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Power and Spectrum Efficient Communications in Wireless Ad Hoc Networks 

 

by 

 

Qi Qu 

Doctor of Philosophy in Electrical Engineering  

(Communication Theory and Systems) 

University of California, San Diego, 2008 

Professor Laurence B. Milstein, Chair 

 

In wireless ad-hoc networks, power and spectrum are two limited and precious 

system resources, and how to use them efficiently is the key to provide high 

performance communications. This dissertation presents a distributed system design 

framework and algorithms to achieve power-and-spectrum-efficient wireless 

communications in ad hoc networks. 

In the first part, we propose a cross-layer distributed power control and 

scheduling protocol for delay-constrained applications over mobile CDMA-based ad 

hoc wireless networks, where power control is employed to combat both the delay 

occurring on multi-hop wireless ad hoc networks and multiuser interference among 

mobile users. We also investigate the impact of Doppler spread upon the system 
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performance, and provide a robust system which employs a combination of power 

control, and coding/interleaving to combat the effects of Doppler spread by exploiting 

the time diversity when the Doppler spread gets large. 

In the second part, a cognitive radio based multi-user resource allocation 

framework for mobile ad hoc networks is proposed. In particular, given pre-existing 

communications in the spectrum where the system is operating, a channel sensing and 

estimation mechanism is provided to obtain information such as subcarrier availability, 

noise power and channel gain. Given this information, both frequency spectrum and 

power are allocated to emerging new users (i.e., cognitive radio users), based on a 

distributed multi-user resource allocation framework, in order to achieve spectrum-

efficient and power-efficient communications. 

In the third part, we investigate the issue of cooperative MIMO 

communications in ad hoc networks, and the issue of cooperative node selection is 

described, where a source node is surrounded by multiple neighbors and all of them are 

equipped with a single antenna. Given energy, delay and data rate constraints, a source 

node dynamically chooses its cooperating nodes from its neighbors to form a virtual 

MIMO system with the destination node (which is assumed to have multiple antennas), 

and adaptively allocates the power level and adjusts the constellation size for each of 

the selected cooperative nodes.   
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1  

Introduction 

 

1.1  Wireless Ad Hoc Networks 

A wireless ad hoc network is formed by multiple nodes without the aid of any 

infrastructure. The lack of infrastructure of ad hoc networks distinguishes them from 

the infrastructure-based networks, such as cellular networks and wireless local-area 

networks (WLAN). For example, in a cellular network, a base station (BS) is located in 

the center of a cell and any communications between mobile nodes should go through 

the BS. The BS performs all the necessary control and networking functions to any 

given mobile node within the cell, including handoff and resource management. On the 

other hand, a WLAN is controlled by an access point which acts like a BS to control all 

the nodes in the WLAN, including multiple access control.  

However, unlike cellular and WLAN, an ad hoc network does not have central 

control due to the lack of infrastructure. All the networking function should be 

performed by the wireless nodes themselves in a distributed manner. In essence, ad hoc 

networks are self-configured, adaptive and distributed, as shown in Fig.1.1.  

Wireless ad hoc networks are widely used in the real world due to their 

flexibility. They can be deployed in areas or situations where infrastructure is not 

possible or feasible, such as disaster relief and battlefields. Especially in battlefields, 

central controllers are very vulnerable and, if destroyed by the enemy, the whole 

network may be rendered useless. One application of this is a sensor network. On the 

other hand, ad hoc networks can also be applied in home networks to facilitate, for 
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example, data transfer between a PDA and a laptop, where a central control is not 

necessary. Also, most of the current wireless network standards include ad hoc 

capability, such as 802.11 (WiFi) and 802.16 (WiMax). 

The wide applications of ad hoc networks fuel the fast development in the 

design of such networks with the aim to provide reliable and efficient communications. 

However, the unique features of ad hoc networks compared to its infrastructure-based 

peers, such as cellular and WLAN networks, make this goal a difficult task.   

 

1.2  Challenges in Wireless Ad Hoc Networks  

The flexibility of ad hoc networks comes at the price of no central control. That 

means all the networking and control functions should be done by each node 

independently, in a distributed manner, and as a result, a performance penalty is 

 

Fig.1.1. An example of wireless ad hoc network. 
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typically be paid for this flexibility.  

On the other hand, system resources are limited, such as the bandwidth of a 

communication system and the power of each node. Usually, a wireless system is 

allocated a certain spectrum to operate, and multiple nodes share this spectrum. Also, 

each node in the network is typically powered by batteries which have limited energy. 

Hence. a maximization of the spectrum utilization and a minimization of power 

consumption are desired in ad hoc networks. Therefore, the resource allocation in 

wireless ad hoc networks is of paramount importance since it enables efficient use of 

limited system resources. One design challenge is to provide a reliable and robust 

distributed control for each individual node in a wireless ad hoc network, such that a 

distributed resource allocation becomes possible.  

 

1.3  Techniques in Ad Hoc Networks  

In order to provide robust and reliable communications in wireless ad hoc 

networks, numerous techniques are employed. Here we provide a brief description on 

those techniques.   

 

1.3.1 Transmission Power Control and Scheduling 

Power control is widely used in cellular networks to combat the well-known 

near-far problem, and is crucial to maintain good system performance in a cellular 

network. Distributed iterative power control algorithms have also been proposed for ad 

hoc networks, and they play an important role in improving the system performance [1, 

2]. First of all, they provide a mechanism to guarantee the required wireless-link 

quality by using the minimum required power such that the battery life of a node can 

be prolonged and the link between two nodes can be maintained. On the other hand, 
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when multiple nodes are operating over the same spectral band, power control can be 

employed to combat the interference among the users [6]. Furthermore, the selection of 

transmission power of a node also determines the network topology, and thus 

influences the performance of the employed routing protocol at the network layer.  

In a word, as shown in [1], transmission power control in an ad hoc network 

can potentially improve the throughput of a network greatly, while minimizing the 

power consumption of each node. Therefore, power control is one of the techniques 

that are used to achieve power efficient communications in an ad hoc network. 

On the other hand, scheduling algorithms are often employed together with 

power control to schedule conflicting transmissions which cannot be combated by 

power control alone. For example, in an ad hoc network, a mobile node may want to 

transmit and receive at the same time, and this kind of conflict cannot be solved by 

power control. Hence, a scheduling algorithm is necessary to solve this conflict. 

Recently, joint power control and scheduling algorithms have been studied in the 

context of ad hoc networks [6, 8].  

 

1.3.2 Multiple Input Multiple Output (MIMO) 

MIMO communications have proved to be a promising technique to improve 

the spectral efficiency and channel capacity of a communication system by utilizing 

multiple transmit and/or receive antennas and advanced space-time coding algorithms 

[3]. Numerous works have been proposed and have shown the performance gain of 

MIMO in infrastructure-based wireless networks, such as cellular networks and 

WLAN. Recently, there has been increasing interest to extend MIMO techniques to 

wireless ad hoc networks [4, 67, 68], so that the bandwidth of a network can be 

exploited efficiently and data rate over the network can be increased.  
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Although the application of MIMO to ad hoc networks is promising, in wireless 

ad hoc/sensor networks, direct employment of MIMO to each node might not be 

feasible, since MIMO might require complex transceiver and signal processing 

modules, which result in high power consumption and high cost for each node. 

Furthermore, nodes in wireless ad hoc networks/sensor networks are often powered by 

batteries with limited energy. This makes direct application of MIMO to each node 

inefficient from a power-efficiency point of view. Also, nodes in an ad hoc/sensor 

network might be of small physical size, which precludes the implementation of 

multiple antennas at each node.  

As alternatives, cooperative MIMO techniques [69, 70] have been proposed. 

By the cooperation of multiple nodes, each of which has a single antenna, a virtual 

MIMO structure can be constructed which supports space-time processing, and thus 

transmitter cluster receiver cluster

Fig.1.2. An example of cooperative MIMO communication system. 
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the merits of MIMO can still be exploited. As shown in Fig.1.2, three nodes cooperate 

together to form the transmitter antenna array and three nodes at the receiver side form 

the receiver antenna array, so that a virtual MIMO structure is formed by the 

cooperation among nodes.  

 

1.3.3 Cognitive Radio 

Cognitive radio is an emerging technique that can greatly improve the spectrum 

utilization of a communication system. The motivation behind cognitive radio is that 

most of the spectrum is allocated to specific applications, such as broadcasting TV, but 

on the other hand, most of the spectrum is under-utilized. In order to improve the 

spectrum utilization and exploit the spectrum more efficiently, cognitive radio has been 

proposed [41, 47]. As defined in [41], cognitive radio is an intelligent and adaptive 

wireless communication system that is made aware of its surrounding environment by 

sensing or sniffing the spectrum, and is able to adapt its operating parameters, such as 

transmit power, carrier frequency and modulation format, in real-time to be responsive 

to the environment dynamics.  

The deployment of cognitive radio into wireless ad hoc networks is necessary 

and beneficial, since in challenging scenarios, such as a battlefield ad hoc network, a 

communication unit may not be able to operate in a fixed assigned band due to 

environmental constraints and/or application constraints, but rather have to search for 

an appropriate band in which to operate. On the other hand, the spectrum utilization 

information is usually not directly available for users in an ad hoc network. This can 

impose major difficulties for system design. However, cognitive radio, the technique 

that allows users to dynamically sense the frequency spectrum, find the available 

spectrum bands in a target spectral range, and then transmit without introducing 

excessive interference to the existing users in this spectral range, provides a technique 
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to solve this problem [41]. Thus, cognitive radio can enhance the performance in terms 

of spectrum utilization in ad hoc networks, since it allows mobile users within an ad 

hoc network to share the spectrum more efficiently, and also may allow these users to 

“borrow” bandwidth from other wireless systems if that bandwidth is not in use.  

 

1.3.4 Cooperation 

Generally, mobile nodes within an ad hoc network are independent and each 

node performs its own task separately. However, in order to improve the network 

performance, certain degrees of cooperation among multiple mobile nodes are 

necessary. More specifically, cooperation in an ad hoc network can be used to enhance 

the power efficiency of the network, improve the throughput of the network, or exploit 

the spatial diversity/multi-user diversity in the network. Many cooperation schemes 

have been proposed in the literatures [61, 79, 89], including cooperative allocation of 

resources, cooperative routing, cluster-based cooperative MIMO and etc.  

The cooperation in ad hoc networks usually requires the exchange of some side 

information among multiple nodes. The overhead induced by the exchange of side 

information will take extra system bandwidth and power consumption, which usually 

limits the cooperation of a given node to other nodes to fall within a certain range. 

Within that range, neighboring nodes can exchange information to improve their own 

performance by taking into account other users’ situations.  

 

1.3.5 Cross-Layer Design Approach 

In the traditional ISO protocol stack, each layer only takes into account its own 

information and performs its operation independent of other layers. However, better 

system performance can be expected if multiple layers can cooperate and share 
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information. For example, the physical layer can adjust the power level and modulation 

size based not only on the channel state information, but also on the network 

conditions and/or application requirements, such as delay. This kind of cooperation is 

done via the cross-layer design approach, where, based on application requirements 

and system constraints, multiple layers work together and exchange information, and 

adjust their operating parameters interdependently. Recently, many works have been 

proposed to improve system performance, such as power efficiency and spectrum 

efficiency, via a cross-layer design approach [6, 15]. 

 

1.4  Motivation and Thesis Outline 

In wireless ad hoc networks, power and spectrum are two limited and precious 

system resources, and how to use them efficiently is the key to provide high 

performance communications in wireless ad hoc networks. Based on the previous 

discussions, in order to achieve high-performance communications in wireless ad hoc 

networks, multiple protocol layers should be able to work together in a cross-layer 

manner, and a distributed algorithm is necessary to efficiently exploit the system 

resources. Therefore, in this thesis, the focus is on how to achieve power-efficient and 

spectrum-efficient wireless communications in ad hoc networks via cross-layer design 

approach in a distributed manner. The outline of this thesis is as follows: 

In Chapter II, we propose a cross-layer distributed power control and 

scheduling protocol for delay-constrained applications over mobile CDMA-based ad 

hoc wireless networks. Herein, we propose a novel scheme where power control is 

employed to combat delay occurring in multi-hop wireless ad hoc networks via 

cross-layer information exchange. Based on that, a distributed power control and 

scheduling protocol is proposed to control the incurred delay as well as the multiple 

access interference (MAI). Unlike other previous work on power control and 
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scheduling, we also investigate the impact of Doppler spread upon the system 

performance, and provide a robust system which employs a combination of power 

control and coding/interleaving to combat the effects of Doppler spread by exploiting 

the time diversity when the Doppler spread gets large. Hence, our proposed approach 

can function appropriately over a wide range of channel conditions.   

In Chapter III, we propose a cognitive radio -based multi-user resource 

allocation framework for mobile ad hoc networks using multi-carrier DS CDMA 

modulation over a frequency-selective fading channel. In particular, given pre-existing 

communications in the spectrum where the system is operating, in addition to potential 

narrow-band interference, a channel sensing and estimation mechanism is provided to 

obtain information such as subcarrier availability, noise power and channel gain. Given 

this information, both frequency spectrum and power are allocated to emerging new 

users (i.e., cognitive radio users), based on a distributed multi-user resource allocation 

framework, in order to satisfy a target data rate and a power constraint of each 

cognitive radio user, while attempting to avoid interference to the existing 

communications as well as to minimize total power consumption of the cognitive radio 

users.  

In Chapter IV, we investigate the issue of cooperative node selection in MIMO 

communications for wireless ad hoc/sensor networks, where a source node is 

surrounded by multiple neighbors and all of them are equipped with a single antenna. 

Given energy, delay and data rate constraints, a source node dynamically chooses its 

cooperating nodes from its neighbors to form a virtual MIMO system with the 

destination node (which is assumed to have multiple antennas), as well as adaptively 

allocates the power level and adjusts the constellation size for each of the selected 

cooperative nodes. In order to optimize system performance, we jointly consider the 

optimization of all these parameters, given the aforementioned system constraints. We 
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consider cases both with and without channel state information. Heuristic algorithms, 

such as maximal channel gain (MCG) and least channel correlation (LCC) algorithms 

are proposed in order to exploit available system information and to solve the 

constrained optimization problem. 

In Chapter V, we provide summaries for each chapter individually, and 

conclude our contributions in this thesis. Finally, we provide some suggestions for 

possible future work. 
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2  

Joint Power Control and 

Scheduling over CDMA -based 

Wireless Ad Hoc Networks with 

Delay Constraints 

 

2.1  Introduction  

Multiple benefits can be provided by judiciously controlling transmission 

power in wireless ad hoc networks. It can minimize the consumed power of a network 

while simultaneously alleviating the impacts of interference, thus the QoS requirement 

can be satisfied and system capacity can be increased. This has been extensively 

studied in [5-10] for cellular networks as well as for single-hop ad hoc networks. But 

these references have only focused on the tradeoff between power control and 

interference. However, in real-time applications, reducing delay could be as equally 

important as mitigating interference, and how to employ power control to reduce delay, 

which includes transmission delays over intermediate links as well as queuing delays at 

intermediate nodes due to queuing policy and/or channel conditions (deep fading/high 

MAI) over multi-hop wireless ad hoc network is absent from those previous works. On 

the other hand, in order to achieve efficient spatial/time/frequency reuse, scheduling 

conflicting transmissions has attracted considerably attention, and efficient scheduling 

algorithms have been proposed for both unicast transmission [6, 7, 11, 12, 13] and 
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multicast/broadcast transmission scenarios [8, 14], but typically with the assumption 

that perfect channel knowledge is available.  

It has been shown in [15] that a cross-layer design framework can greatly 

improve system performance. Recently, this design approach has been extensively 

studied in [6, 15]. The purpose of this work is to consider the design of a cross-layer 

distributed power control and scheduling approach under both a delay constraint and 

an interference constraint. The cross-layer framework consists of distributed power 

control at the physical layer to combat both delay incurred by multi-hop transmission 

and channel conditions, a distributed scheduling algorithm at the link layer to eliminate 

conflicting transmissions in a CDMA-based wireless ad hoc network. Also, the 

cooperation between the physical layer and the link layer requires the cross-layer 

information exchange among the physical layer, the link layer, the network layer as 

well as the application layer. The constrained optimization problem under both the 

delay and the interference constraints is solved via three consecutive steps: delay 

control, scheduling and power control. Based on these three consecutive steps, the 

complexity of the constrained optimization problem is greatly reduced and the power 

control at the physical layer is substantially simplified. Finally, we investigate the 

impact of Doppler spread upon the system performance. Furthermore, we provide a 

robust system which employs a combination of power control, coding and interleaving 

to combat the effects of Doppler spread by exploiting the time diversity as the Doppler 

spread increases.  

The organization of this chapter is as follows: in Section 2.2, we provide a brief 

discussion on the background and motivation; Section 2.3 presents the details of the 

proposed cross-layer distributed protocol; simulation results are provided in Section 

2.4; finally, a summary and conclusions are included in Section 2.5. 
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2.2  Background and Motivation 

In this chapter we consider the use of CDMA due to its capability to allow 

concurrent transmissions [5, 16, 17, 31, 36]. Note that in most of the current literature, 

the CDMA-based MAC protocols for ad hoc networks are generally based on random 

channel access [17, 31] where a node with a packet to transmit can start immediately 

using RTS/CTS exchange [18], without considering the channel conditions and the 

interference to other nodes. As a result, the well-known near-far problem may occur. 

To alleviate this problem, a controlled CDMA-based MAC protocol is desired to 

improve the system performance, as shown in this work as well as in [5].  

There are three tradeoffs involved in power control design in a multihop 

network: power vs. interference, power vs. delay and power vs. throughput. The first 

tradeoff is widely studied [5, 6, 7, 8, 9, 10], where the power consumption of a network 

is minimized while the interference over each intended link is kept below a threshold; 

however, to the best of our knowledge, there is no work in the literature to address the 

second tradeoff over multi-hop links. The delay in a multi-hop ad-hoc network is 

mainly due to two sources: transmission delay on each hop and queuing delay induced 

at each intermediate node due to queuing policy and/or severe channel conditions 

(deep fading and/or high MAI). That is, the larger the number of intermediate nodes 

between the source and destination pair, the larger is the potential delay. In the current 

literature, the queuing delay is reduced by means of priority-based scheduling 

algorithms at the queues [13]. However, an alternative way to decrease the overall 

end-to-end delay is to increase the transmission power of a node, so that the 

transmission range of a node increases and thus fewer hops are needed from the source 

to the destination. However, increasing transmission power causes more interference to 

other active nodes in the system. Therefore, reducing delay and minimizing 

interference are two conflicting goals, and it is necessary to jointly consider the above 
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two tradeoffs. Finally, reducing delay means fewer hops between the source and the 

destination. The smaller hop count implies longer distance for a single hop, and results 

in a lower available data rate. As a consequence, the throughput will decrease. On the 

other hand, in order to keep a high data rate, more intermediate nodes are needed, and 

unavoidably, larger delay. Therefore, in a wireless multihop networks, reducing delay 

and achieving high throughput are also two conflicting goals. Therefore, in this work, 

we consider the design of power control which takes into account all the three 

tradeoffs.    

