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Microbiome analyses of blood and tissues suggest cancer 
diagnostic approach
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Mckay8, Sandip Pravin Patel4,8, Austin D Swafford4, Rob Knight1,2,4,9,*

1Department of Bioengineering, University of California San Diego, La Jolla, CA, USA 
2Department of Pediatrics, University of California San Diego, La Jolla, CA, USA 3Clarity 
Genomics, Beerse, Belgium 4Center for Microbiome Innovation, University of California San 
Diego, La Jolla, CA, USA 5Department of Animal Sciences, Colorado State University, Fort 
Collins, CO, USA 6Department of Medicine, University of California San Diego, La Jolla, CA, USA 
7Department of Psychiatry, University of California San Diego, La Jolla, CA, USA 8Moores Cancer 
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Summary

Systematic characterization of the cancer microbiome provides a unique opportunity to develop 

cancer diagnostics that exploit non-human, microbial-derived molecules in a major human disease. 

Based on recent studies showing significant microbial contributions in select cancer types1–10, we 

re-examined treatment-naïve whole genome and whole transcriptome sequencing studies 
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(n=18,116 samples) from 33 cancer types in The Cancer Genome Atlas11 (TCGA) for microbial 

reads, and found unique microbial signatures in tissue and blood within and between most major 

cancer types. These TCGA blood signatures remain predictive when applied to stage Ia-IIc cancer 

patients and cancers lacking any genomic alterations currently measured on two commercial-grade 

ctDNA platforms, despite very stringent decontamination analyses that discard up to 92.3% of 

total sequence data. We then independently show the ability to discriminate between and among 

non-cancer, HIV-, healthy controls (n=69) and multiple cancer types (prostate, lung, and 

melanoma, 100 total samples) solely using plasma-derived, cell-free microbial nucleic acids. We 

thus propose a new class of microbial-based oncology diagnostics, warranting further exploration.

Background

Cancer is classically considered a human genome disease12,13. However, recent studies show 

significant microbial contributions in select cancer types, primarily fecal microbiome 

contributions to gastrointestinal cancers1–10. However, the extent and diagnostic 

implications of microbial contributions across diverse cancer types remain unknown. 

Possible sample contamination during collection, processing, and sequencing limits these 

investigations: procedural controls have rarely been implemented in cancer genomics 

projects. Employing recently-developed tools14–18 to minimize contributions of 

contaminants to microbial signatures could enable rational development of microbially-

based diagnostics.

To characterize the cancer-associated microbiome, we re-examined microbial reads from 

18,116 samples across 10,481 patients and 33 cancer types from The Cancer Genome Atlas 

(TCGA) compendium of whole genome sequencing (WGS; n=4,831) and whole 

transcriptome sequencing (RNA-Seq; n=13,285) studies. Microbial reads were previously 

identified in ad hoc analyses — Epstein-Barr Virus (EBV) in stomach adenocarcinoma19, 

Human Papillomavirus (HPV) in cervical cancer20 — and systematically on small subsets of 

samples, e.g. viromes of 4,433 TCGA samples across 19 cancer types21 and bacteriomes of 

1,880 TCGA samples across 9 cancer types17. Most TCGA sequencing data remains 

unexplored for microbes. Here we present the most comprehensive cancer microbiome 

dataset yet created using two orthogonal microbial-detection pipelines, systematically 

measuring and mitigating technical variation and contamination. We use machine learning 

(ML) to identify microbial signatures discriminating cancer types, and compare their 

performance.

Because TCGA processing did not control for microbial contamination and excluded healthy 

individuals, we performed an additional analysis on the most contentious TCGA sample 

type analyzed (blood) using gold-standard microbiology protocols18,22. We focused on 

plasma-derived microbial DNA to commensurably benchmark against clinically available 

ctDNA assays. Deep metagenomic sequencing on plasma samples from cancer individuals 

with prostate, lung, and skin cancers (n=100), and non-cancer, HIV-, healthy controls (n=69) 

suggested that healthy-versus-cancer and cancer-versus-cancer discriminations were possible 

from cell-free microbial profiles. These findings suggest a new class of microbial-based 
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cancer diagnostics that may complement existing ctDNA assays for cancer detection and 

monitoring.

Results

TCGA cancer microbiome and its normalization

Of 6.4×1012 sequencing reads in TCGA, 7.2% were classified as non-human, of which 

35.2% were assigned to bacteria, archaea, or viruses with 12.6% resolved at the genus level 

by Kraken23, which matches short genomic substrings (k-mers) to taxa in a reference 

database, representing 2.5% and 0.9% of total reads respectively (Fig. 1a; Tables S1–2; 

Extended Data Fig. 1a shows TCGA study abbreviations). After filtering samples for 

quality-controlled metadata (Fig. 1b) and normalizing by sample number within a cancer 

type and sample type (Extended Data Figs. 1f–g), WGS provided significantly more 

microbial reads than RNA-Seq experiments for primary tumor (p-value=2.08×10−9), solid-

tissue normal (p-value=1.26×10−7), metastatic (p-value=0.0396), and recurrent tumor 

samples (p-value=0.0336; all two-sided Mann-Whitney). Fast kmer-matching approaches are 

prone to false positives, so we performed slower, but potentially more specific, genome 

alignments of Kraken-positive, genus-level microbial reads on which our findings are based 

for four TCGA cancer types (CESC, STAD, LUAD, OV) with known microbial 

relationships5,19,20 and/or with paired proteomic data24 and found a low estimated false 

positive rate of 1.09% (Table S3), suggesting the Kraken data was valid for downstream 

analyses.

Substantial batch effects are known in TCGA expression and human genomic data25,26 and 

were replicated in metagenomic data (Fig. 1c, Extended Data Figs. 1b,d). Therefore, we 

implemented a pipeline that converted discrete taxonomical counts into log-counts per 

million (log-cpm) per sample using Voom27, and performed supervised normalization 

(SNM) (Methods)28. Principal variance components analysis29,30 showed that normalization 

reduced batch effects while increasing biological signal, including “disease type” (i.e. cancer 

type), above the individual technical variables (Figs. 1d–e; Extended Data Figs. 1c,e).

Predicting among and within cancer types

Using normalized data, stochastic gradient boosting ML models were trained to discriminate 

between and within cancer types and stages. The performance of these models was strong 

for discriminating (i) one-cancer-type-versus-all-others (n=33 cancer types) and (ii) tumor-

versus-normal (n=15 cancer types) (Figs. 1f–g, Extended Data Figs. 2a–f; all performance 

metrics online: http://cancermicrobiome.ucsd.edu/CancerMicrobiome_DataBrowser/). 

Differences in sensitivities and specificities between cancer types may be partially attributed 

to different class sizes, as a significant linear relationship was evident in one-cancer-type-

versus-all-others comparisons between the minority class size and AUROC (p-

value=0.0231) and AUPR (p-value=0.0089) values (two-sided hypothesis tests of slope; 

Extended Data Figs. 2g–h). Cancer microbial heterogeneity may also contribute to this 

differential performance, although spatial examination of these historic tissue samples is 

beyond the scope of this study. Tissue-based microbial models performed well for 

discriminating stage I versus IV tumors (n=8 cancer types) for COAD, STAD, and KIRC, 
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but not the other five cancers tested (Fig. 1h), nor for discriminating intermediate stages (not 

shown). These results suggest that microbial community structure dynamics may not 

correlate with cancer stages as defined by host tissue for all cancer types.

To evaluate the generalizability of our approach across datasets, we randomly sorted raw 

TCGA microbial counts into two batches, repeated all procedures on each independently, 

tested each independently-trained model on the other half’s data, and found highly similar 

performance (Extended Data Fig. 3a). Discriminatory microbial signatures held when 

examining singular methodologies (WGS or RNA-Seq), one sequencing center that 

performed either WGS (Harvard Medical School; HMS) or RNA-Seq (UNC) (Extended 

Data Fig. 3b–i), or using only genomic alignment-filtered Kraken data (Table S3; Extended 

Data Fig. 4a–h).

For further validation, we applied SHOGUN31, an alignment-based microbial taxonomic 

pipeline using a reduced, phylogenetically-based, bacteria-only database on 13,517 TCGA 

samples (WGS: n=3434; RNA-Seq: n=10,083), covering every analyzed cancer type (n=32), 

sample type (n=7), sequencing platform (n=6), and sequencing center (n=8) in the Kraken-

based analysis. The SHOGUN-derived data replicated batch effects identified in Kraken-

derived data despite a smaller, non-identical underlying database (Extended Data Figs. 4j–l). 

We input it, and a corresponding subset of Kraken-derived data (Methods), independently 

into our normalization and ML pipelines and found no major differences in discriminatory 

performances between the datasets (Extended Data Figs. 4m–t). Together, the results imply 

that microbial communities are unique to each cancer type and that our approach of 

normalization and model training to distinguish cancers based on microbial profiles alone 

can be applied more broadly.

Biological relevance of microbe profiles

Given the strong discrimination of microbial signatures, we sought evidence of biological 

relevance using ecologically-expected and/or clinically-tested outcomes. To assess whether 

cancer-associated microbes are ecologically-expected, i.e. part of the ‘native’ organ-specific 

commensal community, we trained a Bayesian microbial-source tracking algorithm32 on 

data from 217 samples across 8 body sites in the HMP2 project33 processed with our 

microbial detection and normalization pipeline to estimate the body-site contribution from 

70 solid-tissue normal samples in the COAD cohort and 122 SKCM primary tumors 

(Methods). Stool was the primary known body-site contributor only to COAD profiles 

(average mean fractional contribution=20.17%; SE=2.55%; Fig. 2a), but not SKCM profiles 

(one-tailed Mann-Whitney: p-value=0.0014; Extended Data Fig. 5b), suggesting a local 

source for part of the community.

Fusobacterium spp. is important in the development and progression of gastrointestinal 

tumors1,19,34,35 and Fusobacterium genus was overabundant in primary tumors compared to 

solid-tissue normals (all p-values≤8.5×10−3) and especially to blood-derived normals (all p-

values≤3.3×10−11) (Fig. 2b). Pan-cancer analyses also showed an overabundance of 

Fusobacterium when comparing all broadly-defined gastrointestinal (GI) cancers in TCGA 

(n=8) against non-GI cancers (n=24) in both primary tumor tissue (p-value<2.2×10−16) and 

adjacent solid-tissue normal (p-value=0.031) (Fig. 2c; Extended Data Fig. 5a). Similar to 
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previous investigations in TCGA STAD19, we did not identify differences in Helicobacter 
pylori between primary tumors versus adjacent solid-tissue normals (p-value=0.72, not 

shown; all tests two-sided Mann-Whitney).

