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Representing and Extracting Lung Cancer Study Metadata: 
Study Objective and Study Design

Jean I. Garcia-Gathrighta,*, Andrea Ohb, Phillip A. Abarcac, Mary Hanc, William Sagoc, 
Marshall L. Spiegelc, Brian Wolfc, Edward B. Garonc, Alex A.T. Buia,b, and Denise R. 
Aberlea,b

University of California, Los Angeles

Abstract

This paper describes the information retrieval step in Casama (Contextualized Semantic Maps), a 

project that summarizes and contextualizes current research articles on driver mutations in non-

small cell lung cancer. Casama’s representation of lung cancer studies aims to capture elements 

that will assist an end-user in retrieving studies and, importantly, judging their strength. This paper 

focuses on two types of study metadata: study objective and study design. 430 abstracts on EGFR 

and ALK mutations in lung cancer were annotated manually. Casama’s support vector machine 

(SVM) automatically classified the abstracts by study objective with as much as 129% higher F-

scores compared to PubMed’s built-in filters. A second SVM classified the abstracts by 

epidemiological study design, suggesting strength of evidence at a more granular level than in 

previous work. The classification results and the top features determined by the classifiers suggest 

that this scheme would be generalizable to other mutations in lung cancer, as well as studies on 

driver mutations in other cancer domains.
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1. Introduction

The Lung Cancer Mutation Consortium, the National Cancer Institute’s effort to identify and 

target driver mutations in lung cancer, found that driver mutations were present in 64% of 

lung adenocarcinomas, and that patients who were treated with targeted therapy lived longer 

than those who did not receive such treatment [1]. Currently, treatments approved by the 

Federal Drug Administration are available for cancers with epidermal growth factor receptor 
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(EGFR) mutations and anaplastic lymphoma kinase (ALK) gene rearrangement. As new 

treatments continue to be identified, it is important for clinicians to stay up-to-date on new 

research developments in this field.

To illustrate, a clinician may wish to answer the following questions: how likely is it that my 

patient has this specific mutation? What treatments are available for this mutation? Is my 

patient likely to respond? This project aims to assist a clinician in answering these questions 

as well as deeper queries concerning the strength of the claims found in published literature. 

For instance, were conclusions reached in a prospective clinical trial or a retrospective 

study? What was the study’s sample size? Were the results published in a high-impact 

journal? Aggregated summaries of biomedical research can help inform a clinician’s 

thinking on treatment strategies and assist in applying research findings to specific patients. 

Moreover, by utilizing natural language processing (NLP) techniques for automatic 

summarization, a model of current knowledge can be produced in a tractable fashion.

The work described here is the initial step in a larger project, Casama (Contextualized 

Semantic Maps), which aims to summarize and contextualize current research articles on 

driver mutations in cancer. Casama’s representation focuses on a specific set of metadata 

that is geared toward the initial information retrieval task, as well as assisting the user in 

judging the strength of the studies retrieved. This paper describes the representation and 

automatic extraction of two types of metadata: study objective and study design. These 

efforts are demonstrated in the domain of non-small cell lung cancer (NSCLC). Casama’s 

information retrieval performance is compared to that of PubMed. Given the domain-

specific approach in which the representation is organized, the generalizability of this 

scheme to other domains is also investigated.

The major contribution of this work is a framework for improved information retrieval and 

summarization through a detailed representation of study context. This work also provides 

an annotated gold standard of study objective and study design as applied to driver 

mutations in lung cancer, as well as a first pass at automatic extraction of these data 

elements.

2. Background

Traditional work in information retrieval from PubMed has relied on the use of search 

filters, such as PubMed’s own Clinical Queries, a set of Boolean filters derived by 

empirically discovering combinations of search terms that yield optimal sensitivity and 

specificity [2]. However, evaluations of such search filters have shown high specificity but 

low precision [3, 4]. This problematic performance results in the user having to manually 

filter through a significant number of irrelevant studies to meet his or her information needs. 

