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ABSTRACT OF THE DISSERTATION 

 

Cell Biophysics for Label-free Single-Cell Analysis and Sorting 

by 

Mahdokht Masaeli 

Doctor of Philosophy in Bioengineering 

University of California, Los Angeles, 2013 

Professor Dino Di Carlo, Chair 

 

Recent studies have shown that accurate characterization of biological samples is only 

possible by analyzing single cells rather than the average response from thousands of cells, due 

to the significant heterogeneity in biological samples. Heterogeneity in gene and protein 

expression at single cell level has been confirmed using different techniques. Therefore, single 

cell analysis is critical for accurate representation of cell-to-cell variations within a population, 

which could be masked by average bulk measurements. Single cell analysis can improve data 

analysis and give some insight for experimental design when dealing with heterogeneous 

samples. Single cell analysis can be helpful in providing more insight into specific signaling 

pathways or cellular properties responsible for cell self-renewal capacity or differentiation. 

Screening sample for this potential rare population of pluripotent cells is critical before their 

clinical application. Single cell analysis could also improve diagnostics, one example being to 
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distinguish normal and cancer cells at different developmental and metastatic stages. Identifying 

rare cells such as cancer stem cells is difficult since they only represent a small fraction of the 

total cell population and unique molecular signatures can be drowned out by noise. Single cell 

analysis is suggested to enable better identification and targeting of these relatively rare 

populations in tumors. Studying phenotypes in heterogeneous samples and detection of rare 

populations requires an information-rich data set of cell characteristics to obtain specificity, 

which can be aided by multiparameter analysis A longstanding challenge in single-cell analysis 

is developing specific biomarkers or sets of biomarkers that allow classification of sub-

populations of interest, such as cancer stem cells, pluripotent stem cells with high differentiation 

potential, or immune cells tuned to respond to infections. Sorting is particularly important when 

nucleic acids are assayed and cells of interest may be rare, and therefore sorting technologies 

have developed hand-in-hand with analysis approaches. This dissertation reports the 

development of new tools for label-free multiparameter cell analysis and sorting using its 

intrinsic biophysical properties. 
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Chapter 1 

Single Cell analysis and Sorting: Need for Multiparameter Label-free Cell Phenotyping 

 

Conventional molecular biology analysis techniques for applications in cancer biology, stem 

cell biology, hematology and tissue engineering have often relied on the average response from 

thousands of cells in a population.  However, accurate characterization of the sample is only 

possible by analyzing single cells, due to the significant heterogeneity in biological samples 1–4. 

Heterogeneity in gene and protein expression at single cell level has been confirmed using 

different techniques 5,6. For example, the Mathies group reported that siRNA knockdown of 

GAPDH gene expression led to ~21% knockdown on average from 50 cells. However, at the 

single cell level they observed two distinct groups of Jurkat cells with partial knockdown (~50%) 

and complete knockdown (~0%) 7. Another example revealed heterogeneity in known cell 

lineages in Caenorhabditis elegans by single cell gene expression profiles using confocal 

microscopy by the Kim group 8. Interestingly, although they observed diversity in cells, they 

reported that cells with known fates clustered together in a 2D scatter plot according the 

correlation in their gene expression. They also observed larger diversity within cells from 

heterogeneous tissues (e.g. neurons) compared to more homogeneous tissues (e.g. intestinal 

cells). Therefore, single cell analysis is critical for accurate representation of cell-to-cell 

variations within a population, which could be masked by average bulk measurements 9. 

Single cell analysis can improve data analysis and give some insight for experimental design 

when dealing with heterogeneous samples. Pluripotent cells, for instance, are potentially 

interesting for applications in regenerative medicine because of their self-renewal and 



! 2 

differentiation potential. These cells, all highly heterogeneous and there is significant cell-cell 

variations in differentiation potential 3,10. Single cell analysis can be helpful in providing more 

insight into specific signaling pathways or cellular properties responsible for cell self-renewal 

capacity or differentiation. Additionally, in vivo transplantation of induced pluripotent stem cell- 

(iPSC-) derived cellular grafts could be risky due to possible existence of a failed-to-differentiate 

population. Screening sample for this potential rare population of pluripotent cells is critical 

before their clinical application 11,12. Another example is cancer. Cancer has been widely known 

as a highly heterogeneous disease. Single tumor cell behavior and response to drugs is critical in 

designing successful therapeutic strategies 13,14. Single cell analysis could also improve 

diagnostics, one example being to distinguish normal and cancer cells at different developmental 

and metastatic stages since cancer cells have been found to have a significantly more 

heterogeneity in their mitochondrial DNA 15. One particular phenotype that would be important 

to identify is the cancer stem cell, which are believed to be responsible for the repopulation of 

tumors after treatment and is an emerging target for new therapies 16,17. Identifying these cells is 

difficult since they only represent a small fraction of the total cell population and unique 

molecular signatures can be drowned out by noise. Single cell analysis is suggested to enable 

better identification and targeting of these relatively rare populations in tumors.  

 

A longstanding challenge in single-cell analysis is developing specific biomarkers or sets of 

biomarkers that allow classification of sub-populations of interest, such as cancer stem cells, 

pluripotent stem cells with high differentiation potential, or immune cells tuned to respond to 

infections.  Biomarkers can be molecular (i.e. nucleic acids, proteins, sugars, or lipids) which 
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often require labels or amplification approaches to output data, or label-free relying on intrinsic 

physical properties of cells. 

Sorting of cells is a key aspect of single-cell analysis when nucleic acids are assayed and 

cells of interest may be rare, and therefore sorting technologies have developed hand-in-hand 

with analysis approaches. Similar to cell analysis techniques, cell sorting has been performed 

both using tags or labels and in a label-free manner using differences in the intrinsic properties of 

cells. 

Importance and challenges of multiparameter screening 

Studying phenotypes in heterogeneous samples and detection of rare populations requires an 

information-rich data set of cell characteristics to obtain specificity, which can be aided by 

multiparameter analysis 18. Acquisition of a set of quantitative and qualitative information about 

single cells, including the level and structure of the expressed proteins, structure of nuclear 

proteins, cell size, shape, morphology and stiffness enhances accuracy of sample analysis. One 

of the main focuses of current single cell analysis approaches is increasing the number of 

simultaneously detected parameters from individual cells at high-throughput. A more 

comprehensive characterization of cells would provide information on cellular properties 

responsible for cell self-renewal capacity and detection of rare populations of stem cells in their 

differentiated progeny, identification of rare populations of circulating tumor cells in blood or 

cancer stem cells in biopsies, improve prediction of drug effects and toxicity, and so on. Having 

a large survey of cellular parameters could also be helpful in identifying the most predictive 

parameters in a specific application. In the past few years, efforts have increased the number of 

detectable fluorophores by flow cytometry and which has significantly improved the capability 
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of these systems to immunophenotype and discriminate between normal and malignant cells, or 

immune cell subpopulations 19–23.  

While increasing the amount of information a technique can provide on single cells could 

have substantial advantages in improving specificity and identifying new subpopulations, one of 

the challenges is the interpretation and visualization of high-dimensional data. Generally, 

analyzing multidimensional data involves: i) normalization and standardization to allow for 

meaningful data comparison between data captured on different days or using different 

instruments by different operators, ii) statistical tests to determine and validate the significance 

of the data in accepting or rejecting a hypothesis, iii) clustering to detect possible unknown 

populations in the dataset, iv) visualization to view as much information provided by the 

multiparameter data as possible and v) machine learning to build proper classifiers and quantify 

the fraction of data set belonging to each predefined class 24. New technologies are emerging for 

acquiring and analyzing single-cell multi-dimensional characteristics for applications from 

cancer diagnostics to drug discovery.  

Label-based single cell multiparameter screening and sorting  

Flow cytometry: Flow cytometry is probably one of the most widely employed techniques 

that is used for single-cell analysis for research and diagnostics 25,26. The technique quantifies 

molecular properties from individual cells in a stream of fluid by illumination of targeted 

fluorophores with lasers. In the clinic, flow cytometry has been routinely used in common 

laboratory tests, including complete blood counts as well as CD4+ T cell counts in HIV 

patients27,28. It has also shown promise in identifying normal and malignant hematopoietic and 

lymphoid cells as well as detecting subtypes of inflammatory cells active in diseases such as 
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psoriasis and lupus using multicolor analysis29,30. The massive production of monoclonal 

antibodies, high-quality reagents, a wide variety of fluorochromes and particularly advances in 

multiparameter flow cytometry has improved the accuracy of this technique as a clinical 

diagnostic tool 19,31. New microfluidic platforms have also been recently introduced to integrate 

cell culture, sample preparation and fluorescence imaging and microfluidic flow cytometry, 

mainly to permit analysis of small-size samples (100-1000 cells) such as fine-needle aspirations 

32. These approaches have been used to monitor immune response in macrophages and 

monocytes. 

Flow cytometry has also shown success in separating cells and purifying specific cell 

populations. After cell interrogation by laser light, the single cell stream is broken into droplets 

using a vibrating fine nozzle. The droplets carrying cells of interest based on the signals captured 

from the cells are then electrostatically charged. Using an electromagnetic field, the droplets are 

pushed into different outlets based on their charge 25. Following the identification of CD34 as a 

marker of human hematopoietic and progenitor cells, flow cytometry was used to deplete 

contaminating tumor cells in hematopoietic stem cell grafts for autologous transplantation 33. 

One of the main disadvantages of flow cytometry is that it requires prior in vivo or in vitro 

labeling, which could be expensive and laborious 1. Multicolor flow cytometry also needs careful 

correction for signal spillover from individual fluorochromes into other detectors34,35. In the 

currently used clinical flow cytometry, depending on the number of detectors, up to more than 10 

different fluorescence emissions can be measured for individual cells simultaneously. Due to the 

spectral spillover mentioned above, interpretation of data by an experienced operator is critical36. 

Additionally, the number of molecular measurements are limited to 10-20 even using correction 

algorithms which involve testing many different controls for immunophenotyping 
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standardization, which add to the cost and time to implement such approaches35,37. For in vivo 

labeling, characteristics of endogenous proteins can be altered following tagging with fluorescent 

proteins or their derivatives. Another issue is photobleaching of fluorophores and 

autofluorescence of cells, which might affect the outcome of the analysis to a great extent38. One 

other important limitation to flow cytometry, is the lack of proper standardization and instrument 

setup protocols 39,40. Specific professional training has recently been suggested to be critical in 

subjectivity-related variability observed in the data gathered in a number of clinical studies37.  In 

spite of these disadvantages, multicolor flow cytometry has enabled a wide range of new clinical 

diagnostics because of the specificity achieved with combinations of biomarkers37. 

Mass cytometry: Mass cytometry allows increased numbers of analyzed proteins beyond 

what even multicolor flow cytometery techniques are capable of. While operating at comparable 

throughputs with flow cytometry, in mass cytometry cells can be stained with up to 100 

antibodies with minimal signal overlap 41. Antibodies are conjugated to different metal isotope 

containing polymers and the metal tags are quantified in discrete time-separated detectors using 

inductively coupled plasma time-of flight mass spectroscopy. Mass cytometry has been 

introduces as a single cell multi-target immunoassay42. One main disadvantage of this technique 

is the cost and time associated with developed the immunoassay and labeling such a large 

number of different antibodies with metal tags before antigen binding. 

Laser scanning cytometry (LSC): While sharing features with flow cytometry, LSC is 

unique in that it is a microscope-based approach and can measure cells adhered to a slide and can 

be a more suitable cytometer for applications with adherent cells43. LSC is a technique that can 

detect several cellular constituent and features simultaneously from laser excited fluorescence 
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measurements at multiple wavelengths. Notably, unlike flow cytometry LSC is capable of 

providing time-dependent information from individual cells since the cells can be constantly 

analyzed over time 44. These include changes in both morphological and biochemical features 

within a cell. LSC offers a more limited throughput compared to flow cytometry-based 

techniques9. In addition to the total intensity of the fluorescent signal, LSC can capture other 

parameters such as the maximal intensity of a pixel, integration area, the perimeter of the 

integration contour and circularity, all of which increase specificity of cell identification. 

Automated microscopy: Automated microscopy, also known as high-throughput microscopy, 

image cytometry or high-content screening has shown promise in quantitative analysis of cell 

behavior and characteristics45. Compared to LSC it is usually a lower throughput technique but 

with higher imaging resolution.  Microscopy-based cell analysis has been the primary means for 

studying cell function and behavior for a long time46. Microscopy is able to monitor single cells 

and reveal biological mechanisms through appropriate staining and is high in information content, 

capable of collecting high-resolution images of cells from time-lapse experiments. Although 

microscopy usually reports on the average behavior of cells, appropriate image processing and 

data analysis techniques can be utilized to determine behavior of single cells under study 

individually. Therefore, one of the major bottlenecks of automated microscopy for single cell 

analysis is reliable interpretation of the captured images47. Compared to flow cytometry, 

automated microscopy is advantageous in its compatibility with adherent cells and time-lapse 

experiment. It can also provide information on protein structure and localization if image and 

data analysis techniques are reliable enough to allow for high-fast and accurate processing.  
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Label-free single cell screening and sorting 

While most of the conventional single cell analysis and sorting tools rely on molecular 

properties of cellular proteins and DNA, label-free analysis and manipulation approaches are 

mainly based on intrinsic biophysical properties of cells. These approaches are attractive in their 

low cost and reduced sample preparation time. Additionally, they can report on properties of cell 

subpopulations that could reveal unknown molecular properties or pathways that cannot be 

targeted by known antigens or labeling assays. For instance, the most common tumor detection 

methods still rely on direct or assisted visualization of primary tumor mass and 

immunohistopathology that reveals antigens that are believed to be indicative of tumor 

progression. Although being useful in tumor staging from biopsies with some pre-knowledge, 

specific cocktails are often needed depending on the tumor of origin. While single or multiple 

molecular changes can be indicative of cell type, as discussed previously there is significant 

cellular heterogeneity which can confound classification, requiring even more parameters.  As an 

alternative approach biophysical markers of cellular architecture instead assays emergent 

properties that arise from a range of molecular changes, which could be more integrative without 

first breaking down the analysis to component pieces. Here, we list different intrinsic 

characteristics of cells that have been used for single cell analysis and sorting and briefly explain 

the common techniques. 

Size. One of the most common label-free cell characterization and separation parameters is 

cell size. Cell size measurements could be indicative of cell type and state48. Differences in cell 

sizes of different tissues have been used for sample analysis purification in different applications. 

For example, circulating tumor cells (CTCs) have been separated from blood cells due to their 

larger size using a variety of approaches49,50. However, the measurements and sorting approaches 
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based on size are also affected by other properties of cells that might not be accounted for in a 

controlled manner unless these technologies are able to quantify those other characteristics and 

decouple their effect on cell size.  

Size difference has been routinely used for blood fractionation. Microfabricated filters have 

been used for fractionating blood into its components using a range of well-controlled pore 

sizes51. Impedance-based volume sensors and micro-Coulter counters quantify single cell volume 

by probing the variation in ionic current through a narrow pore through which the cells of 

interest are forced to pass52–54. These techniques have been used to measure the volume of single 

red blood cells, yeast and Escherichia coli 53,55. Pinched flow fractionation is another technique 

for fractionation of samples by size using hydrodynamic forces 56. Deterministic lateral 

displacement (DLD) sort cells of different sizes and particles in laminar flow and has also been 

used for blood fractionation using micropost arrays. Displacement of cells perpendicular to the 

primary flow has been observed to depend on the pattern of array and cell size57,58. Another 

technique that allows for accurate cell sorting at high-throughput is based on inertial effects in 

microfluidic platforms. It has been shown that particles that are randomly distributed in 

suspension migrate to specific equilibrium positions depending on the effective diameter as they 

pass through a channel 59. This equilibrium position could be affected by cell/particle shape and 

size defining its rotational or effective diameter, since the particles usually rotate as they migrate 

downstream60–62.  

Cell size is suggested to be regulated by a number of factors, including cell contact, 

environmental signaling cues, and genetic and epigenetic properties63,64. Although cell size 

differences can be indicative of cell type and state, significant heterogeneity has been observed 

among individual cell of the same population. This variation can arise from the dependence of 
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cell size on cell cycle stage 65. Additionally, endosome subcellular localization is correlated with 

cell size and shape66. In one study, when single cells were forced to adopt identical size, the 

heterogeneity observed in intracellular organelle distribution was extremely reduced 66. When 

single cells start to divide, even under highly controlled experimental setups, they start to 

experience differences in cell-cell contacts and available space, which results in cell-cell 

variation in subcellular component localization and size. Studies have also shown a remarkable 

variation in the growth rate of cells in the same population 67. In addition to intrinsic 

heterogeneity in cell size within a population, some of the methods for cell size based sorting and 

analysis described above are affected by other cellular properties, including cell shape and 

stiffness. Information on other cell characteristics is essential in decoupling the effect of these 

factors on cell size and accounting for within-population variations for better classification of 

cells based on their state. 

Mass and Density. Many important cellular processes including cell cycle progression, 

differentiation, apoptosis and disease state are linked to specific changes in mass-to-volume ratio 

of cells64,68,69. Quantifying cell mass and density could be beneficial in basic biology as well as 

disease diagnostic applications.  

While centrifugation has been used for a long time as a macroscale technique for separating 

cells and particles based on their density, it is difficult to obtain information concerning 

individual cells using this approach. Magnetic levitation is one method for measuring the density 

of micron-scale particles, however, this method is not compatible with live cells since it requires 

concentrated metal salt solutions70. Recently, a microfluidic mass sensor has been introduced that 

is capable of measuring the mass, volume and density of single cells. This method is capable of 

measuring the density of approximately 500 individual cells per hour68. Separation of particles 
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based on their size and density has been also achieved by hydrodynamic amplification of 

gravitational force 71. 

Similar to cell size, heterogeneity in cell mass and density can arise from cell cycle stage. 

Cell growth rate is shown to increase with cell mass, potentially contributing to even further 

heterogeneity in cell mass within a population 63,67. Techniques that are used to characterize cell 

mass can also be sensitive to other parameters. One study showed that the measured mass of 

paraformaldehyde-fixed cells was 1.4 times greater than that of the corresponding living cell 72. 

Studies suggest that cell stiffness is one parameter that can significantly affect the cellular mass 

measurement by resonating sensors 72,73.  

Shape and morphology. Cellular and nuclear shape and morphology have long been one of 

the main tools for histological detection and classification of cancer 26. Change in the shape of 

apoptotic cells has also been reported consistently 74. It is suggested that this change in cell 

morphology is mainly due to the formation of plasma membrane pores by rigid areas of tightly 

packed phospholipids in the plasma membrane. Cell membrane morphological properties are 

important features indicating tumor development and are used to determine the effect of 

antitumor drugs and find their minimum effective dosage avoiding potential side effects 74. The 

overall cellular outline and morphological features of adhered cells are mainly controlled by 

assembly and disassembly of focal adhesions and associated actomyosin contractility75,76. 

Changes in gene expression and reorientation and reorganization of cytoskeletal components are 

suggested to modify cell morphological properties. The ability of cells to change their 

morphology, also referred to as morphological plasticity is believed to be different in 

differentiated versus pluripotent embryonic stem cells77. While most of the adult cells are 

differentiated and are limited in their ability to change their shape, cells are believed to regain 
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their ability to find new shapes that are most efficient for their migration and invasion upon 

pathogenesis of disease78–80. These changes in morphology would also result in a larger 

heterogeneity and, although not completely understood yet, could be a target of stemness or 

metastatic cancer in the future 80,81. However, due to significant shape variations within a sample, 

cell type and state-based classification solely using morphological features seems to be infeasible. 

For example, one study found larger natural shape variation in a population of Keratocytes 

compared to the changes in shape induced by a number of cytoskeletal component reorganizing 

drugs 78.  Capturing information on cell shape and morphology has been mainly limited to 

microscopy-based approaches. Using images captured by microscopy, different studies have 

been able to capture hundreds of quantitative morphological features from different cells and link 

these morphological parameters to gene expression 77. In addition to cell-to-cell heterogeneity 

the low throughput and the need for computationally expensive image analysis techniques, limits 

the application of morphological-based analysis tools.  

A number of approaches have been recently introduced to sort particles and cells based on 

their shape. HDF, a hydrodynamic method of fractionating a sample by size, was recently 

applied to separate budding and single cells in a yeast cell mixture 82. This approach involves 

highly complex fabrication steps and are limited in throughput. Acoustic radiation forces can 

also be utilized to separate particles based on their shape by exposing them to ultrasound waves 

of controlled wavelength and pressure. In addition to shape, particle size (volume), relative 

density and compressibility of particle and fluid affect the forces acting on the particles. Recently, 

inertial forces have been used to successfully separate particles and cells of different shapes or 

aspect ratios. This was achievable due to dramatic differences in inertial equilibrium positions 



! 13 

which result from differences in rotational diameter. This technique has also shown promise in 

sorting budding yeast cells based on their cell cycle stage.  

Deformability. Cell mechanical stiffness is an important property in cell function. It is 

shown to be indicative of pluripotency and disease state 83. Increased deformability is observed 

in mouse and human pluripotent stem cells and their nuclei compared to that of their 

differentiated progeny84. An increase in both size and deformability has also been consistently 

reported to be correlated with malignancy. Studies have shown up to 3.5 fold increase in the 

deformability of metastatic cancer cells disseminated in pleural fluids compared to that of benign 

cells 85. This increase in deformability is suggested to be linked to the ability of malignant cells 

to migrate through tissues and metastasize.  

