Dγ(W )︸ ︷︷ ︸
loss due to uncertainty
and deviation penalty

(25)

This result quantifies the increase in expected profit that results from a reduction in Dγ(W )
using sensors and forecasts. Further, it makes explicit the joint sensitivity of optimal
expected profit J∗ to uncertainty and prices. Essentially, the loss term pT Dγ(W ) can be
interpreted as the price of uncertainty.

Remark 3.5.3. (Role of γ) As we discovered earlier, the price-penalty ratio, γ = p/µq,
plays a central role in controlling the shortfall probability associated with optimal contracts
C∗ = F−1(γ). In a related capacity, the price-penalty ratio γ also acts to discount the impact
of uncertainty in the underlying wind process, w(t), on optimal expected profit J∗. This
assertion is made rigorous by the fact that Dγ(W ) is monotone non-increasing in γ. Its
limiting values are given by

lim
γ→0
Dγ(W ) = E[W ]

lim
γ→1
Dγ(W ) = 0.

Hence, as the expected short price µq approaches the forward price p from above, we
have that γ → 1, which attenuates the sensitivity of expected profit to uncertainty in the
underlying wind process, as measured by Dγ(W ). �

Example 3.5.4. (Uniform Distribution) It is informative to consider the case in which F (w)
is taken be a uniform distribution having support on a subset of [0, 1]. Under this assumption,
it is straightforward to compute the optimal expected profit as

J∗ = pT
(
E[W ]− σ

√
3(1− γ)

)
, (26)

where σ is the standard deviation of W – the most commonly used measure of statistical
dispersion. Note that the expected profit is linear in the standard deviation σ. The marginal
expected profit with respect to wind uncertainty, as measured by σ, is

dJ∗

dσ
= −pT

√
3(1− γ). (27)
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A direct consequence is that the expected profit’s sensitivity to uncertainty, σ, increases as
the expected short price µq becomes more harsh – or equivalently, as γ → 0.

Remark 3.5.5. (Wind Farm Siting) This result has a useful implication with respect to
the siting of wind farms, as both the statistics on the wind process (as described by the
distribution F (w)) and the market prices (p, q) are location dependent (e.g., locational
marginal prices). Using empirically identified distributions on both the wind and price
processes, one can use the profit criterion (25) to rank the potential profitability of various
wind farm locations. The benefit of the characterization of profit in equation (25) is the
ability to separate the effects of imbalance pricing from wind uncertainty on the expected
optimal profit. �

3.6 Role of Reserve Margins and Local Generation

In order to maintain reliable operation of the electric grid, the ISO is responsible for
procuring ancillary services (AS) to balance potential deviations between generation and
load. The various underlying phenomena responsible for these deviations result in system
imbalances with varying degrees of uncertainty on differing time scales. In order to absorb
this variability on the different time scales, multiple ancillary services must be procured.
Broadly, these services consist of regulation, load-following, reserve (spinning and non-
spinning), voltage control, and reactive power compensation.

Based on the scheduled energy, the ISO first determines the total reserve requirement for
the entire control area needed to satisfy pre-specified reliability criteria. The ISO then assigns
to each participating load serving entity (LSE) a share of the total reserve requirement based
roughly on its scheduled demand, because of the uncertainty in load [47]. Each LSE has the
option to procure all or a portion of its reserve requirement through bilateral contracts or
forward markets. The remaining portion of the reserve requirement not provided by the LSE
is procured by the ISO through ancillary service markets. A detailed exposition on ancillary
services can be found in [57].

Wind power is inherently difficult to forecast. Moreover, it exhibits variability on
multiple time scales ranging from single-minute to hourly. It follows then that regulation,
load-following, and reserve services will be necessary to compensate imbalances resulting
from fluctuations in wind [44]. Several wind integration studies have computed detailed
estimates of the increase in additional reserves of various types needed to compensate the
added variability due to wind [40]. To simplify our analysis, we will lump these ancillary
services into a single service that we refer to as “reserve margin.” Under the current low
capacity penetration levels of wind power (∼ 1%), the added variability of wind is largely
absorbed by existing reserve margins used to cover fluctuations in the load. As the capacity
penetration of wind increases, its affect on operating reserve margins will become more
pronounced [44, 45]. Moreover, it will become economically infeasible to continue the

44



socialization of the added reserve costs, stemming from wind variability, among participating
LSEs. Hence, it is likely that the wind power producer will have to bear the added cost of
reserve margins [42].

This transfer of financial burden to the WPP has already begun to emerge in the Pacific
Northwest. The Bonneville Power Administration (BPA) in cooperation with Iberdrola
Renewables, has deployed a pilot program in which the WPP is responsible for self-supplying
its own balancing services – from owned and/or contracted dispatchable generation capacity
– to satisfy certain reliability criteria (on imbalances) imposed by the BPA [76].

Motivated by this change, consider now the scenario in which the WPP is capable of
procuring its reserve margin from a small fast-acting power generator co-located with its
wind farm. In addition to assumptions A1-A3 in Section 4.2.2, we also assume the following.

A5 The co-located generator has fixed power capacity L (MW) and fixed and known
operational cost qL > 0 ($/MWh).

A6 The co-located generator operational cost is greater than the forward price (i.e. qL ≥
p), to avoid trivial solutions.

A7 Ex-ante, at the time of the contract offering, the sign of the random shortfall imbalance
price q (relative to qL) is revealed to the WPP. The corresponding mean of the shortfall
price q conditioned on either event is denoted by

µ+
q = E[q | q > qL] (28)

µ−q = E[q | q ≤ qL] (29)

In the event that {q ≤ qL}, the WPP derives no financial benefit from the co-located
generator, and we revert back to our orginal market setting without local generation support
– as outlined in Section 3.4. It follows from Theorem 3.4.1 that an optimal contract offering
conditioned on the information {q ≤ qL} is given by

C∗ =

{
F−1

(
p/µ−q

)
, µ−q > p

1, µ−q ≤ p

In the complementary event that {q > qL}, it follows that the co-located generator can be
used to mitigate shortfall risk by covering contract shortfalls [C − w(t)]+ up to a limit L
at a cost qL. For shortfalls larger than L, the WPP pays at the shorfall imbalance price q.
This augmented penalty mechanism corresponding to the event {q > qL} is captured by the
following penalty function φ : R× R+ → R+.

φ(x, L) =


qx− (q − qL)L x ∈ (L,∞)

qLx x ∈ [0, L]

0 x ∈ (−∞, 0)

(30)
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It follows that the fiscal cost and benefit of local generation capacity to the WPP can be
explicitly accounted for in the following expected profit criterion

JL(C) = E
∫ tf

t0

pC − φ (C − w(t), L) dt (31)

where expectation is taken with respect to (w, q) conditioned on the sign event {q > qL}.
As before, we define a profit maximizing contract C∗L as

C∗L = arg max
C≥0

JL(C) (32)

Because of the significant capital costs associated with the investment in local generation,
it’s important to quantify the marginal improvement in profit resulting from the investment
in a generator with small power capacity L. The following theorem distills this notion.

Theorem 3.6.1. Define the time-averaged distribution F (w) as in (3).

(a) An optimal contract C∗L is given by any solution C of

p = qLF (C) + (µ+
q − qL)F (C − L). (33)

(b) The marginal expected optimal profit with respect to power capacity L is given by

dJ∗L
dL

∣∣∣∣
L=0

=

(
1− qL

µ+
q

)
pT (34)

Proof: The proof for part (a) follows from direct application of the proof technique for
Theorem 3.4.1-(a).

Part (b) is proven as follows. It is straightforward to show that the expected profit is given by

JL(C) = pCT − T
∫ C−L

0

[
µ+
q (C − w)− (µ+

q − qL)L
]
f(w)dw

− T
∫ C

C−L
qL(C − w)f(w)dw

for any choice of C and L. Taking the derivative with respect to L yields

dJL(C)

dL
= (µ+

q − qL)F (C − L)T.

Taking the limit as L goes to zero and substituting for the first order optimality condition (a)
yields the desired result. �
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Remark 3.6.2. According to the optimality condition in Theorem 3.6.1-(a), as the expected
shortfall price µ+

q →∞, we have that the optimal CL → 0, as is consistent with intuition.
Moreover, as µ+

q → qL, we have that CL → F−1(p/qL) – recovering the optimal policy in
Theorem 3.4.1. �

Remark 3.6.3. (Capacity Reservation) Note that this framework is easily extendable to
model the setting in which the WPP does not physically posses a co-located thermal
generator, but rather can purchase, ex-ante, reserve generation of any power capacity L at
a capacity price qc ($/MW). If the reserve capacity is called on, the WPP must pay at the
energy cost qe ($/MWh), which is analogous to the operational cost qL in the co-located
generation setting. �

3.7 Markets with Recourse

Until now, we have operated under the assumption that the WPP has no market recourse –
i.e, the WPP has no opportunity to use improved forecasts to adjust its offer made in the
day-ahead (DA) market. We now relax this assumption by augmenting our market model
to include an intra-day market permitting contract recourse ex-ante. More specifically, the
market system consists of two sequential ex-ante markets in which the WPP can incremen-
tally offer a cumulative contract C = C1 +C2 for the delivery of power on some future time
interval [t0, tf ]. The WPP initially offers a contract C1 at a price p1 ≥ 0 in the DA market
(stage-1). In a successive intra-day market (stage-2), the WPP observes a random variable
Y (ex: weather conditions, wind speed and direction) that is statistically correlated to the
wind power process w. Using this information (Y ), the WPP has the option to make an
additional offer C2 at a price p2 in the intra-day market. Note that the information structure
of the recourse decision is taken as

C2 = C2(Y ).

We maintain the price taking assumption, as before. Moreover, to avoid trivial solutions, we
assume that

p1 ≥ p2 ≥ 0.

If it were the case that p2 > p1, there would be no incentive for the WPP to make an offer
in the DA market. Ex-post, the WPP is penalized at a price q for shortfalls with respect to
the cumulative offered contract C = C1 + C2. As before, the shortfall price q is assumed
unknown ex-ante and is modeled as a random variable that is statistically uncorrelated to
the wind, with mean E[q] = µq. We additionally assume that λ = 0 to isolate the effect of
an additional intra-day market on DA contract offerings. Our objective is to find explicit
characterizations of contracts C∗1 and C∗2(Y ) that optimize the expected profit criterion:
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J(C) = E
∫ tf

t0

p1C1 + p2C2(Y )− q [C1 + C2(Y )− w(t)]+ dt

where expectation is taken with respect to (w, Y, q). For brevity and clarity in exposition,
we focus our analyis on the important case of

µq ≥ p1.

Optimal contract offerings under the alternative assumption are easily derived. Related work
can be found in [84, 89].

Theorem 3.7.1. Let γ1 = p1/µq and γ2 = p2/µq. Define the random variable W to be
distributed according to the time-averaged distribution F (w) as in (3). Correspondingly,
define the conditional distribution F (w|y) = P{W ≤ w | Y = y}, from which we can
define the derived random variable Z given by its γ2 quantile,

Z = F−1(γ2|Y ).

