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EPIGRAPH

From the smallest necessity to the highest religious abstraction,

from the wheel to the skyscraper,

everything we are and everything we have

comes from one attribute of man -

the function of his reasoning mind.

-Ayn Rand

To those who do not know mathematics

it is difficult to get across a real feeling

as to the beauty, the deepest beauty, of nature...

If you want to learn about nature, to appreciate nature,

it is necessary to understand the language that she speaks in.

-Richard Feynman
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All natural fluids stratify. Stable stratifications, in which isobars and

isopycnals are parallel, are capable of supporting internal wave motion. Unstable

stratification, in which density and pressure gradients are not aligned, results in

gravity-driven flow. Gravity currents are a subset of these flows in which hori-

zontal density gradients sharpen and propagate horizontally, transporting mass,

momentum, and energy. If the density of the gravity current is within the den-

sity extrema of the stably stratified ambient fluid, it propagates as an intrusion

at an intermediate height. Through laboratory experiments and numerical simu-

lations, this dissertation explores the influence of stratification on the dynamics of

gravity-driven intrusions.
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Intrusions require stable stratification in the ambient fluid, which is capable

of transporting momentum and energy away from the current in the form of internal

waves. We investigate the constant velocity propagation of well-mixed intrusions

propagating into a linearly stratified ambient fluid. Varying the level of neutral

buoyancy, we quantify the corresponding variation in structure, momentum, and

energy of the upstream wave field.

Adjacent stable stratifications of differing vertical density structure neces-

sarily entail horizontal density gradients. These gradients determine the hydro-

static pressure differences driving the ensuing gravity current. We examine the

mid-depth, constant velocity propagation of one linearly stratified fluid into an-

other more strongly linearly stratified fluid. Working from the available potential

energy of the system and measurements of the intrusion thickness, we develop an

energy model to describe the speed of the intrusion in terms of the ratio of the two

buoyancy frequencies.

Distinct from adjacent linear stratifications, adjacent discrete stratifications

may create flow consisting of interleaving intrusions. Single intrusions into a two-

layer ambient fluid are well understood. Limiting our study to an idealized system

of multiple intrusions, we attempt to extend the two-layer model to describe the

interleaving process. We show that this simple extension fails when the average

densities of the two stratifications are unequal, and suggest that this failure is due

to the coupling of interfacial waves across constant density layers.

xxi



Chapter 1

Thesis outline and Scope

This document describes a subset of research projects I have engaged in as

a doctoral student at Scripps Institution of Oceanography. Throughout my tenure,

I have worked on a wide variety of problems, including designing calibration pro-

tocols for glider-mounted oceanographic instrumentation, developing real-time vi-

sualization tools for tow-yo CTD data, conducting in situ measurements of ocean

water viscosity, processing ocean turbulence microstructure data, and developing

and deploying a novel deep sea instrument-mounted video system. However, I feel

my most significant scientific contribution has been to the understanding of buoy-

ancy driven flow, specifically the role of stratification in gravity current dynamics.

This dissertation describes much of that work, focusing on three broad issues: the

generation of waves by buoyancy driven intrusions, the role of stratification in the

intruding fluid, and the interleaving of multiple intrusions.

Chapter 3 describes the generation of internal waves by well-mixed intru-

sive gravity currents propagating at a constant velocity into a linearly stratified

ambient fluid. Internal waves are relevant to intrusion dynamics as upstream den-

sity perturbations change the local pressure differences experienced by the front

and the generation of these perturbations represents a transfer of energy from the

current. A range of intrusion propagation heights is investigated for the conse-

quent effect on the structure, momentum, and energy of the wave field generated

upstream. Measurements of the internal wave field within this control volume are

made from synthetic schlieren laboratory experiments and numerical simulations,

and the rate of energy transfer to upstream waves is calculated from linear theory.

Chapter 4 develops a model for the dynamics of an intrusive gravity current

driven by two adjacent linearly stratified fluids. Ours is the first investigation we

are aware of describing a continuously strafied intrusive gravity current propagating

1
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Table 1.1: Scientific contribution of this dissertation.

Chapter Journal Status Co-Author

3 Journal of Fluid Mechanics To be submitted P. F. Linden

4 Journal of Fluid Mechanics Published
P. F. Linden
D. B. Bolster

5 Journal of Fluid Mechanics To be submitted P. F. Linden

into a continuously stratified ambient fluid. In the spirit of Cheong et al. [6] and

Bolster et al. [4], dimensional and energy scaling arguments form the basis of a

model which is subsequently compared to results from laboratory experiments and

numerical simulations. The role of internal stratification within the front is also

investigated, and intrusion velocity model is adjusted to account for a dependence

on intrusion thickness.

Chapter 5 presents investigations into the interleaving of multiple interfacial

gravity currents driven by adjacent discretely stratified fluids. To the best of our

knowledge this is the first study to address multiple interleaving interfacial gravity

currents. We extend Cheong et al.’s [6] model of a single interfacial current to

a highly idealized case of interleaving interfacial intrusions. Measurements of the

individual current speed from numerical experiments show poor agreement with

the two-layer model. We explain the observed discrepancies between the model

and our observed results.

Chapter 4 has been published as a journal article, and is reproduced here

with minor alterations to improve continuity. Chapters 3 and 5 are intended for

publication, and have been written in the style of stand-alone chapters in prepa-

ration for submission.

All work presented herein is my own, with the exception of numerical sim-

ulations described in chapter 4, which were run by Diogo Bolster, a graduate of

the Linden lab whose tenure overlapped mine for a few months. Though Dr. Bol-

ster ran the simulations, I performed all of the post-processing of the data. All

other numerical simulations described in this work were set up, run, and processed
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solely by me. I also received substantial aid in the execution of laboratory ex-

periments from undergraduate and graduate student volunteers. However, I solely

designed, supervised, and interpreted all laboratory experiments presented in this

disseration.



Chapter 2

Introduction

Density variations in a gravitational field generate motion except in the

special case when the stratification is vertical. Any horizontal variation in density

will lead to baroclinic generation of vorticity (∇p×∇ρ �= 0) and a gravity-driven

flow will ensue.

The most well-known form is a gravity current – a sharp density front

that propagates horizontally transporting mass, momentum, and energy along a

boundary or isopycnal surface. Simpson & Linden [7] showed that a non-uniform

horizontal gradient always sharpen into a gravity current front as the flow evolves

in time. This frontogenesis occurs because the baroclinic torque driving the flow

is proportional to |∇ρ|, and therefore larger density gradients travel more rapidly,

overtaking smaller gradients and sharpening the front.

Gravity currents propagate along a level of neutral buoyancy, an isopycnal

surface of a density equivalent to that of the current. Gravity currents that are

heavier or lighter than the ambient fluid propagate along lower or upper surfaces as

boundary gravity currents. Intrusions are those currents that travel along a level of

neutral buoyancy at an intermediate height within the ambient fluid. Within this

document, intrusions are further divided into interfacial gravity currents (IfGCs)

which propagate along sharp density interfaces (chapter 5), and intrusive gravity

currents (IGCs) which propagate at an intermediate depth within a continuously

stratified fluid (chapters 3 and 4). Schematics of these flows are presented in figure

2.1.

Gravity-driven intrusions exist only in stratified ambient fluids. Perturba-

tions to the stable stratification of the ambient fluid by the intruding fluid have the

potential to propagate away from the intrusion as interfacial or internal waves. In

doing so they extract momentum and energy from the current and modify the local

4
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Figure 2.1: Schematic representations of (top to bottom) boundary, interfacial,
and intrusive gravity currents. The density of the current ρi relative to that of the
ambient fluid ρa, ρL, ρU and the stable density structure of the ambient fluid deter-
mine the type of gravity current produced. Boundary gravity currents occur when
ρi > ρa or ρi < ρa. Interfacial gravity currents require sharp density interfaces in
the ambient fluid and an intrusion density between the densities of the upper and
lower layers ρL > ρi > ρU . Intrusive gravity currents propagate into continuously
stratified environment along an isopycnal where ρi = ρa(zN).
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environment into which they advance. Chapter 3 explores this transfer of momen-

tum and energy, while chapter 5 highlights the effect of modifying the upstream

conditions on the dynamics of the intrusion.

Stratification within gravity-driven intrusions also affects the dynamics of

the flow. Relative to the well-mixed case, vertical density gradients within an in-

trusion necessarily decrease horizontal density gradients across the gravity current

front, (this is not necessarily true for a boundary current). In turn, this decreases

the baroclinic generation of vorticity. This is discussed further in chapter 4.

Intrusions have applications in geophysical, environmental and industrial

flows over a wide range of scales. In the ocean, Mediterranean mode water intrud-

ing into the Atlantic has spatial scales of hundreds of kilometers horizontally and

hundreds of meters vertically. Intrusions along ocean front can occur at vertical

scales of a few meters and propagate for a few kilometers (Georgi [8], Alford et al.

[9]). These intrusions are believed to be responsible for much of the ageostrophic

cross-front transport of mass (Griffiths & Hopfinger [10]). In addition to advect-

ing mass (and therefore momentum and energy), intrusions transport sediments,

nutrients, and biological material. Sharpening density fronts concentrate these

particulates, such as phytoplankton or particulate organic matter in the ocean or

locusts or moths in the atmosphere (Simpson [11]).

Gravity-driven intrusions made world news in 2010 with the eruption of

Eyjafjallajökull volcano in Iceland. Ash from the volcano rose to a level of neutral

buoyancy in the atmosphere as a plume before propagated as a gravity-driven

intrusion advected by atmospheric winds in the troposphere (see figure 2.2). This

disaster had an enormous economic impact, periodically disrupting air travel across

Europe for more than three months.

2.0.1 Previous work

The study of gravity-driven intrusions began with Wu’s [12] work in 1969

on the collapse of a mixed region in a stratified fluid. The authors noted that the

collapse generated internal waves, studied in more detail later by Amen & Max-

worthy [13]. Early experiments of intrusions of constant flux input at their level
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Weather images
Before the National Climate Information 
Centre summarise the weather of 2010 on 
page 43, we take another look at one of the 
major environmental events of the year. 
Eruption of the Eyjafjallajökull volcano in 
Iceland during April and May 2010 (Petersen, 
2010) resulted in disruption to air travel as 
volcanic ash spread into UK and European 
airspace. Here we reproduce a variety of 
images from that event, obtained from the 
ground, the air and from space.

The Eyjafjallajökull ash cloud

Figure 1. A layer of ash is seen from the FAAM research aircraft between the Isle of Man and 
Northern Ireland on 17 May 2010. (© Jeff Norwood-Brown.)

Figure 4. Time-height plot of backscatter intensity 
measured by Lidar at Met Office Exeter on 
16 April 2010. Normal boundary layer aerosol can 
be seen to about 1.2km, with patchy cloud at the 
top of this indicated by strong backscatter (red). 
A volcanic ash plume is detected at about 2.8km 
from 1300 UTC, descending to the top of the 
boundary layer by 2000 UTC. (Crown copyright, 
courtesy Met Office Observations Programme.)

DOI: 10.1002/wea.763

Figure 2. The Eyjafjallajökull eruption plume rises above low cloud on 
17 May 2010. (© Ólafur Sigurjónsson.)

Figure 3. This image from the Terra satellite at 1135 UTC on 15 April 2010 
shows the ash plume reaching the Shetland Islands. (NASA/GSFC, MODIS 
Rapid Response.)

Reference
Petersen GN. 2010. A short meteorological 
overview of the Eyjafjallajökull eruption 
14 April–23 May 2010. Weather 65: 203–207.

Figure 2.2: Image of ash cloud from the eruption of the Eyjafjallajökull volcano
in Iceland showing multiple gravity-driven intrusions spreading from the volcanic
plume, c� Ólafur Sigurjónsson [1].



8

of neutral buoyancy in a continuously stratified ambient fluid were performed by

Manins [14] in 1973, who observed that under these conditions the front propa-

gated at a constant speed. He further showed that this constant speed scaled as

a constant Froude number dependent on the buoyancy frequency of the ambient

fluid and the thickness of the intrusion. A numerical study in by Kao et al. (1978)

[15] yielded similar results.

The first theoretical descriptions of intrusions were of interfacial gravity

currents. In the style of Benjamin’s [5] (1968) work on constant density boundary

gravity currents, Holyer & Huppert (1980) [16] constructed an analytical model by

balancing mass, momentum, and energy in a control volume moving at the speed

of the current. Their model, however, was shown to be accurate only over a narrow

range of parameters by Sutherland et al. (2004) [17], who attribute the discrepancy

to Holyer & Hupperts neglecting of variations in the upstream conditions.

In the laboratory and numerically, intrusions are often studied in the context

of lock-releases, in which a vertical barrier between two fluids of differing stable

stratifications is removed, allowing the baroclinic generation of voriticty to drive an

intrusion of one fluid along an isopycnal of the other. As with unstratified boundary

currents (see Rottman & Simpson [18]), after a brief period of acceleration the

initial constant velocity phase of the resulting flow (see e.g. Lowe et al. [19])

is comparable to a current supplied by a constant flux of fluid as in Manins’

experiments.

Results from lock-release experiments by Britter & Simpson (1981) [20] and

later by de Rooij et al. (1999) [21] hinted at the reason Holyer & Huppert’s model

was not accurate over a wider range. Britter & Simpson showed that when the

current density is the average of the layer densities and the heights of the layers

are equivalent, there is no upstream (in the frame of reference of the current)

disturbance of the interface. Work by de Rooij et al. showed that any break in

this symmetry, either by perturbing the density of the IfGC from the average of

the layer densities or making the layer depths unequal, upstream interfacial waves

are excited by the intrusion.

The first interfacial gravity current model to accurately predict IfGC speed
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over a wide range of intrusion densities and layer thicknesses was constructed by

Cheong et al. in 2006. In the spirit of Yih (1965) [2], the authors calculated the

Available Potential Energy (APE) of a lock release system as the hydrostatic pres-

sure difference between fluids (reproduced formally in chapters 3 and 4). Scaling

the velocity of the current by the APE and fitting the appropriate limits, Cheong

et al. heuristically developed a prediction of IfGC speed that was shown to be

accurate over the parameter space. The authors noted that the amplitude of the

upstream wave was proportional to the departure from the equilibrium conditions

of Britter & Simpsons’s experiments.

In the same year, Flynn & Linden [22] developed the first analytic model to

accurately predict the propagation of IfGCs in a two-layer fluid. Similar to Holyer

& Huppert, the authors employed a Benjamin-style approach, balancing mass,

momentum, and energy over a control volume in which the current was stationary.

Contrary to previous analyses, however, Flynn & Linden included the deflection of

the interface in this balance. Their model admits a physical solution for nearly the

entire parameter space, and explains the limited accuracy of models that neglect

the upstream wave.

A heuristic model similar to that of Cheong et al., was developed by Bolster

et al. (2008) who predicted the front speed of well-mixed intrusive gravity currents

in a stratified ambient fluid of constant buoyancy frequency. The authors scaled

the velocity of intrusions by the Available Potential Energy of the lock-release as

it varied with the level of neutral buoyancy. Extending work by Maxworthy et

al. (2002) [23] on well-mixed boundary currents in a constantly stratified ambient

fluid, Bolster et al. were able to determine the appropriate limits. As with Cheong

et al.’s work, the predictions are accurate over the parameter space.