Atomic force microscopy (AFM) is one of the traditional methods for characterization of 

single cell stiffness. AFM operates by tracking the deflection of a micron-sized cantilever probe 

as its tip interacts with, and indents the sample. Although AFM is relatively simple and its 

resolution is at the nanometer scale, there are several difficulties associated with cell mechanical 

characterization using AFM. In addition to be severely limited in throughput (<10 cells per hour), 

measurements with AFM requires highly skilled operators. There is a significant variability in 

measurement depending on the user, the shape of the cantilever, and the position at which the tip 

is interacting with cells, as it exerts forces over sub-µm2 surface areas of cells. AFM is also more 

difficult for measuring cells that are in suspension and are not adhered to a surface, as is the case 

in many diagnostic fluids. Micropipette aspiration is another technique for characterization of 

cell stiffness by applying a known suction pressure to cells and bringing them into a small 

diameter pipette. The length of aspiration is used to measure the cortical tension and Young’s 

modulus of the aspirated cell86. Micropipette aspiration- and AFM-based techniques have been 
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used to measure the stiffness of different cells and in studies on probing the mechanical 

properties of mitotic cells.  By coupling it with fluorescent protein labeling, micropipette 

aspiration enables examining the cell response to mechanical stress by changing protein 

localization 87. Micropipette aspiration is advantageous over AFM in that it applies force to the 

whole cell and can allow for less cell-to-cell variation in measurement due to the operator. 

However, it is still a low throughput approach and is not applicable to routine screening. Optical 

stretching uses a double-beam trap in which two opposed, slightly divergent laser beams trap the 

cell or particle in the middle. The force that is applied to the cell is due to the difference in 

refractive index of the cell and the media 88.   

Sorting cells based on deformability is challenging. Current size-based techniques have 

difficulty sorting deformable objects. The DLD technique which was previously used to separate 

red blood cells, white blood cells and platelets based on their size, has been recently applied to 

the separation of non-spherical particles by orienting them via controlling device depth. This 

technique has also been used to sort cells based on their deformability 89. However, cell size is 

still a major factor in sorting by DLD, where more deformable objects are separated together 

with smaller and stiffer objects.   

Acoustic radiation forces can also be utilized to separate particles based on their shape by 

exposing them to ultrasound waves of controlled wavelength and pressure. In addition to particle 

size (volume), relative density and compressibility of particle and fluid affect the forces acting 

on the particles 90. 

A few previous studies have demonstrated the promise of using effects of fluid inertia in 

high-speed confined microfluidic flows for sorting cells and particles based on their physical 
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properties. Most of the sorting demonstrations have solely relied on differences in cell size 91. 

Previous studies demonstrated deformability-based differences in equilibrium positions of 

flowing cells and viscous droplets in the microchannel cross-section and used these differences 

to sort and enrich cancer cells from blood samples 92. However, the extent to which the cells are 

deformed in this method is small and larger deformations are expected to improve enrichment 

and sample purity. Additionally, this technique is also sensitive to cell size, such that larger less 

deformable cells would behave the same was as smaller and softer cells.  

Biochemical spectra.  Label-free quantitative analysis of single cell entire proteome can be 

achieved using single cell mass spectrometry (MS) 93. However, currently the sensitivity of these 

single cell approaches to detect small amount of proteins found in a single cell is low. 

Fractionation of proteins prior to mass spectrometry is suggested to be helpful, which increases 

the sample preparation time41. This technique still has limitations and cannot be used of routine 

analysis of cell at the current stage. Further developments are needed especially in sample 

preparation process to allow high-throughput analysis. Recently, advancment in throughput for 

detection of hemoglobin in individual erythrocytes was achieved by integrating microfluidic cell 

lysis and electrophoretic separation with MS 94. Integrating microarray with MS has also shown 

promise in high-throughput single cell protein analysis 95. Raman tweezers is another technology 

that classifies single cells based on their biochemical spectra. Differences in biochemical spectra 

of cells has been observed between prostate cancer cell lines and bladder cell lines using Raman 

tweezers 96. 

Dielectic properties. The changes in electrical properties of cells, such as conductivity and 

permittivity, are also connected to state 97. There are several techniques that characterize single 

cells based on their electric properties. Microelectrode array setups use several microelectrodes 
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that are coated with a self-assembled monolayer and a peptide and a couple of larger counter 

electrodes. Another technique captures individual cells using a flow bottleneck where the 

electrodes are located. The impedance is measured while the cells are trapped in the bottleneck 98. 

Micropillars and traps with electrodes have also been used to characterize the electrical 

properties of trapped cells 99. Scanning dielectric microscopy is another approach that uses an 

electrode probe to scan over individual cells 100. 

Previous studies have shown the feasibility of using this technique in separating bacteria 

from peripheral blood, one cell population from another and cancer cells from normal cells 101,102. 

Electrical properties of cells could indicate the structure and composition of cells and be used to 

sort cells based on these properties. These methods are mainly based on dielectrophoretic forces 

that are applied to cells using a non-uniform electric field. The level of force applied to the cells 

depend on their polarization, which is a function of their dielectric properties, such as the 

frequency dependent conductivity and permeability of cell and its membrane as well as the 

conductivity of its surrounding media 103. Impedance spectroscopy has been used to measure 

membrane capacitance and resistance and cytoplasmic conductivity and permittivity of cells in 

suspension 53,104. Isodielectric separation (IDS) is a technique that separates cells and particles 

based on their electrical properties at different frequencies and medium conductivities. 

Microfluidic devices with integrated electrodes have been introduced recently and have shown 

promise in discriminating erythrocytes from leukocytes, and leukocyte subpopulations 105,106. 

One of the main challenges of dielectrophoretic separation is the strong dependence of 

dielectrophoretic forces on cell size and conductivity of media, which makes the measurement 

and sorting difficult in highly conductive physiological buffers. 
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Need for high-throughput multiparameter cell biophysical assays 

Single cell analysis is critical in analyzing heterogeneous samples and identifying rare cell 

populations. Due to the consistently reported heterogeneity in cellular samples, one of the main 

factors for accurate analysis of these samples is to capture a large amount of information on 

thousands of individual cells. This requires the emergence of high-throughput, high-information 

content technologies. Flow cytometry has been one of the main techniques for single cell 

analysis for decades. Addition of new parameters beyond flow cytometry capability, using 

recently introduced techniques (e.g. mass cytometry) has enabled further discretization and 

quantification of new cell states.  This is a critical frontier as what we now think of as a uniform 

subpopulation of “neutrophils” or “tumor cells”, is most definitely a unique mixture of thousands 

of different states that can be more accurately quantified.  

Recently there has been interest in analyzing and sorting cells using label-free approaches as 

alternative to label-based techniques. With these approaches, there are particular advantages for 

diagnostics as the cost and time of preparing samples can be reduced significantly. Sorting based 

on biophysical cell characteristics is believed to improve the ability of identifying and sorting 

homogeneous subpopulations as opposed to relying on specific markers and tags. Advances in 

understanding the link between cell type and state and its intrinsic biophysical properties have 

led to the development of technologies for characterization and separation of cells. Extension to 

multiparameter analysis, similar to that of new label-based techniques, will be required for label-

free techniques to obtain useful cell analysis and classification. Multiparameter label-free 

approaches are emerging as the next generation of low-cost cytometry techniques, with 

sufficient information content to rival label-based approaches.  
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Chapter 2 

Multiparameter Mechanical and Morphometric Screening of Human Pluripotent Stem 

cells 

 

This chapter introduces a high-content and label-free method to rapidly phenotype cells 

based on mechanical and morphological properties.  We extract 15 biophysical parameters from 

cells as they deform in a microfluidic stretching flow field via high-speed microscopy and apply 

machine learning approaches to develop classification boundaries to discriminate between 

differentiated and pluripotent stem cells.  When employing the full 15 dimensional dataset the 

technique robustly classifies individual cells based on their pluripotency across 12 different 

embryonic stem cell lines, with accuracy above 95%.  Rheological and morphological properties 

of cells while deforming were found to be critical for this classification, increasing accuracy 

from 73% to 95%. This method to quickly assay intrinsic biophysical properties of cells should 

be broadly applicable to classify changes in cell state, with specific use as a potential low cost 

tool to screen differentiated cell-based therapies for residual tumor-causing pluripotent cells prior 

to implantation.   

Intrinsic physical properties of cells that reflect underlying molecular structure are indicators 

of cell state associated with a number of processes including cancer progression, stem cell 

differentiation, and drug response1,2. Nuclear and cytoplasmic structure or morphology have 

been one of the main tools for histological detection and classification of cancer. These features 

include chromatin texture, nuclear shape and cytoplasmic features such as shape and cytoplasmic 

clearing 3–5.  Morphology is also indicative of cell fate and differentiation and self-renewal 
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capacity. In addition to the expression of certain cell surface markers, cell morphology has been 

one other major parameter for validation of human embryonic stem cell (hESC) and induced 

pluripotent stem cell (iPSC) pluripotency 6–8. Recent studies have also identified morphological 

properties that distinguish different subpopulations in highly heterogeneous cultures of 

mesenchymal stem cells 9. Morphology-based assays have also been successful in discovery of 

unique drugs that act on mammalian cells, filamentous fungi and yeasts 10. Observation of 

pharmacological class-dependent morphological changes in cells has been considered as a 

complementary strategy for drug discovery 8. Recent work using morphological screening tools 

have also linked morphology to activity of a subset of genes 11,12.  While morphometric 

measurements provide information on visible cell structures without external probing, internal 

and optically transparent architectural features can be probed by measuring cell deformation 

under an applied stress.  Cell mechanical stiffness has recently emerged as an indicator of 

various changes in cells state 13 including cancer cell function, motility and invasion capacity14–

16. One study found human metastatic cancer cells to be more than 70% softer than neighboring 

benign reactive mesothelial cells 2.  Embryonic stem cells have also been found to more 

deformable than differentiated cells using atomic force microscopy and micropipette aspiration 

17,18.  Therefore, assaying both external and internal architectural properties of cells through the 

combinations of morphological and mechanical signatures are expected to provide label-free and 

low cost biomarkers of cell type or state.   

Although cell morphological and mechanical characteristics can be indicative of cell state in 

a variety of cellular processes and conditions, the lack of high-throughput and integrated 

methods to assay single-cell physical properties, especially from fluid samples, has been a major 

barrier to adoption of these platforms. For instance, morphological properties can be measured 
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by automated microscopy, a process that can image tens of cells per second, while cell 

mechanical properties have been mainly measured using methods such as atomic force 

microscopy (AFM), optical stretching, or micropipette aspiration, which are single-cell based 

and manual approaches (< 1 cell / sec) 2,17,19,20. These approaches do not allow for flow 

cytometry-like throughputs (> 1,000 cells/sec) and intuitive readouts which allow sampling of 

rare subpopulations of cells in a reasonable time period.  Emerging methods are now able to 

measure a few mechanical properties from tens to thousands of cells per second 21,22, however, 

these techniques do not currently provide a holistic view of a cell in which multiple internal and 

visible features of cellular architecture are simultaneously probed.  Multiparameter 

measurements are important in identifying rare populations of cells, in which additional 

parameters and sample size provide increased statistical confidence in sub-classification 23.   

In this study, we perform combined mechanical and morphological phenotyping at rates of > 

1,000 cells/sec using the deformability cytometry platform. This microfluidic platform was 

previously used by our group to assay a single mechanical property (deformability) of cells in a 

variety of body fluids and cell lines, and is based on microfluidic hydrodynamic stretching of 

cells combined with high speed imaging and automated image analysis (Fig. 1) 21. Briefly, using 

inertial focusing, single cells arrive at a junction where they are uniformly stretched while being 

imaged. Here we implement deformability cytometry as a high-throughput automated tool to 

assay 15 biophysical properties of cells, including time-dependent mechanical properties, and 

morphologies across length scales (Fig. 1).    

We apply this technique to discriminate pluripotent from differentiated cells in order to 

screen for the presence of pluripotent stem cells in mixed cultures. Importantly, we discovered 

that the combination of morphological and mechanical properties provides significantly higher 
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accuracy compared to either set alone. This multiparameter data set of cell biophysical properties 

enables us to perform cutting-edge machine learning and statistical data analysis techniques to 

accurately classify pluripotent stem cells, and provides a new method to characterize cell 

populations across fields – from cancer biology 24 to immunology 21, in a label-free, and cost-

effective manner. In this paper, we show that the multiparametric nature of our technique is 

particularly useful for detecting rare phenotypes in heterogeneous samples, when the ”average 

cell” properties cannot indicate the variations in cellular state within a population. 

  

Results 

Gradual changes in deformability and cell size occur upon differentiation. We first report 

detailed changes in deformability and size with stem cell differentiation and plot these 

parameters as 2D single-cell density plots in a fashion similar to flow cytometry (Fig. 1D).  

While pluripotent cell populations are characterized by a higher deformability and smaller 

diameter, there is a transition to a larger, less deformable state as cells lose their pluripotency 

upon a 14-day feeder- and serum-free differentiation (Fig. 2A, SI Video 1 & 2). The decrease in 

deformability (parameter D3) and increase in size (parameter A) is consistently observed across 

three hESC lines, although slight variations were detected at later passage numbers of UCLA1 

(Fig. 2B). In order to calibrate deformability to commonly reported elasticity measures, we 

fabricated agarose beads with elastic moduli spanning 0.2-40 kPa, determined by AFM, and 

measured their deformability in our device (Fig. 3). Using the standard curve generated from the 

correlation between AFM and DC measurements of these beads (Fig. 3D), pluripotent cells had a 

median stiffness of ~0.26 kPa which increased to ~1.11 kPa following differentiation. As both 

size and deformability of cells change, we used the median value of the ratio between cell 
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deformability and diameter (D3/A) as a simple metric of the relative change of cell physical 

properties with time (Fig. 2C). Normalizing by cell size, which gradually increases from 

approximately 15µm to 18µm upon differentiation (Fig. 2D-E), gives a more accurate 

representation of changes in mechanical properties due to size-dependent differences in applied 

stress 21. Although there are distinctive changes in both size and deformability, there is 

substantial heterogeneity within a population, such that these two parameters alone only allow 

for classification accuracy of single cells up to 64.6%. 

Deformability measures correlate with conventional pluripotency markers. We assessed 

pluripotency of cells using conventional pluripotency markers including Tra-1-81, and SSEA4 

by immunofluorescence flow cytometric analysis at day 0 (Fig. 2F, first column), 3, 6, 9 (Fig. 

4A,B) and 12 (Fig. 2F, second column). The expression of Oct4 and Nanog was analyzed by RT-

PCR as well (Fig. 2G). The results consistently show down-regulation of pluripotency markers 

following differentiation as expected. The high correlation (R2≥ 0.9 for UCLA1 and UCLA2, for 

the expression of OCT4, NANOG and TRA-1-81) between our mechanical measure and these 

commonly used pluripotency markers supports the potential of our method as a label-free assay 

of pluripotency (Fig. 2H and Fig. 4C).  

Biophysical properties cluster pluripotent versus differentiated cells across cell lines. We 

assessed the biophysical features for 9 other hESC lines (a total of 12) before and after two 

weeks of feeder- and serum-free differentiation. Across cell lines the same trend of increasing 

size and stiffening upon differentiation was observed (Fig. 5A). The median deformability and 

median diameter of these 12 cell lines is plotted before (blue) and after (green) differentiation 

(Fig. 5B). The data shows a 15% increase in size and 20% decrease in deformability following 

differentiation (Fig. 5C).  
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Expanding the biophysical dataset beyond size and deformability measures we introduced 

13 additional features extracted from cell deformation videos (SI Video 3). These included three 

additional parameters related to overall cell deformation (D1, D2 and D4), two parameters that 

report on circularity before and at the junction (C1,C2), two parameters describing normalized 

strain, removing size dependency from deformability measurements (S1,S2), four morphological 

parameters before and at the junction (M1-M4) and two parameters reporting on the dynamics of 

deformation (T1,T2) (refer to Methods section, Fig. 1, Fig. 5E). Measurements of dynamic 

response to stress is expected to depend on viscous contributors to cellular mechanics, along with 

elastic properties. Stem cells behaved similar to low viscosity oil droplets, spending longer times 

deforming in the channel while differentiated cells deformed less and for a shorter time period 

(Fig. 5E).  With these additional parameters, we performed unsupervised clustering based on 

median parameter values for all 12 cell lines.  Linear Discriminant Analysis (LDA) successfully 

grouped pluripotent cells (day0) separately from differentiated cells (day14) (Fig. 5D). We also 

performed supervised classification using LDA to quantify how well linear classification can 

discriminate between day0 versus day14 samples. While classification based on all 15 

parameters yielded ~5.28% classification error (misclassification), considering the two size and 

deformability parameters alone resulted in ~35.4% misclassification. LDA analysis also yielded 

the most important parameters contributing to the classification. Based on LDA the five most 

important parameters include deformability (D3), normalized deformability (S1,S2), size (A) and 

morphology (M1) (Table 1).   

Multiple mechanical and morphological parameters improve classification accuracy of 

single cells. Beyond cell deformability and diameter, we detected up to a 60% change in the 

median value of other parameters when comparing stem cells and differentiated cell samples, 
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especially morphology parameters (Fig. 6A).  Although differences in medians between 

pluripotent and differentiated cell populations were detected, at the single-cell level we observed 

substantial heterogeneity, resulting in a significant overlap between the two populations (Fig. 

6B). Therefore, a more information-rich multidimensional dataset was critical to maximize 

distances in parameter space between the two cell population clusters. To visualize this 

improvement in clustering we compressed the multidimensional dataset into two or three 

dimensions and observed a marked reduction in overlap at the single-cell level.  We first 

performed principal component analysis (PCA) on the combined 15-dimensional data sets (day0 

and day14 from all cell lines) for which two distinct clusters emerged (Fig. 6C). When we 

subsequently labeled the groups we found that two (Fig. 6E) or three (Fig. 6D) principal 

components lead to more separated clusters when compared to deformability-size plots alone.  

These principle components (PCs) consist of linear combinations of our parameters with PC2 

and PC3 again being dominated by parameters A, S1, M1, M3 and D4 (parameters with the 

largest coefficients) (Table 2). Although each PC might not be informative of a specific 

parameter, having a large pool of parameters and using dimensionality reduction is a helpful 

means for summarizing and visualizing the differences between physical properties of different 

cell populations. Interestingly, as observed in size and deformability plots, two week-

differentiated cell populations appear more heterogeneous than day 0 pluripotent cells, 

displaying a more spread distribution in PC space (Fig. 6D,E). The increased heterogeneity in 

this population can be better quantified when looking at a similarity matrix for each individual 

cell, showing a higher similarity between single day0 cells compared to day14 cells (Fig. 6F). 

The similarity matrix is generated by calculating pairwise Euclidean distances between every 
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row of the pooled data set (red showing smaller distances or higher similarity). The existence of 

two distinct clusters in the data is also visible from the similarity matrix.  

We next looked at whether there existed a threshold number of parameters that was 

sufficient to yield accurate single-cell classification.  To determine the optimal number of 

parameters for successful clustering of the two classes (pluripotent versus differentiated cells), 

we performed unsupervised clustering by expectation maximization for Gaussian mixture 

(EMGM) models considering different numbers of parameters. As expected, increasing the 

number of parameters resulted in increased clustering accuracy across the 12 cell lines separately 

(Fig. 6G, colored lines). Similarly, pooled data from all cell lines at day 0 and day 14 yielded 

increased clustering accuracy with increasing number of parameters (Fig. 6G, black line). 

Although adding more pieces of information enables more accurate clustering, further increasing 

the number of parameters from 9 to 15 parameters resulted in only a 2.35% reduction in 

clustering error, compared to a 20.2% reduction from 2 to 9 parameters.  This could be due to the 

fact that not all the features extracted from the images are linearly independent. In fact, the 

correlation coefficients between parameters show partial dependence between a few parameters 

as expected (Table 3).  

Using these same 9 most important features, we next trained a support vector machine 

(SVM) classifier to distinguish between single pluripotent and differentiated cells with 93% 

classification accuracy. When increasing to 15 parameters, classification accuracy increased only 

to 95%.  A 5-fold cross validation technique was first used to train the classifier and 

classification accuracy was calculated as the fraction of data points that were classified correctly.  

The area under the curve (AUC) of the sensitivity vs. specificity receiver operating characteristic 

(ROC) was ~0.97 using all 15 parameters, showing an exceptional classifier performance (Fig. 
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6H). SVM recursive feature elimination (RFE) was then used to determine whether a smaller 

number of parameters could yield high classification accuracy as well. The parameters were 

removed one at a time depending on their contribution to classification (Fig. 6I). Again, we 

observed a significant decrease in classification accuracy and AUC upon removing 6 or more 

parameters (Fig. 6J).  

Biophysical identification of pluripotent cells spiked into differentiated cell batches. We 

next validated the multiparameter SVM classifier using a separate validation data set.  We 

performed several spiking experiments by mixing pluripotent cells (day 0) with cells after 12 

days of serum-free differentiation. For comparison, three flow cytometry-like gating strategies 

were first applied to assess the purity of hESC cells in the mixed samples using only 

deformability and initial cell diameter (parameters D3 and A) (Fig. 7A). We also performed 

gating across a line that divided the small deformable population from the larger stiff population 

of differentiated cells (in purple). Lastly, we gated the cells only based on their diameter to 

understand the contribution of the deformability measure on the ability to detect sample purity. 