The portfolio of profit maximizing contracts {C∗1 , C∗2(Y )} is given by the following. The
stage-1 optimal contract C∗1 is given by a solution to

γ1 − γ2P{Z ≥ C∗1} − P{Z ≤ C∗1 ,W ≤ C∗1} = 0. (35)

The stage-2 optimal contract C∗2(Y ) is given by the threshold rule

C∗2(Y ) = [Z − C∗1 ]+ . (36)

Proof: Proof is analogous to that of Theorem 3.4.1. �

3.8 Empirical Studies

Using a wind power time series data set provided by the Bonneville Power Administration
(BPA), we are in a position to illustrate the utility and impact of the theory developed in this
chapter.
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3.8.1 Data Description
The data set consists of a time series of measured wind power aggregated over the 14 wind
power generation sites in the BPA control area [9]. The wind power is sampled every 5
minutes and covers the 2008 and 2009 calendar years. To account for additional wind power
capacity coming online at various points in time over the 2-year horizon, all of the data are
normalized by the aggregate nameplate wind power capacity as a function of time.
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3.8.2 Empirical Probability Model
As stated earlier, wind power is modeled as a continuous time stochastic process whose
marginal cumulative distribution is denoted by Φ(w; t). While the identification of stochastic
models that accurately capture the statistical variability in wind power is of critical impor-
tance, that is not the focus of this chapter. We will make some simplifying assumptions on
the underlying physical wind process to facilitate our analysis.

A8 The wind process w(t) is assumed to be first-order cyclostationary in the strict sense
with period T0 = 24 hours [99, 43]. More specifically,

Φ(w; t) = Φ(w; t+ T0) for all t

We are thus ignoring the effect of seasonal variability.

A9 For a fixed time τ , the discrete time stochastic process {w(τ + nT0) | n ∈ N} is
independent across days indexed by (n).

Fix a time τ ∈ [0, T0] and consider a finite length sample realization of the discrete time
process:

zτ (n) := w(τ + nT0) for all n = 1, · · · , N.
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Using this data set, we take the empirical distribution Φ̂N(w; τ) as an approximation of the
underlying distribution Φ(w; τ):

Φ̂N(w; τ) =
1

N

N∑
i=n

1 {zτ (n) ≤ w} (37)

Invoking the Strong Law of Large Numbers under the working assumptions, it can be shown
that the Φ̂N(w; τ) is consistent with respect to Φ(w; τ) [10]. Figure 3.3 (a) depicts nine repre-
sentative marginal empirical distributions identified from the BPA data set described earlier.
Note that the times corresponding to the nine distributions are equally spaced throughout the
day to provide a representative sample. Figure 3.3 (b) depicts the trajectory of the empirical
median Φ̂−1N (0.5; t) and its corresponding inter-quartile range [Φ̂−1N (0.25; t), Φ̂−1N (0.75; t)].

3.8.3 Optimal Contracts in Conventional Markets
Using empirical wind power distributions identified from the BPA wind power data set,
we are now in a position to compute and appraise optimal day-ahead (DA) contracts
offered by a hypothetical Oregon wind power producer (WPP) participating in the idealized
market system described in Sections 3.3 and 3.4. For a the set of expected imbalance
prices (µq, µλ) ∈ M2, we are also able to examine the effect of the price-penalty ratio
γ = (p + µλ)/(µq + µλ) on J∗, S∗−, and S∗+. The following empirical studies assume a
contract structure

{Ci, [ti−1, ti)}24i=1

where [ti−1, ti) is of length one hour for all i.

Remark 3.8.1. (Optimal DA Contracts) Figure 3.5 depicts optimal contracts (C∗1 , · · ·C∗24)
for various ratios γ = 0.3, 0.4, · · · , 0.9. As expected, as the price-penalty ratio γ decreases,
the optimal contract C∗ decreases. From Figure 3.5, it is evident that WPPs will tend to
offer larger contracts during morning/night periods when wind speed is typically higher than
during mid-day (as indicated by Figure 3.3 (b)). �

Remark 3.8.2. (Profit, Shortfall, and Surplus) Figures 3.4 (a) and (b) demonstrate the effect
of the price-penalty ratio γ on the optimal expected profit, energy shortfall, and energy
surplus. The units of S∗− and S∗+ are (MWh)/(nameplate capacity). In computing the optimal
expected profit, we assumed the WPP to have curtailment capability, which is equivalent
to µλ = 0. The units of J∗ are in $/(µq · nameplate capacity). When µq = p, we have that
γ = 1 and the WPP sells all of its energy production at price p = µq. This is equivalent to
the current policy of system-take-all-wind. In this situation, the expected profit per hour
(see Figure 3.4 at γ = 1) of approximately 6.4

24
equals the ratio of average production to

nameplate capacity. This number is consistent with typical values of the wind production
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capacity factor (≈25%). The energy surplus S∗+ and shortfall S∗− are relatively insensitive
to variations in γ (for γ ∈ [0, 0.1]), because the marginal empirical distributions are steep
there. �

3.9 Discussion

In this chapter we have formulated and solved a variety of problems related to optimal
contract sizing for a wind power producer offering power in a two-settlement electricity
market. Our results have the merit of providing key insights into the trade-offs between
a variety of factors such as expected imbalance penalties, cost of local generation, value
of information, etc. In our current and future work, we will investigate a number of
intimately connected research directions: improved forecasting of wind power, development
of probabilistic reliability criteria for reserve margin, dynamic optimization of reserve
capacity procurement, improved dispatchability of wind power, network aspects of renewable
energy aggregation and profit sharing, and the development of novel market systems that
price-differentiate quality of supply to facilitate the integration of renewable sources. We
are also studying the important case of markets with recourse where the producer has
opportunities to adjust bids in multiple successive intra-day markets. We are also developing
large scale computational simulations which can be used to test the behavior of of simplified
analytically tractable models and suggest new avenues for research applicable to real-world
grid-scale problems.
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CHAPTER 4

Wind Energy Aggregation and Profit Shar-
ing

4.1 Introduction and Contributions

Motivated by ensuing effects of climate change, there are efforts on a global scale to
increase the penetration of renewable energy resources serving electrical loads. Wind and
solar electric energy resources posses tremendous potential to reduce the use of carbon
emitting fuel sources such as coal, oil, and natural gas [28]. However, wind and solar
power generation differ from these traditional sources of electric power, because they are
inherently variable. Due to natural variations in wind speed, wind power output from a wind
turbine exhibits major fluctuations over various time scales. Additionally, wind resources
have limited dispatchability and are extremely difficult to forecast. Because of the need
to maintain instantaneous balance between load and generation, this inherent variability
presents a central challenge to large-scale integration of renewable energy into the electric
grid. The interested reader is referred to [73, 40, 45, 49] for a thorough review of the
challenges posed by renewable output variability.

It has been widely suggested [40, 73] that the aggregation of geographically diverse
wind energy resources offers compelling potential to mitigate wind power variability. Indeed
this approach has been successfully monetized by aggregators such as Iberdrola Renewables
[50]. For example, the EWITS report [40] states,

“Both variability and uncertainty of aggregate wind decrease percentage wise
with more wind and larger geographic areas.”

This attenuation of output variability of wind resources aggregated over large spatial re-
gions is derived from the the tendency of wind speed at different geographic locations to
decorrelate with increasing spatial separation. In this chapter, we analyze and quantify the
financial benefit of wind power aggregation through coalitional bidding in a competitive
two-settlement market setting. The central idea is that a set of independent wind power
producers (WPP) can exploit the statistical benefits of aggregation by forming a willing
coalition to pool their variable power to jointly offer the aggregate output as a single entity
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into a forward energy market. As deviations from offered contracts are penalized, this
amounts to an act of risk sharing among the members of the coalition. Assuming that coali-
tional bidding results in profit increase beyond that achievable through individual market
participation, a central question arises in this setting. What are fair sharing mechanisms to
allocate the additional profit among the coalition members?

We formalize this question in the setting of cooperative games using tools from coali-
tional game theory [77, 79]. We define the value of a coalition of WPPs as the maximum
expected profit achievable by joint bidding of the aggregate wind power in a two-settlement
market. Using this value function, it can be shown that, except for degenerate cases, coalition
formation always results in a net increase in expected profit and that there always exist stabi-
lizing rules for sharing the profit. Moreover, via a counterexample, we show that this game
is not convex and that the famous Shapley mechanism is not satisfactory. Alternatively, we
propose the use of the imputation, which minimizes the worst-case dissatisfaction (excess),
as a profit sharing mechanism and show that it is satisfactory for every coalition member in
that it satisfies certain fairness axioms.

As the value function, associated with our coalitional game for wind energy aggregation,
is defined in the metric of optimal expected profit, an imputation belonging to the corre-
sponding core, represents the payment that each wind power producer should receive in
expectation. In practice, however, the realized profit for will vary day to day, as the profit is
inherently a random variable given its explicit dependence on the stochastic wind power
production and imbalance prices. To account for this issue, in Section 4.4.3 we propose
a daily payoff allocation mechanism to distribute the realized profit among the coalition
members, such that the payment that each member receives – averaged over an increasing
number of days – approaches an imputation in the core, almost surely.

The results presented in this chapter are limited to the setting in which all WPPs
are connected to a common single bus (or equivalently, a power network with a lossless
transmission system of infinite capacity). We are currently working on extensions of
these results to the multi-bus network setting with a capacity constrained transmission
system. The transmission network severely constrains the coalition’s ability to directly
aggregate wind power generated at different buses in the network through (a) real and
reactive power conservation, and (b) capacity constraints on the transmission lines. These
physical constraints manifest themselves as market rules which can influence the ability and
willingness of individuals to form a coalition. We refer to this effect as network mediated
aggregation. In order to minimize the impact of the intervening network on the aggregability
of wind, we are currently exploring the development of a market system for coordinated
multilateral trading [106] to facilitate coalitional trading amongst WPPs connected to
distinct buses in the transmission network.

Although different in application and formulation, our problem has significant connec-
tions with the classical newsvendor problem [105] in operations research. In both cases, the
optimal contract offering is given in terms of a probabilistic quantile. Moreover, coalitional
game theory has also been applied in the newsvendor setting [39] where it has been shown
that the core is nonempty [67].
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The chapter is organized as follows. In Section 4.2, we begin with a formulation of the
WPP coalitional bidding problem in a two-settlement market setting. We follow this, in
Section 4.3 with a brief review of certain key results from coalitional game theory. Finally,
in Section 4.4, we state our main results and provide illustrations with some numerical
examples.

