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1University of California, San Francisco

2Indian Statistical Institute, Kolkata

Abstract

Binary phenotypes commonly arise due to multiple underlying quantitative precursors. Genetic 

variants may impact multiple traits in a pleiotropic manner. Hence, simultaneously analyzing such 

correlated traits may be more powerful than analyzing individual traits. Various genotype-level 

methods, e.g. MultiPhen [O'Reilly et al., 2012], have been developed to identify genetic factors 

underlying a multivariate phenotype. For univariate phenotypes, the usefulness and applicability of 

allele-level tests have been investigated. The test of allele frequency difference among cases and 

controls is commonly used for mapping case-control association. However, allelic methods for 

multivariate association mapping have not been studied much. We explore two allelic tests of 

multivariate association: one using a Binomial regression model based on inverted regression of 

genotype on phenotype (BAMP), and the other employing the Mahalanobis distance between two 

sample means of the multivariate phenotype vector for two alleles at a SNP (DAMP). These 

methods can incorporate both discrete and continuous phenotypes. Some theoretical properties for 

BAMP are studied. Using simulations, the power of the methods for detecting multivariate 

association are compared with the genotype-level test MultiPhen. The allelic tests yield marginally 

higher power than MultiPhen for multivariate phenotypes. For one/two binary traits under 

recessive mode of inheritance, allelic tests are found substantially more powerful. All three tests 

are applied to two real data and the results offer some support for the simulation study. Since the 

allelic approaches assume Hardy-Weinberg Equilibrium (HWE), we propose a hybrid approach for 

testing multivariate association that implements MultiPhen when HWE is violated and BAMP 
otherwise.

Keywords

Genome-wide association study; multiple phenotypes; multivariate association; allelic tests

 Introduction

A clinical trait or disease with a complex end-point is generally characterized by multiple 

quantitative precursors. In such situations, one can improve statistical power by considering 
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a multivariate phenotype [Lange et al., 2004; Klei et al., 2008; O'Reilly et al., 2012; 

Stephens, 2013; Zhu et al., 2014]. Moreover, in the presence of association with multiple 

traits, a multivariate approach is biologically more consistent than a univariate approach. 

Galesloot et al. [2014] showed that the use of multivariate association analyses can yield 

higher power compared to univariate analyses even when genetic correlations between traits 

are weak or when a genetic variant is only associated with one of the phenotypes (that is, 

when there is no multivariate association). For example, cardiovascular disease (CVD) is 

characterized by high levels of both low-density serum lipoprotein levels (LDL) and systolic 

blood pressure (SBP) [Newman et al., 1986]. In order to identify genomic regions associated 

with CVD, it may be intuitively more appealing and statistically more powerful to carry out 

association tests with a bivariate phenotype vector comprising LDL and SBP instead of the 

binary CVD phenotype.

To analyze such data, one can implement a multivariate regression approach such as 

MANOVA, but this requires that the vector of traits have an approximate multivariate normal 

distribution. This assumption may be difficult to satisfy for a vector comprising mixed 

phenotypes, such as, when one trait is binary and the other is continuous. Several methods 

using variations of generalized estimating equations (GEE) have been developed to 

incorporate non-normal traits [Zeger and Liang, 1986; Liu et al., 2009]. A log-linear 

approach [Lee et al., 2011] and a Bayesian network approach [Hartley et al., 2012] have 

been used to model multiple categorical phenotypes. The linear mixed model approach 

[Korte et al., 2012] provides a flexible framework to account for the correlation structure 

between SNPs as well as between individuals in a genome-wide association scan of multiple 

phenotypes. Other existing methods such as likelihood-based variance components [Almasy 

and Blangero, 2010] are susceptible to violation in underlying distributional assumptions. 

Another approach that circumvents the problem of modeling the multivariate phenotype is to 

obtain a reduced univariate phenotype using principal components [Klei et al., 2008; Minica 

et al., 2010]. However, association results based on principal components may be difficult to 

interpret biologically. For example, the first principal component of LDL and SBP is a linear 

combination of the two traits that explains the highest variability among the traits. However, 

it is difficult to understand the biological meaning or genetic underpinnings of such a 

derived trait.

An alternative approach to association mapping of multivariate phenotypes is to reverse the 

conventional model and regress genotypes on the multivariate phenotype. One such 

approach has been termed MultiPhen [O'Reilly et al., 2012] and has been shown to yield 

high power for detecting association with multiple traits [Galesloot et al., 2014]. The 

advantages of such an approach include the flexibility of incorporating traits of mixed type 

(binary, discrete or continuous) in the vector of phenotypes, allowing for heterogeneity in 

both the extent and the direction of association between the genetic variant and each 

constituent phenotype, robustness to possible violations in underlying distributional 

assumptions and the possibility of adjustment for covariates simultaneously with the 

multiple phenotypes.

