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ARTICLE

Genome Analyses of >200,000 Individuals Identify
58 Loci for Chronic Inflammation and Highlight
Pathways that Link Inflammation and Complex Disorders
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C-reactive protein (CRP) is a sensitive biomarker of chronic low-grade inflammation and is associated with multiple complex diseases.

The genetic determinants of chronic inflammation remain largely unknown, and the causal role of CRP in several clinical outcomes is

debated. We performed two genome-wide association studies (GWASs), on HapMap and 1000 Genomes imputed data, of circulating

amounts of CRP by using data from 88 studies comprising 204,402 European individuals. Additionally, we performed in silico functional

analyses and Mendelian randomization analyses with several clinical outcomes. The GWAS meta-analyses of CRP revealed 58 distinct

genetic loci (p < 5 3 10�8). After adjustment for body mass index in the regression analysis, the associations at all except three loci re-

mained. The lead variants at the distinct loci explained up to 7.0% of the variance in circulating amounts of CRP. We identified 66 gene

sets that were organized in two substantially correlated clusters, one mainly composed of immune pathways and the other characterized

by metabolic pathways in the liver. Mendelian randomization analyses revealed a causal protective effect of CRP on schizophrenia and a

risk-increasing effect on bipolar disorder. Our findings provide further insights into the biology of inflammation and could lead to in-

terventions for treating inflammation and its clinical consequences.
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protein (CRP) is a sensitive marker of chronic low-grade

inflammation,5 and elevated serum amounts of CRP have

been associated with a wide range of diseases.6–8
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Unraveling the genetics of inflammation could provide

further insights into the underlying biology of inflamma-

tion and could identify therapeutic targets for attenuating

inflammation.

The genetic determinants of CRP have only been partly

characterized. In 2011, our group published a HapMap-

based genome-wide association study (GWAS) meta-anal-

ysis including a discovery panel of up to 65,000 individuals

and found 18 loci that were associated with amounts of

CRP.9 Increasing GWAS sample size and denser mapping

of the genome with further advanced imputation panels

could help to identify further genes associated with the

phenotypes of interest.10,11 Furthermore, by using genetic

instrumental variables (i.e., a genetic score), Mendelian

randomization (MR) allows investigation of the potential

causal effect of an exposure on clinical outcomes and could

help to elucidate the causal pathways that link the expo-

sure with the outcome.12 The causal role of CRP in the

development of diseases is still controversial,13 and the

causal pathways that link inflammation to complex disor-

ders are only partly understood.

Weapplied two large-scaleGWASsoncirculatory amounts

ofCRPbyusingHapMapand1000Genomes (1KG) imputed

data to identify genetic determinants of chronic inflamma-

tion. Because bodymass index (BMI) is amajor determinant

of CRP amounts, we additionally conducted a GWAS

adjusted for BMI to identify associated loci independent of

BMI. To identify any sex differences in genetic determinants

of chronic inflammation, we further conducted GWASs in

men and women separately. We applied in silico functional

analyses on the identified loci to obtain better insights

into the biological processes potentially regulating chronic

inflammation. Finally, we conducted MR analyses to pro-

vide an improved understanding of the causal relation be-

tween CRP and several related clinical outcomes.
Material and Methods

GWAS for Circulating Amounts of CRP
We conducted a meta-analysis of GWASs including individuals of

Europeanancestrywithin theCohorts forHeart andAgingResearch

in Genomic Epidemiology (CHARGE) Inflammation Working

Group (CIWG).14 All participating studies were approved by an

institutional review board (see details in the Supplemental Data).

The CIWG invited cohorts for participation in the HapMap GWAS

meta-analysis of CRP amounts in 2012. In 2014, in light of our

assessment that showed complementary values of HapMap and
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1KG imputed GWASs,10 we invited studies to participate in the

1KG GWAS meta-analysis. The 1KG GWAS could help to identify

loci that were not covered in the HapMap GWAS and fine-map

loci found in the HapMap GWAS. Cohorts were allowed to partici-

pate in either the HapMap or 1KGGWAS or both. Here, we present

a meta-analysis of both HapMap (204,402 individuals from 78

studies) and1KG (148,164 individuals from49 studies) imputed-ge-

notype GWASs. All participating cohorts implemented a pre-speci-

fied study plan comprising study design, data quality check, data

analysis, and data sharing. Wemeasured serum CRP inmg/L by us-

ing standard laboratory techniques (Supplemental Data) and trans-

formed the values by natural log. Individuals with auto-immune

diseases, individuals taking immune-modulating agents (if this in-

formation was available), and individuals with CRP amounts 4 SD

or more away from the mean were excluded from all analyses. The

characteristics of the participants are presented in Table S1. We

filtered individuals and genetic variants on the basis of study-spe-

cific quality-control criteria (Table S2). At each individual study

site, we tested genetic variants for association with amounts of

CRP by using an additive linear regression model adjusted for age,

sex, and population substructure and accounting for relatedness,

if relevant. Before meta-analysis, we filtered variants on the basis

of imputationquality at anR2 index>0.4.Toavoid type I error infla-

tion, we corrected study-specific GWASs for genomic inflation. For

the HapMap study, we conducted fixed-effect meta-analyses for

each genetic variant by using the inverse-variance-weighted

(IVW)method implemented inGWAMA15 andperformed a second

genomic control on the meta-analysis level. For the 1KG imputed

GWAS, we used METAL16 to perform a fixed-effect meta-analysis.

We removed variants that were available in only<50% of the sam-

ples. The HapMap meta-analysis included 2,437,193 variants, and

the 1KG GWAS included 10,019,203 variants. We considered asso-

ciations with p < 5 3 10�8 to be genome-wide significant. We

used a stringent distance criterion—aminimum of 500 kb between

two significant variants—to identify distinct loci. In each locus, the

variant with the smallest p value was called the lead variant.

Additionally, we performed sex-stratified analyses among HapMap

imputed studies, and we tested for heterogeneity between sex-spe-

cific effect estimates as described previously17 by using the false-dis-

covery rate (FDR) of Benjamini-Hochberg to assess significance of

the p value for sex difference (<0.05). We conducted BMI-adjusted

analyses in the 1KG meta-analysis to determine the role of BMI in

mediating the genetic associations with CRP and to increase power

to detect associations not mediated by BMI.

LD Score Regression
Because population stratification is a major concern in GWASs and

can lead to false-positive associations, we applied linkage disequi-

librium (LD) score regression (LDSC) to distinguish whether the

inflation of test statistics observed in the CRP GWAS was due to

the polygenic architecture of CRP or reflected confounding bias
icine, Houston, TX 77030, USA; 227Department of Lab Medicine and Pathol-
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due to cryptic relatedness or population stratification. The LD score

measures collective genetic variation acquired from all genetic var-

iants in LD with the index tagging (causal) variant.18 A higher LD

score of an index variant implicates more nearby genetic variants

in high LD with the index variant, which makes it more likely

that the index variant tags causal variant(s). More genetic variants

in LD with the index genetic variant (i.e., a higher LD score due to

polygenicity) could yield higher (i.e., inflated) test statistics. In

contrast, higher test statistics caused by cryptic population stratifi-

cation will not be related to the LD score. LDSC analysis performs

regression of the summary statistics from the GWASmeta-analysis

(c2 statistics from the GWAS) on the LD scores across the genome.

An LDSC intercept that equals 1 suggests no confounding bias,

whereas an inflated intercept (larger than 1) suggests contribution

of confounding due to relatedness to the test statistics.We used the

LDHubweb interface to performLDSC.19Wefilteredvariants to the

subset ofHapMap3 variants and excluded variantswith duplicated

rs numbers, ambiguous variants, minor allele frequency (MAF) <

0.01, and reported sample size < 66.7% of the total sample size.

We used the default European LD score file based on the European

1KG reference panel.

Furthermore, we applied cross-trait LDSC to estimate genetic

correlation of chronic inflammation (by using the HapMap

GWAS meta-analysis) with other phenotypes by using published

GWAS summary statistics.20 In brief, the cross-product of

two GWAS test statistics is calculated at each genetic variant,

and this cross-product is regressed on the LD score. The slope of

the regression is used for estimating the genetic covariance be-

tween two phenotypes.
Identification of Additional Distinct Variants in

Associated Loci
To identify additional distinct variants in the associated loci, we

performed joint approximate conditional analysis with the 1KG

meta-analysis summary statistics and the LD matrix derived

from the first cohort of the Rotterdam Study (RS-I) (n ¼ 5,974).

