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Abstract

Estimation and Evaluation of the Optimal Dynamic Treatment Rule: Practical
Considerations, Performance Illustrations, and Application to Criminal Justice

Interventions

by

Lina Maria Montoya

Doctor of Philosophy in Biostatistics

University of California, Berkeley

Associate Professor Maya Petersen, Chair

The optimal dynamic treatment rule (ODTR) framework offers an approach for understand-
ing which kinds of patients respond best to specific treatments – in other words, treatment ef-
fect heterogeneity. Further, given an (optimal) dynamic treatment rule, it may be of interest
to evaluate that rule – that is, to ask the causal question: what is the expected outcome had
every subject received treatment according to that rule? Following the “causal roadmap,” in
this dissertation, we causally and statistically define the ODTR and its value. Building on
work by Luedtke and van der Laan, we provide an introduction to and show finite-sample
performance for (1) estimating the ODTR using the ODTR SuperLearner (Chapter 1); and
(2) estimating the value of an (optimal) dynamic treatment rule using different estimators,
such as cross-validated targeted maximum likelihood (CV-TMLE; Chapter 2). We addition-
ally augment the ODTR SuperLearner by considering stochastic treatment rules and risk
criteria that consider the variability of the value of the rule (Chapter 3). We apply these
estimators of the ODTR and its value to the “Interventions” Study, an ongoing random-
ized controlled trial, to identify whether assigning cognitive behavioral therapy (CBT) to
criminal justice-involved adults with mental illness using an ODTR significantly reduces the
probability of recidivism, compared to assigning CBT in a non-individualized way. We hope
this work contributes to understanding the toolbox of methods that can be used to advance
the fields of precision medicine, public policy, and health.
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Introduction

Over the past decade, there has been a marked increase in interest in developing methods
for uncovering treatment effect heterogeneity [28, 25]. This stems from the insight that units
– patients, participants, users – in a given population often have diverse characteristics,
motivations, and needs, and thus will respond to treatments differently. This, paired with
goals of the data science era (such as more powerful machinery for prediction) and big data
era (such as the collection of richer data sets), have contributed to the recent popularity
of developing data-driven methods for improving treatment decisions. In particular, the
optimal dynamic treatment rule (ODTR) framework offers a way to identify the treatment
option that works best for each kind of person [52, 69], and research aimed at estimating
and evaluating the ODTR has grown in recent years, especially within the fields of statistics,
machine learning, and causal inference [28].

Work by Luedtke and van der Laan [48] responds to the proliferation and diversity of algo-
rithms for estimating the ODTR by employing the ensemble machine learning/SuperLearner
philosophy – that a library of algorithms work in tandem to achieve a certain prediction goal
[63]. In the ODTR SuperLearner, a library of ODTR algorithms “team up” to predict which
treatment works best for which kind of person. van der Laan and Luedtke [33] additionally lay
the theoretical groundwork for evaluating (via the targeted maximum likelihood estimation,
or TMLE, framework) such rules, which allow practitioners to determine if administering a
treatment in this personalized way is more beneficial than simply giving everyone the same
treatment, regardless of covariate profiles. In other words, by evaluating an optimal rule, we
can infer if there is any meaningful treatment effect heterogeneity in that population.

Luedtke and van der Laan’s seminal work is the foundation of this dissertation. Here, we
aim to, first, provide a distilled introduction to and description of the ODTR SuperLearner,
in addition to a list of practical considerations for implementing the algorithm. Importantly,
we show its finite-sample performance under different library, risk, and metalearner config-
urations. Chapter 2 focuses on evaluating dynamic treatment rules, and in particular the
ODTR, using different estimators. We list the conditions necessary for obtaining adequate
inference for different target parameters that correspond to the value of the (optimal) dy-
namic treatment rule, and the importance of targeting and sample-splitting when evaluating
these parameters in the presence of algorithm overfitting. Chapter 3 extends the ODTR
SuperLearner to include stochastic rules in its library and a new risk criterion, both of which
consider the variability of the expected value of candidate rules, pointing to improvements in
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finite-sample performance of estimators for the true value of the true ODTR under these ex-
tensions. Alexander R. Luedtke, PhD and Jeremy R. Coyle, PhD were co-authors on Chapter
1; Maya L. Petersen, MD, PhD, Mark J. van der Laan, PhD, and Jennifer L. Skeem, PhD
were co-authors on Chapters 1, 2, and 3.

Several commonalities between the three chapters will become apparent to the reader.
First, every chapter follows the causal roadmap, developed by Petersen and van der Laan
[57]. The causal roadmap is an extremely helpful tool for answering causal questions, and
transparently doing so under the inevitable constraints of certain data generating processes.
Second, throughout, the SL.ODTR package (https://github.com/lmmontoya/SL.ODTR),
written by this dissertation’s author, is used to estimate all aspects of the aforementioned
chapters, and any simulations presented in this dissertation can be found on that GitHub
page, as well. Finally, data from the “Interventions” study – an ongoing randomized con-
trolled trial officially called the Correctional Intervention for People with Mental Illness – is
used for illustration in each of the chapters. In this trial, 441 (and eventually 720) criminal
justice-involved adults with mental illness – a heterogeneous group with diverse symptoms,
risk factors, and other treatment-relevant characteristics [82, 83] – are either randomized
to cognitive behavioral therapy (CBT) or treatment as usual (TAU), and re-arrest is col-
lected one year after randomization occurs, as a measure of recidivism. Tools presented in
this dissertation could ultimately shed light on how to tailor mental health interventions to
offenders with mental illness, to ultimately reduce recidivism outcomes.

Throughout, we also emphasize our “big picture” hope for this work – that it serves in
helping understand the toolbox of methods available for precision health/medicine/public
policy, and ultimately contributes to maximally improving people’s outcomes.
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Chapter 1

The Optimal Dynamic Treatment
Rule SuperLearner: Considerations,
Performance, and Application

1.1 Introduction

The primary objective of a clinical trial is often to evaluate the overall, average effect of a
treatment on an outcome in a given population [16, 25, 28]. To accomplish this objective
in the point treatment setting, baseline covariate, treatment, and outcome data are often
collected and the average treatment effect (ATE) is estimated, quantifying the average impact
of the treatment in a population. Researchers may then interpret the impact of the treatment
as beneficial, neutral, or harmful. In this interpretation, the treatment’s impact is one-size-
fits-all; in other words, the effect of the treatment is interpreted as the same for everyone
in the study population. But, it may be the case that an intervention tends to yield better
outcomes for certain kinds of people but not for others. For example, because justice-involved
people with mental illness are a heterogeneous group with diverse symptoms, risk factors,
and other treatment-relevant characteristics [82, 83], assigning Cognitive Behavioral Therapy
(CBT) may decrease the probability of recidivism for individuals with high risk of recidivism
but not low risk of recidivism [45]. The ATE analysis may lead one to conclude that there
is no treatment effect in a given population, when there is, in fact, a differential treatment
effect for levels of variables.

Precision health aims to shift the question from “which treatment works best” to “which
treatment works best for whom?” (sometimes, it further asks: at what time? And/or at
what dose? [28]). The point of moving towards this question is to move towards better
subject outcomes. While a range of novel study designs can help to address these questions
by generating data in which individualized treatment effects are unconfounded [28, 43, 22],
data from classic randomized controlled trials also provide a rich data source for discovering
treatment effect heterogeneity. Under the assumption of no unmeasured confounding, the
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same methods can be applied to observational data.
One way of learning which treatment works best for whom is to estimate effects within

subgroups. Following our above example within the field of criminal justice, one could
split the sample into subjects who are likely versus unlikely to re-offend, and look at the
average effect of CBT on recidivism within these two risk categories. Such a classic subgroup
analysis helps to move a step closer to understanding the treatment that works best for
whom. However, the need to restrict the number of tests performed and to pre-specify
analyses limits traditional subgroup analyses to comparing intervention effects in a small set
of subgroups in which heterogeneous treatment effects are expected [25, 44]. In practice, the
subject characteristics that are most important for determining the best-suited intervention
may not be clear based on background knowledge. Further, effectively predicting the type of
intervention that a subject will best respond to may require accounting for a wide range of
subject characteristics and complex interactions between them. For instance, identifying the
subjects most likely to respond to CBT versus, for example, treatment as usual (TAU) may
require considering not only risk level, but also age, educational attainment, sex, substance
abuse, psychological distress, and internal motivation to adhere to treatment – as well as
various interactions between these. In summary, the challenge is to take a wide range of
subject characteristics and flexibly learn how to best combine them into a strategy or rule
that assigns to each subject the specific intervention that works best for him or her.

Estimating the optimal dynamic treatment rule (ODTR) for a given population offers
a formal approach for learning about heterogeneous treatment effects and developing such
a strategy. A dynamic treatment rule can be thought of as a rule or algorithm where the
input is subject characteristics and the output is an individualized treatment choice for
each subject [2, 34, 67, 9]. An optimal dynamic treatment rule (also known as an optimal
treatment regime, optimal strategy, individualized treatment rule, optimal policy, etc.) is the
dynamic treatment rule that yields the best overall subject outcomes [52, 69]. In our criminal
justice example, a dynamic treatment rule takes as input subject characteristics such as age,
criminal history, and education level and outputs a treatment decision – either CBT or TAU.
The ODTR is the dynamic treatment rule under which the highest proportion of patients
are not re-arrested. It is the most effective and, if one incorporates cost or constraints on
resources [46], efficient way of allocating the interventions at our disposal based on measured
subject characteristics.

There have been major advances in estimating the ODTR within the fields of statistics
and computer science, with important extensions to the case where treatment decisions are
made at multiple points in time. Regression-based approaches, such as Q-learning, learn
the ODTR by modeling the outcome regression (i.e., the expected outcome given treatment
and covariates) directly [52, 41, 80, 50, 64]. Robins and Murphy developed methods of
estimating the ODTR by modeling blip-to-reference functions (i.e., the strata-specific effect
of the observed treatment versus control) and regret functions (i.e., the strata-specific loss
incurred when given the optimal treatment versus the observed treatment), respectively [52,
69, 49]. Direct-estimation approaches to learning the ODTR, such as outcome weighted
learning (OWL), aim to search among a large class of candidate rules for the one that yields
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the best expected outcome [92, 88, 91]. These are examples of broad classes of ODTR
estimators; within and outside of them there has been a proliferation of methods to estimate
the ODTR (see [28, 29, 89] for reviews of the state of the art in estimating ODTRs and
precision medicine).

Given the vast number of methods available for estimating the ODTR, the question
becomes: which approach to use? In some settings, some algorithms may work better
than others. SuperLearning [35] (or, more specific to prediction, stacked regression [7])
was originally proposed as a method for data-adaptively choosing or combining prediction
algorithms. The basic idea is to define a library of candidate algorithms and choose the
candidate or the combination of candidates that gives the best performance based on V-fold
cross-validation. This requires defining: (1) the algorithms to include in the library, (2) a
parametric family of weighted combinations of these algorithms, the “metalearning” step
[42], and (3) the choice of performance metric (i.e., risk) as the criterion for selecting the
optimal combination of algorithms. Given these three requirements, then one can estimate
the risk for each combination of algorithms using V-fold cross-validation, and choose the
combination with the lowest cross-validated risk. The SuperLearner framework has been
implemented extensively for prediction problems [63, 60, 61, 59], and has been extended
to the ODTR setting [48, 15]. In particular, Luedtke and van der Laan showed that in
the randomized controlled trial (RCT) and sequential multiple assignment randomized trial
(SMART) [29, 1, 43] settings, under the assumption that the loss function is bounded, the
ODTR SuperLearner estimator will be asymptotically equivalent to the ODTR estimator
chosen by the oracle selector (that is, the ODTR estimator, among the candidate ODTR
estimators, that yields the lowest risk under the true data distribution [35]). This implies that
the ODTR SuperLearner will asymptotically do as well as or better than any single candidate
estimator in the library, provided that none of the candidate algorithms are correctly specified
parametric models. If there is a well-specified parametric model in the library, the ODTR
SuperLearner estimator of the ODTR will achieve near parametric rates of convergence to
the true rule.

These theoretical results lay important groundwork for understanding the asymptotic
benefits to using the algorithm; however, less has been published on how the ODTR Su-
perLearner performs in finite samples, the practical implications of key choices when imple-
menting the algorithm, and illustrations of implementing this algorithm on real RCT data.
In this paper, we provide an introduction to the implementation of the ODTR SuperLearner
in the point treatment setting, and use simulations to investigate the tradeoffs inherent in
these user-supplied choices and how they may differ with varying sample sizes. In particu-
lar, for sample sizes 1,000 and 300, we examine: (1) how to select the candidate algorithms
for estimating the ODTR; specifically, the costs and benefits to expanding the library to
include a wider set of diverse ODTR algorithms, including simple parametric models ver-
sus more data adaptive algorithms, and blip-based versus direct estimation algorithms; (2)
implications of the choice of parametric family for creating weighted combinations for candi-
date ODTR learners (i.e., choice of metalearner); and, (3) implications of the choice of risk
function used to judge performance and thereby select the optimal weighted combination of
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candidate learners. Finally, we apply the ODTR SuperLearner to real data generated from
the Correctional Intervention for People with Mental Illness, or “Interventions,” trial, an
ongoing RCT in which justice-involved adults with mental illness were either randomized to
CBT or TAU. In applying the ODTR SuperLearner to this sample, we aim to identify which
people benefit most from CBT versus TAU, in order to reduce recidivism.

The organization of this article is as follows. First, we step through the causal roadmap
(as described in [57]) for defining the true ODTR for a given population. We focus on the
case in which baseline covariates are measured, a single binary treatment is randomized,
and an outcome is measured. We then give a brief introduction to some estimators of the
ODTR, and in particular, describe the SuperLearner approach for estimating the optimal
rule that builds on Luedtke and van der Laan’s work [48]. We investigate the implications of
the three sets of implementation choices outlined above in finite samples using simulations
(with corresponding R code illustrating implementation of all estimators considered), and
the performance under such options. Lastly, we show results for the ODTR SuperLearner
algorithm applied to the “Interventions” Study. We close with concluding remarks and future
directions.

1.2 Causal Roadmap and ODTR Framework

Data and Causal Model

Consider point-treatment data where W ∈ W are baseline covariates, A ∈ {0, 1} is the
treatment, and Y ∈ R is the outcome measured at the end of the study. Our data can be
described by the following structural causal model (SCM), MF [56]:

W = fW (UW )

A = fA(W,UA)

Y = fY (W,A,UY ) ,

where the full data X = (W,A, Y ) are endogenous nodes, U = (UW , UA, UY ) ∼ PU are un-
measured exogenous variables, and f = (fW , fA, fY ) are structural equations. If it is known
that data were generated from an RCT using simple randomization with equal probability
to each arm, then the above structural causal model would state that Y may be affected
by both W and A, but that W does not affect A (as in the “Interventions” trial); this can
be represented in the above model by letting UA ∼ Bernoulli(p = 0.5) and A = UA. In
this point treatment setting, a dynamic treatment rule is a function d that takes as input
some function V of the measured baseline covariates W and outputs a treatment decision:
V → d(V ) ∈ {0, 1}. For the remainder of the paper, we consider the case where V = W ; in
other words, we consider treatment rules that potentially respond to all measured baseline
covariates. However, consideration of dynamic rules based on a more restrictive set of base-
line covariates is also of frequent practical interest, allowing, for example, for consideration
of dynamic rules based on measurements that can be more readily attained; all methods
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described extend directly to this case. We denote the set of all dynamic treatment rules as
D.

The “Interventions” data consist of baseline covariates W , which include intervention
site, sex, ethnicity, age, Colorado Symptom Index (CSI) score (a measure of psychiatric
symptoms), level of substance use, Level of Service Inventory (LSI) score (a risk score to
predict future recidivism that summarizes risk factors like criminal history, educational and
employment problems, and attitudes supportive of crime), number of prior adult convic-
tions, most serious offense, Treatment Motivation Questionnaire (TMQ) score (a measure
of internal motivation for undergoing treatment), and substance use level; the randomized
treatment A, either a manualized Cognitive Behavioral Intervention for people criminal jus-
tice system (abbreviated CBT; A = 1) or treatment as usual (TAU), primarily psychiatric
or correctional services (A = 0); and a binary outcome Y of recidivism, an indicator that
the person was not re-arrested within one year after study enrollment. In Table 3.1 we show
the distribution of the data.

Target Causal Parameter

Let d(W ) be a deterministic function that takes as input a vector of baseline covariates, and
gives as output a treatment assignment (in this case, either 0 or 1). For a given rule d, we
intervene on the above SCM to derive counterfactual outcomes:

W = fW (UW )

A = d(W )

Yd(W ) = fY (W,d(W ), UY ) .

Here, Yd(W ) is the counterfactual outcome for a subject if his/her treatment A were assigned
using the dynamic treatment rule d(W ); to simplify notation we refer to this counterfactual
outcome as Yd. The counterfactual outcomes for a person if he/she were assigned treatment
or given control are denoted Y1 and Y0, respectively. Together, the distribution of the
exogenous variables PU and structural equations f imply a distribution of the counterfactual
outcomes, and the SCM provides a model for the set of possible counterfactual distributions:
PU,X ∈MF .

Our target parameter of interest in this paper is the ODTR, defined as the rule that,
among all candidate rules D, yields the best expected outcomes. Using the convention that
larger values of Y correspond to better outcomes, an ODTR is defined as a maximizer of
EPU,X

[Yd] over all candidate rules

d∗ ∈ arg max
d∈D

EPU,X
[Yd] . (1.1)

Any such ODTR can be defined in terms of the conditional additive treatment effect
(CATE), namely EPU,X

[Y1 − Y0|W ], which is the effect of treatment for a given value of
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covariates W . Any ODTR assigns treatment 1 and 0 to all strata of covariates for which the
CATE is positive and negative, respectively. If the CATE is 0 for a particular W (i.e., there
is no treatment effect for that strata of W ), the ODTR as defined above may have more
than one maximizing rule and therefore may be non-unique; this is why the RHS of equation
1.1 above is a set [47]. An ODTR can take an arbitrary value for strata at which the CATE
is 0. If we assume that assigning treatment 0 is preferable to assigning treatment 1 in the
absence of a treatment effect, then we would prefer the following ODTR as a function of the
CATE:

d∗(W ) ≡ I
[
EPU,X

[Y1 − Y0|W ] > 0
]

.

In other words, if a subject’s expected counterfactual outcome is better under treatment
versus no treatment given his or her covariate profile, then assign treatment; otherwise,
assign control. A subject’s counterfactual outcome under the ODTR is Yd∗ , and the expected
outcome had everyone received the treatment assigned by the ODTR is EPU,X

[Yd∗ ].
Following our applied example, Y1, Y0, and Yd are the counterfactual outcomes for a

person if he/she were given CBT, TAU, and either CBT or TAU based on the rule d,
respectively; here, d∗ is the rule for assigning CBT versus TAU using subjects’ covariates
that would yield the highest probability of no re-arrest, EPU,X

[Yd∗ ].

Identification and Statistical Parameter

We assume that our observed data were generated by sampling n independent observations
Oi ≡ (Wi, Ai, Yi), i = 1, . . . , n, from a data generating system described byMF above (e.g.,
the “Interventions” study consists of 441 i.i.d. observations of O). The likelihood of the
observed data can be written as:

L0(O) = pW,0(W )g0(A|W )pY,0(Y |A,W ) ,

where pW,0 is the true density of W ; g0 is the true conditional probability of A given
W , or the treatment mechanism; pY,0 is the true conditional density of Y given A and W .
The distribution of the data P0 is an element of the statistical modelM, which in our RCT
example is semi-parametric. Further, if the data are generated from an RCT design, as in the
“Interventions” study, then the true g0 is known, and the backdoor criteria (with the implied
randomization assumption [54, 71]), Yd ⊥ A|W ∀d ∈ D , and the positivity assumption,

Pr
(

mina∈{0,1} g0(A = a|W ) > 0
)

= 1 , hold by design; in an observational data setting the

randomization assumption requires measurement of a sufficient set of baseline covariates,
and the positivity assumption may also pose greater challenges [58].

Define Q(a, w) ≡ E[Y |A = a,W = w]. Under the above assumption, EPU,X
[Yd] (a

parameter of the counterfactual distribution) is identified as E0[Q0(A = d,W )] (a parameter
of the observed distribution) for any candidate rule d. Thus, the ODTR is identified by
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d∗0 ∈ arg max
d∈D

E0[Q0(A = d,W )] .

In addition, the CATE is identified as Q0(1,W )−Q0(0,W ), where the latter is sometimes
referred to as the blip function B0(W ). Then, the true optimal rule can also be defined as
a parameter of the observed data distribution using the blip function:

d∗0(W ) ≡ I[B0(W ) > 0] .

Analogous to the definition of the ODTR as a function of the CATE, in words, the blip
function essentially says that if treatment for a type of subject W = w is effective (i.e.,
greater than 0), treat that type of person. If not, do not treat him/her. If all subjects
were assigned treatment in this way, then this would result in the highest expected outcome,
which is the goal.

1.3 Estimation of the ODTR

We denote estimators with a subscript n, so that, for example, an estimator of the true
ODTR d∗0 is d∗n. Estimates are functions of Pn, which is the empirical distribution that gives
each observation weight 1

n
; Pn ∈ MNP , and MNP is a non-parametric model. In what

follows, we briefly describe examples of common methods for estimating the ODTR. We first
describe methods that estimate the ODTR via an estimate of the blip function. We then
describe methods that directly estimate a rule that maximizes the mean outcome.

Blip-based Approaches

Blip-based approaches aim to learn the blip, which implies an ODTR. A benefit of doing
this is that one can look at the distribution of the predicted estimates of the blip for a given
sample. Having the blip distribution allows one to identify the patients in a sample who
benefit most (or least, or little) from treatment. Additionally, estimating the blip function
can allow for estimating the ODTR under resource constraints; for example, an ODTR
in which only k% of the population can receive treatment [46]. Below we illustrate two
methods of estimating the ODTR by way of the blip function (i.e., blip-based estimators of
the ODTR).