For univariate traits, allele-level test for association has been investigated comparing its 

performance with genotype-level test [Guedj et al., 2008; Zheng, 2008; Lee et al., 2013]. To 
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the best of our knowledge, careful studies of allele-level tests for mapping association with 

multiple traits have not been undertaken. In this article, we explore two allelic tests for 

association with multiple phenotypes: one based on a binomial regression model (BAMP, 

Binomial regression-based Association of Multivariate Phenotypes) and the other an 

extension of the the allelic test for univariate traits proposed by Lee et al. [2013] to include 

multiple phenotypes (DAMP, Distance-based Association of Multivariate Phenotypes). We 

can view BAMP as a suitable modification of MultiPhen [O'Reilly et al., 2012] at the allelic 

level and show that it is equivalent to the classical case control allele-based test of 

association for binary traits. BAMP is proposed in the framework of inverted regression of 

genotype on phenotypes whereas DAMP is formulated as a test of difference between the 

two sample means of vectors of the multivariate phenotype corresponding to the two alleles 

at a SNP under the usual set-up of regressing phenotype on genotype.

Using simulations under a wide spectrum of multivariate phenotype models, we compare the 

performance of BAMP and DAMP with MultiPhen. We find that, for multivariate 

phenotypes, both the allelic tests produce comparable powers, but marginally higher than 

MultiPhen, in particular, BAMP yields a consistent marginal increase of power over 

MultiPhen. It is also found that, for a single or two binary traits under a recessive mode of 

inheritance, the allelic tests offer substantially higher power than MultiPhen. We also 

demonstrate the advantage of using allelic tests by carrying out association analyses on two 

real data of multivariate phenotypes: one comprising homocysteine levels, Vitamin B12 

levels and coronary artery disease (CAD) status in a North Indian population, and another 

comprising four case-control phenotypes - hypertension, diabetes type II, cardiovascular 

disease, and cancers for European-American population in “Resource for Genet Epidemiol 

Research on Adult Health and Aging” (GERA) cohort data obtained from dbGaP [dbGaP 

Study Accession: phs000674.v1.p1]. Based on our observations, we propose a hybrid 

approach for mapping association with multiple traits that uses MultiPhen when variants fail 

HWE and BAMP otherwise.

 Methods

Suppose Y = (Y1, . . . , Yk) denotes a multivariate phenotype vector, where Yj, j = 1, 2, . . . , 

k, can be either a qualitative or a quantitative trait. We assume that the multivariate 

phenotype is controlled by a biallelic trait locus with alleles A1 (minor) and A2. Consider a 

biallelic marker locus with alleles M1 (minor) and M2 such that the coefficient of linkage 

disequilibrium between the trait locus and the marker locus is δ, which is defined as δ = 

P(A1M1) – P(A1)P(M1). Suppose X denotes the number of minor alleles (0, 1, or 2) at the 

marker locus. We denote the frequencies of the alleles A1 and M1 by p and m, respectively. 

We assume that data are available on the genotypes at the marker locus and on the k-

dimensional multivariate phenotype vectors for n unrelated individuals randomly selected 

from a population. Suppose Yi = (Yi1, . . . , Yik) and Xi represent the multivariate phenotype 

data and the count of the allele M1, respectively, for the ith individual, i = 1, . . . , n.
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 MultiPhen

The genotype-level test implemented in MultiPhen, is based on a proportional odds logistic 

regression model [O'Reilly et al., 2012] given by:

Thus, the conditional distribution of the genotypes given Y = y can be obtained as follows:

with the restriction that α0 ≥ α1 (in order to satisfy that P(X = 1|y) is non-negative). A 

liklihood ratio test can be performed in this proportional odds logistic regression framework 

corresponding to  versus 

.

 BAMP

We model the conditional distribution of X (the number of minor alleles at the marker locus) 

given Y = y (the vector of multivariate phenotype) as binomial with parameters 2 and p(y), 

where p(y) is a logistic link function given by:

It follows that p(y) = P(M1|y). The model implicitly assumes that, conditioned on the vector 

of multivariate phenotype, the marker locus is in Hardy-Weinberg Equilibrium (HWE). The 

test for association is equivalent to testing H0 : β1 = . . . = βk = 0 versus H1 : at least one βj ≠ 

0, j = 1, . . . , k. Under H0, the minor allele frequency at the marker locus is independent of y 

and is given by: . The test can be performed using a likelihood ratio 

statistic which is distributed as chi-square with k degrees of freedom under H0. We note that 

this test procedure can be viewed as an allelic modification of MultiPhen.

We highlight the following two theoretical properties of BAMP:

 Property 1—Testing for H0 : β1 = . . . = βk = 0 vs H1 : at least one βj ≠ 0, j = 1, . . . , k, is 

equivalent to testing H0 : δ = 0 (no association between the marker locus and the traits) vs 

H1 : δ ≠ 0 (presence of association).
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 Property 2—If the phenotype is binary (in a case-control framework), BAMP is 

equivalent to the usual test of difference in allele frequencies among cases and controls.

The proof of each of the properties is provided in the Appendix. In genome-wide association 

studies (GWAS), the causal SNPs themselves may not be genotyped, rather the SNPs that 

are in linkage dis-equilibrium (LD) with them are identified through tests for association. 

Hence, a detected association between a marker SNP and the phenotypes under 

consideration is attributed to the non-zero LD between the marker and the causal SNPs. 