Ungarish & Huppert (2004) [24] show that the primary effect of linear

stratification in the ambient fluid is to alter horizontal density gradients across the

front, reducing the baroclinic torque available to the flow relative to the unstratified

case. Though boundary gravity currents and gravity-driven intrusions do excite

internal waves in the ambient stratification, they represent an insignificant portion

of the APE (see e.g. Maxworthy et al. (2002) [23], Sutherland et al. (2007) [25],
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Monroe et al. (2009)). This result is reflected in the accuracy of APE-scaled

models, such as Cheong et al., Bolster et al., and chapter 4 of this dissertation.

The significant impact of these waves is instead the modification of the upstream

conditions into which the gravity currents propagate. Supercritical waves displace

isopycnals ahead of the current, modifying the baroclinic generation of vorticity

at the front and thereby modifying the speed of the current. While this has been

shown explicitly for interfacial gravity currents (Cheong et al. (2006), Flynn &

Linden (2006)), it has yet to be proven for intrusive gravity currents.

Using a combination of laboratory experiments and numerical simulations,

this dissertation explores the dynamics of constant velocity gravity-driven intru-

sions in stratified fluids, limiting our focus to intrusions in which the dynamics

are governed by the balance of buoyancy and inertial forces. Chapter 3 reports

measurements of the internal wave field generated upstream of well-mixed intru-

sive gravity currents in a constantly stratified ambient fluid. Chapter 4 describes

the role of linear stratification in both the ambient and the intruding fluid in the

speed of intrusive gravity currents as it relates to the APE of the system and the

resulting front speed. And finally, chapter 5 presents our findings on the front

speeds of multiple interleaving, interfacial gravity currents.



Chapter 3

Intrusion-generated internal

waves

3.1 Abstract

We present an experimental and numerical study of the upstream internal

wave field generated by well-mixed intrusive gravity currents (IGCs) propagating

into a uniformly stratified ambient fluid during the constant velocity phase of

translation. Using synthetic schlieren imaging laboratory techniques and direct

numerical simulations, we quantify the wave motion ahead of IGCs traveling at

various levels of neutral buoyancy within the ambient stratified fluid. We show

that this level of IGC propagation strongly influences the forcing of particular

supercritical long-wave modes, and we estimate the associated momentum and

energy flux into the upstream wave field. The momentum of the upstream wave

field is found to be approximately equal to the momentum within the IGC. The

energy flux into the upstream wave field is found to be five to fifteen percent of

the rate of Available Potential Energy (APE) transfer into the kinetic energy of

the IGC.

3.2 Introduction

Horizontal pressure gradients in a fluid drive flow. Horizontal density gradi-

ents in a fluid subject to only gravitational body forces create horizontal pressure

gradients. Any non-constant horizontal gradient in fluid density drives a gravity or

density current (Simpson & Linden [7]), which takes the shape of a sharply defined

front propagating horizontally along a boundary or an isopycnal in ambient fluid.

11
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These currents are referred to as boundary gravity currents (BGCs) or intrusive

gravity currents (IGCs), respectively, and represent the transfer of the potential

energy stored in horizontal density gradient to the kinetic energy of the propagat-

ing current as the fluid re-stratifies to a stable vertical density gradient. In this

process, energy is also transferred to wave generation and turbulent dissipation.

This study aims to understand the structure and energetics of upstream

internal wave motion generated by high Reynolds number, Boussinesq intrusive

gravity currents in a linearly stratified ambient fluid during the initial constant

velocity phase of propagation. The Reynolds number can be estimated by the

ambient fluid parameters H, the total fluid height, and N =
�
− g

ρ0

∂ρ

∂z
, the buoy-

ancy frequency, such that Reambient = NH
2
/ν; or by the intruding fluid motion

as Reintrusion = U(H2
/2)/ν, where U is the velocity of the intrusion, and ν is the

kinematic viscosity. Boundary gravity currents are considered inertial for Reynolds

numbers in excess of 500 to 1000 [26].

It is convenient to study gravity currents in the context of a lock release in

a rectangular channel, where a vertical gate at Llock initially separates two fluids of

height H and densities ρi of the intruding lock fluid and ρa(z) of the ambient fluid

(see Figure 3.1), where z increases upwards from 0 to the total fluid height, H,

and x increases rightward from the lock endwall at 0 to the ambient endwall at L.

In a channel lock release, cross-channel variations are assumed to be much smaller

than streamwise variations, and the flow is therefore considered two-dimensional.

Prior to the removal of the lock gate, all of the energy in the system is

stored in the potential energy of the hydrostatic pressure difference between the

adjacent fluids. This difference over the height of the fluid determines the initial

available potential energy (APE) per area of the system,

EAPE = g

�
H

0

�
ρi − ρa

�
zdz. (3.1)

The gate is then removed at time t = 0 and these horizontal pressure differences

drive a gravity current into the ambient fluid. If ρi ≥ ρa(z = H) or ρi ≤ ρa(z = 0),

results in a BGC. Alternatively, if ρa(z = 0) < ρi < ρa(z = H), then the resulting

flow is an IGC propagating along the level of neutral buoyancy, the isopycnal where

ρi = ρa(h) (shown in figure 3.1). After a brief period of acceleration, the gravity
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Figure 3.1: Schematic showing (above) the initial conditions of lock-release, and
(below) the resulting flow. At time, t = 0, the lock fluid of density ρi is separated
by a gate from a linearly stratified ambient fluid of density, ρa(z), and buoyancy
frequency, N . Once the gate has been removed, the intrusion travels along the
level of neutral buoyancy, h, where ρi = ρa(z) with velocity U .

current travels at a constant speed, U , until the finite volume of lock fluid becomes

relevant to the flow (Rottman & Simpson [18]).

For a well-mixed gravity current propagating at a constant speed into a

linearly stratified ambient fluid of height H and a buoyancy frequency N non-

dimensional analysis suggest that the current speed be related to these parameters

by a constant Froude number (Simpson [11]),

U = Fr0NH. (3.2)

A study by Maxworthy et al. [23] found that a boundary gravity current of density

ρi = ρa(z = 0) in a linearly stratified fluid travels at Fr0 = 0.25. These findings

were corroborated by Ungarish & Huppert [27] who empirically found Fr0 = 0.266.

Bolster et al. [4] extended this analysis to intrusive gravity currents. The

authors reasoned that an IGC along z = H/2 can be thought of as two symmetric

BGCs, reflected about the the midplane of the experiment, and each in fluid of

depth H/2. In this equilibrium case, U = Fr0
2 NH the authors found that the

Froude number does indeed scale accordingly: Fr = Fr0
2 = 0.125. Expanding

away from the equilibrium case, they noted that the APE of lock releases of a well
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Figure 3.2: Schematic showing the block approximation (following Yih [2]) for
the slumping of the lock fluid at time t. The half-height thickness of the gravity
current was shown to be accurate for well-mixed intrusions into a linearly stratified
ambient by Maurer et al. [3].

mixed fluid into a linearly stratified ambient is quadratic in h/H,

EAPE =
1

3

��
ρa(0)− ρi

�
gh

2 +
�
ρi − ρa(H)

�
g(H − h)2

�
. (3.3)

Assuming a perfect conversion of APE to the kinetic energy (KE) of the current,

Bolster et al. [4], fit U
2 to a quadratic expression in h, heuristically determining

an expression for gravity current speed in terms of the boundary current Froude

number,

U =
1

2
Fr0

�
12

�
h− 1

2H

H

�2
+ 1

�1/2
NH, (3.4)

where Fr0 ≈ 0.25, the value from boundary gravity currents. At the limits where

h = H/2 and h = 0, H, the expression for Fr above yields the accepted values

Fr = 0.125 and 0.25, respectively. This expression was confirmed through recent

experiments and simulations by Monroe et al. [28].

The shape and advancement of the current can be estimated from these

velocities using an approach introduced by [2], illustrated in Figure 3.2. Well-

mixed IGCs into a linearly stratified ambient fluid occupy approximately H/2,

(Maurer et al.[3]). Approximating the intrusion to first order by blocks of fluid,

continuity implies that the rate of horizontal advancement U is equivalent to rate of

slumping of the lock fluid when the current occupies half the depth of the channel.

The momentum of the current can therefore be estimated as,

pi = 2Ut
H

2
ρiU. (3.5)
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Similarly, the rate of conversion of available potential energy can be estimated as,

d

dt

�
Llock−Ut

Llockt+Ut

EAPE dx = −2EAPEU. (3.6)

A stratified ambient fluid is capable of supporting internal wave motion.

Indeed, internal wave motion generation by gravity currents has been observed

in a number of studies (e.g. Wu [12], Schooley & Hughes [29], Maxworthy et al.

[23], Sutherland et. al. [30], White & Helfrich [31], Monroe et al. [28]). From

the dispersion relation, the angle of wave propagation, θ, relative to the horizontal

is defined by sin θ = ω/N , where ω is the forcing frequency. The non-periodic

upstream motion of a propagating gravity current can be viewed as forcing the

wave field at ω ≈ 0, from its position at h, with a thickness of H/2. In section

3.4, we show that the waves generated are linear, and as such, these disturbances

travel upstream in a constantly stratified fluid at

cg,m/NH =
1

mπ
, m = 1, 2, 3... (3.7)

the horizontally propagating internal long-wave group speed.

Both group speed and Froude number vary linearly with NH. As cg,1/NH =

1/π > Fr(h = 0, H) = 1/4, all gravity currents for which ρa(z = H) < ρi < ρa(z =

0) are subcritical to mode-1 internal wave propagation. Indeed, Maxworthy et al.

[23] and White & Helfrich [31] noted strong interactions between the boundary

gravity currents where ρi = ρa(z = 0) and the supercritical mode-1 internal waves

they generate. As noted by Bolster et al. [4], the slowest intrusions, those near the

half-height of the fluid, propagate at Fr ≈ 0.125, which is subcritical to mode-2 in-

ternal waves, cg,2/NH = 1/2π. All intrusions of well mixed fluid into a constantly

stratified ambient travel faster than mode-3 linear internal waves (see figure 3.5

which reproduces results from Bolster et al. [4]).

The generation of internal wave motion represents a transfer of energy from

the kinetic energy of the current. The energy contained in the upstream wave

field, Ewave is a combination of potential energy EP,wave and kinetic energy EK,wave.
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According to linear internal wave theory,

Ewave = EP,wave + EK,wave, (3.8)

EP,wave =
1

2
ρ0N

2
ζ
�2
, (3.9)

EK,wave =
1

2
ρ0(u

�2 + w
�2). (3.10)

where ζ
�, u

�, and w
� are the vertical density displacement, horizontal velocity, and

vertical velocity perturbations due to wave motion.

We limit our investigation to internal wave motion within a control volume

upstream of intrusive gravity currents. This control volume is defined by the ad-

vancing front of the current, the upstream boundaries of the tank or numerical

domain and the bottom and top surfaces of the fluid. All observations are con-

ducted in a time window from t = 0, the time when the fluid is set into motion, to

t = (L − Llock)/cg,1, the time at which mode-1 perturbations reach the upstream

endwall. Because there is no background flow, any perturbations to the upstream

density or velocity fields can be attributed to wave motion, and the shrinking

spatial dimensions of the control volume do not introduce a bias.

This study deviates from previous work by Monroe et al. [28], which focused

on the internal waves generated by interactions with the lock endwall in finite

volume lock releases. In this work, the length and aspect ratio of the lock is set

such that wave motion reflected from within the lock has insufficient time to reach

the upstream control volume. We therefore characterize and quantify the wave

field generated only by the constant motion of the intrusive gravity current itself.

As in Monroe et al. [28], however, we also investigate the effect of h over half

of the possible range: 0 < h < H/2, assuming symmetry of dynamics about the

midplane of the experiment since the flow is Boussinesq.

In section 3.3, we describe our synthetic schlieren laboratory experiments

and two-dimensional direct numeric simulation methodology. We present the ob-

served structure and propagation speed of the internal wave field as well as the

associated momentum and energy within the control volume in section 3.4. In

section 3.5, we present our conclusions and discuss the implications of this study

for current models of propagation of well-mixed intrusive gravity currents into a
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linearly stratified ambient fluid and future analytical work.

3.3 Methods

3.3.1 Laboratory Experiments

Laboratory experiments were conducted in a channel with an ambient fluid

of constant stratification, N = 0.96± 0.01 s−1 and five values of neutral buoyancy

levels h/H = {0.09, 0.21, 0.31, 0.42, 0.47} ± 0.02. The minimum Reynolds number

for these flows were Reambient ≥ 3.8 x 104 and Reintrusion(h/H = 0.47) = 2.8 x 103.

The experimental channel made of transparent 1cm thick acrylic was 183cm

long, 23 cm wide, and 30 cm high. The channel was filled to H = 20± 0.1 cm with

densities ranging from 1.009 and 1.029 g cm−3 using the double bucket method

(Oster [32]) and sponge floats to create linear stratification. Sodium chloride was

added to the water to manipulate fluid density (Schmidt number, Sc ≈ 103).

Once the tank had been linearly stratified, it was divided by adding a

vertical gate at a distance Llock = 40 cm from the lock endwall. The position of

the gate was chosen at a lock aspect ratio of Llock/H ≥ 2 in order to maximize the

internal wave formation and propagation distance within the ambient fluid before

being affected by waves reflected from either endwall. With the gate in place,

the lock fluid was stirred to homogenize the density ρi. To vary h away from the

equilibrium case, h/H = 0.5, additional sodium chloride was added to the lock

fluid before stirring. Lock densities and background ambient buoyancy frequency

N were verified by drawing water samples with a syringe every 4cm over the height

of the fluid and measuring the densities with an Anton-Paar 5000 DMA density

(accuracy of 10−6 g cm−3).

Images of the ambient fluid ahead of the lock gate were recorded with a

CCD camera (model Jai CV-M4+CL) at 1390 x 1024 pixel resolution, yielding

approximately 0.16 to 0.17cm/pixel spatial resolution. The camera was positioned

normal to and 567 cm from the front wall. The experiment was illuminated by a

vinyl light sheet located 42 cm beyond the back wall of the channel. An opaque

mask of randomly distributed transparent dots 0.15cm in diameter and an average
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Figure 3.3: Images of laboratory experiment ∆N
2 fields overlaid with density

field contours at tN = 15 for (top to bottom) h/H = 0.09, 0.21, 0.31, 0.42, 0.47.
The square of the perturbation buoyancy frequency, ∆N

2
> 0.90, is shown in black,

and density contours have been drawn every 0.002 g cm−3. The fastest traveling
current is h/H = 0.09 and the slowest, h/H = 0.47.
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distance of 0.45 cm apart was placed directly in front of the light sheet (see Dalziel

et al. [33] for details). All experiments were conducted beneath a large plastic

tarp to isolate it from time varying density gradients in the air between the mask,

tank, and camera.

The experiment is started at t = 0 by removing the gate vertically, cre-

ating vorticity at the gate location and perturbing the free surface of the tank.

Turbulence local to the gate position does little to change the IGC dynamics after

a short initial transient. The creation and propagation of surface gravity waves,

which travel much faster than internal waves, periodically alters the upstream

ambient perturbation fields.

Images of the tank and mask were recorded directly onto a PC via Digi-

flow software (Dalziel [34]) at 24 frames per second. Experimental images were

taken only until the theoretical first arrival of mode-1 internal wave motion at the

upstream wall, t = π(L − Llock)/NH, preventing the possibility of reflected wave

affecting the propagation of the intrusion.

