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Abstract 

In categorization research, competing theories are typically 
compared by fitting their predictions to participant’s responses 
on a set of test items.  The theory that best matches each 
participant's responses is identified as the strategy the 
participant is most likely employing.  Researchers face 
considerable difficulty in selecting the best-fitting model due 
to several factors. In this study, we show the frailty of this 
approach. Due to pervasive model mimicry and across the 
similarity- and rule-based models, typical categorization task 
designs fail to reliably distinguish strategies. Some design 
modifications that might help are counter-indicated on 
practical grounds (e.g., carry-over effects); other possible 
means of improving strategy identification are also discussed. 

Keywords: categorization; strategy identification; model 
mimicry; Bayesian estimation 

Introduction 

Categorization associates with our ability to understand 

concepts, acquire knowledge, and make predictions. Multiple 

theories of how people learn and generalize categories have 

been proposed, including categorization based on rules 

(Ashby & Gott 1988, Ashby & Townsend 1986), prototype 

similarity (Reed 1972; Rosch 1973; Smith & Minda 1998), 

and exemplar similarity (Estes 1986; Medin & Schaffer 1978; 

Nosofsky 1986). Researchers extend our knowledge of the 

topic by comparing performance between groups and relating 

differences in performance to differences between theories. 

In general, the aim is to identify whether the strategy1 people 

are using is the one a given theory claims they have available. 

However, many conclusions of these studies depend heavily 

on how participants’ performance is interpreted. For example, 

we can legitimately claim that a certain patient group, for 

example, uses less rule-based classification relative to 

controls only if we can identify the strategies of the patients 

and controls. Therefore, it is important to evaluate the 

techniques we use in identifying which strategy people adopt. 

Strategy Identification 

One way to identify strategies is to set up ideal templates 

from each strategy and fit the templates to participants’ data. 

The participant is identified as adopting the strategy in which 

 
1 We consider a ‘strategy’ to be identifiable with a particular 

distribution of responses over stimuli; a concise description of the 

observable phenomenon. 

the ideal template is the most similar to the response profile. 

The templates may not be exclusive on every item, so the 

strategies often are distinguished based on only some specific 

items (e.g., Conaway & Kurtz, 2015; 2017). 

The template approach is straightforward. However, it falls 

short in accounting for the variability of profiles that one 

strategy can generate. A strategy should represent a way to 

respond rather than a particular response. A wide range of 

possibilities would be overlooked if only few templates are 

used. The situation gets worse when the features are 

continuous, which leads to infinite possible responses. 

A better way to identify strategies is to construct each 

strategy as a model and conduct a selection process among 

the models. With this multi-model approach, a set of models 

were fitted to each response profile and the participant is 

identified as adopting the strategy from the best-fit model. 

Models with different parameters can show the variability of 

the profiles and will not be limited to few templates. 

This model comparison is also conducted by researchers 

when proposing new theories. A new model was typically 

compared to the existing ones not only in the field of category 

learning (e.g., exemplar versus prototype, Medin & Schaffer, 

1978) but other areas (e.g., prospect theory versus expected 

utility in decision making, Kahneman & Tversky, 1979).  

 

 
 

Figure 1: The category structures used in this study. The 

blue and orange cells are A and B exemplars respectively. 

The colored cells are all used as the testing items. 

Partial-XOR Task 

Conaway and Kurtz (2015) proposed the partial-XOR task as 

a way to discriminate representational strategies. The crucial 

feature of the task, as shown in panel 1 in Figure 1, is that 
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items from one quadrant in an XOR structure were hidden 

from the participants during learning. However, in the 

transfer phase items from all quadrants were presented. The 

results showed that there were two groups of people, based 

on their classification of the novel items. Conaway and Kurtz 

interpreted a tendency to label most of these items ‘B’ during 

the transfer phase as evidence against people using similarity-

based strategies in category learning. 

We used the partial-XOR task as the category structure in 

this study not only because it plays a crucial role in the debate 

of similarity versus non-similarity classification, but because 

of its sensitivity of detecting different strategies. The transfer 

items, especially the items in quadrant 4 are helpful for 

distinguishing strategies adoption. We also included 
variations of the task (panel 2 and 3 in Figure 1) to examine 

if the multi-model-fitting approach would work better with 

more testing items and with the items more spread out.  