As we know, the power control algorithm in DS-CDMA networks generally 

needs channel state information. A potential drawback of the existing cross-layer 

designs for power control and/or scheduling is that a small Doppler spread assumption 

is typically made, which often results in a perfect channel estimate assumption [5-8, 

12-14]. Unfortunately, in practice, this assumption does not hold. In a mobile ad hoc 

network, Doppler spread might not be small. Since an increase of Doppler spread 

means the coherence time decreases, the estimates are thus noisier than they would be 

for a static channel. Therefore, in order to provide a possible solution to solve this 

problem, we first make use of a MMSE estimator in order to explicitly incorporate the 

impact of Doppler spread into the estimation procedure, and then we provide a scheme 

to combat the negative effects of Doppler spread, where coding/interleaving is 

employed together with power control in order to exploit the potential time diversity 

when Doppler spread gets large. Thus, a simple but relatively robust system is 

achieved in face of a wide range of channel conditions in wireless ad hoc networks. 

 

2.3  Proposed Cross-Layer Distributed Protocol 

We consider an asynchronous slotted CDMA-based ad hoc network with n 

users uniformly distributed in a certain geographic area, each using coherent M-ary 
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QAM modulation. Every node has an omni-directional antenna. For node i, the number 

of bits that can be supported, bi, can be computed as [27] 

( )
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,         (2.1) 

where ζi is the signal-to-interference-plus-noise-ratio (SINR), Pe is the required BER 

and Q(·) is the Gaussian tail function. 

For each time slot, a node generates a packet to transmit (its own packet) with 

probability p, randomly destined to one of other nodes, or has a relay packet to 

transmit. In the design, we use two non-overlapping frequency channels, one for data 

transmission and the other for control messages. A unique spreading code is assigned 

to each node using some code assignment protocol [20] for data transmission, and a 

common spreading code is used over the control channel. Thus, we can achieve 

simultaneously transmission and reception from both the data channel and the control 

channel [5]. Also, we assume that the data channel and the control channel have the 

same channel conditions in both directions. The slot duration, Ts, is assumed to be 

larger than the fixed packet size to allow a guard interval which allows a preamble for 

both code and carrier synchronization. Also, the packet size in terms of number of 

chips and the chip rate are fixed. We further assume that the geographic location of 

other nodes can be obtained and provided to a node by location discovery schemes [21, 

22]. In this chapter, we have put our focus on the performance improvement achieved 

by the cooperation between physical layer and MAC layer and the routing is not 

explicitly considered. Instead, routing is assumed to be known a priori for each source 

and destination pair as discussed in a later section. Thus, this work does not give the 

routing protocol the opportunity to determine the real optimal next hop. We may expect 

further performance improvement by incorporating power efficient routing into the 

proposed framework, though, with increased system complexity. However, it is out of 
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the scope of this work. 

We let Tx and Rx be the transmitting node set and the associated receiving node 

set, each of which has m nodes, m ≤ n. Tx(i) is the index of the i-th node in the 

transmitting node set and Rx(i) is the index of its corresponding desired receiving node, 

i = 1, 2, …, m, and Tx(i) will cause MAI to Rx(j) if i ≠ j. Also, we let D{Tx(i)} 

represent the delay for the packet to be transmitted at node Tx(i) and we assume we can 

ignore both the processing delay and the propagation delay. ζTx(i)Rx(i) is the SINR 

threshold to enable a successful reception. Tmax is the maximum allowable delay for 

each packet. Finally, PTx(i)Rx(i) is the power employed. Then, the constrained power 

optimization can be described as 

⎭
⎬
⎫

⎩
⎨
⎧∑

=

m

i
iRxiTxP

1
)()(min            (2.2) 

s.t. C1:  ;,...,2,1,)}({ max miTiTxD =≤  

C2: No node can receive and transmit at the same time and 

;,...,2,1,,)()( mjijiifjRxiRx =≠≠  

C3:  ( ) ( ) ( ) ( ) ( ) ( ) max,0 1,2,..., ;Tx i Rx i Tx i Rx i Tx i Rx iSINR and P P i mζ≥ ≤ ≤ =  

C1 and C3 represent the delay constraint and the interference constraint, respectively; 

C2 indicates the validity constraint that a node cannot receive and transmit at the same 

time and a node is not allowed to receive from multiple desired nodes simultaneously. 

Unfortunately, the minimization of the total power under all the three constraints is 

very complex to solve analytically. Therefore, in this chapter, to make the optimization 

problem tractable, we divide the problem into three consecutive steps instead of 

solving it directly. As illustrated in Fig. 2. 1, the proposed approach is carried out at the 

start of each time slot and we first check the delay requirement for each transmission 

and schedule the current transmission to satisfy the delay requirement using power 

control; then, we check the validity of the scenario to avoid conflicting transmissions 



 17

which can not be eliminated by power control; lastly, we execute the distributed power 

control algorithm to minimize the power consumption while satisfying the QoS (SINR) 

of each receiver.  

 

Start of time slot i, given the current scenario. 

Check delay requirements. 
Satisfied or not?

Re-schedule the scenario, 
i.e., increase power to 

decrease delay

No 

Yes 

Check the validity.
Is the resulted scenario from the 

previous step valid? 

Re-schedule the scenario
to satisfy the validity.

No 

Run the distributed power control algorithm

Yes 

Check if the scenario has 
a non-negative minimizing power vector and

if the SINR constraints are satisfied?

Re-schedule the scenario
to solve the minimization 

problem.

No 

Yes 

Transmission starts with the minimizing power vector 
and time goes to the next slot

Cross-layer 
optimization
using joint 

power control 
and scheduling 

under both
the delay 

constraint and 
link quality 
constraint.

 
Fig. 2. 1. Illustration of the proposed joint power control and scheduling approach. 



 18

The reason we need to split the optimization problem into three consecutive 

steps is due to the lack of fixed infrastructure of an ad hoc network, and so any 

centralized control that depends upon infrastructure is not possible. The advantage of 

our approach is that we do not put the constraints on delay and validity into the power 

control optimization, and that results in a very simple power control optimization 

algorithm at physical layer. Furthermore, all the three steps can be implemented in 

distributed manners, as we will discuss in what follows. However, the consequence of 

this division is that the performance is suboptimal. The mismatch mainly comes from 

the delay control and validity check, since they are designed to guarantee the delay and 

validity constraints separately and might not be able to always find the global optimal 

transmission scenario. However, the global optimal depends on the optimization of the 

underlying routing, which is out of the scope of this chapter.  

 

2.3.1 Delay Control 

Since in this work we take into account the delay requirement, the delay 

modeling and delay calculation at the start of each time slot become important. 

Suppose for a packet, there are initially H hops from the source to the destination. 

Since we have assumed that the packet size and the chip rate are constant, the 

transmission delay Tt
(h) on the h-th intermediate link is a constant for any h. We then 

have Tt
(h) = Tt, h=1, 2, …, H. Let Tq

(h) be the queuing delay at the h-th node. Then the 

total delay Ttot is given by  

∑
=

+⋅=
H

h

h
qttot TTHT

2

)( .          (2.3) 

If Ttot is larger than the threshold Tmax, then the delay requirement cannot be 

satisfied. However, we can increase the transmission power at the source node to 

decrease the hop count, H. The criteria used here is that first we decrease the hop count 
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by 1. Then, we check the delay again, and if the delay is satisfied, the delay checking 

phase ends; otherwise, we decrease the hop count by 2 and we repeat the algorithm 

until the delay requirement is satisfied. If the source node and the destination node are 

connected directly and the delay is still not satisfied, this transmission is denied to save 

network resources.  

We employ the average queuing delay Āq
(h) at node h as an estimate of Tq

(h) in 

(2.3). It is worth noting that, due to this fact, our system fits those systems with 

average delay penalties instead of a hard delay constraint. Since our system is a 

slotted-CDMA system with slot duration Ts, the average queuing delay Āq
(h) is linearly 

proportional to the average number of packets queued in node h, Īq(h), thus,  

[ ] )()()( h
qs

h
q

h
q ITATE ×=≡ .               (2.4) 

We now derive the average number of packets in the queue of a node in the system. In 

an ad hoc network, at any time slot, a node may generate its own packet to transmit 

and/or receive a relay packet to transmit, and the two events are independent Bernoulli 

processes. Let p and pr be the two probabilities, respectively. Although a node attempts 

to transmit a packet at each time slot, its transmission may be deferred with probability 

pd due to the embedded power control and scheduling considerations. Therefore, the 

queue of a node can be modeled as a G/G/1 queuing system [23]. We can easily see 

that the service time T is a geometric distribution with pmf 

( ) ( ) ,.......2,1,0,1 =−×== kppkTTP d
k
ds           (2.5) 

Then, the average service time (inverse of the average service rate, μ) and the variance 

σs
2 of the service time can be computed, respectively, as 
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and                              

( )222 1 ddss ppT −=σ .          (2.7) 
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Let Y be the r.v. representing the interarrival time. From the arrival aspect, we 

have two independent arrival processes as discussed above. Therefore, as shown in 

Appendix A, letting (1 - pr)(1 - p) = t, the first two moments of the interarrival time Y 

are 
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and                             
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Also, we let 2
Yσ  denote the variance of Y.  

According to [24], with ρ = λ/μ and λ=E[Y], the average number of packets of 

node h, Īq(h), in a G/G/1 queuing system, can be bounded by  
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which means that the difference between the upper and the lower bounds is (1 + ρ)/2, 

and since 0 <ρ< 1, this difference is always between 1/2 and 1. Thus, we are able to 

determine the average queue length to within an accuracy of between 0.5 and 1 packet 

(depending on the value of ρ), which is typically satisfactory for any practical 

application [24]. Clearly, the average queuing delay Āq
(h) is a function of three 

parameters: p, pr and pd, Herein, p is a pre-specified probability for each node. 

However, pr is dependent on the network topology, as well as the underlying routing 

protocol, and pd is dependent on the embedded joint power control and scheduling 

approach. These two parameters are difficult to determine analytically, but can be 

estimated at each node on-the-fly, and the information can be provided to the source 

node via the routing discovery procedure to facilitate the delay checking and 

scheduling phase. This is easy to implement by inserting a particular field into the 
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routing control packet during the routing discovery procedure and will not induce any 

additional complexities and computational burden. 

 

2.3.2 Validity Check and Distributed Scheduling 

As shown in Fig. 2. 1, after the delay control, the algorithm goes into its second 

step, where the validity of the scenario is checked. The objectives consist of 1). Not 

allowing a node to transmit and receive simultaneously; 2). Not allowing a node to 

receive from more than one desired node. As a result, some nodes’ transmissions might 

be deferred, and the criteria used to defer transmissions should take into account the 

throughput of the network, that is, trying to keep as many nodes as possible active in 

order to maintain a high throughput. The above scheduling algorithm can be 

implemented in a distributed manner, since we use two non-overlapping frequency 

channels, one for data transmission and the other for control message exchange. Hence, 

a node in the network can check if its transmission is valid via the information 

exchange over the control channel with the use of RTS/CTS control packets in IEEE 

802.11 compliant protocols [25]. In case the validity of a node is violated, the node 

will schedule the conflicting transmissions using a multihop latency aware (MLA) 

algorithm [26] to determine which transmission is allowed to proceed, based on their 

relative priorities. We assume in the control channel some side information, such as the 

remaining hop count of a packet Hr and the remaining lifetime Tr, can be exchanged 

within the RTS/CTS control packets [25]. For each node, the information of Hr and Tr 

can be available to the scheduling via cross-layer information exchange. Clearly, the 

less the remaining lifetime a packet has, and the more remaining hops it has to traverse, 

the more urgent the packet is. Therefore, the ranking function of a packet is defined as 

[26] 
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( ) r
b

rrr HTTH =,γ ,         (2.11) 

where b is non-negative and represents the relative weight of Hr and Tr. As a result, for 

a node whose validity is not satisfied, the node computes the corresponding γ for each 

packet, and the packet with the smallest γ(Hr, Tr) is transmitted during the current slot, 

while all other conflicting transmissions are deferred. Thus, unlike [6], where a central 

controller is employed for scheduling, in our proposed approach a distributed 

scheduling algorithm is implemented with the use of a side channel which is 

orthogonal to the data channel. We further assume that the side information, i.e., Hr and 

Tr, is protected by enough FEC codes and no errors would occur on that.  

 

 

2.3.3 Distributed Power Control 

We model the wireless links as fading channels plus path loss factor η. 

Therefore, the channel can be described as 

2/

1)()( ηd
tuth ×= ,          (2.12) 

where u(t) represents Rayleigh fading process, d is the distance between transmitter 

and receiver and η is the path loss exponent which is taken to be 4. If we express u(t) 

as u(t) =α(t)ejφ(t), then u(t) is flat fading and can be viewed as a complex Gaussian r.v. 

with zero mean and variance 2σ2, where α(t) is Rayleigh distributed and φ(t) is 

uniformly distributed in [0, 2π].  

As discussed previously, the objective of the power control is to minimize the 

power consumption, while satisfying both the delay constraint and the SINR constraint. 

Given the transmission scenario after the delay control and validity check, we only 

have to minimize the total power subject to a constraint on the SINR at each receiver. 

Let N represent the set of the active nodes and Pij be the transmitted power from node i 
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to node j. The SINR threshold for node i to enable a successful reception at node j is ζij. 

The processing gain of the CDMA system is M, and the maximum power of a node is 

Pmax. Thus, the power control problem can be formulated as a constrained optimization 

problem: 
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The SINR of node j can be expressed as 
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where σ2
N is the thermal noise power at the receiver and Pj

MAI is the multiple access 

interference power at node j due to other interferers in the network, and can be shown 

to be [27] 
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where x represents a transmitter other than the intended transmitter i, Pxj is its 

transmission power, αxj is its fading coefficient and dxj is the distance between node x 

and node j.  

Since it is desirable for the mobile nodes to transmit at the minimum power to 

maintain the required SINRs, the inequality representing the SINR constraint in (2.14) 

can be re-written as an equality SINRij = ζij. Hence, according to [9], the constrained 

power minimization problem can be solved using the following iterative algorithm at 

each transmitting node in a distributed manner:  

max( 1) min , ( )
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where SINRij(k) is the SINR at node j at iteration k. If all the nodes converge within a 

pre-set maximum number of iterations, and the SINR constraints of all the nodes are 

satisfied, then the minimizing power vector is found and the power control succeeds. 

Thus, a distributed power control can be achieved at each transmitting node and the 

convergence of such an iterative algorithm given by (2.17) is investigated in [9]. It was 

demonstrated in [9] that this algorithm converges exponentially fast to the optimal 

power vector, if such an optimal exists. Along the same lines, similar power control 

algorithms can be designed to have faster convergence rates, but may have higher 

complexity. In this work, (2.17) is employed to solve the distributed power control 

optimization.  

However, if the optimal power vector does not exist, the transmissions must be 

re-scheduled such that an optimal power vector can be found. Therefore, we defer the 

transmission of the node with minimum SINR if power control fails. It has been shown 

in [10] that deferring the transmission of a node with minimum SINR is an efficient 

way to facilitate the solution of the constrained optimization problem. Furthermore, 

this scheduling algorithm can be implemented in a distributed manner, since the SINR 

values can be known by all other nodes, for example, by broadcasting the SINR values 

to all the transmitting nodes via a control channel.  

Finally, from the above discussion, we see that in order to solve the problem of 

power control, we need to know the values of fading vector α for the current time slot. 

However, in previous works investigating power control algorithms, it has been 

assumed that channel information is perfectly available, and the fading is slow, i.e., 

small Doppler spread. In what follows, we discuss the estimation of the fading vector α 

and the impact of channel estimation error and Doppler spread upon the system 

performance. 
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2.3.4 Channel Estimation 

From (2.12), we see that we only need to estimate u(t), which is a complex 

Gaussian r.v.. Since generally, for power control algorithms, it is assumed that u(t) is 

constant between two power control commands, for the i-th slot we need to estimate 

u(i). As shown in [28], the autocorrelation function of a Rayleigh fading is 

[ ] ( )sd pTfJpiuiuE πσ 22)()( 0
2* =− ,       (2.18) 

where 2σ2 is the variance of the fading process u(t); J0(.) is the zero-th order Bessel 

function; Ts is the slot duration in our system; finally, fd = vfc/C is the maximum 

Doppler spread, v is the velocity of a mobile node, fc is the carrier frequency and C is 

the speed of light. We use the following notations: 

u(i): the actual fading value for time slot i;   

û(i): the estimated fading value for time slot i, where the estimate at the transmitter is 

based on noisy past fading values measured at the receiver;  

ũ(k), k = i-1,…, i-V: the measured fading value. We assume that the measured value at 

the receiver is corrupted by an additional complex Gaussian process e, where 

ũ(k) = u(k) + e(k) and e is also zero-mean with variance σe
2

. Furthermore, we 

assume e is uncorrelated with u and e(i) is uncorrelated with e(j) if i ≠ j.  

If the estimate of u(i) is based on V previous noisy channel samples [ũ(i-1), 

ũ(i-2),…, ũ(i-V)], then, using the following linear predictor of order V, we have 
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where bj(i), j = 1, 2, …, V, are the linear prediction coefficients. Under the Linear 

Minimum Mean Square Error criteria (LMMSE) [19], the coefficient vector b(i) = 

[b1(i), b2(i),…, bV(i)]T is      

)()()( 1 iriRib ⋅= − ,         (2.20) 
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where R(i) is the V-by-V autocorrelation matrix of the V previous noisy channel 

samples, whose (p, q)-th element for p, q = 1, 2, …, V, 

[ ] ( ) qpesdqp TqpfJqiupiuEiR .
2

0
2*

, 22)(~)(~)( δσπσ +−=−−=    (2.21) 

where δp,q is the Kronecker delta function. Also, r(i) is the V-by-1 cross-correlation 

between the V previous noisy channel samples and the desired actual fading coefficient, 

whose p-th element, p = 1, 2, …, V, is given by 

[ ] [ ] ( )sdp pTfJpiuiuEpiuiuEir πσ 22)()()(~)()( 0
2** =−=−=     (2.22) 

Therefore, given the past samples measured at the receiver, we can easily 

estimate the fading value for the current time slot at the transmitter. Those past samples 

measured at the receiver can be fed back to the transmitter via the control channel. 
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   Fig. 2. 2. Illustration of the proposed joint power control and scheduling based on the   
combined use of power control, coding and interleaving. 
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2.3.5 Coding and Interleaving 

It is well known that as the Doppler spread increases, the coherence time 

decreases and the accuracy of the channel estimates degrades, since the channel 

samples are less correlated and the observation time available to both make and use the 

channel estimates is decreased. In other words, power control is less effective in 

handling the effects of fast fading and, as a result, the performance of DS-CDMA 

suffers. Fortunately, there is a counter balancing effect in DS-CDMA that leads to 

improved performance as the coherence time becomes smaller. When the coherence 

time gets small, the channel samples will be less correlated. This provides the potential 

for time diversity if coding and interleaving are used [29].  

As shown in Fig. 2. 2, power control is used together with coding and 

interleaving in order to provide robust performance in a DS-CDMA wireless ad hoc 

network. In the proposed approach, we use a convolutional code and a block 

interleaving. Since the channel estimation accuracy cannot be guaranteed, we do not 

employ adaptive channel coding schemes. Instead, regardless of the channel conditions, 

a fixed rate r convolutional code and a fixed block interleaver (N, B) with interleaving 

length B -1 are used.  