We then confirmed clinically annotated TCGA viral infections and compared our microbial-

detection pipeline to studies that examined the TCGA virome with two different 

bioinformatic pipelines: (i) de novo metagenome assembly methods and (ii) read-based 

methods (PathSeq36 algorithm)19,21. There was differential abundance of the 

Alphapapillomavirus genus between primary tumors in individuals clinically tested as 

‘positive’ or ‘negative’ for HPV infection in CESC and HNSCC samples (all p-

values≤3×10−9; two-sided Mann-Whitney; Figs. 2d–e). Blood-derived normal samples from 

CESC patients were used as negative controls and were not statistically different (p-

value=0.99; two-sided Mann-Whitney), and selective overabundance for 

Alphapapillomavirus held when comparing across all other cancer types and sample types 

(Extended Data Fig. 5c). LIHC individuals with a prior history of hepatitis B had selective 

overabundance of the HBV genus (Orthohepadnavirus) in both primary tumors and adjacent 

solid-tissue normals compared to LIHC patients with a prior history of alcohol consumption 

and hepatitis C (Hepacivirus genus) (Fig. 2f; primary tumor p-values≤2.8×10−7; solid-tissue 

normal p-values≤0.011); blood-derived normals were used as negative controls and were not 

statistically different (p-values≥0.44; all tests two-sided Mann-Whitney). Also in agreement 

with the previous reports19, the genus for EBV (Lymphocryptovirus) was selectively 

overabundant in EBV-infected primary tumors compared to patients assigned to other STAD 

molecular subtypes (Fig. 2g; p≤2.2×10−16). Solid-tissue normals and blood-derived normals 

were used as negative controls and were not statistically different (blood: p-values≥0.52; 

tissue: p-values≥0.096; all tests two-sided Mann-Whitney).

These data are consistent with the feature importance information found in our models 

predicting one-cancer-type-versus-all-others. Namely, cancers with known microbial 

“drivers” or “commensals” provided initial evidence that the models were ecologically-

relevant; for example, Alphapapillomavirus genus was the most important feature for 

identifying CESC tumors; for COAD tumors, the Faecalibacterium genus; for LIHC tumors, 

the Orthohepadnavirus genus was the second most important feature (after the hepatotoxic 

Microcystis genus37). For additional hypothesis generation, we created an interactive 

website to enable exploration of normalized microbial abundances found in TCGA cancers 

and major sample types (Extended Data Fig. 5d–e; http://cancermicrobiome.ucsd.edu/

CancerMicrobiome_DataBrowser/). We provide raw and normalized microbial abundance 

datasets for public reuse, and anticipate the opportunity to integrate these with host multi-

omic data to generate additional mechanistic hypotheses. Collectively, the findings provide 

ecological-validation of our bioinformatic and normalization approaches for viral and 

bacterial data while extending the results to many more samples and microbes.

Measuring and mitigating contamination

We recognize the importance of measuring and mitigating the potential effects of 

contamination to best characterize putative cancer-associated microbes14–18. Previous work 

identified just six contaminants in TCGA (Staphylococcus epidermidis, Propionibacterium 
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acnes, Ralstonia spp., Mycobacterium, Pseudomonas, Acinetobacter) based on common 

low-read abundances across cancer types17, but recent literature demonstrated that external 

contaminants more consistently have frequencies inversely correlated with sample analyte 

concentration and can be detected using a robust statistical framework16,38.

Based on the latter approach, we used (i) DNA and RNA concentrations calculated during 

TCGA sample processing (n=17,625) and taxon read fractions (n=1993) to identify putative 

contaminants and (ii) additionally removed genera typically found in “negative blank” 

reagents14 (n=94 genera) (Methods). Extended Data Fig. 6a outlines the approaches taken 

from surgical resection through bioinformatic processing; we also spiked five types of 

pseudo-contaminants into the raw dataset to track through decontamination, supervised 

normalization, and ML. Given known technical variation (Figs. 1c–e), we processed samples 

in batches by sequencing center (n=8) and removed taxa found to be a contaminant amongst 

any center. This identified 283 putative contaminants, including 19.1% (n=18 genera) of the 

reagent “blacklist”14. After combining these two lists (n=377 genera), we manually 

reviewed the literature (Table S6–7) to re-allow pathobiont genera or mixed-evidence genera 

(both a pathogen and common contaminant, e.g. Mycobacterium). This resulted in two 

datasets, one with “likely contaminants removed” and another with “all putative 

contaminants removed.” We also created a third “most stringent filtering” dataset that 

discarded ~92% of the total reads using a stricter filtering schema (Methods; Extended Data 

Fig. 6b). Finally, we grouped samples into individual sequencing plates at each center and 

removed all putative contaminants identified in any one “plate-center” batch (n=351; Table 

S8; Methods), in addition to the aforementioned reagent “blacklist” (497 total genera). 

Decontamination did not appear to differentially affect the samples types or cancer types 

under study (Extended Data Fig. 7).

We stress that these in silico decontamination methods are not substitutes for implementing 

gold-standard microbiology practices on cancer samples, including sterile processing, 

sterile-certified reagents, ‘negative blanks’ of reagents processed from start to finish, and 

multiple-sample pooling as “positive” controls18,22. The in silico tools described here reflect 

the state of the art, but are not designed to detect abundant ‘spikes’ of contaminants or cross-

contaminants. These latter contaminants should not drive uniform discriminatory signals 

between and within cancer types collected over many centers and years, but may limit 

biological conclusions, particularly in small studies, if not controlled.

Another risk with stringent decontamination is that real signals reflective of commensal, 

tissue-specific microbial communities and concomitant cancer-predictive microbial profiles 

may be discarded. To evaluate this concern, we re-calculated the body-site attribution 

percentages for COAD solid-tissue normals (n=70), and found that successively-stringent 

decontamination improves recognition of concomitant tissues before becoming 

unrecognizable (Extended Data Figs. 6c–f).

We recalculated all ML models shown in Figs. 1f–h and compared their performances before 

and after each decontamination approach (Extended Data Figs. 6g–l). Most models did not 

rely on spiked pseudo-contaminants (Extended Data Fig. 8a), though DLBC and MESO 

models (with very few available samples; Table S4) appear to be exceptions and may be 
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unreliable. As expected, comparisons where knowledge about the tissue type is informative 

(e.g. COAD-versus-all-other-cancer-types) generally have poorer performance with stringent 

decontamination, but within-tissue comparisons (e.g. tumor-versus-normal) often have 

equivalent or increased performance. These results suggest that stringent filtering may be 

desirable in certain comparisons, but a universal approach to decontamination may preclude 

biologically informative results.

Predictions using microbial DNA in blood

There is mounting evidence that blood-based microbial DNA (hereafter “mbDNA”) can be 

clinically informative in cancer39–44, including those featuring blood-barrier or lymphatic 

disruptions (e.g. COAD)39, but it is unknown how broadly this applies. Using WGS data 

from TCGA blood samples, we employed our ML strategies on the full and four 

decontaminated datasets and found that blood-borne mbDNA could discriminate between 

numerous cancer types (Fig. 3a), regardless of the microbial taxonomic algorithm and 

database used for classification or when using only genomic-alignment-filtered Kraken data 

(Extended Data Figs. 4g–h,s–t). Retrospective analysis showed that few models included 

spiked pseudo-contaminants for predictions (Extended Data Fig. 8b); models that did 

(CESC, KIRP, LIHC) may be less trustworthy.

Spurred by these findings, we sought to benchmark our ML models against existing cell-free 

tumor DNA (ctDNA) assays, focusing on circumstances where ctDNA assays fail: stage Ia-

IIc cancers and tumors without detectable genomic alterations. After removing all blood-

derived normal samples from patients harboring stage III or IV cancers, we built new ML 

models and found high cancer type discrimination using blood mbDNA (Fig. 3b). We further 

used gene-lists from the Guardant360® and FoundationOne® Liquid assays45,46 to filter out 

TCGA patients with ≥1 targeted modification (~70%; Extended Data Figs. 8c–e) and found 

high discriminatory performances using the same ML approach for most remaining cancer 

types (Figs. 3c–d).

These analyses are limited by the fact that ctDNA assays are plasma-based rather than 

whole-blood derived45,46, and the distribution of mbDNA among blood compartments is 

unknown. It is impossible to assess if mbDNA was coming from live or dead microbes, as 

RNA data was unavailable, nor whether mbDNA is cell-free or in host leukocytes, as TCGA 

SOPs allowed whole blood or buffy coat extraction (Methods). It is also impossible to know 

the origin of blood mbDNA without examining primary specimens and, possibly, matched 

gut epithelia, as certain cancer types may ‘leak’ mbDNA non-intuitively (e.g. gut bacterial 

translocation in leukemia)8,10. There is likely a continuum of ideal decontamination as the 

effect of decontamination on model performance varied across cancer types, but our filtering 

was limited by (i) not having access to the primary specimens, (ii) genus-level taxonomic 

resolution, and (iii) not knowing which non-TCGA samples were concurrently processed.

Validating microbial signatures in blood

To demonstrate the real-world utility of these results while commensurably benchmarking 

against plasma-based ctDNA assays45,46, we evaluated the use of plasma-derived, cell-free 

mbDNA signatures to discriminate among healthy individuals and multiple cancer types in a 
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validation study while implementing gold-standard microbiology controls for low-biomass 

studies18,22. Although plasma represents a distinct subset of whole blood not studied in 

TCGA, limiting direct comparability, it carries major advantages in archival stability (e.g. 

freezability), biorepository availability, and biological interpretation (i.e. non-living 

material). Our cohort included 69 non-cancer, HIV- individuals and 100 patients from three 

types of high-grade (stage III-IV) cancers: prostate cancer (n=59; “PC”); lung cancer (n=25; 

“LC”), and melanoma (n=16; “SKCM”) (Fig. 4a). Without prior literature to estimate effect 

sizes, we used independent simulations on TCGA blood samples from matched cancer types 

at The Broad Institute and HMS to estimate minimum sample sizes (Extended Data Fig. 9a; 

Methods). Cell-free DNA was extracted from these plasma samples with extensive 

controls18,22 (Extended Data Figs. 9b–c), and processed for whole metagenomic sequencing 

by a limited set of users, using a single library preparation method47, in a single batch, in 

one deep-sequencing run. We performed human-read removal, classification of remaining 

reads by Kraken, stringent decontamination using both DNA concentrations and negative 

blanks16, and Voom-SNM. Demographic comparisons and permutation analyses suggested 

necessary normalization for age and sex (Extended Data Figs. 9d–e,h–j; Methods), and 

direct age regression performance showed mean absolute errors similar to the gut 

microbiome (unpublished results, Extended Data Fig. 9g). ‘Bootstrapping’ the same ML 

protocol used in the TCGA analyses showed strong, generalizable discrimination between 

healthy controls and grouped cancer patients (Fig. 4b; Methods). Due to small sample sizes, 

we performed leave-one-out (LOO) iterative ML on the normalized data and found high 

discriminatory performance in pairwise- and multiclass-comparisons between and among 

healthy controls and cancer types except for the smallest SKCM cohort (Figs. 4c–k). 