We used the Genome-wide Complex Trait Analysis (GCTA) tool,

which performs a genome-wide stepwise procedure to identify var-

iants according to their distinct association with CRP (i.e., condi-

tional p).21,22 We only used variants with an imputation quality of

R2 > 0.8 in the reference set (RS-I). This approximate conditional

analysis could reveal different lead signals in a locus where multi-

ple associated variants were in the final joint association model.

We tested the distinct variants identified in CRP jointly for an as-

sociation with CRP by using individual-level data from the second

and third cohorts of the Rotterdam Study (RS-II and RS-III, totaling

5,024 subjects) and the Women’s Genome Health Study (WGHS)

of 16,299 individuals.
Proportion of CRP Variance Explained
We estimated the variance explained in serum amounts of CRP by

using the formula (23 MAF(1 �MAF)b2)/var(CRP), where b is the

estimated effect of the individual variants on CRP23 and var(CRP)

is the estimated variance in natural-log-transformed CRP in the

RS-I cohort. We calculated the variance explained for four combi-

nations of associated variants: (1) the lead variant at just the CRP

locus, (2) the distinct variants derived from the 1KG joint condi-

tional analysis at the CRP locus, (3) all lead variants in the distinct

loci, and (4) all lead variants in the distinct loci and, when appli-

cable, the distinct variants derived from the approximate joint

conditional analysis at associated loci.
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Pathway Analysis and Gene Expression
We used Data-Driven Expression-Prioritized Integration for Com-

plex Traits24 (DEPICT v.1 rel173 beta) to systematically prioritize

the most likely causal genes, highlight the pathways enriched

with these genes, and identify tissues and cell types in which genes

from associated loci are highly expressed. DEPICT requires sum-

mary statistics from the GWAS meta-analysis. First, we filtered

genome-wide-associated variants from both GWAS meta-analyses

by MAF > 0.01 and selected variants with a low correlation with

other variants according to PLINK (v.1.90) by using a clumping dis-

tance of 500 kb between variants and/or index of LD r2 threshold<

0.1. The settings for the analysis involved the usage of 1KG pilot

phase data25 (phase 1 integrated release v.3; unrelated CEU [Utah

residents with ancestry from northern and western Europe], GBR

[British in England and Scotland], and TSI [Toscani in Italia] indi-

viduals;November 23, 2010)with an r2>0.5 LD threshold for locus

definition, 10,000 permutations for bias correction, and 500 repe-

titions for FDR calculation. To summarize and visualize the results,

we calculated pairwise Pearson correlation coefficients between all

gene-specific Z scores for every pair of reconstituted DEPICT gene

sets.Weused Affinity PropagationClustering (apcluster command;

APCluster R package26) to identify clusters and representative ex-

amples of the clusters and used Cytoscape v.3.2.1 to visualize the

results. The DEPICT results of the pathway and gene prioritization

are summarized as a heatmap (R v.2.3.3; pheatmap v.1.0.8 pack-

age27). The gene-specific Z score describes the likelihood that a

given gene is part of the corresponding Gene Ontology (GO)

term, KEGG pathway, REACTOME pathway, Mouse Phenotype,

or protein-protein interaction network.

Also, we performed Multi-marker Analysis of GenoMic Annota-

tion (MAGMA).28 MAGMA performs gene and gene-set analysis

and requires the association results of all variants; therefore, we

chose the larger HapMap GWAS for MAGMA. We used the Func-

tional Mapping and Annotation (FUMA)29 tool to perform

MAGMA and applied standard settings for running MAGMA.

To prioritize the most likely trait-relevant gene for each GWAS

locus, we ran colocalization analysis with the ‘‘coloc’’ R package

v.3.130 separately for the HapMap and 1KG GWASs. We used pub-

licly available genome-wide expression quantitative trait locus

(eQTL) data from 5,311 whole-blood samples31 and from the

Genome Tissue Expression (GTEx) V6p portal, which incorporates

eQTL data from 44 post-mortem tissues.32 The coloc package uses

approximate Bayes factors to estimate the posterior probability

that GWAS and eQTL effects share a single causal variant. All sig-

nificant cis-eGenes or cis-eProbes (q < 0.05 in GTEx; lowest cis-

eQTL FDR < 0.05 in Westra et al.31) were extracted 5 1 Mb from

the lead SNP of each locus. The HapMap SNP positions were con-

verted to hg19 positions (UCSC Genome Browser) with the lift-

Over command from the rtracklayer v.1.38.3 package. We used

the SNPs present in both the GWAS and eQTL datasets. For the

HapMap GWAS, the 1KG GWAS, and the GTEx eQTL datasets,

we performed the test by using association b, standard error of b,

and MAF. For the data from Westra et al.,31 we used association

p value, MAF, and sample size and included only the subset of

cis-eQTLs that are publicly available (up to a significance FDR <

0.5). We used default priors supplied by the coloc package (P1 ¼
1 3 10�4, P2 ¼ 1 3 10�4, and P12 ¼ 1 3 10�5; prior probabilities

for association in the GWAS datasets, the eQTL datasets, and

both). Full MAF data were not available for the eQTL datasets, so

we used the GIANT 1KG p1v3 EUR reference panel instead. We

visualized the results as a heatmap by using the pheatmap

v.1.0.8 R package.27
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Mendelian Randomization
To assess the effect of CRP on complex disorders, we performed a

two-sample MR study on nine clinical outcomes—Alzheimer dis-

ease (AD), bipolar disorder (BD), coronary artery disease (CAD),

Crohn disease (CD), inflammatory bowel disease (IBD), rheuma-

toid arthritis (RA), schizophrenia, and diastolic blood pressure

(DBP), and systolic blood pressure (SBP)—to which CRP showed

a potentially causal association at a p < 0.1 in a previous MR

study.13 We used the effect estimates of the 48 lead SNPs found

to be associated with CRP in the HapMap GWAS and the effect es-

timates of the four SNPs that were additionally found to be associ-

ated with CRP in the 1KG GWAS in a multiple-instrument

approach for theMR analyses (n¼ 52 SNPs). Additionally, we sepa-

rately studied the effect of rs2794520 at the CRP locus to minimize

the probability of introducing horizontal pleiotropy.We tested the

statistical significance of the association between the instrument

and CRP with the following formula:

F ¼ R2ðn� 1� kÞ
ð1� R2Þ3 k

R2 is the CRP variance explained by the genetic instrument

(0.014 for the rs2794520 SNP and 0.065 for the 52-SNP score), n

is the number of individuals included in the CRP GWAS, and k

is the number of variants included in the genetic score. The F sta-

tistic was 273 for the 52-SNP score and 2,902 for the rs2794520

SNP, indicating that both instruments were strong.

For the clinical outcomes, we used summary statistics from the

most recent meta-analysis of GWASs. For DBP and SBP, we used

data from the UK Biobank. The details of the outcome studies are

summarized in Table S12.We implemented four differentmethods

of MR analyses: the IVW method, MR-Egger, weighted median

(WM), and penalized weighted median (PWM). We used the Two-

SampleMR package in R for the MR analyses.33 Further, we applied

the Bonferroni method to correct for multiple testing (0.05/9 phe-

notypes ¼ 5.6 3 10�3). When the Q statistic of the IVW analyses

provided evidence for heterogeneity, the WM estimates were used

for significance. The MR methods are described briefly below.

Inverse-Variance Weighted

The IVWmethod obtains the causal estimate by regressing the SNP

associationswith the outcome on the SNP associations with the risk

factor; the intercept is set to 0, andweights are the inverse variances

(IVs)of theSNPassociationswith theoutcome.Witha single genetic

variant, the estimate is the ratio of coefficients bY/bX, and the stan-

dard error is the first term of the Dmethod approximation bYse/bX.