We have assumed that the MAI can be modeled as an additive Gaussian noise 

process that is independent of the thermal noise, which is modeled as an additive white 

Gaussian noise process. Thus, an upper bound on the bit error probability of the 

decoder of a rate r convolutional code is as follows [27]: 
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In (2.23), df is the free distance of the convolutional code and the coefficients {βd} 

represent the number of symbol errors in two paths separated by distance d. The 

function P2(d) is the first event error probability and is related to the channel 
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conditions. For a network with n nodes, if we consider the transmission from node i to 

node j, in the scenario we are analyzing, the conditional P2(d), conditioned on the 

channel, can be approximated as in (2.24). The details are provided in Appendix B: 
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where D(M)
min is the smallest distance between two points in the M-QAM constellation, 

σ2
N is the thermal noise power at the receiver, PMAI is the multiple access interference 

power due to other interferers in the network, as in (2.15), and RI is the correlation 

function of the multiple access interference (MAI) term, which is modeled as additive 

Gaussian noise. Since we want to investigate the impact of Doppler spread, MAI is not 

assumed to be white as in previous work [5, 6, 29]. Also, {m(l), l=1,…,d}, with m(1)< 

m(2)<…< m(d), is the index of the set of d symbols in which the two paths differ, i.e., 

m(l) is the position of the l-th non-zero symbol in the trellis of the convolutional code. 

Plugging (2.24) into (2.23), we obtain an approximation for the conditional residual bit 

error rate with convolutional coding out of the decoder of the desired user in the 

system.  

As will be seen in the next section, the combined use of power control, coding 

and interleaving are, to some degree, complementary, resulting in robust overall system 

performance to the Doppler spread, and thus providing improved performance for a 

large range of channel conditions. In addition, it is worth noting that when channel 

coding is used, the spreading gain should be reduced due to the chip rate constraint as: 

rs×M/rc ≤ C, where rs, rc , C and M are the information data rate, the channel coding 

rate, the chip rate and the processing gain, respectively.  
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Finally, consider the effect of overall delay due to the use of coding and 

interleaving. At a source node, as long as the queue is not empty, we can do the 

interleaving for a packet in the queue while it is waiting in the queue, thus there is no 

interleaving delay occurred. At the destination, since we need to receive a whole 

packet before it can be sent to the upper layers, and de-interleaving takes place after a 

packet is received. Therefore, the de-interleaving delay is only the processing delay 

associated with the de-interleaving procedure and it can be so small that the 

de-interleaving delay can be ignored. On the other hand, for the channel coding, since 

we still are able to encode when a packet is waiting in the queue of a node as long as 

the queue is not empty, there is no encoding delay. As for the decoding delay, since in 

this work a fixed-length packet size is employed regardless whether or not coding is 

used, the decoding delay introduced by convolutional code only occurs with the use of 

the maximum-likelihood decoding at the receiver, which is typically small [30]. 

 

2.4 Simulation Results and Discussion 

In this section, we evaluate the performance of the algorithm, and compare it 

with the IEEE 802.11 scheme. Then we illustrate the impact of Doppler spread on the 

system performance. Finally, we show the complementary effects of using coding and 

interleaving to power control in a CDMA-based wireless ad hoc network. We start with 

the description of simulation setup.  

We examine the performance of an ad hoc network with n = 15 nodes 

uniformly distributed in an area of size 200×200 m2. Each node generates data packets 

to one of the other nodes with probability p for each time slot (p is the same for all 

nodes). The queue size of each node is unlimited, and the packets in a queue are served 

on a FIFO basis. In order to compare our approach with other schemes, we set the 

maximum allowable delay requirement Tmax = 200 ms and the thermal noise power = 
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-55 dBm for all the schemes. Also, a common DS spreading code is used for all 802.11 

receivers. At the final destination of a packet, the packet cannot be considered as 

“correctly received” if the delay requirement and/or SINR constraint are not satisfied. 

The convolutional code used is a rate 1/2 code with generator polynomials (133, 

171)oct and the block interleaver size is (NI, BI) = (11, 745). The modulation sizes used 

are BPSK, QPSK and 16-QAM, and the SINR threshold, ζ, in the power control step is 

determined as in (2.1) for different modulation sizes/rates.  

 

Fig. 2. 3. Performance comparison (effective throughput) between the proposed approach and IEEE 
802.11 scheme; no coding/interleaving is used. 

 

The routing protocol is the same for the two comparison schemes, and in order 

to reduce the impact of a specific routing algorithm, we employ the concept of the 

position-based protocol [33, 34] which assumes that the position information of each 

node is known by all other nodes, and the routing decision is only based on the 
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positions of the source, the destination and the neighboring nodes. Since the goal of 

this chapter is to evaluate the performance enhancement by the cooperation between 

the MAC layer and the physical layer, and as discussed previously, although the design 

of an advanced routing scheme can further improve the performance in a 

delay-constrained ad hoc network for both schemes, this is out of the scope of this 

chapter. In order to take into account the delay vs. throughput tradeoff associated with 

the delay control process, a simple scheme is employed: when delay control takes 

place, if the hop count is decreased by one, the modulation size is also decreased to the 

adjacent lower level in the employed modulation size set, and this results in a lower 

transmission rate. This simple scheme is only used to reflect the delay vs. throughput 

tradeoff and show the impact of this tradeoff. More advanced design procedures can be 

found in [34].  

In Fig. 2. 3 to Fig. 2. 6, we initially evaluate the performance of the proposed 

approach where the channel estimate is perfect. In Fig. 2. 3, we illustrate the effective 

throughput of the proposed approach and the 802.11 comparison system. It is seen that 

throughput gain can be achieved by our approach relative to 802.11. The performance 

gain is due, first of all, to our approach that allows concurrent transmissions within the 

neighborhood of a receiving node through the distributed scheduling algorithm, while 

802.11 does not; secondly, under both the delay and SINR constraints, our approach 

can adaptively adjust each transmitting node’s power to avoid packet losses due to 

excessive delay at intermediate nodes and/or packet losses due to fading/MAI. 

Furthermore, when packet generation rate is low, say ≤ 0.1, the 802.11 comparison 

system can achieve a close performance to our approach, but when p increases, our 

approach outperforms it. This is due to the fact that when traffic is low, delay 

requirement can be easily satisfied since the queuing delay may be small, however, 

when traffic is high, delay requirement is hard to achieve without delay control since at 
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this time we may have large queuing delay at each intermediate node and thus delay 

control is necessary.  

 

Fig. 2. 4. Normalized throughput loss for the proposed approach; normalized to the throughput of the 
case without considering the delay-throughput tradeoff; no coding/interleaving is used. 

 

In Fig. 2. 4, we illustrate the normalized throughput loss of the network when 

the simple rate adaptation is used for the proposed approach. As we can see, when p is 

small, the loss is marginal since the delay is not stringent and the delay constraint can 

be satisfied for most of the transmissions. However, when p increases, the loss also 

gets large. This shows the effect of the delay-throughput tradeoff: when we reduce the 

delay, the throughput is also decreased. But, the proposed approach can still achieve 

performance gain compared to the 802.11 comparison system, as shown in Fig. 2. 3.  
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Fig. 2. 5. Performance comparison as a function of maximum allowable delay, between the proposed 

approach and the IEEE 802.11 scheme; p = 0.3; no coding/interleaving is used. 

 

In Fig. 2. 5, we demonstrate the performance in terms of throughput as a 

function of maximum allowable delay requirement. First of all, we can observe that 

our approach can significantly outperform the 802.11 scheme when Tmax varies; 

secondly, it is clear that when Tmax becomes smaller, our approach suffers from some 

performance loss, this is caused by the throughput-delay tradeoff as discussed 

previously; finally, both 802.11 and the proposed approach can achieve improved 

performance when Tmax increases since as Tmax relaxes, more information can be 

correctly received at destinations. 
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Fig. 2. 6. Performance comparison (average-energy-per-bit) between the proposed approach and the 

IEEE 802.11 scheme; no coding/interleaving is used. 
 

In Fig. 2. 6, we illustrate the average-energy-per-bit at different packet 

generation rates, p. This metric can be used to evaluate the efficiency of a network, 

since it is actually the average energy employed for each correctly received bit. As can 

be seen in Fig. 2. 6, as p gets large, the energy consumption also increases since we 

generally need more power to combat the increased interference as traffic increases. 

On the other hand, energy savings can be achieved with the use of the proposed 

approach compared to the 802.11 scheme. 

Up to this point, we have evaluated the system performance for perfect channel 

estimates. In Fig. 2. 7, we first demonstrate the performance degradation induced by 

the increase of Doppler spread; then we present the performance of a robust system 

which employs a combination of power control together with coding and interleaving 
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to combat the impact of Doppler spread and channel estimation errors. In Fig. 2. 7, we 

can clearly see that, for the cases of no coding and interleaving is employed, as 

Doppler spread gets large, the system throughput degrades substantially. The reason is, 

as Doppler spread gets large, the underlying channel becomes less correlated. Hence, 

accurate channel estimation is hard to obtain and as a result, power control works 

poorly.  

 

Fig. 2. 7. Performance as a function of Doppler spread; p = 0.3; σe
2 = -9dB; coding and interleaving are 

used. 

 

Consider now the use of power control together with coding/interleaving. Fig. 2. 

7 plots the performance when the combination of power control, coding and 

interleaving are used, as a function of Doppler spread. As can be seen, the performance 

of the combined use of power control, coding and interleaving is considerably better 
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than using power control alone since by using coding/interleaving, we can exploit the 

increased time diversity as Doppler spread increases, thus we can provide a 

complementary effect to power control and results in a relatively robust system. We, in 

particular, observe a significant improvement in performance at large Doppler spread.  

 

2.5 Summary and Conclusions 

In this chapter, we proposed a cross-layer distributed joint power control and 

scheduling approach for delay-sensitive applications, such as multimedia, over 

CDMA-based wireless ad hoc networks. The cross-layer framework consisted of 

distributed power control at physical layer, and distributed scheduling algorithm at 

MAC layer. Herein, we have taken into account a delay constraint as well as an SINR 

constraint for system performance optimization, and proposed a novel delay control 

mechanism where power control is used to combat delay. The constrained optimization 

problem under both the delay and SINR constraints was solved via three simple but 

effective steps: delay control, validity scheduling and power control. Based on these 

three consecutive steps, the complexity of the optimization problem was greatly 

reduced and the power control at the physical layer was substantially simplified. 

Finally, we investigated the impact of Doppler spread and channel estimation errors 

upon the system performance, and provided a robust system which employed the 

combination of power control, coding and interleaving to combat the effects of 

Doppler spread by exploiting the time diversity when the Doppler spread got large. 

Simulation results have demonstrated the effectiveness of the proposed approach. 

It is worth noting that for any distributed system, where it is unavoidable to 

exchange information among users or neighbors, overhead issues should be carefully 

considered. In our work, we need to exchange information among users for the validity 

check and the power control, but since our system is designed for small/moderate-sized 
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networks, the overhead issue might not be a serious problem. However, as the network 

size increases, the problem of scalability becomes an important issue. A realistic 

approach to network scalability is to use a logical structure, e.g., a clustered-structure, 

to a physically unstructured ad hoc wireless network [32]. The concept of a 

sub-network, i.e., a cluster, where a set of mobile users is assigned to the sub-network 

manager (cluster head) is often desirable to ensure end-to-end communications, and 

can facilitate the implementation of the proposed framework to a network of very large 

size to avoid excessive overhead.  

 

2.6 Appendix 

2.6.1 Derivation of the Statistics of the Inter-Arrival Time, Y 

We let “own” represent the event that a node’s own packet is the first occurring 

packets and “relay” represent the event that a relay packet occurs first. Thus, we have 

the following general expression for the conditional PMF of Y, given an own packet 

occurs first: 

( ) ( ) ( )( )[ ] ( )rr
n
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If we let (1 - pr)(1 - p) = t, the conditional first moment of the inter-arrival time Y is 
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Following the same line, we can find the conditional first moment given that a 

relay packet occurs first, E[Y |relay], as 
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Therefore, E[Y] can be calculated as 
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Similarly, E[Y2] can be shown to be as  
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2.6.2 Derivation for the First Event Error Probability P2(d) 

If we consider the transmission of sequence s from a transmitter to its 

corresponding receiver, and the channel vector between them is α and αi is the 

corresponding channel gain for the i-th symbol. Then we have  

i iii
y s vα= ⋅ + ,          (2.31) 

where yi is the output from the demodulator for the i-th received symbol and can be 

expressed in a vector form in both the I/Q branches as yi = [yi
(I) yi

(Q)]. Similarly, si is 

vector form of the i-th transmitted symbol, and vi is the vector form of the sum of MAI, 

I, and thermal noise, N. Both the MAI and the noise are assumed to be zero-mean 

additive Gaussian random variables. We assume that the decoder chooses a wrong path 

ŝ instead of s. This implies that the Euclidean distance between the received sequence 

and the transmitted sequence s is larger than that between the received sequence and 

the decoded sequence ŝ. Thus, the conditional P2(d|α), conditioned on α, can be shown 

to be 
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Since the decoded sequence differs from the transmitted sequence only in d positions, 

by plugging (2.31) into (2.32), from [35], we have 
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where m(l) is the position of the l-th non-zero symbol in the trellis of the convolutional 

code. Recalling that vm(l) = Nm(l) + Im(l), we can expand the above equation into both the 

I-branch and Q-branch, as shown in [35], yielding  
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In (2.34), since N and I are assumed to be zero-mean Gaussian random variables, X(l) 

and X can then be modeled as conditional Gaussian random variables, conditioned on α. 

The conditional mean and conditional variance of X(l) can be shown to be 

( ) 22
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                     (2.36) 
In (2.35) and (2.36), we let ||ŝm(l) - sm(l)|| = Dm(l), and an upper bound of the error 

probability P2(d) can be achieved by assuming that, for all m(l), Dm(l) is equal to the 

worst-case value [35], which is defined to be Do. Then, based on (2.35) and (2.36), we 

have the following: 
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Now, since 
1
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d
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=∑ , we can obtain the conditional mean and variance for the 

variable X as 
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Since the thermal noise samples are independent, but the MAI samples are, in general, 

correlated, then, according to [35], the above equation becomes  
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where  
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Thus, the conditional P2(d|α), conditioned on α, can be shown to be 
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                      (2.42) 
As can be seen, in order to have an upper bound of P2(d|α), Do should be as small as 

possible. Thus, Do may be selected as the minimum distance between two points in the 

employed M-QAM constellation, D(M)
min. Finally, by replacing Do in (2.42) with 

D(M)
min, we have 
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3   

Cognitive Radio Based Multi-User 

Resource Allocation in Mobile Ad 

Hoc Networks  
 

3.1  Introduction  

In wireless multi-user communications, how to efficiently utilize the system 

resources, such as frequency spectrum and power, and to provide high quality 

transmission, are the main challenges for the deployment of next generation systems. 

To address these challenges, multi-user resource allocation based on multi-carrier 

modulation, such as orthogonal frequency division multiplexing (OFDM), has attracted 

extensive attention [37, 38, 39, 40], where subcarrier band, data rate and power are 

adaptively allocated to each user. However, the results of these research efforts are 

limited, since they are typically intended for the downlink of a cellular system where, 

given the available frequency spectrum, a base station (BS) is used to coordinate the 

cooperation between the users within a cell and optimally distribute the system 

resources. Furthermore, the resource allocations as in [37-40] are performed by 

assuming that the spectral utilization information is known a priori with the aid of a 

BS, which is not realistic in scenarios where infrastructure is not available, such as in 

ad hoc networks.   

In challenging scenarios, such as a battlefield ad hoc network, a communication 

unit may not be able to operate in a fixed assigned band due to environmental 

constraints and/or application constraints, but rather have to search for an appropriate 

42
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band in which to operate from time to time. On the other hand, the spectrum utilization 

information is not directly available for users. These can impose major difficulties for 

system design. However, cognitive radio, a technique that allows users to dynamically 

sense the frequency spectrum, find the available spectrum bands in a target spectral 

range, and then transmit without introducing excessive interference to the existing 

users in this spectral range, provides a technique to solve this problem [41]. In order to 

facilitate the dynamic spectrum access in such a cognitive radio based network, various 

schemes have been proposed. In [42], by using a partially observable Markov decision 

process, cognitive MAC protocols are proposed to optimize the system performance, 

while limiting the interference to primary users via optimal channel allocation 

strategies; in [43], a spectrum-sharing problem in an unlicensed band is studied under 

game-theoretic approaches; in [44], the authors investigate the cooperative spectrum 

sensing in cognitive radio networks, and show that cooperation among users can 

significantly increase the agility of cognitive radio users, and hence improve the 

system performance; also [45] presents a sensing-throughput tradeoff in cognitive 

radio networks, and shows how to maximize the achievable throughput for the CR 

users under the constraint that the primary users are sufficiently protected.  

In this chapter, we design a multi-user resource allocation framework using a 

cognitive radio perspective. In particular, we consider a multi-carrier system where the 

entire spectral range is first sensed, and then the un-used subcarrier bands are 

employed by cognitive radio (CR) users, thus increasing the spectral utilization. 

Because we must avoid noticeable interference to existing users, we propose a 

mechanism to detect the availability of a subcarrier by sensing the RF spectrum, as 

well as to estimate the noise power and the channel gain for each free subcarrier. Then, 

given all the obtained information, as well as a power constraint and a target data rate 

for each CR user, a distributed spectrum and power allocation approach is proposed. In 
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order to protect the primary users and facilitate the dynamic access process, i.e., 

combat possible transmission conflicts due to detection errors and the lack of a central 

control, we also provide an adaptive power control algorithm with user protection and 

adaptive rate control. In general, this chapter presents a system design framework for 

cognitive radio networks, which includes the main components of a cognitive radio 

system, and shows how the system performance is affected by underlying system 

parameters.  

It is worth pointing out that the focus of this chapter is to design a military 

cognitive radio system where given the existing communications (primary users) over 

a spectral range, how to accommodate new users (cognitive radio users) into the 

system without interfering with the existing communications. Once a new user 

successfully accesses the system and starts transmission, it then becomes a primary 

user. The definitions of primary user and cognitive radio user in this chapter are 

slightly different from those in commercial cognitive radio systems. 

The organization of the rest of the chapter is as follows: in Section 3.2, we 

provide the system description and the problem formulation; in Section 3.3, we 

describe the detection and estimation mechanism necessary for the system to function 

properly, as well as the detailed algorithms for spectrum management and power 

control; in Section 3.4, we present simulation results and corresponding discussions; 

finally, a summary and conclusions are provided in Section 3.5.   

 

3.2  System Description and Problem Formulation  

We consider a multicarrier DS CDMA system [42] in conjunction with a 

wireless ad hoc network. The wireless channel is modeled as a frequency-selective, 

Rayleigh fading channel. We let the available frequency spectrum be divided into M 

equi-width frequency bands, each with bandwidth B, where M is the total number of 
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subcarriers. We assume, as in [46], by an appropriate choice of subcarrier width, that 

each subcarrier experiences flat fading. In addition, we use bandlimited multicarrier 

waveforms to eliminate the interference between different subcarriers. In this chapter, 

for simplicity, we assume that the entire spectrum is divided into a fixed number of 

subcarriers. At a given time instant, we assume N CR transmitter-receiver pairs want to 

access the channel, and the i-th pair, i = 1,…,N, has a specified data rate requirement, 

Ri and a bit-error-rate requirement, BERi. However, some primary users may already be 

using the same frequency spectrum, and so some subcarrier bands may already be in 

use. In order to avoid interference to the pre-existing communications (primary users), 

those occupied subcarriers should be detected and should avoid being used by the CR 

users. Thus, a detection/estimation mechanism is proposed in this chapter to first detect 

the availabilities of subcarriers for each CR user, and then to estimate the 

corresponding noise power and channel gain for each available subcarrier. We define 

the set of free subcarriers available to user i as Fi, and assume there are Ai free 

subcarriers in that set1. Fi is obtained by the detection mechanism, but due to detection 

errors, not all decisions will be correct.  