Thus, it is of interest to mathematically prove that testing the null hypothesis of no 

genotype-phenotype association against the alternative hypothesis of presence of 

association, is equivalent to testing δ = 0 versus δ ≠ 0.

We note that the proof of Property 1 is based on the assumption that the association between 

a marker SNP and multivariate phenotypes is induced due to non-zero LD (δ ≠ 0) between 

the marker SNP and a single causal SNP instead of multiple independent causal SNPs 

present in nearby genomic regions. This assumption is crucial for the ease of mathematical 

derivation underlying the proof. Because, the proof is based on the explicit expression of the 

joint probability of genotypes at one marker and one causal SNP that are in LD. But, the 

expression of this joint probability for genotypes at the marker and multiple causal SNPs, 

with each of which the marker is in LD, can be algebraically intractable.

While proving Property 1, δ is used as the definition of LD since it is sufficient for the 

derivation. Other commonly used formulations of LD, for example, r2 (δ2 divided by the 

variance of allele frequencies at the two loci) and D′ (δ standardized by its minimum and 

maximum), are essentially derived based on δ.

 DAMP

Motivated by the allelic version of the genotype-level test corresponding to a quantitative 

phenotype [Lee et al., 2013], we propose a suitable multivariate extension as follows. 

Suppose (Y1, Y2, . . . , Yn) denote the multivariate phenotype vectors corresponding to n 
randomly selected individuals in the population. We consider two groups of observations 

corresponding to the two alleles M1 (minor) and M2 at the marker locus. If the genotype of 

the ith individual is M1M1, we assign two observations each equal to Yi in the first group, if 

the genotype is M2M2, we assign two observations each equal to Yi in the second group; and 

if the genotype is M1M2, we assign one observation equal to Yi in each of the two groups. 

Hence, if the first group is of size n1 and the second group is of size n2, the total number of 

observations in the two groups is 2n. If the population means of the multivariate phenotype 

vector Y conditioned on the two groups are μ1 and μ2, respectively, the test for association 

can be performed by testing H0 : μ1 = μ2 versus H1 : μ1 ≠ μ2. Assuming that the covariance 

structure of Y (Σ) is identical in the two groups, for sufficiently large n1 and n2,
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The above asymptotic distributions are obtained using the multivariate central limit theorem 

(MCLT). The test statistic is based on the Mahalanobis distance between the sample mean 

vectors of the two groups (ȲM1 and ȲM2). If the sample sizes of the two groups (n1 and n2) 

are sufficiently large, then it follows from the MCLT that, the test statistic (ȲM1 – 

ȲM2)′S−1(ȲM1 – ȲM2) is asymptotically distributed as chi-square with k degrees of freedom, 

where S is the combined sample covariance matrix of Y based on the two groups, and hence 

a consistent estimator of Σ.

For a binary phenotype, the allelic test based on allele frequencies is asymptotically 

equivalent to the genotype-based trend test under the assumption of HWE [Guedj et al., 

2006, 2008; Sasieni, 1997; Zheng, 2008]. We note that the allele-based method proposed by 

Lee et al. [2013] in the context of a single quantitative trait uses a linear regression of the 

phenotype on each of the alleles constituting the genotype of an individual. The above 

method (DAMP) is equivalent to a direct multivariate extension of regressing the vector of 

phenotypes on the alleles. However, Lee et al. [2013] showed that, considering the allele 

status (coded as 0 or 1) as a predictor in the linear regression and ignoring the correlation 

induced by replicating the phenotype data twice, yields marginally lower power compared to 

using the genotype status (coded as 0, 1 or 2) as a predictor.

 Simulation study

We carried out simulation studies to compare the false positive rates and powers of 

MultiPhen, BAMP, and DAMP for detecting association with multiple traits.

 Simulation models

We consider a vector of quantitative traits Y = (Y1, . . . , Yk) that is modulated by a biallelic 

QTL with alleles A1 and A2, and a random vector of environmental components e = 

(e1, . . . , ek) having mean vector zero and covariance matrix Σ. We assume that E(Yi|A1A1) 

= ai, E(Yi|A1A2) = bi, and E(Yi|A2A2) = –ai, i = 1, . . . , k. We denote the vectors (a1, . . . , 

ak) and (b1, . . . , bk) by a and b, respectively. We assume two possible different distributions 

of e: multivariate normal and chi-square. We induce different degrees of genetic effects on 

the traits by varying the choices of a and b. In order to simulate a vector of phenotypes 

comprising both binary and quantitative traits, we first generate an observation Y according 

to the above model and then dichotomize some of the components by considering different 

thresholds so as to fix the prevalence of the binary traits at desired levels.

We also consider a biallelic marker locus with alleles M1 and M2 which is in linkage 

disequilibrium (LD) with the QTL. The extent of LD is varied to produce different degrees 

of associations between the marker locus and the vector of phenotypes. The genetic 

correlation between a pair of traits, say Y1 and Y2, induced by the QTL, is equal to the 

correlation between E(Y1|G) and E(Y2|G), where G is the genotype at the QTL and is given 

by:
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Combining the genetic correlation between (Y1, Y2) with the correlation ρe between the 

environmental components modulating (Y1, Y2), the overall correlation induced between Y1 

and Y2 can be derived as:

Based on these expressions, for a given choice of a and b vectors and other parameters, we 

can choose ρe accordingly to fix the final correlation between a pair of traits at a fixed level. 