Many have achieved improved performance by using machine learning for automatic text 

classification in the biomedical domain [5–12]. Furthermore, more data-driven approaches 

that provide finer levels of granularity tailored to the domain of interest can provide a richer 

representation and enrich retrieval. For instance, while PubMed’s Clinical Description filter 

searches for terms explicitly related to phenotype and prevalence, a more detailed 

information model that includes specific clinical and pathologic features can improve 
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retrieval within that domain. In addition, metadata and attributes of a reported study can be 

used to judge the strength of evidence in an investigation. Discriminating between 

experimental studies, observational studies, and sub-types of observational studies can 

provide potentially useful information. For example, an intervention with promising results 

in retrospective studies (and no completed prospective studies) may point a clinician to 

search for open clinical trials for that treatment.

Previous work in classifying studies by strength of evidence relies on independently 

established standards of evidence, often reduced to two or three classes of evidence level. 

Aphinyanphongs et al. designated their input articles as ACP+ or ACP- depending on 

whether they were listed in the American College of Physicians Journal Club [13]. Kilicoglu 

et al. used the Clinical Hedge Database, the manually-annotated input set used to produce 

PubMed’s Clinical Queries filters; articles were tagged with regard to their “scientific rigor” 

(a binary yes/no assessment) [14–16]. Mollá and Gyawali used strength of recommendation 

scores (A, B, or C) as a metric of evidence [17, 18]. In the domain of neuroscience research, 

Landreth proposes a graphical summary of published literature in which study 

reproducibility and convergence are used to weight evidence [19]. In contrast, Casama aims 

to define objective and specific metrics, such as study design, study size, date of publication, 

journal impact factor, and outcome measures (e.g., overall survival, progression-free 

survival, quality of life) that can provide a measure of the strength of the study.

3. Methods

3.1. Representation

Casama’s representation combines top-down and bottom-up strategies to identify key 

classes and elements that inform clinical decisions. The top-down aspect identifies clinical 

information needs by means of expert opinion. For NSCLC, a thoracic oncologist (EG) and 

thoracic radiologist (DA) specializing in lung cancer clinical trials were both asked to 

identify a set of patient-oriented questions perceived as being important in a clinical study. 

The questions were: 1) how likely is it that my patient has this mutation; 2) is there a 

treatment available for this mutation; and 3) is my patient likely to respond?

The bottom-up approach subsequently employs information gathered manually from the 

literature to suggest ways to stratify the document collection to enable retrieval of studies 

that answer these questions. Four study objective classes were consequently identified –

mutation characterization (relevant to question 1), mutation detection (question 1), treatment 

(question 2), and prognosis (question 3).

Representation of study designs was informed by a hierarchy of epidemiological study 

designs identified by the Oxford Centre for Evidence-Based Medicine [20]. Experimental 

studies provide the highest level of evidence, followed by several observational study types. 

In descending order of strength of evidence, the study types are: prospective cohort studies, 

retrospective cohort studies, case control studies, and case series. Cross-sectional studies, 

which are used for determining prevalence and assessing accuracy of diagnostic tests, are 

also included in the representation.
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Figure 1 illustrates Casama’s representation for lung cancer studies. This representation 

defines the classes Casama aims to automatically extract and visualize for the purposes of 

contextualized retrieval and summarization. To limit the scope of discussion, this paper 

focuses on the extraction of the study- objective and study design classes.

3.2. Data Collection and Annotation

The initial retrieval step took place in September 2013. All subsequent tasks (annotation, 

classification, and evaluation) were performed against this snapshot. PubMed was searched 

for “EGFR” and “lung” in the titles of articles published between January 2012 and August 

2013. Restricting the search to titles ensured that the retrieved abstracts belonged to the 

domain of lung cancer (as opposed to a study in another cancer domain that cites previous 

work on lung cancer in the abstract). Excluded from the search were empty abstracts, case 

reports, reviews, and pre-clinical studies. 211 studies on EGFR mutation in lung cancer were 

retrieved via PubMed. A similar query replacing “EGFR” with “ALK” resulted in 61 

articles.

Also included in the data set were abstracts from the American Society of Clinical 

Oncologists (ASCO) annual meetings from 2011–2013. This data source was chosen 

because of its high value as a source of information on current, clinically-oriented cancer 

research. Similar to the PubMed query the ASCO archive was searched for abstracts not 

containing “cell lines” whose titles contained “EGFR” or “ALK.” 124 studies on EGFR and 

34 studies on ALK were retrieved.