We let Pi
(k) be the transmit power allocated to transmitter i on the k-th available 

subcarrier, where k = 1,…,Ai, and Pi
(k) = 0 if transmitter i does not use subcarrier k. We 

also let αij
(k) indicate the channel gain between the i-th transmitter and the j-th receiver 

on subcarrier k, and assume it contains both path loss and fading effects. At the k-th 

available subcarrier of the i-th CR receiver, the corresponding noise floor power 

spectral density is defined to be Si
(k)(f), and is estimated via a detection/estimation 

mechanism to be discussed in a later section. It is worth noting that Si
(k)(f) may 

represent three sources of noise/interference: thermal noise, interference caused by 
                                                        

1 The available subcarrier set Fi for user i indicates the number of free subcarriers and their positions 
in the spectrum. The number of available subcarriers Ai and the positions of these subcarriers in Fi may 
be different for different i due to detection errors.    
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primary users if a subcarrier availability detection error occurs, and possible 

narrowband interference (NBI) generated by jammers. In this chapter, the NBI 

generated by enemy jammers is assumed to be bandlimited white Gaussian noise with 

power spectral density SJ(f) as in [46]: 
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where fJ and WJ are the center frequency and the bandwidth of the interference, 

respectively. Each user is assumed to be hit by NBI with probability PNBI, and both fJ 

and WJ can be random. Furthermore, the effect of the noise, the NBI and the possible 

interference from primary users (referred to below as just “noise”) at the i-th cognitive 

radio receiver is modeled as a random process with noise power Ni
(k)=∫BSi

(k)(f)df.  

We further let bi
(k) be the number of bits-per-symbol transmitted by cognitive 

radio user i on its k-th subcarrier, and we employ M-ary quadrature amplitude 

modulation (MQAM). By assuming the use of coherent demodulation, the number of 

bits that can be transmitted over user i’s k-th subcarrier can be shown to be [27, Eq. 

5.2-80] 
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where bmax is determined by the maximum allowable signal constellation; ζi
(k) is the 

instantaneous signal-to-interference-plus-noise-ratio on the k-th subcarrier of user i, 

and Ω is related to the corresponding BER requirement on that link, and can be 

expressed as 
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In (3.3), Ii
(k) is the interference on the k-th subcarrier of user i caused by other cognitive 

radio users which employ the same subcarrier k and is modeled as additional Gaussian 
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noise and Ni
(k) is the noise power on the k-th subcarrier of user i as described 

previously. Given the N CR users who want to access the spectrum and the pre-existing 

primary users over the spectrum, Ii
(k) represents the interference induced by other 

cognitive radio users who are allocated to use the k-th subcarrier of user i by the 

resource allocation algorithm; on the other hand, Ni
(k) is partially due to some 

pre-existing primary users when a detection error occurs, i.e., the k-th subcarrier of 

user i is incorrectly declared to be available to user i and is actually shared by some 

other primary user. It is worth noting that if the number of primary users and cognitive 

radio users sharing a subcarrier is large enough, Ii
(k) and Ni

(k) can be approximated as 

Gaussian noise due to the central limit theorem. Unfortunately, it is hard to guarantee 

that condition to be satisfied. However, as in Appendix A, it was shown that even if the 

number of users is not large, we still can approximate the interference as Gaussian 

noise as long as the spreading gain is sufficiently large. Similar results can also be 

found in [48, 49]. Finally,   
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where Q(·) is the Gaussian tail function.  

Our problem now is as follows: at a given instant, N CR users have data to 

transmit over the spectrum, but there are already some pre-existing users that occupy 

the spectrum. In order to avoid interference to existing primary users, each CR user has 

to detect the availability of each subcarrier, and it can only select subcarriers from its 

corresponding available subcarrier set Fi, i =1,…,N. By appropriately selecting the 

subcarriers, the objective is to minimize the required power consumption of all the CR 

users while satisfying the BER and data rate requirements of each of them. The goal is 

to find the optimal subcarrier assignment for each CR user, as well as the 

corresponding optimal power and bit allocations. Mathematically, we formulate the 
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problem as follows: 
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C3: The detected available subcarrier set Fi has Ai subcarriers, i =1,…,N. 

Note that constraint C1 represents the power constraint of each user; C2 involves the 

data rate requirement of each user; C3 attempts to ensure that the existing 

communications would not be interfered by emerging new transmissions. The system 

attempts to satisfy the data rate requirement of each CR user, while avoiding 

interference to existing primary users. If user i does not use the k-th subcarrier, then 

Pi
(k) = 0 and bi

(k) = 0. As discussed above, it is obvious that in order to solve this 

constrained optimization problem, we must know the following information: available 

subcarrier set Fi, noise floor power spectral density Si
(k)(f) and channel gain αij

(k). 

However, this information is typically not available to users in a mobile ad hoc 

network. Therefore, in the following section, we provide a cognitive radio approach to 

detect/estimate the necessary information such that the multi-user resource allocation 

on frequency spectrum, transmission power and transmitted data rates can be solved 

jointly. 

 

3.3 Proposed Cognitive Radio Based Resource Allocation  

The system is designed from a cognitive radio perspective, where a cognitive 

process is exploited whenever a mobile user plans to send data over the network. In 

particular, each cognitive process starts with a passive channel sensing at the 

transmitter of the RF stimuli at each subcarrier band and determines if a subcarrier has 

been occupied by pre-existing users. Also, the noise power and the corresponding 



 49

channel gain at each available subcarrier are measured by the receiver. When the 

transmitter collects all the necessary information via a reliable feedback channel, 

spectrum management and power control are executed in order to allocate appropriate 

spectral bands and associated power levels to each user. The previous description 

forms a cognitive cycle as shown in Fig. 3. 1. In this section, we first describe a 

cognitive radio based mechanism for channel sensing and estimation; then we present 

an efficient framework for the spectrum and power management. 

 

3.3.1 Detection and Estimation of Necessary Parameters 

3.3.1.1 Distributed and Cooperative Subcarrier Availability Detection 

Subcarrier availability detection is of paramount importance to avoid 

interference to existing primary communications. In general, not all the parameters of 

the existing primary signals are known, which means a waveform-based correlation 

method for signal detection at a given subcarrier is not feasible. As a consequence, one 

may consider power-based sensing. However, at high SNR, an energy detector is 

Radio 
Environments
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Transmit Power 
Control

Channel Sense, 
Channel State 

Estimation

Available Spectrum,
Noise Statistics

Channel State

Transmitted 
Signal

RF Stimuli

 

Fig. 3. 1. Cognitive cycle at each user. 
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nearly optimal [50], but it functions poorly at relatively low SNR, which is generally 

the case for signal detection in cognitive radio networks. For more details on other 

detection schemes, please refer to [44, 55, 64, 65, 66].  

In this chapter, we employ the multitaper spectrum estimation method (MTM) 

due to its accuracy and near-optimality [41, 51], combined with singular value 

decomposition (SVD), to detect the availability of a subcarrier. We assume that each 

CR node in the network can sense the subcarrier channels in order to determine which 

channels are currently occupied by primary users. In particular, this method consists of 

two steps: at the first step, a node employs MTM to obtain the best possible expansion 

coefficients as defined in (3.6) below. Since the coefficients of the expansion contain 

both the contributions from the background noise and possible interference caused by 

existing users, at the second step, singular value decomposition is performed over the 

obtained expansion coefficients in order to isolate the effects of noise and interference. 

The computational complexity of this method is relatively high, but it is feasible and 

manageable as shown in Appendix B.       

For a given subcarrier of a particular CR user, the user senses the RF stimuli 

from the given subcarrier and obtains a time sample series with V samples. Then it 

computes the expansion coefficients for that subcarrier based on the time series. The 

expansion coefficients are obtained by windowing the data with a Slepian sequence 

and then performing a Fourier transform [52]. As in [52, 53], we can compute those 

expansion coefficients whose energy are concentrated inside a resolution bandwidth, 

2w, which is a parameter used to control the estimation variance (see [52]) as 
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where x(i) is the i-th sample of the time series and vi
(n) is the i-th sample of the n-th 

Slepian sequence with parameters V and w. Finally, K is the number of Slepian 
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sequences and equals 2wV [53]. The fast Fourier transform (FFT) can be employed to 

achieve an efficient computation of (3.6), thus the computation delay for the above 

process can be negligible. 

In order to account for variations of the spectrum at different spatial locations, 

and thus to improve the detection reliability, after we obtain the expansion coefficients 

yn(f), where n = 0, 1,…, K-1, for a  given subcarrier, each node may send this 

information to its neighbors via a control channel for cooperation. Use of cooperation 

in wireless networks has been investigated extensively, especially to achieve diversity 

gains [54], and in a cognitive radio scenario, it is realistic to assume that users can 

exchange calculated information to achieve some kind of cooperation [55]. We assume 

node i receives H-1 sets of the yn
(h)(f), h = 1,…, H-1, from its H-1 neighbors, and, as a 

special case, if H = 1, there is no such cooperation and node i makes use of only its 

own information. At node i, we can form a spatial-temporal H×K matrix as [51] 
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where each row is obtained at different spatial points, and each column is obtained by 

using different Slepian sequences [51]. Each entry of A(f) has a contribution from the 

background noise process and has a contribution due to interference, if any. Since we 

are only interested in the possible interference caused by existing users, in order to 

isolate the possible interference from the background noise, a complex singular value 

decomposition is performed upon the above matrix [51, 56], resulting in  
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where uk(f) and vk(f) represent a left singular vector and a right singular vector, 

respectively, “+” represents Hermitian transposition, and ηk(f) is the k-th singular value, 
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with η0(f) ≥ η1(f) ≥ … ≥ ηK-1(f) ≥ 0. Note that ηk
2(f) is the associated k-th ‘eigenvalue’, 

and it provides an effective frequency domain signal detection parameter which is 

caused by unknown interference as a function of frequency [51, 56]. As shown in [56], 

by performing SVD on A(f) and keeping only the first few largest terms of ηk
2(f), we 

can significantly reduce the background noise while retaining most of the interference 

signal. Typically, only the largest eigenvalue η0
2(f) is used as a signal detection 

parameter [56].  

Now at time t, we obtain the values for ηk
2(f, t), k = 0, 1, …,K-1, and ηk

2(f, t) 

represents the eigenvalue at time t. If we choose the largest eigenvalue η0
2(f, t) as the 

desired detection parameter, we would like to form the detection statistic D(t) at time t 

for the j-th subcarrier at node i as2 

( )∫= B
dftftD 2

0 ,)( η .            (3.9) 

However, because we only have estimates of a discrete set of frequencies, we replace 

(3.9) with 
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where we divide the subcarrier bandwidth B into L bins of width ∆f, and where fc is the 

subcarrier frequency. 

Since, if a subcarrier is occupied by existing users there is interference 

superimposed on the background noise at the sensing node, D(t) in this case would be 

larger than that in a case where such a subcarrier is not occupied by existing users. 

Therefore, we can declare a particular subcarrier to be available or not based on a 

threshold comparison. At time t, the decision regarding the status of a particular 

subcarrier is made according to the following rules: 

(1). Current status is available                                            (3.11) 
                                                        

2 As in [41], D(t) can be interpreted as an estimate of the interference temperature.  
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 Declared to be unavailable iff D(t) – D0 > ∆ and D(t + iTs) – D0 > ∆, i = 0, 1,…, J.  
 Declared to be available, otherwise.   

(2). Current status is unavailable              (3.12) 
 Declared to be available iff D(t) – D0 ≤ ∆.                     
 Declared to be unavailable, otherwise.        

In (3.11) and (3.12), D0 is the typical value of D(t) when only the random background 

noise is present; ∆ is a guard interval for detection and J is a pre-specified number of 

time slots with duration Ts. The decision rule (1) can be explained as follows: given the 

current status that a subcarrier is available at time t, if the detection statistic D(t) 

exceeds the pre-set threshold and D(t) remains higher than the threshold for a 

pre-specified number of time slots, then the status is declared to be unavailable. 

However, if at time t, the detection statistic D(t) exceeds the pre-set threshold, but then 

drops below the threshold, the status would not change and the subcarrier remains 

available. Decision rule (2) has a similar interpretation. By sensing all the subcarriers, 

the i-th user can determine its available subcarrier set Fi, having Ai free subcarriers. 

However, since false alarms and missed detections both can occur, the system must be 

designed to accommodate these errors. Note that the selection of ∆ affects the system 

performance in the following way. If ∆ is small, a detection error would most likely be 

a false alarm, and if ∆ is large, a detection error would most likely be a missed 

detection. 

In order to lower the probability of detection error, we allow cooperation 

among mobile users. More specifically, if there is no central controller available, a 

partially cooperative scheme can be implemented whereby each CR user will 

broadcast its available subcarrier set Fi to its neighbors via control packets. Each 

cognitive radio transmitter can then collect such information and use a simple majority 

logic to determine the status of each subcarrier. Hence, enhanced system performance 

can be expected due to the diversity gain associated with this local cooperation.  

For illustration purposes, we assume, for the k-th subcarrier of the i-th user, that 
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the detection error probability is Pei
(k)=Pe, for all i, and that a node receives H-1 

decision sets from its neighbors. Then, the residual detection error probability for the 

k-th subcarrier becomes 
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In an ad hoc network with satisfactory overall network throughput, the number of 

neighbors of a node might be approximately 6 – 8 [57]. In Fig. 3. 2, we show the 

performance of this cooperation scheme when the initial detection error probability 

Pei
(k) = Pe = 0.05 or 0.1, for all i, and for H ≤ 11. As we can see, when H increases, 

Pe(k) decreases significantly, even when H is not large, say H ≤ 5. Therefore, we can 

greatly reduce the detection error probability by using cooperation, and thus improve 

system performance. The entire detection procedure is simplified in Fig. 3. 3.  

 
Fig. 3. 2. Distributed cooperation to reduce the detection error probability. 
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3.3.1.2 Noise Floor Power Spectrum Density (PSD) Estimation 

After detection of the available subcarrier set for the i-th cognitive transmitter, 

at the corresponding receiver the noise power spectral density of the k-th free 

subcarrier, Si
(k)(f), is estimated. The sources of the noise power are a combination of 

thermal noise, possible NBI, and primary users when detection error occurs. As 

discussed previously, the statistics of the noise are assumed to be Gaussian with noise 

power Ni
(k)=∫BSi

(k)(f)df. From (6) and [53, Eq. 2.4], the noise PSD, Si
(k)(f), at the k-th 

available subcarrier of the i-th receiver can be estimated as 
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It has been shown in [58] that the multitaper spectral estimate in (3.6) and (3.14) can 

be viewed as an “approximation” of a maximum-likelihood power spectrum estimate. 

Finally, we can compute the noise power as 
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where the subcarrier bandwidth B is divided into L segments of width ∆f. 

 

At user i, for its j-th subcarrier
1. Compute yn(f), n = 0,…,K-1;
2. Partial cooperation may be performed by exchanging the information on yn(f) 

among its neighbors;
3. Form A(f) and perform singular value decomposition (SVD);
4. Form the detection statistic D(t);
5. Perform the threshold comparison and obtain the available subcarrier set;
6. Partial cooperation is performed by exchanging the available subcarrier 

set among its neighbors; 
7. And majority logic applies to obtain the final available subcarrier set.  

Fig. 3. 3. Distributed cooperative subcarrier detection procedure. 
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3.3.1.3  Channel Gain Estimation 

Since power control requires channel state information for each available 

subcarrier, channel estimation is needed in any power control system. However, it is 

well known that as the Doppler spread increases, the coherence time decreases and the 

accuracy of the channel estimates degrades, since the channel samples are less 

correlated and the observation time available to both make and use the channel 

estimates is decreased. We now focus our attention on the impact of Doppler spread on 

the estimation performance. In the literature, there have been many papers that discuss 

the estimation error due to noise and Doppler spread, but rarely do they result in a 

closed-form expression. However, in [59], a simple approximation for the estimation 

error σe
2, obtained with the use of a Linear Minimum-Mean-Square-Error (LMMSE) 

estimator, is  
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where r(0) is the power of the fading process that we will normalize to unity, Te is the 

interval between two adjacent channel samples, Bd is the maximum Doppler spread, σp
2 

is the noise power and S(f) is the Doppler power spectrum over the normalized Doppler 

frequency [-TeBd, TeBd]. In order to further simplify this expression, we assume a 

uniform Doppler spectrum within [-TeBd, TeBd]; that is, S(f)=S0, for f in [-TeBd, TeBd]. It 

has been shown in [59] that this assumption can appropriately mimic the true 

performance in (3.16), even if the Doppler power spectrum is not uniform. Then, 

according to [59], we have 
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By using the fact that r(0)= S0·2TeBd, (3.17) can be reduced to 
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where SNReff is the effective SNR defined as 
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and the coherence time Tc ≈1/2Bd which leads to the last step in (3.19).  

It is evident that σe
2 is a monotonically decreasing function of SNReff, and as the 

coherence time Tc increases, σe
2 decreases. This is consistent with the fact that a 

smaller Doppler spread, i.e., a larger coherence time, can improve the estimation 

performance since it allows averaging over more symbols which are highly correlated 

to each other. In this chapter, we assume the distribution of channel estimation error to 

be a Gaussian random variable with zero mean and variance σe
2, as in [60]. Therefore, 

the estimated channel gain can be expressed as the sum of the actual channel gain and 

a Gaussian random variable with zero mean and variance σe
2, as in (3.18). 

 

3.3.2 Spectrum Management and Power Control 

In essence, the aims of the spectrum management and power control for this 

cognitive radio based multi-user ad hoc network are to optimally select the available 

subcarriers and the associated power levels for each CR user, so as to satisfy the 

constraints on power and data rate for each user, as stated in (3.5). Ideally, a global 

optimum solution is desired. However, finding such a global optimum solution requires 

an exhaustive search. In our case, with N potential new CR users, each of which has Ai 

available subcarriers, i = 1,…, N, and a data rate requirement of Ri bits, i = 1,…, N, the 

total number of possible allocations is 
1

i
N R

ii
A

=∏ , and the exhaustive search turns out 

to be infeasible due to the computational burden. In order to alleviate the 

computational complexity, we propose a distributed multi-user resource allocation 
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approach which attempts to search for a suboptimal solution.  

In order to jointly allocate subcarriers and power levels, we first define an 

indicator to represent the quality of the k-th free subcarrier of the i-th user as the ratio 

of the corresponding channel gain to the noise-plus-interference power: 
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where αii
(k) is the associated channel gain and Ni

(k) is the noise power on the k-th 

subcarrier of user i. Since, in our applications, a central controller is not available due 

to the lack of infrastructure of ad hoc networks, a distributed algorithm is needed. In 

this subsection, we provide a distributed multi-user resource allocation approach where 

only the ‘local’ information is needed at each cognitive radio user. In order to lower the 

detection error, a partially cooperative scheme is used, as discussed previously.  

We assume that time is divided into equi-length slots. At the time-of-interest, 

there are multiple CR users who want to transmit. After the detection and estimation 

procedures, each user has its ‘local’ information available at the transmitter side, i.e., 

available subcarrier set, channel state information, and noise power. With only this 

local information, a CR user has to perform the resource allocation individually: any 

given CR user assumes that no other users will share the resources with it; then, the 

user sorts its available subcarriers from the best to the worst, based on the Q values 

(3.20); finally, it selects the ordered subcarriers from the best to the worst sequentially 

until it satisfies the data rate requirement, and employs the minimum required power 

on each selected subcarrier. After that, it starts transmissions. However, since there are 

actually multiple CR users sharing the resources, some subcarriers may have been 

chosen by multiple CR users. Then, a conflict may occur and the received SINR of a 

user would be below the desired one. To quantify how likely such a conflict is, assume 

that N CR users are present, and each of them will select k free subcarriers for their 
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transmissions from a common available subcarrier set F of size m. Then, a lower 

bound on the probability of at least one conflict can be shown to be (See Appendix C 

for details) 
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N k

mat least one conflict is found e
−

≥ − .        (3.21) 

As we can see in Fig. 3. 4 with N = 3, the probability is relatively high, especially 

when k ≥ 4 and m ≤ 32. Note also that, when PNBI is large, the system is likely to 

produce a large number of detection errors, and thus make m very small.  