When all CRP SNPs are valid IVs, the IVWestimates converge to the

true causal effect.Whenoneormore invalid IVsarepresent (i.e., one

SNP has an effect on an outcome through a different pathway than

CRP), the IVWestimate deviates from the true causal effect.

MR-Egger

We used MR-Egger to account for potential unbalanced pleiotropy

in the multiple-variant instrument.34 When unbalanced pleiot-

ropy is present, an alternative effect (positive or negative) is pre-

sent between the SNP and the outcome, and it could bias the

estimate of the causal association. TheMR-Egger method is similar

to the IVW analysis but does not force the intercept to pass

through the origin. The slope of the MR-Egger regression provides

the estimate of the causal association betweenCRP and the clinical

outcome. An MR-Egger intercept that is significantly different

from 0 suggests directional pleiotropic effects that could bias un-

corrected estimates of the causal effect. MR-Egger regression de-

pends on the InSIDE (instrument strength independent of direct

effect) assumption, which states that the strengths of the effect
The American
of the SNP on the outcome are uncorrelated with the direct pleio-

tropic effect of the SNP on the outcome.

Weighted Median and Penalized Weighted Median

Weapplied themedian-basedmethod toprovide robust estimates of

causal association even in the presence of horizontal pleiotropy

when up to 50% of the information contributed by the genetic var-

iants is invalid.35 In PWM analysis, the effect of each variant is

weightedbya factor that corresponds to theQstatistics (heterogene-

ity test) of the SNP; thismeans thatmostvariantswill notbe affected

by this correction, but the causal effect of the outlying variants,

which are most likely to be invalid IVs, will be down-weighted.

We displayed the individual SNP estimates of causal effect and

corresponding 95% confidence intervals (CIs) in a forest plot. To

assess whether one of the variants used in the genetic score had

disproportionate effects, we performed ‘‘leave-one-out’’ analyses,

where one SNP at a time is removed from the score. We depicted

the relationship between the SNP effect on CRP and the SNP effect

on the clinical outcomes in a scatterplot and plotted the individ-

ual SNP effect against the inverse of their standard error in a funnel

plot. When unbalanced pleiotropy is absent, the causal-effect esti-

mates of the individual should center around the meta-analysis

estimate in the funnel plot.

We used the proportion of CRP variance explained by the ge-

netic instruments (0.014 for the rs2794520 SNP and 0.065 for

the 52-SNP score) to perform power calculations for each outcome

by using the online tool mRnd.36 We calculated the power to

detect a relative 5%, 10%, 15%, and 20% difference in outcome

risk. For example, a 10% difference refers to an odds ratio (OR)

of at least 0.90 or 1.10 in outcome risk (Table S13).
Results

HapMap GWAS Meta-analysis for Amounts of CRP

The HapMap meta-analysis identified 3,977 genome-wide-

significant variants at p < 5 3 10�8 (quantile-quantile

[Q-Q] plot, Figure S1; Manhattan plot, Figure S2), which

mapped to 48 distinct loci (Table 1; Table S3). Of the

previously reported 18 variants for CRP, 16 remained

associated. Compared with the variants in the previous

GWAS, the rs6901250 variant at the GPRC6A locus

(p ¼ 0.09) and the rs4705952 variants at the IRF1 locus

(p ¼ 2.7 3 10�3) were not significant. The b estimates

for natural-log-transformed CRP for each of the associated

loci ranged from 0.020 to 0.229. We observed the

strongest association for rs2794520 at CRP (b ¼ 0.182 in

the natural-log-transformed CRP [mg/L] per copy incre-

ment in the coded allele; p ¼ 4.17 3 10�523), followed by

rs4420638 at APOC1 and APOE (b ¼ 0.229, p ¼ 1.23 3

10�305). As in previous GWAS meta-analysis, the lead

variant within interleukin-6 receptor (IL6R) was rs4129267

(b ¼ 0.088; p ¼ 1.2 3 10�129). We identified rs1880241

upstream of IL6 (b ¼ 0.028; p ¼ 8.4 3 10�14), related to

the interleukin-6 pathway. In addition to the previously

described interleukin-1 signaling, the IL1RN-IL1F10 locus

(interleukin-1 receptor antagonist and interleukin-1 family

member 10), we found rs9284725 within interleukin-1 re-

ceptor 1 (IL1R1; b ¼ 0.02; p ¼ 7.3 3 10�11; Table 1).

Compared with the overall meta-analysis including both

sexes, the sex-specific meta-analyses did not identify
Journal of Human Genetics 103, 691–706, November 1, 2018 697



Table 1. Newly Identified Loci Associated with CRP

Varianta Positionb
Coded
Allele

Frequency of
Coded Allele bc

Standard
Error p Value Closest Gened

1KG Lead
Variante

Loci Found in the HapMap GWAS

rs469772 chr1: 91,530,305 T 0.19 �0.031 0.005 5.54 3 10�12 ZNF644 rs469882

rs12995480 chr2: 629,881 T 0.17 �0.031 0.005 1.24 3 10�10 TMEM18 rs62105327

rs4246598 chr2: 88,438,050 A 0.46 0.022 0.004 5.11 3 10�10 FABP1 –

rs9284725 chr2: 102,744,854 C 0.24 0.027 0.004 7.34 3 10�11 IL1R1 rs1115282

rs1441169 chr2: 214,033,530 G 0.53 �0.025 0.004 2.27 3 10�11 IKZF2 –

rs2352975 chr3: 49,891,885 C 0.30 0.025 0.004 6.43 3 10�10 TRAIP rs10049413

rs17658229 chr5: 172,191,052 C 0.05 0.056 0.010 5.50 3 10�9 DUSP1 rs34471628

rs9271608 chr6: 32,591,588 G 0.22 0.042 0.005 2.33 3 10�17 HLA-DQA1 rs2647062

rs12202641 chr6: 116,314,634 T 0.39 �0.023 0.004 3.00 3 10�10 FRK –

rs1490384 chr6: 126,851,160 T 0.51 �0.025 0.004 2.65 3 10�12 C6orf173 rs1490384

rs9385532 chr6: 130,371,227 T 0.33 �0.026 0.004 1.90 3 10�11 L3MBTL3 –

rs1880241 chr7: 22,759,469 G 0.48 �0.028 0.004 8.41 3 10�14 IL6 rs13241897

rs2710804 chr7: 36,084,529 C 0.37 0.021 0.004 1.30 3 10�8 KIAA1706 –

rs2064009 chr8: 117,007,850 C 0.42 �0.027 0.004 2.28 3 10�14 TRPS1 rs6987444

rs2891677 chr8: 126,344,208 C 0.46 �0.020 0.004 1.59 3 10�8 NSMCE2 rs10956251

rs643434 chr9: 136,142,355 A 0.37 0.023 0.004 1.02 3 10�9 ABO 9:136146061

rs1051338 chr10: 91,007,360 G 0.31 0.024 0.004 2.27 3 10�9 LIPA –

rs10832027 chr11: 13,357,183 G 0.33 �0.026 0.004 4.43 3 10�12 ARNTL rs10832027

rs10838687 chr11: 47,312,892 G 0.22 �0.031 0.004 9.12 3 10�13 MADD rs7125468

rs1582763 chr11: 60,021,948 A 0.37 �0.022 0.004 2.37 3 10�9 MS4A4A rs1582763

rs7121935 chr11: 72,496,148 A 0.38 �0.022 0.004 5.28 3 10�9 STARD10 –

rs11108056 chr11: 95,855,385 G 0.42 �0.028 0.004 5.42 3 10�14 METAP2 rs12813389

rs2239222 chr14: 73,011,885 G 0.36 0.035 0.004 9.87 3 10�20 RGS6 rs2239222

rs4774590 chr15: 51,745,277 A 0.35 �0.022 0.004 2.71 3 10�8 DMXL2 rs1189402

rs1558902 chr16: 53,803,574 A 0.41 0.034 0.004 5.20 3 10�20 FTO rs55872725

rs178810 chr17: 16,097,430 T 0.56 0.020 0.004 2.95 3 10�8 NCOR1 –

rs10512597 chr17: 72,699,833 T 0.18 �0.037 0.005 4.44 3 10�14 CD300LF, RAB37 rs2384955