Different choices of QTL effects considered in each table are described as footnotes.

 Simulation design

We carry out the comparison of MultiPhen, BAMP, and DAMP with respect to the false 

positive rate and power in testing for association with multiple traits. The type I error rates 

and powers are calculated based on 2000 individuals and 10, 000 replications. We consider 

the allele frequency at the QTL to be 0.1. Four different choices of the standardized LD 

between the marker locus and the QTL are chosen as 0.0, 0.33, 0.66, 0.95. HWE is assumed 

while generating the genotype data.

 Four traits

We first consider a multivariate phenotype that comprises four traits. Since the correlation 

between the traits may impact power, we consider the overall correlation between a pair of 

traits at four different levels: 0.0, 0.2, 0.5, 0.8, when the traits are distributed as multivariate 

normal, and 0.05, 0.2, 0.5, 0.8 when they are distributed as chi-square.

In Table I, we describe the choices of trait specific QTL effects and heritabilities considered 

in different tables. Initially we assume that the QTL has genetic effects only on the first and 

the second traits in tables X-XIII. In choices 1, 3, and 4, the heritabilities of the first two 

traits due to the QTL are fixed at 0.5%. In choice 2, we consider heterogeneity in QTL 

effects by fixing the genetic heritabilities of the first two non-null traits due to the QTL at 

two different levels: 0.5% and 1%, respectively. For choice 4, the QTL effects on the two 

traits are considered to be oppositely directed.

While simulating a vector of phenotypes comprising a binary phenotype, we define an 

individual to be a case if Y1 > C, and a control, otherwise. We replace Y1 by the case or 

control status of that individual to generate a binary trait. We choose C so as to fix the 

prevalence of the binary trait at 10%. The rate of Type I error and power are estimated at the 

level of significance 0.05.
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In Table X, we consider the scenario where all the traits are distributed as normal and 

assume that marker locus allele frequency (= P(M1)) is 0.1. Table XI pertains to the scenario 

where all four traits are distributed as chi-square under the same simulation parameter values 

considered in Table X. Under this scenario, we find that the power turns out to be more than 

99% for most of the simulation parameter values when P(M1) = 0.1. Since this phenomenon 

may be attributed to the similarity between the allele frequencies at the marker locus and 

QTL, we explore the impact of choosing P(M1) = 0.2 on power in Table XI. In Table XII, 

the first associated trait is dichotomized based on Y1 and converted to a binary trait with the 

threshold chosen so as to set the prevalence at 10%. The other simulation parameters remain 

same as in Table X. Similarly, in Table XIII, the first associated trait is binary and is 

dichotomized based on Y1. All other simulation parameters in Table XIII are the same as in 

Table XI.

In Table XIV, we consider the scenario where the QTL has genetic effects on all four traits, 

each of which is distributed as chi-square. We assume that the QTL effects on the third and 

the fourth traits and the genetic heritabilities of these two traits due to the QTL are the same 

as those for the first and the second traits, respectively. The other simulation parameters 

remain the same as in Table XI.

 One binary trait

For a binary trait with a recessive mode of inheritance, Wang [2014] showed that MultiPhen 
produces significantly lower power compared to the regular Armitage trend test. We have 

proved theoretically that BAMP is equivalent to the usual allelic case control association 

test, and hence also asymptotically equivalent to the trend test under the assumption of 

HWE. Thus, for a sample of 2000 individuals under the assumption of HWE, BAMP and the 

Armitage trend test are expected to be asymptotically equivalent. Thus, we compare the 

three methods for a binary trait under the same simulation framework considered in Wang 

[2014] which we briefly describe in the following.

Consider a biallelic locus with two alleles A1 and A2 (minor allele). Let p0, p1, and p2 

denote the probabilities of the three genotypes A1A1, A1A2, A2A2, respectively, and f0, f1, 

and f2 be their penetrances. Corresponding to this locus, the prevalence of the disease is K = 

p0f0 + p1f1 + p2f2. The genotype probabilities in cases are:  and those in controls 

are: , for j = 0,1,2. Let  be the relative risk of genotype i to genotype 0. 

Let q be P(A2), and so, under HWE, p0 = (1 – q)2, p1 = 2q(1 – q), p2 = q2. A choice of (K, q, 

γ1, γ2) fully determine all the parameters needed for data generation, because, 

, f1 = γ1f0, f2 = γ2f0. Power is calculated based on 10,000 replications and 

2000 individuals comprising half of them to be cases and the other half to be controls. We 

consider the same choices of (K, γ1, γ2) as considered in Wang [2014] to encompass a 

variety of modes of inheritance for the binary trait (recessive, dominant, additive). A 

recessive model is considered by choosing γ1 = 1, whereas γ1 = γ2 and γ1 = (1 + γ2)/2 

represent the dominant and additive models, respectively. The results are provided in Table 

III. In all the tables, MPhen denotes MultiPhen.
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 Two binary traits

We also consider two binary traits with different modes of inheritance. Different choices of 

penetrances for the two diseases due to a QTL are considered. A marker locus that is in LD 

with the QTL is also considered. Different choices of allele frequencies at the loci are made 

to observe difference in powers among the methods. Different choices of simulation 

parameters, and type I error & power obtained by three methods for each choice are 

described in Table IV. All the results are based on 2, 000 individuals and 10, 000 

replications.