Four study objective categories were identified based on a manual investigation of the 

retrieved corpus and vetted by an expert in the area of lung cancer, a thoracic oncologist 

(EG). The categories are as follows:

1. Mutation characterization studies. These are studies that aim to discover phenotypic 

(e.g., clinical and pathologic) features of a driver mutation, such as age, sex, 

smoking status, and histology. Also belonging to this category are mutation 

prevalence studies and reports that aim to identify biomarkers for a driver mutation.

2. Mutation detection studies. These types of studies demonstrate a molecular analysis 

method for detecting driver mutations.

3. Treatment studies. This third set of studies examines the effect of a drug regimen in 

the treatment of lung cancer.

4. Prognostic studies. These studies associate driver mutations or clinical-pathologic 

features with outcomes such as survival, tumor response, or adverse events.

Abstracts were further annotated as belonging to one of the following epidemiological study 

designs:

1. Experimental studies. These types of studies apply an intervention to a set of 

patients and assess the results. Clinical trials fall into this category.

2. Cohort studies. In a cohort study, no intervention is applied by the investigator. 

Various cohorts (groups of patients differing by the variable in question) are 
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defined and compared. Observations are made at more than one time point; thus, 

temporal outcomes such as survival can be assessed. If possible, cohort studies are 

further divided into the following sub-types:

a. Prospective cohort studies. A study is prospective if the outcome of the 

study is not known at the beginning of the study.

b. Retrospective cohort studies. A retrospective study looks back on old data 

where the outcome has already occurred.

3. Cross-sectional studies. These type of studies make an observation of the 

population at a single timepoint. Prevalence studies fall into this category.

4. Case-control studies. These studies differ from cohort studies in that patients are 

selected based on having the outcome/event in question. These “cases” are 

compared to a group that did not have the outcome/event (these are the “controls”). 

The investigators look back in time to determine factors leading to that outcome/

event.

5. Case series. These studies are descriptive rather than analytical, and describe the 

experiences of a group of patients (perhaps who share a common clinico-pathologic 

feature or treatment history). There is no control group.

A set of annotation guidelines was developed to enable annotation by multiple readers. One 

physician and four non-physicians with 0.5 – 2 years of clinical lung cancer research 

experience (PA, MH, WS, MS, BW) annotated the document collection. The document 

collection was divided into five sets of 86 abstracts each. Each annotator reviewed two sets; 

thus, each abstract was read by two annotators. The annotators placed each abstract into one 

or more study objective categories, and identified the epidemiological design of the study. If 

the full-text of an article was available, annotators were permitted to consult the entire study 

to classify study objectives and study designs.

Annotation was performed iteratively. After each round of annotation, agreement was 

calculated by Kappa analysis. Classes with low Kappa scores were targeted for discussion. 

The annotators met to identify differing interpretations of the guidelines, developing 

strategies for unifying their interpretations by talking through difficult cases.

The annotation guidelines were updated to remove ambiguities identified during the 

discussion. For instance, one point of disagreement involved whether naming the percentage 

of patients in a study who were EGFR-positive constituted a prevalence/characterization 

study. After a period of discussion, the annotators agreed that a study should only be 

considered a prevalence study if one of its aims was to identify the rate of mutation within a 

population, selecting its study population carefully for this purpose. Thus, the annotation 

guidelines were modified to specify this distinction.

Readers then re-annotated their sets of abstracts according to the revised annotation 

guidelines, and the process was repeated until sufficient agreement across the collection was 

reached. The Kappa scores presented here were obtained after three rounds of annotation. In 

order to produce a gold standard, two annotators were selected to resolve discrepancy. They 
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viewed the annotations provided by the first pair of readers, and provided a tie-breaking 

vote. The two annotators were selected such that no annotator performed tie-breaking on a 

study for which he or she was one of the original annotators.

The gold standard produced by this process is available online at: http://

jigarcia.bol.ucla.edu/casama/. The counts in the gold standard for each category are 

summarized in Table 1.

3.3. Information Retrieval

A baseline for information retrieval performance was calculated by evaluating PubMed’s 

filters against the manually-annotated input set of EGFR PubMed abstracts. Filters 

analogous to Casama’s categories were applied to the original PubMed query, resulting in a 

subset of retrieved documents. For each filter, the retrieved documents were matched by 

PMID (PubMed identifier) to the annotated set; the number of results in each Casama 

category was then tabulated to calculate precision and recall. Newly added studies that were 

not found in the original set (i.e., studies that were added between the time of retrieval in 

September 2013 and the time of evaluation) were excluded. The PubMed queries examined 

are summarized in Tables 2, 3, and 4.