rs4092465 chr18: 55,080,437 A 0.35 �0.027 0.004 3.11 3 10�10 ONECUT2 –

rs12960928 chr18: 57,897,803 C 0.27 0.024 0.004 1.91 3 10�9 MC4R –

rs2315008 chr20: 62,343,956 T 0.31 �0.023 0.004 5.36 3 10�10 ZGPAT –

rs2836878 chr21: 40,465,534 G 0.27 0.043 0.004 7.71 3 10�26 DSCR2 rs4817984

rs6001193 chr22: 39,074,737 G 0.35 �0.028 0.004 6.53 3 10�14 TOMM22 rs4821816

Additional Loci Found in the 1KG GWAS

rs75460349 chr1: 27,180,088 A 0.97 0.086 0.014 4.50 3 10�10 ZDHHC18 –

rs1514895 chr3: 170,705,693 A 0.71 �0.027 0.004 2.70 3 10�9 EIF5A2 –

rs112635299 chr14: 94,838,142 T 0.02 �0.107 0.017 2.10 3 10�10 SERPINA1, SERPINA2 –

rs1189402 chr15: 53,728,154 A 0.62 0.025 0.004 3.90 3 10�9 ONECUT1 –

Additional Loci Found in the BMI-Adjusted 1KG GWAS

3:47431869 chr3: 47,431,869 D 0.59 0.024 0.004 1.10 3 10�8 PTPN23 –

rs687339 chr3: 135,932,359 T 0.78 �0.030 0.005 2.80 3 10�10 MSL2 –

(Continued on next page)
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Table 1. Continued

Varianta Positionb
Coded
Allele

Frequency of
Coded Allele bc

Standard
Error p Value Closest Gened

1KG Lead
Variante

rs7795281 chr7: 74,122,854 A 0.76 0.028 0.005 3.10 3 10�8 GTF2I –

rs1736060 chr8: 11,664,738 T 0.60 0.029 0.004 2.60 3 10�13 FDFT1 –

17:58001690 chr17: 58,001,690 D 0.44 �0.026 0.004 9.50 3 10�10 RPS6KB1 –

rs9611441 chr22: 41,339,367 C 0.49 �0.022 0.004 1.40 3 10�8 XPNPEP3 –

aHapMap variants are presented, except for the 1KG additional findings.
bPositions are according to UCSC Genome Browser build hg19.
cb coefficients represent a 1-unit change in the natural-log-transformed CRP (mg/L) per copy increment in allele A1.
dThe closest gene represents either the gene in which the variant is located or the closest gene.
eFor HapMap loci, the lead variant from the 1KG GWAS is presented when the loci were also found in the 1KG GWAS.
additional loci forCRP.However, at four genetic variants,we

found evidence for heterogeneity in effect estimates be-

tween women and men (Table S4), although the directions

of associations were consistent.

1KG GWAS Meta-analysis for Amounts of CRP

In the 1KG meta-analysis, 8,002 variants were associated

with CRP at p < 5 3 10�8 (Q-Q plot, Figure S3; Manhattan

plot, Figure S4). This resulted in 40 distinct loci, of which

36 overlapped the HapMap meta-analysis (Table 1). The

lead variant at the CRP locus in the 1KG GWAS was

rs4287174 (b ¼ �0.185; p ¼ 1.95 3 10�398), which was

in high LD with rs2794520 (r2 ¼ 0.98), the lead variant

at the CRP locus in the HapMap GWAS. Among

eight of the overlapping loci (rs1260326, rs1490384,

rs10832027, rs1582763, rs7310409, rs2239222, rs340005,

and rs1800961), the lead variant was at the same position

in both GWASs. Compared with HapMap variants, the four

additional variants identified in 1KG were rs75460349,

rs1514895, rs112635299, and rs1189402. The variants

rs1514895 and rs1189402 were available in the HapMap

GWAS but were not associated at the genome-wide

threshold (p ¼ 1.2 3 10�7 and p ¼ 8.1 3 10�3, respec-

tively). The two variants rs75460349 and rs112635299

were not available in the HapMap GWAS or in high LD

(r2 < 0.8). rs75460349 is a low-frequency variant with a

coded allele frequency of 0.97 (b ¼ 0.086; p ¼ 4.5 3

10�10). Also, rs112635299 near SERPINA1 and SERPINA2

is a low-frequency variant with a MAF of 0.02 (b ¼ 0.107;

p ¼ 2.1 3 10�10). Adjustment for BMI in the 1KG GWAS

(n ¼ 147,827) revealed six additional loci that were not

associated with CRP in the HapMap or 1KG primary ana-

lyses (Table 1; Table S5; Q-Q plot, Figure S5; Manhattan

plot, Figure S6). The associations at three lead variants

were much reduced after adjustment for BMI (rs1558902

[FTO], padjusted ¼ 0.40; rs12995480 [TMEM18], padjusted ¼
0.02; rs64343 [ABO], padjusted ¼ 1.0 3 10�7). Both FTO

and TMEM18 are well-known obesity-related genes. Except

for the FTO, TMEM18, and ABO loci, all distinct loci iden-

tified in the primary 1KG analysis were also associated with

CRP in the BMI-adjusted 1KG analysis. No genome-wide-

significant association was observed on the X chromosome

in the 1KG GWAS, which included 102,086 individuals.
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LD Score Regression

The HapMap GWAS LDSC intercept was 1.03 (standard

error¼ 0.013), and the 1KG intercept was 1.02 (standard er-

ror ¼ 0.011). This suggests that a small proportion of the

inflation is attributable to confounding bias (�12% for

the HapMap GWAS and �13% for the 1KG GWAS). Hence,

the vast majority of inflation is due to the polygenic archi-

tecture of circulating amounts of CRP. As depicted in

Figure 1, CRP showed strong positive genetic correlations

with anthropometric traits (e.g., Rg ¼ 0.43 and p ¼ 5.4 3

10�15 for BMI), glycemic phenotypes (e.g., Rg ¼ 0.33 and

p ¼ 3.1 3 10�6 for type 2 diabetes), lipid phenotypes (e.g.,

Rg ¼ 0.29 and p ¼ 7.9 3 10�5 for triglycerides), and CAD

(Rg ¼ 0.23 and p ¼ 2.4 3 10�5) (Table S6). By comparison,

CRP showed inverse genetic correlations with educational

attainment (e.g., Rg ¼�0.27 and p ¼ 9.23 10�7 for college

completion), lung function (e.g., Rg ¼�0.24 and p¼ 4.63

10�12 for forced vital capacity), and high-density lipopro-

tein cholesterol (Rg ¼ �0.30 and p ¼ 4.8 3 10�9).

Additional Signals at Distinct Loci

Approximate conditional analyses in the 1KG GWAS re-

vealed additional signals at nine loci (Table S7). Five loci

showed one secondary signal (IL6R, NLRP3, HNF1A,

CD300LF, and APOE and APOC1), the PPP1R3B locus had

two additional signals, the LEPR locus had three additional

signals, and the SALL1 locus had four additional signals,

whereas the CRP locus showed a total of 13 distinct associ-

ated variants. Interestingly, the rs149520992 rare variant

(MAF ¼ 0.01) mapping to the CRP locus showed an associ-

ation at pconditional ¼ 3.73 10�15 with b ¼�0.272 for the T

allele. The GCTA effect estimates for the ten distinct vari-

ants identified in the vicinity of CRP by the 1KG condi-

tional analysis are highly correlated with these variants’

effect estimates obtained from the RS-I andWGHS individ-

ual-level data (rRS ¼ 0.97 and rWGHS ¼ 0.84), confirming

the reliability of the GCTA estimates.

Explained CRP Variance

The lead variant at the CRP locus in both the HapMap

(rs2794520) and 1KG (rs4287174) GWASs explained

1.4% of the variance in natural-log-transformed CRP

amounts. The distinct CRP variants derived from the joint
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Figure 1. Genome-wide Genetic Correlation between Serum Amounts of CRP and Different Phenotypes and Clinical Diseases
The genetic correlation and its standard error are estimated by LDSC analysis. Abbreviations are as follows: ADHD, attention deficit and
hyperactivity disorder; FEV1, forced expiratory volume in 1 s; FVC, forced vital capacity; HOMA-B, homeostatic model assessment b cell
function; HOMA-IR, homeostatic model assessment insulin resistance; and HbA1C, hemoglobin A1c.
conditional analysis in the 1KG GWAS explained 4.3% of

the variance. The lead variants at all distinct loci together

explained 6.2% of the CRP variance in the HapMap

GWAS and 6.5% in the 1KG GWAS. When we added the

distinct variants derived from the conditional analysis at

associated loci, the variance explained by all associated

loci was 11.0% in the 1KG GWAS.