The purity measured by the three gating methods versus the actual mixing ratios is presented in 

Fig. 7B. While all three methods correlate well with the actual purity, “Diagonal gating” and 

“day0 gating” are more sensitive to impurities achieving a slope closer to an ideal 1. With the 

analytical sensitivity achieved, the minimum impurity difference that the gating can predict is 

around 6.2% considering a standard deviation of 4.4% within the gate from sample to sample.  In 

comparison to simple gating on two parameters, machine learning-based classification with 

additional parameters leads to improved detection of spiked sub-populations. 
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When all 15 parameters were used as part of the SVM classifier, improved classification was 

achieved (Fig. 7C, second row: cells classified as pluripotent in blue and differentiated in green). 

Using multiparameter analysis, we can detect as small as a 0.7% impurity difference across 

samples (Fig. 7D). Support vectors clearly define a boundary when visualizing the data in 3D 

with test data (spiked cells) overlapping well with the training data from all 12 cell lines at day 0 

- Class1 and day 14 - Class2 for the 5 different spiking ratios. Upon removing parameters using 

RFE, the sensitivity of our sub-population estimation decreased and the minimum 

distinguishable sample impurity increased (Fig. 7D, F, Fig. 8).  

 Simultaneous biophysical and molecular analysis shows high correlation between 

pluripotency and deformability at single cell level. Here, we have developed a system that can 

perform flow cytometry and deformability cytometry at the same time on single cells. Using this 

setup we show that the population of feeder mouse embryonic fibroblasts (mEFs) in the culture 

of hESCs are stiffer, smaller and are not labeled by TRA-1-81 pluripotency marker (Fig. 12).  

 

Discussion 

Our results show that the combination of mechanical and morphological properties can be an 

accurate label-free biomarker of cell state.  This is demonstrated in the detection of a pluripotent 

state across 12 embryonic stem cell lines.  Importantly, mechanical parameters obtained upon 

hydrodynamic stretching, such as deformability and rate of deformation, were key parameters 

that increased the accuracy of pluripotency classification substantially, from 0.74 when 

considering morphological parameters alone to 0.95 (Fig.9).  We also showed the capability of 

our system to classify mixed populations accurately down to less than 1% using machine 

learning. Compared to published techniques to measure cell mechanics 12,14,25 our integrated 
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method provides  throughput improvements while expanding the number of biophysical 

parameters 2-3 fold, enabling increased information content and accuracy. In fact, our system 

operates at throughputs similar to flow cytometry (>1000 cells/sec) but without labeling or 

sample preparation. 

Such a label-free approach is specifically important in the field of regenerative medicine, 

since heterogeneity in the culture system is a challenge for repeatability. Furthermore, 

assessment of pluripotency in human pluripotent stem cells currently requires teratoma formation 

in mice.  This is not traditionally a quantifiable assay, and merely provides a binary yes-no result.  

A simple label-free method to evaluate cultures for self-renewal potential or level of 

differentiation will enable low cost quality control (QC) of stem cells with robust quantifiable 

measurements.  It is also possible that these types of measurements may ultimately enable a 

diagnostic for differentiation potential in future studies.  In particular, based on the machine 

learning approaches presented here we can create a classifier that identifies normal pluripotent 

cultures that yield the best differentiation potential.  One could then screen for cultures that fall 

outside of this validated state.  For example, our approach is able to discriminate a later passage 

pluripotent stem cell culture from an earlier passage (Fig. 2B).   

Clinically, there is a critical need to remove rare failed to differentiate pluripotent cells in 

differentiated cultures for upcoming cell-based therapies. Teratoma formation following 

injection of pluripotent cells, has been reported in several pre-clinical studies, and is a major 

barrier to successful clinical translation 26,27. Since implantation of pluripotent cells causes tumor 

formation in vivo, only their differentiated progeny are being applied for clinical 

transplantation28,29.  In the absence of optimized differentiation protocols for many lineages, the 

transplanted cell population ends up as a mixture of differentiated progenitors and in some cases 
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failed to differentiate pluripotent cells. The high risk of injecting failed to differentiate 

pluripotent cells reinforces the need for rigorous characterization of ESC-derived cell products 

before any clinical applications 30. Previous studies show that increasing purity of hESC-derived 

cardyomyocites to around 85% prevented teratoma formation four weeks after injection into 

immunodeficient rats 31 and the demonstrated  sensitivity seems to be adequate to perform fast 

screening for culture purity at this level.  

Methods to sort out these pluripotent sub-populations are also needed.  Currently, QC and 

sorting can be done using traditional fluorescence activated cell sorting techniques, however the 

addition of antibody labels to cell surface proteins and the required sample preparation has a 

substantial associated regulatory burden that has been a roadblock to using these approaches 

translationally.  Although, we do not currently demonstrate sorting in our system, we anticipate 

that this functionality will be achievable in the future using hardware-based image analysis32 and 

traditional flow cytometry sorting hardware.  

The presented label-free method may report on changes in nuclear architecture upon stem 

cell differentiation.  As the largest eukaryotic organelle, the nucleus plays an important role in 

cell size and deformability and chromatin structure is suggested to be one of the major 

determinants of nuclear size and stiffness 33. Interestingly, chromatin and nuclear lamina both 

undergo extensive changes during differentiation and both are linked to changes in cell 

mechanical properties. Several epigenetic processes define the structure of chromatin and result 

in a global chromatin condensation level, which can determine the global transcriptional activity 

of a cell.  In stem cells, regulation of pluripotency genes and their inactivation upon 

differentiation are linked with extensive epigenetic programming and chromatin rearrangement 

34,35 (Fig. 11). Several epigenetic modifications including global DNA hypermethylation 36 and 
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decrease in histones H3 and H4 acetylation 37,38 lead to substantial chromatin reorganization, 

which is critical for transcriptional reprogramming during stem cell differentiation. ESCs are 

known to have more open euchromatin than differentiated cells 37,39,  which has been associated 

with a reduction in nuclear viscosity and stiffness 40. Isolated nuclei treated with 

ethylenediaminetetraacetic acid (EDTA), (a chelating agent that decondenses chromatin through 

binding divalent cations) showed significant expansion of the nuclear envelope, increase in 

nuclear size and reduction in the stiffness of the nucleus, while imposing chromatin condensation 

through addition of divalent cations resulted in nuclear contraction and greater nuclear stiffness 

17,41.  As one of the major determinants of nuclear structure and mechanics, A-type lamins are not 

expressed in ESCs and are only present in differentiated cells. Lamin-A depleted human 

epithelial cells also showed lower nuclear stiffness compared to normal cells 17.  Chromatin and 

nuclear membrane elasticity are expected to be dominant contributors to deformability metrics 

because of the large stresses that we can apply (Fig. 10) which result in corresponding large 

strains to the whole cell and nucleus.  Our dynamic measurements of deformation at high shear 

rates also interrogate viscous properties including the ability of chromatin to flow within the 

nucleus, in which tightly wound heterochromatin foci are expected to lead to a decreased rate of 

deformation.   Chromatin rearrangements and lamin expression which are critical for cell 

development and differentiation are also involved in many cellular processes, human conditions 

and diseases including aging, cancer and cardiovascular disease 4,34,42. 

Beyond differentiation, our technique can be used to measure other cell states, particularly when 

nuclear architectural changes are prevalent.  Aberrant epigenetic regulation, causing undesirable 

gene silencing or expression, has also been observed frequently in cancer cells, and the level of 

chromatin condensation controlled by these epigenetic modifications is found to considerably 
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alter the structural and physical properties of chromatin and the cell nucleus.  In fact nuclear 

shape and structure is still one of the main tools for histological detection and classification of 

cancer 43. However, current cytomorphological analysis is labor–intensive and qualitative, 

creating a need for automated, quantitative alternatives 24.  The additional mechanical and 

morphological properties we can assay here are poised to accelerate the development of physical 

biomarkers across a range of fields, particularly impacting immunology and cancer biology, in 

which whole-cell architectural changes are critical aspects of disease processes. 

 

Materials and Methods 

Deformability cytometry device. The deformability cytometer is a microfluidic device 

designed for single-cell analysis of cell mechanical properties (Fig. 1A)21. Cells in suspension 

are delivered at high rates to an extensional flow which is used to stretch the cells to high strains 

(Fig. 1B). Functioning in an inertial regime (channel Reynolds number Re ~ 100), inertial 

focusing positions cells precisely before stretching (Fig. 10A) 44,45, which ensures a more 

uniform three-dimensional force on cells of the same size. Cell viscoelastic properties then 

determine to what extent a cell deforms. This deformation is continuously imaged using high-

speed microscopy (Fig. 1C) and automated image analysis is conducted to extract cell 

biophysical properties after transforming images from a polar to a Cartesian coordinate system 

(SI video 4).  Populations of individual cells are plotted based on these parameters in a color 

density format (Fig. 1E). Finite element simulations show that for a simplified model of the 

system the force applied to a cell at the junction is on the order of 10-4 N (Fig. 1D, Fig. 10B), 

which is almost three orders of magnitude higher than that applied by conventional methods like 

AFM or micropipette aspiration 46. The high force allows for a very short deformation timescale 
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(around 2 µs) and large deformations, resulting in processing of more than 1000 cells per second 

and probing of deep intracellular structures like the nucleus. 

Microfluidic devices were fabricated using common polydimethylsiloxane (PDMS) replica 

molding processes. Briefly, standard lithographic techniques were used to produce a mold from a 

silicon master spin-coated with SU-8 photoresist. PDMS chips were produced from this mold 

using Sylgard 184 Elastomer Kit (Dow Corning Corporation) and a cross-linker to polymer ratio 

of 1:10. To enclose the channels, PDMS and glass were both activated by air plasma (Plasma 

Cleaner, Harrick Plasma, 500 mTorr, 30 sec) before being bonded together. The device 

contained 20µm filters to avoid entrance of cell clusters or dust followed by curving channels to 

ensure inertial focusing and a junction that provides an extensional flow. Channel width before 

and after extensional region was 67µm and the height of the channel was 30µm. The positioned 

cells arrived one at a time at an extensional flow, were stretched and left the junction from either 

of the two outlets on the top or bottom. The extensional region was continuously imaged using 

high-speed microscopic imaging.  

Cell culture and sample preparation. The biophysical properties of human embryonic stem 

cells (hESCs) (day 0) were analyzed by deformability cytometry before and after feeder and 

serum-free non-specific induction to differentiation for up to 12 days. Twelve lines of human 

ESCs, (UCLA1-12) were maintained in DMEM high glucose with 20% knockout serum replacer 

supplemented with 20ng/ml of bFGF, and grown on mitomycin-treated mouse embryo 

fibroblasts 47. Culture on 1% gelatin coated dishes without feeder cells in DMEM high glucose 

with 20% FBS resulted in a gradual differentiation 48. Single cell suspensions were prepared by 5 

min treatment with 1X trypsin EDTA followed by detachment from the dish, aspiration, and 

suspension in culture media. For each condition and each replicate three sets of samples were 
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prepared for (i) live cell flow cytometry analysis, (ii) RT-PCR and (iii) deformability cytometry. 

For deformability cytometry the cell suspension was prepared immediately prior to the test (<1 

hour). Cell suspensions were injected into the device, at a concentration of 200,000 to 500,000 

cells/mL, using a syringe pump (Harvard Apparatus PHD 2000) and a glass syringe (Hamilton), 

at flow rate of 1000 µL/min.  

High-speed imaging and data extraction. Image sequences from cells at the extensional flow 

region magnified with a 10× objective (Nikon Japan 10x/0.30 on a Nikon Eclipse Ti inverted 

microscope) were recorded at ~520,000 frames/s using a Phantom v7.11 high-speed camera and 

the Phantom Camera Control Software (Vision Research Inc.). Automated image analysis was 

conducted on the gathered cell deformation images to track cells, and to extract 15 parameters 

based on cell biophysical properties (SI Video 3). The cell tracking and analysis software was 

previously developed in our lab 21. The custom image analysis script performs image processing 

and data collection on each 1.5 second experiment totaling 780,000 frames, with expected 

occurrences of 1,000 to 5,000 cells. 

The following parameters were extracted from the captured high-speed images:  

(A) Initial cell size, before reaching the junction by calculating the maximum diameter of the cell 

within 30 degrees from the vertical axis.  

(D1) Deformation of cells at the junction, accounting for pre-junction perceived deformations 

due to morphology.  

(D2) Deformation of cells at the junction defined as: (long axis-short axis) / (long axis+short 

axis)  
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 (D3) Maximum deformability at the junction defined as the maximum cell diameter within 30 

degrees from the vertical axis divided by the minimum diameter within 30 degrees from the 

horizontal axis.  

(D4) The maximum vertical diameter at the junction. 

(S1) Maximum deformability at the junction normalized by cell perimeter before deformation.  

 (S2) Relative strain defined as the ratio of parameters D3 and A.  

(C1) Circularity defined as cell perimeter/area ratio at the maximum deformation. 

(C2) Circularity defined as the perimeter/area ratio prior to deformation in the channel. 

(M1) Morphology extracted prior to the junction measured by the difference between the area 

under the curve of the cell border (trace) and its moving average. This parameter indicates cell 

roughness. 

(M2) Morphology metric extracted prior to deformation as defined by the number of 

intersections of the trace and the moving average. This parameter indicates regularity of the 

surface. 

(M3) Morphology metric extracted during deformation is defined as in M1.  

(M4) Morphology metric extracted during deformation is defined as in M2. 

(T1) Length of deformation time between when the cell enters the junction until it leaves. 

(T2) The rate of change in deformation at the junction defined by change in vertical cell diameter 

over the first 5 frames of the deformation. 

Numerical simulations and force approximation. To estimate fluid pressure and the force 

applied on cells at the junction, we simulated steady-state pressure and force using a numerical 

model that solves the 3D incompressible Navier-Stokes equations. To achieve this, we assumed 

that the position of the cell is fixed at the center of the junction and the cell is not deforming or 
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rotating in time. Using this method, we conducted a series of simulations for various inlet flow 

rates specified as input velocity boundary conditions.  

Multiparameter analysis.  

Expectation maximization. The expectation maximization process was initialized by k-

means clustering. Hierarchical search was used to remove parameters that have the least 

contribution to clustering first. Briefly, exhaustive search was performed at each iteration to find 

the parameter that yields the lowest clustering error after being removed. This test was 

performed for data gathered from individual cell lines at day 0 and after two weeks of 

differentiation. Clustering error was defined as within class variations over between class 

variations:   

 

 ( : single data points, :class 
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positive rate or 1-specificity, defined as:  number of false positive instances/(number of true 

negative instances+number of false positive instances). Starting with all 15 parameters, the 
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∑



! 44 

parameters were eliminated hierarchically to minimize misclassification at each iteration. All the 

data from 12 cell lines at day0 and day14 was used as the training set for SVM and the spiked 

samples were analyzed for the ratio of single cells belonging to each class. 

Agarose bead fabrication. A microfluidic droplet generator platform was used to generate 

agarose beads with different elastic moduli 49 (Fig. 3B). The pre-gel solution was prepared by 

melting and diluting two low-gelling temperature agarose types: Agarose Type IX and IXA 

(Sigma) at different dilutions (0.5, 1 and 2 wt%) in DI water. The oil phase consisted of mineral 

oil (Sigma) mixed with 2% Span80 (Sigma). The bead generation process was performed on an 

incubated microscope (at 40°C) to prevent agarose gelation. After capturing beads (10-20µm in 

diameter), the solution containing oil and surfactant was incubated at 4°C overnight to allow the 

gelation of agarose droplets. The beads were then resuspended in DI water for analysis. 

Elastic modulus characterization. Elastic moduli of the two agarose gel types were measured in 

bulk at different dilutions. Force-displacement curves were obtained from a Bruker Catalyst 

AFM aligned above a Leica inverted microscope. Model SNL-D cantilevers (Bruker, spring 

constant: 0.06 N/m) generated indentation curves in force control mode. Elastic modulus was 

extracted by fitting the Hertz model to our acquired data. 

 

Immunofluorescence microscopy. Human embryonic stem cells and mouse 3T3 fibroblasts 

were fixed in 4% paraformaldehyde (Fisher Scientific, US) in phosphate-buffered saline (PBS, 

Invitrogen) at room temperature for 20 minutes. Cells were then washed three times in PBS and 

then permeabilized in 0.1% Triton X-100 in PBS for 10 minutes. Cells were washed three times 

again and incubated with goat anti-Lamin A/C (Santa Cruz) diluted 1:400 and rabbit anti-Histone 

H3K9me1me2me3 (Active Motif) diluted 1:500 in 1%BSA for 1 hour at room temperature. Cells 
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were washed three times in PBS and then incubated with a 1:400 dilution of Cy5-labeled chicken 

anti goat and 1:400 FITC-labeled mouse anti-rabbit and 1:10000 Hoechst 33342 (Invitrogen) for 

one hour. The cells were then washed one last time in PBS and were mounted in Prolong 

antifade mounting medium (Invitrogen) on glass slides for confocal imaging.  

Flow Cytometry. Expression of cell surface pluripotency antigens was characterized using 

flow cytometry. After harvesting cells by trypsin-EDTA, cells were washed in cold 1% BSA in 

PBS, were passed through a cell strainer (40µm Nylon membrane BD Falcon) and resuspended 

to approximately 106 cells/mL of cold BSA/PBS solution. Cell samples were incubated with 

optimal dilution of DAPI, PE-labeled anti TRA-1-81 (BD Biosciences), and APC-labeled anti 

SSEA4 (R&D systems) on ice in the dark for 1 hour. The cells were then washed and 

resuspended in cold PBS/BSA solution and analyzed within 30 minutes. Data was analyzed 

using FlowJo software (Treestar, Inc., San Carlos, CA). 

Quantitative real-time PCR. Total RNA was extracted and purified using a PureLinkTM RNA 

Mini kit (Invitrogen, USA) per manufacturer recommendations.   PCR was carried out for 40 

cycles and relative expression level for each target gene was evaluated using 2-ΔΔCt method. To 

obtain the ΔCt values, the Ct values of target genes were normalized by the Ct values of 

GAPDH. 
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Figures 

 

 

Figure 1. Deformability cytometry device. Device schematic (A) shows the aggregate filter at the 

inlet, the curved channels facilitating inertial focusing and the extensional region magnified in b. 
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(B) The extensional region is continuously imaged by high-speed camera. (C) A series of 

overlapped images show how a cell deforms as it enters the extensional region. Several 

parameters including initial diameter, deformability, circularity, morphology, stretching period 

and strain rate are captured for each cell using image processing. The deformability and cell size 

parameters captured from cells are depicted as color density plots. (D) Gating can further be used 

to identify specific cell populations. 
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Figure 2. As stem cells differentiate mechanical properties and pluripotency markers shift (gates 

are set at “Initial Diameter” =17µm and “Deformability” =1.6)(A). Color density plots (red-to-

blue indicates high-to-low density) of single cell deformability and size measurements of hESCs 

and hESCs differentiated up to 12 days for UCLA1, UCLA2 and UCLA3 cell lines (rows one to 

three respectively). (B) A stiffer mechanophenotype is seen at higher passage numbers for the 

undifferentiated UCLA1 cell line. (C) The median value of deformability / diameter (D3/A) 

gradually decreases (error bars show standard deviation for n=3 samples). (D) Cells become 

larger as they differentiate. (E) The range of D3/A first decreases before increasing at 12 days in 

differentiated cells.  (F) Reduction in TRA-1-81 and SSEA4 are observed upon differentiation by 

flow cytometry.  (G) Normalized deformability (D3/A) correlates with traditional markers of 

pluripotency that decrease with differentiation (H). 
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Figure 3. Agarose calibration particles. (A) A microfluidic droplet-generating platform was used 

to generate agarose gel particles with different stiffness. (B) The generation of agarose droplets 

in oil/surfactant solution which are subsequently gelled upon refrigeration. (C) The elastic 

modulus of different concentrations of two low-gelling temperature agarose gels were measured 

in bulk using AFM. (D) Using DC measurements, the median deformability of beads are plotted 

versus their mechanical stiffness. This calibration curve can be used to translate deformability 

measurements to conventional cell stiffness measurements. 
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C D 



! 55 

 

 

Figure 4. (A) Down-regulation of SSEA4 and TRA-1-81 pluripotency markers was observed by 

flow cytometry for UCLA1-3 at day0 (first row), day3 (second row) and day12 (third row). (B) 

The largest change is seen within the first 3 days, but levels continue to decrease up to 12 days.  

(C) Correlation is observed between the expression of these conventional pluripotency measures 

and normalized deformability.  

 

A 
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Figure 5. Morphological and mechanical properties are indicative of pluripotency at the 

population level across 12 cell lines. (A) Two-dimensional density scatter plots show an increase 

in cell size and decrease in cell deformability after differentiation. (B) Median deformability and 

size with semi-interquartile deviation (SID) as error bars are plotted for each cell line.  (C) 
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Statistics for the 12 cell line samples are tabulated. The SID value is calculated for median 

values of the parameters across the 12 cell lines. (D) Using all 15 parameters including cell 

initial diameter (A), four deformability (D1-D4), two circularity (C1,C2), two strain (S1,S2), 

four morphological (M1-M4) and two deformation dynamics (T1,T2) parameters extracted from 

the captured high speed images, linear discriminant analysis (LDA) successfully grouped 

pluripotent and differentiated cells separately. (E) The captured images are rich in information 

and are converted to a Cartesian coordinate system to extract a range of physical parameters. 