 Results

 Four traits

For brevity of space, Tables X-XIV are presented in details in the “Supplementary 
materials”. The three methods maintain the desired level of significance (corresponding to 

LD = 0) in all simulation scenarios. With respect to power, we first note some findings 

observed irrespective of the distribution and type (binary/continuous) of the multiple traits. 

Of course, the power of detecting association increases as the standardized LD between the 

marker locus and the QTL increases. We notice that, the power also increases with the 

degree of correlation among the traits; that is, for a given row in Tables X-XIV with non-

zero LD, the power increases with the increase in the value of ρ (correlation between traits), 

except for choice 3 in Table XIV. In choice 4, when the associated traits have oppositely 

directed QTL effects, all the methods result in higher power compared to that for choice 1 

(QTL effects in same direction). We also note that, as expected, converting the first 

associated continuous trait into a binary trait decreases power (Table XII compared to Table 

X). Similarly, due to the dichotomization of the first continuous trait, the overall power in 

Table XIII is less in comparison to the powers shown in Table XI.

A summary of the comparative performance by the three methods with respect to the power 

of detecting multivariate association observed in the Tables X-XIV is provided in Table II. In 

overall, the allelic tests offer marginal increase of power, in particular, BAMP produces a 

power increase in a range of (1% – 7%) compared to MultiPhen.

 One binary trait

From Table III, we observe that, for the recessive model of inheritance of the binary trait, the 

allelic tests produce much higher power compared to MultiPhen with an increase in the 

range of 10% – 17%. However, for dominant mode of inheritance, MultiPhen produces 

marginally higher power (5% – 6%) compared to the allelic tests. For the additive model, the 

three methods yield comparable power.

 Two binary traits

We observe from Table IV that, for recessive mode of inheritance of both traits, the allelic 

tests produce substantially higher power (4% 19%) over MultiPhen. DAMP yields a slight 

increase of power (2% – 5%) compared to MultiPhen when both the traits follow an additive 

mode of inheritance, and one follows additive and the other follows a recessive mode of 

inheritance. In the later scenario, BAMP also produces a marginal increase of power (1% – 
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3%) in comparison with MultiPhen. All three methods produce similar power when the traits 

follow other combinations of mode of inheritance: both dominant, one dominant and one 

additive (results not provided for brevity), one recessive and one dominant (results not 

provided for brevity).

In summary, for four phenotypes, BAMP and DAMP yield comparable powers, but 

marginally higher than MultiPhen, in particular, BAMP yields a consistent marginal increase 

of power in a range of 1% – 7% compared to MultiPhen. For one or two binary traits under a 

recessive mode of inheritance, the allelic tests offer substantially higher power compared to 

MultiPhen in a range of 4% – 19%.

 Q-Q and test statistics plots

In order to provide a deeper insight of the comparison among the three methods, we present 

some Q-Q plots and test statistics plots for some selected scenarios from the simulation 

study.

Some prominent variation in powers are observed in Table XII and XIII related to the 

situation of mixed (binary and continuous) phenotypes for choice 3 and LD = 0.95. Larger 

difference in power is observed among the methods for two binary traits with recessive 

mode of inheritance (Table IV). So, in these three scenarios and for choice 3, LD = 0.66, ρ = 

0.5 in Table XI when all four traits are distributed as chi-square, pairwise plots of the test 

statistics for the three methods are presented in Figure 1 and 2, respectively. Since each of 

the test statistics follows a chi-square distribution with the same degree of freedom, pairwise 

plots provide a valid picture of the comparison. For these same choices of simulation 

scenarios, we consider LD = 0 (H0: no association) between the marker locus and QTL, and 

present Q-Q plots of -log10(pvalue) obtained by different methods in Figure 3, 4, 5, 6, 

provided in the “Supplementary materials”.

The Q-Q plots show that, under the null hypothesis of no association, both the allelic tests 

and MultiPhen produce p-values which approximately follow a uniform distribution. From 

the pairwise plots of the test statistics under the non-null hypothesis of association, we 

observe that allelic tests, in particular, BAMP consistently produces larger values than 

MultiPhen. As expected, the increase for allelic tests is more pronounced in the plot 

corresponding to two binary traits with recessive mode of inheritance (Figure 2). Thus the 

Q-Q plots and pair-wise plots of the test statistics in the same simulation scenarios 

demonstrate the power increase of allelic tests subject to controlling the false positive rate.