3.4. Automatic Document Classification

The document classification algorithm as developed by Joachims [21] was implemented 

using Python’s natural language toolkit (NLTK) and machine learning package scikit-learn 

[22, 23]. If full-text was available for an article, the patient-selection portion of the Methods 

section (determined by matching regular expressions to the section headings) was 

concatenated with the abstract in order to improve detection of study design. NLTK 

preprocessed the text by stemming and removing stop words. Unigram and bigram 

frequency distributions over the document collection were calculated; a binary feature vector 

indicating whether each unigram or bigram appeared in the text was created for each 

abstract. Scikit-learn then trained a set of two-class linear-kernel support vector machines 

(SVMs) to classify study objective; each SVM in the set corresponded to one of the study 

objective classes. The hyperplane constructed by each SVM was used to decide whether the 

document belonged in the corresponding study objective class or not.

A multi-class, one-versus-rest SVM was trained to classify documents by study design. The 

multiple study design classes were reduced to a set of binary SVMs; each abstract was 

classified according to the SVM that produced the highest output score. For study design 

classes with very few training examples (case-control studies, case series, sub-types of 

cohort studies), documents were classified by a set of hand-crafted rules, as described in 

Table 5.

5-fold cross validation was performed on the EGFR PubMed training set; precision and 

recall across folds were calculated. To test the performance of the classifier to previously 

unseen data, the SVMs were then trained on the entire EGFR PubMed set and tested on the 

ALK PubMed, EGFR ASCO, and ALK ASCO sets.
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The generalizability of these classifiers was further assessed by examining the most 

discriminative features of the linear-kernel SVM. Features with the highest-magnitude 

coefficients were considered highly discriminative. Features that are not domain-specific 

suggest that the classifier could be used in other domains without retraining. Study design 

classes that were classified by rules were not included in the analysis of top features.

4. Results

4.1. Annotator Agreement

Table 6 details the inter-annotator agreement after three iterations of annotation. Cohen’s 

Kappa agreement for study objectives over all document subsets ranged from 0.518 to 

0.846, indicating moderate to substantial agreement. Standard deviations over each category 

ranged from 0.061 to 0.109. Detection studies had the highest Kappa agreement at 0.792, 

while prognostic studies had a Kappa of 0.604. Over the entire document space and all study 

objectives, Kappa agreement was 0.684.

For the major classes of study design (experimental, cohort, cross-sectional), Kappa 

agreement ranged from 0.518 to 0.860, with intraclass standard deviations ranging from 

0.031 to 0.128. Experimental studies had the highest overall Kappa score (0.728) while 

cohort studies had the lowest (0.608). Overall, the Kappa agreement for this subset of study 

design classes was 0.688.

Kappa agreement for the smaller study design types (subtypes of cohort studies, case 

control, case series) was significantly lower, with greater deviations from the mean. Of 

these, retrospective studies had the best agreement, ranging from 0.352 to 0.634, indicating 

fair to substantial agreement. For the study design classes that had less than 0.5 Kappa 

agreement, the gold standard was reviewed by an informatician familiar with the 

representation (JG), confirming that the value in the gold standard was in agreement with the 

annotation guidelines.

4.2. Study Objective Classification

Table 7 presents the results of Casama’s automatic classification of its four study objective 

categories (characterization, detection, treatment, prognosis), and compares them to 

PubMed’s results with analogous filters. Casama outperformed PubMed in all categories 

based on 5-fold cross validation.

Classification of study objectives had better F-scores (balanced precision and recall) than 

PubMed’s narrow filters (high precision, low recall) and its broad filters (high recall, low 

precision). As shown in Table 8, there was a decrease in performance on the test sets 

compared to the training set.

Receiver operating characteristic (ROC) curves for study objective classification are 

presented in Figure 2.
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4.3. Study Design Classification

Tables 9 and 10 summarize the results of Casama’s study design classifier. In Table 9, 

retrieval performance is compared to that of PubMed’s filters (if available). Receiver 

operating characteristic (ROC) curves for study design classification are presented in Figure 

3.

Casama outperformed PubMed in retrieval of cross-sectional studies, cohort studies, and 

prospective cohort studies. Casama’s performance was similar to PubMed in retrieval of 

experimental and retrospective cohort studies. PubMed slightly outperformed Casama in 

retrieval of case-control studies. Rule-based classification worked best for retrospective 

studies; for the remaining classes, F-scores were less than 0.50. There was no degradation in 

performance between the training and test sets.