4.2 Problem Formulation

4.2.1 Aggregate Wind Power Model
Consider a group of N independent wind power producers (WPP) indexed by i ∈ N :=
{1, 2, . . . , N}. The power wi(t) ∈ [0,Wi] produced at wind farm i is modeled as a scalar
valued random process. Denote the collection of wind power production as a vector-valued
random process

w(t) = [ w1(t), · · · , wN(t) ]T

whose cumulative distribution function (CDF) at each time t is given by

Φ(w; t) = P{w(t) ≤ w}. (1)

The distribution Φ(w; t) has support [0,W1] × [0,W2] × . . . × [0,Wn] where Wi is the
nameplate capacity of the wind power plant i. The corresponding probability density
function is denoted by φ(w; t). We assume that

A1 the group N of WPPs are connected to a common bus in the power network.

Consequently, the group N of WPPs face common market prices and can directly aggregate
the power without regard to transmission capacity constraints. Accordingly, it is natural
to consider scenarios in which individual wind power producers form willing coalitions
S ⊆ N to aggregate their wind power production and jointly bid into electricity markets for
energy. The aggregate output corresponding to a coalition S ⊆ N is denoted by

wS(t) =
∑
i∈S

wi(t). (2)

Similarly, the CDF corresponding to the aggregate wind power wS(t) at time t is defined as

ΦS(w; t) = P {wS(t) ≤ w} . (3)
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with support [0,
∑

i∈SWi]. Note that the coalitional CDF (3) can be computed using the
joint distribution (1). Throughout the chapter, we will work with distributions defined on the
interval [t0, tf ] of width T = tf − t0. Of critical importance are the time-averaged density
and distribution corresponding to the coalition S ⊆ N .

fS(w) =
1

T

∫ tf

t0

φS(w; t)dt (4)

FS(w) =
1

T

∫ tf

t0

ΦS(w; t)dt (5)

The stochastic process corresponding to the aggregate power output of a coalition S ⊆ N is
denoted by

wS = {wS(t) | t ∈ [t0, tf ] }.

Also, define F−1S : [0, 1]→ [0,
∑

i∈SWi] as the quantile function corresponding to the
coalitional CDF FS . More precisely, for β ∈ [0, 1], the β-quantile of FS is given by

F−1S (β) = inf {x ∈ [0, 1] : β ≤ FS(x)} . (6)

4.2.2 Market Model and Metrics

Market Description

We assume that the coalition S ⊆ N of wind power producers (WPP) is participating in
a competitive two-settlement market system operated as a power exchange. See Chapter 2,
Section 2.3 for a detailed description of such markets. Generally, the two-settlement system
consists of two ex-ante markets (a day-ahead (DA) forward market and a real-time (RT) spot
market) and an ex-post imbalance settlement mechanism to penalize uninstructed deviations
from contracts scheduled ex-ante. Negative deviations are charged at a price q ∈ R ($/MWh)
and positive deviations are charged at price λ ∈ R ($/MWh).

This pricing scheme for penalizing contract deviations reflects the energy imbalance of
the control area as a whole and the spot price of balancing energy in the RT market. Hence,
the imbalance prices (q, λ) are assumed unknown during the DA forward market and are
not revealed until the RT spot market, on which they are based, is cleared.
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Market Model

In order to identify conditions under which coalitions form and fair profit sharing mecha-
nisms, we first analyze the problem of optimizing the offering of a coalition constant power
contract C in a single ex-ante DA forward market, scheduled to be delivered continuously
over a single time interval [t0, tf ] (typically of length one hour). As the WPP has no energy
storage capabilities for possible price arbitrage, the decision of how much constant power to
offer over any individual hour-long time interval is independent of the decision for every
other time interval. Hence, the problems decouple with respect to contract intervals.

We assume that deviations from said contract C are penalized ex-post according to the
imbalance prices (q, λ). Market prices ($/MWh) are denoted as follows.

p : clearing price in the DA forward market

q : ex-post settlement price for negative imbalance (wS(t) ≤ C)

λ : ex-post settlement price for positive imbalance (wS(t) > C)

We make the following assumptions regarding prices and production costs.

A2 The WPP is assumed to be a price taker in the forward market, as the individual
WPP capacity is assumed small relative to the whole market. As such, the forward
settlement price p is assumed fixed and known.

A3 The WPP is assumed to have a zero marginal cost of production.

A4 As imbalance prices (q, λ) ∈ R2 tend to exhibit volatility and are difficult to forecast,
they are modeled as random variables, with expectations denoted by

µq = E[ q ]

µλ = E[ λ ]

The imbalance prices (q, λ) are assumed to be statistically independent of the wind
w(t).

A5 The imbalance prices are assumed to be non-negative, i.e., it is never profitable to
deviate from offered contracts.

(q, λ) ∈ R2
+ with probability one
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Profit Metric

In accordance with the preceding market rules, it follows that the profit acquired by a
coalition S ⊆ N for an offered contract C on the time interval [t0, tf ] is defined as

Π(C,wS , q, λ) =

∫ tf

t0

pC − q [C − wS(t)]+ − λ [wS(t)− C]+ dt (7)

where x+ := max{x, 0} for all x ∈ R. As the aggregate wind power process wS(t) and
imbalance prices are modeled as a random, we will be concerned with the expected profit

JS(C) = E Π(C,wS , q, λ). (8)

4.2.3 Initial Results
The profit maximizing contract C∗S corresponding to a coalition S ⊆ N can be obtained by
solving the following optimization problem

C∗S = arg max
C≥0

JS(C). (9)

The solution to this problem is presented in Theorem 3.4.1 and explored in depth in Chapter
3. For completeness, the main result is restated below for the important case of µq ≥ p.

Theorem 4.2.1. Define the time-averaged distribution FS(w) as in (5). An optimal contract
C∗S is given by

C∗S = F−1S (γ), where γ =
p+ µλ
µq + µλ

. (10)

The optimal expected profit is given by

JS (C∗)

T
=

J∗S
T

= µq

∫ γ

0

F−1S (x) dx − µλ

∫ 1

γ

F−1S (x) dx. (11)

In this chapter, one of our objectives is to quantify the financial benefit of coalitional
bidding in two-settlement markets. As a motivating result, it is straightforward to show that
the act of risk sharing through coalitional bidding leads to an increase in collective profit
almost surely.

Theorem 4.2.2. Let {C1, · · · , CN} be a set of N individual contracts. Then, almost surely

Π (CN , wN , q, λ) ≥
N∑
i=1

Π (Ci, wi, q, λ) (12)

where CN =
∑N

i=1Ci.
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Proof:

Π (CN , wN , q, λ) =

∫ tf

t0

pCN − q [CN − wN (t)]+ − λ [wN (t)− CN ]+ dt

≥
∫ tf

t0

pCN − q

N∑
i=1

[Ci − wi(t)]+ − λ

N∑
i=1

[wi(t)− Ci]+ dt

=
N∑
i=1

Π (Ci, wi, q, λ),

where the inequality follows from the sub-additivity property of x+ for all x ∈ R. Moreover,
the inequality holds for any realization of the stochastic process wS and random prices
(q, λ) ∈ R2

+. �

It follows from Theorem 4.2.2 that coalitional bidding will always result in a net profit
increase that can be shared between the coalition participants. Unfortunately, the expression
for optimal expected profit (11) does not provide any clue as to how the added income
should be shared among the coalition participants. Naı̈ve sharing mechanisms, such as
equal distribution of the profit among the participants, are not satisfactory, because certain
members of the coalition may obtain a greater profit if they were to break up the coalition
and form a smaller one. Thus, our primary objective is to identify fair payoff allocation
mechanisms for wind farm coalitions.

The problem of sharing collective profits has been extensively studied in cooperative
game theory [72]. We will show that our problem can be modeled as a coalitional game and
we will study its properties and identify sharing mechanisms that are fair from an axiomatic
perspective. In the next section we review some of the basic concepts and results of the
coalitional game theory. The interested reader may see [72, 77, 69, 79] for a more detailed
exposition on the topic of cooperative game theory.

Finally, we close this section introducing a function Ψ that will be vital in analyzing
the properties of the coalitional game associated with wind power aggregation. Let x =
{x(t) | t ∈ R} be a scalar random process that takes nonnegative values on the interval
[t0, tf ] and define the functional Ψ[x] as a mapping from the space of continuous probability
density functions to the positive reals. The functional Ψ represents the maximal expected
profit achievable under the random process x.

Remark 4.2.3. (Notation). Note that, in order to retain notational simplicity, we designate
the random process x as the input argument to the functional Ψ, rather than the underlying
probability law on which the functional directly acts. �

Specifically,

Ψ[x] := max
C≥0

E Π(C,x, q, λ) (13)
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where Π is defined in equation (7). The following lemma establishes certain properties of
the functional Ψ that will be used to characterize the coalitional game in the sequel.

Lemma 4.2.4. The function Ψ as defined in (13) is positively homogeneous (of degree one)
and superadditive in the underlying random process. For any pair of random processes
x = {x(t) | t ∈ R} and y = {y(t) | t ∈ R}, we have

(i) (positive homogeneity) Ψ[αx] = αΨ[x] ∀ α ≥ 0

(ii) (superadditivity) Ψ[x] + Ψ[y] ≤ Ψ[x + y]

where αx = {αx(t) | t ∈ R} and x + y = {x(t) + y(t) | t ∈ R}.

Proof: Throughout the proof, we restrict ourselves to the set of expected imbalance prices
such that µq ≥ p. The results are similary proven for the complementary case of µq < p.

Part (i), (Positive Homogeneity): Fix α > 0. For brevity, let the stochastic process x inherit
the properties and distributional notation associated with the wind process defined in Section
4.2.1. Moreover, let Γα(x; t) denote the marginal CDF associated with the positively scaled
stochastic process αx. First observe that

Γα(x; t) = P{αx(t) ≤ x} = Φ
(x
α

; t
)
.

It follows that the time-averaged distribution Gα(x) associated with the scaled process αx
is similarly given by

Gα(x) =
1

T

∫ tf

t0

Γα(x; t) dt =
1

T

∫ tf

t0

Φ
(x
α

; t
)
dt = F

(x
α

)
.

Using the previous identity Gα(x) = F (x/α), it follows that the β quantile of Gα is given
by

G−1α (β) = αF−1(β).

Using the previous identity in conjunction with Theorem 4.2.1, the desired result of positive
homogeneity follows immediately. More specifically,

Ψ[αx] = µqT

∫ γ

0

G−1α (z) dz − µλ

∫ 1

γ

G−1α (z) dz

= α

(
µqT

∫ γ

0

F−1(z) dz − µλ

∫ 1

γ

F−1(z) dz

)
= αΨ[x].

The result for α = 0 is trivial, as Ψ[0] = 0.
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Part (ii), (Superadditivity): Consider two stochastic processes x and y.

Ψ[x] + Ψ[y] = max
Cx≥0

E Π(Cx,x, q, λ) + max
Cy≥0

E Π(Cy,y, q, λ)

= E Π(C∗x,x, q, λ) + E Π(C∗y ,y, q, λ)

where C∗x and C∗y are the optimizers of their respective maximization problems. It follows
directly from Theorem 4.2.2 that

Π(C∗x,x, q, λ) + Π(C∗y ,y, q, λ) ≤ Π(C∗x + C∗y , x + y, q, λ)

Using this inequality, we can bound the sum Ψ[x] + Ψ[y] to obtain the desired result. More
specifically,

Ψ[x] + Ψ[y] ≤ E Π(C∗x + C∗y , x + y, q, λ)

≤ Π(C∗x+y, x + y, q, λ)

= Ψ[x + y],

where
C∗x+y = arg max

C≥0
E Π(C,x + y, q, λ).