 Minimum number of minor alleles to implement DAMP

In order for the multivariate CLT to hold in the formulation of DAMP, it is necessary that 

the count of the minor allele at a SNP must be sufficiently large. In Table X, XI, XII, XIII, 

the minor allele frequency (MAF) at the marker locus is reduced to 0.01 and 0.0125 (for 

2000 individuals) in order to induce an average count of the minor allele to be 40 and 50, 

respectively. For these two choices of low MAF, simulations for choice 1 in Table X, XI, 

XII, XIII are repeated. For MAF = 0.01, it is found that the type I error by DAMP is inflated 

to 0.06 (at level 0.05) for choice 1 and ρ = 0.8 in Table XI when all the traits follow chi 
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square distribution. However, in other cases for MAF = 0.01, the false positive rate by 

DAMP is controlled reasonably well. For MAF = 0.0125, results for choice 1 in Table XI 

and XIII are provided in Table V. The results show that the rate of false positive by DAMP is 

overall maintained. So for using DAMP, the minor allele count is recommended to be at 

least 50.

With respect to power, it is observed in Table V that the power by DAMP was less than that 

by the other two methods in a range of 4% – 18%. However, for normally distributed traits 

and mixed traits comprising one binary and others normal, the three methods yield similar 

power. We also observe in Table V that, for some cases, the type I error of MultiPhen and 

BAMP are slightly inflated. However, for MAF = 0.01 and larger sample size of 5000 

individuals, we checked by simulations for choice 1 in Table XI that all the three methods 

maintain type I error rate appropriately, but power by DAMP is smaller than that by 

MultiPhen and BAMP in a range of 3% – 10%. Thus, it is more appropriate to implement 

DAMP for common variants rather than variants with lower minor allele frequency.

 Validity of allelic tests

In GWAS, a two-stage procedure in which the markers are first tested for HWE as a data 

quality-check step and then evaluated for association is performed. In general, a p-value cut-

off in the range (10−3 – 10−5) is used for the genome-wide screening of HWE. Thus, an 

allelic test can be implemented for a SNP passing through this screening. However, a 

relevant concern is whether the cut-off of HWE test p-value is sufficient to ensure that HWE 

holds for a SNP so that the allelic tests can readily be applied. Since it is very difficult to 

decide on an appropriate cut-off, we explore by simulations the efficiency of the allelic tests 

in controlling the type I error rate under various degrees of deviation from HWE (in terms of 

HWE test p-value). We adopt the same simulation design for four traits corresponding to 

choice 1 and ρ = 0.2 in Table X,XI, and XII, respectively. The results are presented in Table 

VI. In the last four rows of the table, the QTL has genetic effects on all of the four traits and 

the simulations corresponding to the first four rows are repeated. For a choice of the 

genotype frequencies, we generate genotype data at both the marker locus and QTL without 

assuming HWE. We consider 2000 individuals and zero LD between the marker locus and 

QTL (no association). Without loss of generality, we also assume the same genotype 

frequencies at the QTL. The type I error rate is estimated at the level 0.001 based on 20, 000 

replications. Let the genotype frequencies at the marker locus be denoted by: q0=P(M2M2), 

q1=P(M1M2), q2=P(M1M1), respectively. We consider four different choices of (q0, q1, q2) 

that induces the HWE chi-square test p-value (HWEpv) as 0.048, 0.021, 0.0096, and 

0.00014, respectively. We observe that both the allelic tests roughly maintain the desired 

level for the first choice. But for the other three choices, the allelic tests, in particular, 

DAMP seems to produce a significantly inflated rate of false positives when the traits are 

non-normal. The estimated false positive rates for MultiPhen are always less than that 

obtained for BAMP and DAMP. Since, the allelic tests maintain the rate of type I error 

satisfactorily for the first choice, we recommend screening for the HWE-test p-values using 

the cut-off of 0.05 to implement BAMP and DAMP at a genome-wide level.

Majumdar et al. Page 11

Genet Epidemiol. Author manuscript; available in PMC 2016 July 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



 Combined strategy of BAMP and MultiPhen

Adopting the commonly used genome-wide significance cut-off 5 × 10−8, a genome-wide 

strategy can be to apply BAMP for the set of SNPs with a HWE test p-value above 0.05 and 

to implement a genotype level test (MultiPhen) for the SNPs for which the HWE test p-

values lie below 0.05 but above the chosen overall HWE screening cut-off (e.g. 10−5).

For multiple traits, we observed in our simulation study that BAMP always produced 

marginally higher power compared to MultiPhen. So for multivariate phenotypes, if we 

assume that- under HWE- the power of BAMP is higher or equal to that of MultiPhen, it can 

be mathematically shown that the power of the combined strategy of implementing BAMP 
under HWE and MultiPhen under violated HWE is larger or equal to that by implementing 

MultiPhen alone.