Using the synthetic schlieren processing package within Digiflow, appar-

ent shifts in the image of the mask of random dots were inverted along a light

ray path via the experimental geometry to yield the vertical gradient of the per-

turbation density field ∂ρ
�
/∂z (see Dalziel [34] for details). From this field, the

perturbations to the square of the buoyancy frequency were then computed as

∆N
2 = (g/ρ0)(∂ρ

�
/∂z). Successive images are averaged over 0.5 s, or approxi-

mately 1/12 of the internal wave period, minimizing noise in the individual frames.

The homogenous density field within the intrusion is identified by ∆N
2, and the

IGC front was determined to be the upstream-most horizontal position where

∆N
2(x, z) < −0.90. The intrusion speed is then estimated by tracking the in-

trusion through successive frames. The downstream limit of the ambient fluid

control volume is also defined by this front position.

Within the ambient fluid, we recover the vertical density perturbation
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ζ
�(x, z, t), the vertical velocity w

�(x, z, t) and horizontal velocity u
�(x, z, t) fields,

ζ
� = − 1

N2

�
∆N

2dz, (3.11)

w
� = − 1

N2

�
∂(∆N

2)

∂t
dz, (3.12)

u
� =

1

N2

�
∂(∆N

2)

∂t
dx. (3.13)

All integrals were evaluated using Simpson’s rule, and time derivatives were taken

as the first order central difference across successive video frames. Because the fluid

upstream of the intrusion should be unperturbed aside from internal wave motion,

we ascribe ζ
�, w

�, and u
� to internal wave motion generated by the intrusion.

To identify the internal wave modes propagating ahead of the current, the

horizontal velocity field u
� for each frame was decomposed into its cosine coefficients

û(x) at each horizontal position,

ûm =
2

H

�
H

0

u
�(z) cos

�mπ

H
z
�
dz. (3.14)

where m is the mode number. Because the vertical velocity must be null at the

upper and lower boundaries, the vertical velocity modes are sine waves in z. By

continuity, the horizontal velocity profile in z must be a cosine, and we therefore

chose cosine basis functions by which to decompose the horizontal flow. Vectors

of the cosine coefficents of the first two modes, û1(x) and û2(x), are stacked to

form x − t diagrams, which are used to determine group speed. We then filtered

all other modes by reconstituting the velocity field,

um(z) =

�
H

0

ûm cos
�mπ

H
z
�
dz. (3.15)

before evaluating the energy fields.

The potential, kinetic. and total energy of the wave field upstream of the

current were then calculated within the control volume by employing (3.9), and

(3.10), and (3.8), respectively.

3.3.2 Numerical Simulations

Direct numerical simulations of lock releases were conducted in two-dimensions

for a background ambient buoyancy frequency N = 1.0 s−1 for five equally spaced
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Figure 3.4: Numerical simulation tracer fields overlaid with density field contours
at tN = 15 for (top to bottom) h/H = 0.1, 0.2, 0.3, 0.4, 0.5. Tracer concentration,
C > 95% is shown in white, and density contours are drawn every 0.002 g cm−3. As
in the experiments, the fastest current is h/H = 0.1, and the slowest is h/H = 0.5



22

values of the neutral buoyancy level h/H between 0.1 and 0.5. The minimum

Reynolds numbers for the simulations were Reambient = 4 x 104 and Reintrusion = 2.8

x 103.

The simulations were conducted in a two-dimensional domain, of 366 cm

length and 20 cm height, discretized into a uniform grid of 1024 x 256 points.

The vertical grid spacing of ∆x = 0.078 cm was chosen to be much smaller than

the maximum upstream isopycnal displacement observed by Monroe et al. [28]

of H/5 = 4 cm. The full numerical domain was composed of two symmetric 183

x 20 cm lock releases reflected about a vertical line of symmetry with the lock

fluid propagating from the center outward (Sutherland et al. [30]). The lock fluid

occupied Llock = 40 cm in each of the two experimental domains and was marked

with a passive tracer.

A slightly modified version of the open source DNS algorithm Diablo (full

details available at http://renaissance.ucsd.edu/fccr/software/Diablo.html) was used

to solve the 2-dimensional, incompressible Boussinesq equations subject to no-

slip boundary conditions, where the kinematic viscosity ν = 0.01 cm2s−1 and the

Schmidt number Sc = 1 (see Härtel et al. [35] for justification of the increased

molecular diffusivity). The horizontal symmetry allowed periodic boundary con-

ditions and therefore the spectral evaluation of flow variables in the horizontal

direction. To minimize Gibbs phenomenon, density steps in the horizontal direc-

tion were initially smoothed with a hyperbolic tangent profile. Vertical derivatives

were evaluated using second-order centered finite-differences. The flow was ad-

vanced with a combination of a third-order, low-storage Runge-Kutta-Wray scheme

and a Crank-Nicholson scheme at ∆t = 0.001 s. Only vertical diffusive terms were

treated implicitly.

The flow was set into motion at t = 0, and the numerics were allowed to

progress until the mode-1 waves reached the sides of the domain at t = π(L −
Llock)(NH)−1. Surface waves were not an issue due to the lack of a gate or a free

surface in the simulated domain.

Field information for density ρ, velocity u, and tracer concentration C was

recorded at 0.5 s intervals over the entire domain for the duration of the numerical
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experiment. The position of the IGC front was determined to be the upstream-

most point where the concentration, C was 95% of the lock concentration. This

position was taken to be the downstream limit to the upstream ambient fluid

control volume. Tracking the front position through successive frames provided an

estimate of IGC speed.

The horizontal velocity signal, u, was decomposed with cosine basis func-

tions using (3.14). Vectors of the cosine coefficients for each mode were constructed

and stacked chronologically to form x− t diagrams. Group speed was determined

from the diagram. We then recomposed the velocity field using (3.15), to determine

the energy fields.

3.4 Results

After an initial period of acceleration, all well-mixed intrusions generated

in the laboratory experiments and numerical simulations were observed to reach a

constant speed phase as they propagated along the level of neutral buoyancy for

multiple lock lengths. Figures 3.3 and 3.4 illustrate the intrusions at tN = 15 over

the range of h/H. There is good agreement in shape, propagation level, and speed

of the intrusions between the experiments and the simulations.

Comparing the observed intrusion speeds to the Bolster et al. [4] prediction

for well-mixed intrusions into a linearly stratified ambient fluid in figure 3.5, we find

good agreement. Intrusions closest to the half depth of the fluid, h/H = 0.5, are

the slowest and subcritical to both mode-2 and mode-1 theoretical group speeds.

Intrusions nearest the boundaries, h/H = 0.1 travel at nearly twice the equilibrium

speed, remaining subcritical to mode-1 but supercritical to mode-2.

The maximum isopycnal displacement upstream of the currents is observed

to be ζ
�
/H ≈ 1

3 , (see figure 3.6). Wavelengths were not measured, as no periodic

signal in ζ
� could be observed within L. We therefore also note λ >> ζ

�.

Figures 3.7, 3.8, and 3.9 present a series of snapshots at 5 s intervals of the

experiments and simulations of intrusions along h ≈ 0.1, 0.3, and 0.5, respectively.

The density field in the upstream ambient fluid control volume is contoured at
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Figure 3.5: A plot of the non-dimensional speeds of the IGCs in experiments
(x) and simulations (o). The Bolster et al. [4] theoretical speed (3.4) is plotted
for Fr = 0.266 (solid line) and = 0.25 (dashed line), and theoretical mode-1 (dot-
dashed line), mode-2 (dotted line), and mode-3 (gray dotted line) group speeds are
also displayed. Note that h/H ≈ 0.3 represents the intersection between theoretical
IGC and mode-2 group speeds, and all intrusions are supercritical to mode-3 group
speeds.
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Figure 3.6: A plot of the maximum isopycnal displacement versus level of neutral
buoyancy, showing both experimental (x) and numerical (o) results. The maximum
displacement observed was ζ

�
/H <

1
3 , whereas wavelength was too large to be

detected, λ >> L.

Figure 3.7: Intrusions propagating at h/H = 0.1 and contours of the up-
stream ambient density fields for simulations (left) and experiments (right) at
t = 0, 5, 10, 15 s. Wave motion in the control volume takes the shape of long
mode-1 waves.
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Figure 3.8: Intrusions propagating at h/H = 0.3 and contours of the up-
stream ambient density fields for simulations (left) and experiments (right) at
t = 0, 5, 10, 15s. Wave motion in the control volume takes the shape of long modes
1 and 2 waves.

Figure 3.9: Intrusions propagating at h/H = 0.5 and contours of the up-
stream ambient density fields for simulations (left) and experiments (right) at
t = 0, 5, 10, 15 s. Wave motion in the control volume takes the shape of long
mode-2 waves.
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regular intervals, and shows clear evidence of perturbations preceding the IGCs.

The density perturbations preceding h = 0.1 IGCs are only positive in z, and have

traveled further by tN = 15 than the density perturbations preceding h = 0.5

IGCs, which are positive in z above the midplane of the experiment and negative

in z below. The density contours in the upstream control volume for the intrusions

along h = 0.3 (critical to mode-2) show both upward and downward deflection of

the isopycnals near the IGC front, but only upward deflections of the current

further upstream.

The coefficients of the velocity field vertical cosine decomposition are the

maximum fluid velocities associated with each mode. Distance versus time (x− t)

plots of the non-dimensionalized fluid velocities for the experiments and the nu-

merics are presented in figures 3.11 and 3.10, respectively, and compared to the

observed IGC speed and the relevant internal wave mode group speeds. The propa-

gation of the velocity disturbance upstream of the current travels at the theoretical

long-wave speeds, marked by the dashed lines. For intrusions near the boundary,

(h = 0.1), the mode-1 velocity amplitude signal propagates at the predicted mode-1

long-wave group speed, while no mode-2 velocity amplitude signal is seen upstream

of the IGC position. For the slower h = 0.5 intrusion there is no significant mode-

1 signal, and a strong mode-2 signal, which travels at the theoretical long-wave

mode-2 group speed. At the point where mode-2 waves are critical to IGC speeds,

(h = 0.3), there is a mode-1 velocity amplitude less than that of the near-boundary

current, but greater than that of midplane current; and there is also a faint mode-

2 signal of an amplitude less than that of the midplane intrusions. The observed

speeds of the individual modes match predictions by long-wave theory.

The horizontal banding in the experimental images (figures 3.11 and 3.13)

is due to surface wave motion, which obeys the dispersion relation, ω =
√

gH.

For our experimental parameters, the lowest seiching mode generated by the gate

removal occurs at a period T = 2.6 s, with a speed csurface = 139 cm/s. These

waves generate fluid motion within the stratified fluid, which appears in the x− t

plots the horizontal bands spaced at 2.6 s intervals.

The horizontally averaged vertical flux of horizontal momentum, �u�
w
��,
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Figure 3.10: x− t diagrams of the non-dimensional cosine decomposition coeffi-
cients, û/NH, of the numerical simulations for mode-1 (left) and mode-2 (right)
and h/H = 0.1 (top), h/H = 0.3 (middle), h/H = 0.5 (bottom). The observed
IGC position is plotted by the solid line, while the theoretical wave speed for the
relevant mode is overlaid with the dashed line (mode-1) or the dot dashed line
(mode-2). Theoretical and observed mode speeds agree well.
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Figure 3.11: x− t diagrams of the non-dimensional cosine decomposition coeffi-
cients, û/NH, of the laboratory experiments for mode-1 (left) and mode-2 (right)
and h/H = 0.09 (top), h/H = 0.31 (middle), and h/H = 0.47 (bottom). The
observed IGC position is plotted by the solid line, while the theoretical wave speed
for the relevant mode is overlaid with the dashed line (mode-1) or the dot dashed
line (mode-2). Theoretical and observed mode speeds agree well. The periodic
banding in the images is due to surface wave motion.
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Figure 3.12: Plots of the horizontally averaged vertical flux of horizontal momen-
tum, �u�

w
��, observed within the upstream control volume in numerical simulations

as a function of time and vertical position. The magnitude of the fluxes decreases
and the structure of the flux shifts from mode-1 to mode-2 as the level of neutral
buoyancy approaches the midplane.
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Figure 3.13: Plots of the horizontally averaged vertical flux of horizontal mo-
mentum, �u�

w
��, observed within the upstream control volume in laboratory ex-

periments as a function of time and vertical position. The magnitude of the fluxes
decreases and the structure of the flux shifts from mode-1 to mode-2 as the level
of neutral buoyancy approaches the midplane. Vertical banding in the images is
due to surface waves.



32

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

tN

p
w

a
v
e
/p

i

 

 

h/H = 0.1

h/H = 0.2

h/H = 0.3

h/H = 0.4

h/H = 0.5

Figure 3.14: The ratio of horizontal momentum contained in the upstream waves
to the horizontal momentum of the IGC pwave/pi as a function of time, showing
approximately the same amount of momentum in the upstream wave field as in
the current.

within the upstream control volume is described in figures 3.12 and 3.13 for simu-

lations and experiments, respectively. For IGCs propagating near the boundaries,

(e.g. h/H = 0.1) there is a much greater flux of momentum, which takes the

shape of a mode one disturbance. Intrusions nearer the midplane h/H > 0.4

show a distinct mode-2 structure to the momentum flux, and have significantly

lower magnitude than the asymmetrical intrusions. Experimental images suffer

from noise created by the seiching motion introduced by removing the gate. How-

ever, the magnitude and structure of the momentum flux is in agreement with the

numerical simulations. At later times, the sudden change in the structure of the

internal wave field is associated with the arrival of the first mode at the far endwall

(e.g. at t ≈ 13 s for h/H = 0.1 in figures 3.12 and 3.10), and likely describes the

reflection of the disturbance from the endwall.

Measurements of the upstream internal wave field from the simulations show

a linear increase in total horizontal momentum with time. The total horizontal

wave momentum measured from the numerical data is observed to be of the same

magnitude as estimates of the total horizontal momentum of the current by (3.5),
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Figure 3.15: The normalized rate of increase in upstream potential wave energy
against the level of neutral buoyancy for experiments (x’s) and simulations (o’s).

varying less than 50%, (see figure 3.14).

The rate of increase of potential, kinetic, and total wave energy in the

control volumes is observed to be linear until the internal wave motion reaches

the upstream endwall. We normalize this rate by an estimate of the slumping

rate described by (3.6), and present ∆EP,wave/(EAPE2U), ∆EK,wave/(EAPE2U),

and ∆Ewave/(EAPE2U), for the range of h/H in figures 3.15, 3.16, and 3.17. The

total energy is observed to be equipartitioned between the kinetic and potential

energy fields for all levels of neutral buoyancy. For well-mixed intrusions into a

linearly stratified ambient fluid, approximately five to fifteen percent of the APE

is converted into wave energy. Intrusions nearer the boundaries transfer a greater

proportion of energy to the wave field.

3.5 Discussion

This chapter examines the internal wave field generated by well-mixed in-

trusive gravity currents propagating into a linearly stratified ambient fluid, inves-
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Figure 3.16: The normalized rate of increase in upstream kinetic wave energy
against the level of neutral buoyancy for experiments (x’s) and simulations (o’s).
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Figure 3.17: The normalized rate of increase in upstream total wave energy
against the level of neutral buoyancy for experiments (x’s) and simulations (o’s).
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tigating perturbations within a control volume upstream of the IGC front, and

neglecting wave motion that is subcritical to the front speed of the IGC. Through

synthetic schlieren laboratory experiments and two-dimensional numerical simu-

lations, we have examined the internal wave response over a the range of neutral

buoyancy levels 0.1 < h/H < 0.5. The flow is Boussinesq, and so we expect the

behavior for intrusions above the midplane to behave similarly as they depart from

the equilibrium condition h/H = 0.5.