Therefore, we iteratively subsampled PC and LC groups to match SKCM cohort size and 

performed pairwise LOO discrimination of each cancer type against subsampled healthy 

controls (Extended Data Fig. 9k; Methods). PC and LC cohorts were still separable at 

SKCM cohort size (Mean_AUROC=0.891, 95%CI:[0.879,0.903]; Mean_AUPR=0.827, 

95%CI:[0.815,0.839]; 100-iterations), revealing universal deficits in SKCM performance. 

This deficit may have a biological basis as SKCM was the second-worst performer in TCGA 

blood discriminations for four of five datasets tested (Fig. 3a), although this warrants further 

confirmation. To ensure that the microbial assignments by Kraken were valid, we repeated 

all bioinformatic, normalization, and ML steps using bacterial assignments from 

SHOGUN31 and its separate database48, which showed highly concordant performances 

(Extended Data Fig. 10). We anticipate refinement of the taxonomic assignments for cfDNA 

signatures as concomitant microbial databases improve49. Plasma microbial abundances 

detected are also explorable in our web interface (Extended Data Fig. 5d–e; http://

cancermicrobiome.ucsd.edu/CancerMicrobiome_DataBrowser/).

Discussion

Collectively, our data suggest widespread associations between cancer and specific 

microbiota across diverse cancer types. These microbial profiles appear to discriminate 

within and between most cancer types, including with blood-based mbDNA at low-grade 

tumor stages and in patients without any detectable genomic alterations on commercial 

ctDNA assays. These results often remain valid even after extensive internal validation 
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checks and decontamination, at times discarding >90% of the total data. High discriminatory 

performance among healthy controls and multiple cancer types using only cell-free mbDNA 

in plasma, while adopting more extensive internal and external contamination controls than 

TCGA, suggests the feasibility and generalizability for clinically-relevant and retrospective 

testing with widely-available samples. More work is needed to evaluate whether the 

observed nucleic acids are coming from live microbes, host cells, or lysed bacteria in the 

tumor microenvironment and blood. Notably, many technical and biological factors limit 

analysis of retrospective cancer sequencing data for low-biomass microbes, and advancing 

this field will require collaborations between cancer biologists and microbiologists. 

Nonetheless, our results suggest that a new class of microbial-based cancer diagnostics may 

provide significant future value to patients.

Methods

TCGA data accession

All TCGA sequence data (Tables S4–5) were accessed via the Cancer Genomics Cloud 

(CGC) as sponsored by SevenBridges (https://cgc.sbgenomics.com)51. Details of how these 

samples were acquired and processed are comprehensively described elsewhere52. Standard 

operating procedures (SOPs) for TCGA were accessed via the NCI Biospecimen Research 

Database (https://brd.nci.nih.gov/brd/sop-compendium/show/701). Matched patient 

metadata, including molecular subtypes, were accessed via the CGC through both 

SevenBridges and the Institute for Systems Biology (ISB;https://isb-cgc.appspot.com/)53, 

via the TCGAMutations R package54, or were taken directly from their respective TCGA 

publication’s supplemental data19,55. Genomic alteration statuses for all TCGA patients 

were queried and downloaded via the cBioPortal56,57. Gene panels for commercial ctDNA 

assays were accessed from company white papers for the Guardant360® assay (https://

www.therapyselect.de/sites/default/files/downloads/guardant360/guardant360_specification-

sheet_en.pdf) and the FoundationOne® Liquid assay (https://assets.ctfassets.net/

vhribv12lmne/3SPYAcbGdqAeMsOqMyKUog/d0eb51659e08d733bf39971e85ed940d/

F1L_TechnicalInformation_MKT-0061-04.pdf). For TCGA metadata accession and 

transformation from hierarchical formats to flat tables, custom Python scripts (available on 

Github; https://github.com/biocore/tcga) were written to query SevenBridges’s metadata 

ontology and organize the data where possible; for information not stored in that ontology, 

we used the ISB’s CGC R programming language API53 to access its recent metadata 

release (tcga_201607_beta.Clinical_data).

Kraken TCGA microbial-detection pipeline

The SevenBridges CGC interface enabled rapid development of the bioinformatic pipeline 

for this project while ensuring its future reproducibility51. Bioinformatic tools were either 

loaded directly from the CGC platform (e.g. samtools, BWA) or uploaded and run as 

separate Docker containers (e.g. QIIME, Kraken) in order to create customized ‘app’ 

workflows. These ‘app’ workflows take sample BAM files as inputs and labeled which DNA 

or RNA reads within each sample were “microbial”. These ‘app’ workflows can be publicly 

shared for reproducibility purposes, as needed. The computational analyses themselves were 

hosted on Amazon Web Services (AWS; https://aws.amazon.com/) through the CGC 
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interface and most often used AWS’s “x1.16” EC2 compute instance, comprised of the 

following specifications: 64 vCPU, 174.5 ECU, 976 GB of Memory, and 1920 GB of 

Instance Storage. The computational wall-time was approximately 6-months using these 

specifications.

Sequencing reads that did not align to known human reference genomes (based on mapping 

information in the raw BAM files) were mapped against all known bacterial, archaeal, and 

viral microbial genomes using the ultrafast Kraken algorithm23. A total of 71,782 microbial 

genomes were downloaded using RepoPhlan (https://bitbucket.org/nsegata/repophlan) on 14 

June 2016, of which 5,503 were viral and 66,279 were bacterial or archaeal. Based on prior 

literature, bacterial and archaeal genomes were filtered for quality scores of 0.8 or better58, 

which left 54,471 of them for subsequent analysis, or a total of 59,974 microbial genomes.

As previously described in detail23, the Kraken algorithm breaks each sequencing read into 

k-mers (we used default 31-mers) and exactly matches each k-mer against a database of 

microbial k-mers, which was built from the 59,974 microbial genomes described above prior 

to running the algorithm. The set of exact k-mer matches for a given read, in turn, provides a 

putative taxonomy assignment of the lowest common ancestor for that read, most accurately 

to the genus level, to which we summarized our data. The matching and classification 

operations are orders of magnitude faster than performing direct genome alignments. As a 

safeguard against false positives and to properly benchmark our pipeline, we took four 

cancer types (COAD, CESC, OV, LUAD) and aligned the reads Kraken classified as 

“microbial” to the 59,974 microbial genomes using BWA50, which is computationally more 

expensive but yields a result with higher specificity and taxonomic resolution (i.e. to species 

and strain level). The four cancer types that were directly aligned included CESC as a 

putative positive viral control (i.e. HPV), STAD as a putative positive bacterial control (i.e. 

H. pylori), and two others (LUAD, OV) based on microbial signatures in the literature and/or 

available mass-spectrometry proteomic information (to look for microbial proteins; data not 

shown)5,24,59–61. We found that 98.91% of reads classified to genus level or lower by 

Kraken (on which our main findings are based) also aligned with BWA to the microbial 

database (bacteria, archaea, viruses; see Table S3), or a false positive rate of 1.09%, 

suggesting that the genus-level, Kraken-labeled, pan-cancer microbial reads were 

sufficiently usable for further analyses.

SHOGUN TCGA bioinformatic processing

To evaluate the robustness of cancer type discriminations using different taxonomic 

identification algorithms, we utilized a previously published shallow shotgun taxonomic 

assignment approach (co-developed by Q.Z. & R.K.)31 and a separate phylogeny-centric 

database called ‘Web of Life’ (WoL; developed by Q.Z. & R.K.; n=10,575 bacterial and 

archaeal genomes; https://biocore.github.io/wol/data/genomes)48 on TCGA samples. 

SHOGUN utilizes computationally intensive direct genomic alignments for taxonomy 

assignments rather than an ultrafast kmer-based approach like Kraken. To reduce processing 

time for TCGA samples, reads classified as microbial in origin by Kraken were used as input 

for the SHOGUN31 align function, which used Bowtie262 to map reads against the ‘Web Of 

Life’ database48 to generate taxonomy profiles. 13,517 total samples (WGS: n=3434; RNA-
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Seq: n=10,083) were processed, covering all TCGA cancer types (n=32), sample types 

(n=7), sequencing centers (n=8), and sequencing platforms (n=6) under study in the Kraken 

analysis including 21 TCGA cancer types (n=9444 samples) that had all samples in the 

Kraken analysis re-analyzed by SHOGUN. Profiles were then collapsed to the genus level 

using QIIME 263. Analyses were run on a local compute cluster comprised of 1024 Intel 

Ivy-bridge compute cores, as well as 384 AMD compute cores, and 12TB of total RAM with 

a 10GbE compute network for approximately 5-months of computational wall-time; typical 

job submissions for a single cancer type utilized ~30 cores and ~250GB of RAM.