Let H1 denote that a SNP is associated with the vector of multiple phenotypes. Let RB and 

RM denote the events that the SNP association is detected by BAMP and MultiPhen, 

respectively. So, the power for BAMP = PH1(RB), and power for MultiPhen = PH1(RM). We 

have assumed that PH1(RB|HWE) ≥ PH1(RM|HWE). Also let RBM denote that SNP 

association is detected by the combined strategy of BAMP and MultiPhen. So, power for the 

combined strategy = PH1(RBM) = PH1(RB|HWE) × P(HWE)+PH1(RM|HWEc)×P(HWEc) ≥ 

PH1(RM|HWE)×P(HWE)+PH1(RM|HWEc)×P(HWEc) = PH1(RM). Thus for multiple traits, 

assuming that BAMP is as good as MultiPhen in terms of power under HWE, the combined 

strategy of using BAMP and MultiPhen will produce higher or same power compared to 

implementing MultiPhen alone. Similarly, under H0 (no association), type I error of the 

combined strategy = PH0(RBM) = PH0(RB|HWE) × P(HWE) + PH0(RM|HWEc) × P(HWEc) 

= 0.05 × P(HWE) + 0.05 × P(HWEc) = 0.05, since BAMP maintains the appropriate rate of 

type I error under HWE.

We note that, in the extreme cases, when HWE holds at all associated SNPs, the power of 

the combined strategy is the same as that of BAMP, and when all the associated SNPs 

deviate from HWE, the power of the combined strategy becomes the same as MultiPhen. For 

example, in Table X-XIV, we checked by simulations that the powers by combined strategy 

and BAMP are the same since HWE was assumed while simulating the genotype data.

It is clear from the above mathematical expressions that the increase in power by the 

combined strategy over MultiPhen depends on the proportion of associated SNPs at which 

HWE holds. The expressions reveal that the marginal increase in power of the combined 

strategy due to BAMP will fade away with the increase in proportion of associated SNPs 

violating HWE. For a Mendelian disorder, the HWE may deviate at most of the causal SNPs 

due to the effects of selection at the susceptibility loci. However, for a common complex 

trait due to numerous variants with small effects, HWE may not be violated at a substantial 

proportion of causal SNPs. In the real data analysis of multiple common complex traits from 

the GERA cohort given below, the proportion of genome-wide associated SNPs at which 

HWE holds is substantially high (for this particular data, an empirical estimate is 80%). 

Thus, due to the possibility that a substantial proportion of SNPs associated with complex 

traits may not deviate from HWE, the combined strategy of BAMP and MultiPhen can be 
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used in a GWAS of multivariate complex traits to take the advantage of consistent marginal 

increases in power by BAMP.

We carry out a simulation study to study the relative performances of the combined strategy 

and MultiPhen without assuming HWE at the associated markers. In order to consider a set 

of associated markers at some of which HWE can be violated and vice-versa, we select the 

top 15 GW-significant SNPs identified by MultiPhen in the real data analysis of GERA 

cohort which include 3 SNPs (20%) that yield a significant deviation from the HWE at a 

level of 0.05. This proportion is consistent with the overall percentage (20%) of GW 

significant SNPs (using a GW threshold 5 × 10−8) deviating from HWE (results reported in 

Table IX).

The estimated genotype probabilities at the selected 15 SNPs are used to simulate genotypes 

without assuming HWE in the simulation study. Each of these SNPs is considered as both 

the QTL and marker, i.e., the marker is in perfect LD with the QTL having the same 

genotype probabilities as QTL. We choose choice 1 and 3 from Table XI and XIII. All the 

simulation parameters for generating phenotypes remain the same except the non-genetic 

variance of every trait being increased by 100 folds in order to enforce the overall (averaged 

across the 15 SNPs) powers not reaching 100%. The powers that are described in Table VII 

are estimated at the level 0.05 using 2000 individuals and 2000 replications. For a better 

understanding, the percentage of replications in which the combined strategy produces a 

smaller p-value compared to MultiPhen is also provided. The results show that the combined 

strategy produces a marginal gain (1% – 4%) in power compared to MultiPhen. It is also 

observed that, for 58% – 70% of replications across various choices, the combined strategy 

produces a smaller p-value in comparison with MultiPhen. Thus, the simulation study 

reveals that, with respect to power of detecting multivariate association, there is no loss but a 

marginal gain by implementing the combined strategy compared to implementing MultiPhen 
alone.

 Application to real data

 Indian population

 Data description—In a study on hyperhomocysteinemia in a North Indian population, 

Kumar et al. [2009] analyzed 14 non-synonymous SNPs located in homocysteine 

metabolism pathway genes. Based on a random sample of 546 individuals selected from the 

All India Institute of Medical Sciences, two SNPs: rs9001 in the CHDH (Choline 

Dehydrogenase) gene and rs1801133 in the MTHFR (Methylenetetrahydrofolate Reductase) 

gene were found to exhibit significant evidence of association (using the Kruskal-Wallis test) 

with plasma total homocysteine levels, elevated levels of which increase the risk of coronary 

artery disease (CAD). These associations were validated when an additional 330 individuals 

from the same population were included in the sample. Moreover, there was a significant 

interaction of the two SNPs with the nature of diet (vegetarian or non-vegetarian) in 

modulating the levels of homocysteine. We consider the data on a multivariate phenotype 

vector comprising three traits: plasma total homocysteine levels, Vitamin B12 levels (which 

is significantly negatively correlated with homocysteine levels) and the binary CAD status 

along with the genotypes at the 14 SNPs for all 876 individuals in the combined sample.
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 Analysis and results—Homocysteine and Vitamin B12 levels are adjusted for the 

effects of potential confounders: age, gender, and diet using linear regression. We evaluate 

the relative performances of the three different methods in detecting association between the 

genotypes at the 14 SNPs and a multivariate phenotype vector comprising CAD status and 

the residuals of the other two phenotypes obtained via linear regression. None of the SNPs 

shows any significant deviation from HWE at a level of significance 0.05. Corresponding to 

three SNPs: rs1801133, rs12676, rs9001, the p-value produced by at least one of the 

methods is lower than 0.05. The p-values corresponding to these SNPs for the different 

methods are presented in Table VIII. For the SNPs rs1801133 and rs12676, both the allelic 

tests produce significantly lower p-values compared to MultiPhen, while for the SNP 

rs9001, the p-values produced by BAMP and MultiPhen are comparable.