Hence, now the problem is as follows: for a given conflicting subcarrier, where 

Q users are overlaid on it, we want to minimize the total power consumption for all the 

Q users while satisfying the data rate requirement of each user. Assume P = [P1, P2, …, 

Fig. 3. 4. Illustration of the probability of at least one conflict is found for N = 3. 
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PQ], B = [B1, B2, …, BQ], and  ζ =[ζ1, ζ2, …, ζQ] are the transmit power vector, the data 

rate vector and the corresponding SINR threshold vector, respectively, for the Q users 

on the conflicting subcarrier. For user i, i = 1,..,Q, the corresponding received SINR is  
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where αij is the channel gain between the i-th transmitter and the j-th receiver, and it 

contains the effects of path loss, fading, as well as processing gain, and Ni is the noise 

power at the i-th receiver. In order to satisfy the data rate requirement of user i, the 

received SINR should satisfy SINRi ≥ ζi. Now, the SINR expressed in (3.22) can be 

defined for all the Q users as follows: 

                            ( ) TI P μ−Λ ⋅ ≥ ,           (3.23) 

where I and Λ are Q-by-Q matrixes and Λ is defined as Λ = [hij]Q×Q such that hij = ζi 

·αji/αii for i ≠ j and hij = 0 for i = j; finally, μ = [ζi ·Ni/αii]Q×1. The transmit power Pi is 

upper-bounded by Pi_max, which denotes the maximum power of each user on the 

subcarrier. The matrix Λ has nonnegative entries. If we let λmax be the maximum 

eigenvalue of Λ, we then have the following well-known lemma:   

Lemma 1: An optimal power vector P* > 0 exists, which satisfies (3.23) with equality if 0 < 
λmax < 1. 
Proof: Based on Perron-Frobenius theorem. See [9] for details. □ 

In [9], Foschini and Miljanic proposed a simple iterative distributed power 

control (DPC) algorithm to solve (3.23) such that the optimal power vector P* can be 

found: 

                    )(
)(

)1( kP
kSINR

kP i
i

i
i ⋅=+

ζ ,           (3.24) 

where Pi(k) and SINRi(k) are the power level and the associated SINR for the k-th 

subsequent time slot on that particular subcarrier of user i, i = 1,..,Q, respectively. Each 

user can then independently adjust its power based on (3.24), attempting to exactly 
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meet the required SINR threshold. Now, some natural questions are: 1) how to protect 

the primary users on a subcarrier when detection errors occur; 2) how to protect a CR 

user once it is admitted to the system; 3) how to find P* if λmax > 1, i.e., when it is not 

feasible to find an optimal power vector for all the Q users; 4) what the effect is of a 

maximum power constraint. In what follows, we propose an adaptive power control 

algorithm with user protection and adaptive rate control (APC/UP/ARC) to address the 

four questions, based on the prior work in [63].   

We first introduce the following definitions: user i, i = 1,..,Q, is in the active 

user set X(k) during the k-th step iff user i is originally a primary user or user i is a 

cognitive radio user such that its SINRi (k) ≥ ζi. That is, once a CR user’s SINR is 

satisfied, it then becomes an active user. Similarly, user i, i = 1,..,Q, is in the transition 

user set Y(k) during the k-th step iff user i is originally a CR user and SINRi (k) < ζi. We 

also define a protection margin, δ, for users in X(k) where δ is slightly larger than 1. 

Now, the APC/UP algorithm is described as follows [63]: 
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ζδ
.        (3.25) 

It is worth noting that in APC/UP, users in X(k) adjust their power levels based on 

(3.24), but with a target δ·ζi. On the other hand, users in Y(k) increase their power 

levels at the geometric rate δ. The protection margin δ is used to compensate for the 

interference induced by CR users, and users in Y(k) update their power levels 

gradually so that limited interference is imposed upon active users in each step. This 

APC/UP power control algorithm has the following important properties [63]: 

Proposition 1 (Protection for Active Users): for any δ > 1, for an arbitrary k and every i є X(k), 
we have SINRi(k) ≥ ζi => SINRi(k + 1) ≥ ζi during the evolution of the APC/UP power control 
process. 
Proposition 2 (Limited Power Increase): for any δ > 1 and an arbitrary k, if i є X(k) and 

SINRi(k) ≥ ζi, we have Pi(k+1) ≤ δ·Pi(k). 
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Proposition 3 (Transition User SINR Increase): for any δ > 1, for an arbitrary k and every i є 
Y(k), we have SINRi(k) ≤ SINRi(k +1).  
Proof: See [63] for details. □ 

The first proposition shows that when a user enters X(k) with its SINR 

requirement satisfied at time k, it can guarantee that condition from then on. This 

proposition provides inherent protection to active users, which is significant in a 

cognitive radio network. Proposition 2 demonstrates that active users in X(k) with their 

SINR requirements satisfied only increase their power levels gradually in order to 

induce limited interference and thus admit other CR users more easily. Proposition 3 

shows that a CR user’s SINR is non-decreasing, and thus eventually it can reach its 

target SINR. Thus, the first two questions raised previously have been addressed by this 

APC/UP power control algorithm. However, as the APC/UP algorithm evolves, if there 

is no optimal power vector which can satisfy the SINR requirements of all the Q users 

with the current data rate vector B = [B1, B2, …, BQ], some of CR users cannot gain 

access, since their SINR requirements cannot be satisfied. Therefore, it is beneficial 

that those users who cannot gain access decrease their data rate, and thus, decrease the 

corresponding SINR requirements. To accomplish this, consider the following adaptive 

rate control (ARC) algorithm, to be used together with the APC/UP algorithm. Each 

CR user pre-sets a time duration Ti within which it tries to access the system; if it does 

not gain access after Ti steps, it will compute a time control interval ∆Ti (See (3.26) 

below) which is a decreasing function of the difference between its current SINR and 

its target one; if, after Ti + ∆Ti steps, it still cannot gain access, it will decrease its data 

rate by ∆B and repeat the above process. It continues in this mode until it gains access 

successfully or stops transmission because Bi is less than or equal to zero. The 

APC/UP/ARC algorithm can be briefly described as follows: 

Step 1: After CR user i starts transmission, it measures its current SINR(k). If SINR(k) ≥ ζi, CR 
user i becomes an active user and then adjusts its power according to (3.25); if not, it 
goes to Step 2. 
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Step 2: If k є {K0, K0+1,…, K0 + Ti + ∆Ti –1}, CR user i adjusts its power using (25) and goes 
back to Step 1 with k = k +1. K0 is time slot index when user i starts using its current 
data rate Bi. ∆Ti is computed as a function of the distance between the current SINR 
and its threshold [63] 

( ) ( )( ) exp ( ( ))i i i i i i iT f SINR T A SINR Tζ β ζ⎢ ⎥Δ = − = − −⎣ ⎦ ,    (3.26) 

where A ≥ 0 and β ≥ 0; ⎢ ⎥⎣ ⎦ is the integer part of the argument. Then, ∆Ti is a 
decreasing function of the 

distance between its SINR at step Ti and the threshold.  
Step 3: If k = K0 + Ti + ∆Ti, user i decreases its data rate by ∆B. If Bi >0, it updates its SINR 

threshold ζi and goes back to Step 1 with k = k +1; if Bi ≤ 0, user i stops its 
transmission.  
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Fig. 3. 5. Illustration of the distributed spectrum and power allocation with APC/UP/ARC. 
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Fig. 3. 6. Normalized throughput per user vs. PI; PN = 0.4; control channel BW = 128 KHz; with 

cooperation. 

 

Now we have addressed the third question raised previously by using the 

APC/UP/ARC algorithm. More specifically, when the current scenario of Q users is 

not feasible, a CR user will adjust its data rate independently, until it gains access or it 

stops transmission. Finally, we have the fourth question to be solved where a 

maximum power constraint, Pi_max, is imposed for each user in X(k) and Y(k). When 

CR users attempt to access the system, they keep powering up their power levels, thus 

more interference will be induced to users in X(k). As a result, users in X(k) also have 

to increase their power levels, as in (3.25), otherwise their SINR requirements cannot 

be satisfied. However, if a power constraint is present, it is possible that, at some point, 

the power level of an active user cannot increase further, and its SINR will fall below 

the threshold. It is also possible that a CR user has to exceed its power constraint in 
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order to satisfy its SINR threshold. Motivated by the distress signaling concept in [63], 

our mechanism can be described as follows: when user i is approaching its power 

constraint Pi_max, and its current power Pi(k) є [Pi_max/δ, Pi_max], a distress signal is 

broadcast, and each CR user in the vicinity of the distressed user i will decrease its data 

rate by ∆B, and thus decrease its power level. Then, user i will experience less 

interference and lower its power level. However, if after user i broadcasts the distress 

signal, its power is still increasing, user i then has to decrease its data rate by ∆B in 

order not to exceed its power constraint.  

 

Fig. 3. 7. Normalized throughput per user vs. PI and PN; Perfect channel estimate; control channel 
BW = 128 KHz; with cooperation. 

 

The complete procedure of the proposed APC/UP/ARC algorithm is illustrated 

in Fig. 3. 5. Therefore, by using the proposed APC/UP/ARC algorithm, each user can 
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independently adjust its power level and perform distributed rate control with only its 

local SINR measurements, and thus a conflict can be solved in a distributed manner 

when it occurs.  

 

3.4 Simulation Results and Discussion  

In this section, we present the simulation results and evaluate the impact of key 

parameters upon system performance. We examine the performance of an ad hoc 

network with 30 nodes randomly distributed in an area of size 200×200 m2. There are 

64 subcarriers in the multicarrier system, and each subcarrier experiences flat Rayleigh 

fading. The path loss exponent is 4, and the thermal noise power density of each 

subcarrier is -145 dBm/Hz [62]. We assume that the data rate requirement of each 

cognitive radio transmitter can be modeled as a Gaussian random variable. The mean 

and variance of this random variable are taken to be 35 bits-per-symbol duration and 

20% of the mean, respectively. Since the maximum number of bits that a subcarrier can 

support is set to be 7-bits-per-M-ary QAM symbol, a user typically employs multiple 

subcarriers for its transmission. The BER requirement of the system is 10-4, and the 

maximum power of each user is set to be 100 mw. PI is the probability of a subcarrier 

being occupied by a primary user, and PN is the probability of NBI overlaying a 

subcarrier of a given user. Each CR user seeks access into the system for Ti = 30 time 

slots and the protection margin is taken to be 1.125 [63].  

In Fig. 3. 6, we show the normalized throughput-per-user as a function of PI 

and the Doppler spread. Note that there are two reasons why the performance degrades 

when PI increases. As PI increases, more primary users are present and less system 

resources are left for CR users, thus more conflicts occur; also, as PI increases, the 

number of detection errors also increases. However, due to the proposed node 

cooperation and the proposed power control algorithm, the performance degradation 
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due to the increase of PI is marginal, especially when PI is small, say PI ≤ 0.5. 

Furthermore, we note that when Doppler spread is present, performance degrades 

further due to the channel estimation error. This is consistent with our previous 

discussion: as Doppler spread increases, the coherence time decreases and the accuracy 

of the channel estimates degrades. As a result, system performance degrades.  

 
Fig. 3. 8. Normalized throughput per user vs. PI; Perfect channel estimate; control channel BW = 

128 KHz. 

 

In Fig. 3. 7, we show the normalized throughput-per-user as a function of both 

PI and the probability of NBI being present, PN . As we can see, when PI increases, the 

system performance degrades, which is consistent with Fig. 3. 6. However, when PN is 

relatively small, the system performance is good even when PI is large. Alternatively, 

as PN increases, the NBI causes more performance degradation for a given PI, and 
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when PN is relatively large, system performance degrades significantly when PI is also 

large, since more detection errors occur and less system resources are available to CR 

users.  

We demonstrate the impact of the local node cooperation upon the system 

performance in Fig. 3. 8. Note that the performance degradation with local cooperation 

is much more graceful compared to the case where no cooperation is used. In particular, 

the performance without cooperation degrades very rapidly as the PI and PN become 

large. Therefore, local node cooperation, as discussed previously, is highly desirable 

for the distributed approach to achieve satisfactory performance.  

 
Fig. 3. 9. Normalized throughput per user vs. control channel BW; PN = 0.4; Perfect channel 

estimate; with cooperation. 

 

Finally, in Fig. 3. 9, we show the impact of control channel bandwidth upon the 
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system performance. When a high-bandwidth control channel of 256 KHz is available, 

the information (the available subcarrier set, and the channel estimate and the noise 

power estimate of each available subcarrier) of all the 64 subcarriers can be exchanged 

between a receiver and its corresponding transmitter, thus yielding good performance. 

Note that when the control channel bandwidth reduces from 256 KHz to 32 KHz, there 

is almost no performance degradation. This is due to the fact that, on the one hand, 

each user orders the subcarriers from the best to the worst, and always picks the best 

subcarriers for its transmission. On the other hand, when the control channel 

bandwidth is reduced from 256 KHz to, say, 32 KHz, although it is not possible to feed 

back the information of all the 64 subcarriers, each user always orders the subcarriers 

and feeds back the information of the best subcarriers. As a result, when the control 

channel bandwidth reduces from 256 KHz to 32 KHz, a user would pick the same set 

of subcarriers for its transmission, and so the system performance is the same. 

Therefore, as we can see, generally, in order to provide satisfactory system 

performance, a high-bandwidth control channel which can exchange all the 

information of all the 64 subcarriers between a transmitter and its corresponding 

receiver is not necessary for our system, say, 256 KHz. Instead, a low-bandwidth 

control channel which is able to feed back information of part of the subcarriers, say 32 

- 128 KHz, is sufficient. However, when control channel bandwidth reduces further, 

i.e., to 16 KHz, system performance degrades significantly, since now the system 

cannot provide sufficient feedback information to perform the resource allocation. 

 

3.5 Summary and Conclusions  

In this chapter, we proposed a cognitive radio based multi-user resource 

allocation framework for mobile ad hoc networks using multi-carrier DS CDMA 

modulation over a frequency-selective fading channel. More specifically, given the 
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existing spectral conditions and existing primary users, we first proposed a detection 

and estimation mechanism to detect the availability of each subcarrier, as well as to 

estimate the channel state information and the noise power; based on that, a distributed 

resource allocation approach was provided to jointly allocate spectral bands, power and 

data rate among multiple cognitive radio users. Finally, we investigated the 

performance of the system under different scenarios and examined the impact of 

multiple key parameters.  

 

3.6 Appendix 

3.6.1 Justification on Gaussian Approximation  

As shown in Fig. 3. 10, let node i be transmitting a QAM symbol with duration 

T to node j while there is an interferer, node k, on the same subcarrier with central 

carrier frequency ωc. ck
(I)(t) and ck

(Q)(t) are two random spreading sequences of 

interferer k in the in-phase and the quadrature branch. We assume that the random 

spreading sequences are long enough so that each chip of ck
(I)(t) and ck

(Q)(t) can be 

approximated as an i.i.d. random variable taking 1 or -1 equally probable with chip 
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Fig. 3. 10. Receiver structure. 
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duration Tc. We further assume that the spreading sequences used at the desired 

receiver j are deterministic. Then, the received interference term at node j from 

interferer k before de-spreading and demodulation is 

)sin()()cos()()( )()()()( θωτθωτ +−++−= ttcAttcAtI c
Q

k
Q

kc
I

k
I

k ,    (3.27) 

where Ak
(I) and Ak

(Q) are the received amplitudes; τ is the delay induced in transmission 

and θ is the phase parameter including both the original phase and the phase shift.  

At node j, after demodulation and de-spreading at both the I and Q branches, 

the final outputs at the I and Q branches are as follows:  
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where ZI and ZQ are the outputs at the I and Q branches of the desired receiver j, 

respectively; θ1 is the relative phase between the interferer node k and the receiver j. 

ci
(I)(t) and ci

(Q)(t) are deterministic spreading sequences at the desired receiver j. 

Therefore, the first term of ZI is as follows: 
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In (3.29), the term in the first summation, ck
(I)(n-1)ci

(I)(n), can be replaced by an i.i.d 

random variable C1(n) taking 1 or -1 equally likely, since ci
(I)(n) is deterministic and 

ck
(I)(n-1) is an i.i.d random variable taking 1 or -1 equally likely. So, the summation is 

over a sequence of L i.i.d random variables. Similarly, ck
(I)(n)ci

(I)(n) can be replaced by 
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an i.i.d random variable C2(n) taking 1 or -1 equally likely. Thus, Z1 can be expressed 

as 
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As long as the spreading gain L is sufficiently large, the two summations in (3.30) can 

be approximated as conditionally Gaussian due to the central limit theorem, 

conditioned on the channel. The same process applies to Z2, Z3, and Z4, and, as a result, 

the interference term ZI and ZQ at node j due to interferer node k can be approximated 

as conditional Gaussian noise.  

Therefore, even when the number of interferers is not large, as long as the 

processing gain is sufficiently large, the interference from other users can still be 

approximated as additional Gaussian noise. 

 

3.6.2 Computational Complexity Analysis for Subcarrier Availability Detection 

We assume the spectrum has M subcarriers, and that each of these subcarriers 

has been divided into L bins of width ∆f. We use K Slepian sequences of duration V in 

the estimation. At each frequency of interest, in order to choose the largest eigenvalue 

η0
2(f) as the desired detection parameter, we need: 

a. K·log2(K) additions (use quick sort algorithm to search for the largest singular 

value η0(f) from ηk(f), k = 0, 1, …,K-1). 

b. 2 multiplications (using η0(f) to compute η0
2(f) and η0

2(f)·∆f).  

c. K Fast Fourier transforms (FFT) of length V, and 1 singular value 

decomposition (SVD) on a matrix of dimension H×K. 

Therefore, in order to form D(t) at time t to update the subcarrier status for all 

the subcarriers, a node should perform: 

a. M·L·(1+K·log2(K)) additions. 
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b. M·L·2 multiplications. 

c. M·L SVD and M·L·K FFT.    

The computational complexity increases linearly with M, L, and K. Generally, 

M is fixed in a real system and we can vary L and K to tradeoff detection performance 

and system complexity according to the given performance constraints and the 

hardware complexity limitations. Therefore, although the complexity is relatively high, 

it is feasible and manageable in a real system and can provide higher performance than 

other detection mechanisms as shown in [41].  

 

3.6.3 Probability of Conflict for the N-User Case 

We first assume user i picks a set of subcarriers, Si = [x1
(i), x2

(i), …, xk
(i)]. 

Assuming each user selects a subcarrier from F with equal probability, for any 

two-user pair, user i and user j, given x1
(i), the probability of Pr {x1

(j)
 ≠x1

(i)} = 1 – 1/m. 

Then, the probability of no conflict in Sj to x1
(i) is  
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Therefore, the probability of no conflict in Sj to Si is  
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So, the probability of no conflict in all two-user pairs is 
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Finally, the probability of at least one conflict is found can be shown to be 
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where the last step comes from the fact that 1 – x ≤ e-x, when x is small. 
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4   

Cooperative and Constrained MIMO 

Communications in Wireless Ad Hoc 

Networks 
 

4.1  Introduction 

In modern wireless communications, enhanced spectral efficiency can be 

achieved by the use of multiple-input-multiple-output (MIMO) systems. Recently, 

MIMO has attracted extensive attention and various techniques have been proposed for 

both cellular systems and ad hoc networks [67, 68] to achieve improved system 

performance. However, in wireless ad hoc/sensor networks, direct employment of 

MIMO to each node might not be feasible, since MIMO might require complex 

transceiver and signal processing modules, which result in high power consumption. 