Quantitative measurement and normalization of TCGA technical variation

Cognizant of how technical variation between TCGA sequencing centers (n=8), sequencing 

platforms (n=6), experimental strategy (WGS vs. RNA-Seq), and possible contamination 

could confound our results, we developed a pipeline to quantify and remove batch effects 

while maintaining or increasing the signal attributed to biological variables. Briefly, we 

filtered out samples with poor metadata quality (i.e. missing race or ethnicity, ICD10 codes, 

DNA/RNA analyte amounts, or FFPE status information); transformed our discrete 

taxonomical count data to approximately normally-distributed, log-count per million (log-

cpm) data using the Voom algorithm27, which models and removes the data’s 

heteroskedasticity; and lastly performed supervised normalization (SNM) on the data to 

remove all significant batch effects while preserving biological effects28. Voom is 

traditionally used in combination with limma64 for differential expression (or abundance) 

analysis of discrete count data, but we only used it for the algorithmic transformation to 

‘microarray-like’ data, which permitted subsequent SNM. The Voom and SNM model 

matrices were equivalent and built using “sample type” as the target biological variable 

(n=7; e.g. primary tumor tissue) due to expected biological differences between them, for 

which signal should be preserved during the SNM; conversely, the following were modeled 

as technical covariates to be mitigated during SNM: sequencing center (n=8), sequencing 

platform (n=6), experimental strategy (n=2), tissue source site (n=191), and fixed-formalin 

paraffin-embedded (FFPE) status (n=2; ‘YES’ or ‘NO’). It was not possible to model 

“disease type” as the target biological variable due to complete confounding between certain 

cancer types and sequencing centers (i.e. some cancer types were only sequenced at one 

TCGA site). During the Voom transformation, weighted trimmed mean of M-values (TMM) 

normalization from the edgeR package65 was employed for most data (“full dataset”, “likely 

contaminants removed” data, “plate-center decontaminated” data, and “all putative 

contaminants removed” data) while dropping unvarying features (filterByExpr() function; 

edgeR), as shown by limma’s user guide (https://www.bioconductor.org/packages/devel/

bioc/vignettes/limma/inst/doc/usersguide.pdf; Chapter 15: RNA-Seq Data, p. 70). In other 

cases (“most stringently filtered” data, “SHOGUN TCGA data”, “Kraken TCGA data 

matched to SHOGUN TCGA data”, and both plasma microbiome datasets), quantile 

normalization was utilized since downstream SNM correction was not compatible with 

stringently filtered TMM normalized, feature-dropped data, as these datasets already had 

significantly reduced or low feature counts. With the exception of “most stringently filtered” 

data, all quantile normalized datasets were compared only to other quantile normalized 

datasets. Principal components were calculated before and after SNM correction of the 

Voom-adjusted data, and principal variance components analysis (PVCA)29,30 quantified 
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these changes between raw count data, Voom-adjusted data, and Voom-SNM normalized 

data. The mathematical basis for PVCA is well described by NIEHS (https://

www.niehs.nih.gov/research/resources/software/biostatistics/pvca/index.cfm), and we set the 

one tunable parameter to 80%, based on their recommendation of 60–90%.

Using SourceTracker2 as a validation analysis to address contamination concerns

Shotgun sequencing data from the NIH’s Integrative Human Microbiome Project33 

(“HMP2”), which swabbed eight different body sites among 217 total samples, were 

downloaded and run using the same TCGA Kraken microbial-detection pipeline as 

described above, including against the same microbial database (n=59,974 bacterial, 

archaeal, and viral metagenomes) for taxonomy assignments. HMP2 data were summarized 

at the genus-level, as per our TCGA cancer microbiome data, and then were used to train a 

Bayesian source tracking model (SourceTracker2;https://github.com/biota/sourcetracker2)32. 

Details of the Bayesian model have been previously described by our lab32. Using 

SourceTracker parlance, these HMP2 samples served as “sources” while the Voom-SNM 

normalized samples acted as “sinks,” and the SourceTracker algorithm was used to calculate 

the proportion of each “source” attributable each “sink.” In lay terms, we estimated the 

proportion of body site from HMP2 data attributable to each Voom-SNM normalized cancer 

microbiome sample using the Bayesian model. After (i) intersecting the genera in our cancer 

microbiome dataset with those in HMP2, (ii) converting the log2-cpm normalized values to 

scaled relative abundances (scaled by 106 to give approximately 1 million total reads, as 

HMP2 data had 917,450 reads), and (iii) converting the data to BIOM table format66, we 

applied the model on solid-tissue normal samples from the TCGA COAD cohort (n=70) and 

on primary tumor SKCM samples (n=122). SKCM primary tumor samples were chosen 

instead of solid-tissue normal samples as the best proxy of skin flora, since only one 

adjacent solid-tissue normal sample for SKCM was available (see Table S4). 

SourceTracker2 default settings (alpha1=0.001, alpha2=0.1, beta=10, restarts=10, 

draws_per_restart=1, burnin=100, delay=1) were utilized for both runs. The outputs were 

calculated in terms of mean fractional contributions of each source to each sink; averages 

and standard errors of these values were subsequently calculated. Statistical differences 

between fecal contribution to COAD and SKCM samples (Extended Data Fig. 5b) were 

calculated using a one-sided Mann-Whitney test. The above protocol was repeated for the 

four decontaminated datasets to generate Extended Data Figs. 6c–f.

TCGA ML methods

Stochastic gradient boosting machine (GBM) learning models were trained, automatically 

tuned, and tested using the R programming language (https://www.r-project.org/), GBM 

package67,68, and Caret package69. Training and testing occurred on separate, randomly 

selected, stratified sampling splits of 70% and 30% of the data, respectively, and a fixed 

random number seed was used to ensure reproducibility of the model results and 

comparability among models. During model training, the data were first centered and scaled 

for each sample to have mean zero and unit standard deviation; four-fold cross validation 

was employed to create multiple subsets of the training data and to perform a basic grid 

search optimization of GBM parameters, including interaction depth (1, 2, or 3) and number 

of trees (50, 100, or 150), while maximizing AUROC of the final, fully trained model. 
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Learning rate (“shrinkage”) was held constant at 0.1 and the number of minimum 

observations per node was fixed at 5. In cases of class imbalance, we up-sampled the 

minority class during training to help the model generalize after observing that other 

methods (i.e.. differential class weighting, downsampling the majority class, minority class 

interpolation) did not consistently improve performance (data not shown). Comparisons 

were not made when the minority class contained fewer than 20 samples total due to the 

inability of the classifiers to be adequately trained and tested with so few samples. Final 

model performances, including ROC curves, PR curves, and confusion matrices (generated 

based on a probability cutoff of 50% for class #1 versus class #2 discrimination), were 

generated by applying the final model on the unseen 30% holdout test set. ROC and PR 

curves as well as AUROC and AUPR values were calculated using the PRROC package70 

while confusion matrices were calculated using the Caret package69. Variable importance 

scores of the resultant, non-zero model features were estimated using the GBM and Caret 

packages67–69. Percent contribution of a particular feature to the model’s predictions was 

estimated by dividing that feature’s variable importance score by the sum of all variable 

importance scores for a given model (cf. Extended Data Figs. 8a–b).

TCGA ML benchmarking and generalizability

As a benchmarking and generalizability assessment, we split TCGA in two stratified data 

halves (across sequencing center, sample type, and disease type) of raw Kraken-derived, 

genus-level microbial count data (split #1: n=8814; split #2: n=8811 samples), ran them both 

separately through our Voom-SNM protocol, built separate ML models on each normalized 

half, and then tested these tuned ML models on each other’s normalized data. We then 

compared these model performances against a third ML model that was built on the full 

Voom-SNM normalized dataset (n=17,625 samples) and used 50%−50% training and testing 

splits. Final performance was compared across all three approaches using their respective 

50% holdout test set AUROC and AUPR. For additional internal validation, we built models 

predicting one-cancer-type-versus-all-others using just (i) RNA samples or (ii) DNA 

samples, as well as on (iii) samples from one sequencing center that only did RNA-Seq 

(UNC) or (iv) DNA-Seq (HMS) (Extended Data Fig. 3).

TCGA decontamination analyses

Broadly speaking, there are two classes of possible contamination that affect next-generation 

sequencing data: external contamination (e.g. reagents, investigators’ or subjects’ bodies, 

environmental contributions) and internal contamination (i.e. cross-contamination between 

samples during processing or sequencing)14,16. Our overall decontamination approach 

attempts to (i) simulate contamination to estimate its contribution to predictive performance 

and/or model unreliability, (ii) mitigate external contamination as much as possible, and (iii) 

measure the degree of internal contamination using sensible positive and negative controls. 

External contaminants were identified and removed using sample analyte concentrations for 

all TCGA samples (n=17,625), as recently described in the literature16,38, and by using a 

“blacklist” of microbes identified from reagents in sequencing kits similar to those used in 

TCGA14. Internal contaminants are particularly difficult to identify without having access to 

the primary samples or knowing which other samples (especially non-cancer samples) were 

run at the same time. As such, the only internal contaminants that were identified and 
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removed as clear cross-contaminants were 4 reads assigned to the Ebolavirus genus (2 reads 

from 1 TCGA-LGG sample at The Broad Institute and 2 reads from 1 TCGA-HNSC sample 

at HMS), almost certainly from concurrent studies on the 2014 West Africa outbreak at these 

same sequencing centers during the TCGA study collection period (2006–2016)71,72, and 4 

reads assigned to the Marburgvirus genus (from 2 TCGA-OV samples at The Broad 

Institute), also likely of similar origin or as false positives (i.e. Ebolavirus and Marburgvirus 
are both of the Filoviridae family). Doing so is in line with our previously published work 

that removes microbial assignments that cannot be related to the biology at hand73. It is 

further unlikely that such cross-contaminants, especially of extremely low abundance, would 

drive uniform discriminatory signals between and within cancer types collected over many 

centers and years. For other possible cross-contaminants, we relied on estimating their 

contribution using Bayesian analyses (described above) of ecologically expected 

communities rather than their identification and removal.

Firstly, we spiked five pseudo-contaminants into the raw dataset (Extended Data Fig. 6a top 

right) to track them through decontamination, SNM, and ML. This included the following: 

(1) 1000 reads across all samples from Harvard Medical School (HMS); (2) 1000 reads 

across all samples from HMS, Baylor College of Medicine, Washington University School 

of Medicine, and Canada’s Michael Smith Genome Sciences Centre; (3) 1000 reads across 

all samples from all sequencing centers; (4) 106 reads spiked across 100 randomly selected 

samples from HMS; (5) 106 reads spiked across 1000 randomly selected samples from all 

sequencing centers. The mean raw read count across all samples and taxa was 1481.20, so 

pseudo-contaminants containing 1000 reads can be considered ‘low-level’ background while 

those with 106 reads are considered ‘high-abundance’ spikes. If pseudo-contaminants are 

present in downstream ML models after training, three interpretations are available: Evaluate 

the percent predictive contribution of the pseudo-contaminants via feature importance scores 

and decide if it is negligible or not; eliminate any ranked model features below the pseudo-

contaminant; or, most conservatively, flag the entire model as being unreliable.

Since TCGA did not include any “negative blank” reagent tubes during sample processing, 

we next attempted to pair a microbial “blacklist” at the genus-level that used similar reagents 

and/or library prep kits. TCGA SOPs mainly employed QIAGEN products (Qiagen, 

Valencia, CA) for extracting DNA and RNA in tissues (DNA/RNA AllPrep kit) and DNA in 

blood (QiaAmp Blood Midi Kit)52. Salter and colleagues14 described such a list (n=94 

genera) for DNA extraction kits in metagenomic experiments, including from QiaAmp kits 

that used the same silica membrane-based DNA purification as those employed in TCGA 

blood extractions, obtained across four years of “negative blank” sequencing and three high-

throughput sequencing centers. Additional putative external contamination was identified on 

the basis that sequences from contaminants generally have frequencies that are inversely 

correlated with sample analyte concentration16,38. A robust statistical framework recently 

validated this principle16, providing the opportunity to exploit sample DNA/RNA 

concentrations recorded by TCGA as a means to identify putative contaminants. The two 

main assumptions of this framework are (i) the contaminants are added in uniform amounts 

across samples and (ii) the amount of contaminant DNA/RNA is small relative to the true 

sample DNA/RNA (microbial or host). Filtering was then conducted using the associated 

decontam R package (https://github.com/benjjneb/decontam)16 using the recommended 
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hyperparameter threshold (P*=0.1) and a more stringent approach (P*=0.5). Note, P*=0.5 

means that taxonomies are classified as “contaminant” or “not” if the contaminant model or 

non-contaminant model fit the distribution better. Since we found sequencing center to 

contribute significant variation to the raw count data, we processed the data in batches 

corresponding to them, whereby a taxon identified as a contaminant at any center was 

subsequently discarded for all centers (i.e. batch.combine=”minimum” in decontam). 