Methods 

To test the multi-model approach of identifying strategies, a 

set of rule-based models, similarity-based models, and a 

guessing model were collected. The parameter and model 

recovery analyses of these models were tested on the typical 

partial-XOR task and two variations of the partial-XOR task. 

The models were fit to the data generated not only by 

themselves (for parameter recovery) but also by other 

candidate models (for model recovery). It would serve as 

supporting evidence for the multi-model approach if the 

recovery results are stable.  

The primary paradigm on researching the human category 

learning focuses on predicting transfer performance to new 

items after training. However, our interest in this paper is to 

consider strategy identification and not the learning 

performance. Since people are plausibly switching strategies 

back-and-forth during learning, we did not simulate the 

behavior in learning phase but in testing phase. Participants 

were assumed to memorize all the exemplars perfectly in 

training. In each testing trial, an item was presented, and 

participants were asked to classify the item into category A 

or B with the strategies they adopted. All testing items were 

presented once in random order. Along with the simulation, 

behavioral data on structure 1 and 2 are also reported. 

Category Structures 

Structure 1: the Typical Partial-XOR Task The first 

structure was a replication of the partial-XOR used in 

previous studies (e.g., Conaway & Kurtz, 2015; 2017). The 

stimuli varied in two features. Each feature dimension was 

divided into seven equal levels. Two items in quadrant 2 were 

B exemplars and four items in quadrant 1 and quadrant 3 were 

A exemplars (see panel 1 in Figure 1). A response profile was 

the classification of the 49 combinations of features. 

 

Structure 2: the Extending Partial-XOR Task This 

structure had the same configuration of the exemplars as 

structure 1. Following experiment 2A in Conaway and 

Kurtz’s study (2017), items outside the original 7x7 region 

were tested (see panel 2 in Figure 1). There were 12 levels in 

each feature dimension. The purpose is to study the 

extrapolation of learning on distinct testing items. 

 

Structure 3: the Scattered Partial-XOR Task This 

structure had the same configuration of the exemplars as 

structures 1 and 2. Overall, there were 11 levels in each 

feature dimension. More spread items were used to obtain 

more information about the category strategy. 

Models 

Generalized Context Model (GCM) Nosofsky (1986) 

proposed the GCM model assuming that people represent the 

categories by the learned exemplars and classify items with 

their similarity to the exemplars. To compute the similarity, 

the GCM adopts a multidimensional scaling approach in that 

each stimulus can be represented as a point in a multi-

dimensional psychological space in which the dimensions are 

the precepted features of the stimulus. The similarity between 

two items can be computed from the distance between two 

corresponding points in the space. The items with larger 

distances are less similar. Therefore, based on the GCM, 

when a to-be-categorized item shows up, people compute its 

distance to all exemplars and sum the values by categories. 

The categorization decision is made by choosing the category 

with the largest similarity to the new item, that is, the 

category with the smallest overall distance to the item. 
 

𝑑𝑖𝑗 =  [ ∑ 𝑤𝑚

𝑀

𝑚=1

|𝑥𝑖𝑚 − 𝑥𝑗𝑚|
𝑟

]

1
𝑟⁄

 (1) 

The computation of the distance between item i and each 

exemplar j is shown in equation 1. M is the total dimensions 

in the psychological space. 𝑥𝑖𝑚 denotes the value of item i 

on dimension m and 𝑥𝑗𝑚  denotes the value of exemplar j on 

the same dimension. The 𝑤 values are attention-weight 

parameters with 0 ≤ 𝑤𝑚 ≤ 1, and ∑ 𝑤𝑚 = 1, reflecting the 

attention that people give to each dimension m. Items used in 

this study were only with two features, so M was equal to 2. 

The value r determines the calculation of the distance. Since 

the features are assumed to be psychologically separable, r 

was set to be 1, which yielded the city-block distance. 
 𝑆𝑖𝑗 =  𝑒−𝑐𝑑𝑖𝑗

𝑝

 (2) 

Equation 2 shows the formula for computing the similarity 

between item i and exemplar j. The value c is the sensitivity 

parameter that reflects the rate at which similarity declines 

with distance. The value p determines the shape of the 

function relating similarity to distance and was set to be 1. 
 