Functional Annotation

We applied DEPICT and MAGMA analyses for functional

annotation and biological interpretation of the findings.

The DEPICT analysis included 9,497 genome-wide-signifi-

cant variants covering 283 genes and prioritized 55 candi-

dategenesacross29regions (FDR<0.05;TableS8).Theprior-

itized genes included IL6R, which mapped to the 1q21.3

locus (represented by rs4129267), and APCS, whichmapped

to the 1q32.2 locus. Investigating 10,968 reconstituted gene

sets for enrichment, DEPICT highlighted 583 (5.3%) gene

sets to be significantly enriched among CRP-associated loci

at FDR< 0.05 (Table S9). Using further clustering, we identi-

fied 66 groups of gene sets that substantially correlated and

clustered in twosets, onemainlycomposedof immunepath-

ways and the other enriched with metabolic pathways

(Figure 2). In Figure 3, we present the prioritized genes and

themost significant gene sets.We found synovial fluid, liver

tissue, andmonocytes to be enrichedwith expression of the

prioritized genes (FDR< 0.05).We appliedMAGMAanalysis

to theHapMapGWAS, identifyingfivesignificantlyenriched

gene sets (Bonferroni-corrected p< 0.05; Table S10). Results

included consequences of EGF induction, positive regula-

tion of gene expression, and the interleukin-6 signaling

pathway, in line with the most strongly prioritized gene

from DEPICT gene prioritization. MAGMA analysis priori-

tized liver as a sole enriched tissue (p ¼ 0.048).
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To prioritize the most likely trait-relevant gene for each

GWAS locus, we interrogated the GWAS data with cis-

eQTL data identified from 44 post-mortem tissues and a

large whole-blood eQTL meta-analysis by using colocaliza-

tion analysis (Table S11). Figure S7 presents the GWAS loci

that colocalize with cis-eQTLs with the corresponding tis-

sue, the colocalizing gene, and the posterior probability

that one shared underlying variant drives both associations.

Out of the 58 lead gSNPs, 25 SNPs (43%) showed evidence

of colocalization with one or more local eQTL effects (pos-

terior probability > 0.9). For example, the rs2293476 locus

colocalized with several cis-eQTL effects for PABC4 and

pseudogenes OXCT2P1, RP11-69E11.4, and RP11-69E11.8.

The rs10925027 locus colocalized with the cis-eQTL effect

for NLRP3 exclusively in the highly powered blood meta-

analysis. Out of 25 loci, nine loci had only one colocalizing

gene. Altogether, gSNP-associated cis-eQTL effects were pre-

sent in up to 14 different tissues, of which whole blood,

esophagus mucosa, skin, and tibial nerve were the most

frequent.

Mendelian Randomization Analyses

We observed a protective effect of genetically determined

variance in CRP with schizophrenia with an IVW OR of

the 52-SNP score of 0.89 (95% CI ¼ 0.81–0.97; p ¼ 6.6 3

10�3; Tables S14 and S15; Figure S8–S11). The MR-Egger

intercept was compatible with no unbalanced pleiotropy

(p ¼ 0.48). The estimate of the rs2794520 variant was

comparable to the 52-SNP score estimate (OR ¼ 0.89;

95% CI ¼ 0.84–0.94; p ¼ 0.046). The WM and PWM esti-

mates were comparable to the IVW estimate (ORWM ¼
0.89 and PWM ¼ 5.1 3 10�3; ORPWM ¼ 0.89 and PPWM ¼
4.4 3 10�3). The ‘‘leave-one-out’’ analysis provided

evidence that no single variant was driving the IVW
ber 1, 2018



Figure 2. Results of the DEPICT Functional Annotation Analysis
Each node represents an exemplar gene set from affinity-propagation clustering, and links represent corresponding Pearson correlation
coefficients between individual enriched gene sets (only the links with r > 0.3 are shown). DEPICT GSE P refers to the gene-set enrich-
ment p value for that DEPICT gene-set generated by DEPICT. As an example, outlined are the individual gene sets inside two clusters
(‘‘inflammatory response’’ and ‘‘negative regulation of peptidase activity’’).
point estimate (Figure S10). The causal OR between the

rs2794520 variant and BD was 1.33 (95% CI ¼ 1.03–1.73;

p ¼ 0.032). For the 52-SNP score, the IVW OR was 1.16

(95% CI ¼ 1.00–1.35; p ¼ 0.054). The MR-Egger intercept

was compatible with unbalanced pleiotropy (p ¼ 0.049).

The MR-Egger estimate OR of the 52-SNP score was

comparable to the rs2794520 estimate (OR ¼ 1.36; 95%

CI ¼ 1.10–1.69; p ¼ 6.7 3 10�3), as were the WM and
The American
PWM estimates (ORWM ¼ 1.33 and PWM ¼ 3.4 3 10�3;

ORPWM ¼ 1.32 and PPWM ¼ 4.3 3 10�3).

We observed evidence against a causal association be-

tween either CRP rs2794520 (OR ¼ 1.01; 95% CI ¼ 0.91–

1.12; p ¼ 0.88) or the 52-SNP instrument (OR ¼ 0.96;

95% CI ¼ 0.84–1.09; p ¼ 0.51) and CAD. An Egger inter-

cept of 0.014 suggested the presence of unbalanced pleiot-

ropy (p ¼ 5.8 3 10�3), and the MR-Egger causal estimate
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Figure 3. Heatmap Representing the Results of DEPICT Functional Annotation Analysis
Each row represents enriched (FDR< 0.05) gene sets, and each column represents prioritized (FDR< 0.05) genes. Colors on the heatmap
represent each gene’s contribution to gene-set enrichment (GSE; depicted as a Z score; only the top ten highest Z scores per gene set are
visualized). Sidebars represent p values for GWAS, GSE, and gene prioritization (nominal p value on log10 scale). The top ten gene sets per
annotation category are visualized. Abbreviations are as follows: GO, GeneOntology; KE, Kyoto Encyclopedia of Gene andGenomes; RE,
REACTOME pathways; MP, mouse phenotype; and PI, protein-protein interaction.
was OR ¼ 0.79 (95% CI ¼ 0.67–0.94; p ¼ 0.012). However,

the WM and PWM showed no association between CRP

and CAD. For AD, there was evidence against an associa-

tion with rs2794520 (p ¼ 0.592), although the IVW OR

showed a protective effect (OR ¼ 0.51; 95% CI ¼ 0.30–

0.88; p ¼ 0.015). The Egger intercept of 0.046 suggested

unbalanced pleiotropy (p ¼ 0.042), and the MR-Egger OR

was 0.27 (95% CI ¼ 0.12–0.60). However, the association

was null for the WM and PWM analyses (ORWM ¼ 1.04

and PWM ¼ 0.61; ORPWM ¼ 1.05 and PPWM ¼ 0.53). We

observed evidence against an effect for CD, DBP, IBD, RA,

and SBP for the rs2794520 variant and the IVW, MR-Egger,

WM, and PWM analyses.
Discussion

Using genomic data from >200,000 individuals, we have

identified 58 distinct signals for circulating amounts of

CRP, confirming 16 previously identified CRP loci. BMI-

adjusted GWASs suggested that the vast majority of
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genetic risk variants affect CRP amounts independently of

its main determinant (BMI). The genome-wide in silico func-

tional annotation analysis highlights 55 genes that are

likely to explain the association between 29 signals and

amounts of CRP. The data identified gene sets involved in

the biology of the immune system and liver as main regula-

tors of serum amounts of CRP.MR analyses supported causal

associations between genetically increased CRP and a pro-

tective effect on schizophrenia and increased risk of BD.