Putative lists of contaminants (P*=0.1: n=283 genera; P*=0.5: n=1818 genera) were then 

combined/intersected with the microbial “blacklist” (n=94 genera) and subtracted from the 

full dataset. Manual literature inspection of the smaller combined contaminant list (n=377) 

re-allowed 89 genera that were potentially pathogens or commensals (Table S6). This 

resulted in three new datasets: “likely contaminants removed,” “all putative contaminants 

removed,” “most stringent filtering.” As a further conservative measure, we took all TCGA 

sample barcodes (e.g. TCGA-02-0001-01C-01D-0182-01; as shown on NCI’s 

documentation https://docs.gdc.cancer.gov/Encyclopedia/pages/TCGA_Barcode/) and 

extracted all sequencing plate-sequencing center combinations, as named by the barcode’s 

last two sets of integers (i.e. plate 0182 from center 01, or 0182–01, in this example). Since 

decontam calculates the equivalent of a linear regression between taxon read fractions and 

analyte concentrations for all samples in a batch to determine if a given taxon is classified as 

a “contaminant,” we required more than 10 samples per plate-center combination to qualify 

as a batch, giving 351 total plate-center batches. A P*=0.1 was used (default value), and, as 

before, if a taxon was identified as a contaminant in any one of the 351 batches 

(batch.combine=”minimum”), it was removed from the dataset (n=421 taxa removed; Table 

S8). After intersecting with the microbial “blacklist,” a total of 497 genera were removed. 

This provided the fourth decontaminated dataset, and all of them were then processed 

through the same SNM and ML pipelines described above.

Comparing ML performances between BWA, SHOGUN, and Kraken data

BWA filtering occurred against the same database used to generate the Kraken-based 

assignments (n=59,974 microbial genomes [bacteria, archaea, viruses]). Then, filtered BWA 

microbial count data were batch corrected the same way as the Kraken data via Voom-SNM, 

except that DNA and RNA data were normalized separately due to confounding between 

experimental strategy and sequencing center of the reduced sample count. Samples from the 

raw Kraken-derived data were then matched against samples processed by BWA and 

normalized the exact same way as the BWA data. This resulted in a total of four normalized 

datasets: DNA BWA data, RNA BWA data, DNA Kraken-subsetted data, and RNA Kraken-

subsetted data. All four normalized datasets were then inputted for ML and their 

performances were compared to each other (Extended Data Fig. 4a–h).

The ‘Web of Life’ database48 used for SHOGUN taxonomy assignments did not contain 

viruses, and SHOGUN processed a subset of all TCGA samples evaluated by Kraken 

(13,517 vs 17,625 samples). Thus, to make a fair comparison between their downstream ML 

performances, raw Kraken count data were subsetted to remove all identified viruses and to 

match the same samples processed by SHOGUN. Both datasets were then identically 

normalized by Voom (using quantile normalization) and SNM algorithms (using the same 
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biological and technical variables as in the main TCGA analysis described above) before 

being fed into the ML pipelines for discrimination between and within cancer types.

Complementary diagnostic analyses

When evaluating the applicability of blood mbDNA to low-grade cancers, all patients with 

stage Ia-c and IIa-c classified tumors were grouped together while discarding all others. For 

comparisons against the Guardant360® and FoundationOne® Liquid ctDNA assays, all 

TCGA patients containing at least one genomic alteration evaluated on their coding gene 

panels were filtered out; this included whether mutations were considered to be “passengers” 

or “drivers.” Remaining patients were used for ML analyses as described above.

TCGA simulations to estimate required sample sizes for validation study

To estimate the number of required samples from prostate, lung, and skin cancer 

(melanoma) for discrimination, we performed empiricial simulations on TCGA blood 

samples at two different sequencing centers (Broad, HMS) that were all sequenced on one 

type of platform (Illumina HiSeq). We first used Kraken-derived microbial count data and 

then repeated the simulations with SHOGUN-derived microbial count data. This most 

closely mimicked expected real-world experimental conditions of the validation study.

First, all TCGA PRAD, LUAD, LUSC, and SKCM blood samples at Broad and HMS that 

were sequenced on Illumina HiSeq machines were subsetted from the raw Kraken data of 

microbial counts (Broad: n=99; HMS: n=288). Our lung cancer samples from author S.P.P. 

were of mixed origin so we combined LUAD and LUSC blood samples into a single non-

small-cell-lung cancer (NSCLC) umbrella disease type; however, this only applied to Broad 

samples, as all blood-derived lung cancer samples at HMS were LUAD in origin. This left a 

breakdown of samples as follows: {HMS: 66 LUAD, 104 PRAD, 118 SKCM; Broad: 42 

NSCLC [24 LUAD, 18 LUSC], 17 PRAD, 40 SKCM}. Then, each raw count dataset for 

HMS and Broad was independently normalized through Voom (using quantile 

normalization) and SNM algorithms, using “disease type” as the biological variable of 

interest and “tissue source site” as the technical variable, as all other technical factors were 

precluded by picking a single sequencing center, data type, and platform.

The simulations were performed as follows on the normalized datasets: (1) Random 

stratified sampling picked equal numbers of samples from the three classes; (2) one sample 

of the three class subsample was left out; (3) a ML model was built on all the remaining 

samples in the subsample and applied on the left out sample to make a prediction with a 

certain probability; (4) steps 2–3 were repeated until all samples had been iterated through; 

(5) using the list of observed classes and list of predicted classes along with their 

probabilities, multi-class performance metrics were estimated; (6) another stratified random 

sample was selected of the same sample size and steps 2–5 were repeated 9 more times (i.e. 

total of 10 times) to estimate standard errors of the multi-class performance metrics; (7) 

steps 1–6 were repeated for individual class sample sizes of 5 through 40 with a step size of 

5 samples. In cases where the stratified sampling size was larger than the number of samples 

in a class, all samples in that class were used. Collectively, this provided an estimate of the 

number of samples to perform multi-cancer discrimination well (Extended Data Fig. 9a). 

Poore et al. Page 16

Nature. Author manuscript; available in PMC 2020 September 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The empirical performance estimates (mean AUROC, mean AUPR) suggest that having at 

least 15 samples per cancer class should be sufficient. Note that it was not possible to 

estimate an ideal sample size for healthy controls since TCGA did not include them.

Clinical cohort selection and IRB protocols numbers

A total of 169 patient biobanked, frozen plasma samples were analyzed as part of this study, 

all from UC San Diego. All studies were approved by the Institutional Review Board (IRB) 

at UC San Diego, and under their respective IRB-approved protocols, patients provided 

written informed consent for sample donation and study. All prostate cancer plasma samples 

(n=59) came from R.M. under IRB protocol 131550. All lung cancer and melanoma plasma 

samples came from S.P.P. under IRB protocol 150348. All non-cancer, HIV-, healthy control 

subjects (n=69) came from a group led by R.H. under the following IRB protocol numbers: 

130296, 091054, 172092, 151057, and 182064.

Plasma-derived, cell-free microbial DNA sample processing, and sequencing

Total circulating DNA was extracted from a volume of 250 μL of plasma from each sample 

using the QIAamp Circulating Nucleic Acid Kit (QIAGEN) according to the manufacturer’s 

instructions. And purified with AMPure XP SPRI paramagnetic beads (Beckman Coulter). 

Sequencing libraries were prepared from purified cfDNA using the KAPA HyperPlus Kit 

(Kapa Biosystems) with standard Illumina indexed adapters (IDT) as detailed in Sanders J. 

et al. (2019)47. Sample libraries were characterized using the Agilent 4200 TapeStation 

System (High Sensitivity DNA Kit) and quantified by qPCR using the NEBNext® Library 

Quant Kit for Illumina® (New England Biolabs). Paired-end 2×150 bp sequencing was 

performed on a NovaSeq 6000 instrument (Illumina), and samples were pooled across all 

four lanes during sequencing.

Bioinformatic processing for plasma microbiome samples

A total of 21,600,141,264 reads were generated on the single NovaSeq 6000 sequencing run 

across all samples. 19,046,611,360 reads were assigned to human samples (i.e. negative and 

positive controls removed), of which 2.186% of the total reads were classified as “non-

human”. Raw sequencing data were demultiplexed and adapter-trimmed using Atropos74. 

Additional quality filtering was done using Trimmomatic with the following settings—

(ILLUMINACLIP:TruSeq3-PE-2.fa:2:30:7, MINLEN:50, TRAILING:20, AVGQUAL:20, 

SLIDINGWINDOW:20:20)75. An additional adapter sequence consisting of a string of only 

G was added to the standard TruSeq3 adapters to remove trailing G stretches from the 5’ end 

of reads. Read pairs were discarded if either mate mapped to the human genome (major-

allele-SNP reference from 1000 Genomes Project) using Bowtie2 with the fast-local 

parameter set62,76. Paired-end reads were then merged using FLASH with the following 

parameters—(minimum overlap: 20, maximum overlap: 150, mismatch ratio: 0.01)77.

The filtered, merged reads were then processed either by Kraken, using the same workflow 

and database (n=59,974 microbial genomes) detailed above, or with SHOGUN as detailed 

here. Samples were processed on individual plasma microbiome samples (i.e. on a per-

sample-per-lane basis since samples were pooled across all four sequencing flow cells 

during the run). After per-sample-per-lane taxonomy assignment by Kraken or SHOGUN, 
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microbial counts across lanes were aggregated for each sample after hierarchical clustering 

procedures showed consistent grouping by sample IDs rather than by flow cell lane. For 

SHOGUN-derived data, both successfully merged and unmerged reads were used as input 

for the SHOGUN align function, using Bowtie2 to map reads against the Web Of Life 

database to generate taxonomy profiles (https://biocore.github.io/wol/data/genomes/#)31, 

which were then collapsed to the genus level using QIIME 263. Taxonomy profiles of each 

sample were then filtered to remove all taxa whose relative abundance was less than 0.01%.