Furthermore, nodes in wireless ad hoc networks/sensor networks are often powered by 

batteries with limited energy. This makes direct application of MIMO to each node 

inefficient from a power-efficiency point of view. Also, nodes in an ad hoc/sensor 

network might be of small physical size, which precludes the implementation of 

multiple antennas at each node.  

As alternatives, cooperative MIMO techniques [69, 70] have been proposed. 

By the cooperation of multiple nodes, each of which has a single antenna, a virtual 

MIMO structure can be constructed which supports space-time processing, and thus 

improved system performance can be expected. In [69, 71], it has been shown that by 
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using this type of cooperation, cooperative MIMO can achieve better energy and delay 

performance compared to a Single Input Single Output (SISO) system, even 

considering the required overhead in a MIMO system. In [72], space-time coded 

cooperative diversity protocols are proposed to combat multipath fading. More 

specifically, the protocols exploit the spatial diversity available among a collection of 

nodes that can relay messages for one another such that the destination node can 

effectively average the fading. In [73], adaptive spatial multiplexing techniques for 

distributed MIMO systems are proposed, together with link adaptation based on 

available channel state information. Further performance gain can be achieved by 

appropriate power allocation among nodes that join the cooperation [74, 75]. In [74], 

optimal energy distribution is proposed with an attempt to minimize the link outage 

probability, while in [75], with only mean channel gain information, a source node 

jointly selects the cooperative nodes from its neighbors and optimally allocates power 

to each cooperative node in order to minimize outage probability.  

However, the focus of the previous work (with a noticeable exception in [69]) 

is just one part of the entire cooperation procedure. More specifically, in order to 

achieve cooperative MIMO, a source node should first distribute data information to 

other cooperative nodes; this is the first stage or the “local distribution” stage. After 

each cooperative node receives information from the source node, the second stage is 

carried out by using a particular cooperative protocol, where the source node and the 

cooperative nodes collaborate together to form a virtual MIMO system and transmit to 

the destination node. The second stage is sometimes referred to as “long haul” 

transmission. Most previous work, such as [70-75], only focused on the second stage, 

without considering the effects in the first stage. In order to have a complete view of 

cooperative MIMO in wireless networks, both stages should be jointly considered. For 

example, the number of cooperative nodes should be chosen very carefully by taking 
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into account the energy consumption and the delay induced at the local distribution 

stage, and this might limit the number of nodes used for cooperation. Furthermore, in 

order to improve the system performance against channel impairments, such as deep 

fades, joint power control and rate adaptation should also be considered such that the 

power level and rate assigned to each cooperative node can be adaptively adjusted in 

order to achieve robust system performance.  

Therefore, in this chapter, for a cooperative MIMO system with uncoded spatial 

multiplexing, we jointly consider the selection of cooperative nodes and the power/rate 

allocation among the selected nodes in order to minimize the bit-error-rate 

performance of the system. More specifically, we quantify the energy and delay 

induced during the local distribution stage; then, for the long haul transmission stage, 

given a subset of cooperating nodes, we express the system performance as a function 

of that subset of nodes, and the power/data rate allocated to each node; after that, we 

form a multi-variable optimization problem to maximize the performance at the 

destination node, taking into account both stages and the energy/delay/rate constraints. 

Finally, we investigate how to select the cooperative nodes and how to solve the 

optimization problem where the source node either has perfect instantaneous channel 

state information (CSI), or the source node only knows the channel correlation 

information. It is worth noting that the problem of cooperative node selection is similar 

to the problem of antenna selection in MIMO [84-86], but in this chapter, it is applied 

with distinct application scenarios and different system constraints. 

This chapter is organized as follows: in Section 4.2, we present the system 

description and problem formulation, including the system channel models, the 

receiver structure, and the optimization problem when both stages are jointly 

considered; in Section 4.3, we quantify the energy consumption and delay induced 

during the local distribution stage; in Section 4.4, we investigate the selection 
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algorithms which are employed to choose the subset of cooperative nodes under 

different system conditions; in Section 4.5, we briefly describe the procedure which is 

used to realize the cooperation; finally, simulation results and discussions are presented 

in Section 4.6, followed by a conclusion in Section 4.7. 

 

4.2 System Description and Problem Formulation 

4.2.1 System and Channel Models 

We assume that the source node can form a virtual MIMO system by 

cooperating with its neighbors, where all such nodes, including the source node, have a 

single antenna. However, the destination node is assumed to be large enough so that 

multiple receiver antennas can be implemented. For example, this scenario might 

correspond to one where multiple soldiers with small carry-on communication units 

want to transmit to a destination node mounted on a vehicle. Here, we assume that the 

source node has K-1 neighbors, and we want to select N out of the K nodes to form a 

virtual MIMO system, including the source node. The destination node is assumed to 

have R receive antennas, where R ≥ K. The distance between the source node and the 

destination node is D1, and the neighbors of the source node are randomly distributed 

within a radius of D0 of the source node. Here, we assume D1 >> D0, so that the 

distance between each cooperative node and the destination node can be approximated 

as D1 [69].          

The wireless channels between the source node and its neighbors are assumed 

to experience i.i.d. frequency-flat Rayleigh fading with parameter σ0
2 plus path loss 

with path loss exponent equal to 4. On the other hand, the channel between the 

cooperative cluster with N nodes (source node plus cooperative neighbors) and the 

destination node is assumed to experience a combination of frequency-flat Rayleigh 
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fading with parameter σ1
2, shadowing, and path loss with loss exponent equal to 4. The 

wireless channel is assumed to be slowly-varying and is taken to be constant within the 

duration of its coherence time. In wireless transmission, high correlation can be 

induced between propagation paths by shadowing if they are blocked by the same 

obstacle, such as a tree or a building [76]. In this chapter, for simplicity, we only 

consider the correlation effect caused by shadowing. Typically, channel correlation 

caused by shadowing exhibits distance dependence, and thus we model the channel 

correlation between any two given cooperative nodes using an exponential model as in 

[76]: 
d
Dρ β= ,           (4.1) 

where ρ is the correlation between the two nodes separated by distance d, and β is the 

correlation between two nodes separated by distance D. β and D can be measured by 

field tests and then can be used to calculate the correlation between any two nodes [76]. 

The system model is illustrated in Fig. 4. 1, where a source node selects 2 out of its 3 

D0

D1

High CorrelationObstacle 
Destinationsource

Fig. 4. 1. Illustration of the system model. 
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neighbors to form the virtual MIMO system with the destination. 

We assume that the system is time-slotted, where the time synchronization 

among the nodes can be achieved through some kind of beaconing (as in IEEE 802.11). 

At the receiver, the multiple cooperative nodes would typically interfere with one 

another, and in order to remove the multistream interference, successive interference 

cancellation (SIC) is used. Assume we have N cooperative nodes, and let x = [x1, x2… 

xN] denote the transmitted vector, and y = [y1, y2… yR] denote the received vector at the 

destination node with R receive antennas. The received signal vector y, after matched 

filtering, can be shown to be given by 

= +y Hx n ,           (4.2) 

where H represents the channel matrix between the cooperative cluster and the 

destination node, and has dimension R×N, and n = [n1, n2… nR]T represents i.i.d. 

Gaussian noise with zero mean and variance σn
2. For simplicity, if we assume that the 

correlation only resides at the transmitter side, then the channel matrix H can be 

expressed as [77] 

1/ 2
w T=H H R ,           (4.3) 

where Hw is an R×N matrix whose elements are i.i.d. complex Gaussian random 

variables with zero mean and unit variance, and RT is an N×N correlation matrix 

among the cooperative nodes, i.e., among the transmit antennas. From (4.1), RT can be 

expressed as follows: 
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221
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⎢ ⎥⎣ ⎦

R ,         (4.4) 

where dij is the distance between node i and node j, and dij = dji. 
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4.2.2 Local Distribution and Long-Haul Transmission 

We assume that, in total, the source node has a bit stream of L0 bits to be sent to 

the destination. By using the proposed node selection algorithms described in Sec IV, N 

nodes are selected to perform cooperation. Then, during the local distribution stage, the 

source node forms N different substreams, and distributes the N substreams to the N 

selected cooperative nodes such that each cooperative node has one distinct substream. 

During this step, under the assumption that the system is time-slotted with slot duration 

Ts, and that TDMA is employed to distribute the source information, delay is 

introduced. We let T(1)
tot denote the total delay introduced during the local distribution. 

Also, the local distribution requires a minimum energy in order to guarantee the 

transmissions from the source node to its neighbors are reliably received. We let E(1)
tot 

denote the total energy consumed in this stage, and assume it contains both the 

transmission energy and the circuit energy consumption, as detailed in Section III. For 

simplicity, we assume that the source node knows the location of each neighbor and 

the corresponding channel gain between them. 

In the second stage, i.e., the long haul transmission, all the N selected 

cooperative nodes collaborate together and form a virtual MIMO system with the 

destination node. The total transmission power for all the cooperative nodes is 

constrained to be less than or equal to PT, as in [90, 91]. Further, we let E(2)
tot be the 

total energy used in this stage by all the cooperative nodes and the destination node, 

where E(2)
tot contains both the transmission energy consumption and circuit energy 

consumption. Lastly, the total delay associated with this stage is given by T(2)
tot. All the 

parameters associated with these two stages will be discussed in more detail in a later 

section. 

 

4.2.3 Spatial Multiplexing and ZF-SIC with QR Decomposition 
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We assume that the receiver has perfect CSI, and in order to exploit the 

capacity of a MIMO system, we consider the use of spatial multiplexing, where the 

source node first divides the incoming bit stream into N substreams, and then the 

source node distributes each of these substreams to one of the N cooperative node. 

Finally, each cooperative node sends an independent bit stream to the destination node 

simultaneously with other cooperative nodes via the virtual MIMO structure between 

the cooperating nodes and the destination node.  

At the destination node, in order to detect the original bit-stream in MIMO-like 

transmissions, many receiver design strategies can be considered, such as linear 

receivers (zero-forcing or MMSE), V-BLAST (Ordered Successive Interference 

Cancellation) and Successive Interference Cancellation (SIC) [77]. In this chapter, we 

employ successive interference cancellation with fixed detection order in conjunction 

with ZF at each detection stage. For simplicity, we assume all previous decisions in the 

ZF-SIC are correct` as in [86]. Then, based on a matrix QR decomposition [78], the 

channel matrix H can be decomposed as H = QR, where Q is an R ×N unitary matrix 

with orthonormal columns, i.e., QHQ = IN, ((·)H denotes the Hermitian transpose), and 

R is an N ×N upper triangular matrix. The QR decomposition is widely used in 

MIMO communications due to its simplicity and high computational efficiency [82, 

83]. Multiplying the received signal vector, Eq (4.2), with QH, we obtain the following 

modified received signal vector: 

1,1 1,2 1, 1 1

2,2 2, 2 2

,

0

0 0

H H

N

N

N N N N

R R R x u
R R x u
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= = + = +

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
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⎢ ⎥ ⎢ ⎥ ⎢ ⎥
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⎣ ⎦ ⎣ ⎦⎣ ⎦

y Q y Rx Q n Rx u

,      (4.5) 

where u has the same statistics as n, since Q is a unitary matrix. Since R is an upper 

triangular matrix, it is clear that the i-th element of ŷ is only a function of the i-th and 
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higher stream symbols, and can be expressed as follows: 

                          , ,
1

N

i i i i i j j i
j i

y R x R x u
= +

= + +∑ .          (4.6) 

On the assumption that the detection order is from symbols with higher indexes to 

lower indexes, i.e., xN to x1, with SIC, the estimated symbol xi can be shown to be 

given by 
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∑ ∑ ∑
,     (4.7) 

where ˆix is the estimated symbol of xi, and D[·] is the decision operation. As in [77], 

ZF-SIC with a fixed detection order naturally converts an R ×N MIMO channel into a 

set of N parallel subchannels. Under the assumption that all the previous decisions are 

correct, the last two summations in (4.7) cancel each other, so the quantity |Ri,i|2 can be 

viewed as the corresponding channel gain for the i-th subctream from the cooperative 

node i. Finally, the QR decomposition can be performed with the modified 

Gram-Schmidt method [78]. 

 

4.2.4 Performance Metric 

As we discussed previously, we desire to jointly select the optimal subset of 

cooperative nodes and the per-node power level as well as per-node rate (constellation 

size) in order to minimize the BER at the receiver. For simplicity, we use the minimum 

Euclidean distance di as a performance metric on the i-th subchannel. Suppose an 

M-ary QAM modulation is employed, and we have N cooperative nodes and N 

corresponding subchannels, where the i-th subchannel has power level Pi, constellation 

size Bi and corresponding channel gain |Ri,i|2. Then, the received minimum squared 



 84

Euclidean distance of the output constellation of the i-th subchannel is given by [27] 

for high SNR regime as 
2

,2 6
1

i i i
i

i

P R
d

B
⋅

=
−

.          (4.8) 

Our overall objective function is the average received minimum squared 

Euclidean distance of the output constellations of all the N subchannels, which is given 

by 2
1(1/ ) N

i iN d=Σ , and we want this quantity to be as large as possible. Based on the 

inequality that the arithmetic mean of multiple positive numbers is greater than or 

equal to their geometric mean, it is clear that such a metric can be lower-bounded as 
1/

2 2

1 1

1
NNN

i i
i i

d d
N = =

⎛ ⎞
≥ ⎜ ⎟
⎝ ⎠

∑ ∏ ,         (4.9) 

where equality is achieved when di = dj (i ≠ j). By letting di = dj = d0, the average 

received minimum squared Euclidean distance of all the subchannels can be 

lower-bounded by 
1/

2 2 2
0

1 1

1
NNN

i i
i i

d d d
N = =

⎛ ⎞
≥ =⎜ ⎟
⎝ ⎠

∑ ∏ .          (4.10) 

Thus, the objective becomes maximizing d0
2. This is consistent with the conclusions in 

other works, such as [86], where in a MIMO spatial multiplexing system, the 

performance is limited by the weakest link. In order to maximize the system 

performance, we want the output minimum Euclidean distance for each subchannel to 

be the same, and we then maximize that minimum Euclidean distance, subject to given 

system constraints.  

 

4.2.5 Optimization Problem Formulations 

In this subsection, we first present the details of the problem, given that N 
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cooperative nodes have been chosen for the long haul transmission stage. Then we 

discuss the overall optimization problem where node selection and power/bit allocation 

are combined together with the local distribution, and long haul transmission stages are 

jointly considered. Given that N nodes have been chosen for the long haul transmission, 

the targets are to find the power/bit allocations for each of these selected nodes under 

the transmit power constraint, PT, and the total bit rate constraint, bT.  

Therefore, the optimization problem for the long haul transmission stage is 

given by 

{ }2
0{ , }

2
1 1

max

. . 1. ; 2. log ( ) ;

i iP B

N N

i T i T
i i

d

s t P P B b
= =

= =∑ ∑
.         (4.11) 

Since di = d0, from (4.8), we have Bi given by 
2

,
2
0
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i
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= + .        (4.12) 

Plugging (4.12) into the second constraint in (4.11), we obtain the following equation: 
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Hence, 
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Thus, based on (4.14), the original problem (4.11) becomes 
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It is clear that in order to maximize (4.15), we need to maximize the product of Pi, i.e., 

P1· P2·…·PN, since the |Ri,i|2, i = 1,…, N, can be viewed as constants. Furthermore, due 

to the constraint in (4.15), where the summation of Pi, i = 1,…,N, is equal to the total 

power PT, the maximization is achieved when the total power PT is equally distributed 

to all the cooperative nodes, which means Pi = PT/N, i = 1,…,N. Thus, a simple power 

allocation is achieved, and the amount of power distributed to each cooperative node 

varies as a function of the number of cooperative nodes we choose to use in the virtual 

MIMO system. Then, the resulting d0
2 and corresponding Pi and Bi, i = 1,…,N, can be 

solved for a given N by using (4.12) and (4.14). 

In order to consider the local distribution and long haul transmission together, 

we need to include the energy consumptions and the delays of the two stages in the 

optimization problem. That is, given K possible candidates, the optimization should 

look for the optimal subset of cooperative nodes, labeled as Φ*, with N nodes, as well 

as the corresponding power/bit allocations for each of them, Pi and Bi, i = 1,…, N. We 

denote by Etot and Ttot the total end-to-end energy and the total end-to-end delay, 

respectively, with maximum allowable values Eo and To, respectively. Then, the overall 

optimization problem is given by: 
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                        (4.16) 

In order to find the optimal Φ*, N, Pi and Bi, i = 1,…, N, an exhaustive search is 

necessary, but this type of problem usually has a large search space when K is large. In 

what follows, we first present the details on the energy consumption and delay 

associated with the local distribution, and then we provide some simple heuristic 
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algorithms to reduce the complexity such that the optimization problem can be more 

easily solved.  

 

4.3 Local Distribution Analysis 

During the local distribution stage, the source node sends the data information 

to the selected nodes. As a result, it is clear that the more the cooperative nodes, the 

more delay and energy are potentially needed for this stage. The energy for the local 

distribution to each cooperative node consists of the transmission energy which ensures 

reliable communications from the source node to that particular cooperative node, and 

the circuit energy consumption, which is the sum of the energy consumptions of all the 

circuit blocks [69, 80].  

Since the transmission from the source node to a given cooperative node is in 

the form of packets, we assume that the source node has Li bits within a packet to be 

transmitted to cooperative node i, and in the local distribution stage, a fixed M0-ary 

QAM is used together with coherent modulation/demodulation. Since a given M0 = I × 

Q rectangular QAM signal can be treated as two independent pulse amplitude 

modulation (PAM) signals on phase-quadrature carriers, i.e., I-ary PAM and Q-ary 

PAM, the two PAM signals can ideally be perfectly separated at the demodulator, and 

the probability of error for the original QAM signal can be shown to be 

( )( )1 1 1I QSER SER SER= − − − ,       (4.17) 

where SERI and SERQ are the probabilities of symbol error for the two PAM signals. 

Hence, at relatively high SNR, the symbol error rate SER, can be tightly approximated 

as [27] 

0

34
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SER Q
M

ς⎛ ⎞
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,        (4.18) 
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where Q(·) is the Gaussian tail function, and ζ is the corresponding 

signal-to-noise-ratio for the transmission to node i, given by 

 

(1)

0

i iP
N

αζ = ,            (4.19) 

in (4.19) αi is the channel gain (path loss plus fading), Pi
(1) is the employed 

transmission power per symbol, and N0 is the noise power. From (4.18) and (4.19), for 

a packet of Li bits which has C0 = Li/b0 symbols (b0 = log2(M0)), when a symbol error 

rate threshold SERt is required for the local transmission, the minimal transmission 

power Pi
(1) for the local transmission to node i is given by 

2
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On the other hand, the circuit power for each symbol can be assumed to be a 

constant Pc for all the nodes [69]. In this chapter, we assume that the source node has 

L0 bits and the number of bits allocated to node i is Li. Thus, the total energy consumed 

in the local distribution, E(1)
tot, can be shown to be 

(1) (1)

1 0
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tot c i

i
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⎛ ⎞
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⎝ ⎠
∑ ,       (4.21) 

where Li/b0 is the number of symbols in the packet. Since, when node i is source node 

itself, there is no power consumption and delay introduced for the local distribution to 

node i, we thus define the indicator function I(i) as 

0, when node  is the source node;
( )

1, when node  is not the source node;
i

I i
i

⎧
= ⎨
⎩

.      (4.22) 

Under the assumption that TDMA is used for the local distribution with fixed 

symbol duration Ts, the total delay in this stage is the sum of the delays associated with 

the transmission to each of the N cooperative nodes: 
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From (4.21) and (4.23), it is clear that the subset and the number of cooperative nodes, 

Φ and N, should be carefully chosen such that the constraints in (4.16) can be satisfied.  