𝑃( 𝐽 | 𝑖 ) =  
𝑏𝐽 [∑ 𝑉𝑖𝐽𝑆𝑖𝑗

𝑛
𝑗=1 ]

𝛾

∑ 𝑏𝐾  [∑ 𝑉𝑘𝐾𝑆𝑖𝑘
𝑛
𝑘=1 ]𝛾𝐾𝑁

𝐾=1

 (3) 

Finally, the probability with which item i is classified into 

category j is shown in equation 3. 𝑏𝐽 denotes the response-

bias for category j. 𝛾 is the response-scaling parameter and 

was set to be 1 in this study assuming that the observer makes 

the decision by probability matching. V denotes the memory 
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strength of the item. In all structures used here, the memory 

strengths of B exemplars were set to be 2 since they were 

presented twice the number of trials in previous studies to 

maintain an equal proportion of the As and Bs in training. 

The freely estimated parameters in the GCM are c, w values, 

and b values. Because the items were all 2-feature, 𝑤2 was 

equal to 1 − 𝑤1. 𝑏𝑏 was set to be 1 because they were all 

two-label categorization tasks (A or B). As a result, there 

were three free parameters in fitting the GCM in this study. 

The GCM was included in the model set because it is a 

widely used and iconic similarity-based model in 

categorization. Besides, it is at the core of the debate whether 

a similarity-based model can explain the behaviors in the 

partial-XOR task. Previous studies showed that the GCM has 

some trouble fitting the XOR profiles in the task. 

 

Similarity–dissimilarity Generalized Context Model (SD-

GCM) The model was proposed by Stewart and Brown 

(2005). The distance computation and the similarity formula 

in SD-GCM are the same as the ones in GCM (Equation 1 

and Equation 2). However, the SD-GCM assumes that people 

use not only similarity but also dissimilarity to make a 

category judgment. In a two-category task, if the item is 

sufficiently dissimilar to the members of one category, it is 

more likely to be classified as the other category. 

𝜐𝑎,𝑖 = ∑ 𝑉𝑖𝑗
𝑥𝑗 ∈ 𝐴

𝑆𝑖𝑗 + ∑ 𝑉𝑖𝑗
𝑥𝑗  ∈ 𝐵

(1 − 𝑆𝑖𝑗) (4a) 

𝜐𝑏,𝑖 = ∑ 𝑉𝑖𝑗
𝑥𝑗 ∈ 𝐵

𝑆𝑖𝑗 + ∑ 𝑉𝑖𝑗
𝑥𝑗  ∈ 𝐴

(1 − 𝑆𝑖𝑗) (4b) 

With two categories A and B, the function can be denoted 

as Equation 4a and 4b. 𝑆 is the similarity and (1-𝑆) is the 

dissimilarity. V denotes the memory strength of the item and 

the same settings with the GCM on the parameters were 

applied. The SD-GCM also uses the relative rule for the 

category decision. 

𝑃(𝐴| 𝑖 ) =  
𝑏𝑎 𝜐𝑎,𝑖

𝛾

𝑏𝑎 𝜐𝑎,𝑖
𝛾 +  𝑏𝑏  𝜐𝑏,𝑖

𝛾
 (5) 

There were three free parameters in fitting the SD-GCM in 

this study: c. 𝑤1 and 𝑏𝑎. In previous studies, the SD-GCM 

was shown to be able to predict XOR profiles in the partial-

XOR task. As a result, the SD-GCM was included in the 

model set not only as a similarity-based model but also as a 

solution within the similarity framework to address the 

partial-XOR question. 

 

Cross-line Boundary Model This model assumes people use 

a pair of orthogonal rules to categorize items in the task. The 

boundaries separate the space into four regions and people 

assign category labels to each region. There are two 

parameters for the coordinate of the intersection (x and y) and 

four parameters for the probability of saying A in each region. 

If the bottom-right region has a similar probability to the up-

left region and the bottom-left region has a similar probability 

to the up-right region, it will be an XOR profile. If only the 

up-left region has a different probability, it will be a 

proximity profile. The model was included as a representative 

of a rule-based model that can explain the XOR profiles 

(Ashby et al., 1998; Ashby & Maddox, 2005; Edmunds & 

Wills, 2016; Salatas & Bourne, 1974). 