Plasma microbiome technical validation and data decontamination

To evaluate the performance of the sequencing run and bioinformatic microbial-detection 

pipelines, spiked wells and experimental serial dilutions of Aliivibrio fischeri (genus: 

Aliivibrio) included on the sequencing plate were examined against other sample types for 

differential abundance and in isolation for log-fold changes in abundance across dilutions. 

These technical “positive” controls are plotted in Extended Data Figs. 9b–c for both Kraken 

and SHOGUN-derived taxonomy assignments.

Three kinds of “negative” blank controls were included on the sequencing plate: (1) DNA 

extraction blanks, which had reagents from the DNA extraction stage through sequencing; 

and (2) DNA library preparation blanks, which had reagents from the library preparation 

stage through sequencing; and (3) empty control wells, which had water added to them and 

then reagents during library preparation and would contain splashed and/or aerosolized 

microbial nucleic acids. As used in the TCGA analysis, decontam16 was again used to 

decontaminate the plasma microbial data, except that it had access to both “negative” blank 

controls and DNA concentrations for all samples (excluding empty control wells for the 

latter). As a conservative measure, we used a P*=0.5 hyperparameter value for decontam for 

both “prevalence” (i.e. blank-based) and “frequency” (i.e. concentration-based) modes of 

decontamination; this hyperparameter value is equivalent to the “most stringent 

decontamination” in TCGA that discarded >90% of the total data. For “prevalence” mode, a 

P*=0.5 will flag any taxon that is more prevalent in “negative” controls than biological ones 

as a contaminant; for “frequency” mode, a P*=0.5 will flag any taxon whose model (i.e. a 

regression model) fits a contaminant distribution better than a non-contaminant distribution 

using read fractions and DNA concentrations16 For Kraken count data, “prevalence” mode 

discarded 21 taxa and “frequency” mode discarded 1261 taxa (out of 1753 original 

assignments); for SHOGUN count data, “prevalence” mode discarded 57 taxa and 

“frequency” mode discarded 244 taxa (out of 1181 original assignments). Decontaminated 

data for both Kraken and SHOGUN were fed into downstream normalization and ML 

pipelines.

Plasma microbiome data normalization, permutation testing, and ML

An attempt to predict age using raw microbial count data was performed using gbm ML 

models (architectures same as those described above for TCGA) and leave-one-out (LOO) 

iterative ML (Extended Data Fig. 9g).

To confirm the importance of normalizing for age and gender in this cohort, we performed a 

permutation analysis with 100 iterations for each factor and then simultaneously for both 
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factors (Extended Data Figs. 9h–j). Briefly, the following four steps were performed: (1) 

Randomly swap age and/or sex labels among all samples; (2) run Voom-SNM on the raw 

data, using disease type as the biological variable of interest and permuted age and/or sex as 

the technical factors; (3) perform a ML analysis to discriminate grouped cancer samples 

from healthy controls using 70%/30% training/testing splits with a fixed random number 

seed and internal 4-fold cross validation to obtain a two-class performance estimate 

(AUROC, AUPR); (4) repeat steps 1–3 for a total of 100 times to create a null performance 

distribution. Next, using correct, fixed age and/or sex assignments, we ran steps 2–3 for a 

total of 100 times while randomly selecting the random number seed in step 3. Lastly, this 

performance distribution was directly compared to its null distribution for significance using 

a two-sided Mann-Whitney test. Since all of these tests were extremely significant (all p-

values≤1.5×10−13), we incorporated age and sex as technical factors in the Voom-SNM 

while holding disease type as the biological variable of interest. Note, all lung cancer 

samples were labeled with a consolidated disease type label during normalization regardless 

of pathological subtype, as done in the TCGA cancer simulations (described above). All 

“negative blank” and “positive monoculture” controls were removed prior to Voom-SNM.

ML on the Voom-SNM normalized plasma microbiome samples was done exactly as 

previously described for TCGA samples, except for the sampling schema, due to the orders 

of magnitude smaller sample sizes. First, to estimate generalization of healthy versus 

grouped cancer discriminations, we ‘bootstrapped’ 70%/30% training/testing splits with 4-

fold cross validation during training for 500 iterations. ‘Sampling with replacement’ was 

allowed in that every training/testing split (i.e. every iteration) was unique; however, in no 

case was a sample allowed to be both a training case and a testing case. Summary statistics 

on the resultant performance metrics from all 500 iterations estimated the AUROC and 

AUPR distributions and confidence intervals (Fig. 4b; Extended Data Fig. 10a). Second, 

pairwise and multi-class discriminations between and among healthy controls and individual 

cancer types were done with leave-one-out (LOO) ML. In other words, one sample was 

iteratively left out, a model was iteratively trained on the remaining samples with 4-fold 

cross validation for hyperparameter tuning, and a prediction was iteratively made on the left 

out sample with a probability given by the model. The final list of actual classes for all 

samples were compared to the list of predicted classes and their probabilities to estimate 

AUROC and AUPR metrics, as described previously using the PRROC R package70. Multi-

class performance was estimated by taking the mean of all 1-versus-all-others comparisons, 

as reported by the multiClassSummary() function in the caret R package69.

Iterative subsampling to evaluate the contribution of smaller samples sizes on the melanoma 

cohort performance (Extended Data Fig. 9k) was done as such: (1) Perform random 

stratified sampling of a single cancer type and healthy controls of 16 samples each (32 total); 

(2) perform LOO iterative ML and evaluate performance on those 32 samples for healthy vs. 

cancer discrimation; (3) repeat steps 1–2 one-hundred times to estimate performance 

standard errors; (4) repeat steps 1–3 for each of the three cancer types. The same process 

was also done for iterative subsampling of PC and LC cohorts to study the impact of 

decreased sample size on their discrimination. Note that the entire melanoma cohort was 

used during each stratified subsampling, since the goal was to compare its cohort size to the 

other sample sizes.
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Statistical analyses

All statistical analyses were done using R version 3.4.3. The ggpubr package (https://

github.com/kassambara/ggpubr) performed nonparametric statistical testing between groups 

and accounted for multiple hypothesis testing correction when necessary. Note that p-values 

less than 2.2×10−16 cannot be accurately calculated by R, so p-values less than this are listed 

as “p < 2.2×10−16”; it is not a range of p-values. Measurements were taken from distinct 

samples and not by repeatedly measuring samples. Sample size estimates for the prospective 

validation study came from empirical simulations with TCGA blood samples and relied on 

the GBM package67,68, Caret package69, and MLmetrics package (https://github.com/

yanyachen/MLmetrics) for performing ML and multi-class performance estimation. All 

other multi-class performance estimates were calculated using the Caret69 and MLmetrics 

packages.

Reporting summary

Further information on research design is available in the Nature Research Reporting 

Summary linked to this article.

Website

The website referenced in this manuscript can be accessed at http://

cancermicrobiome.ucsd.edu/CancerMicrobiome_DataBrowser/. Links are directly available 

on the website to the data repository as well as the code hosted on GitHub (upper right). 

Additionally, there are five separate tabs (left-hand side) for interactively plotting Kraken 

and SHOGUN-derived normalized microbial abundances in TCGA and the plasma 

microbiome data (raw counts or normalized data), as well as for interactively examining all 

model performances and ranked feature lists shown in this paper (approximately 600 

models).

Data availability

Pre-processed cancer microbiome data generated and analyzed in this study (i.e. summarized 

read counts at the genus taxonomic level) as well as the metadata are available at ftp://

ftp.microbio.me/pub/cancer_microbiome_analysis/. Raw outputs of Kraken- or SHOGUN-

processed TCGA sequencing data comprise hundreds of terabytes of files and are not 

directly available unless otherwise coordinated with the corresponding author. However, all 

raw TCGA data and the bioinformatics pipeline necessary to generate such raw outputs from 

Kraken can be accessed through SevenBridge’s CGC. Each of the hundreds of ML models 

in this work generated a list of ranked features used to make predictions, and we provide the 

code to generate these lists below, in addition to showing them on our website. Raw data for 

the plasma validation study are available through the European Nucleotide Archive 

(accession IDs ERP119598: HIV-; ERP119596: PC; ERP119597: LC and SKCM); these 

data and the SHOGUN-processed data for the plasma validation study are available in Qiita 

(https://qiita.ucsd.edu/) under study IDs (12667: HIV-; 12691: PC; 12692: LC and SKCM).

Poore et al. Page 20

Nature. Author manuscript; available in PMC 2020 September 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/kassambara/ggpubr
https://github.com/kassambara/ggpubr
https://github.com/yanyachen/MLmetrics
https://github.com/yanyachen/MLmetrics
http://cancermicrobiome.ucsd.edu/CancerMicrobiome_DataBrowser/
http://cancermicrobiome.ucsd.edu/CancerMicrobiome_DataBrowser/
ftp://ftp.microbio.me/pub/cancer_microbiome_analysis/
ftp://ftp.microbio.me/pub/cancer_microbiome_analysis/
https://qiita.ucsd.edu/


Code availability

All programming scripts used to access, manage, and run data on the CGC as well as 

development of the supervised normalization, decontamination, ML pipelines, and so forth 

can be found at our GitHub repository link:https://github.com/biocore/tcga. These can be 

applied directly on the summarized, genus-level count data given above. Our CGC pipeline 

is also publicly shareable and available upon reasonable request to the corresponding author.

Extended Data

Extended Data Figure 1: Continued overview of the TCGA cancer microbiome.
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a, TCGA study abbreviations. b, Principal components analysis (PCA) of Voom normalized 

data, where colors represent sequencing platform of the sample and each dot denotes a 

cancer microbiome sample. c, PCA of the data following consecutive Voom-SNM 

supervised normalization, as labeled by sequencing platform. d, PCA of Voom normalized 

data, where colors represent experimental strategy of the sample and each dot denotes a 

cancer microbiome sample. e, PCA of the data following consecutive Voom-SNM 

supervised normalization, as labeled by experimental strategy. f-g, Microbial reads counts as 

normalized by the quantity of samples within a given sample type across all cancer types in 

TCGA after metadata quality control (Fig. 1b), including the three major sample types 

analyzed in the paper (f) and the remaining sample types (g). Note the following 

abbreviations: ANP = Additional - New Primary; AM = Additional Metastatic; MM = 

Metastatic; RT = Recurrent Tumor.
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Extended Data Figure 2: Performance metrics details discriminating between and within TCGA 
cancer types using microbial abundances.
a-f, Expanded examples from the heatmaps in Figs. 1f–h. A color gradient shown at the top 

denotes the probability threshold at any point along the ROC and PR curves. An inset 

confusion matrix is shown using a 50% probability threshold cutoff, which can be used to 

calculate sensitivity, specificity, precision, recall, positive predictive value, negative 

predictive values, and so forth at the corresponding point on the ROC and PR curves. g-h, 

Linear regressions of model performance, specifically AUROC (g) and AUPR (h), for 

discriminating between cancer types in a one-cancer-type-versus-all-others manner, as a 

function of minority class size. Performances are shown for models using microbes detected 

in primary tumors, which had the greater number of samples (n=13,883) and cancer types 

(n=32) to compare. Since AUROC and AUPR have domains of [0,1] and the minority class 

size varied from 20 to 1238 samples, the latter is regressed on a log10 scale. Inset hypothesis 
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tests and associated p-values are based on the null hypothesis of there being no relationship 

between the dependent and independent variables (two-sided test).