 

4.4 Cooperation Node Selection 

In order to solve the optimization problem in Sec. II-E, one usually resorts to 

heuristic algorithms to select appropriate subset of cooperative nodes, in order to avoid 

an exhaustive search which may require huge computational complexity, since we have 

to try all the possible combinations of the K cooperative nodes. By using heuristic 

algorithms, we can search only a reduced space, and for each possible combination in 

the subspace, we can solve the constrained optimization problem and find out the 

resulting d0
2 as well as (Φ, N, Pi and Bi, i = 1,…, N). Finally, we pick the subset Φ* 

which achieves the largest d0
2 to start the cooperative transmission. This technique is 

similar to antenna selection techniques used in MIMO system, where enhanced system 

performance and reduced system complexity can be achieved [84-86]. However, it is 

applied in this chapter with different application scenarios and different system 

constraints. In what follows, we describe the heuristic algorithms in two different 

scenarios, i.e., perfect instantaneous CSI is available at the source node or only the 

channel correlation information is available at the source node. As shown below, each 

of these two algorithms will only need to search a subspace with K possible 

cooperative node combinations, which is much less than that required by an exhaustive 

search. 

 

4.4.1 Perfect CSI 
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In this case, the source node knows the instantaneous CSI between all the K 

cooperative nodes and the destination node, i.e., the channel gain matrix H with 

dimension R×K, and the correlation information among all the nodes. This case is 

reasonable for a slowly-varying channel where CSI can be obtained in a timely and 

accurate manner.  

It is clear that, when N is given, in order to maximize the target function in 

(4.15), we want the product of those channel gains, 2
1 ,| |N

i i iR=∏ , to be as large as 

possible. Due to the fact that the eigenvalues of R are equal to Ri,i, we have the 

following properties: 
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R Q QR H H
,      (4.24) 

where λ(·) is the eigenvalue of the argument. Therefore, as shown in (4.24), it is clear 

that in order to maximize the product of the channel gains, |R1,1|2·|R2,2|2··|RN,N|2, we only 

need to maximize the determinant of the corresponding channel matrix (HHH).  

To accomplish this, consider the use of a maximal channel gain (MCG) 

algorithm as follows: at the (k + 1)-th step, where k nodes have already been chosen, 

and the corresponding channel matrix H(k) are known, where H(k) is the channel matrix 

when k nodes are chosen, we want to select one additional node s* from the set S 

containing the remaining K – k nodes such that 

( ){ }( 1) ( 1)

*
* arg max det ( ) ( )k H k

s S
s + +

∈
= H H .      (4.25) 

We repeat this until all the K nodes are chosen. Therefore, at each step, we obtain a 

selected subset of nodes, Φ, with an increasing number of nodes in it. In total, the 

algorithm runs K steps, thus the search space for the previous optimization problem has 

K combinations. Finally, we choose the subset Φ* which results in the largest d0
2 for 

the cooperative transmission. Therefore, by doing so, with the knowledge of the 
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instantaneous CSI, the source node can pick a subset of cooperative nodes which 

achieves the maximal product of the channel gains, and hence the maximal minimum 

distance as in the optimization problem of (4.16).  

 

4.4.2 No CSI 

In this case, the source node only knows the correlation information among the 

K potential cooperative nodes. This case is suitable for scenarios where fast fading 

exists, and accurate instantaneous CSI may not be possible for the source node. 

Therefore, the MCG algorithm proposed above should be modified as follows, due to 

the lack of CSI. The channel matrix H can be expressed as H = HwRT
1/2 as in (4.3). By 

using the QR decomposition twice [86], RT
1/2 = Q1R1, Hw·Q1 = Q2R2, we can express 

the received signal vector as follows: 
1/ 2
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Similarly, the optimization formulation in (4.15) becomes  
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In (4.27), we only knows R1, since R2 is unknown due to the lack of CSI. However, 

since Hw·Q1 = Q2R2 and Hw·Q1 has the same statistics as Hw, which has i.i.d. complex 

Gaussian elements, |R2(i,i)| in (4.27) has a chi-distribution with 2(R + 1 – i) degrees of 

freedom[87]. For notation simplicity, let z = |R2(i,i)|. Then, the PDF of z with v degree 

of freedom is 

( )

2
1 12 22;
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v z
vz ef z v
v

−
− −
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.        (4.28) 

where Г(·) is the gamma function. Hence, as an approximation, we can use the mean of 
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|R2(i,i)|2 to replace |R2(i,i)|2 in (4.27), where E{z2} is equal to 

( ) ( )2 2

0
,E z z f z v v

+∞
= =∫ .        (4.29) 

Thus, E{|R2(i,i)|2} is equal to 2(R + 1 – i). Correspondingly, the goal of (4.27) becomes 

maximizing the following: 

2 2
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N N

i i
i i

P i i i i P R i i i
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⋅ ⋅ + − ⋅∏ ∏R R R .    (4.30) 

Analogous to the previous discussion, we want the product of |R1(i,i)|2, i = 1,…,N, to 

be as large as possible in the node selection. Thus, our modified MCG algorithm is as 

follows: at the (k + 1)-th step, where k nodes have been chosen, and the corresponding 

correlation matrix (RT
1/2)(k) are known, we want to select one additional node s* from 

the set S which contains the remaining K – k nodes such that det(((RT
1/2) (k+1))H((RT

1/2) 

(k+1))) is maximized: 

( ){ }1/ 2 ( 1) 1/ 2 ( 1)
T T

*
* arg max det (( ) ) (( ) )k H k

s S
s + +

∈
= R R .        (4.31) 

In essence, only the channel correlation information RT is exploited in order to select 

the cooperative nodes. Again, the search space is also reduced to a subspace with K 

possible combinations. Hence, when full CSI is not available, we still can significantly 

reduce the search space, and thus the optimization problem can be solved. However, 

this also results in degraded system performance compared to the case where the 

instantaneous CSI is available at the transmitter.  

Consider now an alternative to the use of the modified MCG algorithm, namely, 

the least channel correlation (LCC) algorithm, which only makes use of the channel 

correlation information at the source node and tries to minimize the correlation among 

the cooperative nodes. Compared to the modified MCG algorithm, the LCC algorithm 

has less complexity.  

As is well known, channel correlation typically has a significant impact on the 

performance of a spatial multiplexing MIMO system. The best performance of a spatial 
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multiplexing system can be reached when channels are independent. However, MIMO 

channels are often characterized with channel correlations. Previous studies have 

demonstrated that channel correlation is detrimental to spatial multiplexing MIMO 

systems [81, 85, 88] due to the fact that high correlation at the transmitter side 

increases dependence among input substreams’ channel responses, and results in less 

effective substream separation and decoding at receiver side. Hence, it motivates us to 

choose cooperative nodes with minimal correlation among each other. Since in this 

chapter, correlation is modeled as a decreasing function of distance between two points, 

this is equivalent to choosing nodes with maximal distance among each other. 

Therefore, the algorithm can be described as follows: at the (k + 1)-th step, where k 

nodes have been chosen, we want to select one additional node s* from the set S which 

contains the remaining K – k nodes such that the average distance D(k)
ave to all the 

previous k nodes can be maximized: 

{ }( )

*
* arg max k

ave
s S

s D
∈

= ,         (4.32) 

where the average distance D(k)
ave can be computed as 

( ) ( )2 2( )
1 1

1

1 k
k
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=

= − + −∑ ,      (4.33) 

and (Xi, Yi) is the axis-position of the i-th node. More specifically, at the first step, the 

source node is chosen; at the second step, one additional node is chosen such that 

D(1)
ave is maximized; we then repeat the same process, where at each further step, one 

more node is added to the selected subset. The algorithm ends when all the K nodes are 

chosen. Therefore, at each step, we obtain a selected subset of nodes, Φ, with an 

increasing number of nodes in it, which significantly decreases the search space for the 

previous optimization problem. 
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4.5 Procedure to Realize the Cooperation 

In this section, we briefly describe how the cooperation can be realized in a real 

system, and we assume that each node in the network has a unique user ID number 

[92]. The procedure works as follows:  

Step1: Neighbor maintenance step: each node periodically broadcasts a 

cooperation-request (CR) message to the nodes within its transmission range; 

when a neighbor receives the CR message from a specific node, based on its 

current traffic and energy conditions, it determines whether or not to 

participate in the cooperation; if it is able to cooperate with the requesting 

node, it will reply with an agree-on-cooperation message (AoC) with its own 

user ID included; when the requesting node receives the AoC message from a 

neighbor, it will save this user ID; Thus, each node can maintain a neighbor 

set which includes the possible neighbors that can facilitate its transmission.  

Step2: Information exchange step: when a source node plans to transmit to the 

destination node, which may be a powerful data collection node with multiple 

antennas and unlimited resources, the source node first sends a transmission 

request along with its neighbor set to the destination; if channel information is 

needed at the transmitter side, the destination node will perform channel 

estimation which may involve multiple packet exchanges. This process 

requires higher system complexity [90], but with CSI at the transmitter side, 

better system performance can be achieved. If the channel information is not 

available to the transmitter side, no such channel estimation process is needed, 

and only the channel correlation information is used, which is much simpler to 

obtain due to the slowly-varying characteristic of the correlation. After the 

information is obtained, the destination sends back this information to the 

source node.  
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Step3: Local distribution step: when the source node receives the necessary 

information, it runs one of the proposed algorithms described previously to 

perform node selection and data/power allocation. After that, it forms a 

TDMA schedule with those information included and broadcasts this schedule 

to all the selected cooperating nodes; finally, it distributes the data stream to 

each selected cooperating node, and then the long-haul virtual MIMO 

transmission starts.  

By using the above procedure, the cooperation can be realized. It is worth noting that 

this procedure is only for single-hop transmission between the source and destination. 

However, if multi-hop is involved, i.e., multiple virtual MIMO transmissions are 

needed to complete the transmission between the source and the destination, similar 

procedures can also be designed, but with increased complexity and out of the scope of 

this chapter.  

 

4.6 Numerical Results and Discussion 

In this section, we provide selected numerical results to show the performance 

of the proposed node selection algorithms under the system constraints, such as the 

delay and energy consumption constraints. We choose K = R = 6, which means 6 

potential cooperative nodes including the source node, and the destination node has 6 

receive antennas. The distance between the source node and the destination node, D1, 

is 100 m, and the radius of the cooperative cluster, D0, is 10 m. Throughout this chapter, 

the path loss exponent is set to be 4, the system bandwidth is set to be 10 KHz, and the 

circuit power is set to be 250 mw [69]. The fixed data rate is chosen to be bT = 14 

bps/Hz. During the local distribution, the fixed modulation size is assumed to be b0 = 4. 

The maximum QAM constellation size used for each node is 256-QAM. Finally, the 

correlation caused by shadowing uses parameters β = 0.3 and D = 10 m [76] unless 
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otherwise stated. 

To

 

Fig. 4. 2. MCG algorithm with perfect CSI; no constraints; average SNR = 21 dB. 

 

First of all, we demonstrate the necessity for judicious selection of cooperative 

nodes in a constrained environment. In Figs. 4. 2 and 4. 3, we let the system constraints 

Eo and To be infinite, i.e., no constraints, and the MCG algorithm with perfect CSI is 

employed. As we can see from Fig. 4. 2 and Fig. 4. 3, when the number of nodes 

participating in the cooperation increases, the required total delay and total energy 

consumption also increases, since more data may be distributed by the source node 

during the local distribution, and thus more energy and delay may be needed. 

Furthermore, if we have delay and energy constraints present, it is clear that the more 

stringent the constraints are, the fewer cooperative nodes we can choose. As a result, it 

turns out that the two system constraints, i.e., Eo and To, play important roles for the 
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selection of cooperative nodes. On the other hand, it is also clear that the overall 

system performance is somehow dependent on the system constraints, i.e., Eo and To, 

which determine the number of cooperative nodes that can participate the cooperation. 

For example, if Eo and To are small, it may not be able to choose the optimal number of 

nodes, and will result in degraded overall system performance.  

Eo

 

Fig. 4. 3. MCG algorithm with perfect CSI; no constraints; average SNR = 21 dB. 

 

In Fig. 4. 4, we show the performance of the MCG algorithm with perfect CSI 

as a function of the average SNR with distinct delay constraints. As can be seen, when 

no delay constraint is present, i.e., To is infinite, the best system performance can be 

achieved. However, when the delay constraint becomes stringent, the system 

performance degrades substantially, as shown in the figure. This is because when a 

delay constraint is present, we cannot always choose the optimal set of nodes that can 
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achieve the best performance, and as the constraint becomes more stringent, fewer 

nodes can be chosen, thus worse performance is expected. This figure further 

demonstrates that in a cooperative MIMO system for an ad hoc network, the local 

distribution and long haul transmission stages should be jointly considered, and the 

overall system constraints limit the system performance that can be achieved.   

 

   Fig. 4. 4. MCG algorithm with perfect CSI; with different delay constraints; Eo = 0.8 J. 

 

In Fig. 4. 5, we show the performance comparison among the proposed 

algorithms under different channel correlation levels. As we can see, for the same 

channel correlation level, the MCG algorithm with perfect CSI can achieve the best 

performance since it exploits the perfect instantaneous CSI to achieve the cooperative 

node selection. On the other hand, when no CSI is available, we still can implement the 
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proposed node selection algorithm by making use of only the channel correlation 

information, and this can be achieved by the proposed modified MCG algorithm with 

no CSI and the LCC algorithm. As shown in Fig. 4. 5, the MCG algorithm with no CSI 

and LCC algorithm would result in degraded system performance compared to that of 

MCG with perfect instantaneous CSI. Therefore, when instantaneous CSI is not 

available in a practical scenario, we can resort to the algorithms that only exploit the 

channel correlation which varies relatively slow compared to the channel state 

information. Lastly, we also observe that when the channel correlation increases, 

system performance is degraded for all the algorithms. On the other hand, it is worth 

noting that when the correlation level increases, the performance gap between MCG 

with perfect instantaneous CSI and either the MCG without CSI or the LCC decreases. 

That means, the proposed MCG without CSI and the LCC algorithms can result in 

more performance gain in scenarios with high channel correlation. 

Finally, in Fig. 4. 6, we show the system performance of the MCG algorithm 

with channel estimation error. The channel estimation error is modeled as a complex 

Gaussian random variable with zero mean and variance σe
2 [60]. The estimation error 

can be caused by various factors, such as feedback delay and node mobility. The 

estimated CSI is assumed to be the sum of the true CSI plus the random variable with 

zero mean and variance σe
2. In Fig. 4. 6, the MCG algorithm with perfect CSI achieves 

the best performance, and as estimation error increases, system performance degrades. 

It is worth noting that the dotted curve is achieved with the MCG algorithm with no 

CSI, but with channel correlation information which is not affected by the channel 

estimation error. It is clear that when the channel estimation error gets large, it is 

desirable to use the channel correlation information instead of the erroneous CSI.  
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Fig. 4. 5. Performance comparison between MCG with perfect CSI, MCG w/o CSI, and LCC; To = 0.41 

s and Eo = 0.8 J. 

 

4.7 Summary and Conclusions 

In this chapter, we investigated the cooperative and constrained virtual MIMO 

communications in ad hoc or sensor networks. More specifically, we have taken into 

account a complete view of the node cooperation procedure, under the specified 

system constraints, such as the energy and delay constraints. Then, we quantified the 

energy consumption and delay incurred during the local distribution stage, and jointly 

combined the local distribution stage and the long haul transmission stage. Finally, the 

subset of cooperative nodes participating in the virtual MIMO communication is 

chosen by considering the overall system constraints, and the power level and data rate 
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for each selected cooperative node are adaptively assigned in order to optimize the 

system performance. 

 

 
Fig. 4. 6. Performance comparison of MCG with distinct channel estimation error; To = 0.41 s and Eo = 

0.8 J. 
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5   

Conclusions 
 

 

In this dissertation, we investigated system design approaches and algorithms 

to achieve power efficient and spectrum efficient communications in wireless ad hoc 

networks. The system design has covered multiple layers, including physical layer, 

MAC layer and application layer. The system optimization requires cooperation 

between different layers, which is usually referred as cross-layer optimization.  

In Chapter 2, we proposed a cross-layer distributed joint power control and 

scheduling approach for delay-sensitive applications, such as multimedia, over 

CDMA-based wireless ad hoc networks. The cross-layer framework consisted of 

distributed power control at physical layer, and distributed scheduling algorithm at 

MAC layer. Herein, we have taken into account a delay constraint as well as an SINR 

constraint for system performance optimization, and proposed a novel delay control 

mechanism where power control is used to combat delay. The constrained optimization 

problem under both the delay and SINR constraints was solved via three simple but 

effective steps: delay control, validity scheduling and power control. Based on these 

three consecutive steps, the complexity of the optimization problem was greatly 

reduced and the power control at the physical layer was substantially simplified. 

Finally, we investigated the impact of Doppler spread and channel estimation errors 

upon the system performance, and provided a robust system which employed the 

combination of power control, coding and interleaving to combat the effects of 

Doppler spread by exploiting the time diversity when the Doppler spread got large. 
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Simulation results have demonstrated the effectiveness of the proposed approach. 

In Chapter 3, we proposed a cognitive radio based multi-user resource 

allocation framework for mobile ad hoc networks using multi-carrier DS CDMA 

modulation over a frequency-selective fading channel. More specifically, given the 

existing spectral conditions and existing primary users, we first proposed a detection 

and estimation mechanism to detect the availability of each subcarrier, as well as to 

estimate the channel state information and the noise power; based on that, a distributed 

resource allocation approach was provided to jointly allocate spectral bands, power and 

data rate among multiple cognitive radio users. Finally, we investigated the 

performance of the system under different scenarios and examined the impact of 

multiple key parameters.  

In Chapter 4, we investigated the cooperative and constrained virtual MIMO 

communications in ad hoc or sensor networks. More specifically, we have taken into 

account a complete view of the node cooperation procedure, under the specified 

system constraints, such as the energy and delay constraints. Then, we quantified the 

energy consumption and delay incurred during the local distribution stage, and jointly 

combined the local distribution stage and the long haul transmission stage. Finally, the 

subset of cooperative nodes participating in the virtual MIMO communication is 

chosen by considering the overall system constraints, and the power level and data rate 

for each selected cooperative node are adaptively assigned in order to optimize the 

system performance. 

In conclusion, one possible direction for the future work could be to extend the 

power efficient and spectrum efficient design approaches to specific applications, such 

as video transmissions, and combine the characteristics of video content together with 

the design issues in the lower layers. For example, one may consider how to perform 

video streaming or video transmission in a cognitive radio network, where primary 
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users and secondary users co-exist. In the design of such a secondary user system, in 

addition to the physical layer spectrum dynamics and channel state information 

dynamics, the video contend dynamics at the application layer could also be jointly 

considered, such as the rate-distortion characteristic of video content. By doing that, 

we have one more degree of freedom in the system design and more specific algorithm 

can be proposed for specific applications. This is also our on-going work.  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 105 

Bibliography 

 
[1] M. Krunz, A. Muqattash, and S.-J. Lee, “Transmission power control in wireless 

ad hoc networks: challenges, solutions, and open issues”, IEEE Network, pp.8-14, 
Sept./Oct. 2004. 