Obesity is one of the main determinants of chronic low-

grade inflammation in the general population.37,38 Adjust-

ment for BMI in the CRP GWAS abolished the association

at only three lead variants, suggesting that the genetic

regulation of chronic low-grade inflammation is largely in-

dependent of BMI. Notably, BMI adjustment resulted in

the identification of six variants that were not associated

with CRP in the BMI-unadjusted GWAS. This supports

the notion that adjustment for covariates that explain

phenotypic variance could improve the statistical power

in linear model analyses of quantitative traits.39 Although

adjustment for heritable correlated traits in GWASs could
ber 1, 2018



bias effect estimates (collider bias),40 there is consistent ev-

idence in the literature that BMI has a causal direct effect

on CRP amounts,41 and therefore, collider bias in CRP

GWASs adjusted for BMI is less likely.

The sex-stratified analyses revealed significant heteroge-

neity in effect estimates between men and women at only

four lead variants, which represent fewer than 10% of all

CRP loci. Even among these four loci, the effect directions

were similar; thus, the heterogeneity was limited to effect

sizes. The data suggest that the difference between men

andwomen in amounts of CRP is less likely to be explained

by genetic factors. Furthermore, two signals identified in

the former HapMap GWAS of CRP amounts were not sig-

nificant in the current HapMap GWAS. The effect esti-

mates in the current analyses were too small to identify

with our sample size.

The top variant at the CRP locus in both the HapMap

and 1KG GWASs explained 1.4% of the variance in circu-

lating amounts of CRP. The approximate conditional anal-

ysis resulted in 13 variants jointly associated within the

CRP locus in the 1KG GWAS. With respect to locus defini-

tion, we used a more conservative distance criterion than

other GWASs, which often use 5500 kb surrounding the

GWAS peak.42 Here, we used the criterion that the mini-

mum distance between the boundaries of loci is 500 kb.

In order to identify further variants associated with

amounts of CRP, we performed approximate conditional

analyses, which resulted in multiple putative additional

variants also inside and near genes that were not identified

in the primary GWAS. As an example, the CRP locus

spanned >2 Mb according to our criterion. Approximate

conditional analysis revealed that two variants, namely

rs3027012 near DARC and rs56288844 near FCER1A,

both downstream of CRP, were associated with CRP

amounts. Furthermore, upstream of CRP, we identified a

variant near FCGR2A (immunoglobulin G Fc receptor II).

These results show that for a given lead variant, potentially

multiple causal loci—here DARC, FCER1A, and FCGRA2

alongside CRP—contribute to chronic low-grade inflam-

mation and variation in circulating amounts of CRP.

DEPICT analysis provided further evidence that the

genes annotated to the associated CRP variants mainly

cluster in the immune and liver biological systems.

Notably, the gene set ‘‘inflammatory response,’’ which cap-

tures both immune response and liver metabolism, was the

main connector network between the two networks. This

is in line with the observation that CRP is mainly produced

by liver cells in response to inflammatory cytokines during

acute and chronic inflammation.43 Interestingly, the anal-

ysis highlighted iron homeostasis as an enriched gene set.

In agreement, the conditional analysis highlighted a

distinct genetic association at the hemochromatosis gene

HFE, encoding a transmembrane protein of the major his-

tocompatibility complex (MHC) class I family. Previous

studies have shown that iron metabolism plays a pivotal

role in inflammation.44,45 However, genetic pleiotropy

could highlight co-regulated pathway-analysis networks
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that do not cause inflammation per se. It is also important

to note that the results of DEPICT analyses apply to recon-

stituted gene sets that might sometimes have slightly

different overlaying biological themes than the original

gene-set annotation.

The MR analyses validate previous evidence that

genetically elevated CRP is protective for the risk of schizo-

phrenia,13,46 although observational data suggest a posi-

tive association between CRP and risk of schizophrenia.47

For BD, we observed a positive causal effect, which is in

line with previous MR and observational studies.13,48

Although the causal underlying mechanisms remain to

be elucidated, a hypothesis for the schizophrenia observa-

tion might be the immune response to infections early in

life. Amounts of acute-phase response proteins in dry

blood spots collected at birth are lower for individuals

with non-affective psychosis, which includes schizo-

phrenia, than for control individuals, suggesting a weaker

immune response at birth.49 Also, neonates who have been

exposed to a maternal infection and have low amounts of

acute-phase response proteins have a higher risk of

schizophrenia.50 Altogether, the evidence suggests that a

deficient immune response could contribute to chronic

infection in children and the development of schizo-

phrenia. For AD and CAD, the Egger intercept showed ev-

idence of unbalanced pleiotropy, and the Egger estimate

showed a protective effect of CRP on the risk of AD and

CAD. However, for both outcomes, the effects of the WM

and PWM analyses, as well as analyses using the single

rs2794520 variant (which is least likely to be affected by

pleiotropy), were null. The MR-Egger estimate relies on

the InSIDE assumption, which states that the strength of

the association between the genetic variants and CRP is in-

dependent of the strength of the direct pleiotropic effects

of the genetic variants on the outcome. This assumption

can be violated when the genetic variants are associated

with a confounder of the CRP-outcome association. Such

a scenario can occur when the genetic variants are associ-

ated with an exposure that is causally upstream of the

exposure under study. In the context of the association

between CRP and either AD or CAD, this could be

lipids or glycemic phenotypes. Several genetic variants

used in the 52-SNP instrument are associated with meta-

bolic phenotypes that might affect amounts of CRP. In

agreement, the WM and PWM, in which the InSIDE

assumption is relaxed, and the single-variant analysis

showed no association. Furthermore, the observation

that CRP is not causally related to CAD in the MR analyses

is comparable to the findings of previous published

studies.51 Power calculation showed that we had 100%

power to detect a 10% difference in CAD risk, so the prob-

ability of a false-negative finding is small. Also, CRP is

associated with future CAD in observational studies, and

randomized trials have shown a beneficial effect of

lowering inflammation with the use of statins52 and cana-

kinumab53 on CAD risk, but this effect is unlikely to be

attributable to CRP.
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The strengths of our study are the use of a very large sam-

ple size for CRP and the use of both HapMap and 1KG

imputed data. Furthermore, we conducted sex-specific

and BMI-adjusted analyses to study the effect of sex and

body mass on the associations between genetic variants

and CRP. To maximize power and to efficiently use the

data, we meta-analyzed all available samples in a discovery

setting without replication. The consistent association of

the variants in >50 studies at a strict Bonferroni-corrected

threshold provide confidence that our findings represent

true associations.We used both HapMap and 1KG imputed

data to identify genetic variants for circulating amounts of

CRP. At the start of the project, more studies had HapMap

imputed data available. Hence, the sample size and thus po-

wer in theHapMapGWASwas higher than that in the 1KG.

Also, HapMap could have identified variants that were not

identified by the 1KG GWAS.54 Nevertheless, 1KG offers

better coverage of uncommon variants and includes indels,

which are not included in the HapMap reference panel.

Including both reference panels, we used all available sam-

ples and maximized the possibility of identifying both

common and uncommon genetic variants for CRP.

However, we note limitations to our study. GWASs

merely identify loci associated with complex phenotypes,

and the identification of causal genes remains challenging.

We included only individuals of European ancestry;

the generalizability of our findings to other races and eth-

nicities is uncertain. In addition, although our analyses

provide support for causal associations, we acknowledge

that we might not have identified the causal variants,

and we might not have eliminated residual confounding.

The colocalization analyses provide evidence for colocali-

zation of CRP GWAS signals and eQTLs; however, they

do not provide evidence that the GWAS signal functions

on CRP through gene expression. We further note that

the method assumes identical LD structure from the

GWAS and eQTL datasets. Given that non-European sam-

ples make up �14% of the full dataset, this assumption

might be violated for some tissues. Last, we meta-analyzed

all available samples in one meta-analysis and did not

replicate our findings in an independent sample. There-

fore, our findings might need replication.