 

Hyperbolic Boundary Model This strategy model assumes 

that the boundary is a hyperbola. For simplicity, the degree 

of the hyperbola boundary is set to 45°. The formula of the 

hyperbolic boundary is as below: 
 

(𝑥𝑖 − 𝑥𝑐)(𝑦𝑖 − 𝑦𝑐) =  𝑑 
(6) 

where the xi and yi are the positions of the item’s features 

while the xc and yc are the positions of the center of the 

hyperbola in the corresponding dimensions. d is an estimated 

parameter that the absolute value of which indicates a scale 

of the distance between the lines in the hyperbola. In this 

study, d was limited to a non-positive number to consider 

only the top-left-to-bottom-right diagonal hyperbolas. 

The hyperbolic boundary separates the space into three 

regions and people assign category labels to each region. 

There are six parameters in the model, including two for the 

coordinate of the center (x and y), d, and three for the 

probability of saying A in three regions. If the bottom region 

has a similar probability to the upper region but not the 

middle region, it will become an XOR profile. 

The hyperbolic boundary model was included as another 

rule-based model. The importance of the model is that the 

boundaries can be represented as one mathematic function 

rather than the combination of two functions as in the 

previous boundary model. Thought the model is undoubtedly 

a decision bound theory that partitions the stimulus space into 

response regions, the boundaries are difficult to be described 

verbally, which implies feature information is integrated at 

some pre-decisional stage. This can be seen as a critical 

characteristic proposed by some researchers to be a different 

category learning from the cross-line boundary model 

(Ashby et al., 1998; Ashby & Maddox, 2005). 

 

Guessing Model We included a guessing model as a baseline. 

The model has only one parameter which is the guessing rate, 

representing the probability of responding ‘A’ on each trial 

and is applied to every item in the task. 

Bayesian Estimation for Recovery Analyses 

In the study, we chose Bayesian parameter estimation instead 

of maximum likelihood estimation so that we would be able 

to explicitly incorporate priors over parameters, and so that 

we could estimate a mixture model to identify different 

groups of strategy users. 

The analyses in this study were computed on R (Ihaka & 

Gentleman, 1996) with package rjags (Plummer et al., 2016). 

For each model, 100 random profiles were generated by 

randomly drawing parameters from a prior distribution.  

Each random profile was produced by applying the 

parameterized model to the data. The distribution of each 

parameter was described below. We used the same priors for 

random profile generation and for Bayesian model analysis. 

 

The Priors of Parameters The positions of items in the 

space were normalized; therefore, they ranged from 0 to 1. 
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Without specific assumptions, the uniform distributions on 0 

and 1 (i.e., Beta(1,1)) were used for the x, y coordinates of 

the intersection and the center of the hyperbola. As discussed 

in the model section, negative ds were used. When d = -1, it 

means that the boundary is on the edges of the space, and all 

testing items fall into the middle region. Thus, there is no 

need to include d values that are smaller than -1. As a result, 

the prior of d in the hyperbolic boundary model was a 

uniform distribution on -1 and 0 (i.e., Beta(1,1) - 1). 

Without strong knowledge, the guessing parameter in the 

guessing model was sampled uniformly between 0 and 1. On 

the other hand, the priors of the region probabilities in both 

boundary models were set to be the beta distributions on 0.5 

and 0.5 to indicate the strong belief that the probability should 

extremely be either 0 or 1 in each region. 

For both GCM and SD-GCM, vague priors of 𝑤1  were 

used (i.e., Beta(1,1)). An exponential distribution with λ = 

ln(2) was used as the prior of each 𝑏𝑎  because of the 

desirable properties including that (1) the value is always 

non-negative, (2) the probability of getting an extremely big 

number is small, and (3) the median is 1, so the chances of 

preferring either category are the same. The c parameters in 

the GCM and SD-GCM were sampled from a Gamma 

distribution on 2 and 1, so extreme values were less likely to 

be picked, and the mode was 1. 

With the parameters randomly picked, each model gave a 

predicted probability of being in category A on each item. A 

Bernoulli trial with that probability was used to generate the 

classification answer. Each model generated 100 profiles. 