Extended Data Figure 3: Internal validation of ML model pipeline.
a, Two independent halves of TCGA raw microbial count data were normalized and used for 

model training to predict one-cancer-type-versus-all-others using tumor microbial DNA and 

RNA; each model was then applied on the other half’s normalized data. This heatmap 

compares the performances of these models as compared to training and testing on 50%

−50% splits of the full dataset. b-c, Model performance comparison when subsetting the full 

Voom-SNM data by primary tumor RNA samples (n=11,741) across multiple sequencing 

centers to predict one-cancer-type-versus-all-others. d-e, Model performance comparison 
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when subsetting the full Voom-SNM data by primary tumor DNA samples (n=2142) across 

multiple sequencing centers to predict one-cancer-type-versus-all-others. f-g, Model 

performance comparison when subsetting the full Voom-SNM data by University of North 

Carolina (UNC) samples (n=9726), which only did RNA-Seq, to predict one-cancer-type-

versus-all-others using primary tumor RNA samples. h-i, Model performance comparison 

when subsetting the full Voom-SNM data by from Harvard Medical School (HMS) samples 

(n=898), which only did WGS, to predict one-cancer-type-versus-all-others using primary 

tumor DNA samples. For all models in b-i: Generalized linear models with standard errors 

are shown in gray; the dotted diagonal line denotes a perfect linear relationship; for sample 

size comparison, the full Voom-SNM dataset contained 13,883 primary tumor samples.
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Extended Data Figure 4: Orthogonal validation of Kraken-derived TCGA cancer microbiome 
profiles and their ML performances.
a-h, Four TCGA cancer types (CESC, STAD, LUAD, OV) underwent additional filtering 

after Kraken-based taxonomy assignments via direct genome alignments (Burrows-Wheeler 

Aligner50, BWA). ML performances are compared between the normalized, BWA filtered 

data and matched, independently normalized Kraken data for one-cancer-type-versus-all-

others using primary tumor microbes (a-b), tumor-versus-normal discriminations (c-d), 

stage I versus stage IV tumor discriminations using primary tumor microbes (e-f), and one-

cancer-type-versus-all-others using blood-derived microbes (g-h) (Methods). i, Venn 

diagram of the taxa count between the BWA filtered data and the Kraken “full” data. j-t, An 

orthogonal microbial-detection pipeline called SHOGUN31 (“SHallow shOtGUN 

sequencing”) that uses direct genome alignments and a separate database (‘Web of Life’ 

[WoL]; n=10,575 microbial genomes [bacteria, archaea]; https://biocore.github.io/wol/)48 

was run on a subset of TCGA samples covering every analyzed cancer type (n=32), sample 

type (n=7), sequencing platform (n=6), and sequencing center (n=8) in the Kraken-based 

analysis (n=13,517 total samples). SHOGUN-derived microbial count data were normalized 

via Voom-SNM, analogous to its Kraken counterpart, and utilized for downstream ML 

analyses. j, Venn diagram of the SHOGUN-derived microbial taxa and the Kraken-derived 

microbial taxa. Note the use of separate databases and the fact that WoL does not include 

viruses while the Kraken database does. k-l, PCA of Voom (k) and Voom-SNM (l) 
normalized SHOGUN data, colored by sequencing center. m-t, ML performance 

comparisons between models trained and tested on SHOGUN data and matched Kraken 

data, using the same 70%/30% splits, for one-cancer-type-versus-all-others using primary 

tumor microbes (m-n), tumor-versus-normal discriminations (o-p), stage I versus stage IV 

tumor discriminations using primary tumor microbes (q-r), and one-cancer-type-versus-all-

others using blood-derived microbes (s-t). For fair comparison, matched Kraken data were 

derived by removing all virus assignments in the raw Kraken count data and subsetting to 

the same 13,517 TCGA samples analyzed by SHOGUN; these matched Kraken data were 

then normalized independently via Voom-SNM the exact same way as the SHOGUN data 

(Methods) and fed into downstream ML pipelines. For all ML performances: A minimum 

minority class sample size of 20 was required to be eligible. For regression subfigures: The 

dotted diagonal line denotes perfect performance correspondence; generalized linear models 

with standard error ribbons are shown.
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Extended Data Figure 5: Pan-cancer microbial abundances and an interactive website for TCGA 
cancer microbiome profiling and ML model inspection.
a, Pan-cancer Fusobacterium normalized abundances with a one-way ANOVA (Kruskal-

Wallis) test for microbial abundances across cancer types for each sample type. Sample sizes 

are inset in blue, and TCGA study names are listed at the bottom. b, SourceTracker2 results 

for fecal contribution, as based on HMP2 data, for TCGA-COAD solid-tissue normal 

samples and TCGA-SKCM primary tumor samples. Only 1 solid tissue normal sample was 

available for TCGA-SKCM (Table S4), so primary tumors were used instead as the best 

proxy of expected skin flora. It is expected that colon samples should have higher fecal 

contribution than skin, so a one-sided Mann-Whitney test was employed. Since 

SourceTracker2 outputs mean fractional contributions of each source (i.e. HMP2) to each 

sink (i.e. COAD, SKCM samples), the center value of each bar plot is the mean of these 

values and the error bars denote the standard error. The sample sizes are inset below the bars 

in blue. c, Pan-cancer Alphapapillomavirus normalized abundances with a one-way ANOVA 

(Kruskal-Wallis) test for microbial abundances across cancer types for each sample type. 

Sample sizes are inset in blue, and TCGA study names are listed at the bottom. TCGA 

studies that clinically tested patients for HPV infection have “negative” or “positive” 

appended depending on the result of the test. d, Interactive website screenshot showing 

plotting of Alphapapillomavirus normalized microbial abundances using Kraken-derived 

data. Plotting using SHOGUN-derived normalized microbial abundances is available on 

another tab of the website (left-hand side). e, Interactive website screenshot of ML model 

inspection. Selecting the data type (e.g. all likely contaminants removed), cancer type (e.g. 

invasive breast carcinoma), and comparison of interest (e.g. tumor vs normal) will 
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automatically update the ROC and PR curves, as well as the confusion matrix (using a 

probability cutoff threshold of 50%) and the ranked model feature list. Website is accessible 

at http://cancermicrobiome.ucsd.edu/CancerMicrobiome_DataBrowser/. All box plots show 

median, 25th and 75th percentiles, and whiskers that extend to 1.5× the interquartile range.

Extended Data Figure 6: The decontamination approach along with its results, benefits, and 
limitations on cancer microbiome data.
a, Various approaches used to either evaluate, mitigate, remove and/or simulate sources of 

contamination. b, The proportion of remaining taxa or microbial reads in TCGA after 

varying levels of decontamination. Decontamination by “sequencing center” removed all 

taxa identified as a contaminant at any one sequencing center (n=8 ‘batches’); 

decontamination by “plate-center” combinations removed all taxa identified as a 
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contaminant on any one single sequencing plate having more than 10 TCGA samples on it 

(n=351 ‘batches’). c-f, Body-site attribution prediction on the “likely contaminants 

removed” dataset (c), the “plate-center decontaminated” dataset (d), the “all putative 

contaminants removed” dataset (e), and the “most stringent filtering” dataset (f). g-l, All of 

the models and concomitant performance values (AUROC and AUPR) were re-generated 

using the four decontaminated datasets described above (each labeled with a different color; 

see legend located above plots). The AUROC and AUPR values obtained from models 

trained and tested on the decontaminated datasets are plotted against the AUROC or AUPR 

values from the “full” dataset (shown in Figs. 1f–h). The dashed diagonal line denotes a 

perfect linear relationship. Generalized linear models have been fitted to the corresponding 

datasets’ AUROC and AUPR values; standard errors of the linear fits are shown by the 

associated shaded regions. COAD model performances are identified throughout the figures.
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Extended data figure 7: Decontamination effects on proportion of average reads per sample type.
a-c, The total read count (i.e. DNA and RNA) of each major sample type (primary tumor [a], 

solid-tissue normal [b], blood-derived normal [c]) was summed and divided by the total 

number of samples within each sample type. This normalized read count (per sample type) 

was then divided by the summed normalized read count across all sample types for each 

cancer type, thereby providing an estimate of the proportion of average reads per sample 

type per cancer type. This was repeated for all five datasets, as shown by the legend, to 

assess if decontamination differentially impacts certain sample types and/or certain cancer 

types; relative stability in the percentages shown would suggest a lack of differential 

contamination. Minor sample types that were not further analyzed in this paper by 

decontamination or ML (e.g. additional metastatic lesions; n=4 sample types; Extended Data 

Fig. 1g) are not shown and comprised only 3.80% of total TCGA samples. Note, in the 
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special case that only one sample type exists for a given cancer type (i.e. primary tumor in 

ACC, MESO, UCS), then all bars will show that 100% of the normalized reads came from 

that one sample type.