Single stage Q-learning A plug-in estimator naturally follows from the above definition
of the optimal rule. One can estimate Qn(A,W ) using any regression-based approach for
estimating an outcome regression and predict at Qn(1,W ) and Qn(0,W ). This provides
an estimate of the blip: Bn(W ) = Qn(1,W ) − Qn(0,W ), which implies an estimate of the
optimal rule: d∗n = I[Bn(W ) > 0] [28, 80, 29, 53].
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Estimating the blip function Consider the double-robust pseudo-outcome [77]:

D(Q, g) =
2A− 1

g(A|W )
[Y −Q(A,W )] +Q(1,W )−Q(0,W ) .

Importantly, E0[D(Q, g)|W ] = B0(W ) if Q = Q0 or g = g0. Using this result, one could
estimate the blip by regressing the pseudo-outcome Dn(Qn, gn) (which we abbreviate from
here on as Dn) on W using any regression-based approach. As in the previous method, this
estimate of the blip implies an estimate of the optimal rule d∗n = I[Bn(W ) > 0] [69, 48, 33].

Direct Estimation Approaches for Maximizing the Expected
Outcome

Instead of estimating the blip function, which implies an ODTR, one could estimate the
ODTR directly by selecting a rule d that maximizes the estimated EU,X [Yd]. Below we
illustrate outcome weighted learning (OWL) – one example of a direct-estimation method
for the ODTR.

Single stage outcome weighted learning We briefly describe the general concept of
outcome weighted learning here, but refer to [92] and [78] for a more thorough explanation.
The optimal rule defined above as a function of P0 could equivalently be written as an inverse
probability of treatment weighted (IPTW) estimand:

d∗0 ∈ arg max
d∈D

E0[Q0(A = d,W )] = arg max
d∈D

E0

[
Y

g0(A|W )
I[A = d]

]
.

Written this way, estimating d∗0 could be regarded as a classification problem, where the
weighted outcome Y

g(A|W )
helps us learn what kind of patients should get treatment: if a

certain kind of patient W = w has large weighted outcomes and they were treated according
to candidate rule d, future patients with that covariate profile should be treated using that
rule. Conversely, the smaller the weighted outcome among patients W who were treated
according to d, the larger the “misclassification error” and the less likely those kinds of
patients should be treated according to d. This maximization problem is equivalent to the
following minimization problem:

d∗0 ∈ arg min
d∈D

E0

[
Y

g0(A|W )
I[A 6= d]

]
. (1.2)

Now, if patients W = w who did not follow the rule d have large weighted outcomes (and
thus larger “misclassification error”), those kinds of patients should be given the opposite
treatment that d proposes. Note that in the RCT setting, if one uses the known g0 and
if treatments are given with equal probability, then this reduces to finding the rule that
minimizes the mean outcome among patients who did not follow the rule. Equation 1.2
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could alternatively be written as a minimization problem for, instead of a rule d, a function
f :

f ∗0 ∈ arg min
f∈F

E0

[
Y

g0(A|W )
I
[
A 6= sign(f(W )) + 1

2

]]
, (1.3)

where sign(x) = −1 if x ≤ 0 and sign(x) = 1 if x > 0. Under the true data distribution P0,
f0 is the blip function, B0. In order to solve this minimization problem using data, we can
use a plug-in estimator of (1.3); however, since it is a 0-1 function (i.e., it is discontinuous
and non-convex), one could use a convex surrogate function to approximate it, to instead
minimize:

f ∗n ∈ arg min
f∈F

1

n

n∑
i=1

Yi
gn(Ai|Wi)

Φ(Aif(Wi)) + λn ‖f‖2 , (1.4)

where Φ(t) is the surrogate loss function (e.g., hinge loss, exponential loss, logistic loss), ‖f‖
is the norm of f , and λn is the estimated penalization parameter on f to avoid overfitting of
the rule. This can also be generalized with the IPTW function replaced by the augmented
IPTW [48, 78]. Once f ∗n is found as the solution to equation (1.4), the estimated ODTR is:

d∗n = sign(f ∗n(W )) .

SuperLearner to Estimate ODTR

The overarching goal of SuperLearner is to let a user-supplied library of candidate algo-
rithms, such as specific implementations of the general approaches described above, “team
up” to improve estimation of the ODTR. In order to implement the ODTR SuperLearner,
there are three user-supplied decisions one must make. First, one must consider the library
of candidate algorithms to include. These could include algorithms for estimating the blip
function (which imply a rule), algorithms that search for the ODTR directly (such as OWL
estimators), static rules that determine treatment regardless of covariates, or combinations
of the above classes of algorithms. Second, in what is sometimes referred to as the metalearn-
ing step, one can either implement a SuperLearner that chooses one algorithm out of the
library of candidate algorithms to include (i.e., “discrete” SuperLearner), or a SuperLearner
that is a combination the candidate algorithms (i.e., “continuous” SuperLearner). For the
latter, one again has a choice of metalearner; we consider weighted convex combinations
of candidate estimators of the blip and combinations of estimates of the rules themselves
(through a weighted “majority vote”). Finally, one must choose the risk function used to
judge the performance of the weighted combinations of algorithms (estimated using V-fold
cross validation). Here, we consider two risk functions: the mean-squared error (MSE) and
the mean outcome under the candidate rule.

The steps for implementing the ODTR SuperLearner are as follows; they closely follow
the implementation of the canonical SuperLearner for regression [37]:
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1. Choose J candidate algorithms for estimating the optimal rule dn,j(W ) for j = 1, ..., J .
Candidates can include approaches based on estimating the blip Bn,j(W ), e.g., can-
didate regressions of Dn on W , where the candidate regressions might consist of a
parametric linear model (corresponding to a classic approach of fitting a parametric
outcome regression on A and W ) as well as more flexible machine learning type ap-
proaches such as neural networks [66], multivariate adaptive regression splines [18], or
recursive partitioning and regression trees [5]. Candidate algorithms might also include
approaches for estimating the optimal rule directly, such an OWL estimator. Finally,
the static treatment rules that treat all patients or treat no patients, regardless of
their covariate values, can also be included as candidates. Inclusion of both simple
parametric model estimators, as well as static rules such as treating all and treating
none, is important to allow for the possibility that the underlying true ODTR may in
fact be simple (or well-approximated by a simple rule), and providing less aggressive
candidates in the SuperLearner library can help protect against overfitting in finite
samples.

2. Split the data into V exhaustive and mutually exclusive folds. Let each fold in turn
serve as the validation set and the complement data as the training set.

3. Fit each of the J candidate algorithms on the training set. Importantly, candidate al-
gorithms might depend on nuisance parameters, and those nuisance parameters should
be fit on the training set, as well. For example, if a candidate algorithm regresses Dn

on W to estimate the blip (which implies an ODTR), then Q and g should be fit and
predicted on the training set, and then plugged into D to fit that candidate algorithm
on the same training set (this is also called “nested” cross-validation, described in
detail by [15]).

4. Predict the estimated blip or the treatment assigned under the estimated ODTR for
each observation in the validation set for each algorithm, based on the corresponding
training set fit.

5. Choose to either implement the discrete SuperLearner, which selects one algorithm out
of the candidate algorithms, or the continuous SuperLearner, which creates a weighted
average of the candidate algorithms.

a) Continuous SuperLearner. Create different convex combinations of the candidate
blip or treatment rule estimates that were predicted on the validation set (i.e.,
convex combinations of the predictions from the previous step). Formally, define
an estimator of Bn,α(W ) or dn,α(W ) as a convex combination of the candidate
algorithms (indexed by j); each convex combination of algorithms is indexed by
a weight vector α. A given convex combination of blip estimates are denoted as:

Bn,α(W ) =
∑
j

αjBn,j(W ), αj ≥ 0∀j,
∑
j

αj = 1 .
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Alternatively, the predicted treatments under the candidate ODTRs can be com-
bined as a weighted “majority vote” of the convex combination of the candidate
rules:

dn,α(W ) = I
[∑

j

αjdn,j(W ) >
1

2

]
, αj ≥ 0∀j,

∑
j

αj = 1 .

b) Discrete SuperLearner. The discrete SuperLearner, which chooses only one candi-
date algorithm, can be thought of as a special case of the continuous SuperLearner,
where algorithms are still combined using a convex combination, but each algo-
rithm weight αj must be either 0 or 1. Such an approach may be particularly
advantageous when sample size is small:

Bn,α(W ) =
∑
j

αjBn,j(W ), αj ∈ {0, 1}∀j,
∑
j

αj = 1

dn,α(W ) = I
[∑

j

αjdn,j(W ) >
1

2

]
, αj ∈ {0, 1}∀j,

∑
j

αj = 1 .

6. Calculate an estimated risk within each validation set for each combination of algo-
rithms (i.e., for each convex combination indexed by a particular value for α). Here,
we discuss two choices of risk functions for step (6) above. First, mean-squared error
risk targeting the blip function, which we will refer to as RMSE:

RMSE = E[(D(Q, g)−B(W ))2] .

Because the MSE compares Dn to the predicted blip, the candidate estimators under
the MSE risk function must output estimated blip values. Of note, EPU,X

[[Y1 − Y0 −
B(W )]2] is identified as RMSE0(B) if either Q = Q0 or g = g0. The second risk function,
which we call RE[Yd], uses the expected rule-specific outcome as criterion:

RE[Yd] = −E[E[Y |A = d,W ]] .

Intuitively, SuperLearner aims to choose the combination of treatment rule algorithms
that minimizes a cross-validated empirical risk, so it makes sense to have that risk be
the negative of the expected outcome, such that SuperLearner chooses the combination
of algorithms that maximizes the expected outcome, since that is the ultimate goal of
the ODTR. Candidate estimators for the SuperLearner that use the expected mean
outcome under the rule as the risk function can include both blip estimators that imply
treatment rules as well as direct estimators of the treatment rules. When the expected
rule specific outcome is chosen as the risk function, a further practical choice is how to
estimate this quantity; we focus here on a cross-validated targeted maximum likelihood



CHAPTER 1. THE OPTIMAL DYNAMIC TREATMENT RULE SUPERLEARNER:
CONSIDERATIONS, PERFORMANCE, AND APPLICATION 14

estimator (TMLE) due to its favorable theoretical properties (double robustness, semi-
parametric efficiency, and greater protection against overfitting through the use of
sample splitting [37]); however, one can use any estimator of treatment specific mean
outcomes to estimate this quantity [2, 30, 34].

7. Average the risks across the validation sets resulting in one estimated cross validated
risk for each candidate convex combination (i.e., each possible choice of α).

8. Choose the estimator (i.e., the convex combination α) that yields the smallest cross-
validated empirical risk. Call this “best” weighting of the algorithms αn.

9. Fit each candidate estimator Bn,j(W ) of the blip or dn,j(W ) of the optimal rule on the
entire data set. Generate predictions for each candidate algorithm individually, and
then combine them using the weights αn obtained in the previous step. This is the
SuperLearner estimate of the ODTR, where d∗n,B = I[Bn,αn(W ) > 0] or d∗n,d = dn,αn(W )
directly.

We summarize the practical implications of 3 key choices for implementing ODTR Super-
Learner here and in Table 2.1. In the first dimension, selection of the candidate algorithms,
for illustration we consider having a library with only blip function estimators (called “Blip
only” library) or a library with blip estimators, direct-estimation estimators, and static treat-
ment rules that treat everyone or no one (called “Full” library). If one chooses to include
direct-search estimators of the ODTR or static rules (i.e., functions that do not output a blip
estimate in the process), then one is constrained to using the vote-based metalearner and
RE[Yd] risk function, because the blip-based metalearner and RMSE risk function both rely on
estimates of the blip for combining and choosing the algorithms, respectively. For the second
dimension, the choice of how to combine algorithms, we consider either the metalearner that
(a) selects only one candidate algorithm (called “Discrete”), (b) uses a weighted average
to combine predicted blip estimates and directly plugs those into the risk (called “Blip-
based”), (c) uses a weighted average to combine predicted treatments under the candidate
combinations of rules and creates a weighted majority vote of these candidate rules as input
into the risk (called “Vote-based”). The third dimension is the choice of performance mea-
sure, risk function – either the MSE (RMSE) or the mean outcome under the candidate rule
(RE[Yd]). For the second and third dimensions, if one uses the vote-based metalearner, then
the RMSE risk cannot be used because RMSE requires an estimate of the blip to choose the
best algorithm, and the vote-based metalearner does not output an estimate of the blip.
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Choice 1: Library Blip only Full

Choice 2: Metalearner Discrete
Continuous

Discrete
Continuous

Blip-based Vote-based Blip-based Vote-based
Choice 3: Risk RMSE RE[Yd] RMSE RE[Yd] RMSE RE[Yd] RMSE RE[Yd] RMSE RE[Yd] RMSE RE[Yd]

Possible? 3 3 3 3 7 3 7 3 7 7 7 3

Table 1.1: Summary of the possible ODTR SuperLearner configurations across the library,
metalearner, and risk dimensions. The last row (“Possible?”) indicates whether the par-
ticular configuration is possible to implement. The checkmarks (3) in the following table
indicate that it is possible to construct that kind of ODTR SuperLearner algorithm; the
x-marks (7) indicate otherwise.

1.4 Simulation: Comparisons and Considerations of

SuperLearner ODTR Estimators

We use simulations to: (1) illustrate the potential benefit to estimating the ODTR using
a SuperLearner approach, as compared to a more traditional approach to studying treat-
ment effect heterogeneity based on fitting an outcome regression with interaction terms on
covariates and treatment, as is often standard practice [16, 86, 27, 87]; and (2) investigate
the implications of practical choices when implementing an ODTR SuperLearner in finite
samples, including specification of candidate algorithms in the library, choice of metalearner,
and choice of risk function.

Data Generating Processes

All simulations were implemented in R [65], and the code, simulated data, and results can be
found at https://github.com/lmmontoya/SL.ODTR. We examine these comparisons using
two types of data generating processes (DGPs). Each simulation consists of 1,000 iterations
of either n = 1, 000 or n = 300, to assess the impacts of the different configurations as a
function of sample size. Both DGPs generate the covariates, treatment, and outcome as
follows:

W1,W2,W3,W4 ∼ Normal(µ = 0, σ2 = 1)

A ∼ Bernoulli(p = 0.5)

Y ∼ Bernoulli(p) .

The probability of having a successful outcome differs for the two DGPs, which, in this case,
means that the blip functions differ as well. The first DGP is an example of one with a
complex blip function, and the second DGP is one with a blip function that is a simpler
function of one variable. The first DGP is directly from work by Luedtke and van der Laan
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[48, 46, 33], and the second is modified from the first. The probability of a successful outcome
for DGP 1 is:

p = 0.5logit−1(1−W 2
1 + 3W2+

5W 2
3A− 4.45A) + 0.5logit−1(−0.5−W3 + 2W1W2 + 3|W2|A− 1.5A) ,

then the true blip function is:

B0(W ) =0.5[logit−1(1−W 2
1 + 3W2 + 5W 2

3 − 4.45)

+ logit−1(−0.5−W3 + 2W1W2 + 3|W2| − 1.5)

− logit−1(1−W 2
1 + 3W2) + logit−1(−0.5−W3 + 2W1W2)] .

For DGP 1, EPU,X
[Yd∗ ] ≈ 0.5626 and the true optimal proportion treated EPU,X

[d∗] ≈ 55.0%.
EPU,X

[Y1] ≈ 0.4638 and EPU,X
[Y0] ≈ 0.4643.

DGP 2’s probability of the outcome’s success is:

p = logit−1(W1 + 0.1A+W1A) .

Thus the true blip function is:

B0(W ) =logit−1(W1 + 0.1 +W1)− logit−1(W1) .

For DGP 2, EPU,X
[Yd∗ ] ≈ 0.5595 and EPU,X

[d∗] ≈ 54.0%; EPU,X
[Y1] ≈ 0.5152 and EPU,X

[Y0] ≈
0.5000.

ODTR Estimators

For each data generating process, we consider a number of estimators of the ODTR. First,
mirroring epidemiologic practice, we model the outcome as an additive function of the treat-
ment and covariates, and interactions with the treatment and all covariates) [16, 86, 87,
27]. Such an approach translates to using the following parametric model for the outcome
regression:

h(E[Y |A,W ]) = β0 +

p∑
i=1

βiWi +

(
γ0 +

p∑
i=1

γiWi

)
A ,

where h(.) denotes a link function, and p is the number of baseline covariates in W . Using
a linear link, the following parametric model for the blip function is implied:

B(W ) = γ0 +

p∑
i=1

γiWi .

Next, we examine the finite sample implications of the aforementioned user-supplied
choices in implementing a SuperLearner estimator of the ODTR, providing guidance for
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practical data analysis. First, we examine the choice of library. We consider the library that
only combines candidate blip estimators (“Blip only” library; i.e., a library with candidate
algorithms suited for regressing Dn on W ) versus a library that has blip estimators, direct-
estimation algorithms, and static treatment rules (“Full” library). The “Blip only” libraries
consist of either:

(a) Simple parametric models only (denoted “Parametric blip models”). This consisted of
univariate GLMs with each covariate.

(b) Machine learning algorithms only (denoted “ML blip models”), such as SL.glm (gener-
alized linear models), SL.mean (the average), SL.glm.interaction (generalized linear
models with interactions between all pairs of variables), SL.earth (multivariate adap-
tive regression splines [18]), SL.nnet (neural networks [66]), SL.svm (support vector
machines [12]), and SL.rpart (recursive partitioning and regression trees [5]) from the
SuperLearner package [62]

(c) A combination of (a) and (b) above, denoted “Parametric + ML blip models”

The “Full” library includes other ODTR algorithms like direct-estimation methods, static
rules, and other blip-based methods. Specifically, the “Full” library includes either the
“ML blip models” or “Parametric + ML blip models” from the “Blip only” libraries above,
in addition to Q-learning [29], OWL [92], residual weighted learning (RWL) [94], efficient
augmentation and relaxation learning (EARL) [90], optimal classification algorithms [88]
(the latter 4 are from the DynTxRegime package [21], with function names owl, rwl, earl,

and optimalClass, respectively), and static rules that treat all patients and no patients,
regardless of the patient covariate profiles. For the algorithms from the DynTxRegime
package, except for nuisance parameters Qn and gn, we use default parameters, and the
rule as a function of all covariates. Additionally, for the optimal classification algorithm,
the solver method is recursive partitioning for regression trees (rpart). Thus, the possible
“Full” libraries are:

(d) Algorithms from the “ML blip models” library, plus direct maximizers and static rules,
denoted “ML blip models and E[Yd] maximizers”

(e) All possible algorithms – that is, algorithms from the “Parametric + ML blip models”
library, plus direct maximizers and static rules, denoted “All blip models and E[Yd]
maximizers”

Second, we examine the performance of different metalearners for combining the can-
didate ODTR algorithms. We examine the blip-based metalearner using the “Blip only”
libraries, and the discrete and vote-based metalearners using both the “Blip only” libraries
and “Full” libraries.

Third, we examine the performance of using either the MSE RMSE or the expected
outcome under the candidate rule RE[Yd] as risk criteria for choosing the optimal linear
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combination of candidate ODTR algorithms. In particular, CV-TMLE is used for estimating
RE[Yd].

We fully estimate the ODTR SuperLearner by additionally estimating nuisance param-
eters (as opposed to using the true nuisance parameter functions) in a nested fashion [15]
as described above. Specifically, we estimate Qn and gn using the canonical SuperLearner
[35, 62] and a correctly specified parametric model (i.e., a logistic regression of A on the
intercept), respectively. We use 10-fold cross-validation throughout.

Performance Metrics

We measure performance by computing the percent accuracy of the algorithm; that is, in
a sample, the proportion of times the treatment assigned by the estimated ODTR matches
the true optimal treatment (i.e., the treatment that would have been assigned under the
true ODTR) for each observation in the sample, averaged across simulation repetitions. We
also evaluate performance metrics of the difference between the true conditional expected
outcome under the estimated rule, averaged across the sample, compared to the true mean
outcome under the true optimal rule En[Q0(Y |A = d∗n,W )]− E0[Yd∗0 ] (as an approximation
to the regret E0[Q0(Y |A = d∗n,W )] − E0[Yd∗0 ]). We compute the mean and variance of this
difference across the simulation repetitions. Instead of presenting the raw variance of the
regret, we present a variance relative to the regret yielded by estimating the blip, and thus
the optimal rule, using as a parametric GLM that models the blip as an additive function
of all covariates. Additionally, we compute 2.5th and 97.5th quantiles of the distribution of
En[Q0(Y |A = d∗n,W )] across the simulation repetitions.

Simulation Results

Figure 1.1 displays simulation results (in addition to tables in the appendix). Below we
discuss results specific to each DGP, configuration dimension, and sample size. In general,
results within each DGP (i.e., across sample sizes) follow generally similar patterns; however,
any differences in performance between libraries, metalearners, or risks are more pronounced
for the smaller sample size.

DGP 1 Results - “Complex” Blip Function

Above, we showed that DGP 1 yields a blip function that is a complex function of all of
the available covariates. Here, for a larger sample size, we would expect a benefit to more
aggressive approaches to estimating the ODTR, such as including more flexible machine
learning-based approaches in the library of candidates, as well as use of more aggressive
metalearners (either vote- or blip-based) over a discrete SuperLearner due to the better abil-
ity of these approaches to approximate the true underlying function. That said, for smaller
sample sizes, this benefit might be attenuated, or even result in worse performance than sim-
pler alternatives. For this DGP, at sample size of 1,000, indeed we find a benefit to the use of
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both more aggressive metalearners and larger libraries. Interestingly, however, this benefit is
maintained for sample size 300. Specifically, libraries that included data adaptive, machine
learning algorithms (as opposed to incorrectly specified parametric models alone) more ac-
curately and precisely approximated the rule, even for sample size of 300. Results also show
that for both sample sizes, within the discrete metalearner, the RE[Yd] risk performed better
than RMSE risk, and more saliently, the blip-based and vote-based metalearners performed
better than the discrete SuperLearner. Finally, as predicted by theory, all SuperLearner ap-
proaches evaluated substantially outperformed a traditional parametric regression approach
at both sample sizes. Below we describe results specific to each sample size.

n = 1,000 Libraries that contain machine learning algorithms (i.e., “ML blip models,”
“Parametric + ML blip models,” “ML blip models and EYd maximizers, ” and “Blip models
and EYd maximizers”) overall perform better than libraries with parametric models only
(i.e., “Parametric blip models”) and the standard GLM (i.e., “GLM”), across all performance
metrics. For example, the percent match between the true ODTR and the estimated ODTR
spans from 72.0%-77.7% for any libraries with machine learning algorithms, whereas the
percent match for libraries with only parametric models is from 56.4% to 58.0%.