Substantial changes in physical properties of cells are observed upon differentiation, including 

cell morphology, size, deformability and length of time that cells and particles spend in the 

junction.   Deformable pluripotent stem cells show time-dependent properties more in line with 

500 centistokes (cSt) PDMS oil-in-water droplets and 1kPa agarose beads than stiffer 

differentiated cells which behave more like 1000 cSt PDMS oil. (Full definition of parameters in 

Supplementary Information) Scale bars: 20µm 
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Figure 6. Multiparameter screening of mechanical and morphological properties can classify 

single cells accurately based on their pluripotency. (A) The percent change in median value of all 

15 measured properties for all 12 hESC lines following 14 day differentiation (B) Histograms 

(normalized count) showing the variations within cell populations are depicted for several 

parameters showing overlap at the single-cell level for single properties (day0 in blue and day14 
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in green). (C) The Gaussian kernel density estimation of PC2 and PC3 of the data from all 12 

cell lines at day0 and day14 show the existence of two distinct populations in the collapsed 

multidimensional space. (D,E,F) Labeling the data points as day0 (blue) and day14 (green) 

samples in PC space shows these distinct clusters correspond to the two cell states.  Note larger 

variation is present within the day14 cluster compared to day0. (F) Similarity scores comparing 

the individual data points together shows the existence of two major blocks of highly similar data 

points, corresponding to day0 and day14 samples. The similarity scores within day0 samples 

(Class 1) are on average larger than day14 samples (Class 2), indicated by more dark red points. 

(G) Expectation-maximization clustering for individual cell lines and the pooled data shows a 

decrease in clustering accuracy when parameters were iteratively eliminated. (H) ROC graph 

showing the performance of a linear kernel SVM classifier with all 15 parameters. (I) Using RFE 

and removing parameters one by one, ROC curves for different numbers of parameters show a 

decline in classifier performance with smaller numbers of parameters. (J) AUC and classification 

accuracy increase with number of parameters, although reaching a plateau at ~ 9 parameters.  
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Figure 7. Impurities in mixed population samples can be detected using biophysical properties. 

(A) Day0 and day14 samples spiked at different ratios were analyzed and three different gating 

methods were applied to characterize the spiking ratio: “Diagonal gating”, “day0 gating” and 

“size gating”. (B) Plot of percentage of gated cells versus percentage of spiked day0 cells. The 

slope of these curves can be interpreted as the sensitivity of prediction to variations in mixed 
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populations. Having a lower slope of the curve, e.g  in “size gating leads to more errors caused 

by sample-sample variations and when deviating from a 1:1 spiking ratio. (C) Using all 15 

parameters, spiked samples could be accurately classified as single cells day0 (blue) or day14 

(green). (D) Increasing the number of physical parameters improves prediction of the two spiked 

sub-populations. (E) The individual cells acting as support vectors for spiked populations at 

different ratios and cells classified as day0 (dark blue) and day14 (dark green) are shown in the 

sub-space of 3 different parameters: Deformability parameter D3, Morphology parameter M1 

and deformation dynamics parameter T1. The whole data set from all 12 cell lines for pure day0 

(light blue) and day14 (light green) were used as training sets. (F) Increasing the number of 

parameters enables the distinction of lower impurities in mixed samples. The “Limit of detection” 

was calculated as the inverse of analytical sensitivity, where analytical sensitivity was defined as 

the slope of the curve normalized by the standard deviation of day0 classified cells between 

samples of the same cell type. 
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Figure 8. Spiked sample classification with SVM for increasing numbers of parameters. For each 

spiked sample (containing 100, 75, 50, 25 or 0 percent day0 cells) data points classified as day0 
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(blue) and day14 (green) are shown using 3 to 15 parameters. The data is depicted in the two 

dimensional space of deformability and cell diameter.  

 

 

 

Figure 9. Dynamic mechanical properties of cells are critical for accurate classification. (A) ROC 

plot showing the performance of the SVM classifier using all 15 biophysical parameters. (B) 

Using only the morphology parameters captured before the junction, classification accuracy 

dropped substantially to 74%.  (C) Only considering parameters captured at the junction (during 

cell deformation) we could classify cells based on their pluripotency with 93% accuracy. (D,E) 

Clustering of cell populations using only pre-junction (D) and in-junction (E) parameters 

respectively. Four day0 samples were misclassified when only pre-junction parameters were 

used. 
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Figure 10. Applying uniform force on cells (A) Flow rate should be high enough to focus cells at 

a single lateral position in order to apply uniform force to cells of the same size. (B) Standard 

deviation plots showing the variations in lateral position of cells arriving at the junction and 

optimal operation at 800 mL/min. (C) Comsol simulations predict that the pressure on the cell is 

around 105 Pa at the extensional region when flow rate is ~1000µL/min. (D) Maximum 

force/area in the channel and the total y component of force on cells in the junction increase with 

increasing operating flow rate. 
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Figure 11. Structural, epigenetic, and biophysical changes occur concurrently upon 

differentiation.  Expression of pluripotency markers including Oct4 decrease, while methylation 

of H3K9 (green) and the level of chromatin condensation (dsDNA in blue) increase. The level of 

Lamin A/C increases following differentiation. These changes are accompanied by a decrease in 

cell deformability. Scale bars: 5µm. 
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Figure 12. Simultaneous fluorescence and mechanical analysis confirms the correlation of TRA-

1-81 expression and deformability at single cell level. (A) Optical setup for simultaneous 

assessment of cell mechanical and molecular analysis. (B) Live jurkat cells labeled with calcein 

AM and fixed unlabeled jurkat cells were mixed and analyzed by the system in a. Stiffer 

unlabeled fixed cells showed lower fluorescent signal and small deformability as expected (first 

row). Human embryonic stem cell culture containing mouse embryonic feeders (mEF) were 

A 
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analyzed with this system. Two distinct populations were detected: larger more deformable stem 

cells and smaller stiffer mEFs. Labeling the sample with TRA-1-81 pluripotency marker 

confirmed that the population of large and deformable cells are in fact pluripotent at the single 

cell level. 

 

 

 

Table 1. Linear discriminant analysis (LDA) coefficients for classifying 12 hESC lines before 

and after 2 weeks of differentiation. The 6 parameters with maximum average coefficients are 

deformability (D3), relative strain parameters (S1,S2) cell diameter (A), morphology (M1) and 

deformation time (T2) 
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Table 2. PCA components show a strong dependence of the most important PCs, PC1, PC2 and 

PC3 on parameters S1, M1, M3, A and D4 (absolute values of coefficients are shown). 
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Table 3. Correlation coefficient matrix (absolute coefficient values) shows some level of linear 

dependence between several parameters. The highest correlation was observed between 

parameters D2 and D3, which are both deformability measures at the junction as well as D3 and 

S1, which are deformability and normalized deformability measures at the junction. The least 

correlation is observed between S2 and T1. 

 

Supplementary videos  

SI video 1: Human embryonic stem cells (day0) deforming at the extensional flow region. 
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SI video 2: Fourteen-day differentiated human embryonic stem cells (day14) deforming at the 

extensional flow region. 

SI video 3: A collection of cells deforming at the junction and their transformation from polar to 

Cartesian coordinate system. The white lines show the edges of the cells detected by the Matlab 

image processing script. The 15 parameters are extracted from the Cartesian maps as described 

in SI Fig.1. 

SI video 4: Showing the polar to Cartesian coordinate system transformation of a sequence of 

images captured from one cell deforming in the device.  

!
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Chapter 3 

The Role of Chromatin Structure in Cell Mechanical Stiffness: 

Application in Drug Screening 

 

As the largest and most rigid eukaryotic organelle, the cell nucleus is hypothesized to be a 

critical determinant of overall cell deformability. One study showed the nuclei of human 

embryonic stem cells (ESCs) became less deformable upon differentiation 1. ESCs are known to 

have more open euchromatin than differentiated cells, which has been associated with a 

reduction in nuclear viscosity and stiffness2. Interestingly, chromatin and nuclear lamina, both 

being major determinants of nuclear mechanics, undergo extensive changes during 

differentiation. One of the major determinants, A-type lamins are not expressed in ESCs and are 

only present in differentiated cells. Additionally, several epigenetic modifications including 

global DNA hypermethylation and a decrease in acetylation of histones H3 and H4 lead to 

substantial chromatin reorganization during differentiation. Cellular and nuclear deformability 

associated with specific nuclear properties and chromatin organization could therefore be used as 

an indicator of cell pluripotency. Aberrant epigenetic regulation, causing undesirable gene 

silencing or expression, has also been observed frequently in cancer cells, and the level of 

chromatin condensation controlled by these epigenetic modifications is found to considerably 

alter the structural and physical properties of chromatin and the cell nucleus.  In fact nuclear 

shape and structure is still one of the main tools for histological detection and classification of 

cancer 3.  
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Chromatin and cellular processes. In eukaryotic cells, DNA is tightly packed in chromatin, 

a complex of mainly DNA and histone proteins. Chromatin is responsible for the spatial 

organization of genome and is classified as (i) regions associated with active gene expression and 

low condensation (open chromatin) located at the nuclear interior, euchromatin; and (ii) 

transcriptionally silent areas, heterochromatin, which are associated with high compaction and 

condensation (higly-packed, closed chromatin); usually located at the periphery of the nucleus or 

near the nucleolus 2,4.  Chemical modification of chromatin is one of the major mechanisms that 

regulate the transcriptional profile of a cell 5. These chemical modifications mainly include DNA 

methylation and the posttranslational modifications of histone such as acetylation, methylation 

and phosphorylation 6. The posttranslational modifications can directly alter the physical 

accessibility of DNA by changing chromatin structure, hence directly involved in cell 

transcriptional activation or silencing. As such modifications are essential in a variety of cellular 

processes, blocking them would result in inhibition of proper development. For example 

disruption of H3K9 (lysine 9 on histone 3) methylation or HDAC1 (histone deacetylase 1) results 

in embryo death 7,8.  

Chromatin reorganization through epigenetic modifications, referred to as heritable 

changes in the pattern of gene expression that are independent of primary nucleotide sequence 9 

are associated with a variety of cellular processes and human conditions such as stem cell 

differentiation, cancer, aging and cardiovascular disease 10-12. Stem cells undergo extensive 

modifications in chromatin organization during differentiation 13. For instance, hypoacetylation 

and H3K9 di- or tri-methylation of chromatin structure and high levels of DNA methylation is 

observed in stem cell differentiation along the neural lineage 14. Tumor progression is also often 

associated with changes in nuclear organization 15. For example, aberrant DNA 
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hypermethylation linked with silencing tumor suppressor genes has been observed in cancer16,17. 

Changes in DNA methylation are shown to be associated with atherosclerotic vascular disease 

18,19.  

While chromatin organization is critical in regulating genetic processes, it has been 

suggested that it may also largely contribute to cellular and nuclear mechanics. Interestingly, 

studies have shown that modifications in the structure of chromatin could be a critical 

determinant of nuclear and cell overall mechanical properties 20. Global organization of 

chromatin seems to be a regulator of nuclear shape, size and stiffness, which could modulate 

several tissue and matrix developmental events including migration and cell-microenvironment 

interactions.  

Chromatin structure and cell mechanobiology. Chromatin as one of the main determinants 

of nuclear organization could play a significant role in cell overall stiffness. Studies on 

endothelial cells have shown that the nucleus of these cells is about 9 times stiffer than the 

cytoplasm21. Micropipette aspiration of the isolated nuclei of articular chondrocytes have shown 

that the elasticity and viscosity of the nucleus is higher than the cytoplasm 22. Similarly, it was 

found that the nucleus of neutrophils is about 10 times more elastic and viscous than the 

cytoplasm23. Studies on spread and round endothelial cells have shown that while the elastic 

modulus of the cytoplasm is on the order of 500 Pa, the nuclear stiffness of this cells is on the 

order of 5000 Pa24. Taken together, these studies suggest nucleus as the main contributor to 

cellular rheology, suggesting an important role for chromatin, which is the key determinant of 

nuclear organization. Isolated nuclei treated with ethylenediaminetetraacetic acid (EDTA), (a 

chelating agent that decondenses chromatin through binding divalent cations) showed significant 

expansion of nuclear envelope, increase in nuclear size and reduction in the stiffness of the 
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nucleus while imposing chromatin condensation through addition of divalent cations resulted in 

nuclear contraction and greater nuclear stiffness 2,25 (23, 24). 

As the largest eukaryotic organelle, the nucleus plays an important role in cell migration 

through its size and deformability. Given its determining role in nuclear size and stiffness26, 

chromatin could facilitate necessary cellular organizations for cell migration. Recently, it was 

shown that the migration of melanocytes in a defined direction depends on global chromatin 

organization27. During cell migration, coordinated structural changes between the cytoskeleton 

and chromatin is facilitated through a direct physical link between the chromatin and various 

cytoskeletal elements in the cytoplasm, including actin filaments28, microtubules motor proteins 

29 and intermediate filaments 30,31, established by the SUN domain and KASH domain proteins 

32-34. This coordination in structural changes between the chromatin and cytoskeleton could result 

in epigenetically regulated cell elongation and organization, which might affect the organization 

of the extracellular matrix (ECM). Therefore, in addition to the apparent role of chromatin 

structure in regulating the expression of genes encoding for proteins that are involved in the 

migration process, the direct structural and physical role of chromatin condensation could 

significantly contribute to cell migration patterns.  

In addition to cell migration, nuclear stiffness could affect the cell-cell and cell-substrate 

interactions by influencing the outcome of forces applied to it. While forces applied to a stiff 

nucleus would stay focused, highly deformable nuclei would disperse the force into many 

directions, resulting in less significant downstream effects. Because these forces do not operate 

independently and are balanced within the tissue, these different effective forces could 

orchestrate downstream cellular events including cell survival, growth, differentiation, cell-cell 

communication and spatial organization of cells and ECM differently35. 
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While chromatin structure can regulate tissue structural and mechanical properties through 

modifying critical cellular processes including cell migration, cell-microenvironment interactions 

and ECM organization, it could also act as a cellular mechanosensor, directly affecting 

transcriptional regulation in response to external mechanical stimuli. Mechanical stimuli in cell 

extracellular environment are transmitted by integrins and cadherins to cytoskeletal filament 

networks, which are further linked to subnuclear elements such as chromatin 34. Several studies 

confirm the existence of a physical link between extracellular integrins and subnuclear elements, 

which can act as transmitters of mechanical signal from cell surface to nucleus36. Through this 

nuclear mechanotransduction, physical and mechanical cues at the cell surface can be translated 

into structural changes in chromain. For example reorganization in actin, intermediate filaments, 

microtubules as well as nucleus is reported following the application of shear forces on cells by 

flow 21,37-39. Studies using atomic force microscopy (AFM) and micropipette aspiration on whole 

cells as well as isolated nuclei show that shear stress will change nuclear shape and stiffness40,41. 

Through computational studies it is suggested that cells exposed to flow respond to external 

shear by aligning in the direction of flow to minimize the shear force on their nuclei42.  

Through deforming the nucleus, these forces could result in altered DNA packing and 

structural changes in chromatin43. Mechanically stretched rat cardiac myocytes were shown to 

transmit the mechanical signal to the chromatin, rearranging nuclear envelope associated 

chromatin via intermediate filaments44. Recently, mechanostimulion of human fibroblasts with 

micron-scale grooves and ridges was found to result in transcript-level effects on mediators of 

chromatin remodeling such as HMGA1 and HMGB145. A recent study using differential 

scanning calorimetry suggests that ultrasound stimulation of fibroblasts can have a transient 

effect on chromatin organization46. These changes in chromatin structure and organization could 
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further restrict or promote the accessibility of chromatin and genes to transcription factors 

resulting in alterations in gene transcription. 

Here, we summarize the observed epigenetic modifications and alterations of cell and 

tissue physical properties associated with three important cellular processes and conditions: stem 

cell differentiation, cancer progression and cardiovascular disease.  

Stem cell differentiation. Embryonic stem cells (ESCs) are a main focus of intensive 

research in regenerative medicine due to their capacity to self-renew indefinitely and to 

differentiate into cell lines of all three germ layers. It is established that crucial changes in gene 

expression profiles during the progression from ESCs to their differentiated progeny are 

accompanied by multiple epigenetic rearrangements47,48. Along with expression of specific 

pluripotency factors, stem cells possess a signature epigenetic landscape. Studies suggest that 

chromatin organization changes significantly during differentiation, which is accompanied by 

alteration in transcriptional activity. While the chromatin of pluripotent cells is suggested to 

possess an “open” conformation, responsible for genome plasticity and cell self-renewal 

state12,49-51, differentiation results in a change in chromatin organization and a switch to “closed” 

chromatin conformation. Studies on ESCs reported an increase in the number of heterochromatin 

foci during their differentiation to neuronal progenitor cells (NPCs)52. Along these changes in 

chromatin organization, several chemical modifications in DNA and histone are reported during 

differentiation. The genome of differentiated somatic cells is suggested to be globally 

hypermethylated compared to ESCs53. Several heterochromatin marks increase during mouse 

ESC differentiation, including histone H3 lysine 9 trimethylation (H3K9me3), histone H3 lysine 

27 methylation and dimethylation (H3K27me and H3K27me2), histone H4 lysine 20 di- and tri- 

methylation (H4K20me2 and H4K20me3)54. In ESCs many non-transcribed genes are associated 
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with a “bivalent” chromatin structure, enriched both in active chromatin marks such as high 

levels of H3K4me2 and H3K4me3 and repressive marks such as H3K27me3. Differentiated 

cells, however, while retaining repressive chromatin mark, H3K27me3 do not show the active 

chromatin mark55,56. 

Differentiation is also associated with a global decrease in histones H3 and H4 acetylation 

12,57. Along the same line, treatment of ESCs with a common histone deacetylase (HDAC) 

inhibitor, trichostatin A resulted in inhibition of differentiation 57. Moreover, during 

differentiation promoters of critical pluripotency transcription factors such as OCT4 are 

methylated 58,59. As DNA methylation is suggested to inhibit transcription, methylation at the 

promoter of these genes is believed to be responsible for keeping them silent in differentiated 

cells60,61. Additionally, lamin A/C proteins, which are not expressed in stem cells, appear as they 

differentiate10. These changes in chromatin arrangement are critical for transcriptional 

reprogramming during stem cell differentiation.  

Nuclear and cellular mechanical stiffness also changes significantly during differentiation.  

Atomic force microscopy (AFM) and micropipette aspiration studies have reported lower 

stiffness for ESCs compared to differentiated cells. Studies on both mouse and human ESCs 

suggest that high deformability of ESCs could be an indicator of their self-renewal state2,62. 

While both nuclear lamina and chromatin contribute to nuclear stiffness, lamina is shown to be 

mainly responsible for elastic behavior of the cells and chromatin is suggested to mostly “flow” 

plastically under load2. Microrheology experiments on ESCs with condensed chromatin have 

shown that these cells are much less pliable than normal cells2. As one of the major determinants 

of nuclear shape and deformability has been suggested to be the level of chromatin condensation, 

epigenetic modifications could be at least one of the reasons behind alterations in cell mechanics 
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during stem cell differentiation. Chromatin reorganization during differentiation could therefore 

significantly contribute to changes in nuclear stiffness.  As discussed before, these alterations in 

nuclear stiffness could further result in changes in the patterns of cell migration and ECM 

organization, which still need to be investigated.  

In addition to the effect of epigenetic modifications and chromatin reorganization on cell 

deformability alterations, the interaction between stem cell mechanobiology and epigenetics 

could be in fact responsible for lineage-specific differentiation through mechanotransduction. 

Epigenetic mechanisms are believed to regulate specific phenotypes in response to 

environmental cues 2. The mechanical signals from cell microenvironment such as substrate 

stiffness are found to play a key role in stem cell fate63. Many recent studies have shed light on 

the significant influence of the extracellular matrix (ECM) on stem cell fate, partly caused by 

mechanical signals transmitted from the ECM to the cells 63,64. Extracellular physical and 

mechanical cues could be a means for alterations in the patterns of chromatin condensation. 

Regulation of nuclear shape by the cytoskeleton properties has already been observed in various 

processes including the dependence of granulocytes nuclei lobulation on microtubules65 or the 

changes in nuclear shape of the chondrocytes caused by mechanical forces or cellular adhesion 

geometry through actin filaments 28,66.  Chromatin reorganization alters regions available for 

transcription, which would result in modified gene expression patterns. Therefore, alterations in 

chromatin organization could be an upstream effect of external mechanical cues resulting in 

downstream effects including the regulation of specific gene expression and lineage-specific 

differentiation.  

Epigenetic mechanisms are believed to be a means for cells to respond to the environment, 

which might result in the development of abnormal phenotypes under undesirable conditions67. 
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Since the extensive modifications in chromatin organization have been observed during 

differentiation, the effect of environmental factors interfering with normal epigenetic processes 

could also result in differentiation deficiencies. Therefore, it would be interesting to explore the 

effect of epigenetic abnormalities on the potential of ESCs to differentiate into all three known 

germ layers.  

Additionally, the cellular and molecular processes by which the mechanical signals could 

be translated into chromatin reorganization and stem cell fate are not fully understood. Evidence 

suggests the regulation of stem cell response to external mechanical stimuli through RhoA 

pathway68. Manipulation of RhoA and its downstream effector, Rho kinase has been shown to 

affect the fate of mesenchymal stem cells 69. However, the detailed mechanism of the role of 

these signaling pathways in the regulation of self-renewal and differentiation of stem cells is not 

known. Since the self-renewal property of stem cells are associated with a signature chromatin 

state, it is interesting to understand whether the modifications in Rho/ROCK signaling pathways 

regulated by mechanical stimuli are translated into differentiation commitments through 

modifications in epigenetic properties of DNA and chromatin.  