In conclusion, we performed a large GWASmeta-analysis

to identify genetic loci associated with circulating amounts

of CRP, a sensitive marker of chronic low-grade inflamma-

tion, and found support for a causal relationship between

CRP and decreased risk of schizophrenia and increased

risk of BD. Given that inflammation is implicated in the

pathogenesis of multiple complex diseases, our insights

into the biology of inflammation could contribute to

future therapies and interventions.
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et al.; DIAGRAM Consortium; and MAGIC Investigators

(2013). Sex-stratified genome-wide association studies includ-

ing 270,000 individuals show sexual dimorphism in genetic

loci for anthropometric traits. PLoS Genet. 9, e1003500.

18. Bulik-Sullivan, B.K., Loh, P.-R., Finucane, H.K., Ripke, S., Yang,

J., Patterson, N., Daly, M.J., Price, A.L., Neale, B.M.; and

Schizophrenia Working Group of the Psychiatric Genomics

Consortium (2015). LD Score regression distinguishes con-

founding from polygenicity in genome-wide association

studies. Nat. Genet. 47, 291–295.

19. Zheng, J., Erzurumluoglu, A.M., Elsworth, B.L., Kemp, J.P.,

Howe, L., Haycock, P.C., Hemani, G., Tansey, K., Laurin, C.,

Pourcain, B.S., et al.; Early Genetics and Lifecourse Epidemi-

ology (EAGLE) Eczema Consortium (2017). LDHub: A central-

ized database and web interface to perform LD score regres-

sion that maximizes the potential of summary level GWAS

data for SNP heritability and genetic correlation analysis. Bio-

informatics 33, 272–279.

20. Bulik-Sullivan, B., Finucane, H.K., Anttila, V., Gusev, A., Day,

F.R., Loh, P.R., Duncan, L., Perry, J.R., Patterson, N., Robinson,

E.B., et al.; ReproGen Consortium; Psychiatric Genomics Con-

sortium; and Genetic Consortium for Anorexia Nervosa of the

Wellcome Trust Case Control Consortium3 (2015). An atlas of

genetic correlations across human diseases and traits. Nat.

Genet. 47, 1236–1241.

21. Yang, J., Lee, S.H., Goddard, M.E., and Visscher, P.M. (2011).

GCTA: A tool for genome-wide complex trait analysis. Am. J.

Hum. Genet. 88, 76–82.

22. Yang, J., Ferreira, T., Morris, A.P., Medland, S.E., Madden, P.A.,

Heath, A.C.,Martin, N.G., Montgomery, G.W.,Weedon,M.N.,

Loos, R.J., et al.; Genetic Investigation of ANthropometric

Traits (GIANT) Consortium; and DIAbetes Genetics Replica-

tion AndMeta-analysis (DIAGRAM) Consortium (2012). Con-

ditional and joint multiple-SNP analysis of GWAS summary

statistics identifies additional variants influencing complex

traits. Nat. Genet. 44, 369–375, S1–S3.

23. Park, J.-H., Wacholder, S., Gail, M.H., Peters, U., Jacobs, K.B.,

Chanock, S.J., and Chatterjee, N. (2010). Estimation of effect

size distribution from genome-wide association studies and

implications for future discoveries. Nat. Genet. 42, 570–575.

24. Pers, T.H., Karjalainen, J.M., Chan, Y., Westra, H.J., Wood,

A.R., Yang, J., Lui, J.C., Vedantam, S., Gustafsson, S., Esko,

T., et al.; Genetic Investigation of ANthropometric Traits

(GIANT) Consortium (2015). Biological interpretation of

genome-wide association studies using predicted gene func-

tions. Nat. Commun. 6, 5890.
Journal of Human Genetics 103, 691–706, November 1, 2018 705

http://refhub.elsevier.com/S0002-9297(18)30320-3/sref1
http://refhub.elsevier.com/S0002-9297(18)30320-3/sref1
http://refhub.elsevier.com/S0002-9297(18)30320-3/sref2
http://refhub.elsevier.com/S0002-9297(18)30320-3/sref2
http://refhub.elsevier.com/S0002-9297(18)30320-3/sref2
http://refhub.elsevier.com/S0002-9297(18)30320-3/sref3
http://refhub.elsevier.com/S0002-9297(18)30320-3/sref3
http://refhub.elsevier.com/S0002-9297(18)30320-3/sref3
http://refhub.elsevier.com/S0002-9297(18)30320-3/sref3
http://refhub.elsevier.com/S0002-9297(18)30320-3/sref4
http://refhub.elsevier.com/S0002-9297(18)30320-3/sref4
http://refhub.elsevier.com/S0002-9297(18)30320-3/sref4
http://refhub.elsevier.com/S0002-9297(18)30320-3/sref4
http://refhub.elsevier.com/S0002-9297(18)30320-3/sref5
http://refhub.elsevier.com/S0002-9297(18)30320-3/sref5
http://refhub.elsevier.com/S0002-9297(18)30320-3/sref5
http://refhub.elsevier.com/S0002-9297(18)30320-3/sref6
http://refhub.elsevier.com/S0002-9297(18)30320-3/sref6
http://refhub.elsevier.com/S0002-9297(18)30320-3/sref6
http://refhub.elsevier.com/S0002-9297(18)30320-3/sref6
http://refhub.elsevier.com/S0002-9297(18)30320-3/sref6
http://refhub.elsevier.com/S0002-9297(18)30320-3/sref7
http://refhub.elsevier.com/S0002-9297(18)30320-3/sref7
http://refhub.elsevier.com/S0002-9297(18)30320-3/sref7
http://refhub.elsevier.com/S0002-9297(18)30320-3/sref7
http://refhub.elsevier.com/S0002-9297(18)30320-3/sref8
http://refhub.elsevier.com/S0002-9297(18)30320-3/sref8
http://refhub.elsevier.com/S0002-9297(18)30320-3/sref8
http://refhub.elsevier.com/S0002-9297(18)30320-3/sref8
http://refhub.elsevier.com/S0002-9297(18)30320-3/sref9
http://refhub.elsevier.com/S0002-9297(18)30320-3/sref9
http://refhub.elsevier.com/S0002-9297(18)30320-3/sref9
http://refhub.elsevier.com/S0002-9297(18)30320-3/sref9
http://refhub.elsevier.com/S0002-9297(18)30320-3/sref9
http://refhub.elsevier.com/S0002-9297(18)30320-3/sref9
http://refhub.elsevier.com/S0002-9297(18)30320-3/sref10
http://refhub.elsevier.com/S0002-9297(18)30320-3/sref10
http://refhub.elsevier.com/S0002-9297(18)30320-3/sref10
http://refhub.elsevier.com/S0002-9297(18)30320-3/sref10
http://refhub.elsevier.com/S0002-9297(18)30320-3/sref10
http://refhub.elsevier.com/S0002-9297(18)30320-3/sref11
http://refhub.elsevier.com/S0002-9297(18)30320-3/sref11
http://refhub.elsevier.com/S0002-9297(18)30320-3/sref11
http://refhub.elsevier.com/S0002-9297(18)30320-3/sref11
http://refhub.elsevier.com/S0002-9297(18)30320-3/sref12
http://refhub.elsevier.com/S0002-9297(18)30320-3/sref12
http://refhub.elsevier.com/S0002-9297(18)30320-3/sref12
http://refhub.elsevier.com/S0002-9297(18)30320-3/sref12
http://refhub.elsevier.com/S0002-9297(18)30320-3/sref13
http://refhub.elsevier.com/S0002-9297(18)30320-3/sref13
http://refhub.elsevier.com/S0002-9297(18)30320-3/sref13
http://refhub.elsevier.com/S0002-9297(18)30320-3/sref13
http://refhub.elsevier.com/S0002-9297(18)30320-3/sref13
http://refhub.elsevier.com/S0002-9297(18)30320-3/sref13
http://refhub.elsevier.com/S0002-9297(18)30320-3/sref13
http://refhub.elsevier.com/S0002-9297(18)30320-3/sref13
http://refhub.elsevier.com/S0002-9297(18)30320-3/sref13
http://refhub.elsevier.com/S0002-9297(18)30320-3/sref13
http://refhub.elsevier.com/S0002-9297(18)30320-3/sref13
http://refhub.elsevier.com/S0002-9297(18)30320-3/sref13
http://refhub.elsevier.com/S0002-9297(18)30320-3/sref13
http://refhub.elsevier.com/S0002-9297(18)30320-3/sref13
http://refhub.elsevier.com/S0002-9297(18)30320-3/sref13
http://refhub.elsevier.com/S0002-9297(18)30320-3/sref14
http://refhub.elsevier.com/S0002-9297(18)30320-3/sref14
http://refhub.elsevier.com/S0002-9297(18)30320-3/sref14
http://refhub.elsevier.com/S0002-9297(18)30320-3/sref14
http://refhub.elsevier.com/S0002-9297(18)30320-3/sref14
http://refhub.elsevier.com/S0002-9297(18)30320-3/sref14
http://refhub.elsevier.com/S0002-9297(18)30320-3/sref14
http://refhub.elsevier.com/S0002-9297(18)30320-3/sref15
http://refhub.elsevier.com/S0002-9297(18)30320-3/sref15
http://refhub.elsevier.com/S0002-9297(18)30320-3/sref16
http://refhub.elsevier.com/S0002-9297(18)30320-3/sref16
http://refhub.elsevier.com/S0002-9297(18)30320-3/sref16
http://refhub.elsevier.com/S0002-9297(18)30320-3/sref17
http://refhub.elsevier.com/S0002-9297(18)30320-3/sref17
http://refhub.elsevier.com/S0002-9297(18)30320-3/sref17
http://refhub.elsevier.com/S0002-9297(18)30320-3/sref17
http://refhub.elsevier.com/S0002-9297(18)30320-3/sref17
http://refhub.elsevier.com/S0002-9297(18)30320-3/sref17
http://refhub.elsevier.com/S0002-9297(18)30320-3/sref18
http://refhub.elsevier.com/S0002-9297(18)30320-3/sref18
http://refhub.elsevier.com/S0002-9297(18)30320-3/sref18
http://refhub.elsevier.com/S0002-9297(18)30320-3/sref18
http://refhub.elsevier.com/S0002-9297(18)30320-3/sref18
http://refhub.elsevier.com/S0002-9297(18)30320-3/sref18
http://refhub.elsevier.com/S0002-9297(18)30320-3/sref19
http://refhub.elsevier.com/S0002-9297(18)30320-3/sref19
http://refhub.elsevier.com/S0002-9297(18)30320-3/sref19
http://refhub.elsevier.com/S0002-9297(18)30320-3/sref19
http://refhub.elsevier.com/S0002-9297(18)30320-3/sref19
http://refhub.elsevier.com/S0002-9297(18)30320-3/sref19
http://refhub.elsevier.com/S0002-9297(18)30320-3/sref19
http://refhub.elsevier.com/S0002-9297(18)30320-3/sref19
http://refhub.elsevier.com/S0002-9297(18)30320-3/sref20
http://refhub.elsevier.com/S0002-9297(18)30320-3/sref20
http://refhub.elsevier.com/S0002-9297(18)30320-3/sref20
http://refhub.elsevier.com/S0002-9297(18)30320-3/sref20
http://refhub.elsevier.com/S0002-9297(18)30320-3/sref20
http://refhub.elsevier.com/S0002-9297(18)30320-3/sref20
http://refhub.elsevier.com/S0002-9297(18)30320-3/sref20
http://refhub.elsevier.com/S0002-9297(18)30320-3/sref21
http://refhub.elsevier.com/S0002-9297(18)30320-3/sref21
http://refhub.elsevier.com/S0002-9297(18)30320-3/sref21
http://refhub.elsevier.com/S0002-9297(18)30320-3/sref22
http://refhub.elsevier.com/S0002-9297(18)30320-3/sref22
http://refhub.elsevier.com/S0002-9297(18)30320-3/sref22
http://refhub.elsevier.com/S0002-9297(18)30320-3/sref22
http://refhub.elsevier.com/S0002-9297(18)30320-3/sref22
http://refhub.elsevier.com/S0002-9297(18)30320-3/sref22
http://refhub.elsevier.com/S0002-9297(18)30320-3/sref22
http://refhub.elsevier.com/S0002-9297(18)30320-3/sref22
http://refhub.elsevier.com/S0002-9297(18)30320-3/sref23
http://refhub.elsevier.com/S0002-9297(18)30320-3/sref23
http://refhub.elsevier.com/S0002-9297(18)30320-3/sref23
http://refhub.elsevier.com/S0002-9297(18)30320-3/sref23
http://refhub.elsevier.com/S0002-9297(18)30320-3/sref24
http://refhub.elsevier.com/S0002-9297(18)30320-3/sref24
http://refhub.elsevier.com/S0002-9297(18)30320-3/sref24
http://refhub.elsevier.com/S0002-9297(18)30320-3/sref24
http://refhub.elsevier.com/S0002-9297(18)30320-3/sref24
http://refhub.elsevier.com/S0002-9297(18)30320-3/sref24