Extended data figure 8: Measuring spiked pseudo-contaminant contribution in downstream ML 
models and theoretical sensitivities of commercially available, host-based, cell-free DNA (ctDNA) 
assays in TCGA patients.
a-b, Feature importance scores were calculated for all taxa used in models trained to 

discriminate one-cancer-type-versus-all-others in all four decontaminated datasets (Extended 

Data Fig. 6b) using primary tumor microbial DNA or RNA (a), or using blood-derived 

mbDNA (b). These decontaminated datasets were spiked with pseudo-contaminants prior to 

the decontamination and normalization pipelines to evaluate their performance (Methods), 
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and the test set performances of the models shown are given in Extended Data Figs. 6g–h 

and Fig. 3a, respectively. Any spiked pseudo-contaminant(s) used by a model had their 

feature importance score(s) divided by the sum total of all feature importance scores in that 

model to estimate a percentage contribution of them towards making accurate predictions; 

the higher the score (out of 100), the less biologically reliable the model is. Note, “0” means 

that no spiked pseudo-contaminants were used for making predictions by the model; none of 

the models generated on the “plate-center decontaminated” data included spiked pseudo-

contaminants as features. c-d, Percent distribution among TCGA studies with patients 

having one or more genomic alterations on FoundationOne® Liquid ctDNA coding genes (c) 

or on Guardant360® ctDNA coding genes (d). Data are downloaded from https://

www.cbioportal.org/. e, The specific list of coding genes for the FoundationOne® and 

Guardant360® ctDNA assays and their examined alterations (source listed in Methods).
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Extended Data Figure 9: Supporting analysis for real-world, plasma-derived, cell-free microbial 
DNA analysis between and among healthy individuals and multiple cancer types.
a, Discriminatory simulations in TCGA used to empirically power the real-world validation 

study (Fig. 4; Methods for details) and the theoretical performance metrics for each stratified 

sample size (per cancer type) using blood samples from the three cancer types of interest 

(prostate cancer (PC), lung cancer (LC), melanoma (SKCM)). Center values for each 

stratified sample size are the means of the performances and error bars denote the standard 

errors. Stratified sampling means that a sample size of five per cancer type would be a total 

of 15 blood samples under study for three-class discrimination (Methods). TCGA blood-

derived normal samples were subsetted from The Broad Institute (Broad) and Harvard 

Medical School (HMS) such that they came from one sequencing center (i.e. Broad or 

HMS), one sequencing platform (Illumina HiSeq), and one experimental strategy (WGS). 

Poore et al. Page 33

Nature. Author manuscript; available in PMC 2020 September 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The two kinds of LC in TCGA (LUAD, LUSC) were combined to reflect the samples 

available for the validation study. The resultant Broad and HMS datasets, as raw microbial 

counts, were then normalized separately via Voom-SNM, as would be in the validation 

study, and fed into a multi-class (n=3), leave-one-out (LOO) ML pipeline. Ten permuted 

iterations per stratified sample size per cancer type were used to estimate standard errors of 

theoretical performance estimates; for example, a stratified sample size of 40 would involve 

training and testing 1200 ML models ( = 40 samples * 3 cancer types * 10 iterations), from 

which 10 performance estimates would be made on 120 samples each to estimate standard 

errors (see Methods for details). All of this was repeated for SHOGUN-derived data as well. 

b, Evaluation of Aliivibrio genus abundance values (raw read counts) among positive control 

bacterial (Aliivibrio) monocultures, negative control blanks, and human sample types using 

both Kraken and SHOGUN-derived taxonomy assignments. Note the log10 scale and 0.5 

pseudo-count lower limit, shown with a dotted line. c, Evaluation of Aliivibrio genus 

abundance (raw read counts) across bacterial monoculture dilutions. Note the log10 scale and 

0.5 pseudo-count lower limit, shown with a dotted line. d, Distribution of ages among non-

cancer healthy controls (“Ctrl”), grouped lung cancer (LC), prostate cancer (PC), and 

melanoma (SKCM) patients. e, Distribution of gender among non-cancer healthy controls, 

LC, PC, and SKCM patients with inset Pearson’s chi-squared testing (one-sided critical 

region). f, Venn diagram of taxa assignments between Kraken, which used the same database 

built for TCGA (n=59,974 microbial genomes [bacteria, archaea, viruses]), and SHOGUN, 

which used the ‘Web of Life’ database (n=10,575 microbial genomes [bacteria, archaea]; 

https://biocore.github.io/wol/)48. g, Iterative leave-one-out (LOO) ML regression of host age 

using raw microbial count data from either Kraken (pink) or SHOGUN (aqua) derived 

assignments in healthy non-cancer patients. Mean absolute errors (MAE) evaluated across 

all samples are shown in the plot for Kraken and SHOGUN data. h-j, The effects of 

permuted age (h), sex (i), and age and sex (j) prior to Voom-SNM on ML performance to 

discriminate healthy versus grouped cancer patients using cell-free microbial DNA. One-

hundred permutations were used for each comparison (Methods). k, Iterative subsampling of 

PC, LC, SKCM, and healthy control groups to match SKCM cohort size (n=16 samples), 

followed by LOO pairwise ML of each subsampled cancer type against subsampled healthy 

controls. One-hundred permuted iterations were used to estimate discriminatory 

performance distributions and standard errors (Methods). For subfigures b, d and h-k: 

Significance testing was performed using a two-sided Mann-Whitney test for all 

comparisons with multiple testing correction when testing >2 comparisons; all box plots 

show median, 25th and 75th percentiles, and whiskers that extend to 1.5× the interquartile 

range. For all box plots and bar plots, sample sizes are inset in blue below them.
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Extended Data Figure 10: SHOGUN-derived ML performances to discriminate between cancer 
types and healthy, non-cancer subjects using cell-free microbial DNA.
a, ‘Bootstrapped’ performance estimates for distinguishing grouped cancer (n=100) from 

non-cancer healthy controls (n=69). ROC and PR curve data from 500 iterations of with 

different training/testing splits (70%/30%) are shown on the rasterized density plot; mean 

values and 95% confidence interval estimates are inset on the plot. b-g, Leave-one-out 

(LOO) iterative ML performance between two classes: PC vs. controls (b), LC vs. controls 

(c), SKCM vs. controls (d), PC vs. LC patients (e), LC vs. SKCM patients (f), and PC vs. 

SKCM patients (g). h-j, Multi-class (n=3 or 4), LOO iterative ML performances to 

distinguish between cancer types, as well as between cancer patients and healthy non-cancer 

controls. Mean AUROC and AUPR, as calculated on one-versus-all-others AUROC and 

AUPR values, are shown on the bottom of the confusion matrices. h, LOO ML performance 
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between the three cancer types under study. i, LOO ML performance between the three 

sample types with ≥20 samples in the minority class (i.e. the cutoff used in the TCGA 

analysis, Figs. 1f–h). j, LOO ML performance between all four sample types under study. 

For all subfigures with confusion matrix plots: LOO ML was employed instead of single or 

‘bootstrapped’ training/testing splits due to small sample sizes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: Approach and overall findings of the cancer microbiome analysis of The Cancer 
Genome Atlas (TCGA).
a, Lollipop plot showing the percentage of sequencing reads identified by the microbial-

detection pipeline in TCGA dataset by Kraken, and the number of reads resolved at the 

genus level. b, CONSORT-style diagram showing quality control processing and the number 

of remaining samples. c, Principal components analysis (PCA) of Voom normalized data, 

with cancer microbiome samples colored by sequencing center. e, PCA of Voom-SNM data. 

f, Principal variance components analysis of raw taxonomical count data, Voom normalized 

data, and Voom-SNM data. f-h, Heatmaps of classifier performance metrics (area under the 

ROC curve, “AUROC”, or PR curve, “AUPR”) from red (high) to blue (low) for 

distinguishing between TCGA primary tumors (f), tumor-versus-normal (g), and stage I 
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versus IV cancers (h) with “NA” denoting <20 samples available in any ML class for model 

training. Column names are TCGA study IDs (Extended Data Fig. 1a).

Poore et al. Page 41

Nature. Author manuscript; available in PMC 2020 September 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2: Ecological-validation of viral and bacterial reads within the TCGA cancer microbiome 
dataset.
a, Average body site attribution for solid-tissue normal samples from COAD (n=70) using 

SourceTracker232 trained on the Human Microbiome Project 2 (“HMP2”) dataset. b, 

Differential abundances of the Fusobacterium genus for common gastrointestinal (GI) 

cancers associated with Fusobacterium spp.1,19,34,35. c, Differential abundances of 

Fusobacterium among grouped GI cancers (n=8) and non-GI cancers (n=24) (Methods). d-e, 

Normalized HPV abundances for HPV-infected CESC patients (d) or HPV-infected HNSCC 

(e), as denoted in TCGA. f, Normalized Orthohepadnavirus abundance in LIHC patients 

with clinically adjudicated risk factors: prior hepatitis B infection (Hep B); heavy alcohol 

consumption (EtOH); or prior hepatitis C infection (Hep C). g, Normalized EBV abundance 
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in STAD integrative molecular subtypes: chromosomal instability (CIN), genome stable 

(GS), microsatellite unstable (MSI), or EBV-infected samples (EBV). All sub-figures: 

blood-derived normals and/or solid-tissue normals are shown as comparative negative 

controls; two-sided Mann-Whitney tests were used with multiple testing correction for >2 

comparisons; all box plots show median, 25th and 75th percentiles, and whiskers extending 

to 1.5× the interquartile range with sample sizes inset in blue.

Poore et al. Page 43

Nature. Author manuscript; available in PMC 2020 September 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3: Classifier performance for cancer discrimination using microbial DNA (mbDNA) in 
blood and as a complementary diagnostic for cancer ‘liquid’ biopsies.
a, Model performance heatmap analogous to Figs. 1f–h to predict one-cancer-type-versus-

all-others using blood mbDNA with TCGA study IDs on the right (Extended Data Fig. 1a); 

≥20 samples were required in each ML minority class to be eligible. b, ML model 

performances predicting one-cancer-type-versus-all-others using blood mbDNA for stage Ia-

IIc cancers. c-d, ML model performances using blood mbDNA from patients without 

detectable primary tumor genomic alterations, per Guardant360® (c) and FoundationOne® 

Liquid (d) ctDNA assays.
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Figure 4: Performance of machine learning (ML) models to discriminate between cancer types 
and healthy non-cancer subjects using plasma-derived, cell-free mbDNA.
a, Demographics of samples analyzed in the validation study. All cancer patients had high-

grade (stage III-IV) cancers of multiple subtypes and were aggregated into prostate cancer 

(PC), lung cancer (LC), and melanoma (SKCM) groups. b, ‘Bootstrapped’ performance 

estimates for distinguishing grouped cancer (n=100) from non-cancer healthy controls 

(n=69). Rasterized density plot of ROC and PR curve data from 500 iterations of with 

different training/testing splits (70%/30%); mean values and 95% confidence interval 

estimates inset. c-h, Leave-one-out (LOO) iterative ML performances between two classes: 

PC vs. controls (c), LC vs. controls (d), SKCM vs. controls (e), PC vs. LC patients (f), LC 

vs. SKCM patients (g), and PC vs. SKCM patients (h). i-k, Multi-class (n=3 or 4), LOO 

iterative ML performances to distinguish cancer types (i) and between mixed cancer patients 
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and healthy non-cancer controls (j,k). Overall LOO ML performance was calculated as the 

mean of one-versus-all-others comparisons’ performances (area under the ROC curve 

“AUROC”, or PR curve; “AUPR”).
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