4.4. Representational Class Features

Tables 11 and 12 specify the top features used to discriminate between each pair of classes. 

Characterization studies aim to find correlations with mutation status; mutation detection 

studies evaluate sensitivity of detection methods in DNA samples. Top features for treatment 

studies include explicit references to treatment (chemotherapy, mg (dosage)). Prognostic 

studies usually explicitly mention prognosis and examples of outcomes such as overall 

survival.

Discriminative features for the study design classifier indicate that experimental studies 

describe the details of the intervention (mg, toxicity). Top features for the other study design 

classes reveal that there is a relationship between study objective and study design – cohort 

studies tend to overlap with prognostic studies; detection or prevalence studies tend to be 

cross-sectional. In both cases, this relationship is unsurprising. Cohort studies by definition 

include follow-up and enable assessment of outcomes, as in a prognostic study. No follow-

up is required to demonstrate a mutation detection technique, so these studies are often 

cross-sectional.

5. Discussion

5.1. Kappa agreement

Inter-rater agreement (per the Kappa score) for study objectives was moderate to substantial. 

One source of disagreement between annotators stemmed from the fact that studies could 

have more than one objective. Indeed, 86% of studies had at least one study objective that 

was agreed upon by both annotators; thus, primary objectives were “easy” to annotate 

whereas it was more difficult to determine secondary aims of a study. Also, some study 

objective classes differed from each other in subtle ways, such as characterization and 

prognostic studies, which both aim to characterize various aspects of a mutation. This subtle 

difference is reflected in the lower Kappa score for prognostic studies.

Kappa scores for study design were moderate to substantial for the main study design 

classes. Experimental studies and cross-sectional studies had better Kappa agreement within 

this set of classes, as these are clearly associated with certain study types (clinical trials and 

detection studies, respectively) and therefore were easier to agree upon. More granular study 
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design types were more difficult to annotate. In particular, the difference between 

retrospective and prospective study designs was not often communicated clearly in abstracts. 

Annotators had varying levels of confidence in annotating cohort studies as prospective 

rather than unknown, whereas retrospective studies often stated their study design explicitly. 

These observations are reflected in both the Kappa scores and the classification results.

5.2. Document classification

Casama’s automatic classification performance was comparable to or better than PubMed’s 

retrieval in every category. Notably, Casama automatically classified experimental studies 

with similar F-score compared to PubMed’s manual tagging of clinical trials.

For study objective classification, a decrease in performance was observed between the 

training set and the test sets. The ALK PubMed test set had the smallest decrease in 

performance, and the decrease was greatest in the “treatment” category. A manual review of 

the incorrectly classified abstracts revealed that many errors could be attributed to differing 

stages of research between EGFR and ALK (e.g., ALK treatment studies were missed 

because they were descriptive rather than analytical).

In contrast, the ASCO test sets had a more dramatic drop in performance compared to the 

training set. In this case, a major was source of error was the difference in vocabulary 

between PubMed and ASCO. Due to character limits (rather than word count limits), ASCO 

abstracts use more abbreviations than PubMed (such as “pts” for “patients”, or “C” for 

“chemotherapy”), contributing to error because such abbreviations are not found in the 

training set. These effects could be mitigated with efforts toward vocabulary standardization 

and abbreviation replacement via lookup tables and regular expressions. Another solution 

would be to train an SVM on the EGFR ASCO set. The EGFR ASCO set does not contain 

enough data to perform 5-fold cross validation, but we were able to train on the entire EGFR 

ASCO set and test on the ALK ASCO set. As shown in Table 13, classification performance 

was improved, indicating that performance is indeed sensitive to vocabulary differences 

between PubMed and ASCO.

For study design classification, performance was preserved between training and test sets. 

This is a very promising finding, as it suggests that the automatic extraction of study designs 

is a viable and generalizable strategy. However, rule-based performance was generally poor. 

Part of this stems from the effect of few examples of prospective cohort studies, case-control 

studies, and case series in the data set – small n results in a large penalty for missed 

abstracts. The other contributing factor is the fact that most studies do not explicitly name 

their study design in the abstract. Semantic modeling of study design, including 

identification of exposures, outcomes, and direction of inquiry for improved study design 

classification is a possible avenue for future work.