There are no stark differences within the libraries that contain machine learning algo-
rithms across the metalearner and risk dimensions, except when using a discrete metalearner
and RMSE risk. Specifically, the discrete metalearner that uses RMSE has a higher average
regret and relative variance than all other algorithms that use machine learning (e.g., for the
“Parametric + ML blip models” “Blip only” library that uses a discrete metalearner, the
average regret when using RMSE versus RE[Yd] is -0.0389 versus -0.0284, respectively, and
the relative variance when using RMSE versus RE[Yd] is 2.137 versus 0.7781, respectively).

n = 300 As expected, given the limited data available to estimate a complex underlying
function, both accuracy of treatment assignment and approximated regret (the extent to
which the expected outcome under the estimated rule fell short of the best outcomes avail-
able) deteriorated with smaller sample sizes. That said, even in this challenging situation
of a complex true pattern of treatment effect heterogeneity and limited data with which to
discover it, the ODTR SuperLearner would have improved the expected outcome by approx-
imately 4.5% relative to the static rule that treats everyone, an approach that would have
been suggested based on estimation of the ATE.

Libraries with only parametric models perform worse than libraries that contain machine
learning algorithms in terms of average regret and accuracy. For example, SuperLearner
ODTRs that contain libraries with parametric blip models match 54%-55.4% of the time
with the true ODTR, while the SuperLearners that contain libraries with machine learning
algorithms match 60.9%-66.1% of the time. These results parallel those found with sam-
ple size 1,000, except the discrepancy between libraries with machine learning models and
parametric models is not as pronounced.



CHAPTER 1. THE OPTIMAL DYNAMIC TREATMENT RULE SUPERLEARNER:
CONSIDERATIONS, PERFORMANCE, AND APPLICATION 20

Similar to the n = 1, 000 case, among the libraries that used machine learning algorithms,
using the performance of the rule as risk is better across all performance metrics than using
MSE as risk for the discrete metalearner. As long as machine learning methods were included
in the library, performance was similar across risk functions and choice of metalearners, with
the exception of the MSE risk combined with the discrete metalearner.

DGP 2 Results - “Simple” Blip Function

As shown above, DGP 2 has a true blip function that is a simple function of one covariate
(referred to here as a “simple” blip function). Here, the true optimal rule is described by
a simple parametric model for the blip; thus, we expect this approach to perform well.
However, in practice one is unlikely to be sure that the truth can be well approximated by
a simple rule; it is thus of interest to evaluate what price is paid for expanding the library
to include more aggressive machine learning algorithms and metalearners. In particular, one
might expect that, for smaller sample size, adding machine learning-based candidates and
more complex metalearners risks substantial drop-off in performance. However, specifying a
library that includes simpler parametric models, in addition to machine learning approaches,
may help mitigate this risk. In fact, for this particular DGP, we see, across metalearners and
risks, only a small price in performance from adding machine learning algorithms to a library
including only simple parametric models. In short, having an ODTR SuperLearner library
that also includes parametric models is better than having a library that only consists of
data adaptive, machine learning algorithms. Within the libraries that did contain parametric
models, particularly for the discrete metalearner, RMSE risk performs slightly better than
RE[Yd] risk; for other metalearners there is little difference in performance in terms of risk.
Performance of the metalearners varies slightly by sample size. Below we describe results
specific to each sample size.

n = 1,000 In terms of accuracy, the libraries that only contain parametric models perform
the best, followed closely by libraries that contain parametric models and machine learning
models, followed by the library with only machine learning models. This pattern is evident
in the percent match with the true ODTR: for example, within the discrete metalearner
with RMSE risk, the percent accuracy is 90.7% for the library with parametric models only
(“Parametric blip models” library), 88.8% for the library that contain both parametric mod-
els and machine learning models (“Parametric + ML blip models”), and 81.9% for the library
that contains machine learning algorithms only (“ML blip models”). This same pattern is
apparent in terms of average regret; that is, the libraries that contain parametric blip models
or a combination of parametric blip models and machine learning models have the lowest
average regret (-0.0041 to -0.0095), while the libraries that only contain machine learning
models have the highest average regret (-0.0100 to -0.0138). Modeling the blip with a sin-
gle, parametric model often used in standard epidemiological analysis (which, in this case,
is incorrectly specified) yields an average regret of -0.0100 (higher than the libraries with



CHAPTER 1. THE OPTIMAL DYNAMIC TREATMENT RULE SUPERLEARNER:
CONSIDERATIONS, PERFORMANCE, AND APPLICATION 21

a combination of parametric models and/or machine learning algorithms, and at the same
level as having machine learning algorithms only).

Within the libraries that contain parametric models and use a discrete metalearner,
RMSE performs better than RE[Yd]. For example, the mean regret and relative variance
for the discrete metalearner that only used parametric models in the library is -0.0041 and
1.0267, respectively, when using RMSE risk, and -.0046 and 1.3174, respectively, when using
RE[Yd] risk. Otherwise, there were no apparent differences in performance by risk.

For libraries that contain parametric models and use RMSE, the discrete ODTR Su-
perLearner performs better than the blip-based ODTR SuperLearner, with regards to all
performance metrics. For example, the average regret and relative variance for the library
with only parametric models that uses RMSE was -0.0041 and 1.0267, respectively, when us-
ing a discrete metalearner versus -.0059 and 1.1855, respectively, when using the blip-based
metalearner. This pattern is also evident for the library that has both parametric models
and machine learning algorithms.

n = 300 As in the case where n = 1, 000, the library with only parametric models performs
best in terms of accuracy, followed by libraries with parametric models and machine learning
models, and finally libraries with only machine learning algorithms; again, however, DGP 1
illustrates the risks of such a strategy. Moreover, even at this small sample size, there is only
a small price to pay for adding machine learning-based learners to a library that also includes
simple parametric models. For example, for the discrete metalearner that uses RMSE, the
percent accuracy for the library that uses only parametric models is 78%, followed by a 75.5%
accuracy when there is a combination of parametric models and machine learning, while the
library with only machine learning models had a 61.7% match with the true ODTR. While
this pattern parallels that of the n = 1, 000 case, the dropoff in accuracy when the library
uses only parametric models versus when the library only uses machine learning algorithms
is larger in terms of accuracy in the smaller sample size (16.3% difference) versus the larger
sample size (8.8% difference).

Similar to the n = 1, 000 case, among libraries that contain parametric models and in
the discrete metalearner case, RMSE yields slightly better performance results than RE[Yd].
In contrast to the n = 1, 000 case, for libraries that contain parametric models and used
RMSE, the blip-based metalearner performs slightly better than the discrete metalearner,
with regards to all performance metrics. For example, the average regret and relative variance
for the library with only parametric models that use RMSE is -0.0188 and 1.6102, respectively,
when using a blip-based metalearner versus -0.0190 and 1.8109, respectively, when using the
discrete metalearner.
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1.5 Application of ODTR SuperLearner to

“Interventions” Study

In the “Interventions” study, 231 (52.2%) participants received CBT and 210 (47.8%) TAU.
Out of the 441 participants, 271 (61.5%) were not re-arrested within the year. The estimated
probability of no re-arrest had everyone been assigned CBT is 62.2%, and the estimated
probability of no-arrest had everyone been assigned TAU is 60.7%; there was no significant
difference between these two probabilities (risk difference: 1.51%, CI: [-8.03%,11.06%]). After
adjusting for covariates using TMLE to improve the precision on this ATE estimate [51], the
risk difference is, similarly, 1.53% (CI: [-7.31%, 10.37%]).

Figure 1.2 shows subgroup plots for each covariate – that is, the unadjusted difference in
probability of no re-arrest between those who received CBT versus TAU, within each covari-
ate group level. One might begin to identify trends towards differential treatment effects;
for example, participants may have benefited more from CBT at the San Francisco site, or if
they had offended three or more times. Accurate interpretation of any such subgroup anal-
yses, however, requires variance estimates and hypothesis tests with appropriate correction
for multiple testing. In addition, as mentioned before, it may be the case that the best way
to assign treatment is by using information on more than one variable at a time, and even
interactions between those variables.

Thus, we estimated the ODTR on the “Interventions” data to determine which justice-
involved adults with mental illness should receive CBT. Specifically, we implemented the
ODTR SuperLearner with a blip-only library, a continuous, blip-based metalearner, and
RE[Yd] risk function. We chose a blip-based library in order to generate estimates of the
blip, which themselves can be informative. The library for d∗n consisted of a combination
of simple parametric models (univariate GLMs with each covariate) and machine learning
algorithms (SL.glm, SL.mean, SL.glm.interaction, SL.earth, and SL.rpart). As in the
simulations, the outcome regression Qn was estimated using the canonical SuperLearner, gn
was estimated as an intercept-only logistic regression, and we used 10-fold cross validation.

Interestingly, despite implementing a continuous metalearner, the ODTR SuperLearner
algorithm assigned all weight on a GLM that modeled the blip as a linear function of only
substance use. As shown in Figure 1.3, a plot depicting the distribution of the predicted blip
estimates for all participants, the algorithm can be interpreted as such: if a justice-involved
person with mental illness has a low substance use score, give him/her CBT; otherwise, give
him/her TAU. Under this ODTR estimate, for this sample, 52.38% of the participants would
receive CBT.

1.6 Conclusions

We described the ODTR SuperLearner and illustrated its performance for sample DGPs
under different configurations of the algorithm and finite sample sizes. These results build
on existing work [48, 15] by fully estimating the ODTR and including an expanded Super-
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Learner library with not only blip-based regression estimators, but also direct-estimation
methods and static interventions. We highlighted the practical choices one must consider
when implementing the ODTR SuperLearner across three dimensions: (1) the ODTR Su-
perLearner library of candidate algorithms, namely, whether to include parametric models,
machine learning algorithms, or both; whether to include only estimators that output a
predicted blip or include a combination of blip estimators, direct estimators, and static
treatment rules, (2) the metalearner that either chooses a single algorithm or combines the
algorithms and (3) the risk function that chooses the “best” estimator or combination of
estimators of the candidate ODTR algorithms.

Simulation-based results illustrate the shortcomings of an approach to treatment effect
heterogeneity based on approximating the blip as an additive function of the available co-
variates, or equivalently, modeling the outcome as an additive function of the treatment
and covariates, and interactions between the treatment and all covariates, which is common
practice in epidemiologic analyses for heterogeneous treatment effects [16, 86, 87, 27]. With
respect to choice of library, we recommend specifying a library with both simple parametric
models and more aggressive data adaptive algorithms, as well as static rules such as treat all
or treat none, allowing for flexible estimation of both simple and complex underlying rules.
Inclusion of a full range of algorithms from simple to aggressive was particularly important
for small sample sizes. In terms of the choice of metalearner, both vote- and blip-based
ensemble learners performed well; a vote-based metalearner has the advantage, however, of
allowing for the integration of a larger library of candidate algorithms (including direct es-
timation approaches) and ease of integration of static rules. Of note, in these simulations,
vote- and blip-based metalearners outperformed the discrete ODTR SuperLearner approach,
even for sample size 300. However, we caution that this may not always be the case and when
sample size is small, a discrete SuperLearner approach may provide benefits – in fact, one
could include a convex metalearner as a candidate algorithm. Finally, with respect to choice
of risk function, both MSE and the expected outcome under the rule performed well; in
practice one might prefer RE[Yd] because it allows for the use of a larger library of candidate
algorithms.

Additionally, as an illustration of how to apply the ODTR SuperLearner to real data, we
estimated the ODTR using the “Interventions” study to determine which types of justice-
involved adults with mental illness should be assigned CBT versus TAU, to yield the highest
probability of no re-arrest. Preliminary results show that the ODTR SuperLearner placed all
weight on a simple parametric model with only substance use; thus, the algorithm suggests
that, in this sample, participants with lower levels of substance use may benefit more from
CBT. We note that this is an example of a case in which the ODTR SuperLearner generated a
ODTR estimate that was fully interpretable – although we used a continuous metalearner and
thus the SuperLearner could have allowed for combinations of algorithms, the SuperLearner
happened to only choose one algorithm: a GLM with substance use as a regressor. To
guarantee interpretability in the SuperLearner (for example, if working with practitioners
who may want a treatment decision rule that could be easily written down [28, 13]), one could
implement the ODTR SuperLearner with a discrete metalearner and a simple parametric
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library only.
Importantly, in a companion paper, we evaluate this ODTR – that is, we ask the causal

question: what would have been the probability of no re-arrest had participants been as-
signed CBT according the ODTR SuperLearner (i.e., using only substance use)? Further,
is assigning CBT according to the ODTR SuperLearner significantly better than assigning
CBT to everyone or no one? In this way, we can determine if it is of clinical significance
to assign CBT according to this rule – namely, if assigning CBT using only substance use
scores results in a statistically significant reduction of recidivism, and if so, how much better
one does with this ODTR compared to a non-individualized rule (such as giving CBT to all).
Under the appropriate causal assumptions, one could use any of the methods for estimating
treatment specific means to interpret this estimate as the expected outcome under the true
optimal rule or the estimated optimal rule.

Future work could extend these simulations to the multiple treatment (i.e., more than
2 treatment levels) [15] and multiple timepoint setting (i.e., estimating a sequential ODTR
from, for example, a SMART design [43, 29, 1] instead of an RCT design). We also wish
to apply the ODTR SuperLearner on the full “Interventions” dataset (n = 720), once data
collection is finished.

This work contributes to understanding the toolbox of methods for analyzing the hetero-
geneity in how patients respond to treatment. By learning which patients respond best to
what treatment in a flexible manner, we can improve patient outcomes – moving us closer
to the goals of precision health.
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TAU (A = 0) CBT (A = 1) p
n 211 230
No re-arrest (Y = 1) (%) 128 (60.7) 143 (62.2) 0.820
Site = San Francisco (%) 87 (41.2) 104 (45.2) 0.455
Gender = Female (%) 38 (18.0) 37 (16.1) 0.682
Ethnicity = Hispanic (%) 50 (23.7) 42 (18.3) 0.198
Age (mean (SD)) 38.08 (11.05) 37.01 (11.22) 0.317
CSI (mean (SD)) 32.35 (11.13) 33.46 (11.27) 0.300
LSI (mean (SD)) 5.59 (1.33) 5.50 (1.48) 0.472
SES (mean (SD)) 3.81 (1.89) 3.81 (2.12) 0.995
Prior adult convictions (%) 0.156

Zero to two times 74 (35.1) 93 (40.4)
Three or more times 134 (63.5) 129 (56.1)
Missing 3 (1.4) 8 (3.5)

Most serious offense (mean (SD)) 5.29 (2.54) 5.09 (2.52) 0.415
Motivation (mean (SD)) 3.22 (1.36) 3.27 (1.37) 0.720
Substance use (%) 0.184

0 53 (25.1) 76 (33.0)
1 47 (22.3) 55 (23.9)
2 109 (51.7) 98 (42.6)
Missing 2 (0.9) 1 (0.4)

Table 1.2: Distribution of “Interventions” data by treatment assignment.
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Figure 1.1: (Description on the following page.)
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Figure 1.1: Performance of En[Q0(Y |A = d∗n,W )] (an approximation of the true mean out-
come under the estimated ODTR) for DGP 1 (top two) and DGP 2 (bottom two). The
horizontal black line depicts EPU,X

[Yd∗0 ]; the horizontal red line depicts EPU,X
[Y1]; the hori-

zontal blue line depicts EPU,X
[Y0]. We compare the SuperLearner algorithm to an incorrectly

specified GLM (in gray, with N/A as the metalearner and a diamond with no fill). We
also compare (1) having a SuperLearner library with (a) only algorithms that estimate the
blip (i.e., “Blip only” libraries) that only have parametric blip models (blue) or only have
machine-learning blip models (red) or both (purple) versus (b) an expanded or “Full” li-
brary with blip function regressions estimated via machine learning only (orange-yellow) or
machine learning and parametric models (green), with methods that directly estimate the
ODTR and static rules, (2) having a metalearner (depicted on the x-axis) either that chooses
one algorithm (i.e., the “discrete” SuperLearner) or combines blip predictions/treatment pre-
dictions (i.e., the “continuous” SuperLearner), and (3) using the MSE risk function (RMSE

as a square) versus the mean outcome under the candidate rule risk function (RE[Yd] as a
triangle).

Figure 1.2: Subgroup plots for each of the covariates for the “Interventions” data. The x-axis
for each of the plots is the different levels of the covariates; the y-axis is the difference in
proportion of people who were not re-arrested between those who received CBT versus TAU,
in that covariate subgroup.
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Figure 1.3: Distribution of predicted blip estimates from the ODTR SuperLearner. The
frequencies are divided into three groups because the ODTR SuperLearner allocated all
coefficient weights to a GLM using substance use, a variable with only 3 treatment levels.
One can interpret the ODTR SuperLearner for this sample as follows: CBT may reduce
the probability of re-arrest among justice-involved adults with low levels of substance use.
Estimation and inference of the value of the ODTR SuperLearner compared to, for example,
treating everyone or no one, informs us if there is, in fact, a differential effect by substance
use, and thus a benefit to assigning CBT in this individualized way.
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Chapter 2

Performance and Application of
Estimators for the Value of an
Optimal Dynamic Treatment Rule

2.1 Introduction

There is an interest across disciplines in using both experiments and observational data to
uncover treatment effect heterogeneity and understand better ways of responding to it [26,
40]. Various methods aimed at estimating heterogenous treatment effects (HTEs) wish to
answer the question, “who benefits from which treatment?” One way to uncover HTEs is
by using the dynamic treatment rule framework. A dynamic treatment rule is any rule that
assigns treatment based on covariates [2, 38, 67, 8, 11]. An optimal dynamic treatment
rule (ODTR) is the dynamic treatment rule that yields the highest expected outcome (if
higher outcomes are better) [52, 69, 49]. Using data generated from an experiment in
which treatment is randomized makes identification of the ODTR more straightforward
due to elimination of confounding. In recent years, there has been a increase in literature
describing methods to estimate the ODTR, from regression-based techniques to direct-search
techniques; see, for example, [28], [29], and [84] for recent overviews of the ODTR literature.
One example of a data-adaptive method for estimating the ODTR is the SuperLearner
algorithm, an ensemble machine learning approach that aims to best combine a library of
candidate treatment rule estimators to work in tandem to yield the ODTR [35, 48, 15].

Once one knows or estimates a rule, it may be of interest to evaluate it, which translates
to asking the causal question: what is the expected outcome had every person received the
treatment assigned to him or her by the (optimal) rule? The causal parameter that answers
this question is sometimes referred to as the value of the rule. It may be of relevance
to learn this quantity in order to determine the benefit of assigning treatment in a more
complex way compared to, for example, simply giving everyone treatment (an intervention
that is straightforward to implement without the cost or complexity of measuring covariates
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and personalizing treatment assignment).
In this paper, we examine the following causal parameters, which we identify as statistical

estimands, corresponding to the value of an (optimal) rule: 1) the true expected outcome
of a given a priori known dynamic treatment rule; 2) the true expected outcome under
the true, unknown ODTR; and 2) the true expected outcome under the estimated ODTR,
a so-called “data-adaptive parameter.” The latter parameter can be further split into the
true expected outcome under a) an ODTR estimated on the entire data at hand, or b)
a sample-split specific ODTR, in which, under a cross-validation scheme, the ODTR is
estimated on each training set and evaluated, under the true data-generating distribution,
on the complementary validation set, with the data-adaptive parameter defined as an average
across sample splits.

We discuss several estimators for these estimands. Specifically, we consider the following
estimators suited for estimating a treatment-specific mean: the simple substitution estimator
of the G-computation formula [67], the inverse probability of treatment weighted (IPTW)
estimator [20, 73], the double-robust IPTW estimator (IPTW-DR) [72, 79, 70], the targeted
maximum likelihood estimator (TMLE) [2, 75, 37], and the cross-validated TMLE (CV-
TMLE) [93, 33, 36].

First, we review the conditions under which asymptotic linearity is achieved for these
estimators in the scenario where one wants to evaluate an a priori known rule. This pro-
vides insight into the common scenario in which one wishes to evaluate the value of a dy-
namic treatment rule that is pre-specified (based on investigator knowledge or external data
sources), rather than learned from the data at hand. Estimators for this parameter require
fast enough convergence rates and smoothness assumptions on nuisance parameters, though
smoothness assumptions can be relaxed when employing CV-TMLE.

Second, we examine the more ambitious goal of estimating the expected outcome under
the true, unknown ODTR, which additionally requires fast enough convergence of the esti-
mate of the ODTR to the true ODTR, and for non cross-validated estimators, smoothness
assumptions on ODTR estimators. We refer the reader to the previous chapter and [48] for a
discussion of considerations and best practices when implementing the ODTR SuperLearner.
Obtaining inference for the mean outcome under the ODTR has been shown to be difficult
due to its lack of smoothness [8, 69, 39]; however, several methods have been proposed for
constructing valid confidence intervals for this parameter, such as re-sampling techniques [10,
81, 8]. One approach to inference is to rely on parametric models; however, misspecification
of these models can bias results. CV-TMLE relaxes the smoothness assumptions needed
for inference, allowing one to use a single data set to safely estimate relevant parts of the
data distribution (e.g., estimate nuisance parameters and/or the ODTR) and retain valid
inference for the target parameter itself (e.g., the mean outcome under the ODTR) [23, 32].
Such internal sample splitting is particularly important if the nuisance parameters or ODTR
depend on a high dimensional covariate set or make use of data-adaptive methods [33].