Cancer progression. Aberrant epigenetic regulation causing undesirable gene silencing has 

been observed frequently in cancer cells. DNA methylation aberrations are one of the 

fundamental epigenetic abnormalities involved in cancer development70. Disruption of DNMT1 

gene resulting in hypomethylation of DNA is reported to induce tumor formation in mice 71-73. 

Aberrant DNA methylation pattern as somatic mutations in DNMT3A was recently reported in 

acute myeloid leukemia74. While loss of DNA methylation in cancer is detected globally 

throughout the genome, specific promoter regions have been characterized by hypo and hyper 

methylation patterns75. While hypomethylation can account for aberrant expression of oncogenes 
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76-78, and also lead to loss of imprinting and induction of growth promoting genes expression 79,80, 

such as IGF281; hypermethylation at specific promoters results in silencing tumor suppressor 

genes such as CDKN2A, MLH1, MGMT or BRCA175,82-85. 

Global histone modifications including H4K20me3 and H4K16Ac reduction are another 

hallmark of cancer. H3K16 acetylation loss and modifications of H4K20me3 and H3K27me3 

have been also associated with cancer prognosis86-88. Alterations in the expression or activity of 

chromatin modifying enzymes have also been observed in several types of cancer and are in fact 

suggested to cause the global alterations in histone modification. For example histone 

deacetylases (HDAC1, HDAC2 and HDAC6) are overexpressed in tumors89. Abnormalities in 

the expression of histone methyltransferases (HMTs) and histone demethylases (HDMs) are also 

associated with cancer90. Overexpression of EZH2, a common HMT specific to H3K27, is 

reported in several tumors91. These alterations in epigenetic modifications result in aberrations in 

the level of chromatin condensation, which could considerably modify the structural and 

physical properties of chromatin and stiffness of nucleus. Several studies confirm a considerable 

difference in cancer cell mechanical properties compared to normal cells. Characterization of 

normal and cancerous human bladder epithelial cells using atomic force microscopy have 

showed an order of magnitude lower stiffness in cancer cells compared to normal ones 92. Human 

breast cancer (adenocarcinoma) cells (MCF7) also reported to be more deformable than non-

malignant human mammary epithelial cells (MCF10)93. Human myeloid cells (HL60) are shown 

to be six times stiffer than human neutrophils 94. However, it is not known if chromatin 

reorganization is a main reason for the changes in cell stiffness in these conditions. 

Nuclear stiffness changes could further play a crucial role in cell response to its 

environment and regulation of tumor cell migration and aberrant tissue reorganization. For 
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example, since cell deformability can facilitate passing through pulmonary circulation it is 

suggested to affect tumor cell metastasis 95. Studies have also reported an association between 

cell deformability and transformation of cell phenotype into tumorigenic metastatic state 95,96. 

Tumor tissue is characterized with a modified extracellular matrix (ECM) composed of a 

network of glycoproteins and collagens, which modulate cancer cell adhesion and proliferation. 

During tumor development, ECM remodeling and stiffening initiate integrin clustering and actin 

remodeling, which enhance tumor cell growth and survival and confer tumor drug resistance 97,98. 

Production of extracellular elements, growth factors and cytokines by the tumor cells changes the 

local microenvironment of the cells, which modifies their proliferative and invasive behaviors. 

Therefore, the interaction between cancer cells and their environment, regulated by cell’s 

physical and mechanical properties, can play a significant role in their migrational and invasional 

behavior. Manipulation of ECM organization and the interaction between tumor cells and their 

environment through chromatin reorganization could lead to therapeutic targets. Since epigenetic 

modifications appear to be reversible, epigenetic cancer therapeutics have received major interest 

recently. However, in the studies related to cancer epigenetics, the only role assumed for 

epigenetics processes has been their function as a regulator of tumor suppressor gene expression. 

For instance inhibition of DNA methylation, although not fully understood, is suggested to cause 

the trapping of DNA methyltransferases (DNMTs), which would result in expression of tumor 

suppressor genes that initiate cell differentiation and cancer cell death99,100. However, the long-

term effect of DNMT inhibition has not been investigated. Histone deacetylases (HDACs) are 

also found to regulate the induction of tumor cell death and inhibition of cell cycle progression 89. 

Results 

We previously did not observe any significant change in cell deformability upon treatment 
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of Hela cells with cytoskeletal modifying drugs including Laranculin A, to disrupt 

actin polymerization and nocodazole to inhibit microtubules101. Here, we studied the effect of 

nuclear lamins and chromatin structure on our deformability measure. While all lamin knockout 

mouse embryonic fibroblasts showed a slightly softer profile compared to the wildtype cells, we 

detected more change in lamin B1 knockout cells compared to lamin A knockouts (Fig. 1).  

Next, to study the effect of chromatin structure on cell deformability we treated 3T3 

fibroblasts and jurkats acute T-cell leukemia cells with several chromatin reorganizing drugs 

(Fig. 2). Hoechst 33258 dsDNA staining was used to visualize nuclear reorganization after 

treatment with chromatin modifying drugs or during human embryonic stem cell differentiation 

(Fig. 3A). The number of heterochromatin foci was used as an indicator of chromatin 

condensation level. We quantified the level of chromatin condensation by evaluating the number 

of heterochromatin foci in at least 20 cells per sample. We found that deformability is inversely 

correlated with the level of chromatin condensation (Fig. 3B). Stem cells and 3T3 cells that were 

treated with histone deacetylation (HDAC) inhibitor and DNA methylation (DNMT) inhibitors 

seemed to have a less condensed chromatin. These cells were significantly more deformable 

compared to untreated 3T3s. Fibroblasts treated with H3K9 methylation inhibitor, on the other 

hand were less deformable and had a more condensed chromatin. We also did not detect any 

significant difference in the deformability of DNMT triple knockout mouse embryonic stem cells 

compared to wildtype cells (Fig. 4). 

Next, using mulriparameter analysis described in chapter 2, we performed unsupervised 

clustering based on median parameter values for mouse fibroblasts treated with different drugs as 

well as lamin knockout cells.  Linear Discriminant Analysis (LDA) successfully grouped the 

cells based on the nature of the treatment, either cytoskeletal or nuclear (Fig. 5).  
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Discussion 

Epigenetic modifications are involved in various cellular processes and conditions. 

Interestingly, in these processes changes in cell mechanical and physical properties are reported, 

which are critical for the initiation and development of the specific process or condition. As 

chromatin structure and function are correlated, alterations of its structure resulting in changes in 

cell mechanics could be associated with alterations in cell function. Uncovering the detailed 

relation between the two could be beneficial in better controlling gene regulation by external 

mechanical signals in applications like stem cell differentiation. More interestingly, 

characterizing cells based on their mechanical properties as an indicator of their epigenetic 

properties could be used in applications like early diagnostic of disease.   

Alterations in chromatin organization could be an upstream effect of external mechanical cues 

resulting in downstream effects including the regulation of specific gene expression and lineage-

specific differentiation. An interesting study to understand this possible interaction would be 

through investigating the dynamics of chromatin remodeling during stem cell differentiation on 

substrates with different elastic moduli. Understanding the effect of extracellular mechanical 

signals on chromatin reorganization could be highly beneficial in applications such as controlling 

stem cell differentiation lineage. Aberrations in cellular shape and stiffness can be an early 

indicator of abnormal cellular function in a variety of physiological and pathological situations. 

Cell mechanics, could therefore be used as a screening tool for a number of cellular events. For 

instance, it is interesting to know whether the possible epigenetic abnormalities in stem cells 

resulting in their deficient pluripotency could be revealed through their mechanical properties. 

Future methods that can bring both high resolutions and high-throughput to the cell mechanics 

measurements could also give rise to earlier or easier cancer diagnostic approaches. 
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Identifying the extent to which nuclear structural changes underpin biophysical 

measurements can provide a molecular basis for using DC as a label-free diagnostic, especially 

in classifying disease states, such as cancer, that can be linked to abnormal chromatin structure. 

Importantly, we believe that there is a high correlation between chromatin structure and our 

deformability measure. The high information content, flexibility and throughput of this approach 

indicates the potential of multiparameter DC to serve as a general label-free screening tool for 

cell state. This could be useful for a variety of applications including cancer diagnosis, cell 

pluripotency characterization and drug screening. 

 

Materials and Methods 

We treated NIH-3T3 fibroblasts with several cytoskeletal drugs (to inhibit microtubules 

inhibitor with nocodazole (0.001–10 µM), inhibit nonmuscle myosin II with blebbistatin (5 µM), 

and disrupt actin polymerization with Latrunculin A (0.001–10 µM) and modify Keratin network 

architecture by sphingosylphosphorylcholine (SPC) (0.1–10 µM) for two hours and chromatin 

modifying drugs (to inhibit H3K9 methylation with Chaetocin, (5µM), inhibit histone 

deacetylation with Trichostatin A (TSA), (2µM) and inhibit DNA methylation with 5’-Deoxy-5’-

(methylthio)adenosine (MTA), (5µM) and 5-Azacytidine (5Aza), (5µM) for 48 hours). Hoechst 

33258 dsDNA staining was used to visualize nuclear reorganization after treatment with 

chromatin modifying drugs or during differentiation (Fig.2A). The number of heterochromatin 

foci was used as an indicator of chromatin condensation level. 
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Figures 

 

Figure 1. Deformability profiles of wildtype (left) and lamin knockout (right) mouse embryonic 

fibroblasts. A slight increase in deformability is detected in lamin A knockout (LMNA KO) cells 

compared to whildtype. Lamin B1 knockout cells (LMNB1 KO) are more deformable than 

Lamin B1 partial knockouts (EllaB1 +/-). 
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Figure 2. Jurkats acute T-cell leukemia cells (left) and NIH-3T3 fibroblasts (right) were treated 

with different chromatin reorganizing drugs. Compared to control, treatment with H3K9me 

inhibitor, chaetocin and HAT inhibitor, anacardic acid, resulted in stiffening of cells, while 

treatment with HDAC inhibitor TSA, HMT inhibitor DZNep and DNMT inhibitors MTA and 

5AZA resulted in an increase in cell deformability.  
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Figure 3. NIH-3T3 fibroblasts were treated with different chromatin and cytoskeletal 

reorganizing drugs. Human embryonic stem cells as well as fibroblasts treated with HDAC 

inhibitor and DNMT inhibitors that seem to have less condensed chromatin, deform more in our 

device, while in the case of treatment with Chaetocin, an H3K9 methylation inhibitor a smaller 

deformation and a highly condensed chromatin is observed (A,B).  
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Figure 4. No significant difference in the deformability of DNMT triple knockout mouse 

embryonic stem cells (right column) was observed compared to wildtype cells (left column) at 

three different flow rates. 
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Figure 5. Using multiparameter analysis single cells were successfully classified based on the 

treatment. 
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Chapter 4 

Separation of Particles Based of Aspect Ratio: Application in 

Cell Sorting by Shape and Deformability 

 

This chapter introduces microfluidic platforms for particle and cell sorting based on their 

shape, size and deformability. The first part of the chapter focuses on using inertial forces for 

separation of particles and yeast cells of different aspect ratios. We will show that particle 

rotation around a conserved axis following Jeffery orbits is a necessary component in producing 

different equilibrium positions across the channel that depend on particle rotational diameter. In 

the second part,  we will show that  by first deforming cells and then introducing them into a 

straight or curved channel, inertial effects are capable of separating these cells based on their size 

and stiffness. In other words, after being stretched into different “deformed diameters” (effective 

diameter), cells will focus on different equilibrium positions in the channel. Both original cell 

size and its stiffness contribute to its final deformed diameter. These differences are large enough 

to enable an efficient, continuous, label-free and high-throughput sorting and enrichment of cells 

of interest downstream. 

Importance and challenges of separating particles by shape. Many microparticles of 

interest such as parasites, bacteria, viruses, but also marine organisms, and man-made powders 

and microparticles possess a variety of shapes. Separating particles with specific shapes from a 

background of other particles can aid in isolating disease-causing cells for diagnostics or 

particles with specific geometric properties of use in research and industry. However, the most 

common way of separating particles with filters (i.e. pores that restrict passage to particles below 
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a certain size) is not effective for this application since non-spherical particles can present 

different faces while interacting with the filter. Here we show how the shape of a particle will 

modify its location of stable accumulation while flowing through a microscale pipe under 

conditions in which the momentum of the fluid is important. 

Fluid inertia is shown to lead to focusing of shaped microparticles in the cross-section of a 

channel, such that particles of different shapes occupy different positions in the channel. 

Particles rotate around a conserved axis while moving downstream at this focusing position, and 

this rotation is found to be a necessary component in producing different cross-sectional 

positions for particles that are dependent on particle rotational diameter. These differences are 

large enough to enable high-purity shape-based separation of large quantities of particles that are 

directed into separate outlets. The separation was applied to a large range of particle sizes and 

types, including small 3 µm particles and biological particles such as budding yeast with 

different shapes that accompany the cell life cycle.  

The simple and practical approach for sorting particles by a previously inaccessible 

geometric parameter opens up a new capability that should find use in a range of fields from 

preparing standardized anisotropic particles for composite materials to synchronizing the life 

cycles of yeast and bacteria populations for controlled experiments.   

An approach to separate shaped-particles can be used to isolate disease-causing cells for 

diagnostics or can aid in purifying non-spherical targets in applications ranging from food 

science to drug delivery. However, the separation of shaped-particles is generally challenging, 

since non-spherical particles can freely rotate and present different faces while being sorted. We 

experimentally and numerically show that inertial fluid dynamic effects allow for shape-
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dependent separation of flowing particles (spheres and rods with aspect ratios 3:1 and 5:1 all 

were separable). Particle rotation around a conserved axis following Jeffery orbits is found to be 

a necessary component in producing different cross-sectional positions that depend on particle 

rotational diameter. These differences are large enough to enable high-purity, continuous, 

passive and high-throughput shape-based separation downstream. Furthermore, we show that this 

shape-based separation can be applied to a large range of particle sizes and types, including small 

3 µm particles and bio-particles such as yeast. The demonstrated enrichment of budded yeast 

from an unsynchronized population can be particularly useful for synchronization and study of 

stochasticity in cell behavior. This practical approach for sorting particles by a previously 

inaccessible geometric parameter opens up a new capability that should find use in a range of 

fields. 

Shape represents one of the most important factors to specifically identify a bioparticle1. 

Among others, shape is a marker of cell cycle. For example, eukaryotic cells such as yeast show 

cell-cycle dependent changes in their shape as a budding daughter cell forms attached to the 

mother cell2. Shape is also an indicator of cell state of use in clinical diagnostics. For example, 

blood cell shape-changes accompany many diseases, such as modified red blood cell 

morphology resulting from sickle cell disease, anaemia or malaria 3,4. Thus, shape can be a 

specific marker in bioparticle separation and may serve as a useful new basis for passive particle 

fractionation. More generally, many particles of interest such as parasites, bacteria, viruses, but 

also marine organisms 5,6, man-made microparticles like barcoded substrates 7,8 or cement 

microparticles possess a variety of shapes and the ability to prepare particular shapes at high 

purities enables subsequent clinical, industrial, and research applications. 

Given that traditional pore-based filtration is ineffective with bioparticles that may be 
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deformable or possess unique shapes, a diverse set of methods have recently emerged to achieve 

continuous separation of cells/microparticles 9. Some approaches combine microfluidic flow 

with a force field, such as electric, magnetic, optical, acoustic, or with biochemical interactions 

(selective lysis or antigen/antibody capture) 10–13. Other approaches are based on passive 

hydrodynamics in microchannels, for example micro filtration 14, pinched flow fractionation 

(PFF) and hydrodynamic filtration (HDF) 15,16, hydrophoresis 17–22, deterministic lateral 

displacement (DLD) around pillars 23and inertial separation in curved channels or spirals24–26. 

However, particle shape has not been considered in most of these separation techniques. 

Only recently, have researchers investigated hydrodynamic filtration (HDF), deterministic lateral 

displacement (DLD) and dielectrophoresis (DEP) for shape-based separations. Beech et al. first 

recognized the need to separate shaped parasites from within blood and implemented an 

approach using the DLD technique 27. DLD devices consist of post networks in which spatial 

arrangement defines a size cut-off of separation (or critical radius). DLD has been demonstrated 

to enable a separation based on particle morphology, via control of particle orientation, and 

particle deformability, via control of shear stress 28. Holm, Beech et al. applied this technique for 

the separation of trypanosomes from red blood cells29 and for the classification of 

morphologically altered red cell 28. More recently, Sugaya et al. applied HDF for shape-based 

sorting of budding/single cells from a yeast cell mixture30. HDF is based upon differential 

particle behavior in a fluid branch point due to steric exclusion, with the separation size cut-off 

being determined by the channel fluidic resistance ratio. Similarly to DLD, the rotation of non-

spherical particles modifies their effective steric dimension. Both HDF and DLD are efficient, 

passive and continuous techniques but both require (i) highly complex features (130 branch 

channels for HDF 30, complex and high-resolution arrays of posts with 13 different arrangements 
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for DLD 28) and (ii) low flow rates (60 nL/min for Holm et al. 29 and 2-3 µL/min for Sugaya et 

al. 30), consequently offering a low throughput that may be suitable for research applications but 

not industrial-scale applications. Similarly, Valero et al. performed shape-based sorting of yeast 

by balancing opposing dielectrophoretic (DEP) forces at multiple frequencies31. DEP requires the 

integration of active elements and a precise and reproducible control of the buffer conductivity 

between each experiment, which both complicate potential use beyond research applications. 

Recently, Di Carlo and others have shown that inertial focusing, based on inertial migration 

effects in cylindrical pipes first observed by Segre and Silberberg 32, can be used to separate 

microparticles and cells in microchannels at high rates 26,33–35. Briefly, two inertial lift forces are 

involved: (i) a shear gradient lift force and (ii) a wall effect lift force induce particle migration 

across streamlines when the particle Reynolds number, Rp, is of order 1 or greater. Rp = 

Re(a/W)2 with a/W being the ratio of particle to channel diameter, and Re indicates the Reynolds 

number for the channel flow, Re = ρUmW/µ. Here, ρ, Um, and µ correspond to the density, 

maximum velocity, and dynamic viscosity of the fluid. In rectangular or square channels, 

particles generally migrate to two to four distinct dynamic equilibrium positions depending on 

the fold symmetry of the channel cross-section (Fig. 1). Among other advantages, the possibility 

of operating over a large range of high flow rates makes inertial focusing a promising technique 

for low cost cytometry, massively parallel cell separation and washing 36,37. However, previous 

work has mainly investigated spherical particles and characterized the ability of inertial focusing 

to separate or focus particles/cells based on the overall particle diameter 26. Recently, 

deformability-based differences in equilibrium positions for cells and viscous droplets were 

demonstrated 38. Some of the current authors also showed that inertial effects can be exploited to 

focus non-spherical particles to uniform locations 39, illustrating that the effect of particle shape 
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on its focusing position is an important parameter to be further investigated. 

Here we evaluate how the shape of a particle, while conserving volume, will modify its 

motion and its dynamic equilibrium position in a microchannel under inertial conditions, and use 

these differences to perform shape-based separations. Rod-like particles migrate to a stable 

position closer to the channel centerline than spherical particles with the same volume, and align 

such that they periodically “tumble” rotating around a short axis following Jeffery orbits, and are 

pushed away from the channel wall. Numerical simulations and experimental results both yield 

focusing positions that are dependent on the particle’s largest cross-sectional dimension and 

simulations indicate particle rotation is necessary for this behavior. From these shape-based 

differences in focusing positions, we demonstrate passive and high-throughput separation using a 

particle’s largest cross-sectional dimension as a distinguishing marker, independent of the 

smallest dimension of the particle. We applied this separation to the efficient and high-

throughput sorting of budding yeast in view of cell-cycle synchronization (at rates of 60 µL/min 

or1500 cells/s compared to 100 cells/s in previous work 31). Next, by integrating this design with 

deformability cytometry we show the feasibility of cell separation by its deformability and size.  

Importance and challenges of separating particles by deformability. Biophysical 

(mechanical) properties of cells are promising biomarkers indicative of changes in cellular 

phenotype associated with malignancy. These label-free biophysical markers can be used to 

purify cells of interest at lower cost than currently available techniques. Cell size and stiffness 

are among the most important label-free markers. It has recently been reported that despite the 

relative stiffness of tumor masses compared to neighboring healthy tissues, cancer cells are in 

fact softer than their healthy counterparts. The increased deformability of cells associated with 

their malignancy is actually suggested to be relevant to their ability to migrate through tissues 



! 103 

and metastasize. Previous studies report up to 3.5 times higher compliance associated with 

metastatic cancer cells disseminated in pleural fluids compared to benign cells. Malignant cells 

in body fluids are also shown to be larger than the background of white and red blood cells. 

Concentrating malignant cells and removing large populations of leukocytes that interfere with 

the molecular analysis, can improve cytological diagnosis accuracy and can lead to more 

accurate detection of specific gene mutations for targeted drug therapies.Therefore, the ability to 

uniquely separate highly deformable large cells can significantly improve the enrichment of 

malignant cells. However, there are no current methods that specifically sort particles by their 

deformability. Beyond pleural fluid analysis, rapid, automated processing of large volumes of 

bodily fluids and purification of malignant cells of interest will impact a variety of clinical and 

drug discovery areas including urinalysis, analysis of peritoneal fluids, hematopoietic cell 

purification from bone marrow, and mesenchymal stem cell purification from lipoaspirates.    