�

4.3 Background: Results from Coalitional Game Theory

Game theory deals with rational behavior of economic agents in a mutually interactive
setting. In a game, interacting agents aim to maximize certain expected utility by making
particular decisions. The final payoff of each agent depends on the decisions taken by all
the agents. The game is specified by the set of participants, the possible decisions taken
by each agent and the set of all possible payoffs. The agents in the game are called the
players. A game is called cooperative if the players are allowed to form alliances or teams.
Cooperative games [72] are also known as coalitional games and have been used extensively
in diverse disciplines such as social science, economics, philosophy, psychology [69] and
more recently in engineering and communication networks [88].

In a coalitional game, we are interested in identifying the topology of alliance formation,
under which the subsequent groups of players can improve their payoff if they decide to
play jointly in said alliances. An alliance of players is called a coalition. Let

N := {1, 2, . . . , N}

denote the finite collection of players.
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Definition 4.3.1 (Coalition). A coalition is any subset S ⊂ N . The cardinality of the
coalition S is its number of players and is denoted by |S|. The set of all possible coalitions
is defined as the power set 2N of N :

2N := {S : S ⊆ N} (14)

The grand coalition N is the alliance that comprises every player in the game.

Definition 4.3.2 (Coalitional game and value). A coalitional game is defined by a pair
(N , v) where

v : 2N → R

is the value function that assigns a real value to each possible coalition S ⊆ N . The value
of the coalition S is defined as v(S).

Definition 4.3.3 (Superadditive game). A coalitional game (N , v) is superadditive if its
value function is superadditive, i.e. if for any pair of disjoint coalitions S, T ⊂ N with
S ∩ T = ∅,

v(S) + v(T ) ≤ v(S ∪ T ) (15)

Remark 4.3.4. Superadditivity implies that the value of a coalition cannot be improved by
splitting it up into two smaller coalitions. �

A central problem in coalitional game theory is the identification of payoff allocation
mechanisms that fairly share the coalition value v(S) among all of the members of said
coalition S. The use of payoff allocation mechanisms that do not fairly share the coalition
value among the members may result in certain members exiting the coalition to form more
profitable sub-coalitions. We make this more precise by presenting an axiomatic formulation
of fairness in definition 4.3.8. Additionally, we are interested in the class of coalitional
games with transferable payoff.

Definition 4.3.5 (Transferable payoff). A coaltional game with transferable payoff is charac-
terized by the property that there is no restriction on the sharing of coalition value between
members of the coalition.

Definition 4.3.6 (Payoff allocation). A payoff allocation for the coalition S ⊆ N is a vector

x ∈ R|S|

whose entries represent payoffs to each member of the coalition.
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1. (Efficiency) An allocation x is said to be efficient if the payoffs add up to the value of
the coalition,

xT1 =
∑
i∈S

xi = v(S)

2. (Individually rationality) An allocation is said to be individually rational if each player
gets a payoff that is at least as good as that obtained by playing alone,

xi ≥ v({i}), ∀ i ∈ S

Definition 4.3.7 (Imputation). A payoff allocation x for the grand coalition N is said to
be an imputation if it is simultaneously efficient and individually rational. The set of all
imputations I for the game (N , v) is defined as follows

I :=

{
x ∈ RN

∣∣∣∣∣∑
i∈N

xi = v(N ), xi ≥ v({i}), for all i ∈ N
}

(16)

We next define the a fundamental solution concept for coalitional games known as the core.
It can be interpreted as being analogous to Nash equilibria for non-cooperative games [72].

Definition 4.3.8 (The Core). Consider a coalitional game (N , v) with transferable payoff.
The core is defined to be the set of imputations such that no coalition can obtain a payoff
which is better than the sum of the members current payoffs. Consequently, for an imputation
in the core, no subgroup of players has an incentive to leave the grand coalition to form
another coalition S ⊂ N . A mathematical expression for the core is given by:

C :=

{
x ∈ RN

∣∣∣∣∣∑
i∈N

xi = v(N ),
∑
i∈S

xi ≥ v(S), for all S ⊆ N
}

(17)

4.3.1 Existence of a Nonempty Core
Certain coalitional games have a empty cores. Two important classes of games with a
nonempty core are convex games and balanced games.

Definition 4.3.9 (Convex game). A coalitional game (N , v) is convex if and only if its value
function is supermodular, i.e.

v(S) + v(T ) ≤ v(S ∪ T ) + v(S ∩ T ), for all S, T ⊂ N (18)
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Lemma 4.3.10 (Supermodularity). Alternatively, a value function v is supermodular if and
only if for all i ∈ N and every set of coalitions S ⊂ T ⊂ N such that S∩{i} = T ∩{i} = ∅,
the following inequality holds:

v(S ∪ {i})− v(S) ≤ v(T ∪ {i})− v(T ) (19)

Generally speaking, a game is convex if a an individual’s marginal contribution to a
coalition increases if he joins a larger coalition.

Theorem 4.3.11 ([90]). Every coalitional game has a nonempty core if it is convex.

Convexity of a coalitional game is a strong condition and many real-world games are
not convex. A weaker condition is balancedness of a coalitional game. In order to define a
balanced coalitional game, we need to introduce the concept of a balanced map.

Definition 4.3.12 (Balanced map). A map α : 2N → [0, 1] is said to be balanced if for any
i ∈ N , ∑

S∈2N
α(S)1{i ∈ S} = 1 (20)

where 1{·} denotes the indicator function.

Thus, a balanced map provides a weight for each coalition in the game such that for each
player i ∈ N , the sum of the weights corresponding to all coalitions that contain the player
i equals one.

Definition 4.3.13 (Balanced game). A game (N , v) is balanced if for any balanced map α,∑
S∈2N

α(S)v(S) ≤ v(N ). (21)

A balanced coalitional game always has a nonempty core. In fact, [15] and [91] inde-
pendently proved, using duality in linear programming, that balancedness is an equivalent
condition to the existence of a nonempty core.

Theorem 4.3.14. (Bondareva-Shapley Theorem [15, 91]) A coalitional game has a nonempty
core if and only if it is balanced.

However, not every coalitional game is balanced. For such games, alternative solution
concepts have been introduced. The most important among these are the Shapley value and
the nucleolus.
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4.3.2 Alternative Solution Concepts

The Shapley Value

The Shapley value takes an axiomatic approach to value allocation in a coalitional game.
For a coalitional game (N , v), the Shapley value χi(v) denotes the payoff to each player
i ∈ N . The Shapley value must satisfy five basic axioms.

1. (Individual rationality) χi(v) ≥ v ({i}) for all i ∈ N .

2. (Efficiency)
∑

i∈N χi(v) = v(N )

3. (Symmetry) Let S ∩ {i, j} = ∅, if v(S ∪ {i}) = v(S ∪ {j}) then χi(v) = χj(v).

4. (Dummy action) Let S ∩ {i} = ∅, if v(S ∪ {i}) = v(S) then χi(v) = 0.

5. (Additivity) If v1 and v2 are two value functions then χi(v1 + v2) = χi(v1) + χi(v2).

Theorem 4.3.15 ([91]). Consider a coalitional game (N , v). An analytical expression for
the corresponding Shapley value is given by

χi(v) =
∑

S⊂N\{i}

|S|!(N − |S| − 1)!

N !
[v(S ∪ {i})− v(S)] (22)

The Shapley value χi(v) can be interpreted as the expected marginal contribution of
player i to the grand coalition N when it joins at a uniformly at random order. The weight
is the probability that player i enters right after every player in the coalition S .

Remark 4.3.16. (Relation to the core) The Shapley value always exists but is not necessarily
in the core. If a coalitional game has a nonempty core and if in addition the imputation
defined by the Shapley value lies in the core, then this imputation shares the stability
properties of the core and the fairness established by the axioms of the Shapley value. As
a matter of fact, for a convex game, the imputation corresponding to the Shapley value is
always in the core [90]. However, this is not true, in general, for a balanced game. �

The Nucleolus

The nucleolus of a coalitional game (N , v) is an imputation that minimizes the dissatis-
faction of the players. Let x ∈ RN be an imputation associated with the coalitional game
(N , v). The dissatisfaction of a coalition S with respect to the imputation x is measured by
the excess defined as follows:

e(x,S) = v(S)−
∑
i∈S

xi. (23)
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For a given imputation x, define the associated excess vector, θ(x) ∈ R2N−2, as a vector
whose entries are the excesses for all coalitions (excluding the grand coalition) arranged in
nonincreasing order, i.e.

θi(x) ≤ θj(x) for all i, j ∈ N such that i ≥ j.

Let Θ denote the set of excess vectors associated with each imputation x ∈ I for a coalitional
game (N , v).

Θ = {θ(x) : x ∈ I} (24)

Definition 4.3.17 (Lexicographic order). Define a lexicographic order on the elements
of Θ as follows: θ(x) ≤lex θ(y) if there exists an index k ∈ N such that for all i < k,
θi(x) = θi(y) and θk(x) ≤ θk(y).

Definition 4.3.18 (Nucleolus). The nucleolus of the game (N , v) is the lexicographically
minimal imputation based on this ordering.

Remark 4.3.19. (Relation to the core) The core can be easily related to the nucleolus
solution concept [36]. The nucleolus always exists and is unique. Moreover, the nucleolus
belongs to the core, if the core is non-empty, as the the core is the set of all imputations with
negative or zero excesses. �

4.4 A Coalitional Game for Wind Energy Aggregation

LetN = {1, · · · , N} denote the set of N independent wind power producers (WPP). As the
collection of WPPs are connected to a common bus in the power network, they face common
market prices and can directly aggregate their power output without regard to transmission
capacity constraints. Ergo, any subset S ⊆ N of wind power producers has the option of
forming a coalition to participate in the market as a single entity. An act which amounts to
one of risk sharing. Using the machinery of coalitional game theory, we aim to

1. prove that independent wind power producers (WPP) can improve their expected
optimal profit, in aggregate, by forming a coalition to jointly offer their aggregate
power as a single entity.

2. identify fair sharing mechanisms to allocate the additional profit among the members
of the coalition.

We model the formation of a willing coalition among wind power producers to jointly
offer a contract for energy in a two-settlement market as a coalitional game (N , v), where the
value function v(S) is defined as the expected profit corresponding to an optimal coalitional
offer (Theorem 4.2.1) of the aggregate wind power wS associated with the coalition S ⊆ N .
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v(S) = Ψ[wS ] = max
C≥0

E Π(C,wS , q, λ) (25)

In section 4.4.1, we prove that the corresponding coalitional game is superadditive, from
which it follows that the the formation of a grand coalitionN is optimal from the perspective
of maximizing the WPPs collective expected profit. We also prove that the coalitional game
is balanced and hence has a nonempty core (i.e., C 6= ∅). This guarantees the existence of a
fair payoff allocation in the core.