25. Abecasis, G.R., Auton, A., Brooks, L.D., DePristo, M.A., Dur-

bin, R.M., Handsaker, R.E., Kang, H.M., Marth, G.T., McVean,

G.A.; and 1000 Genomes Project Consortium (2012). An inte-

grated map of genetic variation from 1,092 human genomes.

Nature 491, 56–65.

26. Bodenhofer, U., Kothmeier, A., and Hochreiter, S. (2011).

APCluster: An R package for affinity propagation clustering.

Bioinformatics 27, 2463–2464.

27. Kolde, R. (2012). Pheatmap: pretty heatmaps. R package

version 61.

28. de Leeuw, C.A., Mooij, J.M., Heskes, T., and Posthuma, D.

(2015). MAGMA: Generalized gene-set analysis of GWAS

data. PLoS Comput. Biol. 11, e1004219.

29. Watanabe, K., Taskesen, E., van Bochoven, A., and Posthuma,

D. (2017). Functional mapping and annotation of genetic as-

sociations with FUMA. Nat. Commun. 8, 1826.

30. Giambartolomei, C., Vukcevic, D., Schadt, E.E., Franke, L.,

Hingorani, A.D., Wallace, C., and Plagnol, V. (2014).

Bayesian test for colocalisation between pairs of genetic as-

sociation studies using summary statistics. PLoS Genet. 10,

e1004383.

31. Westra, H.J., Peters, M.J., Esko, T., Yaghootkar, H., Schurmann,

C., Kettunen, J., Christiansen, M.W., Fairfax, B.P., Schramm,

K., Powell, J.E., et al. (2013). Systematic identification of trans

eQTLs as putative drivers of known disease associations. Nat.

Genet. 45, 1238–1243.

32. GTEx Consortium (2015). Human genomics. The Genotype-

Tissue Expression (GTEx) pilot analysis: Multitissue gene regu-

lation in humans. Science 348, 648–660.

33. Hemani, G., Zheng, J., Elsworth, B.,Wade, K.H., Haberland, V.,

Baird, D., Laurin, C., Burgess, S., Bowden, J., Langdon, R., et al.

(2018). The MR-Base platform supports systematic causal

inference across the human phenome. eLife 7, e34408.

34. Bowden, J., Davey Smith, G., and Burgess, S. (2015). Mende-

lian randomization with invalid instruments: effect estima-

tion and bias detection through Egger regression. Int. J. Epide-

miol. 44, 512–525.

35. Bowden, J., Davey Smith, G., Haycock, P.C., and Burgess, S.

(2016). Consistent estimation in Mendelian randomization

with some invalid instruments using a weighted median esti-

mator. Genet. Epidemiol. 40, 304–314.

36. Brion, M.-J.A., Shakhbazov, K., and Visscher, P.M. (2013).

Calculating statistical power in Mendelian randomization

studies. Int. J. Epidemiol. 42, 1497–1501.

37. Visser, M., Bouter, L.M., McQuillan, G.M., Wener, M.H., and

Harris, T.B. (1999). Elevated C-reactive protein levels in over-

weight and obese adults. JAMA 282, 2131–2135.

38. Wellen, K.E., and Hotamisligil, G.S. (2003). Obesity-induced

inflammatory changes in adipose tissue. J. Clin. Invest. 112,

1785–1788.

39. Robinson, L.D., and Jewell, N.P. (1991). Some surprising re-

sults about covariate adjustment in logistic regressionmodels.

Int. Stat. Rev. 59, 227–240.
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