We successfully generated well-mixed intrusive gravity currents with speeds

varying with h as predicted by (3.4) [4], and show that a linear internal wave re-

sponse is excited by the intrusions. Comparing (3.4) and the group speed of internal

long-wave modes described by (3.7), shows that all intrusions are all subcritical

to mode-1 internal long-wave speeds, and intrusions propagating at height within

0.3 < h/H < 0.8 are also subcritical to mode-2 internal long-waves. All intrusions

are supercritical to mode-3 internal waves.

Upstream perturbations of the density and velocity fields, accessed through

synthetic schlieren laboratory methods or numerical simulations, show a depen-

dence of modal structure on the height of forcing h. Forcing at a level of neutral

buoyancy near the horizontal velocity maximum of a particular wave mode pref-

erentially excites that wave mode, transferring energy more efficiently upstream.

For intrusions where h/H approaches the boundaries 0 and H, mode-1 is excited

more strongly, and for IGCs where h/H approaches the midplane of the experi-

ment, H/2, mode-2 is excited more strongly. Because mode-1 is supercritical to

all intrusions, the absence of a mode-1 signal in the h/H = 0.5 intrusions (figures

3.10 and 3.11) can only be explained by inefficient forcing of mode-1. However

IGCs are only subcritical to both modes 1 and 2 near the midplane of the fluid,

0.3 < h/H < 0.8, and outside of this range only mode-1 perturbations travel fast

enough to alter the environment upstream of the intrusion.

These linear internal wave modes propagate upstream at a velocity closely

matching that predicted by (3.7). This agreement indicates that the angle of wave

energy propagation θ is approximately null with respect to the horizontal. By the

dispersion relation for linear internal waves sin θ = ω/N , constant velocity IGCs
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unaffected by the finite length of the lock can therefore be thought of as forcing

the upstream wave field with a frequency of ω = 0.

Investigation of the internal wave field generated upstream of intrusions in

which the finite nature of the lock is relevant show a markedly different speed

and structure of the generated wave field. Monroe et al. [28] showed that waves

reflected from the lock endwall propagate upstream and dominate the wave field.

These waves were observed to have similar amplitude but shorter wavelengths than

the waves observed in this study, and to travel at speeds less than the theoretical

long internal wave mode speeds. The authors found that approximately 10% to

20% of the Available Potential Energy was transfered into the wave field.

Our observations of the wave field unaffected by waves reflected from the

back endwall of the lock show a transfer rate of approximately five to fifteen percent

from APE into wave energy. This is of the same order as losses to dissipation in

unstratified boundary currents Sutherland et al. ([36]) or the Boussinesq approxi-

mation. This finding is consistent with the success of energy scaling arguments in

models of intrusive gravity currents propagating at constant speeds, such as those

employed in Cheong et al. [6], Bolster et al. [4], or Maurer et al. [3].

Both the Available Potential Energy and the percentage of APE transfered

to the upstream wave field increases with the asymmetry of the intrusions. Mode-

1 waves propagate more quickly and possess a higher energy density, with higher

isopycnal displacements and higher fluid motion velocities, than mode-2 waves.

IGCs that more efficiently excite mode-1 show a greater percentage of APE trans-

fered to the upstream wave field.

Though energy scaling models such as Bolster et al. [4] and Maurer et al.

[3] successfully predict the speed of intrusive gravity currents in linearly stratified

fluids, the dynamics of the flow remain unclear. We have shown that there is

structured upstream transfer of both momentum and energy from these currents

to supercritical internal wave motion, and that both the intrusion speed forcing

and the upstream wave field response vary linearly with the ambient stratification

NH. However, how these upstream perturbations interact with the advancing

IGC front is beyond the scope of the work presented here. Instead this work
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suggests the plausibility of an analytical model in the style of Flynn et al. [22].

Such a model could incorporate the upstream perturbations in a balance of mass,

momentum, and energy to determine the speed of a well-mixed intrusive gravity

current propagating into a linearly stratified ambient fluid and provide valuable

insight into the dynamics actually controlling the speed of these currents.



Chapter 4

Adjacent continuous

stratifications

4.1 Abstract

We present an experimental and numerical study of one stratified fluid

propagating into another. The two fluids are initially at rest in a horizontal channel

and are separated by a vertical gate which is removed to start the flow. We consider

the case in which the two fluids have the same mean densities but have different,

constant, non-zero buoyancy frequencies. In this case the fluid with the smaller

buoyancy frequency flows into the other fluid along the mid-depth of the channel

in the form of an intrusion, and two counter-flowing gravity currents of the fluid

with the larger buoyancy frequency flow along the top and bottom boundaries

of the channel. Working from the available potential energy of the system and

measurements of the intrusion thickness, we develop an energy model to describe

the speed of the intrusion in terms of the ratio of the two buoyancy frequencies.

We examine the role of the stratification within the intrusion and the two gravity

currents, and show that this stratification plays an important role in the internal

structure of the flow, but has only a secondary effect on the speeds of the exchange

flows.

4.2 Introduction

Intrusions or intrusive gravity currents occur when horizontal density gradi-

ents result in the intrusion of one fluid into another fluid at an intermediate depth.

Intrusions are closely related to gravity currents which occur when one fluid flows

38
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into another of different density along a horizontal boundary (Simpson[11]). The

presence of vertical density stratification of the receiving fluid is a necessary condi-

tion for the existence of an intrusion, and the literature (e.g. Amen & Maxworthy

[13], Faust & Plate [37], Ungarish [38], Bolster et al. [4], Nokes et al. [39]) has tra-

ditionally investigated gravity currents and intrusions containing of fluid uniform

density into a stratified ambient fluid. However, in many natural and industrial

flows the intruding fluid is also stratified and the role of this stratification and its

influence on the exchange flow are the subject of this chapter.

For the case of an unstratified intrusion, the potential energy stored in the

intrusion relative to the surrounding ambient fluid is converted into the kinetic

energy of horizontal motion. This motion has been shown to be important to the

transport of mass, energy, and particulate matter in environmental flows, from

dust storms and seafloor turbidity currents to locust and plankton distributions

(Simpson [11]). The intruding fluid carries material with it, and an unstratified

intrusion has relatively little internal circulation, and any internal flow is tradition-

ally ignored in the analysis of the flow (Lowe et al. [19]. For example, Benjamin’s

(1968) [5] classical analysis of a gravity current assumes that the current moves as

a plug with an equal forward velocity at all points in the current.

When the intruding fluid itself is stratified there is the added possibility

of vorticity being generated within the intrusion itself by the interaction of the

pressure gradients and the density gradients – the so called ‘baroclinic generation

of vorticity’. This internal circulation can be significant depending on the mag-

nitude of the stratification within the intrusion. This work aims to extend our

understanding of high Reynolds number, Boussinesq intrusive gravity currents to

the case where stratification exists in both the ambient and the intruding fluids.

Intrusive gravity currents are often studied in the context of lock-release

experiments, in which a finite volume of fluid is released into a larger body of

stratified fluid by the rapid removal of a vertical barrier (e.g. Keulegan [40], Amen

& Maxworthy [13]). We consider the case where the fluids on both sides of the

barrier have the same depth H, their densities are linear functions of height, ρ(z) =

ρ(zn) + (ρ0/g)N2
z, and their average densities ρi(zn) = ρa(zn) are the same. Here
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Figure 4.1: Schematic showing the initial conditions of lock-release of a linearly
stratified intruding fluid of constant buoyancy frequency Ni, into a linearly strati-
fied ambient fluid of buoyancy frequency Na, where the average densities of both
fluids are equal. When the barrier is removed, the intrusion propagates along the
level of neutral buoyancy zn = H/2 at a speed that is a function of the stratification
ratio S = N

2
i
/N

2
a
.

zn is the level of neutral buoyancy chosen to be the mid-depth of the channel for

both fluids, ρ0 is a reference density, g is gravity, and N =
�
− g

ρ0

∂ρ

∂z
is the buoyancy

frequency of the stratification, where the subscripts i and a refer to the intruding

and ambient fluids, respectively, and by definition Ni < Na (figure 4.1). When the

barrier is removed at t = 0, the intrusion flows into the ambient fluid along the

level of neutral buoyancy at the mid-depth of the ambient fluid, while two gravity

currents of ambient fluid travel in the opposite direction, one along the upper and

the other along the lower boundaries of the tank. The choice of linear stratification

and equal mean densities means that the flow is vertically symmetric about the

mid-depth of the tank. If this condition is relaxed then the fluid with the lower

centre of gravity would tend to flow beneath the other producing a bulk circulation

within the flow field.

In the present case after a brief period of acceleration, the intrusion travels

into the ambient fluid at a constant speed for multiple lock lengths before decel-

erating, similar to observations by Maxworthy et al. [23] of well-mixed boundary

currents in a stratified ambient fluid. We limit our study to this initial constant-

velocity phase of propagation, during which the lock fluid is unaffected by the
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presence of the endwall of the lock. At later times we expect the finite volume of

the lock to become important and, at these times an unstratified intrusion decel-

erates. This is the so-called ‘similarity phase’ (Rottman & Simpson [18]). While

we expect similar behavior to occur for a stratified intrusion, it has not been con-

sidered in this work.

For an unstratified (Ni = 0) mid-depth intrusion into a linearly stratified

ambient fluid, dimensional analysis implies that, at high Reynolds numbers, the

intrusion speed Ui during the initial constant velocity phase takes the form

Ui = FNaH, (4.1)

where F is a dimensionless Froude number. Treating the midplane intrusion as

two symmetric well-mixed boundary gravity currents reflected about the midplane

of the tank, Bolster et al. [4] extended findings by Maxworthy et al. [23] and

Ungarish [38] to show that F ≈ 0.125. Bolster et al. [4] also show that, during this

initial constant-velocity phase of propagation, (4.1) is consistent with the constant

rate of conversion of available potential energy to kinetic energy, and that such

energy conversion also predicts the speed of intrusions that are not located at the

mid-depth of the tank. Here, we extend the energy conversion model for mid-depth

intrusions to incorporate the role of stratification in the intruding fluid, Ni > 0,

and examine the effect of the consequent reduction in the available potential energy

on the speed of the intrusion during the constant-velocity phase.

In section 4.3 we present the mathematical model, which in this case needs

to take account of the varying intrusion thickness with Ni, and a prediction of

the intrusion speed. We describe laboratory experiments and two-dimensional

numerical simulations in section 4.4 and compare the results with the theory in

section 4.5. In section 4.6 and section 4.7, we compare our results to the unstratified

case and discuss the role of the stratification within the intrusion.

4.3 Model

Following the approach of Cheong et al. [6] and Bolster et al. [4], we

consider an energy model relating the conversion of available potential energy of
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the initial hydrostatic pressure imbalance before the lock is opened to the constant

increase of kinetic energy in the current after the gate is removed.

The lock release can be described in terms of two dimensionless parameters:

the Froude number F defined by (4.1) and the stratification ratio S of the intruding

and ambient fluid stratifications

S ≡ N
2
i
/N

2
a
, (4.2)

where, by definition, 0 ≤ S ≤ 1. When S = 0, the intruding fluid is well-mixed

and corresponds to the case described by Bolster et al. [4], where the intrusion

travels at

Ui(S = 0) ≈ 0.125NaH. (4.3)

When S = 1, N
2
i

= N
2
a
, the densities of the two fluids on either side of the lock

are identical and, obviously,

Ui(S = 1) = 0. (4.4)

Dimensional analysis implies that

Ui = 0.125NaHf(S), (4.5)

where, the factor of 0.125 is to account for the value of the Froude number for

unstratified intrusions S = 0, and the dimensionless function f(S) of the stratifi-

cation ratio S must satisfy the criteria imposed by (4.3) and (4.4) that f(0) = 1

and f(1) = 0.

In order to determine the form of f(S), we examine the available potential

energy (APE) as a function of the stratification ratio. Taking the level of neutral

buoyancy as the reference level, the APE per unit volume is

E = g

�
H/2

−H/2

�
ρi − ρa

�
zdz, (4.6a)

=
gH

2

6
(ρa − ρi)|−H

2
, (4.6b)

=
ρ0H

3
N

2
a

12
(1− S). (4.6c)

We normalize E by the available potential energy 1
12ρ0H

3
N

2
a

of a well mixed in-

trusion, (Bolster et al. [4]). This leads to a non-dimensional form E
∗ of the APE
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per unit volume in terms of the stratification ratio S

E
∗ = (1− S). (4.7)

As the simplest extension of the analysis of an unstratified intrusion (Bolster

et al. [4]), we first neglect the motion in the counterflowing gravity currents and

assume that the intrusion thickness is independent of S. Assuming that the rate of

conversion of APE to the intrusion kinetic energy (proportional to U
2) is constant

in time, then

f(S) ∼ (1− S)
1
2 . (4.8)

However, we observe (see section 4.5) that the thickness of the intrusions

varies with S. At high Reynolds number, the thickness hi of an unstratified intru-

sion S = 0 is observed to be approximately one-half the total depth of the fluid,

hi(S = 0) = H

2 . For the case where the buoyancy frequencies of both the intruding

fluid and the ambient fluid are equal, the current can be viewed as having a current

thickness equal to the full height of the fluid, hi(S = 1) = H. For intermediate

values of S, the vertical distance between isopycnals in the ambient fluid corre-

sponding to the minimum and maximum densities of the intrusion varies linearly

with S. Therefore, as a first approximation, we assume a linear increase in the

thickness of the intrusion with S,

hi =
H

2
(1 + S). (4.9)

Still ignoring the counterflowing gravity currents, but now relating the ki-

netic energy of the current to the available potential energy while taking into

account the variation of the intrusion thickness with S, we find that

f(S) ∼
�1− S

1 + S

� 1
2
. (4.10)

However, the counterflowing gravity currents above and below the intrusion also

carry kinetic energy. In order to account for the energy in the counterflowing

currents we note that (4.9) implies

ha =
H

2
(1− S). (4.11)
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Since there is no net volume flux across a vertical plane the speed of the counter-

flows Ua is given by

Ua =
hi

2ha

Ui. (4.12)

Finally, scaling the kinetic energy of both the forward and backwards prop-

agating flows of varying thickness with the APE we obtain

f(S) ∼ (1− S)

(1 + S)
1
2

. (4.13)

The energy scaling models in (4.8), (4.10) and (4.13) will be compared to the

results of laboratory experiments and numerical simulations in section 4.5.

4.4 Methods

4.4.1 Laboratory Experiments

Laboratory experiments were conducted in a channel with an ambient fluid

with a fixed stratification Na = 1.47±0.02s−1, and for six values of the stratification

ratio S = {0, 0.23, 0.38, 0.49, 0.65, 0.77}. The Reynolds number, based on the

observed propagation speed and intrusion thickness, of the slowest propagating

intrusion (S = 0.77) was found to be in excess of 103, the value above which

unstratified gravity currents are considered inviscid (Simpson [11]).

The experimental channel was 182 cm long, 23 cm wide, and 30 cm deep,

with a vertical gate dividing the tank at a distance Llock = 63 cm from an endwall.