The challenge is to find an imputation x∗ ∈ RN in the core C. Through counterexample,
we show in section 4.4.2 that the coalitional game for wind energy aggregation is not convex
and that the Shapley value does not necessarily belong to the core. Although the nucleolus
belongs to the core for a balanced game, its calculation can be computationally demanding,
as it requires the solution of a sequence of o(2N) linear programs [87]. As an alternative,
we propose the use of a candidate imputation that minimizes the worst-case excess for every
coalition.

Finally, as the coalitional value function v (25) is defined in the metric of optimal
expected profit, an imputation x∗ ∈ RN belonging to the corresponding core C, represents
the payment that each WPP (coalition member) should receive in expectation. In practice,
the realized profit will vary day by day, as the profit (7) is a random variable. Hence, given
any realization of the profit, we propose, in section 4.4.3, a payoff allocation mechanism to
distribute the realized profit among the coalition members, such that the payment that each
member receives – averaged over an increasing number of days – approaches the imputation
x∗ ∈ C.

4.4.1 Properties of the Coalitional Game

Theorem 4.4.1. The coalitional game (N , v) for wind energy aggregation is superadditive,
i.e.,

v(S) + v(T ) ≤ v(S ∪ T ) for all disjoint coalitions S, T ⊂ N (26)

Proof: As the value function is defined as v(S) = Ψ[wS ] for all S ⊆ N , the result follows
directly from the the superadditivity property of Ψ established in Lemma 4.2.4. More
specifically, for any disjoint pair S, T ⊂ N , we have

v(S) + v(T ) = Ψ[wS ] + Ψ[wT ]

≤ Ψ[wS + wT ]

= v(S ∪ T ).

�
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Remark 4.4.2. (Positively Correlated Wind Processes) Superadditivity of the game (N , v)
guarantees that coalition formation will never detract from the members’ expected profit
in aggregate. In the worst case, the coalition optimal expected profit equals the sum of the
individuals’ optimal expected profits if they were to participate in the market independently.

More specifically, consider two disjoint coalitions S and T whose corresponding ag-
gregate wind power processes wS and wT are perfectly positively correlated on the time
interval of interest [t0, tf ]. Given such characteristics, it is straightforward to show that
the individual coalitions S and T have no incentive to form the larger coalition S ∪ T , as
v(S) + v(T ) = v(S ∪ T ). �

Theorem 4.4.1 demonstrates that wind power producers can improve their expected profit
by forming coalitions with other producers to jointly offer a contract for their aggregate
power. Moreover, the larger the coalition the greater the improvement in the aggregate
expected profit – indicating that the most profitable coalition is the grand coalition. Superad-
ditivity, however, does not guarantee the existence of a payoff allocation that is satisfactory
(fair) from the perspective of every member. Consequently, there may exist an opportunity
for certain members to increase their expected profit by defecting from the grand coalition
N to form a smaller one S ⊂ N . As outlined in Section 4.3, the core is the set of all
imputations that disincentivize the defection of any member from the grand coalition. As
indicated in Theorem 4.3.14, balancedness of the game is equivalent to the existence of at
least a single imputation in the core.

In Theorem 4.4.3 we prove that the coalitional game (N , v) has a nonempty core.
Homogeneity and superadditivity of the map Ψ, as proven in Lemma 4.2.4, are instrumental
in the proof of this theorem.

Theorem 4.4.3. The coalitional game (N , v) for wind energy aggregation is balanced and
therefore has a nonempty core.

Proof: Let α : 2N → [0, 1] be an arbitrary balanced map from the space of all coalitions
S ⊆ N to the unit interval [0, 1] (see (20)). Let S ⊆ N be an arbitrary coalition of the
game (N , v). Balancedness of the game is proven by applying the positive homogeneity and
supperadditivity properties of the function Ψ – established in Lemma 4.2.4.
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∑
S∈2N

α(S)v(S) =
∑
S∈2N

α(S)Ψ[wS ]

=
∑
S∈2N

Ψ[α(S)wS ], by positive homogeneity of Ψ

≤ Ψ

[∑
S∈2N

α(S)wS

]
, by superadditivity of Ψ

= Ψ

[∑
S∈2N

α(S)
∑
i∈S

wi

]

= Ψ

[∑
S∈2N

α(S)
∑
i∈N

1{i ∈ S}wi

]

= Ψ

[∑
i∈N

∑
S∈2N

α(S)1{i ∈ S}wi

]

= Ψ

[∑
i∈N

wi

]
, by balancedness of α

= v(N )

and this proves balancedness of the game (N , v). �

4.4.2 Sharing of Expected Coalition Profit
As the coalitional game for wind energy aggregation has a nonempty core, there exists an
imputation in the core that guarantees that no wind power producer can improve its expected
profit by defecting from the grand coalition.

The Shapley Value Is Not in the Core

For convex games, the Shapley value provides a closed-form expression for an imputation
that belongs to the core. It can be shown through counterexample, however, that our class of
coalitional games is not convex and that the Shapley value does not necessarily specify an
imputation belonging to the core.

Example 4.4.4 (Counterexample). Consider a coalitional game involving three independent
wind power producers, N = {1, 2, 3}, offering contracts on the time interval [t0, tf ] of
length one hour. Each wind power process wi (i = 1, 2, 3) is assumed to be stationary in
the strict sense with discrete marginal distributions. The wind power processes w1 and w2
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are assumed to be independent and have identical marginal distributions defined by

wi(t) =

{
1, w.p. 0.5

2, w.p. 0.5
i = 1, 2 for all t.

The wind power process w3 is assumed to be perfectly positively correlated to w2, i.e.,

w3(t) = w2(t) for all t.

The forward market clearing price and expected imbalance prices are set at (p = 0.5, µq =
1, µλ = 0) with units ($/MWh).
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Figure 4.1. This figure depicts the time-averaged cumulative distribution function ΦS(w) and value
v(S) associated with each coalition S in the power set of N . The shaded blue area depicts the value
v(S) in units of ($) for each coalition.

Consider the coalitional game (N , v). The time-averaged cumulative distribution func-
tion FS(w) and value v(S) associated with each coalition S ⊆ N are depicted in Figure 4.1.
The shaded blue area depicts the value v(S) in units of ($) for each coalition. The numerical
values are given by the following:

v({i}) = Ψ[wi] = 0.5, i ∈ {1, 2, 3}
v({1, i}) = Ψ[w1 + wi] = 1.25, i ∈ {2, 3}
v({2, 3}) = Ψ[w2 + w3] = 2v({2}) = 1

v({1, 2, 3}) = Ψ[w1 + w2 + w3] = 1.75
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As indicated in Theorem 4.4.3, this coalitional game is balanced and, consequently, has a
nonempty core. However, this game is not convex, as the value function is not supermodular.
Take for example,

v({1, 2, 3})− v({1, 2}) = 0.50

< v({1, 3})− v({1}) = 0.75,

which contradicts the supermodularity property defined in equation (19). Hence, the imputa-
tion given by the Shapley value χ(v) does not necessarily lie in the core of the game – as
indicated in Section 4.3.2.

We now show that the imputation given by the Shapley value is not in the core. An
imputation x =

[
x1 x2 x3

]T
is in the core if it satisfies the following conditions, as

defined by equation (17).

xi ≥ v({i}) = 0.5, i ∈ {1, 2, 3} (27)
x1 + xi ≥ v({1, i}) = 1.25, i ∈ {2, 3} (28)
x2 + x3 ≥ v({2, 3}) = 1.0 (29)

x1 + x2 + x3 = v({1, 2, 3}) = 1.75 (30)

The imputation given by the Shapley value can be easily computed using the closed form
expression in equation (22):

χ1(v) =
2

3
, χ2(v) =

1.625

3
, χ3(v) =

1.625

3

It is straightforward to see that the Shapley value violates condition (28).

χ1(v) + χ2(v) =
3.625

3
= 1.2083 < 1.25 = v({1, 2})

Hence, the imputation given by the Shapley value is not in the core for this particular game.
�

The Nucleolus and Minimizing Worst-Case Excess

With respect to the coalitional game for wind energy aggregation, the previous counterex-
ample 4.4.4 proves that the game not convex and, consequently, the imputation given by
the Shapley value is not guaranteed to belong to the core. The strength in application of
the Shapley value resides in its closed form characterization – providing computational
efficiency. However, as the Shapley value for a non-convex game is not guaranteed to belong
to the core, one must seek alternative solution concepts to extract imputations from the core.

An alternative solution concept to the Shapley value is given by the nucleolus, which is
guaranteed to belong to the core for a balanced game. However, as the nucleolus is defined
as the imputation with the lexicographically minimal excess vector, its computation requires
the solution of a sequence of o(2N) linear programs [87]. This can be computationally
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demanding. To surmount this difficulty we propose the use of a candidate imputation that
minimizes the worst-case excess for every coalition. This imputation is defined as follows:

e∗ = min
x∈RN

max
S∈2N

e(x,S) subject to

{
e(x,N ) = 0

v({i})− xi ≤ 0 for all i ∈ N (31)

In contrast to the nucleolus solution concept, computation of the imputation that minimizes
the worst-case excess can be recast as a single linear program:

e∗ = min
x∈RN , e∈R

e subject to


v(S)−∑i∈S xi − e ≤ 0, for all S ⊂ N
v(N )−∑i∈N xi = 0

v({i})− xi ≤ 0, for all i ∈ N
(32)

Although the imputation that minimizes the worst-case excess in problem (32) is not
guaranteed to belong to the core, it is a simple matter to check feasibility with respect to the
core.

Lemma 4.4.5. A feasible imputation x∗ achieving the minimal cost e∗ in problem (32)
belongs to the core if e∗ ≤ 0.

Proof: It is clear to see that a feasible imputation x∗ achieving the minimal cost e∗ is both
individually rational and budget balanced. Moreover, if e∗ ≤ 0, we have that

v(S)−
∑
i∈S

x∗i ≤ e∗ ≤ 0 for all S ⊂ N

which guarantees that no member has any incentive to defect from the grand coalition. �

The following example depicts an instance where this imputation that minimizes worst-
case excess belongs to the core and the Shapley value does not.

Example 4.4.6. Consider again the coalitional game corresponding to the Example 4.4.4 in
Section 4.4. Recall that the Shapley value of this game does not belong to the core. However,
since the coalitional game is balanced, it has a nonempty core. Using problem formulation
(32), we can solve a linear program (LP) to compute an imputation that minimizes the
worst-case excess for any possible coalition in the game. Such an imputation is computed
by solving the following LP corresponding to our game.