Finally, it may instead be of interest to estimate the true outcome under an estimated
ODTR (a data-adaptive parameter) because, in practice, it is the estimated rule that will
likely be employed in the population, not the true rule, which is likely unknown [33]. In
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this case, the only rate condition needed on the estimate of the ODTR is that it converges
to a fixed rule. Non-cross-validated estimators of this data-adaptive parameter addition-
ally require smoothness assumptions on the estimate of the ODTR for asymptotic linearity;
the CV-TMLE eliminates these requirements, which means that, in a randomized experi-
ment, achievement of asymptotic linearity for CV-TMLE with respect to this data-adaptive
parameter only requires that the estimated ODTR converges to a fixed rule [33].

Previous simulation experiments have studied the performance of different estimators
for the aforementioned statistical estimands in the setting in which a binary treatment is
randomly assigned at a single time point. [33] demonstrated the importance of using an
estimator of the value of the rule that uses a targeted bias reduction, such as TMLE and
CV-TMLE, in order to improve performance. Of note, when evaluating the estimated rule,
the authors used the true treatment mechanism and, as an initial estimate of the outcome
regression, either the true outcome regression or a constant value (i.e., an incorrectly specified
outcome regression) when employing the (CV-)TMLE. [15] extended these results by “fully”
estimating the value of the optimal rule, meaning the nuisance parameters were additionally
estimated for both the optimal rule and the value of the rule, using the ensemble machine
learning approach SuperLearner [35]. Both [33] and [15] found that, indeed, there exists a
positive finite sample bias when using TMLE versus CV-TMLE when estimating the value of
the ODTR; in other words, with the rule learned and evaluated on the same data, estimates
of the value of the rule may be optimistic, and CV-TMLE corrects this bias. Additionally,
recently, [81] showed that cross-validation techniques for estimating the value of the rule,
and in particular CV-TMLE, yielded a smaller difference between the true expected value
under the true rule and its estimate, versus, for example, bootstrap techniques for evaluating
a rule.

The current paper builds on previous work by illustrating, through a simulation study,
how the degree of overfitting when estimating the optimal rule and/or nuisance parameters
affects the performance of the estimators used for evaluating a rule. We also explore the
potential for efficiency improvement and bias reduction through the use of semiparametric
efficient estimators, with and without targeting. Finally, we show the importance of sample
splitting using CV-TMLE when estimating the aforementioned statistical parameters.

Additionally, we apply these estimators of the value of the rule to the Correctional In-
tervention for People with Mental Illness, or “Interventions,” trial, a ongoing study in which
criminal justice-involved adults with mental illness – a heterogeneous group with diverse
symptoms, risk factors, and other treatment-relevant characteristics [82, 83] – are either
randomized to cognitive behavioral therapy (CBT) or treatment as usual (TAU), and re-
arrest is collected one year after randomization occurs, as a measure of recidivism. In a
companion paper (the previous chapter), we estimated the ODTR using the ODTR Super-
Learner algorithm to identify which patients should receive CBT versus TAU. In this paper,
we use CV-TMLE to determine whether administering CBT using the estimated ODTR is
more effective in reducing recidivism than assigning CBT in a non-individualized way (for
example, giving CBT to all offenders).

This article steps through the causal roadmap for answering causal questions [57], and
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is thus organized as follows. In the first section, we define the data and causal model,
define the causal parameters as functions of the counterfactual distribution, and identify
the causal estimands as functions of the observed data distribution. In section 2 we discuss
estimation, and in section 3 we discuss inference procedures and conditions for asymptotic
linearity. In section 4 we present a simulation study illustrating the performance of these
estimators. In section 5 we evaluate the ODTR SuperLearner algorithm that was applied to
the “Interventions” Study. Finally, we close with a discussion and future directions.

2.2 Causal Roadmap

In this section, we follow the first steps of the roadmap [57] for answering the causal questions:
what would have been the expected outcome had everyone been given treatment according
to: 1) any given rule; 2) the true ODTR; and 3) an estimate of the ODTR, which could
either be a) a sample-specific estimate of the ODTR (i.e., an ODTR estimated on the entire
data), or b) a sample-split-specific estimate of the ODTR?

Data and Models

Structural causal models (SCM) will be used to describe the process that gives rise to vari-
ables that are observed (endogenous) and not observed (exogenous). The random variables
in the SCM (denotedMF ) follow the joint distribution PU,X . The endogenous variables are
the covariates W ∈ W , binary treatment A ∈ A = {0, 1}, and outcome Y ∈ R. Exoge-
nous variables are denoted U = (UW , UA, UY ). The following structural equations illustrate
dependency between the variables:

W = fW (UW )

A = fA(UA, A)

Y = fY (UY , A,W ).

Because we will be focusing on data where treatment is randomly assigned (as in the “Inter-
ventions” trial), the above model can be modified by letting UA ∼ Bernoulli(p = 0.5) and
A = UA.

We assume the observed data Oi ≡ (Wi, Ai, Yi) ∼ P0 ∈ M, i = 1, . . . , n, where P0 is the
observed data distribution and M is the statistical model, were generated by sampling n
i.i.d. times from a data-generating system contained in the SCM MF above.

The likelihood of O can be factorized as L0(O) = pW,0(W )g0(A|W )pY,0(Y |A,W ), where,
pW,0 is the true density of W , g0(A|W ) is the true conditional probability of the treatment
A, and pY,0 is the true conditional density of Y .

The empirical distribution Pn gives each observation weight 1
n
; Pn ∈MNP , where MNP

is a non-parametric statistical model. Estimates from this empirical distribution are denoted
with a subscript n. If V -fold cross-validation is employed, the empirical data are uniformly
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and at random split into V mutually exclusive sets. For sets v ∈ {1, ..., V }, each set of
data serves as a validation set; the complement is its training set. Let Pn,v be the empir-
ical distribution of the validation sample v, and Pn,−v be the empirical distribution of the
complementary training set.

Data and Models - Application to “Interventions” Study

The “Interventions” Study is an RCT consisting of 441 i.i.d. observations of the following
data generated by the causal model described above: covariates W , which includes interven-
tion site, sex, ethnicity, age, Colorado Symptom Index (CSI) score (a measure of psychiatric
symptoms), level of substance use, Level of Service Inventory (LSI) score (a measure of risk
for future re-offending), number of prior adult convictions, most serious offense, Treatment
Motivation Questionnaire (TMQ) score (a measure of internal motivation for undergoing
treatment), and substance use level; the randomized treatment A, which is either a man-
ualized Cognitive Behavioral Intervention for people criminal justice system (abbreviated
CBT; A = 1) or treatment as usual (TAU), which is mostly psychiatric or correctional ser-
vices (A = 0); and a binary outcome Y of recidivism, an indicator that the person was not
re-arrested over a minimum period of one year. Table 3.1 shows the distribution of the data.

Causal Estimands

In this point treatment setting, a dynamic treatment rule in the set of rules D is a function
d that takes as input some function V of the measured baseline covariates W and outputs a
treatment decision: V → d(V ) ∈ {0, 1}. It could be the case that V = W , in other words,
dynamic treatment rules that potentially respond to all measured baseline covariates.

Counterfactual outcomes under a treatment rule d – or a subject’s outcome if, possibly
contrary to fact, the subject received the treatment that would have been assigned by the
treatment rule d – are derived by intervening on the above SCM. Specifically, in parallel
with our causal questions above, counterfactual outcomes are generated by setting A equal
to the following treatment rules, all in the set D: 1) the true ODTR d∗0; and, 2) an estimate
of the ODTR, either: a) the sample-specific estimate of the ODTR d∗n; or b) the training
sample-specific estimate of the ODTR d∗n,v.

The expectation of each of these counterfactual outcomes under the distribution PU,X are
the causal parameters of interest in this paper. Each causal estimand is a mappingMF → R.

The target causal parameter corresponding to the value of a given treatment rule d (from
the set of rules D) is:

ΨF
d (PU,X) ≡ EPU,X

[Yd].

The true ODTR d∗0 is defined as the rule that maximizes the expected counterfactual
outcome:
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d∗0 ∈ arg max
d∈D

ΨF
d (PU,X).

Here, the target causal parameter of interest is the expected outcome under the true
ODTR d∗0:

ΨF
d∗0

(PU,X) ≡ EPU,X
[Yd∗0 ].

Let d∗n :MNP → D be an ODTR estimated on the entire sample, and d∗n,v = d∗(Pn,−v) :
MNP → D be an ODTR estimated on the vth training set. The data-adaptive causal
parameters are: a) the expected outcome under a sample-specific estimate of the ODTR:

ΨF
d∗n

(PU,X) ≡ EPU,X
[Yd∗n ],

noting that the expectation here is not over d∗n, i.e., this is EPU,X
[Yd], with d = d∗n, and

b) the average of the expected validation set outcomes under training-set specific estimates
of the ODTR:

ΨF
d∗n,CV

(PU,X) ≡ 1

V

V∑
v=1

EPU,X
[Yd∗n,v

].

One might also be interested in comparing the above causal quantities to, for example,
the expected outcome had everyone been assigned the treatment EPU,X

[Y1] or had no one
been assigned the treatment EPU,X

[Y0].

Causal Estimands - Application to “Interventions” Study

Analagous to the above causal questions, for the “Interventions” Study, we are interested in
asking: what would have been the probability of no re-arrest had everyone been given CBT
according to: 1) some pre-specified rule d (for example, the simple dynamic treatment rule
that gives CBT to those with high levels of prior education and TAU to those with low levels
of prior education), where the causal parameter is ΨF

d (PU,X); 2) the true ODTR d∗0 (the
unknown dynamic treatment rule for assigning CBT that yields the highest probability of no
re-arrest), where the causal parameter is ΨF

d∗0
(PU,X); and 3) an estimate of the ODTR specific

to the 441 participants in the trial, which could either be a) a sample-specific estimate d∗n
(e.g., the ODTR estimated in the previous chapter) or b) a sample-split-specific estimate of
the ODTR d∗n,CV ? The causal parameters for a) and b) are ΨF

d∗n
(PU,X) and ΨF

d∗n,CV
(PU,X),

respectively.

Identification

Two assumptions are necessary for identification; that is, for determining that the causal
estimands (a function of our counterfactual distribution) are equal to the statistical estimands



CHAPTER 2. PERFORMANCE AND APPLICATION OF ESTIMATORS FOR THE
VALUE OF AN OPTIMAL DYNAMIC TREATMENT RULE 35

(a function of our observed data distribution): the 1) randomization assumption, Ya ⊥
A|W a ∈ {0, 1}; and 2) the positivity assumption: Pr(mina∈{0,1} g0(A = a|W ) > 0) = 1.
Both hold if, for example, data are generated from an experiment in which treatment is
randomized (as in the “Interventions” trial); for data generated in an observational setting,
the randomization assumption requires measurement of all unmeasured confounders, and
the positivity assumption should be examined [58].

Statistical Estimands

We describe statistical estimands corresponding to each of the causal parameters outlined
above – each is identified via the G-computation formula which corresponds to a mapping
M→ R.

The statistical estimand of the mean outcome under any rule d ∈ D is

ψ0,d ≡ Ψd(P0) = E0[Q0(d(W ),W )],

where the function Q(A,W ) = E[Y |A,W ] is the outcome regression.
The true optimal rule, as a function of the observed data distribution, is then:

d∗0 ∈ arg max
d∈D

Ψd(P0).

Note that the RHS of this equation is a set because there may be more than one optimal
rule for a certain kind of subject (e.g., if certain kinds of subjects neither benefit from nor are
harmed by a treatment) [47, 69, 68]. Here, we will assume that when there is no treatment
effect, assigning treatment 0 is better than no treatment. Then, the optimal rule can be
written as a function of the so-called “blip function”, B(W ) = Q(1,W )−Q(0,W ):

d∗0(W ) = I[B0(W ) > 0].

The true mean outcome under the true optimal rule d∗0 is then identified by

ψ0,d∗0
≡ Ψd∗0

(P0) = E0[Q0(d∗0(W ),W )].

The first data-adaptive parameter we consider, as a function of the observed data, is the
true expected outcome under the ODTR estimated on the entire sample d∗n:

ψ0,d∗n ≡ Ψd∗n(P0) = E0[Q0(d∗n(W ),W )].

The second data-adaptive parameter is the average of the validation-set true mean out-
comes under the training-set estimated ODTRs d∗n,v:

ψ0,d∗n,CV
≡ Ψd∗n,CV

(P0) =
1

V

V∑
v=1

E0[Q0(d∗n,v(W ),W )].
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2.3 Estimation

We describe estimators for each of the statistical parameters above: a simple substitution
estimator based on the G-computation formula, an IPTW estimator, a double-robust IPTW
estimator (IPTW-DR), a TMLE, and a CV-TMLE. Each of these estimators can be used
for estimating ψ0,d and ψ0,d∗0

. We use the non-cross-validated estimators (G-computation,
IPTW, IPTW-DR, and TMLE) to estimate ψ0,d∗n ; we estimate ψ0,d∗n,CV

with CV-TMLE.

Estimators of these parameters are mappings Ψ̂ : MNP → R. For all estimators, let
Qn be an estimator of the outcome regression, which could be estimated with, for example,
SuperLearner [35]. In a randomized experiment, the treatment mechanism g0 is known; thus,
one could use this known g0, or gn could be a maximum likelihood estimator (MLE) based
on a correctly specified model.

We first illustrate each of the non-cross-validated estimators suited for estimating a
treatment-specific mean at an arbitrary d ∈ D, which, for example, could be an a priori
known rule or an optimal rule estimated on the entire sample d∗n (see papers from [48]
and Chapter 1 for a description on how to estimate the optimal rule using, for example, the
ODTR SuperLearner). Here, Ψ̂d is an estimator of ψ0,d; the estimate is denoted Ψ̂d(Pn) ≡ ψ̂.
We further subscript by each estimator name.

One can use a simple substitution estimator based on the above G-computation formula
[67]:

ψ̂gcomp,d =
1

n

n∑
i=1

Qn(d(Wi),Wi),

an IPTW estimator [20, 73]:

ψ̂IPTW,d =
1

n

n∑
i=1

I[Ai = d(Wi)]

gn(Ai|Wi)
Yi,

a double-robust IPTW estimator [72, 79, 70]:

ψ̂IPTW−DR,d =
1

n

n∑
i=1

I[Ai = d(Wi)]

gn(Ai|Wi)
(Yi −Qn(Ai,Wi)) +Qn(d(Wi),Wi),

or a TMLE [75, 37, 2, 33]. We briefly describe one possible TMLE procedure. First,
estimate the clever covariate for each person:

Hn,i =
I[Ai = d(Wi)]

gn(Ai|Wi)
.

Then, update the initial fit of Qn(d(W ),W ) by running a logistic regression of Y (which
should be transformed between 0 and 1 if the outcome is continuous [19]) on offset denoted
as Qn(d(W ),W ) with weights Hn, predicting at A = d(W ). Denote the updated fit as
Q∗n(d(W ),W ). Then, the TMLE estimator is:
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ψ̂TMLE,d =
1

n

n∑
i=1

Q∗n(d(Wi),Wi).

As previously mentioned, the CV-TMLE can estimate ψ0,d, ψ0,d∗0
, and ψ0,d∗n,CV

[23, 36, 33,

93, 32]. Instead of illustrating this estimator at d as in the above estimators, we illustrate one
type of CV-TMLE procedure for evaluating the mean outcome under sample-split-specific
estimates of the ODTR d∗n,v to show on which parts of the data one needs to estimate or
predict the ODTR, if estimating ψ0,d∗0

or ψ0,d∗n,CV
. The same procedure holds for a d that is

known, except that the rule need not be estimated on each of the training samples and is
simply applied to the validation sets:

1. Split the data into V folds. Let each fold be the validation set and the complement
data be the training set.

2. Generate initial estimators of g0, Q0, and d∗0 based on the training sample Pn,−v.

3. Predict the training-set specific fits from the previous step on the validation sample
Pn,v.

4. Using the predictions from the previous step, in each corresponding validation set,
update the initial estimator Ψ̂d∗n,v

(Pn,−v) using the TMLE procedure described above

to generate Ψ̂d∗n,v
(P ∗n,−v), a TMLE of E0[Q0(d∗n,v(W ),W )].

5. Average over all validation folds to obtain the CV-TMLE, i.e., the estimated mean
outcome under the training-sample-split specific estimates of the rules:

ψ̂CV−TMLE,d∗n,v
=

1

V

V∑
v=1

Ψ̂d∗n,v
(P ∗n,−v).

2.4 Inference

We first discuss the conditions necessary for each the above estimators to be asymptotically
linear for ψ0,d, ψ0,d∗n , and ψ0,d∗n,CV

in a randomized experiment. Under these conditions, using

influence-curve based inference, we describe how to construct 95% confidence intervals with
nominal to conservative coverage for the aforementioned statistical estimands of interest.

We do not discuss inference on the G-computation estimator, because in order for it to
be asymptotically linear, Qn must either be equal to Q0 or be an estimator that converges
fast enough to Q0, neither of which we assume here.
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Asymptotic Linearity Conditions for Estimators

We give a brief overview of the conditions needed for asymptotic linearity for each of the
estimators with respect to each statistical estimand in the randomized trial setting, and
provide a summary of these conditions in Table 2.1. For more details and proofs, we refer
the reader to [37] and [33].

An estimator Ψ̂ is asymptotically linear for its true value ψ0 if can be written in the
following form:

ψ̂ − ψ0 =
1

n

n∑
i=1

IC(Oi) +Rn,

where IC is the estimator’s influence curve and Rn is a remainder term that is oP (1/
√
n).

An asymptotically linear estimator Ψ̂ thus has the following properties: 1) its bias converges
to 0 in sample size at a rate faster than 1√

n
; 2) for large n, its distribution is normal,

n1/2(ψ̂ − ψ0)
d→ N(0, σ2

0), allowing an estimate of σ2
0 to be used to construct a Wald-type

confidence intervals; and, 3) the asymptotic variance of n1/2(ψ̂ − ψ0) (i.e., σ2
0) can be well-

approximated by the sample variance of its estimated influence curve (or equivalently, σ2
n =

1
n

∑n
i IC

2
n(Oi), since the mean of an influence curve is 0).

The current randomized experiment scenario guarantees that g0 is known; here, we con-
sider the case where gn is an estimate of g0 based on a correctly specified parametric model.
Given this, for an estimand defined as the value of an a priori specified rule d, the IPTW
estimator is guaranteed to be asymptotically linear for ψ0,d; however, it will not be asymp-
totically efficient. Under a Donsker class assumption on the estimator Qn, IPTW-DR and
TMLE are guaranteed to be asymptotically linear for ψ0 (due to Rn involving a second-order
term that is the product of the difference between Qn and gn for Q0 and g0, respectively); if
Qn is a consistent estimator of Q0 with a rate of convergence faster than 1/

√
n, IPTW-DR

and TMLE are asymptotically efficient. This is also true for CV-TMLE, except Donsker
class conditions can be relaxed (in effect allowing for an overfit in the initial estimate of Q0)
[33].

Construction of nominal to conservative confidence intervals around each estimator with
respect to the true expected outcome under the true, unknown d∗0 requires additional assump-
tions. For all estimators, statistical inference for ψ0,d∗0

relies on a second-order difference in
Rn between ψ0,d∗n and ψ0,d∗0

going to 0 at a rate faster 1/
√
n. In practice, how hard it is to

make this condition hold depends on the extent to which the blip function has density at
zero. If the value of the blip is always larger than δ > 0 for some δ > 0, then consistency
of Qn is sufficient; however, if the treatment effect is zero for some covariate levels, then
stronger assumptions are required. The non-cross-validated estimators additionally require
Donsker conditions on d∗n. In practice, these conditions on the data-adaptivity of d∗n hold
if, for example, the optimal rule is a function of one covariate, or, if a higher-dimensional
covariate set is used, one is willing to make strong smoothness assumptions on, for example,
the blip function [33, 48, 31]. CV-TMLE relaxes these Donsker conditions on d∗n. Thus, in
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a randomized trial, if employing CV-TMLE for this estimand, the only condition needed is
that d∗n converges fast enough to d∗0.

For the data-adaptive parameters, the estimators no longer require the strong assumption
that d∗n converges to d∗0 at a certain rate; rather, they only require that d∗n converges to some
fixed rule d ∈ D at any rate [33]. This means that, for randomized trial data, the CV-TMLE
estimator for ψ0,d∗n,CV

is asymptotically linear under essentially no conditions [33].

Conditions for Asymptotic Linearity:

Estimands Estimators

gn = g0

or

gn
p→ g0

Qn = Q0

or

Qn
p→ Q0

ψ0,d∗n − ψ0,d∗0
= oP ( 1√

n
)

Qn not
overfit

d∗n not
overfit

Value of
known rule
ψ0,d

Ψ̂IPTW,d

Satisfied by
randomized
experiment

Not
required

Not required,
d known

Not required
Not required,
d known

Ψ̂IPTW−DR,d Required

Ψ̂TMLE,d Required

Ψ̂CV−TMLE,d Not required

Value of
true ODTR
ψ0,d∗0

Ψ̂IPTW,d∗n

Required

Not required
RequiredΨ̂IPTW−DR,d∗n Required

Ψ̂TMLE,d∗n Required

Ψ̂CV−TMLE,d∗n,v
Not required Not required

Value of
sample-specific
ODTR estimate
ψ0,d∗n

Ψ̂IPTW,d∗n
Not required;

require d∗n
p→ d ∈ D

Not required

Required
Ψ̂IPTW−DR,d∗n Required

Ψ̂TMLE,d∗n
Required

Value of
sample-split-specific
ODTR estimate
ψ0,d∗n,CV

Ψ̂CV−TMLE,d∗n,v

Not required;

require d∗n
p→ d ∈ D Not required Not required

Table 2.1: Summary of the conditions needed for asymptotic linearity in the randomized
treatment setting for each of the estimators corresponding to each of the estimands.

Construction of Confidence Intervals

Below, we list conservative working influence curves for each estimator at Pn and d ∈ D.
The actual estimators’ influence curves when an MLE of gn based on a correctly specified
parametric model is used (as can be guaranteed when treatment is randomized) are the work-
ing influence curves presented below minus a tangent space projection term [37, 31]. Thus,
under the conditions stated above, the sample variance of the following working influence
curves at a correctly specified gn yield conservative estimates of the asymptotic variance of
the estimators, which yields conservative confidence interval coverage.