 

Parameter and Model Recovery Each model was fitted to 

the data that was generated from it, which gave out the results 

of recovered parameters. The parameter recovery was 

evaluated by examining the correlation between generating 

parameters and recovered parameters. Higher correlation 

shows a better ability of a model to find out the true 

parameters of the data. 

Following, we conducted the model recovery. All five 

models were fitted to the same generated data. Three 

measures of fitting performance were conducted in this study. 

The first one was the number of counts out of 100 profiles 

that had best fitted by the model determined by the deviance 

information criterion (DIC). DIC is related to the Akaike 

information criteria (AIC) such that the maximized log-

likelihood in the AIC is replaced by the log-likelihood 

evaluated at the expectation of the Bayes estimate. For each 

of the 100 random profiles, the model with the smallest DIC 

was selected as the best fit. The optimal scenario would be 

that each model is always selected when fitted to its own data 

and never selected when fitted to others. 

The second measure was the average proportion of the 

likelihood. The likelihood was computed from ΔDIC scores 

as proposed by Wagenmakers and Farrell (2004). The DIC 

scores were scaled to be in likelihood form and turned into 

likelihood weights by computing the relative magnitude. i 

denotes different models. 

𝐿𝑤𝑖𝑒𝑔ℎ𝑡,𝑖 =  
𝐿𝑖

∑ 𝐿𝑖 
 

(7) 

The score can range from 0 to 1 and can be interpreted as the 

probability that a particular model generated the observed 

data. The optimal scenario with the highest model 

distinguishability would be that each model has a score equal 

to 1 when fitted to its own data and 0 when fitted to others. 

The third measure was the relative posterior probability for 

each model from a Bayesian mixture model. The model was 

a mixture of the five models as competing modules. Each 

model module applied to the data individually and had its 

prediction. The measure was the weight of each module in 

the mixture model. The weight can range from 0 to 1 and can 

be interpreted as the probability that a particular model 

module fits the data best. The optimal situation would be that 

each model module has a weight equal to 1 when fitted to its 

own data and 0 when fitted to others.  

Generally, for a good model recovery result, we expect that 

the profiles are best fitted by the model that they are 

generated from and are poorly fitted by other models. 

Behavioral Experiment 

Participants 41 students at Syracuse University participated 

in the experiment. Each participant underwent three sections 

of classification tasks, including structure 1, structure 2, and 

an inside-outside structure as the filler. 

 

Stimuli In structure 1, the stimuli were filled squares that 

varied in size and color. In structure 2, the stimuli were Gabor 

patches that varied in frequency and orientation. In the filler 

structure, the stimuli were blobs from Cortese and Dyre 

(1996) that varied in phase angle and amplitude. 

 

Procedure Every task required participants to classify items 

into two categories. To minimize the confounding of memory 

and align with the simulation, four exemplars of each 

category remained labeled on-screen throughout the task. 

There was no training phase and participants were asked to 

classify presented test items regarding the given exemplars, 

which was similar to Yamauchi and Markman’s (2000) 

design. 

Results 

Parameter Recovery 

The results of correlations between generating parameters 

and recovered parameters are shown in Table 1. Both GCM 

and SD-GCM did poorly on recovering parameters c and w1 

in all three structures. Relatively, they did a better job with 

the response bias parameters. In the cross-line boundary 

model, the parameters of the region probabilities were 

recovered almost perfectly. The small variance may be 

introduced because there is no way for the model to detect the 

difference of boundaries smaller than the item feature interval 

(e.g., boundaries at 4.2 and at 4.7 perform the same when 

only 4 and 5 are tested). However, only the probability of the 

middle region was recovered in the hyperbolic boundary 

model. Lastly, the guessing model did well in this recovery. 
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Table 1: The results of parameter recovery. 