Traditional cytological examinations are only successful to identify malignant cells in 

around 60% of cases. Due to the presence of large populations of contaminating cells in body 

fluids, only a subset of these fluids can be analyzed for clinically-valuable mutations. These 

background of non-malignant cells, which are often smaller and/or stiffer than cancer cells, 

contain wild type DNA, and can interfere with the identification of gene mutations. High purity 

samples of malignant cells are necessary for accurate sequencing that can guide targeted drug 

treatments. Therefore, extracting and purifying these malignant cells from larger volumes of 

body fluids with high efficiency and purity could improve cytology-based diagnoses. Examples 

of this application include isolation of malignant cells (mainly leukemia, lymphoma and 

dessiminated cancer cells from lung and breast) from pleural effusions, isolating circulating 
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tumor cells in peripheral blood and isolating mesenchymal stem cells (MSCs) from lipoaspirates 

or bone marrow aspirates. 

Current methods of isolating these cells are costly, and require pre-knowledge of the 

potential cancer origin and therefore are not clinically practical. Laser capture microdissection 

(LCM) and other manual selection techniques have been successfully applied to enrich cancer 

cells from body fluids resulting in detection of EGFR and KRAS mutations associated with 

sensitivity and resistance to EGFR tyrosine kinase inhibitors, respectively 40,41. However, these 

techniques are laborious, slow and unlikely to be used routinely in the clinic. Therefore robust, 

low cost and rapid approaches are needed to process large volumes of fluid and sort out 

malignant cells into a small volume for molecular analysis. Conventional cell sorting strategies, 

including fluorescence-activated cell sorting (FACS) and magnetic-activated cells sorting 

(MACS), mainly rely on specific antigens to distinguish between cell types, requiring pre-

knowledge of the cancer type and expression levels. Although FACS and MACS allow high-

throughput screening and sorting, their complexity and high initial, as well as operating costs 

limit their use as simple cost-effective approaches. Therefore, there is a clinical need for low cost 

cell sorting approaches, which can take advantage of physical biomarkers to sort different cell 

populations without costly external labels.  

Laser capture microdissection (LCM) and other manual selection techniques are the main 

current approaches for enrichment of cancer cells, which are laborious, slow and unable to 

analyze a large volume of fluids. Conventional cell sorting strategies including FACS and 

MACS mainly rely on external labels to distinguish between cell types, which requires pre-

knowledge of the potential mutations. Fluorescence-activated cell sorting (FACS) is a commonly 

used active sorting method, offering up to four-way cell sorting based on fluorescent emission. 
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Magnetic-activated cell sorting (MACS) is a passive separation technique that uses antibody-

conjugated magnetic beads to separate out cells of interest. Although FACS and MACS allow 

high-throughput screening and sorting, their complexity and high initial, as well as operating 

costs limit their application as cost-effective approaches. Therefore, there is a lot of interest in 

“label-free” cell sorting approaches, which mainly rely on manipulating physical biomarkers to 

sort different cell populations. Current methods of isolating malignant cells are costly, and 

require pre-knowledge of the potential cancer origin and therefore are not clinically practical. 

Therefore robust and fast approaches are needed to process large volumes of fluid and sort out 

malignant cells into a small volume. 

An emerging trend in anti-cancer therapy is the use of pharmacological agents that target 

specific molecular pathways that are affected by common genetic lesions.  These targeted 

therapies can be particularly effective without causing many of the significant side-effects that 

occur with traditional chemotherapy that acts upon actively dividing cells with less specificity.  

Examples of successful targeted therapies include the tyrosine kinase inhibitors gefitinib and 

erlotinib which target EGFR-activating mutations in non-small-cell lung cancer (NSCLC) 42; 

anti-HER2 agents trastuzumab and lapatinib in breast tumors over-expressing HER2/ERBB2 43; 

and imatinib, nilotinib and dasatinib which are effective against BCR-ABL fusions in chronic 

myeloid leukemia 44.  Importantly, these drugs are not efficacious in patients who do not have a 

tumor with the specific molecular lesions.  In addition, efficacy drops due to emergence of 

resistance that is associated with another set of possible mutations (for the breast cancer example 

this includes activating mutations in PI3K or loss of function mutations in the phosphatase 

PTEN) 43. 
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Therefore, treatments must be individualized following a companion diagnostic - molecular 

analysis of the tumor to determine the presence of particular target mutations and lack of 

resistance mutations.  In some cases the primary tumor can be biopsied and high purity cancer 

cells can be analyzed.  However, often the primary tumor has been previously resected or is 

otherwise inaccessible, and biopsy is not a viable option (due to risk to the patient) 45.  In these 

cases, disseminated cancer cells can be found at much lower quantities and purity in body fluids: 

blood (circulating tumor cells – CTCs), peritoneal or pleural fluids, and urine.  “Liquid biopsies” 

of cells from these relatively non-invasive sources are particularly ideal, but the challenge of 

isolating and enriching pure populations of cancer cells from the large background of 

contaminating cells remains.  High purity aids in various methods of mutational analysis from 

cytopathology stains and fluorescence in situ hybridization (FISH) to gene expression analysis 

and sequencing.  For example, increasing purity reduces the likelihood of false positive detection 

of a mutation by PCR or gene sequencing 46,47.   

Beyond separation of malignant cells from body fluids, being able to sort particles passively 

by deformability and size has additional applications.  Activated leukocytes that are involved in 

disease processes like sepsis and transplant rejection may be able to be sorted based on their 

deformability and removed to lower cytokine levels and improve clinical outcomes.  Remaining 

pluripotent stem cells could be sorted from differentiated batches to prevent implantation and 

subsequent teratoma (tumor) formation.  For life science research, pure populations of a variety 

cell types associated with a deformable phenotype could be analyzed to determine molecular 

differences leading to this phenotype.  

As discussed above, physical properties of cells are attractive biomarkers, due in part to their 

independence from expensive and overly-specific molecular markers. Increased cellular 
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deformability (the ability to change shape under a load) and size have repeatedly been shown to 

be specific biomarkers for malignancy, but sorting cells based on these properties is challenging. 

The increased deformability of malignant cells is purportedly linked to their ability to migrate 

through tissues and metastasize. Previous studies using atomic force microscopy (AFM) reported 

the deformability of metastatic cancer cells disseminated in pleural fluids was up to 3.5 times 

higher than that of benign cells; however, only tens of cells could be measured in a meaningful 

time and only after first identifying cells based on specific staining. All in agreement, several 

methods of assaying cell deformability, including AFM, micropipette aspiration, and optical 

stretching, have reported increases in deformability of malignant populations of cells compared 

to benign cells. 

Our lab has previously introduced the deformability cytometry technique which can deform 

thousands of cells per second to aid in pleural fluid diagnostics. This technology applies large 

strains (greater than 50%) to cells in an extensional (purely stretching) flow. This high-

throughput cell deformability measurement technique can measure over 1,000 cells/second 

without user input or pre-selection.  In a study of 119 patients, using the validated deformability 

cytometry technique 48, we have also measured substantially increased deformability and size for 

cells in malignant pleural fluid samples, in agreement with similar measurements of model cell 

lines. Median cell deformability was around 77%, 67%, 85% higher in patients with 

mesothelioma, breast, and lung cancer, respectively. Cell diameter was also around 50%, 36%, 

and 44% higher for patients with mesothelioma, breast and lung cancer (Fig. 12).   However, this 

instrument can only measure these cell properties but there remain challenges to subsequently 

sort based on these properties. Therefore, the ability to uniquely separate highly deformable large 
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cells can significantly improve the enrichment of malignant cells. However, there are no 

commercially available methods that specifically sort particles by their deformability.   

 

Results  

Particle motion in microchannels depends on shape. In Stokes flow, the linearity of the 

equations of motion leads to the absence of lift forces on particles with sufficient rotational 

symmetry (such as the ellipsoids investigated here) 49. Therefore, one must rely on the effects of 

inertia 26, particle deformability 38, or the non-Newtonian nature of the fluid itself 50 to establish 

shape-dependent lift-induced positions of equilibrium within a microchannel. For common 

applications that are concerned with rigid particles in a Newtonian fluid such as water, one relies 

on inertia alone. 

With finite inertia, ellipsoid particles migrate to inertial focusing positions within 

microchannels and undergo different modes of rotational motion. We classified the rotational 

configurations qualitatively as “in plane rotation” when the particle rotates around the y-axis, 

“out of plane rotation” when the rotation contains components around the x-axis and “no 

rotation” when the particle does not rotate while moving downstream (Fig. 2A). At low particle 

Reynolds numbers (Rp) (calculated for a sphere with the same volume) since the particles are not 

focused, their rotation is random and rather than a pure “in plane rotation”, “out of plane” or 

“no rotation” mode, they exhibit a mix of rotational behaviors. If the particle rotates in any 

manner other than a pure “in plane” mode, its rotation is classified to be “out of plane”. At Rp of 

0.3, 52% of particles exhibit some out of plane rotational behavior which occurs more often 

compared to 39% that exhibit pure “in plane” rotation. As the flow rate and particle Reynolds 
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number (Rp) increases from 0.3 (Q=20 µL/min) to 0.75 (Q=50 µL/min), the frequency of “in 

plane rotation” increases with a corresponding reduction in the other two modes. These 

differences can be explained since at higher Rp, more complete migration to the dominant 

focusing positions on the long edges of a rectangular microchannel are expected. Along these 

edges, particles rotate around the axis of highest vorticity, perpendicular to this long face, 

leading to a more uniform “in plane” rotational motion. For these well-focused particles the 

uniform behavior for rotation is a tumbling motion, or periodic flipping around the long axis that 

is not rotationally symmetric. Rotational motion of ellipsoidal particles in flow has been 

previously observed by Jeffery and others 51–53. Unlike our results, Jeffery did not predict a 

single axis of rotation but an infinite set of stable orbital motions that depended on initial 

conditions. However, addition of a little inertia for the fluid or particle has been suggested to lead 

to the precession of particle orbits to a stable rotational axis in a shear (or parabolic flow) 54. Our 

results confirm these predictions through the convergence of rotational modes to a single “in 

plane” mode when increasing Rp from 0.3 to 0.75. 

The period of rotational motion, T, is dependent on particle shape. Jeffery (1922) 

demonstrated that an isolated inertialess ellipsoid in an unbounded linear shear flow field 

undergoes a periodic closed orbit around the vorticity axis 51. The orbit period of an ellipsoid 

with aspect ratio R is given by 

)
R

R(Torbit
12

+=
γ
π  

where γ is the local shear rate. The experimentally observed rotational dynamics of ellipsoidal 

particles (aspect ratio, R =1:3 and 1:5) in a channel flow follows a similar dependence of 

rotational period on ellipsoid aspect ratio, 
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with an increasing rotational period for longer particles (Fig. 2). 

Since the Jeffery orbit is distinctive, the reproduction of similar trends in simulation is a 

strong indication that the correct dynamics have been captured. From our simulations, the 

trajectories of particles (center of mass) at different initial positions converge to an equilibrium 

position. The trajectories oscillate when particles are close to the wall, which is due to the 

rotation of the ellipsoidal particles (Fig. 3). The period of oscillation predicted by our simulation 

and the Jeffery formula for particles with aspect ratio 1:3 (Fig. 2C, E) and 1:5 (Fig. 2D, F) in 

channels with aspect ratios of 0.64 (Fig. 2C, D) and 0.74 (Fig. 2E, F) largely agree with each 

other and the experimental results, suggesting only small contributions from finite inertia and the 

curvature of the velocity field. Note that a larger deviation from the Jeffery predictions is 

observed for particles with a 5:1 aspect ratio. It is likely that for these longer particles, the 

gradient in the velocity in our channels plays a larger role in rotational dynamics. Unlike for 

Jeffery orbits, in our system, the shear rate is not identical throughout the flow, but reverses 

direction at the channel centerline and increases towards the wall. The longer 5:1 particles are 

exposed to regions of flow reversal (relative to the particle frame of reference) across the channel 

centerline from where focusing occurs. These particles are observed to rotate slower (longer 

period of rotation) than Jeffery predictions that rely solely on the local shear rate at the particle 

center (Fig. 2G). 

The dominant tumbling rotational motion suggests a mechanism by which particles of 

differing aspect ratios focus to unique positions within a channel cross-section. Since the particle 

shape is not spherical, when the major axis rotates to the orientation perpendicular to the plane of 

the wall, wall effect lift increases substantially due to the closer distance, acting to push the 

particle away from the wall. When the major axis aligns to the flow, wall effect lift decreases, 
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and the particle migrates back towards the wall. Relative dominance in the lift away from the 

wall vs. towards the wall integrated over time as the particle tumbles would suggest average 

equilibrium positions closer to the centerline for higher aspect ratio particles. That is, wall effect 

lift away from the wall is strongly dependent on distance from the wall and becomes much 

stronger than the balancing shear-gradient lift in the near wall region which rotating ellipsoids 

can sample. 

Particle shape influences the location of the steady-state focusing position. Particles with 

different shapes have different inertial equilibrium positions. This variation in equilibrium 

position is seen in histograms of particle lateral position for channels with aspect ratios of 0.53, 

0.64 and 0.74 and flow rates from 20 to 110 µL/min (Fig. 4, Fig. 5). The possibility of particle 

separation at each condition is better characterized through plotting a parameter related to 

differences in equilibrium position and the variation in this position for the population of 

particles, Separability Factor  (SFType1-Type2) (Equation 1). Practically, SFType1-Type2 indicates 

the expected separation performance and was calculated as the difference in average focusing 

positions (Xeq) between two particle shapes, normalized by the average of their standard 

deviations (Fig. 6): 

)SD,mean(SD
XX
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ba

ba
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−
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In 35 µm wide channels (channel aspect ratio closer to 1), at Reynolds numbers higher than 

10, inertial effects start to concentrate both spherical and rod-shaped particles (Fig. 4A). Spheres 

start to accurately focus and occupy four focusing positions, while rods are largely spread along 

the channel width. As fluid inertia increases (Re=72, Q= 110 µL/min), spherical particles migrate 
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to locations closer to the walls when compared to higher particle aspect ratios (Fig. 4B). 

Additionally, some of the particles are focused to other positions, on the top and bottom faces of 

the channel. The existence of four equilibrium positions, expected for such aspect ratios (0.74), is 

problematic for separation applications. Decreasing channel width from 35 to 30 µm changes the 

aspect ratio of the channel cross-section to 0.64, which leads to migration to only two distinct 

equilibrium positions. At 30 µL/min (Re=21), 1:5 rods were initially separated from spheres and 

1:3 rods (Fig. 3.D); SFSpheres/Rods1:3=0.24, SFRods1:3/Rods1:5=2.26. As Q was increased to 40 µL/min 

(Re=28), both families of rods migrate further away from spheres and from each other (Fig. 3.E), 

suggesting the possibility of a better shape-based separation; SFSpheres/Rods1:3=0.85, 

SFRods1:3/Rods1:5=1.46. As Re was increased further (Re=49, 70 µL/min), rods tended to move 

closer to the walls where spheres are located, reducing the gap between focusing positions (Fig. 

3.F); SFSpheres/Rods1:3=1.05, SFRods1:3/Rods1:5=0.61. Decreasing channel width further to 25 µm, 

aspect ratio 0.53, makes it difficult to uniquely focus all particles. Indeed, even at Re=37 (50 

µL/min), 1:5 rods are still not focused to a unique streamline (Fig. 4H). This result is also partly 

due to the fact that, especially with larger rods, this narrow channel is prone to clogging. These 

results clearly suggest that optimum conditions exist that maximize the distance between particle 

positions and allow for the most efficient particle separation based on aspect ratio. The 

experiments also suggest that above a cut-off Re where particles are already focused, increasing 

Re further will result in the convergence of focusing positions for all three particles to a position 

closer to the wall. This agrees with previous numerical analysis by Di Carlo et al. 55 Wall-

directed shear-gradient lift force increases faster with increasing Re than the balancing wall-

effect lift, leading to a shift in equilibrium position closer to the wall. Convergence of the 

focusing positions for normally segregated shaped particles is likely due to this effect acting 
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more strongly on particles with initial focusing positions further from the wall. 

Spheres with similar rotational diameter predict focusing positions for rod-shaped 

particles. Whatever the channel aspect ratio, experimentally determined focusing positions agree 

best with the hybrid computational method that allows for simulation of Rotating rods. 

Simulations with Aligned rods constrained not to rotate and with the major axis pointed in the 

flow direction exhibit significant differences in comparison with experiments (Fig. 7), with high 

aspect ratio particles occupying equilibrium positions significantly closer to the wall than is 

experimentally observed. These results further implicate strong lift during rotation as responsible 

for shape- dependent differences in focusing. Aligned rods cannot rotate freely following Jeffery 

orbits, in which the rods are periodically pushed away from the wall. Simulations with Spheres 

D=b (spheres with diameter corresponding to the minor axis of the particle) do not match the 

experimental results well either. However, simulations with spheres with diameters 

corresponding to the major axis of the particle (Spheres D=a) align with the experimental results 

much more closely (Fig. 7D-F). This indicates that rod-shaped particles with 180° rotational 

symmetry follow the focusing trend of spheres with similar rotational diameter. These results 

agree with those obtained recently with other shapes and larger dimensions 39, and provide a 

simple approach to model and predict focusing positions for non-spherical particles. Particles 

without this rotational symmetry would be subject to additional non-inertial lift forces following 

the work of Bretherton 49. 

Application to shape-based separation. Using the significant differences in lateral 

equilibrium position emphasized above, we conducted label-free enrichment and collection of 

shaped particles. Fig. 8 illustrates the separation results for several configurations of SAPS 

(shape-activated particle sorting) devices, where the experimental parameters (channel aspect 
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ratio and flow rate) were chosen based on the separability results previously obtained (Fig. 6). To 

quantify the efficiency of separation, we report three parameters defined in the methods: 

Extraction Yield (EY), Extraction Purity (EP) and Enrichment Ratio (ER) (Fig. 8D-F, SI movie). 

To better achieve specific separations, we have designed devices with three arrangements of 

outlet resistances, which provide separate relative capture ratios of the fluid at different outlets 

(Fig. 8A-C). 

By tuning device parameters we demonstrate a range of possible separations between 

spheres, 1:3 rods, and 1:5 rods. The SAPS device A, 25 µm wide (ARc = 0.53), with identical 

fluidic resistance for each outlet is shown in Fig. 5A. For this design most spheres and 1:3 rods 

exit from outlet 1, while 1:5 rods are predominantly captured from outlet 2 (Fig. 8D). In 

agreement with SF measurements for these flow conditions (Fig. 6), 1:5 rods were found to have 

a high extraction yield in outlets 2 and 4 (86% of 1:5 rods) with up to 90% purity, compared to 

1:3 rods and spheres which were mainly collected together in outlets 1 and 5 (83% of all spheres 

and 70% of all 1:3 rods injected). To achieve another scenario of separation and with a higher 

flow rate, we tuned the experimental conditions to a channel aspect ratio of 0.64, and a flow rate 

of 80 µL/min (SAPS device B, Fig. 8B) and we modified the ratio of fluidic resistance between 

the different outlets (α1:2= 3/4, α1:3= 1/2). Contrary to before, we achieved excellent extraction 

yield for spherical particles (85% of all spheres were found in outlets 1 and 5), while both types 

of rods were collected together (90% of all rods are extracted in outlets 2 and 4), leading to an 

extraction purity of 96% for spheres (Fig. 8H, K). These results are still in agreement with SF 

values. Decreasing the flow rate to 60 µL/min in a 30 µm (ARc = 0.64) channel allows for 

separating all three types of particles while slightly decreasing the purity of spheres, as predicted 

by SF measurements. The presence of 7 outlets in SAPS device C (Fig. 8C) provides a more 
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accurate separation between streamlines (SAPS device C, α1:2= 3/4, α1:3= 1/2, α1:4= 1/4). Indeed, 

we isolated 88% of spheres in outlets 2 and 6 with 87% purity, 49% of 1:5 rods in outlet 4 with 

78% purity, and more interestingly 77% of 1:3 rods with 80% purity (Fig. 8I, L). 

We have also examined and confirmed the possibility of separation of 3 µm spheres and 3 

µm derived-ellipsoids with three different aspect ratios by applying the same concept as was 

used for separating 6 µm beads with slightly modified parameters. Using SAPS device D (Fig. 9 

A), we collected spheres in outlets 1 and 5 with 90% yield (EY) and up to 90% purity (EP), as 

well as 81% yield of 1:3 rods in outlets 2,3 and 4, and 97% yield of 1:5 rods in outlets 2,3 and 4 

with up to 88% purity (EP) of the two types of rods (Fig. 9B-D). 

Application to passive and high-throughput yeast sorting. Shape-based separation using 

inertial effects allows for yeast cell sorting and cell cycle synchronization. Understanding of the 

cell cycle is the subject of current research, which is often explored using yeast cells (S. 

cerevisiae) because of the well-known genetics and characteristic shape changes; budding yeast 

cells elongate from a sphere to a bispherical twin or a larger aggregate 2,56. To understand gene 

expression profiles specific to each of these stages, it is necessary to synchronize the yeast cell-

cycle. This synchronization at given cycle-stages is generally done (i) by using chemicals 

(metabolic agents) which disturb the cell physiology or using a temperature increase, or (ii) by 

size-based elutriation, which isolates the smaller cells 57. The first methods interfere with the cell 

metabolism, while elutriation only provides young cells not yet in active division 58. Thus, there 

remains a need for a non-invasive and drug-free continuous method for shape-based yeast cell 

sorting and synchronization 31. 