The IPTW estimator’s working influence curve estimate is:

ÎCIPTW,d =
I[A = d]

gn(A|W )
Y − ψ̂IPTW,d.
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The influence curve of the TMLE and double-robust IPTW estimator is the efficient in-
fluence curve for the treatment-specific mean [31, 85, 4]; the corresponding working influence
curve estimates are:

ÎCIPTW−DR,d =
I[A = d]

gn(A|W )
(Y −Qn(A,W )) +Qn(d(W ),W )− ψ̂IPTW−DR,d,

ÎCTMLE,d =
I[A = d]

gn(A|W )
(Y −Q∗n(A,W )) +Q∗n(d(W ),W )− ψ̂TMLE,d.

As stated above, for these non-cross-validated estimators, the asymptotic variance can
be conservatively estimated with the sample variance of the estimated influence curve: σ2

n =
1
n

∑n
i ÎC

2
(Oi).

For the IPTW-DR and TMLE estimators, one can underestimate the estimator’s variance
if Q0 is estimated data-adaptively on the same data on which the sample variance of the
estimated influence curve is evaluated. Through sample splitting, CV-TMLE confidence
intervals protect against overfitting incurred by using the data twice – for both estimation
and evaluation [37]. Then the fold-specific estimate of the working influence curve for CV-
TMLE at the training-set-specific estimated ODTR is:

ÎCv,d∗n,v
=

I[A−v = d∗n,v(W−v)]

gn(A−v|W−v)
(Y−v −Q∗n,v(A−v,W−v)) +Q∗n,v(d

∗
n,v(W−v),W−v)− Ψ̂(P ∗n,v),

and the fold-specific estimate of the variance of the fold-specific estimator is:

σ2
n,v =

1

nv − 1

nv∑
i=1

ÎC
2

v,d∗n,v
(Oi);

thus, the asymptotic variance of the CV-TMLE ψ̂CV−TMLE,d∗n,v
can be conservatively

estimated with:

σ2
n,CV−TMLE =

1

V

V∑
v=1

σ2
n,v.

In sum, for each estimator Ψ̂ and its corresponding working influence curve estimate ICn,
we obtain conservative inference on the value of the rule by constructing confidence intervals
in the following way:

ψ̂ ± Φ−1(0.975)
σn√
n
.
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2.5 Simulation Study

Using simulations, we evaluate the performance of various estimators of the value of the
rule in finite samples. In particular, we investigate: 1) the impact of increasingly data-
adaptive estimation of nuisance parameters and (if applicable) the ODTR; 2) the potential for
efficiency and bias improvement through the use of semiparametric efficient estimators; and,
3) the importance of sample splitting, in particular via a cross-validated-targeted maximum
likelihood estimator (CV-TMLE).

Data Generating Process

All simulations were implemented in R [65], and the code, simulated data, and results can be
found at https://github.com/lmmontoya/SL.ODTR. We examine these comparisons using
the following data generating process (DGPs) (also used in the previous chapter and [33,
48]). Each simulation consists of 1,000 iterations of n=1,000. Mimicking a randomized
experiment, the covariates, treatment and outcome are generated as follows:

W1,W2,W3,W4 ∼Normal(µ = 0, σ2 = 1)

A ∼Bernoulli(p = 0.5)

Y ∼Bernoulli(p) .

p =0.5logit−1(1−W 2
1 + 3W2 + 5W 2

3A− 4.45A)+

0.5logit−1(−0.5−W3 + 2W1W2 + 3|W2|A− 1.5A) ,

then the true blip function is:

B0(W ) =0.5[logit−1(1−W 2
1 + 3W2 + 5W 2

3 − 4.45)+

logit−1(−0.5−W3 + 2W1W2 + 3|W2| − 1.5)

− logit−1(1−W 2
1 + 3W2) + logit−1(−0.5−W3 + 2W1W2)] .

Here, the true expected outcome under the true ODTR ΨF
d∗0

(PU,X) ≈ 0.5626 and the true

optimal proportion treated EPU,X
[d∗0] ≈ 55.0%. The mean outcome had everyone and no one

been treated is, respectively, EPU,X
[Y1] ≈ 0.4638 and EPU,X

[Y0] ≈ 0.4643.

Estimator Configurations

We estimate each of the statistical estimands using the following estimators with infer-
ence based on the conservative working influence curves describe above: IPTW, IPTW-DR,
TMLE, and CV-TMLE. The G-computation estimator is also employed, but confidence in-
tervals are not generated.

A correctly specified logistic regression is used to estimate the nuisance parameter g0.
SuperLearner is used to estimate Q0 and the ODTR [35, 48]. The ODTR is estimated using a
“blip-only” library, using a blip-based metalearner (i.e., an approach to creating an ensemble
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of candidate ODTR algorithms), and selecting the mean outcome under the candidate rule as
the risk function (see Chapter 1). Three libraries are considered that correspond to varying
levels of data-adaptiveness, or potential for overfitting.

1. “GLMs - least data adaptive”

• Qn library: four logistic regressions, each with a main terms Wj and A, and with
an interaction Wj times A, for j ∈ {1, .., 4}

• d∗n library: univariate linear regressions with each covariate

2. “ML + GLMs - moderately data adaptive”

• Qn and d∗n library: all algorithms in the “GLMs - least data adaptive” Qn and
d∗n libraries, respectively, in addition to the algorithms SL.glm (generalized linear
models), SL.mean (the average), SL.glm.interaction (generalized linear models
with interactions between all pairs of variables), SL.earth (multivariate adaptive
regression splines [18]), SL.nnet (neural networks [66]), SL.svm (support vector
machines [12]), and SL.rpart (recursive partitioning and regression trees [5]) from
the SuperLearner package [62]

3. “ML + GLMs - most data adaptive”

• Qn and d∗n library: all algorithms in the “ML + GLMs - moderately data adaptive”
Qn and d∗n libraries, respectively, in addition to SL.randomForest [6]

Performance Metrics

Using measures of bias, variance, mean squared error (MSE) and 95% confidence interval
coverage, we evaluate the ability of each of the estimators to approximate: 1) the true ex-
pected outcome under an a priori known rule d, i.e., ψ0,d; 2) the true expected outcome
under the true, unknown ODTR ψ0,d∗0

; 3) the true expected outcome under an ODTR esti-
mated on: a) the entire sample and evaluated on the entire sample ψ0,d∗n ; or b) estimated on
each of the training sets, evaluated and averaged over each of the validation sets ψ0,d∗n,CV

.
First, we estimate the target parameter ψ0,d. This illustrates the performance of these

estimators of the value of a rule when the rule is known a priori, either because the rule
is known to be of interest or it was estimated on other data not included in the current
sample. In this case, we choose d to be the true ODTR, that is, d = d∗0. We note that it
is highly unlikely that in practice d∗0 is known a priori, and stress that the only reason we
examine the performance of estimators ψ̂d=d∗0

with respect to ψ0,d∗0
is to illustrate how well

these estimators evaluate a given pre-specified rule. However, illustrating this using the true
rule d∗0 in a simulation facilitates comparison of estimator performance across estimands,
showing, for example, the price in performance one pays for targeting the more ambitious
parameter that seeks to estimate both the rule itself and its true value. Said another way,
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if we see that estimator performance for ψ̂d=d∗0
with respect to ψ0,d∗0

is good, then the only
issue left with estimating ψ0,d∗0

is estimating d∗0 well.
Next, we estimate the same target parameter ψ0,d∗0

in the more realistic scenario where
the true ODTR d∗0 is unknown. We therefore first estimate the ODTR and then apply each
of the estimators of the value of the rule under the estimated ODTR (where the rule is either
estimated on the entire sample ψ̂d∗n or, for CV-TMLE, estimated on each sample split ψ̂d∗n,v

).
Performance of the estimators with respect to ψ0,d∗0

reflects how well both the rule and its
value are estimated.

Finally, we treat as target parameter the true expected outcome under the estimated
optimal rule, i.e., the data-adaptive parameters ψ0,d∗n or, for CV-TMLE, ψ0,d∗n,CV

. This
illustrates estimator performance for data-adaptive parameters whose true values depend on
the sample, and for which it is of interest to estimate their value using the same sample on
which the rule was learned. Note that the target parameter value in this case is specific
to the sample at hand (the “truth” will vary from sample to sample); thus, performance
calculations are calculated with respect to the true sample-specific or sample-split specific
mean outcome. For example, for confidence interval coverage, across the 1,000 simulations,
we calculated the proportion of times the confidence interval around the estimated value of
the estimated rule covered the true value of the estimated rule – where both the confidence
interval around the estimate and the true value of the estimated rule are specific to each
sample. Furthermore, the data-adaptive parameter will vary between the non-cross-validated
estimators (whose data-adaptive parameter is the sample-specific parameter ψ0,d∗n) and CV-
TMLE (whose data-adaptive parameter is the sample-split specific parameter ψ0,d∗n,CV

), and
as such, is not only a function of the sample, but also of the split.

Simulation Results

Results - Value of a Known Dynamic Treatment Regime

Bias, variance, MSE, and confidence interval coverage metrics for estimating ψ0,d in the
scenario where d is known a priori illustrate the performance of each of the estimators for
estimating the value of a given pre-specified rule; for illustration, we use the true optimal
rule d∗0. Thus, only estimation of nuisance parameters g and/or Q were needed for this
parameter.

The untargeted G-computation formula exhibited considerable bias if either misspecified
parametric models or a SuperLearning approach was used to estimate the outcome regression
– regardless of the degree of data-adaptiveness in estimating this nuisance parameter Q. For
example, when the Qn library consisted of only parametric regressions, the mean difference
between the G-computation estimate and the truth was −9.09% (i.e., 104.44-940.00 times
that of the bias of alternative estimators). We note that this result is in contrast to that of
estimating the treatment specific mean for any static regime, in which treatment assignment
is not a function of covariates (e.g., E0[Q0(A = 1,W )]) from data generated from a ran-
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domized experiment; in this case, the G-computation estimator under certain misspecified
parametric models is a TMLE, and is therefore unbiased [76].

As expected, the IPTW estimator, although unbiased, was less efficient than the double
robust estimators – specifically, throughout, the IPTW estimator’s variance was 1.33-1.80
times that of the variance of alternative estimators. Additionally, the IPTW-DR and TMLE
were unbiased (as expected, given the double-robustness of these estimators) if the outcome
regression was estimated using either a misspecified parametric model or a SuperLearner
with a less data-adaptive library. However, both estimators were biased (i.e., −0.84% and
−0.75% bias for IPTW-DR and TMLE, respectively) with less than nominal confidence
interval coverage (i.e., 90.1% and 90.6% coverage for IPTW-DR and TMLE, respectively)
when a more data-adaptive library was used to estimate the outcome regression – a result
likely due to overfitting Qn.

Sample-splitting via CV-TMLE removed the non-cross-validated estimators’ bias (-0.01%,
or 0.001-0.17 times the bias relative to alternative estimators) and generated better confi-
dence interval coverage (93.6%) under the presence of overfitting for Qn, at no cost to
variance.

Results - Value of the True, Unknown ODTR

No estimator performed well when both the ODTR itself and its value were estimated using
the same sample (i.e., estimators ψ̂d∗n or ψ̂d∗n,v

for ψ0,d∗0
). This was evident particularly in

terms of increased bias when a less data-adaptive library was used to estimate Q0 and d∗0,
and in terms of both increased bias and variance when a more aggressive library was used
to estimate Q0 and d∗0. Notably, however, CV-TMLE performed the best with respect to all
performance metrics under the most data-adaptive approaches. A large component of the
bias in this case was due to the rate of convergence from d∗n to d∗0 for any SuperLearner library,
and therefore confidence interval coverage of the true value under the true ODTR around
any estimated value of the estimated rule did not approach 95% (confidence interval coverage
under the least, moderately, and most data adaptive libraries ranged from 14.70%-45.0%,
66.50%-76.10%, and 31.00%-68.60%, respectively).

Although the focus of these simulations was not optimizing estimation of the ODTR, we
note that, consistent with results from the previous chapter, the least biased estimators of
the true value of the true ODTR are ones that use a combination of parametric models and
machine learning algorithms in the estimation of Q0 and d0.

Results - Value of an Estimated ODTR

We evaluated the performance of the non-cross-validated estimators (IPTW, IPTW-DR,
and TMLE, i.e., ψ̂d∗n) of the data-adaptive parameter (i.e., ψ0,d∗n) – a parameter that de-
pends on the optimal rule specific to the sample at hand. All non-cross-validated estimators
overestimated the value of the rule (i.e., positive bias), regardless of the SuperLearner li-
brary. In addition, the bias increased as the library for estimating the ODTR became more
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data-adaptive. For example, for the most data-adaptive SuperLearner library configuration,
TMLE exhibited a bias of 13.46%, variance of 0.0108, MSE of 0.0307, and 15.7% confidence
interval coverage.

The CV-TMLE (i.e., ψ̂CV−TMLE,d∗n,v
) with respect to the data-adaptive parameter ψ0,d∗n,CV

removed the bias incurred by estimating and evaluating the ODTR on the same sample, at
little cost to no cost to variance. For example, for the most data-adaptive SuperLearner
library configuration, CV-TMLE had a bias of 0.04% (0.001-0.0006 times that of alternative
estimators), variance of 0.0007 (0.07-1.00 times that of alternative estimators), MSE of 0.0005
(0.01-0.06 times that of alternative estimators), and 94.8% confidence interval coverage.

2.6 Evaluating the Estimated ODTR for the

“Interventions” Study

In our companion paper (the previous chapter), we estimated the ODTR on the “Inter-
ventions” data (n = 441) using the ODTR SuperLearner. The library for d∗n consisted
of a combination of simple parametric models and machine learning algorithms (SL.glm,
SL.mean, SL.glm.interaction, SL.earth, and SL.rpart), and we used the same library
for Qn. The ODTR algorithm allocated all coefficient weight on a simple GLM with only
substance use; this means that the estimated ODTR can be interpreted as: give CBT to
those with low substance use scores and TAU to those with high substance use scores.

In this paper, we evaluate this estimated ODTR using CV-TMLE. Specifically, we aim to
determine if administering CBT under this individualized rule is better than administering
CBT in a non-individualized way – i.e., simply giving all participants CBT or no participants
CBT.

The CV-TMLE estimate of the probability of no re-arrest under the ODTR SuperLearner
is 61.37% (CI: [54.82%, 67.93%]). However, this probability is not significantly different
than the CV-TMLE estimate of the static rule in which everyone receives CBT (difference:
-0.35%, CI: [-6.40%, 5.71%]) and no one receives CBT (difference: -0.18%, CI: [-7.06%,
6.68%]). Estimates and confidence intervals of these CV-TMLE estimates are illustrated in
Figure 2.2. Thus, there is insufficient evidence to conclude that assigning CBT using the
ODTR SuperLearner is better than assigning CBT in a non-individualized way.

2.7 Conclusions

The aim of this paper was to illustrate the performance of different estimators that can be
used to evaluate dynamic treatment rules, and in particular, the ODTR. At sample size
1,000, we saw a small price and many benefits to using CV-TMLE in order to estimate
the following parameters: 1) the true value of a given a priori known rule; 2) the true
value of the true, unknown ODTR; and, 3) the true value of an estimated ODTR (a data-
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adaptive parameter). In addition, we illustrated how to implement the CV-TMLE estimator
to evaluate the ODTR using the “Interventions” data as an applied example.

When evaluating estimators’ performance for the value of a known rule, CV-TMLE per-
formed well, irrespective of how data-adaptive the algorithms used for estimating nuisance
parameters were. Although no estimator under an estimated ODTR yielded satisfactory
performance for a target parameter corresponding to the true value of the true ODTR,
CV-TMLE performed the best when nuisance parameters and ODTRs were estimated using
the most data-adaptive algorithms, while non-cross-validated estimators yielded overly opti-
mistic and highly variable results. Finally, no other estimator except CV-TMLE performed
well when estimating a data-adaptive parameter – a parameter that may be of interest if: 1)
one believes one’s estimate of the ODTR will not converge appropriately to its truth (as was
the case for these estimators of the ODTR under the current DGP); and 2) one cares more
about the performance of the estimated ODTR that is generated by the sample at hand (as
opposed to the true, but unknown, ODTR).

Future directions for simulations should evaluate results under varying sample sizes. In
particular, for small sample sizes and thus less support in the data, it may be that case
that we pay a price in performance by sample splitting. Additionally, future work could
extend these simulations to the multiple time-point setting to evaluate the sequential ODTR
that could be generated from, for example, a SMART design [43, 29, 1] instead of an single
time-point experiment.

As an illustration of how to apply the ODTR SuperLearner to real data, we estimated the
ODTR using the “Interventions” Study to determine which types of criminal justice-involved
adults with mental illness should be assigned CBT versus TAU, to yield the highest probabil-
ity of no re-arrest. In our applied example using the “Interventions” data, preliminary results
suggest the probability of recidivism if treatment were assigned using the ODTR algorithm
(i.e., in an individualized way) is not significantly different from probability of recidivism if
all had been assigned treatment or no treatment (i.e., in a non-individualized way). This
may indicate an absence of strong heterogeneous treatment effects by the measured variables,
or it may reflect limitations in power to detect such effects due to preliminary sample sizes.
In future work, we will apply the ODTR SuperLearner and evaluate it on the full sample
size (n = 720).

This work contributes to statistical methods for understanding treatment effect hetero-
geneity, and in particular, how much improvement we might make in outcomes if interven-
tions are assigned according to an ODTR. It is of great practical relevance to study estimators
of these parameters, which allow us to determine the benefit of assigning treatment in a more
individualized way compared to, for example, simply giving all subjects treatment.
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Figure 2.1: Performance of the value of the rule for 3 SuperLearner library configurations
with increasing (left to right) levels of data-adaptivity used for estimating Q0 and/or d∗0
(“GLM - least data adaptive”, “ML + GLMs - moderately data adaptive”, ”ML + GLMs -
most data adaptive”). The horizontal black line depicts the true mean outcome under the
true ODTR ψ0,d∗0

; the blue and red lines are the data-adaptive parameters ψ0,d∗n and ψ0,d∗n,CV
,

respectively, averaged over each of the 1,000 simulated samples. Points with error bars
show the distribution of the estimators across the 1,000 simulated samples (G-computation
estimator, IPTW estimator, TMLE, and CV-TMLE); the points (circles and triangles) show
the estimates averaged over the samples, and error bars show the 2.5th and 97.5th quantiles
of the distribution of each estimator across the simulation repetitions. The circles depict
the estimators under a known rule ψ̂d=d∗0

and the triangles illustrate the estimators under an

estimated rule, either ψ̂d∗n or ψ̂d∗n,v
(for CV-TMLE).
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Library Estimator Bias Variance MSE Coverage

GLMs

G-comp. -0.0940 0.0003 0.0091 -
IPTW 0.0009 0.0008 0.0008 95.3%
IPTW-DR 0.0001 0.0005 0.0005 93.7%
TMLE 0.0002 0.0005 0.0005 93.7%
CV-TMLE 0.0004 0.0005 0.0005 93.7%

ML + GLMs not aggressive

G-comp. -0.1298 0.0006 0.0175 -
IPTW 0.0002 0.0008 0.0008 94.7%
IPTW-DR -0.0009 0.0006 0.0006 94.0%
TMLE -0.0011 0.0005 0.0005 93.6%
CV-TMLE -0.0009 0.0005 0.0005 93.2%

ML + GLMs aggressive

G-comp. -0.1180 0.0006 0.0146 -
IPTW -0.0006 0.0009 0.0009 94.0%
IPTW-DR -0.0084 0.0005 0.0006 90.1%
TMLE -0.0075 0.0005 0.0006 90.6%
CV-TMLE -0.0001 0.0005 0.0005 93.6%

Table 2.2: Performance metrics (bias, variance, MSE, confidence interval coverage) of each
estimator ψ̂d=d∗0

for ψ0,d∗0
, for each library configuration of Qn.
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Library Estimator Bias Variance MSE Coverage

GLMs

G-comp. -0.0773 0.0004 0.0064 -
IPTW -0.0558 0.0008 0.0039 45.0%
IPTW-DR -0.0565 0.0006 0.0038 30.1%
TMLE -0.0565 0.0006 0.0038 29.8%
CV-TMLE -0.0764 0.0009 0.0067 14.7%

ML + GLMs not aggressive

G-comp. -0.1306 0.0007 0.0178 -
IPTW 0.0334 0.0010 0.0021 76.1%
IPTW-DR 0.0327 0.0008 0.0019 66.5%
TMLE 0.0298 0.0008 0.0016 71.3%
CV-TMLE -0.0308 0.0007 0.0017 69.0%

ML + GLMs aggressive

G-comp. -0.1161 0.0007 0.0142 -
IPTW 0.1236 0.0109 0.0262 31.0%
IPTW-DR 0.1010 0.0092 0.0194 33.0%
TMLE 0.1031 0.0108 0.0214 33.6%
CV-TMLE -0.0316 0.0007 0.0017 68.6%

Table 2.3: Performance metrics (bias, variance, MSE, confidence interval coverage) of each
estimator ψ̂d∗n (G-computation, IPTW, IPTW-DR, TMLE) or ψ̂d∗n,v

(CV-TMLE) for ψ0,d∗0
,

for each library configuration of Qn and d∗n.
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Library Estimator Bias Variance MSE Coverage

GLMs

G-comp. -0.0033 0.0004 0.0006 -
IPTW 0.0183 0.0008 0.0009 94.3%
IPTW-DR 0.0175 0.0006 0.0007 90.6%
TMLE 0.0175 0.0006 0.0007 90.7%
CV-TMLE -0.0002 0.0009 0.0005 94.3%

ML + GLMs not aggressive

G-comp. -0.1027 0.0007 0.0114 -
IPTW 0.0614 0.0010 0.0046 43.8%
IPTW-DR 0.0607 0.0008 0.0044 28.9%
TMLE 0.0578 0.0008 0.0040 30.4%
CV-TMLE 0.0002 0.0007 0.0005 94.0%

ML + GLMs aggressive

G-comp. -0.0846 0.0007 0.0081 -
IPTW 0.1551 0.0109 0.0366 16.3%
IPTW-DR 0.1325 0.0092 0.0283 15.8%
TMLE 0.1346 0.0108 0.0307 15.7%
CV-TMLE 0.0001 0.0007 0.0005 94.8%

Table 2.4: Performance metrics (bias, variance, MSE, confidence interval coverage) of each
estimator ψ̂d∗n (G-computation, IPTW, IPTW-DR, TMLE) for ψ0,d∗n or ψ̂d∗n,v

(CV-TMLE)
for ψ0,d∗n,CV

, for each library configuration of Qn and d∗n.
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Figure 2.2: CV-TMLE estimates of the probability of no re-arrest under the following treat-
ment rules: give CBT to all, give CBT to none, give CBT according to the ODTR Super-
Learner algorithm. The squares are the point estimates and the error bars are 95% confidence
intervals on these point estimates. There is no significant difference in the estimated prob-
ability of no re-arrest under a treatment regime in which all are given CBT, none are given
CBT, and CBT is given using this ODTR.
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Chapter 3

Augmenting the Optimal Dynamic
Treatment Rule SuperLearner

3.1 Introduction

The optimal dynamic treatment rule (ODTR) framework provides a way of determining
which treatment works best for which kinds of patients [52, 69]. Further, by evaluating
the ODTR, one can determine whether significant treatment effect heterogeneity exists in
a population. Recently, many methods have been developed for estimating the ODTR –
algorithms that input patient characteristics (covariates) and output a treatment decision
[28, 29]. One such way of estimating the ODTR is the ODTR SuperLearner algorithm, first
described in [46], and later in Chapter 1 and [15]. The ODTR SuperLearner considers a
library of candidate algorithms for estimating the ODTR, combines those algorithms using
a choice of metalearner, and chooses the “best” combination of the candidate ODTRs based
on minimizing a choice of risk function.