5.3. Top features

An examination of the top features reveals some interesting characteristics of the vocabulary 

used across studies. Many of these features would be expected (e.g., chemotherapy for 

treatment studies), and some are even included in PubMed’s filters (DNA for detection 
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studies). The top features also reveal less obvious terms that can be used to discriminate 

between studies (e.g., receive for experimental studies vs. observe for cohort studies). 

However, simply entering a few top features into a PubMed search query is unlikely to 

produce good retrieval results as the vocabulary is modeled in a high-dimensional feature 

space via an SVM, going beyond the basic Boolean querying available in PubMed. Indeed, 

issuing the baseline query to PubMed with the top term for treatment studies (progression) 

results in an F-score of 0.54. AND-ing the two most discriminative terms (progression, 

advanced) results in decreased recall; OR-ing them results in decreased precision.

Given the domain-specific nature of this representation, it is important to assess if the 

classifiers developed here can be applied outside the target domain (i.e., EGFR mutations in 

lung cancer). Markedly, many of the top features for the study objective classifier are not 

specific to EGFR mutation. As such, this classifier may be applicable to other driver 

mutations in NSCLC, especially those with similar treatment strategies. Furthermore, the top 

features of the study design classifier are not domain dependent and may generalize well to 

other disease and cancer domains.

5.4. Future work

This classification scheme provides a promising foundation for an automatic summarization 

system, facilitating the retrieval of studies in the Casama framework. Consider Semantic 

MEDLINE, a relational framework for automatic summarization [24]. Semantic MEDLINE 

automatically extracts predications (such as erlotinib TREATS NSCLC) from PubMed 

search results. These relations are visualized as a graph of interconnected nodes and filtered 

based on a set of constraints (Figure 4a). Casama aims to build from this foundation, 

providing more specific filters and weighting metrics to enhance visualization and concept 

navigation (Figure 4b).

Other future work includes improvements to classification performance, either by retrieving 

and annotating additional data (especially for sparsely represented study types) or through 

modifications to the SVM kernel as well as exploration of other classification algorithms 

such as naïve Bayes and decision trees. Due to their ability to handle high-dimensional 

feature spaces such as natural language, SVMs are often used in “textbook” examples of text 

classification [21, 22, 25]; however, the Casama representation is not specific to SVMs and 

new classification methods can be substituted easily.

Further steps for Casama include: extraction of study metadata such as endpoints, cohort 

size, and p-values; extraction of cohort attributes for the matching of studies to individual 

patients; enhanced relation extraction to include relations not covered by Semantic 

MEDLINE; and dynamic visualization of contextualized semantic networks.

6. Conclusion

In this study, the representation and extraction of study objective and study design in 

abstracts on EGFR and ALK mutation in lung cancer was explored. A manually-annotated 

gold standard was produced by multiple expert readers. Good retrieval performance was 

achieved on the training and test sets compared to PubMed. Study objective classification 
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was sensitive to differences in vocabulary between corpora; however, study design 

classification was robust to these differences. Based on an examination of top features, both 

classifiers could generalize outside the lung cancer domain. This study represents a first step 

in representing and extracting study metadata for contextualized summarization of lung 

cancer research.
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Summary

Aggregated summaries of biomedical research can help inform a clinician’s thinking on 

treatment strategies and assist in applying research findings to specific patients. The work 

described here is the initial step in Casama (Contextualized Semantic Maps), a clinical 

decision support system which aims to summarize and contextualize current research 

articles on driver mutations in cancer. Casama’s representation focuses on a set of 

metadata that is geared toward the initial information retrieval task, as well as assisting 

the user in judging the strength of the studies retrieved. This paper describes the 

representation and automatic extraction of two types of metadata: study objective and 

study design.

Four types of study objectives were identified: mutation characterization, mutation 

detection, treatment, and prognosis. Study design classes, informed by principles of 

epidemiology, include: experimental, cohort (prospective or retrospective), and cross-

sectional.

Five expert readers annotated a document set of 430 abstracts on EGFR and ALK 

mutations in lung cancer from PubMed and the American Society of Clinical Oncologists 

(ASCO). Kappa scores were moderate to substantial for the major study objective and 

study design classes.