Using the SAPS device C previously described (ARc = 0.64, 7 outlets with α1:2= 3/4, α1:3= 
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1/2, α1:4= 1/4), we conducted yeast sorting at various flow rates. Fig. 10 summarizes the 

separation results obtained at 60 µL/min, with pictures showing outlet contents. Non-dividing 

singles were found to have a high extraction yield in outlets 2 and 6 (90% of small singles and 

91% of large singles are recovered in these outlets), with up to 94% purity, while budded yeast 

cells were mainly collected in outlets 3 and 5 (54% of budded yeast, with up to 31% of purity, 

compared to 6.6% purity at the inlet). The higher throughput of our SAPS device (60 µL/min i.e 

1500 cells/s compared to 100 cells/s in previous work 31) could be further increased an order of 

magnitude by increasing cell concentration and by parallelization of the focusing channels, as 

demonstrated previously in our laboratory 36. Purity and enrichment especially needed for this 

synchronization application could be improved by cascading devices in series. 

 Application to passive and high-throughput enrichment of malignant cells by size and 

deformability in pleural fluids. This work is the first of its kind to demonstrate passive, simple, 

continuous and high-throughput approach for automated processing of large volumes of bodily 

fluids for rapid label-free fractionation of cells based on deformability and size. The approach 

integrates several critical advances in microfluidic automation to yield a low-cost instrument that 

will expand the use of and improve the accuracy of companion diagnostic assays: (1) the 

microfluidic cartridge will accept cells from a pleural fluid sample directly after erythrocyte-

specific lysis (Fig. 11, Step 1), without multi-step antibody labeling and washing procedures, and 

deform them at high speeds in a continuous flow using hydrodynamic stretching technology (Fig. 

11, Step 2). The method operates by focusing cells into a continuous stream using passive 

inertial focusing 33,48, and cells are subsequently hydrodynamically stretched in an extensional 

flow, achieving large strains (greater than 50%). The magnitude of cell deformation is defined by 

each cell’s intrinsic physical properties (or deformability). (2) The stretched cells are then 



! 117 

passively sorted, based on their rotational diameter (deformed diameter), into a number of outlets 

by exploiting previously demonstrated inertial microfluidic techniques to separate by shape 59 

(Fig. 11, Step 3). The differences between the deformed diameter of cells are large enough to 

enable an efficient, continuous, passive separation downstream. These channels will be designed 

with recent insights into how inertial lift forces act on rotating non-spherical (deformed) cells 

and particles 59. This technique not only enables sorting of malignant cells in pleural effusions 

but could potentially fractionate different parts of a malignant cell population based on their 

deformability--potentially separating cells by invasiveness 60. 

The existing systems are not capable of sorting stiff and deformable cells with the same size, 

while changes of stiffness of single cells is shown to indicate malignancy. However, our system 

applies large strains on cells, magnifying the effect of cell deformability on its final effective 

diameter, based on which passive sorting can be more easily achieved. Our system can be 

fabricated with the simplest standard 2D microfluidic fabrication techniques, which decreases the 

time and cost of fabrication drastically. The final product will be a separation cartridge that is 

easy to use. The cartridge is compatible with standard 24-well plates and the sorted fractions of 

the sample can be easily captured for further analysis. There is no need for any external set-up 

(including electrodes, optical systems, or cameras) to induce cell separation, as opposed to 

"active" methods. Our final system will be as simple as possible, merely relying on geometric 

design and presence of a fluid driving force. This is particularly important in practice since it 

enhances the reliability of the system, and makes it easy-to-use. As the system is extremely 

simple (2D design structure, no external forces) and relies solely on geometry of the device and 

the flow rate, with no extra components involved, it is also very robust. As this system relies on 

inertial effects in the system, it usually works at relatively high flow rates, which makes it quite 
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high-throughput, especially compared to DLD and HDF techniques which require particularly 

low flow rates.  

 Our approach enables automated processing of large volumes of bodily fluids for rapid label-

free isolation of larger deformable cells into a small end volume. The proposed approach uses 

several recent discoveries in microfluidic automation to yield a low-cost instrument that can 

improve cytopathology diagnostics and advance targeted drug therapies by providing purified 

cell populations of interest. The cells are first deformed using deformability cytometry (DC), 

although other methods of deforming cells may be used in this first step. Single cells in the fluid 

are aligned into a continuous stream and are consequently stretched by applying large strains 

(greater than 50%) and strain rates (in kHz range). The ratio of cell deformation under similar 

force is defined by cell stiffness. The stretched cells are then separated based on their effective 

diameter (deformed diameter) into a number of outlets. The differences between the deformed 

diameter of cells are large enough to enable an efficient, continuous passive separation 

downstream. We believe that this technique not only enables sorting out of malignant cells in 

pleural effusions, but could potentially fractionate different parts of malignant cell populations 

based on their deformability. Beyond pleural effusions, stem cells, leukocyte sub-populations, 

and other cells or particles can be sorted based on mechanical properties for uses in improved 

diagnostics or research. 

 Our technique takes both cell size and stiffness into account and enables rapid and selective 

sorting of cells of interest with high sensitivity and specificity. We achieve this, using inertial 

focusing of shaped particles and introducing adjustable fluidic resistances which are adjusted to 

extract the desired cell population fractionation. We first optimize the hydrodynamic forces that 

result in maximum differences in the deformed cell diameter (equivalent to the rotational 



! 119 

diameter) of malignant cells compared to the background leukocytes. Second, we use inertial 

focusing to sort cells of different deformed diameter with high purity. Inertial focusing in a 

straight channel has been previously established for separation of cells and particles based on 

their size and shape.  These studies show that the lateral position of cells in the channel is 

directly related to its rotational diameter. By tuning channel geometry and flow conditions 

different fractions segregate within the channel and can be isolated downstream in different 

outlets.  

High-throughput uniform single cell stretching. Inertial focusing is used to focus cells to a 

3D position as an alternative to hydrodynamic focusing. Operating in inertial regime (channel 

Reynolds number Re ~ 100) ensures positioning cells to the same streamlines prior to stretching. 

This ensures that each cell, traveling at the same downstream velocity, experiences equivalent 

three-dimensional force field at the extensional flow region. Cells are delivered at high rates to 

an extensional flow, which is used to stretch the cells in suspension to high strains and strain 

rates that create significant deformations. Cell viscoelastic properties determine to what extent a 

cell deforms. These large strains (greater that 50%) on the cells, allow for significant differences 

in cell deformation across cell types. As a first step we use inertial focusing, a sheathless 

alternative to hydrodynamic focusing, to focus cells to a position in the cross-section of the flow. 

Inertial focusing ensures positioning of cells to the same streamlines prior to stretching, resulting 

in uniform velocity, and delivers them to a three-dimensional fluid force field (Fig. 11, Step 2). 

This extensional, stretching flow exacts large strains on deformable cells. Cell viscoelastic 

properties determine to what extent a cell deforms. The ability to exact strains as large as 50% of 

the cell diameter provides a large dynamic range to distinguish between cells by deformability. 

For example, in preliminary studies, we found that Jurkat cells (a leukemia cell line) possessed a 
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~2-fold larger deformed diameter than WBCs, while only a 40% increase in resting diameter 

(before hydrodynamic stretching) was observed. In general, deformed diameter was a better 

metric than resting diameter for discriminating WBCs from a host of cancer cell types that can be 

present in pleural fluids (Fig. 13).  Importantly, we make use of these larger differences in 

deformed diameter in our passive separation approach. 

Automated easy-to-use processing of samples. The chip can be integrated with a custom-

made pressure system that continuously delivers samples from large volume containers in a high-

throughput and programmable manner.   The instrument will be ‘plug-and-play’, with a few 

simple steps: (i) obtain the sample from the patient and place it in a pressurized glass bottle, (ii) 

plug in the chip and (iii) press play on the custom software.  

Passive cell sorting based on deformed diameter.  Differences in inertial focusing 

equilibrium positions (position in a channel’s cross-section) based on size have been used 

extensively to separate cells and particles. Strategic design of the channel geometry including the 

placement of outlets allows size-based fractionation. Recently the Di Carlo laboratory has shown 

that for non-spherical particles, separation based on shape is also feasible. These previous studies 

showed that the equilibrium position of cells in a channel is directly related to its rotational (or 

longest) diameter. For ellipsoidal deformed cells, the rotational diameter corresponds to the 

deformed diameter. We have previously reported 90% purification of particles with a two fold 

difference in their mean rotational diameter (Fig. 15C) suggesting the ability to obtain high 

purity malignant cells from pleural fluids based on the even larger differences in deformed 

diameter. The feasibility of this approach is further supported by the observation that deformed 

cells retain their deformed shape 3-5 mm downstream following intial deformation (Fig. 14).  
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Alternative sorting method (Dean flow-based sorting). Instead of a 5 mm long straight 

channel for focusing deformed cells, Dean flow, a secondary flow perpendicular to the primary 

flow direction induced by channel curvature in inertial flows, can be used to sort cells of 

different effective diameters within a shorter distance (<1 mm) (Fig. 15B).  This secondary flow 

was previously found to apply a drag force to flowing particles, and alter their position in the 

presence of other forces (eg. inertial forces) in the channel. The Dean drag scales as 

!!~!!!! !!!!!!! (!: fluid density, !! :maximum channel velocity, !: particle diameter, !! : 

hydraulic diameter and ! : radius of curvature of channel), where !! = 2!ℎ/(! + ℎ) (w: 

channel width, h: channel height). The balance between inertial lift and Dean drag forces 

determines the equilibrium position of the particles in channels 26. 

  We have successfully shown separation of softer Jurkat cells (median deformed diameter 

~27 µm) from stiffer 4% paraformaldehyde fixed Jurkats (median deformed diameter ~17 µm) 

into two individual streams using Dean flow (Fig. 15D); however, initial purity is not at as a high 

as a level as in straight inertial separators. 

Depending on the cell size and fractionation of interest, channel geometries and flow rates 

and configuration of outlet resistances can be optimized. Histograms of particle lateral position 

in the channel at different conditions (channel size and flow rate) could serve as experimental 

methods to optimize separation while numerical simulations could provide useful 

approximations to predict a particle’s lateral position.  

For the Dean flow implementation, in our experiments we found the device with channel 

width, W= 60µm and channel height, H= 30µm at Q=900 µL/min with curved channel of 900µm 

inner diameter and 1200µm outer diameter that has 4 outlets with equal resistances is the best 
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device to separate softer Jurkat cells (median deformed diameter ~27 µm) from stiffer 4% 

paraformaldehyde fixed Jurkats (median deformed diameter ~17 µm) (Fig. 15D).  

 

Discussion 

We have demonstrated that the inertial separation of particles with different shapes is 

possible and tunable with channel geometry and flow conditions. This work is the first of its kind 

to demonstrate a practical solution to continuously filter particles that have similar dimensions 

along one axis, but vary along another axis – which cannot be effectively accomplished with 

traditional filtration. The approach is passive, simple and continuous, using only inertial effects 

present in simple straight channels. Other advantages are the absence of any external set-up to 

induce particle separation, as opposed to active methods such as DEP, and increased processing 

rates compared to DLD and HDF techniques which require particularly low flow rates (60 

nL/min 29and 2-3 µL/min 30versus our 40-80 µL/min), since the underlying separation force does 

not increase with flow rate in previous techniques as is the case with inertial separation. 

The predictability of inertial focusing of non-spherical particles is of interest to various 

research areas. There are many arbitrarily shaped particles in biology and industrial processing 

that are counted and analyzed. As an example, the deviation from spherical symmetry has been 

recently demonstrated to result in a considerable increase in cytometry uncertainty. The precise 

alignment of shaped particles by inertial focusing, and especially the predictability of this 

alignment, would help to address this kind of uncertainty and to produce more reliable 

measurements 61. One potential application is the fluidic alignment of bar-coded particles. Bar-

coded particles are fabricated using approaches like stop-flow lithography and used for 
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multiplexed and high-throughput biochemical assays. These particles are usually aligned by 

sheath flow 7 which can lead to unstable focusing, or active guiding rails which complicate their 

integration in microsystems. Inertial effects may enable precise control of the alignment and 

focusing of bar-coded particles for the optical reading of their patterns. Similarly, our results 

suggest design criteria, since although particles rotate in our channels, maintenance in a 

relatively fixed orientation for a longer period needed for reading can be achieved by increasing 

the particle aspect ratio. Another application is the sorting of microalgae prior to cytometry, as 

phytoplankton possesses a large variety of shapes and sizes 5,6. Non-spherical objects rotate and 

translate vertically in an oscillatory pattern in the channel and depending on their initial angle, 

these organisms with the same length may pass through the interrogation region at different 

angles, causing different scatter signals. Shape-based separation prior to interrogation would 

allow a more effective identification of marine microorganisms in water. 

More interestingly, inertial shape-based separation is possible for a large range of particle 

sizes. The differential focusing of larger non-spherical particles (up to 100 µm) was shown 

previously39. Focusing of particles as small as 2 µm was also demonstrated in our lab 25, while 

particles smaller than 2 µm require higher flow rates and pressures, necessitating materials with 

higher bond strengths, such as Thermoset Polyester (TPE) 62. The possibility of separating 2-3 

µm spheres and rods as demonstrated here opens a new range of applications in separation of 

bacteria to synchronize populations at different stages of cell growth. Depending on the stage of 

the cell cycle, rod-like bacteria (e.g. bacilli) can up to double their length while maintaining the 

same short dimension. Enrichment of these bacteria by life-cycle stage can avoid cell-cycle 

dependent noise, and aid microbiologists in synchronizing a population to better understand 

population dynamics, environmental effects leading to desynchronization, and stochasticity in 
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single-cell behavior 63. New applications may also be targeted outside of biotechnology in 

separation of cement microparticles into pure fractions. Cement strength and stability are 

critically linked to particle shape and size. An approach for filtration of highly defined particles 

without clog-prone filters would aid in the development of optimized cement formulations - 

saving material costs for various construction applications. 

We have performed numerous experiments with live and fixed cell with a variety of flow 

conditions and channel geometries in the sorting region. We have assessed the feasibility of 

deformability-based separation for fixed and live cells. We have previously tested a variety of 

outlet configurations and identified the critical parameters that can be adjusted for optimal 

separation.  

Our next steps are to further demonstrate this sorting approach with other cells and 

manufacture the final cartridge for clinical studies. 

Gathering data on deformed diameter for model cell lines vs. WBCs over a range of 

hydrodynamic stresses to identify maximum differences in rotational diameter achievable. With 

our analytical instrument, the deformability cytometer, we obtained the deformed diameter of 

many types of cells (including leukocytes, leukemic cell lines, and carcinoma cell lines) using a 

single operating condition (Fig. 13).  In our initial results we were able to obtain up to a 2-fold 

increase in deformed diameter.  Here, we propose to expand the range of hydrodynamic stresses 

applied to identify conditions leading to maximum differences in deformed diameter between 

leukocytes, model mesothelial cells, and a panel of cell lines representative of the cancer types 

that disseminate into pleural effusions.  Our goal is to achieve a greater than 3-fold increase in 

deformed diameter which, based on our initial separation data (Fig. 15C), is expected to bring us 

above a 40% of malignant cell purity threshold for the majority of pleural effusions which have 
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initial malignant cell purities that are >5% 64.  We expect that additional increases in deformed 

diameter are achievable with increasing fluid stresses and shear rates, as others have shown shear 

rate-dependent differences in deformability for malignant cells and healthy cells 65.  

The hydrodynamic stress applied to single cells at the extensional flow junction relates to 

the initial fluid velocity prior to reaching the junction. This velocity is a function of channel 

dimensions as well as the driving volumetric flow rate. We will systematically vary (i) channel 

width, (ii) channel height and (iii) flow rate to identify conditions that result in maximum 

differences in the deformed diameter of cell populations of interest.  It is possible that higher 

flow rates will result in larger deformed diameters for both cell populations; however, 

deformation may also diverge between cell types as larger strains could depend on different 

cellular properties such as nuclear viscoelasticity vs. cytoplasmic cytoskeletal properties for 

smaller strains.  Measurements of deformed diameter will be taken both at the stretching junction 

and 5 mm downstream of the junction using our high-speed microscopic setup. We plan to place 

sorting structures (i.e., outlets) at approximately this distance to account for the potential for cell 

relaxation as well as provide an adequate length for inertial focusing to occur. The base chip 

design is 60 µm wide and 30 µm tall at the extensional flow junction with an operating flow rate 

of 900 µL/min. Channel height will be set to maintain inertial focusing and allow for cells within 

pleural fluids to pass easily; however, we will evaluate channel widths between 50 and 100 µm, 

and flow rates from 600-3,000 µL/min.  The flow rate should be high enough to operate in the 

inertial regime, (10<Re<200). For these studies we will use the panel of cell lines shown in Fig. 

12, including lung and breast adenocarcinoma lines along with leukocytes.  The mean deformed 

diameter ratio between the cell lines and leukocytes will be our metric which will be evaluated 

with a goal of a 3-fold difference to enable pure separations.  
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Optimizing the design of sorters to maximize separation based on combination of cell size 

and deformability. The main platform of the resistance-based sorting section is composed of: (i) 

a simple straight focusing channel, 3-5 mm in length (enough for lateral focusing of cells). We 

have confirmed that cells retained their deformation 5mm downstream of the deforming region 

of the device (Fig. 14). (ii) a gradually expanding region, which maintains focused particles in 

the focusing streamline while enhancing the differences in their equilibrium lateral positions 

compared to the straight portion. (iii) Several branched outlets with fluidic resistors. Each outlet 

has a serpentine channel as a fluidic resistor to precisely configure the fraction of the cells that 

will be collected from each outlet (by tuning the ratio of outlets fluidic resistances, we can 

collect more or less of a given stream). The serpentine channels also minimize the flow ratio 

distortion due to small variations in the outlet fluidic resistance caused by possible variation in 

tubing length or small debris. In order to achieve a specific mode of separation, a) channel width 

and height, b) the number and c) relative resistance of outlets can be systematically adjusted, 

providing a variety of relative capture ratios of the fluid at different outlets. 

We recently demonstrated our ability to sort particles of different aspect ratios, due to their 

inertial migration to different lateral positions (equilibrium positions), Xeq, in a straight channel. 

This sorting system (Fig. 15A) is composed of: (i) a straight inertial focusing channel, 3-5 mm in 

length (enough for inertial lift to lead to focusing of cells)); (ii) a gradually expanding outlet 

region (2º expansion every 100 µm downstream distance), which maintains focused particles in 

focusing streamlines while enhancing the differences in their lateral positions compared to a 

straight expansion 37; and (iii) several outlet branches with fluidic resistors. Each outlet has a 

serpentine channel as a fluidic resistor to precisely configure the fraction of the flow volume 

(and cells) that will be collected. By tuning the ratio of outlets fluidic resistances, the sorting 
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fractions can be adjusted. The serpentine channels also minimize the flow ratio distortion due to 

small variations in the outlet fluidic resistance caused by possible fabrication defects or small 

debris.  

Depending on the final deformed shapes of the cells we will adjust our separation cut-offs 

with a goal of collecting at least one fraction with greater than 40% purity of malignant cells for 

pleural effusions with down to 5% initial malignant cell populations.  These cut-offs can be 

adjusted by modifying, a) channel width and height (Fig. 15A, i), b) the number and c) the 

relative resistance of outlets, providing a variety of relative capture ratios of the fluid at different 

outlets to achieve final chip designs. The cut-off positions will be informed by high-speed 

imaging of the equilibrium positions of the deformed cells.  As shown in Figure 15, we will 

incorporate 7 outlets at each of the two exit channels downstream of the stretching region in the 

device. The outlets are symmetric in their resistances, meaning that the sample will be 

fractionated into 4 distinct populations. The resistances and channel width will be designed such 

that the middle channel will contain few cells, acting as the waste outlet for the largest fluid 

volume and leading to concentrated cell populations in the other outlets. In order to increase the 

flexibility of the separation and achieve additional fractions that may depend on the degree of 

malignancy, we also plan to arrange the resistances of the two opposite 7-outlet branches 

differently, keeping the total resistance the same, but leading to different cut-off points for each 

fraction (Fig. 16B). Importantly, this will result in two different sets of three (or 6 distinct 

fractions) sample fractions, which can provide flexibility in achieving high purity even when 

processing unknown pleural fluid samples in future clinical studies.   

We will design cartridges for sample loading and cell release in consultation with our 

clinical collaborators and their staff to obtain user feedback at an early stage and minimize 
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design iterations and costs.  Initial interactions have motivated interfacing with a well-plate 

format to ultimately improve integration with downstream molecular assays and companion 

diagnostics (Fig. 16).  

 

Materials and Methods 

Microfluidic device fabrication and geometry. Microfluidic devices were fabricated using 

common polydimethylsiloxane (PDMS) replica molding processes. Briefly, standard lithographic 

techniques were used to produce a mold from a silicon master spin-coated with SU-8 photoresist. 