The above algorithms output a deterministic, discrete (binary, if treatment is 0 or 1)
treatment recommendation. However, considering stochastic treatment rule estimators could
be helpful in understanding the true optimal rule. Thus, in this paper, we propose to augment
the ODTR SuperLearner that only includes a deterministic output to also include candidate
algorithms that output a probability that a type of individual should be treated. We do
this in two ways: first, by using the strength of the treatment response for a given covariate
profile, and second, by regularizing the original deterministic rule with the variance of the
value of the rule. Further, we show how to evaluate the mean outcome under a stochastic
rule, using cross validated targeted maximum likelihood (CV-TMLE), with inference [37,
36, 24]. We hypothesize that including stochastic candidates in the ODTR SuperLearner
library will not harm performance – in terms of bias, variance, mean squared error (MSE),
confidence interval coverage, and confidence interval width – of the CV-TMLE of the true
value of the true optimal rule, compared to having a library with only deterministic treatment
rules. Importantly, we hypothesize that this result will be of benefit in scenarios in which it
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there is little signal to detect the optimal rule – such as in finite samples and when there is
a small amount of treatment effect heterogeneity.

In previous research, we have shown how to estimate the optimal rule using an ODTR
SuperLearner that uses as selection criterion (or risk function) the estimate of the value
of the candidate rule via CV-TMLE. However, in finite samples, this estimate of the true
value of the candidate rule does not take into account the variability of the estimate of the
criterion and how it varies from one candidate estimator of the optimal rule to another.
Thus, we additionally introduce a new criterion for selecting the ODTR SuperLearner that
incorporates the variability of the value of that rule: the upper bound of a 95% confidence
interval for the CV-TMLE of the true value of the candidate rule. One can imagine an
example scenario in which two candidate rules yield the same point estimate of the value
of the rule; under this criterion, either candidate rule could be chosen as the optimal one.
However, if one candidate rule has less variability in the CV-TMLE of the value of the rule,
then its confidence interval will be smaller, and that one will be chosen over the less precise
candidate, despite having the same point estimate of the value of the candidate rule. Thus,
we hypothesize more penalization of candidate estimators of the optimal rule under the
upper bound of the confidence interval risk function versus the point estimate, especially in
scenarios where the candidate rule is weakly supported by the data (such as in observational
studies) and thus variability of the CV-TMLE will increase. Further, we hypothesize that
this penalization will increase precision in the CV-TMLE estimator.

In this paper, we use simulations to show the performance of TMLE and CV-TMLE as
estimators for the true value of the true optimal dynamic treatment rule, when the ODTR
SuperLearner is used to estimate the ODTR under two novel settings: (1) when the ODTR
SuperLearner library is augmented with stochastic rules, and (2) when the upper bound of
the confidence interval on the CV-TMLE of the candidate rule is used as a selection criterion
(i.e., risk function) for the ODTR SuperLearner. We also apply the augmented ODTR
SuperLearner and the CV-TMLE of that rule to the Correctional Intervention for People
with Mental Illness, or “Interventions,” trial. This is an ongoing randomized controlled trial
(RCT) in which criminal justice-involved adults with mental illness – a heterogeneous group
with diverse symptoms, risk factors, and other treatment-relevant characteristics [82, 83] –
are either randomized to cognitive behavioral therapy (CBT) or treatment as usual (TAU),
and re-arrest (the outcome of interest) is collected one year after randomization occurs, as a
measure of recidivism.

This article steps through the causal roadmap for answering causal questions [57], and is
organized as follows. In the following section, we define the data and causal model, define
the target causal parameters, list the assumptions to identify causal parameters as statistical
parameters, and provide a statistical formulation in which causal estimands are identified
as functions of the observed data distribution (i.e., statistical estimands). In section 3 we
discuss estimation (via the ODTR SuperLearner) and evaluation (via CV-TMLE) of the true
value of the true optimal rule, including an introduction of a stochastic rule and variance-
based risk function augmentation for the ODTR SuperLearner. In section 4 we present a
simulation study illustrating the performance of these estimators with respect to the true



CHAPTER 3. AUGMENTING THE OPTIMAL DYNAMIC TREATMENT RULE
SUPERLEARNER 54

expected outcome under the true optimal rule. In section 5 we use the augmented ODTR
SuperLearner and CV-TMLE to estimate the ODTR and evaluate it, respectively, using the
“Interventions” Study. Finally, we close with conclusions and future directions.

3.2 Causal Roadmap

Data and Causal Model

We consider point-treatment data where W ∈ W are baseline covariates, A ∈ {0, 1} is the
treatment, and Y ∈ R is the outcome measured at the end of the study. Our data can be
described by the following structural causal model (SCM), MF [55]:

W = fW (UW )

A = fA(W,UA)

Y = fY (W,A,UY ) ,

where the full data X = (W,A, Y ) are endogenous nodes, U = (UW , UA, UY ) ∼ PU are
unmeasured exogenous variables, and f = (fW , fA, fY ) are structural equations. The SCM
provides a model for the set of possible counterfactual distributions: PU,X ∈MF .

Here, fA(W,UA) = I[UA < g0(1|W )], where UA ∼ Uniform(0, 1) and g0(A|W ) =
Pr(A|W ); in other words, A ∼ Bernoulli(p = g0(1|W )). Data could be generated from
an RCT using simple randomization with equal probability to each arm, in which case the
above structural causal model would state that Y may be affected by both W and A, but
that W does not affect A (as in the “Interventions” trial); this can be represented in the
above model by letting g0(1|W ) = 0.5.

Target Causal Parameters

In this point treatment setting, a given stochastic treatment rule is a function g∗ that takes
as input measured baseline covariates W and outputs a probability of receiving treatment:
W → g∗(1|W ). We denote the set of all dynamic treatment rules as G∗.

For a given stochastic intervention g∗, we intervene on the above SCM to derive counter-
factual outcomes:

W = fW (UW )

A ∼ Bernoulli(p = g∗(1|W ))

Yg∗ = fY (W,A,UY ) .

Here, Yg∗ is the counterfactual outcome for a subject if his/her treatment A were assigned
using the stochastic treatment rule g∗. Each causal estimand below is a mappingMF → R.

The value of an arbitrary stochastic rule g∗ is the expected outcome under g∗:

ΨF
g∗(PU,X) ≡ EPU,X

[Yg∗ ].
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Given this, our first causal parameter of interest is the stochastic rule that, among all can-
didate stochastic rules, yields the best (lowest) expected outcomes. The optimal stochastic
rule g∗0 is equivalent to the deterministic rule d0, which yields a 0 or 1 treatment decision:

g∗0 ≡ arg min
g∗∈G∗

ΨF
g∗(PU,X) = d0 ∈ arg min

d∈D
EPU,X

[Yd],

where D = {0, 1}. We ultimately aim to quantify the value of the optimal rule, which is the
following causal parameter:

ΨF
g∗0

(PU,X) ≡ EPU,X
[Yg∗0 ].

Assumptions to Identify Causal Parameters as Statistical
Parameters

We assume that our observed data were generated by sampling n independent observations
Oi ≡ (Wi, Ai, Yi), i = 1, . . . , n, from a data generating system described byMF above (e.g.,
the “Interventions” study consists of 441 i.i.d. observations of O).

We additionally assume that UA ⊥ UY holds and either UW ⊥ UY or UW ⊥ UA holds. Un-
der these independence assumptions, the backdoor criteria (with the implied randomization
assumption) holds; that is, Yg∗ ⊥ A|W ∀g∗ ∈ G∗ [55].

If the data are generated from an RCT design, as in the “Interventions” study, then the
true g0 is known, and both the backdoor criteria and positivity assumption,

Pr
(

min
a∈{0,1}

g0(A = a|W ) > 0
)

= 1,

hold by design; in an observational data setting the randomization assumption requires
measurement of a sufficient set of baseline covariates, and the positivity assumption may
also pose greater challenges [58].

Statistical Formulation

The likelihood of the observed data can be written as:
n∏
i=1

pW,0(Wi)g0(Ai|Wi)pY,0(Yi|Ai,Wi),

where pW,0 is the true density of W ; g0 is the true conditional probability of A given W ; pY,0
is the true conditional density of Y given A and W . The distribution of the data P0 is an
element of the statistical model M.

Define Q̄(a, w) ≡ E[Y |A = a,W = w]. Under the above assumptions, EPU,X
[Yg∗ ] (a pa-

rameter of the counterfactual distribution) is identified as the following statistical parameter:

Ψg∗(P0) = E0

 ∑
a∈{0,1}

Q̄0(a,W )g∗(a|W )

 .
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The parameter Ψg∗ : M → R is pathwise differentiable at P with canonical gradient at P
given by

Dg∗(P ) =
g∗(A|W )

g(A|W )
(Y − Q̄(A,W )) +

∑
a

Q̄(a,W )g∗(a|W )−Ψg∗(P ).

The exact second order remainder R2,g∗(P, P0) ≡ Ψg∗(P )−Ψg∗(P0) + P0Dg∗(P ) is

E0

[∑
a

g∗(a|W )(g − g0)

g
(Q̄− Q̄0)(a,W )

]
.

Note that Dg∗(P ) = Dg∗,y(P )+Dg∗,W (P ), where Dg∗,y(P ) and Dg∗,W (P ) are components that
are scores of the conditional density of Y , given A,W and the marginal density of W , respec-
tively. Let σ2

g∗(P ) = EP [Dg∗(P )2] be the variance ofDg∗(P ), which represents the asymptotic
variance of the efficient influence curve for Ψg∗(P0). We also define σ2

g∗,y(P ) = EP [Dg∗,y(P )2],
which represents the asymptotic variance of the efficient influence curve for the data-adaptive
parameter 1

n

∑n
i=1

∑
a Q̄0(a,Wi)g

∗(a|Wi); this data-adaptive target parameter can be viewed
as another way to measure the value of a given rule.

The true optimal stochastic intervention is identified by g∗0 = arg ming∗∈G∗ Ψg∗(P0), and
for a given a, g∗0(a|W ) = I[a = d0(w)], where d0(W ) = arg mind∈D Q̄0(A = d,W ), or
equivalently, d0(W ) = I[B0(W ) ≤ 0], where B0(W ) = Q̄0(1,W ) − Q̄0(0,W ) is sometimes
referred to as the blip function (noting that in that definition we assume that assigning
treatment 1 is preferable to assigning treatment 0 in the absence of a treatment effect).

Given this, the causal parameter ΨF
g∗0

(PU,X) can be identified by

Ψg∗0
(P0) = E0

 ∑
a∈{0,1}

Q̄0(a,W )g∗0(a|W )

 .

Further, we define the value of an estimated optimal rule – a data-adaptive parameter.
Let Pn be the empirical distribution which gives each observation weight 1

n
; Pn ∈ MNP ,

where MNP is a non-parametric statistical model. Estimators are viewed as mappings
applied to Pn. Further, consider a V -fold cross-validation scheme so that the empirical data
are uniformly and at random split into V mutually exclusive sets. For sets v ∈ {1, ..., V },
each set of data serves as a validation set; the complement is its training set. Let Pn,−v be the
empirical distribution of the validation sample v, and Pn,v be the empirical distribution of

the complementary training set. Let g∗n = ĝ∗(Pn) and dn = d̂(Pn) be a candidate stochastic
and deterministic estimator, respectively, of the optimal rule g∗0 and d0. Similarly, let g∗n,v =

ĝ∗(Pn,v) and dn,v = d̂(Pn,v) resulting estimators of the optimal rule when applying ĝ∗ and d̂,
respectively, to the training sample. Then, two data-adaptive parameters of interest could

be either (a) Ψg∗n(P0) = E0

[∑
a∈{0,1} Q̄0(a,W )g∗n(a|W )

]
, the true value of the estimated,

sample-specific stochastic rule; or (b) the training-sample-specific estimate of the stochastic
rule, averaged across sample splits, i.e., Ψg∗n,v,CV

(P0) = 1
V

∑V
v=1 Ψg∗n,v

(P0).
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3.3 Estimation

The estimation goal of this paper is to approximate the optimal rule d0, and its true value
Ψg∗0

(P0), and provide inference for the latter, as well. Thus, we first describe the ODTR
SuperLearner, with an augmented library that includes stochastic rules, as a way to estimate
the true optimal rule in finite samples. Then, we describe how to estimate the value of a
given stochastic treatment assignment. The discussion of how to evaluate a given stochastic
treatment rule leads us to present two risk functions – either the CV-TMLE estimate for
the value of the candidate rule or the upper bound of the confidence interval for that CV-
TMLE estimate – as selection criteria for the ODTR SuperLearner. Finally, we show how
to estimate the true value (estimated using CV-TMLE) of the true optimal rule (estimated
using the ODTR SuperLearner).

SuperLearner Estimation of the ODTR

In past research, we have described how to estimate the optimal rule using the data adaptive
algorithm, SuperLearner. We refer the reader to Chapter 1 and [46] for an explanation of
SuperLearning for estimation of the ODTR (and [37, 63] for an introduction to SuperLearning
in general). Importantly, we note that in this past work, the library of candidate rules
included as estimators of the optimal rule were deterministic – the predicted output given
a covariate profile was always a 0 or 1 treatment decision. In this paper, we aim to extend
this SuperLearner by adding candidate estimators of the optimal rule that could output a
probability, or a stochastic treatment rule. Additionally, in previous work, we have used as
criterion for the selection of the SuperLearner (i.e., the risk function) the expected outcome
under the candidate rule. Here, we extend on previous work by introducing a new risk
function that incorporates the variability of the value of the rule.

Augmenting the ODTR SuperLearner Library with Stochastic Rules

We build on work described in Chapter 1 by augmenting the SuperLearner library with
stochastic rules; here, we discuss two forms of stochastic augmentation. The first leverages
the distribution of the blip function, and the second combines the deterministic estimate of
the rule with knowledge about the variance of the value of the rule.

Stochastic Intervention Through Blip Transformation The first candidate stochas-
tic intervention estimator transforms a given candidate estimator of the blip Bn(W ) by
taking its inverse logit:

g∗n,c(1|W ) = 1− logit−1(Bn(W )/c).

In this way, people who have a lower effect of treatment will have a higher probability of
treatment, and vice versa. In the SuperLearner, this estimator is indexed by a non-negative
constant c ∈ {0, ..., C} = C ∈ R≥0. The reason for including c is to introduce a constant
that considers and mitigates the spread of the blip. Importantly, C should include 0, so that
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1− logit−1(Bn(W )/0) = I[Bn(W ) ≤ 0] = dn, ensuring that the deterministic rules from the
previous section are included in the library of candidate algorithms.

Stochastic Intervention Through Variance Regularization The second candidate
stochastic intervention estimator combines candidate estimators of the optimal rule dn with
a minimizer of σ2

g∗,y(P0), i.e., the variance of the data-adaptive measure of the value of a
given stochastic rule 1

n

∑n
i=1

∑
a Q̄0(a,Wi)g

∗(a|Wi).

Lemma 1 Let σ2
g∗,y(P0) = E0

[{
g∗(A|W )
g(A|W )

(Y − Q̄(A,W ))
}2
]

and g∗r,P ≡ arg ming∗ σ
2
g∗,y(P ) be

the minimizer of this variance term. Let σ2(A,W ) = EP
[
(Y − Q̄(A,W ))2|A,W

]
be the

conditional variance of Y , given A and W . Then for a ∈ {0, 1} we have

g∗r,P (a|W ) =
g(a|W )/σ2(a,W )∑

k∈{0,1} g(k|W )/σ2(k,W )
.

In particular, if σ2(a,W ) is constant in a, then g∗r,P (a|W ) = g(a|W ).

Proof 1 First, notice that, for each w, g∗r,P (·|W = w) is the minimizer of
∑

a
g∗2(a|w)
g(a|w)

σ2(a, w).

Suppose that this minimizer g∗r is parameterized by g∗r(0) while g∗r(1) = 1 − g∗r(0). Suppose
that g∗r(·|w) is an interior minimum. In that case, we can simply take the derivative with
respect to g∗r(0|w) to obtain the equation:

g∗r(0|w)

g(0|w)
σ2(0, w)− (1− g∗r(0|w))

σ2(1, w)

g(1|w)
= 0

Suppressing the dependence on w, we obtain:

g∗r(0) =
σ2(1)

σ2(0)

g(0)

g(1)
− σ2(1)

σ2(0)

g(0)

g(1)

∑
k∈{0,1}

g∗r(k)

=

g(0)σ2(1)
g(1)σ2(0)

1 + g(0)σ2(1)
g(1)σ2(0)

Plugging this in the expression for g∗r(0) in the previous displayed equation yields the result.

From this perspective, the standard error of Ψg∗(P0) shrinks the deterministic rule to a
mechanism g∗r,P , which would equal g for each W for which σ2(a,W ) is constant in a. Thus,
in the SuperLearner, as candidate stochastic treatment rule estimators of the ODTR, we con-
sider the following convex combination of this regularized rule with a candidate deterministic
rule dn:

g∗n,λ = (1− λ)dn + λg∗n,r, λ ∈ Λ = [0, 1]

Again, including λ = 0 in Λ here ensures that the SuperLearner estimator considers the
deterministic rules dn. Thus, in the SuperLearner, we select candidate algorithms based on
λ.
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SuperLearner Description

Given the aforementioned stochastic rule augmentations to the library, we briefly describe
the SuperLearner steps here:

1. Choose J candidate algorithms for estimating the ODTR dn,j(W ) for j = 1, ..., J .
Candidates can include approaches based on estimating the blip Bn,j(W ), which imply
a candidate estimator for a deterministic optimal rule, i.e., dn,j(W ) = I[Bn,j(W ) ≤ 0],
or approaches for estimating the optimal rule directly, or static rules.

2. Augment the J candidate algorithms by either taking the inverse logit of Bn,j(W )
divided by a constant c ∈ C, i.e., g∗n,c,j, or, create a convex combination using λ ∈ Λ
between the regularized stochastic rule and the candidate deterministic rule dn,j(W ),
i.e., g∗n,λ,j.

3. Under a cross-validation scheme, fit each of the augmented candidate algorithms, and
any dependent nuisance parameters, on the training set [15].

4. Predict the estimated stochastic rule for each observation in the validation set for each
augmented algorithm based on the corresponding training set fit.

5. As measure of performance of a particular candidate estimator g∗n,λ,j(1|W ) or g∗n,c,j(1|W )
of the optimal rule, we use the true risk function R0(g∗n, Pn) under the training sam-
ple specific estimate of the optimal rule, averaged across sample splits, which can be
estimated with a cross-validated estimator Rn,CV (g∗n, Pn). In past research, we have

used as measure of performance R0(dn, Pn) = 1
V

∑V
v=1 E0

[
Q̄0(d∗n,v(W ),W )

]
, the true

value of the sample-split-specific estimate of the optimal rule, which can be estimated
using a cross-validated targeted maximum likelihood estimator (CV-TMLE) [37]. We
expand on this more in the next section.

6. Choose the estimator, indexed by j the λ pair or j and c pair, that yields the smallest
cross-validated empirical risk, i.e., (jn, cn) = arg minαRn,CV (g∗n,c,j, Pn) or (jn, λn) =
arg minαRn,CV (g∗n,λ,j, Pn).

7. Fit each candidate estimator Bn,jn(W ) of the blip or dn,jn(W ) of the rule on the entire
data set, and then augment them using either cn or λn, respectively. This is the
SuperLearner estimate of the optimal rule, where ĝ∗SL1(Pn) = g∗n,jn,cn or ĝ∗SL2(Pn) =
g∗n,jn,λn .

Selection Criteria (Risks) for the ODTR SuperLearner

In this section, we describe two possible risk functions for selecting the SuperLearner: (1) the
value of the candidate stochastic rule, and (2) the upper bound of the confidence interval on
the value of the candidate stochastic rule. We use CV-TMLE to estimate these quantities,
and thus first give an overview of CV-TMLE for estimating the value of a given stochastic
rule, and confidence intervals around that estimate.
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Brief Overview: TMLE and CV-TMLE for the Value of a Given Stochastic Rule
We review how to obtain point estimates of Ψg∗(P0) – the true value of an arbitrary stochastic
rule g∗ – using TMLE or CV-TMLE. In addition, we obtain confidence intervals around CV-
TMLE estimates. Though this is not our target parameter of interest, showing this will be
helpful in the discussion of possible risk criteria for choosing the ODTR SuperLearner.