Automatic classification of abstracts was performed with a support vector machine 

(SVM) classifier and compared to retrieval with PubMed. The SVM classified study 

objectives with substantially better F-scores compared to PubMed. Classification of study 

designs was better than or comparable to PubMed. Study objective classification was 

sensitive to differences in vocabulary across corpora, but study design classification was 

robust to these differences.

Based on an examination of top features, both classifiers could generalize outside the 

lung cancer domain. This study represents a first step in representing and extracting study 

metadata for contextualized summarization of lung cancer research.
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Figure 1. 
Casama’s representation of lung cancer studies.
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Figure 2. 
Receiver operating characteristic and area under the curve for study objective classification 

on (a) EGFR PubMed, (b) ALK PubMed, (c) EGFR ASCO, (d) ALK ASCO.
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Figure 3. 
Receiver operating characteristic and area under the curve for study design classification on 

(a) EGFR PubMed, (b) ALK PubMed, (c) EGFR ASCO, (d) ALK ASCO.
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Figure 4. 
This figure demonstrates the value added by Casama to the Semantic MEDLINE framework 

in answering the question, “What treatments are available for this mutation?” Figure 4a is 

Semantic MEDLINE’s visualization of treatments for EGFR-positive NSCLC (node color 

represents semantic type in the UMLS Semantic Network; edge style represents relation 

type). One way Semantic MEDLINE reduces the total number of nodes is by salience, 

including only nodes that appear frequently in the input set. As such, it identifies the 

treatments erlotinib, gefitinib, pemetrexed, and bevacizumab. In contrast, Figure 4b shows a 

preliminary Casama visualization with constraints on the number of experimental and 

prospective cohort studies (n≥1). Casama identifies treatment nodes like Semantic 

MEDLINE (erlotinib, gefitinib, bevacizumab); but pemetrexed is omitted as in this data set, 

relations with this drug were only found in retrospective studies. Notably, a new node in the 

graph is afatinib, a relatively new targeted therapy [26]. Because Afatinib has fewer 

associated studies, this potentially useful knowledge has been removed by Semantic 

MEDLINE’s salience filter. Cetuximab is a drug approved for colorectal cancer, although 

this data set includes a study on cetuximab for lung [27]. Such insights could be useful for a 

clinician seeking information on off-label treatments for lung cancer.
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Table 1

Gold standard document counts for training and test sets.

Category EGFR PubMed ALK PubMed EGFR ASCO ALK ASCO

Characterization 74 26 40 8

Detection 35 20 14 7

Treatment 38 5 40 15

Prognosis 81 12 68 8

Experimental 20 3 27 10

Cohort (all) 89 14 63 12

 Prospective cohort 7 1 1 0

 Retrospective cohort 47 1 35 8

 Unknown 35 12 27 4

Cross-sectional 60 27 20 10

Case-control 3 0 0 0

Case series 5 5 4 0
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Table 2

Baseline PubMed queries for retrieving abstracts on EGFR mutation in lung cancer.

Original query egfr [Title] AND lung [Title] AND (“2012/01/01” [PDAT]:”2013/09/01” [PDAT])

Exclusion filter NOT review [ptyp] AND hasabstract [text] NOT “cells” [title/abstract] NOT “cell lines” [title/abstract] NOT systematic [sb] 
NOT case reports [ptyp]
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Table 3

PubMed Clinical Queries and Medical Genetics filters.

PubMed Filter Query

Clinical Description Natural History OR Mortality OR Phenotype OR Prevalence OR Penetrance AND Genetics

Genetic Testing DNA Mutational Analysis OR Laboratory techniques and procedures OR Genetic Markers OR diagnosis OR testing OR 
test OR screening OR mutagenicity tests OR genetic techniques OR molecular diagnostic techniques AND genetics

Diagnosis (broad) sensitiv* [Title/Abstract] OR sensitivity and specificity [MeSH Terms] OR diagnose [Title/Abstract] OR diagnosed 
[Title/Abstract] OR diagnoses [Title/Abstract] OR diagnosing [Title/Abstract] OR diagnosis [Title/Abstract] OR 
diagnostic [Title/Abstract] OR diagnosis [MeSH:noexp] OR diagnostic * [MeSH:noexp] OR diagnosis, differential 
[MeSH:noexp] OR diagnosis [Subheading:noexp]

Diagnosis (narrow) specificity [Title/Abstract]