Removing the gate vertically set the two fluids into motion. The position of the

gate was chosen to maximize the duration of the constant-velocity phase, while

providing sufficient runout in the ambient fluid to observe the intrusion speed un-

affected by internal waves reflected from the endwall of the tank. Sodium chloride

was added to water to vary the density between 1.010 and 1.060 g cm−3. Stratifi-

cation was created using the double-bucket method (Oster [32]), and sponge floats

were used to fill both sides of the lock gate simultaneously to H = 20 cm depth.

Water samples were drawn every 2cm in height from both fluids, and the densities

were verified with an Anton-Paar 5000 DMA density meter with an accuracy of
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10−8 kg m−3. Only density profiles with levels of neutral buoyancy deviating less

than ±2 mm from H/2 were included.

The channel was illuminated by a vinyl light sheet placed against the back

wall. A CCD camera (1390 x 1024 pixel resolution) was positioned normal to,

and 5 m away from, the front wall. Sucrose-based food coloring, with a molecular

diffusion coefficient approximately one third that of sodium chloride, was added

to the lock-fluid double-bucket system as a passive tracer of density. Images of

the current were recorded directly onto a PC via DigiFlow software (Dalziel [34])

at 12 frames per second. The same software was used to track the horizontal and

vertical extent of the dyed intrusion. The attenuation of the light passing through

the tank was measured and used, via calibration, to provide a width-averaged

measure of the density. Mixing at the boundaries of the current decreases the

dye concentration and therefore the light attenuation. To provide a conservative

estimate of the thickness of the current, we defined the current edges by a 25%

reduction in the light attenuation of the intruding fluid relative to the average

initial light attenuation in the lock.

The intrusion thickness was measured at each frame as the horizontal av-

erage of the thickness of a 10 cm-long section of intrusion, as determined by the

vertical extent of the dyed region, centered 7 cm behind the lock gate. Distance-

time x-t plots of the position of the front of the intrusion were created by projecting

the density field onto the horizontal axis at each frame. A linear regression was

then fitted to the plot to estimate the constant velocity of the progressing density

front (Sutherland [36]).

4.4.2 Numerical Simulations

Direct numerical simulations of lock releases were conducted in two dimen-

sions for two values of the ambient buoyancy frequency Na = 0.5 s−1 and 1.0 s−1,

and for eleven equally spaced values of the stratification parameter S = 0, 0.1, ...1.

For the simulations reported here, the kinematic viscosity ν = 0.01 cm2s−1

and Sc = 1. For salt water Sc >> 1 and, although the choice of Sc = 1 leads to

an overestimation for the diffusivity of salt, this choice is necessary to maintain
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numerical stability. This is standard practice in these type of calculations and

appears not to lead to significant changes in the dynamics of the flow, see e.g.

Härtel et al. [35]. Mass transfer from the current is determined by the Péclet

number Pe = Nah
2
i

κ
, where κ is the molecular diffusivity of mass. At high values

of Pe >> 1, molecular transport is not important and instead the density of the

current changes, if at all, by mixing with the ambient fluid. At high Reynolds

numbers the choice of Sc = 1 means that the Péclet number is also large so that

the effects of mass diffusion, like those of viscosity, are expected to be small.

A slightly modified version of the open source DNS algorithm Diablo (full

details available at http://renaissance.ucsd.edu/fccr/software/Diablo.html) was used

to solve the above equations. The code in its current form requires periodic bound-

ary conditions in the streamwise direction, and the flow here is not periodic in the

streamwise direction. In order to achieve periodicity, and enable a Fourier decom-

position of the flow variables in this direction, a domain twice the length of the

domain shown in figure 4.1 was chosen. This allows reflectional symmetry about

the vertical mid-plane in the initial condition (i.e. lock fluid starts in the middle

and propagates equally in both horizontal directions). In the vertical direction

periodicity does not occur. Derivatives in this direction were evaluated using cen-

tered finite-differences with no-slip boundary conditions at the top and bottom

boundaries.

A mixed method using third-order, low-storage Runge-Kutta-Wray (RKW3)

scheme and a Crank-Nicholson (CN) scheme was used to advance the flow in time

with ∆t = 0.001 s. Diffusive terms in the wall-normal direction were treated im-

plicitly, while all other terms are treated implicitly. Uniform grids were selected in

all directions.

As with the laboratory experiments, the flow is stationary at t = 0. In order

to minimize Gibbs phenomena in the streamwise direction, the vertical interfaces

that define the lateral boundaries of the lock were smoothed using a hyperbolic

tangent profile.

Parameters were chosen so that the Reynolds number, Re = Nah
2
i

ν
, based

on the intrusion thickness hi, is sufficiently large (i.e. > 104) that viscous effects
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are negligible and the flow exhibits the characteristic features of two-dimensional

turbulent gravity currents such as the roll up of Kelvin-Helmholtz billows behind

the gravity current head.

The numerical simulations were allowed to progress until the finite length

of the domain began to influence the intrusion. In the same manner as in the

experiments, the intrusion thickness was estimated at each frame as the horizontal

average of a 10 cm section of intrusion thickness centered 7 cm behind the lock

gate.

4.5 Results

Simulations for Na = 0.5 s−1 and Na = 1 s−1 and experiments for Na =

1.47 ± 0.02 s−1 were conducted over the range of stratification ratios 0 ≤ S < 1.

An example of the current at various times from the numerical simulations is shown

in figure 4.2 for S = 0.2 and S = 0.8. A similar series from the experiments at the

same dimensionless times is shown in figure 4.3 for S = 0.23 and S = 0.77. Ignor-

ing the exaggerated billows in the two-dimensional simulations, which in practice

breakdown as a result of three-dimensional instabilities that are precluded from

the calculations, we observe excellent agreement between the experimental and

numerical images. The shapes of the simulated intrusions agree well the experi-

mental images, although the front of the intrusion is more ragged at S = 0.8 in the

experiments. The reduction in the intrusion speed and its increase in thickness as

S increases are seen in both the experiments and the simulations. Quantitatively,

the experiments and the simulations agree well, even though they are for different

values of Na. This agreement, achieved by non-dimensionalizing time with the

ambient buoyancy frequency, supports the dimensional analysis leading to (4.5).

The intrusions taper towards the front similar to those observed for unstrat-

ified intrusions (Bolster et al. [4] – see also figure 4.6. There is no evidence of a

‘head’ typical of gravity currents in unstratified environments. Close inspection of

the edges of the stratified intrusions shows some irregular structures. These have

not been observed on either gravity currents or unstratified intrusions and are a
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Figure 4.2: Snapshots of the numerical simulations for S = 0.20 (left) and S =
0.80 (right) for Na = 1 s−1 at Nat = 10, 20, and 30. The dashed gray line denotes
the initial position of the gate. The motion of the lock fluid is visualized using a
passive tracer.

result of the internal stratification within the intrusion. We will examine them

further below.

In order to test the predictions (4.8), (4.10) and (4.13) for the variation of

front speed with S, we need to measure how the thickness of the intrusion varies.

As observed in figures 4.2 and 4.3, the thickness of the intrusion increases with

increasing S, while the thicknesses of the backflows decrease. As noted above,

the thickness is not uniform in x, and we observe sloping boundaries between the

intruding and ambient fluid narrowing toward the front of the intrusion. It is for

this reason that we chose to measure a representative thickness taken to be the

spatial and temporal average thickness of a 10 cm-long region centered 7 cm back

from the gate position. The consequences of choosing an alternative location for

the thickness measure are discussed in section 4.7.

A plot comparing the intrusion thickness hi as a function of S for the

laboratory experiments and numerical simulations, to the assumed linear variation

in current thickness (4.9), is presented in figure 4.4. At lower values of S < 0.5,

both the numerical and experimental results agree within the error bounds, which

for the simulations are large as a result of the billows referred to above, and they

agree well with the linear approximation (4.9). At higher values of S the agreement

is not as good: the experimental thicknesses are less than the simulations, and the

latter show better agreement with (4.9) over the entire range of stratification ratios.
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Figure 4.3: Snapshots of the laboratory experiments for S = 0.23 (left) and
S = 0.77 (right) for Na = 1.5 s−1 at the same dimensionless times Nat = 10, 20,
and 30 as in figure 4.2. The dashed white line denotes the initial position of the
gate. The intrusion fluid is visualized with dye.
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Figure 4.4: A comparison between dimensionless intrusion thickness hi/H, where
H is the total fluid depth, as a function of the stratification ratio S for experiments
(circles), simulations (crosses) and the thickness assumed in the energy balance
model (4.9) (dashed line). The thickness in the experiments was measured at each
time as the 10 cm spatial average of intrusion thickness centered 7cm behind the
lock gate and the resulting time averages and standard deviations are shown.
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Figure 4.5: A comparison between dimensionless intrusive gravity current speed
in the experiments (circles), simulations (pluses), and model predictions (curves)
as a function of stratification ratio S. The three models of increasing complexity
approximate the variation of Ui with S, directly from the potential energy (4.8,
dotted line), and scaled by a linear increase in current thickness with S (4.10,
dashed line), and incorporating the counterflow (4.13, solid line). U0 is taken to
be the speed of a well-mixed intrusion U0 = 0.125NaH.
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As in the case of unstratified intrusions into a linearly stratified ambient

fluid (Bolster et al. [4]), the stratified intrusions were observed to travel at a con-

stant speed after an initial period of acceleration once the lock gate was removed.

Figure 4.5 displays the dimensionless front speed as a function of S. Intrusion

speeds measured in the laboratory experiments and numerical simulations agree

well over the entire range 0 ≤ S < 0.8. As noted in section 4.3 the bounds for

the velocity are given by Bolster et al. [4] for S = 0, and by inspection (Ui = 0)

at S = 1. Between these bounds, the available potential energy, and therefore the

intrusion velocity, decreases monotonically with increasing S, as observed.

Curves corresponding to the predictions (4.8), (4.10) and (4.13) are given in

figure 4.5. The simplest case, (4.8), in which only the motion of the intrusion itself

is included, and which ignores changes in intrusion thickness with S, over-predicts

the speed at all values of S > 0. When the variation in intrusion thickness is

included (4.10) the model predictions improve but still over-estimate the observed

and calculated speeds particularly at large S.

The theoretical estimate (4.13) that includes both the variation in intrusion

thickness and the kinetic energy of both the intrusion and the two counterflowing

gravity currents, provides the best agreement with the observed and calculated

speeds. Agreement between the first order model and the experimental and nu-

merical results is better than 5%, over the range 0.3 ≤ S < 0.9. Further, the

curvature of (4.13) has the opposite sign to the two simpler estimates (4.8) and

(4.10), and is consistent with the curvature observed in the data at large S. For

values of S < 0.3, the data lie between the curves given by (4.10) and (4.13).

4.6 Role of internal stratification

Compared to unstratified intrusions in a linearly stratified ambient fluid

studied by Bolster et al. [4], the presence of stratification in the intruding fluid

changes both the shape and the speed of the intrusion. Figure 4.6 shows a com-

parison between intrusions for S = 0, 0.23 and 0.77. For the unstratified intrusion

S = 0, the front takes the shape of a classical rounded plug-of-fluid shape first
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Figure 4.6: A comparison of the front shape in laboratory experiments at
Na = 1.47 ± 0.02 s−1 for three different stratification ratios, S = 0, 0.23 and
0.77. The presence of stratification within the intrusion generates internal cir-
culation within the intrusion and its thickness increases with increasing S. The
shape of an irrotational gravity current given by Benjamin [5] is superimposed on
the unstratified intrusion S = 0.

described by Benjamin [5]. The theoretical shape predicted by Benjamin [5] for

an irrotational gravity current and ignoring any internal flow within the current,

which is also a good approximation for the shape of an interfacial intrusion on

a sharp density interface (Lowe et al. [19]), is superimposed on the unstratified

intrusion in figure 4.6. The rounded front of the intrusion agrees well with this

shape, suggesting that the there is little relative flow within the intrusion. Further

back from the front the top and bottom surfaces of the intrusion continue to slope

and the intrusion continues to increase in thickness towards the rear, in contrast

to the gravity current.

In addition to increasing in thickness as S increases, stratified intrusions

do not exhibit the rounded front observed in the S = 0 case. The front is more

pointed for the case S = 0.23, and shows an almost vertical face with some smaller

intrusions of dye fluid for the case S = 0.77. The unstratified intrusion flows along
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the isopycnal surface in the ambient fluid corresponding to its internal density and

that isopycnal splits along the top and bottom surfaces of the intrusion. When

S > 0, this simple splitting of the ambient fluid above and below the intrusion

is not possible, since the density stratification within the intrusion implies that

a range of the ambient density field is within the density variations within the

intrusion.

Figure 4.7 shows the calculated density contours for stratified intrusions

S = 0.2 and S = 0.8. The contours shown in each case correspond to the full

density range within the intrusion and the same isopycnals in the ambient fluid.

So, in the S = 0.2 case, only isopycnals near the mid-depth of the ambient fluid are

marked. In this case, small density inversions occur at the edges of the intrusion as

heavier fluid is raised above the intrusion and lighter fluid is pushed below it. These

inversions are distinct from the larger-scale billows caused by shear instability on

the edges of the intrusion (figure 4.2). They can be seen in the experimental

images of the stratified intrusions in figures 4.3 and 4.6, and in the simulations

shown in figure 4.2. These inversions occur because of the variation of density

within the intrusion, since, for example, the density of the mid-depth isopycnal in

the ambient, which bifurcates at the intrusion front, is greater than all of the fluid

in the upper half of the intrusion.

Distortions of the isopycnal surfaces upstream of the intrusion are also seen

in figure 4.7. As the intrusion forcing is centered about the midplane of the tank,

we expect mode 2 waves to be strongly forced. Bolster et al. [4] determined

that well-mixed intrusions in a linearly stratified ambient fluid travel at speeds

subcritical to mode 1 and mode 2 waves. The introduction of stratification in the

intruding fluid reduces its speed, and indeed, the spreading apart of the isopycnals

above and below the midplane in the ambient fluid upstream of the current is

consistent with the presence of a mode 2 disturbance.

For the more stratified intrusion S = 0.8, the adjustment of the isopycnals

is less than for the S = 0.2 case. There is some compression of the intrusion

isopycnals near the front of the intrusion and an upstream disturbance in the form

of a mode 2 wave. There is an adjustment region ahead of the intrusion front, but
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Figure 4.7: Snapshots of the density contours for S = 0.20 and S = 0.80 (Na =
1 s−1) at Nat = 5, 10, 15, and 20, calculated from the simulation data. The black
lines denote density contours evenly spaced across the entire range of intrusion
densities, and the corresponding isopycnals in the ambient fluid. The gray lines
denote the boundary between the intrusive and the ambient fluids, the black line
denotes the initial position of the gate, and the dashed black line denotes the
vertical transect described in figure 4.8. Note the pronounced step in the density
contours at the transition between the two fluids in the more energetic S = 0.2
case, the horizontal gradients in density created within and ahead of the intrusion,
and finally the adjustment of the upstream ambient stratification.
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Figure 4.8: Vertical transects of the buoyancy frequency, for S = 0.2 (left) and
S = 0.8 (right), taken 5 cm into the ambient fluid from the gate position at
Nat = 20 (See figure 4.7). The dash-dotted line and the dotted lines denote the
initial buoyancy frequency profiles of the intruding and ambient fluids, Ni and Na,
respectively. The solid line is the instantaneous buoyancy frequency as a function
of height at the given x location. Note that the buoyancy frequency of the intruding
fluid (closer to the mid-depth) reaches an intermediate value between the Ni and
Na, while the counter-flowing boundary gravity currents also display an increased
buoyancy frequency.
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no evidence in this case of overturning or statically unstable regions, even though

some are observed on the images in figures 4.2 and 4.3. It appears that the dye

distortions remain after the instabilities that generated them have decayed.