PDMS chips were produced from this mold using Sylgard 184 Elastomer Kit (Dow Corning 

Corporation) and a cross-linker to polymer ratio of 1:10. To enclose the channels, PDMS and 

glass were both activated by air plasma (Plasma Cleaner, Harrick Plasma, 500 mTorr, 30 sec) 

before being bonded together. Our primary device was a straight rectangular channel, 4 cm in 

length (a distance expected to be long enough for particles to be laterally focused in their 

dynamic equilibrium positions (Xeq) 66), and with a cross-section of 47 µm in depth by 25, 30 or 

35 µm width (channel aspect ratios, ARc, are therefore 0.53, 0.64 and 0.74 respectively). 

For particle separation, our SAPS device is composed of (i) the previously described 

straight focusing channel, (ii) a gradually expanding region downstream of the focusing channel, 

and (iii) 5 or 7 branched outlets with tuned fluidic resistors (Fig. 10, A-C). Indeed, as previously 

reported a gradually expanding region maintains focused particles in the focusing streamline 

while enhancing their Xeq differences when compared to straight-angled expansions38. The tuned 

fluid resistors in the form of serpentine channels minimize the flow ratio distortion due to any 

small variation in the outlet fluidic resistance (due to small variation in tubing length or small 
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debris). These serpentines also offer the ability to precisely configure each outlet, by tuning the 

ratio of outlet fluidic resistances to collect more or less of a given stream. α represents this ratio 

of outlet flow rates (α1/2=QO1/QO2), which also represents the ratio of outlet fluidic resistances. 

For both geometries, filters located at the inlet prevent channel clogging by aggregates. 

Bead fabrication and injection. 3 and 6 µm spherical beads (Polyscience) were stretched to 

rods with different aspect ratios (R=1:3 and 1:5) (Fig. 1), following the protocol published 

previously by Champion et al. 67. Beads were suspended in 75°C water - hot-water soluble 

poly(vinyl alcohol) (PVA) - to a final concentration of 10% wt/vol, 5% wt/vol glycerol, and 

0.08% wt/vol spherical polystyrene particles). This solution was spread and dried overnight on a 

19 x 27 cm flat surface. The films were then stretched in mineral oil at 120°C on a custom-made 

apparatus, and dried at room temperature for 20 minutes. To recover the rod-shaped particles, the 

films were washed with isopropanol and dissolved in 30% isopropanol/water at 75°C. The 

particles were finally washed 8 times, each time with decreasing amounts of isopropanol, in 

order to remove all PVA from the particle surface. Particle suspensions were injected into tested 

devices, at a maximum concentration of 1x106 beads/mL, using a syringe pump (Harvard 

Apparatus PHD 2000) and a glass syringe (Hamilton), at flow rates Q ranging from 20 to 110 

µL/min. 

High-speed imaging for study of inertial focusing and particle motion. Image sequences 

were recorded 4 cm away from the inlet using a Phantom v7.3 high-speed camera and the 

Phantom Camera Control Software (Vision Research Inc.). Based on these images and using a 

MATLAB custom-built code, the size and center of individual particles were determined in each 

image frame to estimate the average particle equilibrium position (Xeq). Particle motion in 
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channels with 0.64 and 0.74 aspect ratios was also studied through high-speed images, to 

determine and characterize the modes of particle rotation. 

The particle average equilibrium position (Xeq) was calculated by measuring the distance 

between the particle center and the channel wall. Xeq equal to 0% or 50% indicates that the 

particle center is located at the channel wall or the channel center respectively. To obtain 

statistical significance, more than 100 data points were measured for each particle type and flow 

conditions, with less than 1% error for each point due to the resolution of the camera. A 

Separability Factor (SFType1-Type2) was calculated as the difference in average focusing 

positions (Xeq) between two particle shapes, normalized by the average of their standard 

deviations (Fig. 6, Equation 1), and indicated the expected separation performance 

By analyzing high-speed images, the dominant modes of rotation were also determined at 

the end of the channel (Fig. 2A). The observation frequency of each of these modes for ARc = 

0.74 channel is reported at different flow rates (Fig. 2B). The period of the rotation, T(µs), was 

calculated by counting the number of frames required for a particle to make a half rotation. The 

number of frames for a half period was converted to microseconds simply using the frame rate of 

the image sequence and then multiplied by 2 to give the period of a full rotation. 

Simulations. Two methods of simulation were used to calculate equilibrium positions for 

shaped particles. (1) To simulate steady-state focusing positions, we used a numerical model that 

solves the 3D incompressible Navier-Stokes equations in the reference frame of a spinning 

particle 55,68. For these simulations, while the position of the particle is fixed, the dynamics of the 

system are updated to achieve force- and torque-free conditions for the particle (i.e. the steady-

state behavior). Using this method, we conducted a series of simulations for various particle 
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positions along the short axis of the channel (at z=0) which yielded the steady state lateral force 

for a particle held to each particular position. Because the rotation rate of the particle is updated 

as a slip condition on the particle surface, only particles rotationally symmetric about the 

vorticity axis of the flow (e.g. spherical particles, and ellipsoids rotating around their rotationally 

symmetric axis) can be accurately simulated. Therefore, for ellipsoid particles with 1:3 and 1:5 

dimension ratios that are experimentally observed to prefer a “tumbling” motion, we could only 

simulate horizontally-aligned positions with no rotation. For both spherical and ellipsoid 

particles the position where the lateral force curve crossed zero was interpolated to find the 

dynamic equilibrium position. Simulations for non-spherical particles (aspect ratios 1:3 and 1:5) 

were conducted (i) assuming that particles are rods but do not rotate in the channel (Aligned 

rods), (ii) assuming that particles are spheres with their small dimension (b) as the diameter of 

the sphere (Spheres D=b) or (iii) assuming that particles are spheres with their large dimension 

(a) as the diameter of sphere (Spheres D=a). (2) To predict the particle focusing position of non-

spherical particles for the more accurate case of (iv) taking their rotation into account (Rotating 

rods) and to simulate the dynamics and direction of particle rotation, we used a fully-coupled 

hybrid computational approach that integrates the lattice Boltzmann model (LBM) for the 

dynamics of the fluid and the lattice spring model for the motion of rigid ellipsoidal particles20. 

The LBM is a lattice-based numerical method for simulating hydrodynamic flows governed by 

the incompressible Navier- Stokes equations 69,70. The flow is modeled by simulating the time 

evolution of a density distribution function, fi (r, t) , that describes the mass density of “fluid 

particles” with velocity ci  at a lattice node r  at time t. We use a three-dimensional D3Q19 model 

with 19 velocities 69. The time evolution of the distribution function is governed by the 

discretized Boltzmann equation, fi (r+ ciΔt, t +Δt) = fi (r, t)+Ω[ f (r, t)]  . The collision operator 
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Ω[ f (r, t)] !accounts for the change in fi !due to instantaneous collisions at the lattice nodes. The 

flow parameters are calculated as follows: the fluid density ρ = fii∑ , the momentum

j= ρu = fii∑ ci  , where u !is the macroscopic fluid velocity, and the stresses Π = fii∑ cici . The 

solid particles are modeled by a set of lattice nodes located on the outer particle surface and 

connected by rigid bonds 18. In this representation, we simulate particles as thin solid shells filled 

with a viscous fluid. We verified that for a low frequency particle rotation observed in our 

simulations, the viscous fluid inside particles behaves as a solid and the particles follow the rigid 

body dynamics. Thus, the total particle mass combines the contributions due to the shell and the 

internal fluid 70. To capture the dynamics of the particle motion, we calculate the total force and 

torque on the solid particles due to the fluid and find the translational and rotational displacement 

of the particle by integrating Newton’s equation of motions. We, then, update the positions of 

lattice nodes on the particle surface. 

The lattice models for fluid and solid are coupled through appropriate boundary conditions. 

Specifically, we use an interpolated bounce-back scheme at the moving solid-fluid interface that 

provides second-order accuracy 71,72. We have previously validated our hybrid model in the limit 

of low Reynolds numbers and used it to examine microchannel flows with rigid and compliant 

particles 18–22,73,74. In order to compare the simulations with experimental results, we set the 

dimensions of channel, particle size and Reynolds number equal to the corresponding 

experimental parameters. At the beginning of the simulations, the particles are released at 

different positions and their trajectories are monitored. For a given set of flow parameters, 

particles released at different initial positions migrate to a common equilibrium trajectory. The 

equilibrium trajectory exhibits oscillations due to the periodic rotation of particles. By averaging 
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the trajectories over one oscillation period, we find the mean equilibrium positions of particles. 

The equilibrium orientations of the particles were also predicted through the experiments 

(Supplementary info). 

Experiments and analysis for shape-based separation of beads. For separation experiments, 

a mixture of spheres, rods of 1:3 and 1:5 aspect ratios was prepared and injected into a SAPS 

device to evaluate the separation of different particles from each other. Several flow rates and 

fluidic resistances were tested to maximize the separation, and the fractions of different particles 

collected from each outlet for each of these tested conditions were measured. Separation can be 

characterized using 3 parameters, defined below for a particle type a and an outlet i (Equation 2). 

The Extraction Yield (EY) is determined as the number of particle a extracted in the outlet i, over 

the total number of this particle type injected; EY reports the outlet collection efficiency of a 

given particle type. The Extraction Purity (EP) considers the proportion of particle type a in 

outlet i, relative to the total number of beads extracted in this outlet; EP reports the particle 

composition of a given outlet. The Enrichment Ratio (ER) is defined as the proportion of particle 

a in outlet i to its proportion at the inlet. 

 EY = Na (outleti )
Na (inlet)

! ! EP = Na (outleti )
Ntot (outleti )

!! ! ER = Na (outleti ) / Ntot (outleti )
Na (inlet) / Ntot (inlet)

  (2) 

Application to shape-based separation of yeast. Yeast was cultured in Tryptic Soy Broth 

(TSB) in an incubated shaker (37°C) for one day prior to the separation experiment. The cultured 

suspension was diluted in PBS at a non-limiting concentration of 1.5x106 cells/mL and then, 

similarly to beads, was injected at various flow rates using a Harvard Apparatus syringe pump 

and Hamilton glass syringe. The separation behavior was captured through high-speed imaging, 
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with the content of each outlet being analyzed by immediate counting with a hemocytometer 

(Quick-Read). The morphologies of yeast cells were observed and categorized, depending on 

their cycle state, into (i) small non-dividing singles, (ii) large singles, (iii) budded yeast, (iv) 

doublets, and (v) aggregates which are composed of three cells or more. 

Particle orientation. Our simulation shows two possible equilibrium orientations for the 

particles in channels. One is in the x-y plane (tumbling mode), the other is perpendicular to the x-

y plane (rolling mode). In the tumbling mode the equilibrium position is closer to the channel 

center compared to rolling mode where the equilibrium position is close to the channel wall. 

Based on more simulations, we find that initial orientation, channel width and aspect ratio of 

particle would all affect the final orientation. For instance we have chosen random initial 

orientations for particles with two different aspect ratios is channels with ARc=0.35, 0.64 and 

0.74 (Fig.3). In A and B, W = 25 (ARc=0.35), Re = 37, two particles have the same initial 

orientation (0.866, 0, -0.5), as shown in the figures. Red line denotes trajectory of tip of particle 

(Xtip, Ytip, Ztip) with aspect ratio 1:5, and blue line denotes aspect ratio 1:3. The trajectory 

shows the motion of ellipsoidal tip with respect to the center of mass (XCG, YCG, ZCG). The 

blue line will equilibrate into a repeating circle at z = 0, so final orientation of particle of aspect 

ratio 1:3 is in the x-y plane without z component (tumbling mode), while final orientation of 

particle of aspect ratio 1:5 is (0, 0, 1), which is perpendicular to the x-y. In C and D, W = 30 

(ARc=0.64), Re = 27, initial orientation is (0.866, 0, -0.5). Both particles have the same final 

orientation in the x-y plane. In Fig. 3E and F, W = 35 (ARc=0.74), Re = 71, initial orientation is 

(0.866, 0.433, 0.25) and the final orientation of particles is in x-y plane (z = 0). We also noticed 

that if z component of initial orientation (Pz) is not very close to the 1, particle has large chance 

to set itself in the x-y plane. However, if channel is narrow or aspect ratio of particle is large, 
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particles have a large chance to set themselves perpendicular to the x-y plane. Although these 

simulations give more insight about the behavior of a particle in inertial flow, more independent 

simulations are needed to do a proper statistical analysis and draw clear conclusions on the most 

probable final orientation of a particle. 
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Figures 

 

Figure 1. Focusing of ellipsoids of different aspect ratios to two sets of dynamic equilibrium 

positions. (A) In rectangular channels with a high-aspect ratio, at moderate Re, randomly 

distributed particles are known to focus to two equilibrium regions centered at the long faces of 

the channels. (B) The particle shapes, stretching ratios, and ellipsoid dimensions evaluated in the 

current work. (C) The microfluidic device used for shape-based separation consists of a simple 

straight 4 cm long channel, with W=25, 30 or 35 µm, and H=47 µm. At the inlet (left), particles 
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are initially randomly distributed within the fluid. Equilibrium positions (Xeq) are measured at 

the channel outlet (right), 4 cm downstream of the inlet, where particles are assumed to be 

inertially focused due to the combined effect of FL/W (wall effect lift) and FL/S (shear gradient 

lift). Overlaid pictures (scale bar =10 µm) illustrate particle distribution, respectively at the inlet 

(right) and outlet (left). The images are multiple overlays of frames captured at the channel inlet 

and outlet. 

 

Figure 2. Rotational motion of ellipsoid particles in a microchannel. (A) Three modes of motion 

of 1:5 rods were observed in a channel with aspect ratio (ARc) of 0.74: “in plane rotation”, “out 

of plane rotation” and “no rotation”. (B) As Rp (calculated for a sphere of the same volume) was 

increased from 0.3 to 0.75, the frequency of “out of plane rotation” and “no rotation” modes 
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decreased and most of the particles rotated in plane around the vorticity axis (color legend shown 

in A). The period of rotation from our simulation and the Jeffery formula are plotted along with 

the experimental results for 1:3 (C, E) and 1:5 (D, F) rods in ARc =0.64 (C, D) and 0.74 (E, F). 

Scale bars: 20 µm. (G) Period of rotation (T) normalized by average shear rate, increases as the 

particles get closer to the channel centerline either due to an increase in particle length or 

decrease in channel width. The normalized value of period is calculated by T*Uavg/(W/2) where 

T is the period of rotation, Uavg is the average fluid velocity and W is channel width. 

 

 

Figure 3. The trajectory of the ellipsoidal tip (Xtip, Ytip, Ztip) for particles with aspect ratio 1:3 

(blue) and 1:5 (red) with respect to the center of mass (XCG, YCG, ZCG). Random initial 

orientations were chosen to predict the final orientation in ARc=0.35 (A, B), ARc=0.64 (C, D) 

and  ARc=0.74 (E, F). 
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Figure 4. Focusing distributions depend on particle shape, channel aspect ratio, and the Reynolds 

number of the flow. (A, B, D, E, G, H) Histograms of Xeq for spheres, 1:3 rods and 1:5 rods, in 

different channel cross-sections and at different flow rates, indicate that equilibrium positions 

vary for different shapes: (A, B) ARc = 0.74, Q = 20and110µL/min,(D,E)ARc=0.64, 

Q=30and40µL/min,(G,H)ARc=0.53, Q=20and50µL/min.(C,F, I) Averaged Xeq is plotted for all 

channel geometries and flow conditions tested, with error bars indicating the standard deviation 

obtained from at least 100 measurements. 
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Figure 5. Detailed survey of Xeq for spheres, 1:3 rods and 1:5 rods, in channel cross-sections 

(W=25, 30 and 35 µm) and at flow rates, ranging from 20 to 110 µL/min. Flow rate and channel 

cross-section greatly influence the average equilibrium position of shaped particles 

Figure 6. Demonstration of shape-based separability by inertial focusing. (A, B, C) To better 

interpret the results in view of separation applications, we defined a Separability Factor for 

every two particle types as the difference between their average focusing position divided by the 

pooled standard deviation of each type. We represented how a Gaussian fit to two frequency 

plots would look like when the Separability Factor is 1 (B) and 2 (C) respectively. (D, E, F) 

Separability Factor obtained for 25 (D), 30 (E) and 35 µm (F) wide channels, at various flow 

rates. 
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Figure 7. Simulations allow accurate prediction of focusing positions for shaped particles. (A, B) 

Simulation result and streamlines for flow in the reference frame of a focused rod (A) and 

spherical (B) particle in a straight channel. (C) Simulations are performed considering particle 

shape and aspect ratio with (i) the particle rotating (rotating rods), (ii) constraining the rod from 

rotation (aligned rods), and also considering spheres with diameters corresponding to the rods’ 

(iii) longest (Spheres D=b) and (iv) smallest (Spheres D=a) dimension. (D, E, F) Comparison of 

equilibrium positions away from the wall, obtained by experiments and numerical simulations, 

for (D) ARc = 0.53, Q=50 µL/min, (E) ARc = 0.64, Q=40 µL/min and (F) ARc = 0.74, Q=110 

µL/min. 
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Figure 8. Separation results for 6 µm spherical and ellipsoid particles. The collected ratio of 

particles is shown at each outlet, considering the Extraction Yield EY, the Enrichment Ratio ER 

(G, H, I), and the Extraction Purity EP (J, K, L). Each value shows the mean ± SD from three 

independent experiments. Three configurations of the SAPS device are considered (A, B, C) and 

stacked pictures of the separation are shown for each configuration (D, E, F) (Scale bar: 50 µm): 

(A) ARc = 0.53, Q=40 µL/min, 5 outlets with equal resistances, (B) ARc = 0.64, Q=80 µL/min, 5 

outlets (O1 to O5) with α1:2= 3/4 and α1:3= 1/2. (C) ARc = 0.64, Q=70 µL/min, 7 outlets (O1 to 

O7) with α1:2= 3/4, α1:3= 1/2, α1:4= 1/4. 
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Figure 9. Separation results for 3 µm spherical and rod-shaped particles. (A) Schematic of SAPS 

device D with W=25 µm, Q=80 µL/min, 5 outlets with α1:2= 3/4 and α1:3= 1/2. The distribution 

ratio of particles is represented at each outlet, considering the Extraction Yield EY (B), the 

Extraction Purity EP (C) and the Enrichment Ratio ER (D). Each value shows the mean ± SD 

from three independent experiments.  
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Figure 10. Yeast cell sorting in SAPS device C (ARc = 0.64, 7 outlets with α1:2= 3/4, α1:3= 1/2, 

α1:4= 1⁄4) at 60 µL/min. (A) A picture of the cells in the inlet. Cells are categorized into five 

groups: small single (blue), large single (red), budded (orange), doublet (green) and aggregate 

(purple). (B) Singles had a high extraction yield in outlet 2, while (C) in outlet 3 purity of budded 

cells increased. (C) The collected ratio of particles is shown at each outlet, considering the 

Extraction Yield EY and Enrichment Ratio ER and (D) Extraction Purity EP. Each value shows 

the mean ± SD from three independent experiments. 

 

 

Figure 11. Enriching malignant cells from pleural effusions for companion diagnostics. Step 1 

Loading: Sample and cartridge are simply loaded into the instrument. Step 2 Deformation: 

Deformability cytometry (DC) device applies large uniform strains on single cells. Step 3 

Sorting: Inertial forces focus cells at different equilibrium positions depending on their 

deformed diameter. Step 4 Companion diagnostic: Large, highly deformed malignant cells are 

enriched into a small volume for analysis.   
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Figure 12. Cell deformability and size are biomarkers for malignant cell populations in pleural 

fluids.  Deformability and size density scatter plots of patient pleural effusion samples (left) and 

cell line models of cancers that disseminate into the pleural space (right): Jurkat (leukemia), 

BCBL1 (primary effusion B cell lymphoma), KMS11 (multiple myeloma), A549 (lung 

adenocarcinoma epithelial cells), MCF7 (breast cancer) and healthy white blood cells.  Data 

collected using deformability cytometry technique. ` 
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Figure 13.  Deformed diameter of stretched cells can be used as a biomarker for enriching 

malignant cells with high purity. Deformed diameter and size of several model cell lines and 

patient samples are plotted (A). The histograms of cell deformed diameters show a significant 

change in malignant cells compared to healthy white blood cells.  Red dashed line is gate used in 

part C, such that less than 10% of WBCs fall within the gate. (B,C) Median values of deformed 

diameter differ to a larger extent between healthy and malignant cells than initial diameter. 
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Figure 14. Cells retain their deformation to a large degree while being focused after stretching. 

Deformed diameter of healthy leukocytes and Jurkats at the stretching region (left) and 5 mm 

downstream (right).  

 

 

Figure 15. A,B) Fluidic resistance-based microfluidic sorters with 7 outlets on each side of the 

extensional flow region. The number and resistances of the outlets can be changed to enable the 

desired sample fractionation. A) Cells can be focused either in a long straight channel or B) in a 

shorter curved channel after deformation. C) We have previously shown the focusing of 6 µm 

particles with different aspect ratios at different lateral positions and their successful isolation 
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with high purity 18. D) Softer live Jurkat cells were successfully separated from stiffer fixed cells 

using secondary Dean flow induced in a curved channel. 

 

Figure 16. One possible design for the separation cartridge. A) Schematic, the cartridge is 

compatible with standard 24 well plates. B) Different arrangement of resistances at the two 

downstream channels enables different sample fractionations) resulting in 6 different sample 

fractions and 2 waste fractions.  

 