Therapy (narrow) randomized controlled trial [Publication Type] OR (randomized [Title/Abstract] AND controlled [Title/Abstract] AND 
trial [Title/Abstract])

Therapy (broad) (clinical [Title/Abstract] AND trial [Title/Abstract]) OR clinical trials [MeSH Terms] OR clinical trial [Publication 
Type] OR random* [Title/Abstract] OR random allocation [MeSH Terms] OR therapeutic use [MeSH Subheading]

Management Therapy [Subheading] OR treatment [Text Word] OR treatment outcome OR investigational therapies AND Genetics

Etiology (broad) risk*[Title/Abstract] OR risk*[MeSH:noexp] OR risk *[MeSH:noexp] OR cohort studies [MeSH Terms] OR group 
[Text Word] OR groups [Text Word] OR grouped [Text Word]

Etiology (narrow) relative [Title/Abstract] AND risk*[Title/Abstract]) OR (relative risk [Text Word]) OR risks [Text Word] OR cohort 
studies [MeSH:noexp] OR (cohort [Title/Abstract] AND study [Title/Abstract]) OR (cohort [Title/Abstract] AND 
studies [Title/Abstract]
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Table 4

Map of Casama categories to PubMed queries.

Casama Category Analogous PubMed Query

Characterization Original query + Exclusion filter + Clinical Description [filter]

Detection Original query + Exclusion filter + Genetic Testing [filter]
Original query + Exclusion filter + Diagnosis/Broad [filter]
Original query + Exclusion filter + Diagnosis/Narrow [filter]

Treatment Original query + Exclusion filter + Therapy/Broad [filter]
Original query + Exclusion filter + Therapy/Narrow [filter]
Original query + Exclusion filter + Management [filter]

Prognosis Original query + Exclusion filter + Prognosis/Broad [filter]
Original query + Exclusion filter + Prognosis/Narrow [filter]

Experimental studies Original query + Exclusion filter + Clinical Trial [ptyp]

Cohort studies Original query + Exclusion filter + Etiology/Broad [filter]
Original query + Exclusion filter + Etiology/Narrow [filter]
Original query + Exclusion filter + “cohort studies” [MeSH]

Prospective cohort studies Original query + Exclusion filter + “cohort studies” [MeSH] AND “prospective studies” [MeSH]

Retrospective cohort studies Original query + Exclusion filter + “cohort studies” [MeSH] AND “retrospective studies” [MeSH]

Cross-sectional studies Original query + Exclusion filter + “cross-sectional studies” [MeSH]

Case-control studies Original query + Exclusion filter + “case-control studies” [MeSH]
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Table 5

Rules for extracting sparsely-represented study designs.

Study design Extraction rules

Retrospective title/abstract contains “retrospective” OR “review” OR “data” OR “charts” OR “records” OR “analyze”

Prospective title/abstract contains “prospective”

Unknown cohort any cohort study not matching rules for retrospective or prospective study

Case-control title/abstract contains “case” AND “control”

Case series title/abstract contains “series”
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Table 11

Top features for study objective classification.

Characterization Detection Treatment Prognosis

status sample progression survival

kras method advanced overall survival

higher serum mg prognosis

correlated detect median epidermal overall

conclusive evaluate control analyze

patient tumour month overall prognostic

smoker dna symptom patient egfr

hospital rearrangement receive month

egfr kras copy chemotherapy differ

result sensitivity follow significantly
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Table 12

Top features for study design classification.

Experimental Cohort Cross-sectional

patient epidermal cancer patient exon

toxicity prognostic detect

mg retrospective result

receive worse evaluate

clarify observe egfr kras

day worse examine

progression month prevalence

grade prognosis specimen

progression free differ pcr

six significant difference exon egfr
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Table 13

Classification performance on ALK ASCO when trained on EGFR ASCO.

Category Precision Recall F-score

Characterization 0.67 1.0 0.8

Detection 1.0 0.29 0.44

Treatment 1.0 0.87 0.93

Prognosis 0.53 1.0 0.70

Experimental 0.75 0.90 0.82

Cohort (all) 0.86 0.58 0.69

 Prospective cohort n/a n/a n/a

 Retrospective cohort 0.63 0.63 0.63

 Unknown n/a 0 n/a

Case-control n/a 0 n/a

Cross-sectional 1.0 0.80 0.89

Case series n/a 0 n/a
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