TMLE of Ψg∗(P0) Let L(Q̄) be a loss function so that Q̄0 = arg minQ̄ P0L(Q̄). In

addition, let {Q̄ε : ε} be a path through Q̄ at ε = 0 so that d
dε
L(Q̄ε) = Dg∗(Q̄ε, g). For

example, for Y ∈ {0, 1} (noting that if Y is continuous outside of those bounds it should
be transformed between 0 and 1 [19]), L(Q̄) = −Y log Q̄− (1− Y ) log(1− Q̄) is the binary
log-likelihood loss. Then we can select Logit Q̄ε = Logit Q̄ + εg∗/g. One can also put g∗/g
into the weight of the loss, and use instead the intercept model Logit Q̄ε = Logit Q̄ + ε.
In our implementations, we use the latter. Let Q̄n be an initial estimator of Q̄0 and gn
be an estimator of g0. Let εn = arg minε PnL(Q̄ε). Then, Q̄∗n = Q̄n,εn is the TMLE of Q̄0

targeted towards Ψg∗(P0). Let QW,n be the empirical probability measure of W1, ...,Wn, and
Q∗n = (QW,n, Q̄

∗
n). Then the TMLE of Ψg∗(P0) is given by

ψ̂g∗ =
1

n

n∑
i=1

∑
a∈{0,1}

Q̄∗n(a,Wi)g
∗(a|Wi).

CV-TMLE of Ψg∗(P0) Let Q̄n,v and gn,v be estimators of Q̄0 and g0, respectively,
based on the training sample Pn,v, v = 1, ..., V . Define εn = arg minε

1
V

∑
v P

1
n,vL(Q̄n,v,ε).

This defines Q̄∗n,v = Q̄n,v,εn for each v. Let Q1
W,n,v be the empirical probability distribution

of Wi in the validation sample. Then, the CV-TMLE of Ψg∗(P0) is given by

ψ̂g∗,CV =
1

V

V∑
v=1

Ψg∗(Q1
W,n,v, Q̄

∗
n,v).

Confidence Interval based on CV-TMLE of Ψg∗(P0) The asymptotic variance of

n1/2
(
ψ̂g∗,CV −Ψg∗(P0)

)
can be estimated with the cross-validated variance of the efficient

influence curve:

σ̂2
g∗ =

1

V

V∑
v=1

P 1
n,v{Dg∗(Q∗n,v, g

∗)}2.

A corresponding 95% confidence interval for Ψg∗(P0) is given by

ψ̂g∗,CV ± Φ−1(0.975)
σ̂2
g∗√
n
.
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Risk Function Through Variance Regularization As described in Section 3.3, in
previous research we have estimated the ODTR using a SuperLearner dn(W ) that aims to
minimize, over a class of candidates d, R0(d, Pn) = 1

V

∑V
v=1 E0

[
Q̄0(d(W ),W )

]
; this risk

function is estimated using CV-TMLE, as in Chapter 1. One might also estimate g∗0 with an
estimator minimizing, over a class of candidates g∗, the CV-TMLE of g∗ → 1

V

∑
v Ψg∗(Q∗n,v).

However, such an estimator of d0 does not take into account the uncertainty in the estimator
Q̄n or more directly the chosen estimator of the criterion Ψg∗(P0). We argue that one might
prefer an estimator of the optimal rule that also takes into account the uncertainty in the
estimator of its performance measure, Ψg∗(P0).

For that purpose, we define the following risk function for a candidate g∗:

Rg∗(P ) ≡ Ψg∗(P ) + Φ−1(0.975)
σg∗√
n
,

noting that 0.975 is user-supplied.

An estimator Rg∗,n = ψ̂g∗,CV + Φ−1(0.975)
σ̂2
g∗√
n

, where ψ̂g∗,CV is the CV-TMLE of Ψg∗(P0)

and σ̂2
g∗ is an estimator of σ2(P0) would correspond with the upper bound of an asymptotic

95% confidence interval for Ψg∗(P0) based on the CV-TMLE ψ̂g∗,CV .

Risk Options for ODTR SuperLearner Now, let g∗n = ĝ∗(Pn) be a candidate estimator
of the optimal rule g∗0. Let Q̄n,v and gn,v be estimators of Q̄0 and g0 based on the training
sample Pn,v. Similarly, let g∗n,v = ĝ∗(Pn,v) be the resulting estimator of the optimal rule
when applying ĝ∗ to the training sample. Consider Logit Q̄n,v,ε = Logit Q̄n,v + εg∗n,v/gn,v, and
define εn = arg minε

1
V

∑
v P

1
n,vL(Q̄n,v,ε). This defines Q̄∗n,v = Q̄n,v,εn for each v. Then, the

CV-TMLE of Ψg∗n,v,CV
(P0) is given by

Rĝ∗,CV,1 ≡ ψ̂ĝ∗,CV =
1

V

V∑
v=1

Ψg∗n,v
(Q1

W,n,v, Q̄
∗
n,v),

which is the first risk criterion we consider for evaluating a candidate estimator ĝ∗ of g∗0.

The asymptotic variance of n1/2
(
ψ̂ĝ∗,CV −Ψg∗n,v,CV

(P0)
)

can be estimated with the cross-

validated variance of the efficient influence curve:

σ̂2
ĝ∗ =

1

V

V∑
v=1

P 1
n,v{Dg∗n,v

(Q∗n,v, g
∗
n,v)}2.

The upper-bound of a confidence interval for Ψg∗n,v,CV
(P0) is given by:

Rĝ∗,CV,2 ≡ ψ̂ĝ∗,CV + Φ−1(0.975)
σ̂2
ĝ∗√
n
,

which is our second criterion for evaluating a candidate estimator of g∗0.
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As in the ODTR SuperLearner description above in section 3.3, consider now a: (1) li-
brary of candidate estimators g∗j , J = 1, ..., J ; and a (2) stochastic rule augmentation indexed
by either λ or c, i.e., ĝ∗j,λ or ĝ∗j,c. Then, the (j, c) or (j, λ) pair for (jn, cn) or (jn, λn) could
be chosen using either of the two criteria: (1) the point-estimate of the value of the esti-
mated rule Rĝ∗,CV,1 or (2) the upper-bound of the confidence interval for that point estimate
Rĝ∗,CV,2.

We note that one could additionally augment the SuperLearner to include a metalearner
that creates convex combinations between the J candidate algorithms (i.e., the “contin-
uous” SuperLearner); that is, one could additionally introduce a family ĝ∗α such as ĝ∗α =∑

j αj ĝ
∗
j , αj ≥ 0∀j,

∑
j αj = 1. Then, the (α, c) or (α, λ) pair for (αn, cn) or (αn, λn) could

be chosen using either of the two risk criteria.

Estimation and Inference for the True Value of the True Optimal
Rule

Let g∗n,v,SL = ĝ∗SL(Pn,v) be the ODTR SuperLearner for g∗0 based on the training sample
Pn,v, v = 1, ..., V . First, consider Logit Q̄n,v,ε = Logit Q̄n,v + εg∗n,v,SL/gn,v, and then define
εn = arg minε

1
V

∑
v P

1
n,vL(Q̄n,v,ε). This defines Q̄∗n,v = Q̄n,v,εn for each v. Then, the CV-

TMLE of Ψg∗0
(P0) is given by

ψ̂ĝ∗SL,CV
=

1

V

V∑
v=1

Ψg∗n,v,SL
(Q1

W,n,v, Q̄
∗
n,v),

A corresponding confidence interval for the CV-TMLE of Ψg∗0
(P0) is given by

ψ̂ĝ∗SL,CV
± Φ−1(0.975)

σ̂2
ĝ∗SL,CV√
n

,

where σ̂2
ĝ∗SL,CV

= 1
V

∑V
v=1 P

1
n,v{Dg∗n,v,SL

(Q∗n,v, g
∗
n,v,SL)}2.

3.4 Simulation Study

We ran a simulation study to examine the performance of the CV-TMLE for Ψg∗0
(P0) when

the ODTR SuperLearner is used to estimate the true optimal rule, varying two conditions we
introduce in this paper: (1) the ODTR SuperLearner library is augmented with candidate
stochastic treatment rule estimators; and (2) the ODTR SuperLearner risk function is the
upper bound of the confidence interval on the CV-TMLE estimate of the performance of a
candidate rule. We did this for simulated RCT data and observational data, and for 3 varying
strengths and complexities of the conditional additive treatment effect – 6 data-generating
processes (DGPs) total. All simulations were implemented in R [65], and the code, simulated
data, and results can be found at https://github.com/lmmontoya/SL.ODTR.
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Data Generating Processes

Each simulation consisted of 1,000 iterations of n=441, the same sample size as the “Inter-
ventions” study.

The first DGP generated data as follows, where there was a large, positive, marginal
treatment effect, and with a blip away from 0 for most covariate levels:

Wi ∼ Normal(µ = 0, σ2 = 1), i ∈ {1, ..., 4}
Wj ∼ Bernoulli(p = 0.5), j ∈ {5, 6}
Wk ∼ Normal(µ = 0, σ2 = 202), k ∈ {7, ..., 10}
A ∼ Bernoulli(p = g0(1|W ))

Y ∼ Bernoulli(p = Q̄0(A,W ) = logit−1(W1 + 0.01A+ 5W1A)) ,

The true blip function for the first DGP was:

B0(W ) =[logit−1(W1 + 0.01 + 5W1)− logit−1(W1)] ,

and Ψg∗0
(P0) = 38.23%.

Second, we examined a DGP in which there was a small, positive, marginal treatment
effect, but with a blip close to 0 for all covariates. The data were generated as follows:

Wi ∼ Normal(µ = 0, σ2 = 1), i ∈ {1, ..., 4}
Wj ∼ Bernoulli(p = 0.5), j ∈ {5, 6}
Wk ∼ Normal(µ = 0, σ2 = 202), k ∈ {7, ..., 10}
A ∼ Bernoulli(p = g0(1|W ))

Y ∼ Bernoulli(p = Q̄0(A,W ) = logit−1(W1 +W4 + 0.01A)) ,

The true blip function for the second DGP was:

B0(W ) =[logit−1(W1 +W4 + 0.01)

− logit−1(W1 +W4)] ,

and Ψg∗0
(P0) = 50.00%.

Finally, we examined a third DGP, which we have used in previous research [46, 32],
which was generated as follows:

W1,W2,W3,W4 ∼ Normal(µ = 0, σ2 = 1)

A ∼ Bernoulli(p = g0(1|W ))

Y = Bernoulli(p = Q̄0(A,W ) = 0.5logit−1(1−W 2
1 + 3W2 + 5W 2

3A− 4.45A)+

0.5logit−1(−0.5−W3 + 2W1W2 + 3|W2|A− 1.5A)) .
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The true blip function for the third DGP was:

B0(W ) =0.5[logit−1(1−W 2
1 + 3W2 + 5W 2

3 − 4.45)

+ logit−1(−0.5−W3 + 2W1W2 + 3|W2| − 1.5)

− logit−1(1−W 2
1 + 3W2) + logit−1(−0.5−W3 + 2W1W2)] .

Here, the blip varies as a complex function of three baseline covariates; the causal value of
the true value under the true optimal rule is Ψg∗0

(P0) = 36.53%.
For all DGPs, in the RCT setting, the true treatment mechanism g0(1|W ) = 0.5, and in

the observational study setting, g0(1|W ) = logit−1(W1 +W2).

Estimator Configurations and Performance Measures

We estimated Ψg∗0
(P0) using CV-TMLE, and we used the ODTR SuperLearner to estimate

g∗0.
We used 3 SuperLearner library configurations for the estimation of g∗0. The first con-

figuration did not include any stochastic rules in the library; this SuperLearner is identi-
cal to the one presented in Chapter 1. The second two configurations were libraries that
included stochastic rules. The first was via a blip transformation and varying constant
c ∈ {0, 0.1, ..., 10}. The second was a variance regularization of the deterministic rule,
namely, a combination through λ ∈ {0, 0.01, ..., 1} of the predicted deterministic rule and
the stochastic rule that minimizes the variance of a measure of the value of the rule.

The algorithms used to estimate the blip function Bn were as follows: univariate logistic
regressions with each covariate Wi, for i ∈ {1, .., 4}, SL.glm (generalized linear models),
SL.mean (the average), SL.glm.interaction (generalized linear models with interactions
between all pairs of variables), SL.earth (multivariate adaptive regression splines [18]), and
SL.rpart (recursive partitioning and regression trees [5]) from the SuperLearner package [62].
In addition, for DGP 3, we used SL.nnet (neural networks [66]), SL.svm (support vector
machines [12]), SL.glmnet (regularized regression [17]), and the highly adaptive LASSO [3,
14].

We used two risk functions to select the ODTR SuperLearner – the value of the candidate
rule (Rĝ∗,CV,1, the point estimate of the CV-TMLE for the candidate rule) and the upper
bound of the confidence interval on the value of the candidate rule (Rĝ∗,CV,2, the upper bound
of the confidence interval for the estimate of the CV-TMLE for the candidate rule).

We estimated the outcome regression Q̄n with the same algorithms as Bn, except instead
of including the univariate logistic regressions with each covariate, we included logistic re-
gressions with main terms Wi and A, and with an interaction Wi times A, for i ∈ {1, .., 4}.
We estimated the treatment mechanism gn with a correctly specified model: a main terms
logistic regression that regressed A on all W .

We used bias, variance, MSE, confidence interval coverage, and average confidence inter-
val width across the 1,000 repetitions to measure the performance of the CV-TMLE as an
estimator for the true value of the true ODTR Ψg∗0

(P0), under the aforementioned configu-
rations.
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Simulation Study Results

Figures 3.1, 3.2, and 3.3 show the distribution of either λ or c, thereby showing how many
times stochastic rules were introduced in the estimation of the ODTR. For DGP 1, in which
there was strong treatment effect heterogeneity, stochastic rules were infrequently introduced,
and they were never utilized in the RCT setting and when the point estimate of the value
of the rule was used as risk. DGPs 2 and 3, under both the RCT and observational study
settings, utilized stochastic rules at least once in their 1,000 iterations. Stochastic treatment
rules were used the most when the variance-regularized stochastic rule was introduced, with
an upper bound of the confidence interval as the risk criterion. This was especially evident
under an observational study and when there was a small to null blip function (DGP 2),
where, out of 1,000 iterations, 514 of those output a stochastic rule (i.e., λ > 0 in the
SuperLearner).

A summary of the performance results of the CV-TMLE for Ψg∗0
(P0) can be found in

Tables 3.2, 3.3 and 3.4. For all DGP, study, and risk settings, the average confidence in-
terval width was largest when no there was no stochastic rule augmentation in the ODTR
SuperLearner, indicating that there is a reduction in standard error when stochastic rules
are included.

For DGP 1, there were no stark differences in performance of the CV-TMLE in terms
of bias, variance, MSE, confidence interval coverage, and average confidence interval width
with respect to Ψg∗0

(P0) between the studies, risk settings and kind of stochastic rule aug-
mentation. The lack of difference between the configurations is indicative of the findings that
including stochastic learners and/or using the upper bound of the CV-TMLE confidence in-
terval as a risk function does not hurt performance compared to including only deterministic
learners and/or using the point-estimate on the CV-TMLE as a risk function, for both the
observational setting and RCT setting in which there is strong treatment effect heterogeneity
that is easy to detect.

We see the largest differences in DGP 2, the DGP with a blip value at or near 0 for
all values of W , with the most obvious differences in the observational study case. Across
the risk dimension, including the upper bound of the confidence interval of the CV-TMLE
as the risk, i.e., Rĝ∗,CV,2, resulted in a lower variance of the CV-TMLE of Ψg∗0

(P0) across
simulations repetitions compared to using Rĝ∗,CV,1 as risk, as long as Rĝ∗,CV,2 was paired with
an augmentation of the library by stochastic rules. For example, this was most apparent
in the variance across simulation repetitions in the observational study case and when the
variance-regularized stochastic rules were included in the library – the variance with Rĝ∗,CV,1

was 1.33 times that of Rĝ∗,CV,2. In addition, using the risk Rĝ∗,CV,2 resulted in lower average
confidence interval widths on the CV-TMLE. For example, again, the library that included
variance-regularized stochastic rules had an average confidence interval width when using
Rĝ∗,CV,1 that was 1.16 times that of when Rĝ∗,CV,2 was used.

For DGP 2, inclusion of stochastic rules in the library was beneficial, particularly in terms
of variance and MSE across simulation repetitions of the estimator and the standard error.
For example, in the observational setting with risk function Rĝ∗,CV,2, the variance and MSE
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of the CV-TMLE across simulation repetitions for a library that did not include stochastic
rules was 1.33 times that of a library that included variance-regularized stochastic rules
and 1.11 times that of a library that included blip-transformed stochastic rules. Further,
the average confidence interval width of the CV-TMLE for a library that did not include
stochastic rules was 1.16 times that of a library that included variance-regularized stochastic
rules and 1.05 times that of a library that included blip-transformed stochastic rules.

ODTR SuperLearner libraries that included the presented candidate stochastic rules
decreased the estimator’s standard error and thus shrunk confidence intervals; however,
the largest improvement came from the variance-regularized stochastic rules. We illustrate
this improvement in Figure 3.4. This plot shows – for one n = 441 instance of DGP 2,
using Q̄0, g0, and σ2

0(A,W ) – the TMLE estimate of Ψg∗0
(P0), the upper bound of the

TMLE’s confidence interval, and the estimated variance of the TMLE’s influence curve.
In addition, the variance-regulated stochastic rule is a convex combination of the incorrect
candidate optimal rule d = treat all (d0 is actually treat everyone) with g∗r,P0

. The plot shows
that as λ moves away from 0, the estimated variance of the influence curve of the TMLE
necessarily decreases, which means that the standard error of the TMLE under the variance-
regularized rule will be equivalent to or smaller than the standard error of the TMLE when
the deterministic rule d is used. This implies that any usage of a stochastic rule will yield a
confidence interval that is smaller than when a deterministic rule is used. In this finite sample
instance, the Rĝ∗,CV,2 would choose λ = 0.96, increasing the stochasticity of the treatment
assignment rules, whereas Rĝ∗,CV,1 would have chosen λ = 0, the incorrect deterministic rule.
Though this is not the case for every instance, as we show in the simulations, it is more
common that a stochastic rule is chosen for Rĝ∗,CV,2 than Rĝ∗,CV,1.

In DGP 3, we explored the performance of the estimator when the true, underlying blip
function was a complex function of baseline covariates. As expected, in both the RCT and
observational study setting, because there was a presence of treatment effect heterogeneity,
there was no difference in performance between the different risk functions and the addition
of stochastic estimators in terms of variance, and a little improvement in the average width
of the confidence intervals when stochastic rules were included in the library. Simultaneously,
however, there was an increase in bias compared to Ψg∗0

(P0), particularly when the stochastic
rules were paired with the confidence interval-based risk function, which translated to a
drop-off in confidence interval coverage. This was most pronounced in the observational
setting when using the variance regularized stochastic rule (e.g., 54.07% coverage including
variance regularized stochastic rules and Rĝ∗,CV,2 versus approximately 63.00% coverage when
not including stochastic rules and/or using Rĝ∗,CV,1). Though not the target parameter of
interest, performance for estimators of the data-adaptive parameter Ψg∗n,v,CV

(P0) did not

vary by library or risk configuration; coverage under the RCT study ranged from 95.60% to
96.14%, while coverage under the observational setting ranged from 91.86% to 92.80%.
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3.5 Application to “Interventions” Study

The “Interventions” study is an ongoing RCT experiment, in which 441 participants were ei-
ther randomized to CBT or TAU. Thus far, 231 (52.2%) participants have received CBT and
210 (47.8%) TAU. See Table 3.1 for the distribution of the covariates and outcome (re-arrest
by one year after enrollment) by treatment assignment. Out of the 441 participants, 271
(38.5%) were not re-arrested within the year following their treatment assignment. The esti-
mated probability of re-arrest had everyone been assigned CBT is 37.8%, and the estimated
probability of re-arrest had everyone been assigned TAU is 39.3%; there was no significant
difference between these two probabilities (risk difference: -1.51%, CI: [-11.06%,8.03%]). Af-
ter adjusting for covariates using TMLE to improve the precision on this ATE estimate [51],
the risk difference was, similarly, -1.53% (CI: [-10.37%, 7.49%]).

In Chapter 1, we implemented the original ODTR SuperLearner on this dataset, that
output a deterministic rule only, using a blip-only library and a continuous, blip-based
metalearner. The SuperLearner consisted of a combination of simple parametric models
(univariate GLMs with each covariate) and machine learning algorithms (SL.glm, SL.mean,
SL.glm.interaction, SL.earth, and SL.rpart). The algorithm assigned all weight on a
GLM that modeled the blip as a linear function of only substance use.

It may be of interest to include stochastic rules to potentially shrink confidence inter-
vals, as demonstrated in the simulations, though we do not necessarily expect a drastic
improvement in this case, since the “Interventions” Study is an RCT. Therefore, we ran the
ODTR SuperLearner using the same configurations as in Chapter 1, except we allowed for
stochastic rules in the library. Specifically, we included stochastic interventions through the
blip transformation and regularization using the variance of the efficient influence curve, as
described above. Additionally, we used the mean outcome of the rule and the upper bound
of the confidence interval for the mean outcome of the rule as risk functions. The outcome
regression Q̄n (and therefore σ2

n(A,W )) was estimated using the canonical outcome predic-
tion SuperLearner [63], gn was estimated as an intercept-only logistic regression, and we used
10-fold cross validation.