The compression of the isopycnals within the intrusion and also in the coun-

terflowing gravity currents above and below the intrusion change the stratification

in those flows. Figure 4.8 shows vertical profiles of buoyancy frequency N at a

location ahead of the original lock gate position (see figure 4.7) at Nat = 20. Also

shown on the figure are the values of the initial buoyancy frequencies in the intru-

sion and the ambient fluid, Ni and Na, respectively. In both cases the stratification

within the intrusions remains linear and increases from its initial value to a con-

stant value of N between Ni and Na. The ambient fluid in the counterflowing

gravity currents also increases in stratification as the fluid above and below the

intrusion is compressed vertically. The edges of the intrusion are marked by rapid

increases and decreases in N associated with the local distortion of the density

field.

The horizontal density gradients that occur within the intrusion as a result

of the compression of the isopycnals towards the front generate internal flow. Vor-

ticity is produced by the baroclinic generation term ∇p×∇ρ, and the sign of this

term is such as to produce positive vorticity in the upper half of the intrusion and

negative vorticity in the lower half. This produces a dipole-like flow towards the

front of the intrusion along the middle and return flow along the top and bottom

boundaries. This internal flow is consistent with an elongation of the front of the

intrusion from the irrotational shape observed in the unstratified case (figure 4.6),

and the return flow is consistent with the distortion of the isopycnals observed for

the case S = 0.2 (figure 4.7).

4.7 Discussion and conclusions

This chapter examines the mutual adjustment of two stratified fluids instan-

taneously brought into contact in a channel by the removal of a vertical barrier.

The fluids are stratified with linear variations of density with depth, but with dif-
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ferent vertical density gradients. We have restricted attention to the case where

the two fluids have the same mean densities which occur at the same depth, in

this case the mid-depth of the channel. In this case the centers of mass of the two

fluids are at the same height, and the fluids have no tendency to flow one under

the other. The motion is vertically symmetrical about the mid-depth of the tank

with the less stratified fluid flowing into the more strongly stratified fluid as an

intrusion centered at the mid-depth. The more stratified fluid flows in the opposite

direction as two stratified gravity currents, one above the intrusion along the upper

boundary of the fluid and one below along the lower boundary.

This configuration has two limits. The first is when one of the fluids is

unstratified, in which case the flow is that of an unstratified intrusion propagating

along the mid-depth of a stratified fluid. This case has been studied previously

(Bolster et al. [4]) and its properties are known. The other limiting case is when

the density gradients of the two fluids are the same. In this case the two fluids are

indistinguishable and nothing happens.

Through lock-exchange laboratory experiments and two-dimensional nu-

merical simulations we have examined the behavior of the system between these

two limits in terms of the stratification ratio S ≡ N
2
i

N2
a

. The unstratified intrusion

corresponds to S = 0 and the two identical fluids to S = 1. In all cases S < 1

we observe that the flow takes the form of an intrusion of the less stratified fluid

(Ni) into the more strongly stratified fluid. This intrusion propagates along the

mid-depth of the channel and two counterflowing gravity currents flow above and

below the intrusion.

One objective was to predict the speed of the intrusion as a function of S.

We observed that the intrusion travelled at a constant speed, which decreased as a

function of increasing S, and found good agreement between the measured speed

in the experiments and that calculated in the simulations. We developed a model

for the exchange flow that assumes that the available potential energy of the initial

configuration is converted at a constant rate into the kinetic energy of the intrusion

and the gravity currents. As expected the model also predicted a reduction in speed

with S, and gave reasonably good agreement with the experimental and numerical



58

data (figure 4.5).

The model relies on an estimate of the thickness of the intrusion and the

counter-flowing gravity currents. We observed that the intrusion thickness in-

creased with S, which is to be expected as the extreme densities within the in-

trusion correspond to a wider region about the mid-depth of the ambient fluid as

S increases. We approximated this increase as a linear function of S, which is

consistent with the width of the corresponding region in the ambient fluid, and

found reasonable agreement with the data (figure 4.4).

The sloping boundaries of the intrusions introduce variability to the mea-

surements of the current thickness as a function of horizontal location. Measure-

ments of the current thickness within the lock are at a thicker part of the current,

and therefore likely to be an overestimate. To examine the sensitivity to the choice

of the horizontal position at which the thickness is measured, we reduce the as-

sumed intrusion thickness (4.9) by a factor c < 1, and write the intrusion thickness

as

hi = c
H

2
(1 + S). (4.14)

By the same energy argument presented in (4.13), we arrive at an expression for

the dependence of the velocity on S

f(S) ∼ (1− S)

(1 + S)

(1− c

2(1− S))

(1− c

2)
. (4.15)

The modeled speeds for various values of c are plotted in figure 4.9. Compared

with the case presented in section 4.5 (c = 1), the speeds predicted using a re-

duced thickness are faster over the range of intermediate stratification ratios as

c decreases. At lower stratification ratios, S < 0.5, the use of a reduced cur-

rent thickness predicts intrusion speeds in closer agreement with experimental and

numerical observations. The boundaries of low S intrusions are more sloped (fig-

ures 4.3 and 4.6), and so are better represented by a reduced thickness than that

used in section 4.5, while intrusions at higher stratification ratios S > 0.5 are

better described by the full-thickness energy balance models. In any event these

changes are small and the sensitivity to the exact value chosen for the intrusion

thickness is small: a reduction of the assumed current thickness by 40% results in
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Figure 4.9: A comparison between modeled dimensionless intrusive gravity cur-
rent speed presented in figure 4.5 (dashed line) and speeds predicted based upon
a reduced intrusion thicknesses. Energy balance model predictions of intrusion
speed where the well-mixed intrusion thicknesses is 0.5H, 0.4H, and 0.3H (c = 0.8
and 0.6) are shown as dashed, dash-dotted, and dotted lines, respectively. Note
that relatively large reductions in the thickness of the intrusion results in a less
significant increase in predicted speed, and that at lower values of S, this reduced
thickness provides an improved fit to the numerical and laboratory data.
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a maximum change in predicted speed of less than 15%, indicating the model is

relatively robust to inaccuracies in the assumed current thickness.

The agreement between this energy-conserving model and the experiments

and simulations is consistent with previous work on interfacial intrusions (Cheong

et al. [6]) and unstratified intrusions in a linearly stratified ambient fluid (Bolster

et al. [4]). This conversion of available potential energy to kinetic energy of

the intrusion and ambient flows ignores dissipative processes such as turbulence

and mixing (and viscosity, but this is small at the high Reynolds numbers we

are considering). It also ignores energy escaping into upstream waves, which are

undoubtedly present in these flows. We conclude, that while these processes occur,

their impact on the overall energetics is small and can be ignored to first order.

As noted in section 4.6 internal waves are present in the stratified ambient

fluid. They occur both upstream of the intrusions which are subcritical to, at

least, long waves of vertical modes 1 and 2. Waves are also present in the ambient

fluid behind the front of the intrusion. It is also likely that there are internal

waves within the stratified intrusion itself, although they have not been clearly

identified. The effect of these waves needs further study, which is also the case

for unstratified gravity currents (Maxworthy et al. [23]) and intrusions (Bolster et

al. [4]). As in the present study, the speed of the gravity current and intrusion

could be predicted while ignoring the internal waves entirely. On the other hand,

for unstratified intrusions recent experiments by Monroe et al. [28] show quite

different behavior which appears to result from the influence of internal waves

reflected from the back of the lock, causing little evidence of a constant-velocity

phase.

The model also ignores the internal circulation that results from the internal

stratification in the intrusion. We observe that baroclinic generation of vorticity

generates a dipolar internal flow that distorts the isopycnals within the intrusion

and changes the shape from the unstratified intrusion which is well represented by

an irrotational interior. We also observe that adjustment of the isopycnals leads

to small regions of static instability along the top and bottom of the intrusions.

All of these features are excluded from the bulk model that we have presented.
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Consequently, they seem to play only a secondary role in the bulk adjustment

process of two stratified fluids.

Finally, we note that in the case S → 1, the interchange between the two

fluids decreases and the flows become weak. While it may seem that this limit is

of little practical relevance as everything evolves very slowly relative to the smaller

values of S, one should be cautious before disregarding it. In certain practical cases

it has been shown that slow exchange flows are the source of unexpected coastal

pollutants (Bolster et al. [41]).

Material drawn from this chapter has been published in the Journal of Fluid

Mechanics, (2010), Maurer, B. D., Bolster, D. T., and Linden, P. F. (Cambridge

University Press).



Chapter 5

Adjacent discrete stratifications

5.1 Abstract

We present a primarily numerical study of the gravity-driven interleaving

of two stable discretely stratified fluids at high Reynolds numbers. The two fluids

are initially at rest in a horizontal channel and are separated by a vertical barrier

which is removed to start the flow. We consider the case in which the layers

of constant density are of equal thickness, density interfaces within one fluid are

vertically staggered by half the layer thickness relative to the second fluid, and the

density differences between vertical adjacent layers are all equal. The resulting flow

consists of multiple interleaving interfacial gravity currents (IfGCs). Studies of a

single intrusion propagating into a two-layer ambient fluid by Cheong et al. [6] and

Flynn & Linden [22] show that the speed of an IfGC is independent of the density

of the intrusion, and determined instead by the vertical density difference between

the ambient layers. Varying the average density of one fluid relative to another

while maintaining equal vertical density differences between layers, we show that

a simple extension of these findings to the interleaving of multiple IfGCs fails, and

suggest that this failure is due to the coupling of interfacial waves across constant

density layers.

5.2 Introduction

Interfacial gravity currents (IfGCs) occur when lateral differences in den-

sity drive horizontal flow along a sharp density interface between two ambient fluid

layers. Strong pycnoclines can be found in the atmosphere, oceans, seas, lakes, as

well as industrial and architectural flows. Examples include atmospheric inversions,

62



63

the thermocline at the base of the mixed layer in the ocean, the halocline beneath

riverine inputs into ocean, seas, or lakes, and the strong temperature stratification

created by modern low-energy architectural ventilation schemes. The presence of

laterally adjacent fluid of an intermediate density, perhaps created by diapycnal

mixing, drives interfacial gravity currents along these density interfaces, transport-

ing mass, momentum, energy, and particulates (e.g. nutrients, phytoplankton, or

pollutants) (Simpson [11]).

In the laboratory, interfacial gravity currents can be created via a lock re-

lease experiment, where the intruding fluid density ρi is less than the lower ambient

layer density ρL and greater than that of the upper ambient layer density ρU . Re-

moving the barrier between the lock and the ambient fluids allows the intrusion

to propagate along the pycnocline between the upper and lower fluid layers (see

figure 5.1). After a brief period of acceleration, the IfGC propagates at a constant

velocity U (Britter & Simpson [20]). In channel lock release experiments, cross-

tank variations are observed to be small in comparison to streamwise variations,

allowing the problem to be considered in two dimensions. Since seminal work

by Holyer & Huppert [16], a number of studies have examined interfacial gravity

currents into two-layer ambient fluids, such as Britter & Simpson [20], Faust and

Plate [37], Mehta et al. [42], Lowe et al. [19], Sutherland et al. [17], Ungarish [38],

Cheong et al. [6], Flynn & Linden [22], Sutherland & Nault [43], Ooi et al. [44],

Flynn et al. [45], and Nokes et al. [39]).

For the simple case of a boundary gravity current with density ρi prop-

agating along the lower boundary of an ambient fluid of density ρa and depth

d, dimensional analysis suggests that the constant speed of the current U be a

function of ρi, ρa, and d (Yih [2]).

U = Fr0

�
g
�
iU

d (5.1)

where g
�
iU
≡ g(ρi−ρa)

ρ0
is the reduced gravity between the two fluids and ρ0 is a ref-

erence density. Benjamin [5] reasoned that Fr0 = 1
2 for energy-conserving inviscid

boundary currents. Sutherland et al. [36] found empirically Fr ∼ 0.48 for high

Reynolds number boundary gravity currents, (Re ≥ 2000, Simpson & Britter [26]).

This simple boundary case can be extended to doubly symmetric interfacial
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Figure 5.1: Schematic showing the initial conditions (above) for a lock-release of
a single ‘doubly symmetric’ interfacial gravity current. Here, the ambient fluid is
made up of two-layers of equal depth d = H/2, and the density of the intruding
fluid is the average of the two ambient fluid layer densities ρi = (ρL + ρU)/2. At
time t = 0, the gate is removed, and the IfGC propagates along the interface
in the ambient fluids with velocity U (below). The interfacial gravity current is
symmetric about the dotted line and behaves as two symmetric boundary currents
in a fluid of depth d.

gravity currents in a fluid of depth H, where the lower-layer depth dL is equal to

the upper-layer depth dU , and the density of the intruding fluid is the average of

the two-layer densities, ρi = (ρL + ρU)/2. Taking the IfGC to be composed of

two symmetric inviscid boundary gravity current exchanges reflected about the

midplane of the experiment as in Lowe et al. [19], the relevant heights and density

differences scales are now d and g
�
Li
≡ g

(ρL−ρi)
ρ0

, g
�
iU
≡ g

(ρi−ρU )
ρ0

. Defining a reduced

gravity of the interface, g
�
LU
≡ g

(ρL−ρU )
ρ0

, Lowe et al. [19] note that for this doubly

symmetric case, d = H/2 and g
�
Li

= g
�
iU

= g
�
UL

/2. The predicted IfGC velocity is

therefore,

U = Fr0

�
g
�
Li

d, (5.2)

= Fr0

�
g
�
iU

(H − d) (5.3)

= Fr0
1

2

�
g
�
UL

H, (5.4)

implying a Froude number for doubly symmetric interfacial intrusions, Fr =
1
2Fr0 = 0.25.
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For a “singly symmetric” IfGC, where the ambient layer depths are equal

but the intrusion density is not the depth-weighted average of the ambient layer

densities, the interfacial gravity current sinks or rises relative to the interface depth,

propagating at a speed that is independent of the intrusion density ρi. The first

accurate predictions of asymmetrical IfGC speeds came from a heuristic energy

scaling argument advanced by Cheong et al. [6], who noted that the available

potential energy of an interfacial gravity current entering a two-layer ambient fluid

departs quadratically from the equilibrium solution at the half-height. They scaled

the current speed U by this available potential energy, taking the appropriate limits

of the doubly symmetric IfGC to (5.4), and IfGCs at the boundaries to (5.1) at the

lower and upper boundaries, 0 and H. In doing so, they arrived at the expression

describing the IfGC speed as a function of interface height and reduced gravities:

Uh = Fr0

��
h

H

�2
− 2

�
h

H

��
g
�
iU

g
�
LU

�
+

�
g
�
iU

g
�
LU

��
g
�
LU

H. (5.5)

The authors note that when h/H = 1/2, (5.5) is independent of the intrusion

density ρi, collapsing to (5.4).