Minimize e

subject to e+ xi − 0.5 ≥ 0, i ∈ {1, 2, 3}
e+ x1 + xi − 1.25 ≥ 0, i ∈ {2, 3}
e+ x2 + x3 − 1.0 ≥ 0

x1 + x2 + x3 = 1.75

xi − 0.5 ≥ 0, i ∈ {1, 2, 3}
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The minimal cost e∗ and corresponding imputation x∗ are given by

e∗ = 0, x∗1 = 0.75, x∗2 = 0.5, x∗3 = 0.5.

Moreover, in contrast to the Shapley value for this game, the imputation x∗ belongs to the
core as e∗ = 0. �

4.4.3 Sharing of Realized Coalition Profit
We have thus far focused our attention on the computation of payoff allocations that fairly
distribute the optimal expected profit among coalition members. This approach stems from
our formulation of the coalitional game (N , v) as having a value function v defined in the
metric of optimal expected profit,

v(S) = max
C≥0

E Π(C,wS , q, λ) for all S ⊆ N .

Consequently, an imputation x∗ ∈ RN belonging to the corresponding core C, represents
the payment that each WPP (coalition member) should receive in expectation. In practice,
however, the realized profit for the grand coalition will vary day to day, as the profit (7) is
inherently a random variable given its dependence on the random wind power process wS
and imbalance prices (q, λ). A natural question thus arises:

Does there exist a profit allocation mechanism to distribute the realized profit among the
coalition members, such that the payment that each member receives – averaged over an
increasing number of days – approaches the imputation x∗ ∈ C? The answer is yes.

Assumptions

A6 We assume that the wind power process wk
S (for all S ⊆ N ) and imbalance prices

(qk, λk) are independent and identically distributed (iid) across days indexed by k.

wkS(t) ⊥⊥ wjS(t) for all t ∈ [t0, tf ] (33)

qk ⊥⊥ qj (34)

λk ⊥⊥ λj (35)

for all days k 6= j.

It follows that the optimal profit (36), corresponding to any coalition S ⊆ N , is likewise an
iid sequence

{
Πk
S
}

across days.

Πk
S := Π(C∗S ,w

k
S , q

k, λk), where C∗S = F−1S (γ) (36)
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Remark 4.4.7. (Cyclostationarity) The assumption of distribution stationarity, across days,
is motivated by the empirical observation of strong diurnal periodicity in the underlying
wind speed and price processes [43, 99]. �

Remark 4.4.8. (Negative Profit Realization) Whereas the expected optimal profit is guar-
anteed to be nonnegative, it is important to note that realized optimal profit can take on
negative values. Consequently, there may occur a day such that certain members of the
coalition have to pay for their contribution to the cost of contract imbalance. �

A Consistent Approach to Daily Profit Allocation

Denote the allocation of the profit realized on day k by

%k =
[
%k1 · · · %kN

]T ∈ RN ,

where coalition member i receives %ki of the realized profit on day k.

Definition 4.4.9 (Budget Balanced). A profit allocation %k ∈ RN is budget balanced with
respect to the profit realized on day k if

N∑
i=1

%ki = Πk
N

Definition 4.4.10 (Consistency). A mechanism for daily profit allocation %k is (strongly)
consistent with respect to a fixed allocation x ∈ RN if

Ti(K) :=
1

K

K∑
k=1

%ki (37)

converges (almost surely) in probability to xi as K −→∞.

Consider the following naı̈ve mechanism for daily profit allocation. Let x∗ ∈ RN be an
imputation in the core C for the coalitional game defined by the value function (25). Given a
realization of profit Πk

N on day k for the grand coalition N , distribute the profit among the
coalition members according to the following rule:

%ki = βi Πk
N , where βi =

x∗i∑N
j=1 x

∗
j

(38)

Theorem 4.4.11. The naı̈ve profit allocation mechanism (38) is both budget balanced and
strongly consistent with respect to the corresponding imputation x∗ ∈ C on which it is based.

Proof: Budget balancedness follows directly from
∑

i βi = 1. Strong consistency follows
directly from the strong law of large numbers. �
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Remark 4.4.12. (Defection in the Short Run) The sharing of the realized coalition profit
in such a manner as (38) – although fair in the long run – may lead to the defection of
certain coalition members in the short run if said members consistently receive payments
that are below that which would have been attainable through independent participation in
the market, i.e., if the event

%ki < Π(C∗i ,w
k
i , q

k, λk) (39)

occurs with a sufficiently high frequency.
We are currently exploring alternative formulations of the coalitional game to disincen-

tive defection of coalition members in the short run. For example, consider a formulation
where the value function is defined as the realized optimal profit (40), rather than the
expected optimal profit (25).

v(S) = Π(C∗S ,wS , q, λ), for all S ⊆ N (40)

Working with such a stochastic formulation of the coalition game (N , v), one can directly
compute fair profit allocations explicitly as a function of the realized wind power production
and imbalance prices. Moreover, assuming the existence of a nonempty core for such a
game, a daily payoff allocation given by

%k = x∗,k,

where x∗,k is an imputation in the core associated with day k, would guarantee that event
(39) never occurs – among other beneficial properties. �

4.5 Discussion

Motivated by the inherent benefits of risk sharing and reduction in output variability achiev-
able through aggregation, we have explored the problem of wind power aggregation in the
setting of competitive two-settlement electricity markets. Using coalitional game theory as a
vehicle for our analysis, we have analyzed the benefits of aggregation attainable through the
formation of a willing coalition among wind power producers (WPP) to pool their variable
power to jointly offer the aggregate output as a single entity into a forward energy market.
As coalitional bidding necessarily leads to an increase in optimal expected profit beyond
that achievable through individual market participation, we have attempted characterize
payoff allocation mechanisms to fairly distribute the profit among WPPs participating in the
coalition.

Having assumed transferable payoff and a value function defined as the maximum
expected profit attainable through competitive bidding, we have shown that the associated
coalitional game is superadditive and balanced. Consequently, the core of such a game
is necessarily nonempty – or, more simply, there exists a fair profit sharing rule that is
satisfactory from the perspective of every coalition participant. To this end, we propose a
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sharing rule – that minimizes worst-case excess for each coalition in the game – to fairly
allocate the expected profit among coalition members.

Our results demonstrate that wind power aggregation and coalitional bidding can serve
as an effective means for improving wind power profitability in the face of future production
uncertainty. However, our results are limited to the setting in which all WPPs are connected
to a common single bus in the network. As the transmission network can severely constrain
a coalitions ability to directly aggregate wind power generated at different buses, we are
presently working on extensions of these results to the multi-bus network setting to account
for transmission effects.
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CHAPTER 5

The Role of Co-located Energy Storage

5.1 Introduction

Motivated by the dangers posed by global warming, there is great interest in renewable
energy sources. Electric energy is the dominant form of energy consumption (accounting
for more than 50 % in the US). Wind and solar energy are expected to become a much larger
source of electric energy to meet the renewable energy production targets in many parts of
the world [46]. These sources of electricity production are inherently uncertain, variable,
and largely uncontrollable. Together, these characteristics constitute major challenges to
the integration of these clean energy sources into the electric grid at deep penetration levels
[40, 45, 73].

There is a considerable investment and interest in energy storage as a means to deal
with the inherent variability of renewable generation resources such as wind and solar.
[27, 29, 30, 33, 34, 48, 55, 58, 75, 96]. Indeed, hydro-power has traditionally been used for
such purposes [25, 70]. Although pumped hydro represents an efficient and flexible storage
modality, resources of this nature are geographically constrained and are consequently
of limited capacity to the bulk system. Consequently, as utility-scale renewable energy
continues to proliferate on the transmission system, we will witness an increased need for
alternative storage modalities (e.g., compressed air, battery, flywheel) that can be deployed
near regions of high wind and solar power density to manage the corresponding output
variability in order to minimize the quantity risk exposure to the independent system operator
(ISO).

We again consider the the setting in which a wind power producer (WPP) must offer its
variable power in a two-settlement market system (see Chapter 2). In this chapter, we extend
the results in Chapter 3 by exploring the extent to which co-located energy storage can be
used to mitigate the inherent financial risk associated with contract imbalances emanating
from fluctuations in wind power output. Further, as the capital cost of electrical energy
storage can be quite large, we derive analytical expressions that quantify the marginal value
of energy storage capacity in the metric of expected profit. Such results provide a mechanism
for empirical calculation of return on investment.
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5.2 Related Work and Contributions

Energy storage devices such as pumped-hydro, compressed air [55], sodium-sulfur batteries
[78], etc. offer the capability to firm wind generation power supply through joint optimal
dispatch of the storage device in conjunction with the variable resource power output.
Cavallo [26] wrote one of the earliest papers to make the case for joint operation of wind
energy and storage (see [27] for a utility scale investigation of compressed air energy storage
with wind). Greenblatt et al. [48] compared gas turbines and compressed air energy storage
in the context of wind as part of baseload electricity generation (see also [96] for a detailed
report on CAES and wind energy). Denholm and Sioshansi [31] have studied energy storage
and wind power in a transmission constrained system where they compare the economics of
siting the storage system near the wind power generation site versus the load site. Electric
and plug-in hybrid vehicles also represent potential distributed energy storage devices.
Economic viability of compressed air energy storage (CAES) in a wind energy system in
Denmark has recently been investigated in [61]. They also investigate the operation of this
joint storage-wind energy system in the Nordic spot and regulatory energy markets. They
conclude that the economic viability of such a system depends on the monthly payments
from the regulation power market. A recent paper by DeCesaro and Porter [29] presents a
summary of most wind integration studies to date.

Recently, Angarita et al. [2] have investigated combined wind-hydro bids in an electricity
pool market. They formulate a stochastic programming problem that accounts for uncertainty
in the wind availability and prices of electricity in various markets. Using a “scenario based”
approach to dealing with the uncertainty, they develop a linear programming solution which
yields optimal offer curves and limits the risk of profit variability. Our work is related to this
investigation, but employs analytical methods to yield computably optimal solutions.

In this chapter, we focus on the scenario in which wind power producers (WPP) must
sell their energy using contract mechanisms in conventional forward electricity markets.
Our goal is to formulate and solve problems of optimal contract sizing for such wind power
producers with dedicated co-located electric energy storage capacity. We explore the impact
of optimal storage operation on contract sizing and profit. We start with a simple stochastic
model for wind power production and a model for the electricity market. We show that the
problem of determining optimal contract offerings for WPP with co-located energy storage
reduces to convex programming. We also show that the expected profit acquired by the wind
power producer for optimal contract offerings is concave, non-decreasing in the parameter
of energy storage capacity – revealing that greatest marginal benefit from energy storage is
derived for a small amount of storage capacity. In fact, we show that the marginal optimal
expected profit with respect to the energy storage capacity can be analytically computed
for small capacities – an expression that is closely related to the spectral properties of the
underlying wind process [11, 13].