 
Model Parameter  Structure 1    Structure 2    Structure 3 

GCM 

c .73 .62 .51 

 𝑤1 .62 .48 .53 

 𝑏𝑎 .88 .93 .92 

SD-GCM 

c .23 .29 .20 

   𝑤1 .56 .48 .54 

  𝑏𝑎 .89 .93 .92 

Cross-line 

 boundary  
model 

x .79 .75 .71 

y .68 .79 .72 

q1pa .93 .91 .91 

q2pa .90 .90 .89 

q3pa .91 .94 .92 

q4pa .93 .96 .86 

Hyperbolic 

boundary 

model 

x .38 .25 .32 

y .37 .36 .33 

uppa .26 .28 .19 

midpa .99 .98 .99 

botpa .36 .45 .29 

d .32 .46 .45 
Guessing 

model 
g .98 .99 .98 

Note. c, w, and b are sensitivity, attention weight, and 

response-bias respectively in GCM and SDGCM. x and y are 

coordinates. d is a scale of the distance between curves. The 

rest are the probability of response A in a certain region, 

including the g as a guessing rate. See text for details. The 

insignificant coefficients are underlined. 

Model Recovery 

The results of the model fitting are shown in Table 2. In each 

cell, the first number was how many profiles out of 100 that 

was best fitted (had less DIC) by the model. The second 

number was computed by averaging the ratio of the 

likelihood of the model over the sum of all models. The third 

number was the posterior coefficient of the model in a 

Bayesian mixture model, which was an indicator of the 

probability of the model being selected. 

In a situation of a perfect model recovery, we expect to see 

that only the diagonal cells have numbers and others should 

be zeros, but as shown, it is not the case in this study. The 

results is similar across structures. The fitting of the GCM, 

the SD-GCM, the hyperbolic boundary model and the 

guessing model showed high missing rates that big 

proportions of the data generated from these models were 

best fitted by the others. It also shows that though the GCM 

and SD-GCM have different predictions on the XOR profiles, 

they cannot be distinguished in the partial-XOR structures.  

The cross-line boundary model performed relatively better 

that it recovered 64, 69, and 62 out of 100 data in the three 

structures respectively. However, the cross-line boundary 

model, just as the other models, suffered from a high false 

alarm rate on strategy identification. The probability that data 

were actually generated by the cross-line boundary model 

when that model was identified was below 50%, which is 

unacceptably low. The rest of the models had worse results. 

In sum, the results show problematic situations in strategy 

identification and model selection. Even after combining the 

GCM and SD-GCM together as the similarity-based models 

and the boundary models together as the rule-based models, 

the recovery was still unreliable. 

Behavioral Results 

The results are shown in Table 2. Across structures 1 and 2, 

around one-third of participants were fit best by similarity 

models (i.e., GCM & SDGCM), two-thirds by boundary 

models (i.e., cross-line & hyperbolic boundary), and none by 

random guessing. Since there was no direct access to what 

strategies they were actually using in the tasks, the recovery 

cannot be computed. However, the heterogeneity of model 

fits to individual data reflects the uncertainty we see in model 

recovery. We do see that the guessing model was reliably 

rejected as a model of people’s responses, suggesting that the 

guessing model is too simple to compete with the other 

models. 

Discussion 

In this study, we evaluate the model-fitting approach by 

conducting recovery analyses with both similarity-based 

models and rule-based models on strategy-sensitive 

categorization tasks. The results show a pervasive model 

mimicry that models can account for the data generated by 

other competing models (Wagenmakers et al., 2004). Model 

mimicry is not directly a problem. Models should have 

similar prediction if they are reasonably reflective of human 

behavior. However, the problem appears when we use the 

results to prefer one model over the others. Because of the 

mimicry, profiles from one model were misidentified as from 

the others, which induced high missing rates. Besides, high 

false alarm rates were also observed, which indicated that the 

data identified as from one model may be from the others. 

These two errors reduce the reliability of the strategy 

identification, usually and especially, when the data is 

collected without knowing the true strategies participants use. 

For the same reason, it is less valid to prefer one model based 

on its better goodness of fit since the data might not be 

generated by it. We discuss the implications below. 

Category Tasks Design 

We used three versions of partial-XOR-like tasks as the 

category structures in this study. The results show that 

recovery was poor even when the tasks were intentionally 

constructed to induce different profiles.  

When conducting the recovery analyses, the task designs 

followed the same paradigm as what is usually done in recent 

studies: participants first learn the exemplars of categories; 

then they are tested for the category generalization on new 

items. We also assumed the memory on the exemplars was 

perfect when generating data and fitting the data, which may 

not be true in all studies. We would expect even worse model 

recovery if we increased the variance by adding noise, such 

as errors or mistakes, when using the multi-model-fitting 

approach to identify strategies. 