Though stochastic rules were included in the SuperLearner library through both “blip
transformations” and “variance regularization,” for both risk functions, the SuperLearner
ultimately chose the library which did not introduce any stochasticity. In other words, the
SuperLearner chose c and λ to be 0. The SuperLearner configuration where the value of the
rule is the risk function returned identical results to those in Chapter 1, with all coefficient
weight on the variable substance use. In addition, the CV-TMLE estimates of the value
of the optimal rule (38.63%, CI = [32.07%, 45.18%]) were not significantly different than
estimates of the expected value had everyone been given CBT (difference is 0.35%, CI =
[-5.70%, 6.40%]) and had no one been given CBT (difference is 0.19%, CI = [-6.68%, 7.06%]).
When the upper bound of the confidence interval on the value of the rule was used as a risk
function, the mean outcome under that rule (38.25%, CI = [31.68%, 44.83%]) was, again,
not significantly different than estimates of the expected value had everyone been given CBT
(difference is -0.98%, CI = [-7.63%, 5.68%]) and had no one been given CBT (difference is
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0.18%, CI = [-6.16%, 6.51%]). Under this risk function, all algorithms were given nonzero
weight.

3.6 Conclusions

The aim of this paper was to extend the ODTR SuperLearner, as described in Chapter 1
and [46], by (1) augmenting the possible library of candidate algorithms to include stochastic
treatment rules, and (2) introducing a new risk criterion for selection of the ODTR Super-
Learner – the upper bound of the confidence interval on the value of the rule, in the case
when smaller outcomes are better. We hypothesized that these extensions would improve
performance of estimation of the true value of the true ODTR in finite samples, specifically
by reducing the estimator’s variance.

First, in this paper we examined a setting in which conditional additive treatment ef-
fect was strong for most covariate profiles, which means that the true ODTR was easy to
approximate. In this case, despite including stochastic rules, the algorithm almost always
(correctly) chose deterministic rules to estimate the true ODTR (which is always determin-
istic). Performance under these circumstances was similar across all risk and stochastic rule
augmentation conditions, which means that, in the presence of a strong, conditional additive
treatment effect, and thus easy detection of the ODTR, the ODTR SuperLearner will not
choose stochastic rules, and thus inclusion of them in the library will not hurt performance
of estimators for the true value of the true ODTR.

Next, we showed that there are finite-sample benefits to introducing stochastic rules when
the conditional additive treatment effect is around 0 for most covariate levels. As compared
with the case when all algorithms are deterministic, including stochastic treatment rules in
the ODTR SuperLearner reduces confidence interval width (thus increasing precision) around
estimates of the mean outcome under the true ODTR and the variance of the estimator
across simulation repetitions, while simultaneously preserving confidence interval coverage.
Including stochastic rules, paired with the upper bound of the confidence interval on the value
of the rule as risk criterion, improves performance the most, especially in the observational
study setting, where positivity issues, and therefore increases in the variance of the estimator
for the value of the rule, are more likely to arise.

Third, we showed a scenario in which there are costs (in terms of bias) to including
both stochastic treatment rules in the ODTR SuperLearner library paired with the upper
bound of the confidence interval for the estimate of the value of the rule as risk function.
We hypothesize that these costs are due to the complexity of the true blip function, and
therefore the difficulty of estimating that underlying model. Thus, in future research we
will estimate DGP 3’s blip with more flexible and aggressive machine learning algorithms;
in particular, a highly adaptive LASSO that allows for more interactions, increasing the L1
norm. We expect that this will decrease bias with little cost to the variance, equalizing
performance between all stochastic rule library/risk configurations.
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TAU (A = 0) CBT (A = 1) p
n 211 230
Re-arrest (Y = 1) (%) 83 (39.3) 87 (37.8) 0.820
Site = San Francisco (%) 87 (41.2) 104 (45.2) 0.455
Gender = Female (%) 38 (18.0) 37 (16.1) 0.682
Ethnicity = Hispanic (%) 50 (23.7) 42 (18.3) 0.198
Age (mean (SD)) 38.08 (11.05) 37.01 (11.22) 0.317
CSI (mean (SD)) 32.35 (11.13) 33.46 (11.27) 0.300
LSI (mean (SD)) 5.59 (1.33) 5.50 (1.48) 0.472
SES (mean (SD)) 3.81 (1.89) 3.81 (2.12) 0.995
Prior adult convictions (%) 0.156

Zero to two times 74 (35.1) 93 (40.4)
Three or more times 134 (63.5) 129 (56.1)
Missing 3 (1.4) 8 (3.5)

Most serious offense (mean (SD)) 5.29 (2.54) 5.09 (2.52) 0.415
Motivation (mean (SD)) 3.22 (1.36) 3.27 (1.37) 0.720
Substance use (%) 0.184

0 53 (25.1) 76 (33.0)
1 47 (22.3) 55 (23.9)
2 109 (51.7) 98 (42.6)
Missing 2 (0.9) 1 (0.4)

Table 3.1: Distribution of “Interventions” data by treatment assignment.

Finally, we applied the augmented ODTR SuperLearner to the “Interventions” study.
As shown in the simulations, under RCTs, where there are no positivity issues and thus the
variance of the estimate of the value of the rule is less likely to have an inflated variance,
there was no advantage (though no disadvantage, either) to including stochastic rules and
having a confidence interval-based risk for the ODTR SuperLearner. As expected, since the
“Interventions” study is an RCT, for both risk functions, the SuperLearner did not utilize
stochastic rules in the estimation of the ODTR. Thus, results were identical to those in
Chapter 1.

Extending the SuperLearner to include stochastic rules, as opposed to only outputting
a deterministic, discrete (binary, if treatment is 0 or 1) treatment recommendation, could
be of interest in an adaptive design; for example, in a covariate-adjusted response adaptive
trial design, in which the the ODTR SuperLearner is learned on an initial set of data, and
treatment is then assigned based on that learned ODTR on a second set of incoming data
[22, 74]. In the second stage, where treatment is assigned to new, incoming subjects, it
may be better to assign treatment with some stochasticity based on how certain one is of
assigning treatment (as in the work presented in this paper), versus an all-or-nothing rule.
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Study Risk
Stoch.
Addition

Bias Variance MSE % Cov.
Avg. CI
Width

RCT

Point Est.
λ 0.0122 0.0010 0.0012 91.24 0.0585
c 0.0117 0.0011 0.0012 91.10 0.0585
None 0.0122 0.0010 0.0012 91.24 0.0585

CI
λ 0.0125 0.0010 0.0012 91.14 0.0585
c 0.0121 0.0011 0.0012 91.10 0.0585
None 0.0125 0.0010 0.0012 91.14 0.0585

Obs.

Point Est.
λ 0.0190 0.0020 0.0023 85.91 0.0742
c 0.0192 0.0020 0.0023 85.91 0.0741
None 0.0190 0.0020 0.0023 85.91 0.0741

CI
λ 0.0215 0.0021 0.0025 84.76 0.0739
c 0.0217 0.0021 0.0025 85.07 0.0738
None 0.0214 0.0021 0.0025 84.86 0.0739

Table 3.2: DGP 1: Performance of CV-TMLE ψ̂ĝ∗SL,CV
with respect to Ψg∗0

(P0), the true
value of the true optimal rule, for (1) the RCT and observational (Obs.) study setting;
(2) the CV-TMLE point estimate of the value of the rule as risk function (Rĝ∗,CV,1) and
the upper bound of the confidence interval of the CV-TMLE as risk function (Rĝ∗,CV,2); (3)
the SuperLearner library that includes stochastic rules through a blip transformation (c),
variance regularization (λ), and a library that does not include stochastic rules (None).
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Study Risk
Stoch.
Addition

Bias Variance MSE % Cov.
Avg. CI
Width

RCT

Point Est.
λ 0.0002 0.0014 0.0014 89.8 0.0611
c 0.0004 0.0014 0.0014 90.3 0.0609
None 0.0003 0.0014 0.0014 89.6 0.0616

CI
λ 0.0004 0.0013 0.0013 90.2 0.0584
c 0.0005 0.0013 0.0013 90.6 0.0584
None 0.0004 0.0014 0.0014 89.0 0.0616

Obs.

Point Est.
λ 0.0003 0.0020 0.0020 90.4 0.0767
c 0.0001 0.0021 0.0021 90.9 0.0773
None 0.0004 0.0021 0.0021 90.9 0.0782

CI
λ 0.0006 0.0015 0.0015 92.1 0.0664
c 0.0005 0.0018 0.0018 92.6 0.0738
None 0.0004 0.0020 0.0020 92.2 0.0773

Table 3.3: DGP 2: Performance of CV-TMLE ψ̂ĝ∗SL,CV
with respect to Ψg∗0

(P0), the true
value of the true optimal rule, for (1) the RCT and observational (Obs.) study setting;
(2) the CV-TMLE point estimate of the value of the rule as risk function (Rĝ∗,CV,1) and
the upper bound of the confidence interval of the CV-TMLE as risk function (Rĝ∗,CV,2); (3)
the SuperLearner library that includes stochastic rules through a blip transformation (c),
variance regularization (λ), and a library that does not include stochastic rules (None).
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Study Risk
Stoch.
Addition

Bias Variance MSE % Cov.
Avg. CI
Width

RCT

Point Est.
λ 0.0515 0.0017 0.0044 63.19 0.0660
c 0.0516 0.0017 0.0044 63.20 0.0658
None 0.0515 0.0017 0.0044 63.30 0.0660

CI
λ 0.0525 0.0018 0.0046 60.69 0.0654
c 0.0528 0.0017 0.0045 60.10 0.0646
None 0.0518 0.0018 0.0045 62.57 0.0660

Obs.

Point Est.
λ 0.0621 0.0025 0.0064 62.73 0.0817
c 0.0621 0.0025 0.0064 63.57 0.0817
None 0.0621 0.0025 0.0064 63.88 0.0822

CI
λ 0.0652 0.0024 0.0066 54.07 0.0747
c 0.0638 0.0024 0.0065 60.02 0.0785
None 0.0628 0.0025 0.0065 63.05 0.0807

Table 3.4: DGP 3: Performance of CV-TMLE ψ̂ĝ∗SL,CV
with respect to Ψg∗0

(P0), the true
value of the true optimal rule, for (1) the RCT and observational (Obs.) study setting;
(2) the CV-TMLE point estimate of the value of the rule as risk function (Rĝ∗,CV,1) and
the upper bound of the confidence interval of the CV-TMLE as risk function (Rĝ∗,CV,2); (3)
the SuperLearner library that includes stochastic rules through a blip transformation (c),
variance regularization (λ), and a library that does not include stochastic rules (None).
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Figure 3.1: DGP 1: Distribution of λ and c for varying study type (RCT and observational)
and risk type (Rĝ∗,CV,1 and Rĝ∗,CV,2).
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Figure 3.2: DGP 2: Distribution of λ and c for varying study type (RCT and observational)
and risk type (Rĝ∗,CV,1 and Rĝ∗,CV,2).
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Figure 3.3: DGP 3: Distribution of λ and c for varying study type (RCT and observational)
and risk type (Rĝ∗,CV,1 and Rĝ∗,CV,2).
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Figure 3.4: Illustration of reduction of the variance of the estimated influence curve as λ
increases, as compared to the variance of the estimated influence curve (IC) for TMLE of
Ψg∗0

(P0) when λ = 0, i.e., the deterministic rule setting. This is a scenario where λ = 0.96
would be picked under Rĝ∗,CV,2, whereas Rĝ∗,CV,1 would pick λ = 0.
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Conclusion

In this dissertation, we illustrated how to implement and evaluate the ODTR SuperLearner,
with several novel extensions and an ongoing application to the “Interventions” study. In
Chapter 1, we described the ODTR SuperLearner, and outlined the possible library, met-
alearner, and risk configurations for implementing the algorithm. In particular, using simu-
lations of finite-sample data, we argued for the importance of having a SuperLearner library
with a diversity of candidate ODTR algorithms, and showed the benefits and drawbacks
of having a risk function based on the value of the rule (versus MSE) and a vote-based
(versus blip-based) metalearner. In Chapter 2, we showed the advantages of using CV-
TMLE to estimate in finite-samples: 1) the true value of an a priori known rule; 2) the
true value of the true, unknown ODTR; and 3) the true value of an estimated ODTR (a
data-adaptive parameter). In particular, the gain of using CV-TMLE was especially evi-
dent when estimating the data-adaptive parameter – while other estimators’ performance
declined dramatically as the library of algorithms used to estimate the ODTR SuperLearner
increased in data-adaptiveness, the CV-TMLE retained adequate performance for the true
value of the sample-split-specific estimate of the ODTR. In Chapter 3, we augmented the
ODTR SuperLearner to: 1) include stochastic treatment rules in the library; and 2) include
an additional risk function that takes into account the variability of the estimate of the
value of a rule. In particular, we showed the advantages in finite-samples of including these
two augmentations, particularly in observational study scenarios and when there is weak
treatment effect heterogeneity (i.e., the blip is close to 0 for all covariate values).

In the future, we hope to build on this work in various ways, touched on in each of
the chapters. First, we will re-run all analyses with the full “Interventions” dataset, which
consists of approximately 720 offenders with mental illness, helping us to gain power in any
inferential analyses – especially in the comparison of the value of the ODTR SuperLearner
compared to giving everyone CBT or no one CBT.

Next, we aim to extend the SuperLearner ODTR algorithm to the 3-treatment setting
and longitudinal setting, e.g., that of a Sequential Multiple Assignment Randomized Trial
(SMART). SMART designs provide an ideal opportunity to learn the best treatment sequence
[29]. In particular, we wish to implement the 3-treatment/sequential ODTR on a SMART
aimed at improving HIV care called “Adaptive Strategies for Preventing and Treating Lapses
of Retention in HIV Care.” In this SMART, 1,816 HIV-positive patients in Kenya were ran-
domly assigned to a low-intensity “prevention” intervention (SMS messages, transportation
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vouchers, counseling) when they initiated ART; those who subsequently experienced a lapse
in retention were re-randomized to a higher intensity “treatment” intervention (e.g., SMS
and voucher, peer navigator, outreach), and those who did not have a lapse in retention were
re-randomized to either keep their intervention or discontinue it.

The SL.ODTR software currently allows for estimation of resource-constrainted ODTRs,
which answers the question: “who should get treatment, under the constraint that only k%
of the population can be treated?” In future research, we hope to formally implement this
algorithm on the “Better Information for Health in Zambia” study, which used a sampling
approach to randomly select a sample of “lost” patients and intensively seek them out to
ascertain their true outcomes across four provinces in Zambia. In this way, we can understand
which kinds of patients benefit from sampling for tracing back to care. This is of benefit
in this setting because (1) resources for tracing patients in this population are limited, and
(2) it is likely that sampling is only neutral or beneficial to the patient, not harmful (thus,
the ODTR will indicate everyone should be sampled, not using the resources we have at our
disposal in the most efficient way).

Lastly, if one has an ODTR that is well-estimated and significantly improves overall
outcomes, in future research, we hope to explore how to most efficiently and effectively
implement that learned ODTR on a new cohort of patients. Adaptive trial designs, or trials
in which aspects of subsequent experiments are informed by data from earlier experiments,
offer a way to study how the ODTR can be used to assign treatment on new patients [74,
22]. In an ODTR-based adaptive design, we learn the ODTR on an initial cohort, and that
ODTR informs how to best assign treatment to a new, incoming cohort of patients based
on (1) the regime learned on the initial cohort and (2) the new patients’ characteristics. In
future research, we hope to examine an ODTR-based adaptive design that assigns treatment
to the next cohort using probabilities that are a function of the ODTR learned on the first
cohort.

In conclusion, in this dissertation, using causal inference, machine learning, and statistical
theory, we described and expanded on ways to learn and evaluate the ODTR. We applied
these findings to the “Interventions” Study, to begin to uncover which kinds of justice-
involved adults with mental illness benefit more from CBT versus TAU, with the end goal
of reducing recidivism. In future research, we aim to apply and expand on findings from
this dissertation in various ways, with the ultimate goal of using data to effectively and
responsibly determine and administer the best treatment decision for each person.
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n Library General Metalearner Risk R
Avg.
Regret

Var. Relative
to GLM

% Match

1,000

Blip
only

GLM N/A N/A -0.0765 1.0000 56.7

Parametric
blip models

Discrete
MSE -0.0756 2.2119 56.4
E[Yd] -0.0721 1.8161 58.0

Continuous
Blip-based

MSE -0.0772 1.7008 56.1
E[Yd] -0.0744 1.6762 57.7

Vote-based E[Yd] -0.0733 1.6635 57.8

ML blip
models

Discrete
MSE -0.0393 2.4105 72.0
E[Yd] -0.0281 0.7664 76.9

Continuous
Blip-based

MSE -0.0253 0.5708 77.7
E[Yd] -0.0268 0.6024 77.0

Vote-based E[Yd] -0.0277 0.7006 76.7

Parametric + ML
blip models

Discrete
MSE -0.0389 2.1327 72.0
E[Yd] -0.0284 0.7781 76.8

Continuous
Blip-based

MSE -0.0261 0.6493 77.4
E[Yd] -0.0276 0.6351 76.7

Vote-based E[Yd] -0.0298 0.8021 75.7

Full

ML blip models
and EYd maximizers

Discrete E[Yd] -0.0277 0.7844 76.6
Continuous Vote-based E[Yd] -0.0287 0.7463 76.8

All blip models
and EYd maximizers

Discrete E[Yd] -0.0280 0.8083 76.4
Continuous Vote-based E[Yd] -0.0290 0.7772 76.4

300

Blip
only

GLM N/A N/A -0.0827 1.0000 55.0

Parametric
blip models

Discrete
MSE -0.0848 1.5846 54.0
E[Yd] -0.0815 1.5871 55.4

Continuous
Blip-based

MSE -0.0850 1.5509 54.1
E[Yd] -0.0824 1.5346 55.4

Vote-based E[Yd] -0.0817 1.6227 55.4

ML blip
models

Discrete
MSE -0.0665 2.4337 60.9
E[Yd] -0.0544 1.5571 65.0

Continuous
Blip-based

MSE -0.0546 1.5906 65.3
E[Yd] -0.0522 1.3185 66.1

Vote-based E[Yd] -0.0554 1.3437 64.9

Parametric + ML
blip models

Discrete
MSE -0.0649 2.4343 61.1
E[Yd] -0.0555 1.6545 64.5

Continuous
Blip-based

MSE -0.0538 1.6002 65.4
E[Yd] -0.0530 1.3822 65.7

Vote-based E[Yd] -0.0572 1.5197 64.1

Full

ML blip models and
EYd maximizers

Discrete E[Yd] -0.0571 1.6907 64.4
Continuous Vote-based E[Yd] -0.0547 1.5835 65.3

All blip models and
EYd maximizers

Discrete E[Yd] -0.0558 1.6624 64.8
Continuous Vote-based E[Yd] -0.0586 1.5285 63.8

Table A.1: DGP 1 (“complex blip”) results: Performance metrics (average, relative variance)
of the approximate regret En[Q0(Y |A = d∗n,W )]−E0[Yd∗0 ] (the difference between the average
true conditional mean outcome under the estimated ODTR versus the true ODTR) for the
SuperLearners generated by DGP 1. Percent agreement between the treatment assigned
under the true versus estimated ODTR.
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n Library General Metalearner Risk R
Avg.
Regret

Var. Relative
to GLM

% Match

1,000

Blip
only

GLM N/A N/A -0.0098 1.0000 84.5

Parametric
blip models

Discrete
MSE -0.0039 1.0267 90.7
E[Yd] -0.0045 1.3174 90.2

Continuous
Blip-based

MSE -0.0057 1.1855 89.0
E[Yd] -0.0085 1.5630 86.0

Vote-based E[Yd] -0.0055 1.3902 89.5

ML blip
models

Discrete
MSE -0.0129 1.9508 82.3
E[Yd] -0.0121 1.7321 83.0

Continuous
Blip-based

MSE -0.0106 1.3294 84.2
E[Yd] -0.0099 1.1477 84.9

Vote-based E[Yd] -0.0102 1.1776 84.5

Parametric + ML
blip models

Discrete
MSE -0.0063 1.1875 88.8
E[Yd] -0.0087 1.4343 86.7

Continuous
Blip-based

MSE -0.0077 1.2204 86.8
E[Yd] -0.0091 1.3069 85.4

Vote-based E[Yd] -0.0094 1.4221 85.2

Full

ML blip models and
EYd maximizers

Discrete E[Yd] -0.0114 1.6804 84.1
Continuous Vote-based E[Yd] -0.0107 1.3875 84.4

All blip models and
EYd maximizers

Discrete E[Yd] -0.0074 1.4027 88.1
Continuous Vote-based E[Yd] -0.0082 1.2160 86.7

300

Blip
only

GLM N/A N/A -0.0222 1.0000 75.0

Parametric
blip models

Discrete
MSE -0.0188 1.8019 78.0
E[Yd] -0.0232 2.0950 74.5

Continuous
Blip-based

MSE -0.0186 1.6102 76.7
E[Yd] -0.0229 1.8938 73.0

Vote-based E[Yd] -0.0215 2.1003 74.6

ML blip
models

Discrete
MSE -0.0369 1.6533 61.7
E[Yd] -0.0309 1.4898 66.8

Continuous
Blip-based

MSE -0.0317 1.4242 66.4
E[Yd] -0.0284 1.2123 69.2

Vote-based E[Yd] -0.0289 1.2973 68.7

Parametric + ML
blip models

Discrete
MSE -0.0205 1.8830 75.5
E[Yd] -0.0252 1.7460 71.7

Continuous
Blip-based

MSE -0.0234 1.5428 73.4
E[Yd] -0.0257 1.3637 71.5

Vote-based E[Yd] -0.0260 1.4567 71.3

Full

ML blip models and
EYd maximizers

Discrete E[Yd] -0.0300 1.5305 67.3
Continuous Vote-based E[Yd] -0.0284 1.4512 68.7

All blip models and
EYd maximizers

Discrete E[Yd] -0.0218 1.7749 74.6
Continuous Vote-based E[Yd] -0.0226 1.5302 73.5

Table A.2: DGP 2 (“simple blip”) results: Performance metrics (average, relative variance)
of the approximate regret En[Q0(Y |A = d∗n,W )]−E0[Yd∗0 ] (the difference between the average
true conditional mean outcome under the estimated ODTR versus the true ODTR) for the
SuperLearners generated by DGP 2. Percent agreement between the treatment assigned
under the true versus estimated ODTR.