As storage is currently quite expensive and the level of penetration of renewable energy
is not very high, storage is not considered to be necessary for integrating wind into the
electric grid for the 20% penetration levels ([40], p.229). A full analysis of the economics
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of storage in the context of renewable integration can be found in [30]. We note that there
are large investments in new technologies for energy storage research and development
[75]. The Solar Energy Grid Integration Systems-Energy Storage (SEGIS-ES) project [?]
represents a recent comprehensive effort along this direction in the U.S. A recent review
of battery based storage technologies can be found in [33]. In their report, Denholm et al
conclude that

“It is clear that high penetration of variable generation (VG) increases the
need for all flexibility options including storage, and it also creates market
opportunities for these technologies. Evaluating the role of storage with VG
sources requires continued analysis, improved data, and new techniques to
evaluate the operation of a more dynamic and intelligent grid of the future.”

While we present our results in the context of joint optimization of wind and storage, we
believe they can be generalized and extended to the situation of joint optimization of storage
with the composite generation+load uncertainty in the grid.

5.3 Problem Formulation

5.3.1 Wind Power Model
For reasons of technical clarity in exposition, we take a slight detour from the continuous
time model presented in Chapter 3 and model wind power production as a discrete time
random process

w = {wn | n ∈ N}. (1)

The proceeding characterization of the stochastic process is analogous to that of Chapter 3,
Section 3.3.1, but is presented here for completeness. For a fixed n ∈ N, wn is a continuous
random variable whose cumulative distribution function (CDF) is assumed known and
defined as

Φ(w;n) = P{wn ≤ w}. (2)

The random process w takes on values in the unit interval [0, 1], as wind power output is
assumed to be normalized by the farm’s nameplate capacity. Note that the

In the following results, we will be interested in time-averaged distributions defined
on integer intervals of length N ∈ N. For example, the time-averaged CDF on the integer
interval {1, · · · , N} is defined as

F (w) =
1

N

N∑
n=1

Φ(w;n) (3)

Also, define F−1 : [0, 1] → [0, 1] as the quantile function corresponding to the CDF F .
More precisely, for β ∈ [0, 1], the β-quantile of F is given by
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F−1(β) = inf {x ∈ [0, 1] : β ≤ F (x)} (4)

The quantile function corresponding to the time-averaged CDF will play a central role in
our results.

5.3.2 Energy Storage Model
Consider the following linear difference equation as a dynamic model for a generic energy
storage system [58].

en+1 = (1 + αh)en + h

[
ηinjPn,inj −

1

ηext
Pn,ext

]
(5)

subject to the following constraints

0 ≤ en ≤ e (6)
0 ≤ Pn,inj ≤ P inj (7)
0 ≤ Pn,ext ≤ P ext (8)

The energy contained in the storage system at time n is denoted by en. The magnitude
of the power extracted (injected) from (into) the storage system at time n is denoted by
Pn,ext (Pn,inj). The parameter α ≤ 0 is the dissipation coefficient on the stored energy,
while ηinj, ηext ∈ [0, 1] model power injection and extraction efficiencies, respectively. As
this difference equation is derived from a first order ODE, the discretization step size is
denoted by h. Note that h should be chosen such that |1 + αh| < 1 for numerical stability
considerations.

5.3.3 Market Model and Metrics

Market Description

We assume that the wind power producer (WPP) is participating in a competitive two-
settlement market system operated as a power exchange. See Chapter 2, Section 2.3 for a
detailed description of such markets. Generally, the two-settlement system consists of two
ex-ante markets (a day-ahead (DA) forward market and a real-time (RT) spot market) and an
ex-post imbalance settlement mechanism to penalize uninstructed deviations from contracts
scheduled ex-ante. Negative deviations are charged at a price q ∈ R ($/MWh) and positive
deviations are charged at price λ ∈ R ($/MWh).

This pricing scheme for penalizing contract deviations reflects the energy imbalance of
the control area as a whole and the spot price of balancing energy in the RT market. Hence,
the imbalance prices (q, λ) are assumed unknown during the DA forward market and are
not revealed until the RT spot market, on which they are based, is cleared.
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Market Model

We employ a market model that consists of a single ex-ante DA forward market with an
ex-post financial penalty for deviations from offered contracts. In the DA market, generators
offer a portfolio of M time-ordered contracts for the delivery of power the following day.
The contract portfolio C ∈ RM

+ is structured as a sequence of M power levels that are
piecewise constant on intervals, typically, of length one-hour.

C =
[
C(1), · · · , C(M)

]
The time interval corresponding to contract C(m) is defined as the integer interval

Nm = {N(m− 1) + 1, · · · , Nm} (9)

where |Nm| = N . It follows naturally that the contract value Cn at time n is given by

Cn =
M∑
m=1

1{n ∈ Nm}C(m) (10)

where 1{·} is defined to be the indicator function. See Figure 5.1 for an example of a
contract portfolio C (ex: M = 24) offered in a day-ahead forward market.

0 5 10 15 20

0.2

0.25

0.3

0.35

0.4

time (hrs)

contract

wind

Figure 5.1. Illustrative example of typical contract portfolio (dashed) offered ex-ante in day-ahead
(DA) market. Contract intervals are of length one-hour. The wind power producer is subject to
financial penalties for generation shortfalls realized ex-post – i.e. when the wind power (solid) dips
below the offered contract (dashed).

The WPP receives a price p ($/MW-hour) for each offered contract C(m). As the power
contracts are offered ex-ante, deviations naturally occur between the offered contracts and
the realized wind power output. For uninstructed deviations from said contract portfolio C,
the WPP is penalized ex-post according to the imbalance prices (q, λ) ($/MW-hour).
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p : clearing price in the DA forward market

q : ex-post settlement price for negative imbalance (wn ≤ C(m)) for all m = 1, · · · ,M

λ : ex-post settlement price for positive imbalance (wn > C(m)) for all m = 1, · · · ,M

We make the following assumptions regarding prices and production costs:

A1 The WPP is assumed to be a price taker in the forward market, as the individual
WPP capacity is assumed small relative to the whole market. As such, the forward
settlement price p is assumed fixed and known.

A2 The WPP is assumed to have a zero marginal cost of production.

A3 As imbalance prices (q, λ) ∈ R2 are a function of the realized price of balancing
energy in the RT spot market, they are modeled as unknown random variables at the
time of contract offering in the DA forward market. Their expectations are denoted by

µq = E[ q ]

µλ = E[ λ ]

A4 The imbalance prices (q, λ) are assumed to be statistically independent of the wind
w(t).

A5 The imbalance prices are assumed to be nonnegative, i.e., it is never profitable to
deviate from offered contracts.

(q, λ) ∈ R2
+ with probability one

A6 Finally, the imbalance prices are assumed to be revealed shortly before the contract
delivery period. Consequently, any recourse action taken during the delivery interval
is allowed to depend explicitly on (q, λ).

Metrics

For a given contract portfolio C, the profit acquired by the WPP on the interval {1, · · · , NM}
is defined as

Π(C,w, q, λ) = h

M∑
m=1

∑
n∈Nm

pC(m) − q
[
C(m) − wn

]+ − λ
[
wn − C(m)

]+
(11)

where x+ := max{x, 0} for all x ∈ R and h is the discretization time step. As wind power
is modeled as a random process w, we will be concerned with the expected profit J(C):
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J(C) = E Π(C,w, q, λ) (12)

Here, the expectation is taken with respect to the random wind power process w =
{wn | n ∈ N} and the imbalance prices (q, λ).

Remark 5.3.1. (Storage) The introduction of energy storage will manifest in an augmented
profit model, because the WPP will have recourse capability to mitigate contract imbalances
by drawing on stored energy. This scenario will analyzed in Section 5.5.1. �

5.4 Contract Sizing without Energy Storage

We begin by defining a profit maximizing portfolio C∗ as

C∗ = arg max
C∈RM

+

J(C). (13)

In the absence of any energy storage capability, the opportunities for energy arbitrage
between contract intervals evaporate and the decision of how much constant power to offer
on interval i is independent of the decision on interval j for all i 6= j. Hence, the portfolio
optimization (13) decouples into M independent optimization problems:

C(m)∗ = arg max
C∈R+

J(C) m = 1, · · · ,M (14)

The formulation in (14) has been carefully studied in Chapter 3 and [12] and is closely
related to the newsvendor problem in operations research [67, 83]. The main result is
presented here.

Theorem 5.4.1. [12] Define the time-averaged distribution

Fm(w) =
1

N

∑
n∈Nm

Φ(w;n)

An optimal contract C(m)∗ is given by

C(m)∗ =

{
F−1m (γ), µq ≥ p

1, µq < p
where γ =

p+ µλ
µq + µλ

. (15)

Remark 5.4.2. Properties of the optimal quantile rule (15), such as uniqueness, price
elasticity of supply, and the effect penalty pricing are explored in detail in Chapter 3. �
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5.5 Contract Sizing with Energy Storage

5.5.1 Energy Storage Formulation
As wind energy penetration levels increase, energy storage will play a more dominant role
in facilitating the firming of wind power contracts in conventional electricity markets. We
now consider the scenario in which the wind power producer (WPP) has a co-located energy
storage device at its disposal. As the capital cost of an energy storage system is quite
prohibitive, a fundamental question in this context arises: what impact does energy storage
capacity have on expected profit and what are optimal contract offerings in this context? We
now formalize these questions as a constrained stochastic optimal control problem.

Recall section 5.3.2 and consider the linear difference equation (5) and constraints (6) -
(8) as a model for the energy storage system. The energy storage system interfaces with the
wind power producer through the power injection (extraction) variables Pn,inj(Pn,ext).

Information Structure of Storage Operation Policy

Define the storage decision vector un = [Pn,ext, Pn,inj]
T. Recall that, at the outset of the con-

tract delivery interval, we assume that the stochastic imbalance prices (q, λ) are realized and
observed by the WPP. Moreover, at each time n during the contract delivery period we addi-
tionally assume that storage en and wind wn states are completely observed. For a particular
time n, all of the information from the past relevant to the future is contained in the current
storage state en and all past observed wind power realizations wn := {wi | i = 1, · · · , n}.
Hence, we consider storage operation policies of the form

un = gn (en, w
n, q, λ) =

[
Pn,ext
Pn,inj

]
(16)

where gn is constrained to belong to the set of feasible operation policies guaranteeing that
constraints (5) - (8) are satisfied. Let g := {gn | n = 1, · · · , NM} and let G denote the set
of all feasible operation policies g.

Expected Profit Criterion

The expected profit corresponding to a particular operational policy and contract portfolio
(g,C) is defined as

J(g,C) = (17)

E

[
h

M∑
m=1

∑
n∈Nm

pC(m) − q
[
C(m) − wn + P g

n,in − P g
n,ext

]+ − λ [wn − P g
n,in + P g

n,ext − C(m)
]+]
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where expectation is taken with respect to the random wind power process w and imbalance
prices (q, λ). The superscript g is included to indicate the dependence on the control policy
g. A profit maximizing storage operation policy and contract portfolio (g∗,C∗) are given by

(g∗,C∗) = arg maxC≥0

g∈G
J(g,C)

subject to (5) - (8)
(18)

In the proceeding sections (5.5.2) - (5.5.3), we explore various properties of this optimal
contract sizing problem for a WPP with co-located storage.