These “singly symmetric” IfGCs generate upstream interfacial waves, as

first noted by de Rooij et al. [21]. Early efforts to develop analytical models

of IfGCs ignored this upstream displacement, and resultingly overestimated the

front speed, (e.g. Holyer & Huppert [16]). A Benjamin-style [5] IfGC model

incorporating the upstream displacement of the interface in a balance of mass,

momentum, and energy was developed by Flynn & Linden [22]. They found that

though little energy was lost to the upstream displacement of the interface, the

wave serves to change the local front conditions driving. For example, “heavy”

currents sink relative to the interface, displacing mass in the lower-layer which, by

continuity, must raise the interface upstream of the current. Elevating the interface

increases the average density into which the current propagates, reducing the local

hydrostatic pressure difference at the front. This results in a decrease in speed of

the current, maintaining (5.4).

Though many models of interfacial gravity currents have explicitly incor-

porated the reciprocal propagation of boundary gravity currents at the upper and
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lower boundaries, such as Holyer & Huppert [16], Flynn & Linden [22], Maurer

et al. [3]; to our knowledge, none have extended their models to include the in-

terleaving of high Reynolds number Boussinesq interfacial gravity currents. This

study aims to describe the interleaving process of multiple IfGCs as it varies with

the difference between the average densities of the two stably stratified fluids. We

restrict our scope to adjacent discrete stratifications where the initial conditions

can be conceptually simplified so as to allow the application of (5.4) for the IfGC

at each density interface (details provided in section 5.3)

In section 5.3 we present our velocity model which assumes a linear addition

of a background flow to the locally determined interfacial gravity current velocity.

We describe the 2-D direct numerical simulations and laboratory experiments in

subsection 5.4.1 and subsection 5.4.2. Section 5.5 presents the results of the nu-

merical experiments in detail and compares the results with the theory developed

in section 5.3. We outline our conclusions in section 5.6.

5.3 Model

Similar to the approaches presented in section 5.2, we consider a scaling

argument about lines of symmetry to simplify a multiply layered problem. As

such, we expect this model to apply to any even number of interleaving inviscid

IfGCs. Within this section, and for results we present in detail in section 5.5.2 we

have chosen a system of ten interleaving IfGCs.

We consider two adjacent discretely layered stratified fluids of equal total

depth H and equal lengths L/2, where L is the total length of the channel. Each

fluid is made up of six layers. To the left of the gate, the uppermost layer is

of thickness d = H/11, and all other layers within the lock are of thickness 2d.

Similarly, to the right of the gate, the bottommost layer is of thickness d, and all

other layers are of thickness 2d. This serves to stagger the stratifications such that

the interfaces of the fluid to the left of the gate are at the middle of the fluid layers

to the right of the gate and vice versa. Both fluid bodies are stably stratified, such

that ρ1 > ρ2 > .... > ρ12, and the density step between vertically adjacent layers,
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∆ρ, is everywhere equal, (see figure 5.2).

When the gate is removed at t = 0, we expect these layers to interleave at

a constant velocities after a brief period of acceleration. This interleaving process

should involve five interfacial intrusions and one boundary current propagating in

both the rightward and leftward direction.

This system can be considered to consist of 11 boundary gravity currents

exchanges, each in a fluid of height d subject to a local reduced gravity g
�
RL
≡

g
(ρR−ρL)

ρ0
, where ρR and ρL refer to the densities of the right and left fluids within

that layer. In this system, there are 10 horizontal lines, one at the initial height of

each density interface, above and below which the flow is a symmetric reflection

over a vertical distance d. By (5.1), the speed of each of these local intrusions

should therefore be:

U = Fr0

�
g
�
RL

d, (5.6)

When the densities of each layer are the average of its two horizontally adjacent

neighbors (e.g. ρ3 = (ρ2 + ρ4)/2) throughout, g
�
RL

is everywhere the same. Be-

cause the layer depths have been constrained to be equal, the speeds of individual

intrusions are therefore also equal. In this “doubly symmetric” system of inter-

leaving interfacial gravity currents, we expect the two boundary currents and the

ten interfacial intrusions to propagate at the same speed.

Each of the ten interfacial intrusions propagates into a two-layer ambient

that can be considered to have an interface height of d and a total depth of 2d.

By (5.5), the density of the intruding fluid does not affect the IfGC speed because

the receiving fluid layers are of equal heights The local IfGC speed is therefore,

Ulocal = Fr0
1

2

�
g
�
∆2d, (5.7)

where g
�
∆ ≡ g

∆ρ

ρ0
is the local reduced gravity (e.g. intruding fluid from layer 3

experiences a reduced gravity defined by the density difference between layers 2

and 4). The system has been constrained such that ∆ρ is the same at every vertical

density interface, and by (5.7), the IfGC speeds should therefore also be the same.

In the “triply symmetric” case, δρ = 0, and the average or bulk density of

the left-hand fluid is equal to that of the right-hand fluid. However, perturbing all
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Figure 5.2: Schematic showing the initial conditions (above) for a lock-release of
ten interleaving interfacial intrusions. In each of the two stably stratified fluids,
there are six layers: one of thickness d and five of 2d. There is a consistent density
difference of ∆ρ between vertically adjacent layers. In the “triply symmetric” case,
where δρ = 0 each layer density is the average of the densities of its two horizontally
adjacent neighbors and there is no bulk density difference between the fluids to the
right and left of the gate. We deviate away from this equilibrium case by increasing
the density of each of the left-hand fluid layers (left) by a consistent amount δρ.
At time t = 0, the gate is removed, and the layers interleave at constant velocities
(below). For the “triply symmetric” case (shown), all currents interleave at the
same observed speed.
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left-hand fluid layer densities by δρ creates a bulk density difference of δρ between

the two sides of the gate. This perturbation ranges from the equilibrium case

δρ = 0 to the case where the intruding fluid is of the same density as the lower-

layer δρ = 1
2∆ρ. We hypothesize that there is background exchange flow associated

with this net density difference that can be superimposed on the locally determined

speeds of the individual intrusions (5.7). For simplicity, we argue that,

Uobs = Ulocal(∆ρ) + us(δρ, z) (5.8)

where Uobs is the observed current speed in the laboratory frame of reference and

us is the background flow. Note that Ulocal does not depend on δρ, but instead on

∆ρ, which remains constant as we perturb each layer depth equally by δρ.

Given that the interleaving stratification will likely suppress any larger scale

overturning, we anticipate this background flow to be a shear flow. We anticipate

this flow to scale similarly to a simple boundary gravity current, where dimensional

analysis yields:

us(z) ∼
�

g
�
δ
H, (5.9)

where g
�
δ
≡ g

δρ

ρ0
is the average reduced gravity between the two fluids. Here the

background speed varies as the square root of the density difference.

5.4 Methods

5.4.1 Numerical simulations

Direct numerical simulations were conducted in two dimensions for a ten

IfGC (and a five IfGC) system at eleven values of δρ/∆ρ equally spaced between

0 and 0.5. Reynolds numbers of the “triply symmetric” intrusions were in excess

of 1.5 x 103.

Simulations were conducted in a 2-dimensional domain of 366 cm length

and 38.5 cm (20 cm) height. A uniform grid of 1024 x 512 points was used to

discretize two symmetric 183 x 38.5 (20 cm) lock releases reflected about a central

vertical line of symmetry (Sutherland et al. [30]). A division between the two

stratifications was at Llock = 91.5 cm in each simulated domain. The density was
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varied between ρ = 1.000 and 1.100 g cm−3, at intervals of 9.1 g cm−3, resulting in

a density step between vertically adjacent layers of ∆ρ = 18.2 g cm−3. The central

(left-hand in the laboratory frame) fluid of all densities was marked with a passive

tracer.

A slightly modified version of the open source DNS algorithm Diablo (full

details available at http://renaissance.ucsd.edu/fccr/software/Diablo.html) was used

to solve the 2-D, incompressible Boussinesq equations, where the kinematic viscos-

ity ν = 0.01 g cm−3 and a Schmidt number, Sc = 1 (see Härtel et al. [35]) for justi-

fication of the increased molecular diffusivity). Symmetry about the back endwall

of the left-hand fluid allowed periodic boundary conditions and therefore for the

spectral evaluation of flow variables in the horizontal direction. To minimize Gibbs

phenomenon, density steps in the horizontal direction were initially smoothed with

a hyperbolic tangent profile; vertical density profiles were not smoothed. Vertical

derivatives were evaluated using second-order centered finite differences. Bound-

ary conditions were no-slip at the upper and lower fluid surfaces. The flow was set

into motion at t = 0 and allowed to progress until interfacial waves encountered

the ends of the domain at t = L/2√
g
�
UL

h
. Only vertical diffusive terms were treated

implicitly. The flow was advanced with a combination of a third-order, low-storage

Runge-Kutta-Wray scheme and a Crank-Nicholson scheme at ∆t = 0.001 s.

We recovered density, ρ, velocity, u, and passive tracer concentration, C

fields at 0.5 s intervals. A tracer concentration greater than 50% of the left-hand

fluid was used to identify left-hand fluid, and estimate its horizontal position.

Tracking the individual front positions over time provided a measure of current

speeds.

5.4.2 Laboratory Experiments

Laboratory experiments on a five IfGC systems were performed for δ|ρ/∆ρ =

[0.00, 0.13, 0.24, 0.28, 0.34, 0.41]± .01. Reynolds numbers of the “triply symmetric”

interfacial gravity currents were in excess of 1.5x103.

The experimental channel was 182 cm long, 23 cm wide, and 30 cm deep,

with a vertical gate dividing the tank midway from either endwall. Sodium chloride
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was added to water to vary the density between 1.010 and 1.070 g cm−3. Sponge

floats were used to fill both sides of the gate simultaneously to H = 21 cm depth.

To the left of the gate, the stratification consisted of three layers of equal thickness

h = 7 cm. To the right of the gate, layers at the upper and lower boundaries were

h = 3.5 ± 0.2 cm thick and two intermediate layers were h = 7 ± 0.2 cm. The

density step between all vertically adjacent layers was ∆ρ = 0.020 g cm−3 ± 0.001.

Interface thicknesses were observed to be less than 0.3 cm. Water samples were

drawn every 2 ± 0.2 cm in height from both fluids, and the densities were verified

with an Anton-Paar 5000 DMA density meter with an accuracy of 10−8 kg m−3.

The experiments were illuminated by a vinyl light sheet placed against the

back wall of the channel. A CCD camera (1390 x 1024 pixel resolution) was

positioned normal to, and 5 m away from, the front wall. Sucrose-based food

coloring, with a molecular diffusion coefficient approximately one-third that of

sodium chloride, was added to the left-hand-fluid as a passive tracer of density.

Removing the gate vertically set the two fluids into motion. Images of the

current were recorded directly onto a PC via DigiFlow software (Dalziel [34]) at

twelve frames per second. The front position of each individual current was tracked

in time using MATLAB. A linear regression was used to determine the Uobs once

the individual fronts had accelerated to a constant speed.

5.5 Results

5.5.1 Five interleaving interfacial gravity currents

Our initial investigations into interleaving currents involved a system of five

interleaving interfacial gravity currents, where three interfacial gravity currents

propagated rightward, and two interfacial gravity currents and two boundary cur-

rents propagated leftward, (see figure 5.3). All interleaving currents were observed

to reach a constant speed after a brief period of acceleration. The interleaving

IfGCs in the “triply symmetric” cases for both the laboratory and the numerical

simulations displayed symmetry about the respective density interfaces over a ver-

tical distance d and traveled at the speed predicted by (5.5). Increasing the density
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of the fluid to the left of the gate by δρ creates a linear variation in the observed

speeds of the intrusions uobs with height z. As the density perturbation increases,

the thickness of the intrusions is observed to increase until becoming a block-like

structure at δρ = 0.5.

There is good agreement between the laboratory and numerical images for

the five IfGC system (figure 5.4). The evident differences are caused by removing

the gate vertically in the experiments, which results in a time delay in the release

of the individual currents that increases with height, and also in the introduction

of interfacial waves seen in the dyed layers of the left-hand fluid.

Individual speeds in this five IfGC system significantly influenced by friction

at the boundaries. Though not immediately evident in these images, the boundary

gravity currents and interfacial gravity currents interacting sharing an interface

with boundary gravity currents are affected. This is more evident in the ten

layer experiments (see for example figures 5.5 and 5.8), as the position and speed

of the two currents nearest each boundary are substantially different than the

intermediate IfGCs.

Though more difficult to discern in the experiment images, there is a left-

ward boundary gravity current along the upper fluid surface that increases in speed

and size as the density perturbation increases. As there is no reciprocal boundary

gravity current propagating rightward along the bottom of the tank, this repre-

sents an asymmetry and a sagging of the left-hand fluid relative to the right-hand

fluid.

In an effort to avoid error introduced by the removal of the gate in exper-

iments and to minimize the affects of drag and the complexity introduced by the

boundary current asymmetry and we chose to pursue numerical models of a ten

interleaving IfGC system.

5.5.2 Ten interleaving interfacial gravity currents

In this section, we present our numerical results from a system of ten inter-

leaving IfGCs. As in the five IfGC case, all individual interfacial gravity currents

were observed to reach a constant velocity phase (even if the current was station-
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Figure 5.3: Schematic showing the initial conditions (above) for a lock-release
of five interleaving interfacial intrusions. To the left of the gate, there are three
layers of thickness 2d. To the right of the gate, there are two intermediate layers
of thickness 2d and two-layers at the boundaries of thickness d. There is a con-
sistent density difference of ∆ρ between vertically adjacent layers. In the “triply
symmetric” case, where δρ = 0 each layer density is the average of the densities
of its two horizontally adjacent neighbors and there is no bulk density difference
between the fluids to the right and left of the gate. We deviate away from this
equilibrium case by increasing the density of each of the left-hand fluid layers (left)
by a consistent amount δρ. At time t = 0, the gate is removed, and the layers
interleave at constant velocities (below). For the “triply symmetric” case (shown),
all currents interleave at the same observed speed.
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Figure 5.4: Corresponding images from the laboratory experiments and the nu-
merical experiments over the range of δρ/∆ρ at t = 6s, showing excellent qualita-
tive and quantitative agreement in intrusion shape and evident background shear
flow between the experimental results and the numerics.
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ary) after a brief period of adjustment and acceleration. The speed and shape of

these intrusions was observed to vary as the average density of the fluid to the left

of the gate was increased relative to the average density of the fluid to the right of

the gate (see figure 5.5).

In the ‘triply symmetric’ case, where δρ/∆ρ = 0, the intrusions are each

symmetric about the interface along which they propagate. The x− t diagram in

figure 5.6 shows that these intrusions travel at a constant speed, the same to within

two percent, and closely match the theoretical two-layer IfGC speed predicted by

(5.4) shown as the dashed line. As the density of the fluid to the left of the intrusion

increases, the shapes and speeds of the individual intrusions change (figure 5.5).

Above the half-height of the experiment (z = 19.25), increasing δρ/∆ρ causes a

decrease in the speed of rightward propagating currents and an increase in the

speed of the leftward propagating currents relative to the equilibrium case. The

converse is true below the half-height of the experiments. This variation in front

speed appears to vary linearly with height.

Figure 5.7 presents plots of the observed velocity uobs of the individual

IfGC fronts as a function of the non-dimensional density perturbation. Boundary

currents and the IfGCs directly contacting them are omitted in this figure. By

experimental design, there is symmetry between the rightward propagating cur-

rents, (IfGCs 3, 5, 7, 9), and the leftward propagating currents, (IfGCs 4, 6, 8,

10). For the equilibrium case δρ/∆ρ = 0 the speeds are all equal. All currents

have a significant decrease in velocity relative to the equilibrium IfGC velocities

at high density perturbations, with some fronts becoming stationary or reversing

direction for δρ/∆ρ > 0.4. For intermediate ranges, the speeds of IfGCs nearer

the boundaries (currents 3 and 10) show an increase in magnitude. The predicted

Ulocal is plotted as a dashed line for reference.