Improving the recovery results Future studies can examine 

if better recovery results would be obtained with some 

adjustments to the task designs. One possible way to improve 
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the recovery results and therefore have a more stable strategy 

identification is to increase the number of testing trials on the 

same item. By doing so, the classification response on each 

item will be a continuous scale of percentage which is more 

aligned to the prediction from models, compared to the 

dichotomous response (A or B; 1 or 0) used in this study. As 

a result, it would help distinguish between models. However, 

adding more trials inevitably increases the time-on-task, 

which may harm the ability on monitoring (Boksem et al., 

2006). Participants may be tired and choose to or are not able 

to follow the strategy they used. Besides, keep asking the 

same item over trials may promote unsupervised or semi-

supervised learning during the testing phase. This may 

aggravate the instability in the responses.  

Another possible adjustment is to include different testing 

items. We attempted to do so in structure 3. However, the 

results show that simply spreading out testing items may not 

be sufficient to increase the discriminability of models. The 

researchers need to identify and include the crucial items that 

are predicted fundamentally differently between strategies. 

With the help of sampling-based search methods in statistics, 

researchers can also define the category structure to optimally 

discriminate models (i.e., the optimal experimental design; 

Myung & Pitt, 2009). 

Candidate Models 

We used a set of five models in this study, including two for 

similarity-based strategies, two for rule-based strategies, and 

one for the guessing strategy. The results show that the cross-

line boundary model, as the one that performed the parameter 

recovery the best, had the smallest missing rate when fitted 

to its own data but still had high false alarm rate when fitted 

to others. This indicates that though there are connections 

between parameter recovery and the model comparison, 

parameter recovery cannot replace model recovery. Besides, 

the simulation results show that data generated from other 

models could be best fitted by the guessing model. Thus, the 

researchers should be cautious about whether to exclude the 

profiles they think as random. 

One critique of the set we used may be that the SD-GCM 

has similar computation processes to the GCM, and this made 

it harder to distinguish between them. However, in our data, 

the model mimicry still undeniably appeared even after 

merging the models together according to the strategies, 

which says that the poor recovery results may not be induced 

merely because of the overlaps between models. It is worth 

mentioning that though we thought it is better to include more 

than one model in each strategy, the call of using five models 

was arbitrary. It is unclear whether using more or fewer 

models is more beneficial. Using fewer models reduces the 

overlaps between models and increases the discriminability; 

however, it falls short of exploring the range of possible 

strategies and induces misidentification from the forced 

grouping. On the other hand, including more models, as 

proposed by Donkin et al (2015), increases the ability to 

identify more potential strategies, but may induce overlap 

problems and overfitting problems. More studies are needed  

Table 2: The results of model recovery. 

 

   
Note. In each cell, the top number is the counts of profiles 

that had best fitted, the lower left is the average proportion 

of likelihood, and the lower right is the relative posterior 

probability. The biggest measures in each row are bolded. 

 

to examine how many models and which of them should be 

included when conducting the strategy identification. 

 

Improving the recovery results As discussed above, further 

studies may discover a better set of models for strategy 

identification. Also, there might be newly proposed models 

that have higher distinguishability and therefore would 

alleviate the model mimicry phenomena. Another possibility 

is the parameter spaces in the models. In this study, we mostly 

chose the parameters from vague priors and the recovery 

results were not good. However, it could happen that when 

the parameters are limited in a certain range, the generated 

data have better discriminability than what we observed. If so, 

the model recovery would be improved when the parameters 

are sampled from that range. It requires future studies to 

identify the special spaces of the parameters and to examine 

whether people’s behavioral performance can be explained 

by the parameters within the range. 

Conclusion 

Through parameter and model recovery, we show that the 

current categorization tasks are insufficient to distinguish 

between the models because of the pervasive model mimicry. 

We suggest that it is a general question for a wider range of 

studies with model comparison that researchers should 

evaluate the distinguishability of the cognitive tasks before 

interpreting the results as well as pay more attention on the 

individual differences within the sample.  
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