Optimal Storage Operational Policy

For a given contract portfolio C ∈ RM
+ , it is straightforward to show that a greedy storage

operational strategy belongs to the class of feasible optimal policies. The intuition is as
follows.

• As the surplus price λ is time-invariant and there is no holding cost associated with
stored energy, it is optimal to always inject the maximum allowed energy when there is
a surplus in generation (i.e. wk > Cn) relative to the offered contract. This attenuates
the surplus penalty by an amount directly proportional to the energy injected.

• Similarly, as there are no price arbitrage opportunities, because the shortfall price q is
also time-invariant – when there is a shortfall in generation (i.e. wk ≤ Cn) relative to
the offered contract, an optimal policy is to extract the maximum allowable energy
from the storage needed to cover the shortfall.

More formally, an optimal feedback policy is given by:

If there is a contract shortfall (i.e., ∆n = Cn − wn > 0),

g∗(en, w
n) =

[
min

{
∆n,

ηext
h

(en), P ext

}
0

]
(19)

If there is a contract surplus (i.e., ∆n = Cn − wn ≤ 0),

g∗(en, w
n) =

[
0

min
{
−∆n,

1
hηinj

(e− en), P inj

} ] (20)

Remark 5.5.1. Note that the optimal storage operational policy above is stationary and
causal. Moreover, we have omitted dependence of the feedback policy g on the imbalance
prices (q, λ), as the greedy feedback strategy outlined above does not depend on their partic-
ular realization. This follows directly from the assumption of imbalance price nonnegativity
and time invariance. �

Given such characterization of an optimal storage feedback policy, we now explore the
problem of optimizing contract offerings ex-ante in the day ahead forward market.
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5.5.2 Convexity of Optimal Contract Sizing
In the day-ahead market, the WPP must offer a contract portfolio C for the delivery of
uncertain power during a future time interval, where deviations from offered contracts are
penalized. We show that the problem of computing a profit maximizing portfolio C∗ is a
convex optimization problem.

Theorem 5.5.2. (Convexity Property) Let g∗ be an optimal storage operational policy for a
fixed C ∈ [0, 1]M . Then J(g∗,C) is concave in C.

Proof: Without loss of generality, we prove the result for a single contract interval
(M = 1, C = C ∈ [0, 1]). Define the random profit criterion

Π(g, C,w, q, λ) = h
N∑
n=1

pC−q
[
C − wn + P g

n,inj − P g
n,ext

]+−λ [wn − P g
n,inj + P g

n,ext − C
]+

As parameterized by a particular contract C ∈ [0, 1], the expected profit under the optimal
feedback policy g∗ (19) - (20) is given by

J(g∗, C) = max
g∈G

Ew,q,λ Π(g, C,w, q, λ),

where expectation is taken with respect to the random wind power process w and imbalance
prices (q, λ). As the imbalance prices (q, λ) enter linearly into the profit criterion Π and
the optimal feedback policy is independent of their realization, we can equivalently replace
them their respective expected values, i.e.,

J(g∗, C) = max
g∈G

Ew Π(g, C,w, µq, µλ),

This next step does not hold in general. However in our case, the expectation and maximiza-
tion operators commute, because – as indicated by equations (19) and (20) – our stationary
policy g∗ is optimal for each realization of the wind process w. Hence,

J(g∗, C) = Ew max
g∈G

Π(g, C,w, µq, µλ).

Now, define the optimal value z(C,w), parameterized by the contract C and realized wind
process w, as

z(C,w) = max
g∈G

Π(g, C,w, µq, µλ)

We first prove concavity of the optimal value z(C,w) in the parameters (C,w). Consider
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the following linear programming (LP) formulation

y(C,w) = max
r,s,Pinj,Pext

h

N∑
n=1

pC − µqsn − µλrn (21)

subject to
e0 = 0

sn ≥ 0

rn ≥ 0

sn ≥ C − wn + Pn,inj − Pn,ext
rn ≥ wn − P g

n,inj + P g
n,ext − C

(5)− (8) ∀ n

where we have introduced new slack decision variables, s ∈ RN and r ∈ RN . It is
straightforward to show that

z(C,w) = y(C,w) for all (C,w).

Thus, showing concavity of z(C,w) in (C,w) is equivalent to showing concavity of y(C,w).
Let α ∈ [0, 1] and define

Cα = αC1 + (1− α)C2

wα = αw1 + (1− α)w2

for arbitrary C1, C2 ∈ [0, 1] and w1,w2 ∈ [0, 1]N . Moreover, for any pair (C,w), denote
the optimizing arguments of Problem (21) by{

r∗(C,w), s∗(C,w), P ∗inj(C,w), P ∗ext(C,w)
}
.

Concavity of y(C,w) in (C,w) is proven as follows.

y(Cα,wα)

= phNCα − h
N∑
n=1

µqs
∗
n(Cα,wα) + µλr

∗
n(Cα,wα)

≥ phNCα − h
N∑
n=1

µq
[
αs∗n(C1,w1) + (1− α)s∗n(C2,w2)

]
+ µλ

[
αr∗n(C1,w1) + (1− α)r∗n(C2,w2)

]
= αy(C1,w1) + (1− α)y(C2,w2)

The inequality follows from the fact that
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α


r∗(C1,w1)

s∗(C1,w1)

P ∗inj(C
1,w1)

P ∗ext(C
1,w1)

+ (1− α)


r∗(C2,w2)

s∗(C2,w2)

P ∗inj(C
2,w2)

P ∗ext(C
2,w2)


is a feasible point for Problem (21) with parameters (Cα,wα). This feasibility holds,
because the parameters (C,w) enter linearly into the constraints of Problem (21).

We, thus far, have shown that z(C,w) = y(C,w) is concave in (C,w). It follows
immediately that

J(g∗, C) = Ew z(C,w)

is concave in C, as expectation preserves concavity. �

5.5.3 Marginal Value of Energy Storage Capacity
Energy capacity constitutes a large percentage of the capital cost associated with many
storage modalities. Hence, in order to accurately amortize the the capital investment in
storage capacity over a period of time, it is of vital importance to quantify the fiscal benefit
to the WPP in terms of storage capacity (i.e. J∗ as a function of e). This relation can then
be used to optimally size the storage system so as to maximize return on investment. In
Theorem 5.5.2, we proved that the problem of computing optimal contract offerings and the
corresponding expected profit reduces to convex programming – a result that naturally lends
itself to efficient computation of the return on investment curves.

In the following Theorem 5.5.3, we show that the optimal expected profit (J∗ :=
J(g∗,C∗)) derived by the WPP – with co-located storage of capacity e – is concave and
non-decreasing in the capacity e. This result reveals that the greatest marginal benefit is
derived from a small amount of storage capacity. In fact, the marginal optimal expected
profit with respect to the storage capacity dJ∗/de can be analytically computed for e small.

Theorem 5.5.3. The optimal expected profit J(g∗,C∗) is concave and monotonically non-
decreasing in the energy storage capacity e.

Proof: Monotonicity is straightforward. Let ε > 0. With a slight abuse of notation, let
J∗(e) denote the optimal expected profit corresponding to a system with storage capacity
e ≥ 0. Clearly, J∗(e + ε) ≥ J∗(e), as the set of feasible solutions for problem (18) with
capacity parameter e is a subset of the feasible set corresponding to a capacity parameter of
e+ ε. Concavity is proved analogously to theorem 5.5.2. �
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Marginal Value of Energy Storage Capacity e

We now present a result that quantifies in closed-form the marginal expected optimal profit
dJ∗/de for small capacity e. We’ll see that marginal value of storage capacity at the origin is
closely related to the spectral properties of the underlying wind process w – as represented
by the frequency of energy arbitrage opportunities.

Definition 5.5.4 (Energy Arbitrage Opportunities, ξ(C)). Consider a contract portfolio
C ∈ RM

+ with individual contract duration of length N . Define the random variable ξ(C)
to be the number of times that the random process {wn} crosses the associated contract
sequence {Cn} from above. The random variable ξ(C) can be interpreted as the number of
energy arbitrage opportunities associated with the contract portfolio C.

Figure 5.2. Pictorial representation of a collection of energy arbitrage opportunities (red dots)
associated with a particular realization of the wind process and contract portfolio. As Theorem 5.5.5
indicates, the marginal value of energy storage capacity (for a small amount) is proportional to the
expected number of energy arbitrage opportunities.

Theorem 5.5.5. [13] Let γ := (p + µλ)/(µq + µλ). Assume that (1) the energy storage
system is non-dissipative (i.e. α = 0), (2) no constraints on power extraction or injection,
and (3) e(0) = 0. Then the marginal expected optimal profit with respect to e at the origin
is given by

dJ∗

de

∣∣∣∣
e=0

= (µλ + µq ηinjηext) E [ ξ(C∗) ] (22)

where C(m)∗ = F−1m (γ) for m = 1, · · · ,M .
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Remark 5.5.6. (Intuition) The previous result has an intuitive interpretation in that the
marginal value of storage capacity (for small amounts) is proportional to the expected
number of energy arbitrage opportunities. Consider a system with small storage capacity
ε > 0. Each time the wind power process crosses the contract from above, the WPP has
the opportunity to inject an ε amount of energy into the storage system to decrement the
surplus penalty by λε. This energy arbitrage event is also accompanied by the additional
opportunity to extract ε energy from its storage device and thus decrement its shortfall
penalty by q(ηinjηext)ε. Clearly then, the total expected financial benefit for small storage
capacity is roughly ≈ (λ+ qηinjηext)E[ξ]ε. See Figure 5.2 for an example of a collection of
energy arbitrage opportunities associated with a particular realization of the wind process
for a given contract portfolio. �

5.6 Discussion

In this chapter we have formulated and solved the problem of optimal contract sizing for
a wind power producer with co-located energy storage participating in a conventional
two-settlement electricity market. We have shown that the problem of determining optimal
contract offerings for a WPP with co-located energy storage can be solved using convex
programming. Our results have the merit of providing key analytical insight into the trade-
offs between a variety of factors such as energy storage capacity and optimal expected
profit. In fact, we analytically quantify the marginal value of energy storage capacity and
demonstrate that the storage capacity value is highly dependent on the spectral properties of
the underlying wind power process. Using such results, one can formally study the planning
question of optimal storage sizing so as to maximize return on investment.

In the near term, we plan to identify efficient computational methodologies for solving
the convex contract sizing problem outlined in this paper. In the long term, we intend to
explore alternative revenue streams (e.g. ancillary service and capacity markets) for an
independently operated storage system, as wind-firming in of itself may not be sufficient to
cover the capital cost of a storage device. An intimately related question is where to locate
the storage device? Co-locating the storage system with the wind farm will lead to a direct
increase in WPP profit and transmission line utilization. However, as wind sites tend to
have limited transmission access and are distant from load centers, the storage device will
necessarily face limitations on it’s ability to offer ancillary services. Further, who commands
the storage?
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