Plotting the intrusion speeds versus the heights of the interfaces along which

they intrude in figure 5.8, we see that the velocity of the rightward and leftward

propagating currents varies linearly with height for currents 3 through 10 over

the entire range of density perturbation. For each value of δρ/∆ρ, we fit lines

to these velocity profiles of the leftward and rightward propagating velocities by
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Figure 5.5: Snapshots of the simulation tracer fields at t = 7s. From top to
bottom, δρ/∆ρ =[0, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50]. As
δρ/∆ρ increases, the rightward IfGCs sink relative to the interface along which
they propagate, while the leftward propagating IfGCs rise relative to the interface.
For intrusions in both directions, the surface of the intruding fluid nearest the
interface flattens with increasing density perturbation, while the opposite surface
of the intrusion becomes more angled towards the vertical. δρ/∆ρ = 0 shows
interleaving symmetric intrusions of the same velocities in both directions, while
δρ/∆ρ = 0.5 shows step-function profile with height.
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Figure 5.8: Observed velocities uobs of the individual interleaving IfGCs as a
function of height. A line is fitted to the IfGC speeds (away from the boundaries)
as an estimate of the background shear us. The background velocity is observed
to increase in magnitude as the difference in the average densities of the two fluids
increases. The individual IfGC velocities decrease in their difference from the
background shear flow as the density perturbation δρ/∆ρ increases.
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Figure 5.9: A plot of the fitted shear velocity gradient ∂us/∂z as a function of the
density perturbation δρ/∆ρ. The background shear is observed to vary linearly
with the density perturbation.

linear regression. Taking the average of the two slopes and the two intercepts,

we obtained an estimate for the background shear flow us, plotted as continuous

lines. The vertical gradient of the background shear velocity ∂u/∂z increases as the

density perturbation increases, while the difference between the observed velocities

uobs and the shear velocity velocity us decreases.

The vertical gradient in shear velocity varies linearly with the density per-

turbation, as shown in figures 5.9 and 5.11. Figure 5.11 presents an estimate of

the background shear velocity at the boundaries calculated from this gradient, and

compares it to the predicted front velocity of a boundary gravity current between

fluids of height H and a density difference δρ via (5.1). The two curves are similar

in order of magnitude but differ in dependence on the density perturbation.

Because the observed velocity profiles are linear in z and symmetric about

the fitted background shear flow profile, we take the mean difference between

observed IfGC velocity uobs and the estimated background shear flow us to be the

local IfGC speed Ulocal. Though the equilibrium IfGC speed Ulocal(δρ/∆ρ = 0)
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Figure 5.10: A plot of the fitted shear velocity calculated at z/H = 0 (circles) as
a function of the density perturbation δρ/∆ρ. The speed of an analogous gravity
current based on (5.1) and the average densities of the two fluids is plotted as a
dashed line.
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Figure 5.11: A plot of uobs − us as a function of δρ/∆ρ showing a quadratic
decrease in speed with increasing density perturbation.
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is near the speed predicted by (5.4), Ulocal varies with the density perturbation,

decreasing nonlinearly with the increase in δρ/∆ρ. The speed predicted by (5.4)

is shown as a dashed line.

Figure 5.12 presents snapshots of the density field over the range of density

perturbations at t = 7. The position of the individual currents marked by the black

contour. Individual intrusions in the equilibrium case δρ/∆ρ = 0 propagate along

interfaces that are unperturbed by interfacial wave motion. Perturbing away from

the equilibrium case, the presence of interfacial waves is immediately evident. The

amplitude of these disturbances is observed to increase as the density perturbation

increases.

5.6 Discussion

This chapter examines the interleaving process of two discretely stratified

fluids. For simplicity, we have focused our attention on a highly idealized case

in which there are an even number of interleaving intrusions. We have further

restricted our scope to include only initial stratifications where the individual layer

thickness are equal, density interfaces within one fluid are vertically staggered by

half the layer thickness relative to the second fluid, and the density differences

between vertical adjacent layers are equal. These restrictions were made to simplify

the parameterization of the system, potentially allowing the reduction of the system

to multiple interleaving IfGCs each behaving as the two-layer system described by

Cheong et al. [6].

The system was then perturbed from equilibrium by increasing the density

of each layer in the left-hand fluid by a fraction of the vertical density difference

between layers, thereby increasing the density of the left-hand fluid relative to the

right-hand fluid by the same fraction. This density perturbation was varied from

the equilibrium case in which the density of the intruding is equal to the average of

the two receiving fluid densities, to the case in which the density of the left-hand

fluid layer matches that of the lower receiving layer within the right-hand fluid.

We hypothesized that the resulting flow would be a linear combination
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Figure 5.12: Snapshots of the simulation density fields at t = 7s, with contour of
the passive tracer marking the location of the individual interleaving IfGCs. From
top to bottom, δρ/∆ρ =[0, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50].
The “triply symmetric” case shows no displacement of the interfaces. However,
simulations of δρ/∆ρ > 0 show evidence of interfacial waves. The amplitude of
these disturbances appears to increase with the density perturbation.
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of a local intrusion speed Ulocal(∆ρ) and a background shear flow us(δρ). From

experiments and simulations by Cheong et al. [6] we expected the IfGC to be

independent of the density perturbation δρ and therefore invariant in our system.

From dimensional arguments, we further anticipated the background shear flow

to vary with the square root of δρ as would a gravity current based on the total

height and average densities of the two fluids. We conducted limited laboratory

experiments and more extensive numerical simulations to investigate systems of

five and ten interleaving IfGCs .

Locally and globally, these flows are Boussinesq: density differences between

layers ∆ρ and between the right and left fluids δρ are small in comparison to any

of the densities involved in the system. For this reason, we expect a symmetry

in behavior about the individual interfaces and about the half-height z = H/2

of the fluids, were we to decrease the density of each left-hand fluid layer by δρ.

Explicitly, the rightward propagating currents would rise relative to the interfaces

rather than sink, and the background horizontal velocities would reverse direction.

Moving away from the equilibrium case to δρ < 0 would produce Ulocal and us of

the same magnitudes, but opposite signs. Systems consisting of an even number

of IfGCs also posses rotational symmetry about (x = L/2, z = H/2) at π. This

additional symmetry prevents the sinking of the heavier stratification relative to

the other, (as seen in subsection 5.5.1), which allowing data for both rightward

and leftward propagating currents to be used interchangeably. For this reason,

we concentrate on systems of an even number of interleaving interfacial gravity

currents, choosing ten in an effort to minimize bias introduced by drag at the

upper and lower boundaries.

In the “triply symmetric” or equilibrium case, the fluid layer depths are

equal, the IfGC densities are the average of the horizontally adjacent fluid layers,

and there is no net difference in density between the two fluids. As expected, the

individual IfGCs each propagate at the same speed, there is no displacement of

the interface upstream of the intrusions, and no background flow is evident. The

speed of the individual fronts agrees well with predictions by Cheong et al. [6] for

a single intrusion doubly symmetric equation (5.5).
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Increasing the density perturbation δρ/∆ρ away from the equilibrium case,

however, the observed velocities of the individual IfGC fronts do not behave ac-

cording to our hypothesis (5.8), which implies uobs = A + B
√

δρ z, where A and

B are constants and z is the initial height of the relevant interface. Instead, there

appears to be a gradual slowing and or reversal of currents at all heights within the

experiment. Though some IfGCs show a temporary increase in magnitude with in-

creasing density perturbation, all currents eventually exhibit observed speeds uobs

slower than the individual intrusion speed Ulocal which was assumed to be invariant

in the experiments.

By conservation of mass, the background shear flow us cannot directly ac-

count for this slowing of intrusion speeds with increasing density perturbation.

Individual front speeds in both directions decrease in magnitude over the entire

range of height. However, it may still be possible to consider the local and back-

ground flows separately. Profiles of the individual rightward and leftward front

speeds for each simulation exhibit the same linear dependence of velocity on verti-

cal position and show a consistent difference between the observed current speeds

and the fitted background flow over the range of intermediate heights.

Considering first the contribution of the background flow, we note that

there is a linear dependence of the magnitude of the shear ∂u/∂z on the density

perturbation. This is in contrast to the form expected by (5.9), where the back-

ground shear flow depends on the square root of the density perturbation. As the

individual currents become more asymmetric, the magnitude of the background

shear flow speed goes as the square of the contribution hypothesized in section 5.3.

However, the observed flow still decreases in speed as density perturbation

increases, indicating that there is a corresponding slowing of the individual IfGC

speeds. Indeed, moving away from the equilibrium case there is a decrease in the

difference between the observed velocities and the estimated background shear flow

velocity at each height. Plots of this difference as a function of density perturbation

reveal a strong nonlinear dependence, with individual IfGC speeds decreasing to

approximately twenty percent of the equilibrium values over the range investigated.

We suggest that this difference is due to the increasing magnitude of inter-
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facial waves upstream of the intrusions. A rigorous analytical model of an IfGC in

a two-layer ambient fluid by Flynn & Linden [22] found that the upstream interfa-

cial wave modulates the intrusion speed by altering the upstream conditions. By

continuity, the sinking of “heavy” IfGCs displaces mass in the lower-layer, which

in turn elevates the interface upstream of the wave, decreasing the net horizontal

density gradient over the height of the front. This results in a decrease in the

hydrostatic pressure differences locally driving flow, thereby slowing the current.

In a system of interleaving IfGCs, this slowing effect of upstream interfacial

waves is compounded by the existence of multiple layers. In Flynn & Linden’s

[22] model, only the sinking or rising of a current caused the displacement of the

upstream interface. In a system of interleaving intrusions, interfacial waves are

coupled. Mass in each layer is displaced not just by the advancement of a “heavy”

or “light” current, but also by waves along both its upper and lower boundaries.

The upstream wave therefore has a correspondingly greater amplitude than the

analogous two-layer experiment, proportionally decreasing the speed of the current.

The hydrostatic pressure differences between the two stratified fluids store

the potential energy of the system, which is converted to the kinetic energy of the

ensuing flow in the form of the interleaving IfGCs, the background flow, turbulence,

and wave motion. We suggest that the coupling of waves at multiple interfaces

inhibits the interleaving process, which maintains a net horizontal pressure gradi-

ents between the two fluids, thereby increasing the rate of energy transfer into the

background shear flow. We leave validating such a balance to future studies.



Chapter 6

Conclusions and summary of

present contribution

This dissertation explores the dynamics of constant velocity gravity-driven

intrusions in stratified fluids, focusing on intrusions in which the dynamics are

governed by the balance between buoyancy and inertial forces. We investigated

well-mixed and stratified intrusive gravity currents propagating a linearly stratified

ambient fluid and a system of interleaving interfacial gravity currents.

Intrusive gravity currents excite waves in the continuous ambient stratifi-

cation. The front speed of intrusions in a continuously stratified fluid is always

subcritical to internal wave propagation speeds. All well mixed intrusive gravity

currents in a linearly stratified ambient fluid are subcritical to mode-1 internal

wave motion (Bolster et al. [4]), but only some are subcritical to mode-2 wave

propagation. Vertical profiles of mode-1 horizontal velocity correspond closely to

velocity profiles generated in and above boundary gravity currents. Intrusions gen-

erate horizontal velocity profiles over the height of the fluid that closely resemble

the horizontal velocity structure of mode-2 internal waves.

Through synthetic schlieren laboratory experiments and two-dimensional

direct numerical simulations of lock releases, chapter 3 explored the role of intru-

sion density in the structure, momentum, and energy of the wave field within an

upstream control volume. We found that this wave field consisted of horizontally

propagating internal long wave modes well described linear wave theory. Both level

of neutral buoyancy and the speed vary with the intrusion density as predicted by

Bolster et al., and each has an observable effect on the excitation of modes-1 and

-2. The momentum of the upstream wave field is of the same order of magnitude

as the momentum of the IGC, while the energy lost to the upstream wave field

87
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was found to be on the same order as losses to dissipation.

There is no existing analytical model of well-mixed intrusions into linearly

stratified ambient fluid. A heuristic energy scaling model by Bolster et al. in

the spirit of Cheong et al. [6] shows excellent agreement with experiments and

simulations, but offers little insight into the dynamics of the flow. Our work de-

scribing the systematic disturbance of the density field, and the upstream transfer

of momentum and energy is meant to be the foundation of future analytical models

describing this flow, similar to Flynn & Linden’s [22] model incorporating interfa-

cial waves into a model of interfacial gravity current propagation.

In chapter 4 we developed a heuristic model similar to those of Cheong et al.

and Bolster et al. to investigate the effect of stratification within an intrusion. All

natural fluid bodies stratify. Vertical stratification within an intrusion represents

a reduction in the horizontal density gradients at the front relative to a well mixed

intrusion. This in turn is a reduction in the baroclinic torque locally driving the

current.

We present the first model predicting the front speed of an intrusion prop-

agating from one constantly stratified fluid into another constantly stratified fluid

of a different buoyancy frequency, limiting our scope to the case where the mean

densities of the two fluids are equal. As in Cheong et al. we scaled the intrusion ve-

locity by the Available Potential Energy of the system and empirical measurements

(of intrusion thickness). Appropriate limits were taken from the work of Bolster

et al. and inspection. The heuristic model developed shows excellent agreement

with laboratory experiments and two-dimensional direct numerical simulations we

conducted over the parameter range.

We intend the energy scaling model presented in chapter 4 to provide a

foundation for future analytical work describing the dynamics of intrusions between

stably stratified fluids. An accurate Benjamin-style [5] model of such a flow would

need to incorporate the adjustment of the density field within the intrusion as well

as in the ambient fluid (noted in chapter 3) in the balance of mass, momentum,

and energy.

Contrary to the case presented in chapter 4, adjacent discrete density strat-
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ifications have the potential to interleave as a system of interfacial gravity currents.

Single interfacial gravity currents in a two-layer ambient are well understood. In

the case where the two-layer depths are equal the front speed Cheong et al. shows

that the front speed of the intrusion is independent of the density of the intrusion.

We attempted to extend this finding to a highly idealized case, using primarily

two-dimensional direct numerical simulations of systems of an even number of

interleaving intrusions.

Equally perturbing the density of each layer to one side of gate, increases

the average density of that fluid relative to the fluid to the other side of the gate.

By extension from the two-layer model, the local IfGC speed should vary only with

the density difference between vertically adjacent layers. Preserving this difference,

we vary the average density of one fluid, hypothesizing that this difference will be

expressed as a background shear flow that scales as a boundary gravity current.

Increasing the average density of one fluid relative to the other does generate

a background shear flow. However, this shear flow does not depend on the density

as expected, and the individual intrusion speeds are found to vary with the density

of the intrusion. We propose that the failure of our model is the inhibition of the

individual currents by coupled interfacial waves. In the two-layer case, the role

of these waves is to alter the upstream conditions slowing the current (Flynn &

Linden [22]). The coupling of these waves across density layers would represent

an increased slowing of these individual currents relative to the two-layer case.

Slowing the individual currents would maintain bulk horizontal pressure gradients

between the two stratifications, driving the background flow more strongly than

anticipated a simple gravity current scaling.
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