 
[2] S. Narayanaswamy, V. Kawadia, R. S. Sreenivas and P. R. Kumar, “Power 

control in ad-hoc networks: theory, architecture, algorithm and implementation of 
the COMPOW protocol”, in Proc. European Wireless 2002 Next Generation 
Wireless Networks: Technologies, Protocols, Services and Applications, pp. 
156-162, Feb. 2002. 

 
[3] C. Oestges and B. Clerckx, “MIMO wireless communications: from real-world 

propagation to space-time coding design”, Academic Press, 2007. 
 
[4] B. Chen, and M. J. Gans, “MIMO Communications in Ad Hoc Networks”, IEEE 

Trans. on Signal Processing, vol. 54, no. 7, pp.2773-2783, July 2006. 
 
[5] A. Muquttash and M. Krunz, “CDMA-based MAC Protocol for Wireless Ad Hoc 

Nerworks”, in Proc. of MobiHoc’03, June 2003.  
 
[6] T. Elbatt and A. Ephremides, “Joint Scheduling and Power Control for Wireless 

Ad Hoc Networks”, IEEE Trans. on Wireless Communications, vol. 3, pp. 74-85, 
Jan. 2004. 

 
[7] B. Radunovic and J-Y. L. Boudec, “Optimal Power Control, Scheduling, and 

Routing in UWB Networks”, in IEEE JSAC, vol. 22, pp. 1252-1270, Sept. 2004. 
 
[8] K. Wang, C. F. Chiasserini, R. R. Rao and J. G. Proakis, “A Distributed Joint 

Scheduling and Power Control Algorithm for Multicasting in Wireless Ad Hoc 
Networks”, in Proc. of ICC’03, pp. 725-731, May 2003. 

 
[9] G. J. Foschini and Z. Miljanic, “A Simple Distributed Autonomous Power 

Control Algorithm and its Convergence”, IEEE Trans. on Vehicular Technology, 
vol. 4, pp. 641-646, Nov. 1993. 

 



 106

[10] J. Zander, “Distributed Cochannel Interference Control in Cellular Radio 
Systems”, IEEE Trans. on Vehicular Technology, vol. 41, pp. 305-311, Aug. 
1992. 

 
[11] S. Ramanathan and E. Lloyd, “Scheduling Algorithms for Multihop Radio 

Networks”, IEEE/ACM Trans. on Networking, vol.1, pp.166-177, 1993.  
 
[12] R. L. Cruz and A. V. Santhanam, “Hierarchical Link Scheduling and Power 

Control in Multihop Wireless Networks”, in Proc. of Allerton Conference, Oct. 
2002. 

 
[13] H-L. Chao and W. Liao, “Fair Scheduling with QoS Support in Wireless Ad Hoc 

Networks”, IEEE Trans. on Wireless Communications, vol. 3, pp. 2119-2128, 
Nov. 2004. 

 
[14] L. Pond and V. Li, “A Distributed Time-Slot Assignment Protocol for Mobile 

Multi-hop Broadcast Packet Radio Networks”, in Proc. of IEEE Milcom, 1989.  
 
[15] A. J. Goldsmith and S. B. Wicker, “Design Challenges for Energy-Constrained 

Ad Hoc Wireless Networks”, IEEE Wireless Communications Magazine, Vol. 9, 
No. 4, pp. 8-27, Aug. 2002.  

 
[16] H. Sui, E. Masry, B. D. Rao, "Chip-Level DS-CDMA Downlink Interference 

Suppression with Optimized Finger Placement," IEEE Transaction on Signal 
Processing, vol.54, No.10, pp. 3908-3921, Oct. 2006. 

 
[17] E. Sousa and J. A. Silvester, “Spreading Code Protocols for Distributed 

Spread-Spectrum Packet Radio Networks”, IEEE Trans. On Communications, pp. 
272-281, Mar. 1998. 

 
[18] J. Schiller, “Mobile Communications”, Pearson Education, 2000. 
 
[19] H. Stark and J. W. Woods, “Probability and Random Processes with Applications 

to Signal Processing”, 3rd Edition. 
 
[20] L. Hu, “Distributed Code Assignments for CDMA Packet Radio Networks”, in 

IEEE/ACM Trans. on Networking, vol. 1, pp. 668-677, Dec. 1993. 
 



 107

[21] L. Williams, “Technology Advances from Small Unit Operations Situation 
Awareness System Development”, IEEE Personal Communication Mag., pp. 
30-33, Feb. 2001. 

 
[22] M. Mauve, J. Widmer and H. Hartenstein, “A Survey on Position-based Routing 

in Mobile Ad Hoc Networks”, IEEE Networks, pp. 30-39, Nov./Dec. 2001. 
 
[23] D. Gross and C. M. Harris, “Fundamentals of Queueing Theory”, Second 

Edition. 
 
[24] R. C. Larson and A. R. Odoni, “Urban Operations Research”, Prentice-Hall, NJ 

1981. 
 
[25] V. Kanodia, et. al., “Ordered Packet Scheduling in Wireless Ad Hoc Networks: 

Mechanisms and Performance Analysis”, in Proc. of ACM Mobihoc’02.  
 
[26] B. Liang, “Performance of Multihop Latency Aware Scheduling in Delay 

Constrained Ad Hoc Networks”, in Proc. of ICC’05, pp. 3499-3504, May 2005. 
 
[27] John G. Proakis, “Digital Communications”, 4th Edition, McGraw-Hill, 2000. 
 
[28] W. C. Jakes, “Microwave Mobile Communications”, IEEE Press, NJ 1994.  
 
[29] F. Simpson and J. M. Holtzman, “Direct Sequence CDMA Power Control, 

Interleaving, and Coding”, IEEE JSAC, vol. 11, pp. 1085-1095, Sept. 1993. 
 
[30] C. Fleming, “A Tutorial of Convolutional Coding with Viterbi Decoding”, 

Spectrum Applications, Jan. 2003. 
 
[31] V. Rodoplu and T. Meng, “Position based CDMA with multiuser detection 

(P-CDMA/MUD) for wireless ad hoc networks”, in Proc. of IEEE Sixth 
International Symposium on Spread Spectrum Techniques and Applications, pp. 
336-340, 2000. 

 
[32] C. R. Lin and M. Gerla, “Adaptive Clustering for Mobile Wireless Networks”, 

IEEE JASC, vol. 15, pp. 1265-1275, Sept. 1997. 
 
[33] B. Karp and H. T. Kung, “GPSR: Greedy Perimeters Stateless Routing for 

Wireless Networks”, in Proc. of ACM MobiCom, 2000. 



 108

 
[34] X. Wu, G. Ding, B. Bhargava, and S. Lci, “Improving Throughput By Link 

Distance Control In a Multi-Rate Ad Hoc Networks”, Technical Report, Dept. of 
Computer Science, Purdue Univ., Aug. 2004. 

 
[35] R. C. Manso, “Performance Analysis of M-QAM with Viterbi Soft-Decision 

Decoding”, Naval Postgraduate School, 2003. 
 
[36] Y. Shen, P. C. Cosman, and L. B. Milstein, "Error Resilient Video 

Communications over CDMA Networks with a Bandwidth Constraint", IEEE 
Trans. on Image Processing, vol.15, no.11, pp.3241-3252, Nov. 2006. 

 
[37] J. Jang and K. B. Lee, “Transmit power adaptation for multiuser OFDM systems”, 

IEEE JSAC, vol. 21, pp. 171-178, Feb. 2003. 
 
[38] C. Y. Wong, R. S. Cheng, K. B. Letaief and R. D. Murch, “Multiuser OFDM with 

adaptive subcarrier, bit, and power allocation”, IEEE JSAC, vol. 17, pp.1747-1758, 
Oct. 1999.  

 
[39] Y. H. Kim, I. Song, S. Yoon and S. R. Park, “A multicarrier CDMA system with 

adaptive subchannel allocation for forward links”, IEEE Trans. on Vehicular Tech., 
vol. 48, pp. 1428-1437, Sept. 1999. 

 
[40] M. A. Enright, and C.-C. J. Kuo, “Fast linearized energy allocation for multimedia 

loading on multicarrier systems”, IEEE JSAC, vol. 24, pp. 470-481, Mar. 2006. 
 
[41] S. Haykin, “Cognitive radio: brain-empowered wireless communications”, IEEE 

JSAC, vol.23, pp.201-220, Feb.2005. 
 
[42] Q. Zhao, L. Tong, A. Swami, and Y. Chen, “Decentralized cognitive MAC for 

opportunistic spectrum access in ad hoc networks: A POMDP framework”, in IEEE 
JSAC, vol. 25, no. 3, pp. 589-600, Apr. 2007. 

 
[43] R. Etkin, A. Parekh, and D. Tse, “Spectrum sharing for unlicensed bands”, in IEEE 

JSAC, vol. 25, no. 3, pp. 517-528, Apr. 2007. 
 



 109

[44] G. Ganesan, and Y. Li, “Cooperative spectrum sensing in cognitive radio, part I: 
two users networks”, in IEEE trans. on Wireless Communications, vol.6, no. 6, pp. 
2204-2213, June 2007. 

 
[45] Y.-C. Liang, Y. Zeng, E. Peh, and A. T. Hoang, “Sensing-throughput tradeoff for 

cognitive radio networks”, in Proc. of IEEE ICC’07, June 2007. 
 
[46] S. Kondo, and L. B. Milstein, “Performance of multicarrier DS CDMA systems”, 

IEEE Trans. on Communications, vol.44, pp. 238-246, Feb. 1996. 
 
[47] J. Mitola and G. Q. Maguire, “Cognitive radio: making software radios more 

personal”, IEEE Personal Communications, vol.6, pp.13-18, Aug. 1999. 
 
[48] D. Guo, S. Verdu, and L.K. Rasmussen, ``Asymptotic normality of linear 

multiuser receiver outputs,'' in IEEE Trans. on Information Theory, vol.48, No.12, 
pp.3080 - 3095, 2002. 

 
[49] J. Zhang, E. Chong, and D. Tse, ``Output MAI distributions of linear MMSE 

multiuser receivers in DS-CDMA systems'', in IEEE Trans. Information Theory, 
vol.47, No. 3, pp.1028 - 1144, 2001. 

 
[50] J. S. D. Eaddy and T. Kadota, “On the approximation of the optimum detector by 

the energy detector in detection of colored Gaussian signals in noise”, IEEE Trans. 
on Acoust., Speech, Signal Processing, vol.32, pp.661-664, Jun.1984. 

 
[51] M. E. Mann and J. Park, “Oscillatory spatialtemporal signal detection in climate 

studies: A multiple-taper spectral domain approach”, in Advance in Geophyisics, 
New York, Academic, vol. 41, 1999. 

 
[52] D. J. Thomson, “Spectrum estimation and harmonic analysis”, Proc. of IEEE, vol. 

20, pp. 1055-1096, Sep. 1982. 
 
[53] W. J. Fitzgerald, et al, “Nonlinear and nonstationary signal processing”, 

Cambridge Univ. Press, 2000. 



 110

 
[54] A. Sendonaris, E. Erkip and B. Aazhang, “User cooperation diversity: part 

I-system description”, IEEE Trans. on Communications, vol.51, Nov. 2003. 
 
[55] S. M. Mishra, A. Sahai, and R. W. Broderson, “Cooperative sensing among 

cognitive radios”, in Proc. of ICC 2006. 
 
[56] L. Cohen, “Time-frequency analysis”, Prentice Hall, 1995. 
 
[57] T. C. Hou and V. O. K. Li, “Transmission range control in multihop packet radio 

networks”, IEEE Trans. on Communications, vol. 34, pp. 38-44, Jan. 1986. 
 
[58] P. Stoica and T. Sundin, “On nonparametric spectral estimation”, Circuits, Syst., 

Signal Process, vol. 16, pp. 169-181, 1999. 
 
[59] M.-A. R. Baissas and A. M. Sayeed, “Pilot-based estimation of time-varying 

multipath channels for coherent CDMA receivers”, IEEE Trans. on Signal 
Processing, vol.50, pp. 2037-2049, Aug. 2002. 

 
[60] D. Piazza and L. B. Milstein, “Impact of feedback errors in multiuser diversity 

systems”, in Prof. of IEEE VTC-2005 (Fall), pp. 257-261, Sept. 2005. 
 
[61] V. Srinivasan, P. Nuggehalli, C. F. Chiasserini, and Ramesh R. Rao, “Cooperation 

in wireless ad hoc networks”, in Proc. of IEEE INFOCOM’03, 2003. 
 
[62] A. Stranne, O. Edfors, and B.-A. Molin, “Energy-based interference analysis of 

heterogeneous packet radio networks”, in IEEE Trans. on Communications, vol.54, 
pp.1299-1309, July 2006. 

 
[63] N. Bambos, S. C. Chen, and G. J. Pottie, “Channel access algorithm with active 

link protection for wireless communication networks with power control”, in 
IEEE/ACM Trans. on Networking, vol.8, pp.583-597, Oct. 2000. 

 



 111

[64] E. Peh and Y.-C. Liang, “Optimization for cooperative sensing in cognitive radio 
networks”, in Proc. of IEEE WCNC’07, 2007. 

 
[65] S. S. Jeong, W. S. Jeon, and D. G. Jeong, “Dynamic channel sensing management 

for ofdma-based cognitive radio systems”, in Proc of IEEE 65th VTC(Spring), 
2007. 

 
[66] C. Sun, W. Zhang, and K. B. Letaief, “Cluster-based cooperative spectrum sensing 

in cognitive radio systems”, in Proc. of IEEE ICC’07, 2007. 
 
[67] H. Sui, J. R. Zeidler, "A Robust Coded MIMO FH-CDMA Transceiver for Mobile 

Ad Hoc Networks," IEEE J. on Selected Areas in Communications, special issue on 
Optimization of MIMO Transceivers for Realistic Communication Networks, to 
appear Sept. 2007. 

 
[68] H. Sui, J. R. Zeidler, "Information Efficiency and Transmission Range 

Optimization for Coded MIMO FH-CDMA Ad Hoc Networks in Time-Varying 
Environment,” submitted to IEEE Trans. on Communications, Feb. 2007. 

 
[69] S. Cui, A. J. Goldsmith and A. Bahai, “Energy-efficiency of MIMO and 

cooperative MIMO techniques in sensor networks”, in IEEE JSAC, vol. 22, no. 6, 
pp. 1089-1098, Aug. 2003. 

 
[70] M. Dohler, E. Lefranc, and H. Aghvami, “Space-time block codes for virtual 

antenna arrays”, in Proc. of IEEE PIMRC, Sept. 2002. 
 
[71] S. K. Jayaweera, “Virtual MIMO-based cooperative communication for 

energy-constrained wireless sensor networks”, in IEEE Trans. on Wireless 
Communications, vol. 5, no. 5, pp. 984-989, May 2006.  

 
[72] J. N. Laneman, and G. W. Wornell, “Distributed space-time-coded protocols for 

exploiting cooperative diversity in wireless networks”, IEEE Trans. on Information 
Theory, vol. 49, no. 10, pp. 2415-2425, Oct. 2003.  

 



 112

[73] Q. Zhou, H. Zhang, and H. Dai, “Adaptive spatial multiplexing techniques for 
distributed MIMO systems”, in Proc. of CISS’04, Mar. 2004.  

 
[74] M. O. Hasna, and M.-S. Alouini, “Optimal power allocation for relayed 

transmission over Rayleigh fading channels”, IEEE Trans. on Wireless 
Communications, vol. 3, Nov. 2004. 

 
[75] J. Luo, R. S. Blum, L. Cimini, L. Greenstein, and A. Haimovich, “Power 

allocation in a transmit diversity system with mean channel gain information”, 
IEEE Communication letters, vol. 9, no. 7, pp. 616-618, July 2005. 

 
[76] M. Gudmundson, “Correlation model for shadow fading in mobile radio systems”, 

Electronics Letters, vol. 27, no. 23, pp. 2145-2146, Nov. 1991. 
 
[77] A. Paulraj, R. Nabar, and D. Gore, “Introduction to space-time wireless 

communications”, Cambridge University Press, 2003. 
 
[78] G. H. Colub, and C. F. Van Loan, “Matrix Computations”, 3rd edition, Johns 

Hopkins University Press, 1996. 
 
[79] V. Srinivasan, P. Nuggehalli, C. F. Chiasserini, and R. R. Rao,“Energy Efficiency 

of Ad Hoc Wireless Networks with Selfish Users,” European Wireless Conference 
2002 (EW2002), Florence, Italy, February 2002. 

 
[80] C. Schurgers, O. Aberthorne, and M. B. Srivastava, “Modulation scaling for 

energy aware communication systems”, in Proc. of Int. Symp. Low Power 
Electronics Design, pp. 96-99, Aug. 2002. 

 
[81] H. Bolcskei, and A. J. Paulraj, “Performance analysis of space-time codes in 

correlated Rayleigh fading environments”, Asilomar Conference, Nov. 2000. 
 
[82] M. O. Damen, K. Abed-Meriam, and S. Burykh, “Iterative QR detection for an 

uncoded space-time communication architecture,” in Proc. Allerton Conf. 
Communications, Control, and Computing, Monticello, IL, Oct. 2000. 



 113

 
[83] J.-K. Zhang, A. Kavcic, and K. M. Wong, “Equal-diagonal QR decomposition and 

its application to precoder design for successive-cancellation detection”, IEEE 
Trans. on Information Theory, vol. 51, no. 1, pp. 154-172, Jan. 2005. 

 
[84] D. Gore, R. Heath, and A. Paulraj, “Statistical antenna selection for spatial 

multiplexing system”, in Proc. of ICC’02, pp. 450-454, May 2002.  
 
[85] R. Narasimhan, “Spatial multiplexing with transmit antenna and constellation 

selection for correlated MIMO channels”, IEEE Trans. on Signal Processing, vol. 
51, no. 11, pp. 2829-2838, Nov. 2003.  

 
[86] Q. Zhou, and H. Dai, “Joint antenna selection and link adaptation for MIMO 

systems”, IEEE Trans. on Vehicular Technology, vol. 55, no. 1, pp. 243-255, Jan. 
2006.  

 
[87] R. J. Muirhead, “Aspects of Multivariate Statistical Theory”, New York, Wiley, 

1982. 
 
[88] H. Bolcskei, M. Borgmann, and A. J. Paulraj, “Performance of space-frequency 

coded broadband OFDM under real-world propagation conditions”, in Proc. of Eur. 
Conf. Signal Process., Sept. 2002. 

 
[89] N. Jindal, U. Mitra, A. Goldsmith, “Capacity of ad-hoc networks with node 

cooperation”, in Proc. of IEEE ISIT’04, 2004. 
 
[90] S.-J. Kim, R. E. Cagley, and R. A. Iltis, “Spectrally efficient communication for 

wireless sensor networks using a cooperative MIMO technique”, Wireless 
Networks, pp. 397-407, May 2006. 

 
[91] J. Liang and Q. Liang, “SVD-QR-T FCM approach for virtual MIMO channel 

selection in wireless sensor networks”, in Proc. of IEEE WASA’07, pp.63-70, 2007. 
 



 114

[92] W. R. Heinzelman, A. Chandrakasan, and H. Balarislman, “An application-specific 
protocol architecture for wireless microsensor networks“, in IEEE Trans. on 
Wireless Communications, vol.1, pp.660-670, Oct 2002. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 