 GERA cohort

 Data description—We analyzed the “Resource for Genet Epidemiol Research on Adult 

Health and Aging” (GERA) cohort data obtained from dbGaP [dbGaP Study Accession: 

phs000674.v1.p1]. We analyzed the European-American individuals which constitutes more 

than 75% of the full data. The data contains genotype data on 657184 SNPs on 22 autosomal 

chromosomes for 62318 individuals. The data is composed of 22 case-control phenotypes 

for the individuals along with adjusting covariates and principal components (PCs) of 

ancestry. For our analysis, we selected four case-control phenotypes: hypertension 

(HYPER), diabetes II (DIA2), cardiovascular disease (CARD), and cancers. We also 

adjusted our analysis for potential covariates: age, gender, smoking status, BMI category, 

and six PCs.

Following Anderson et al. [2010], we ran filtering of the initial data. First we ran individual-

wise screening and removed individuals according to the following criteria: discordant sex 

information using PLINK [Purcell et al., 2007], missing genotype rate more than 3%, 

genotype heterozygosity rate beyond the six-sigma limit, and screening for relatedness up to 

first degree relatives using KING [Manichaikul et al., 2010]. This left us with 59458 

individuals. Next, we did per marker screening for: excessive missing genotype rate more 

than 10%, and screening for SNPs with minor allele frequency (MAF) below 0.01, which 

left us with 635771 SNPs. In the final analysis, we excluded individuals with missing data 

for adjusting covariates which left us with 53809 individuals. SNPs were screened for 

deviation from HWE at a level 10−5.

 Analysis and results—Since DAMP can not adjust for covariates simultaneously in 

the model, we executed BAMP and MultiPhen for the joint analysis of the four phenotypes. 

Adjusting covariates were included along with the phenotypes for both the methods. We also 

analyzed each of the four binary phenotypes separately by logistic regression of the affection 

status on genotype adjusting for the same set of covariates incorporated in the joint analysis. 

Based on the commonly used genome-wide significance level of 5 × 10−8, 54 SNPs were 

initially found GW-significant by either BAMP or MultiPhen. The SNPs were LD filtered 

for r2 > 0.7, which left a total of 30 SNPs associated with at least one of the traits or overall. 

For these SNPs, results of joint and trait-specific analyses are given in Table IX. The p-

values for the chi-square test of HWE are also reported for each of the SNPs.
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On chromosome 9, rs6475606 would not have been picked up by individual phenotype-wise 

analysis because of each individual trait's p-value fell below the genome-wide significance 

cut-off. This demonstrates the advantage of employing a joint analysis for multiple 

phenotypes. We also note that, for 6 SNPs out of the 30 genome-wide significant SNPs, the 

HWE test p-value falls below 0.05 (underlined), showing the validity of BAMP for the 

majority (80%) of the GW-significant SNPs.

Five SNPs, for which only one of the methods produces a p-value below the genome-wide 

significance cut-off, are highlighted in Table IX. Among these five SNPs, rs7896811 and 

rs4408545 show significant deviation from HWE at level 0.05, and hence, BAMP is not 

applicable. For the other three SNPs that satisfy HWE, BAMP marginally misses the single 

SNP identified by MultiPhen on chromosome 1, and similarly, MultiPhen marginally misses 

the single SNP identified by BAMP on chromosome 8. But, BAMP produces a genome-

wide signal at rs67279079 on chromosome 11, for which MultiPhen yields much weaker 

signal compared to the genome-wide significance cut-off. Thus, the combined strategy 

marginally misses the signal on chromosome 1, but identifies both signals on chromosome 8 

and 11, which MultiPhen fails to pick up. We further note that, for 16 SNPs (66%) among 

the 24 SNPs at which the HWE holds, BAMP produces a smaller p-value compared to 

MultiPhen.

We also map the SNPs in Table IX into genes. Each SNP is located either within the 

boundaries of a gene or 50KB upstream or downstream of it. Apart from the two SNPs on 

chromosome 9, every SNP is mapped into one or multiple genes. In Table IX, name of one 

gene for every SNP is reported. The genes are already known to be associated with a range 

of phenotypes including blood pressure (hence hypertension), diabetes type II, 

cardiovascular disease, and multiple type of cancers (breast, lung, prostate, etc.).

 Discussion

We have proposed two allelic tests for association with multiple phenotypes extending the 

models underlying the methods proposed by O'Reilly et al. [2012] and Lee et al. [2013]. We 

have investigated their performances compared to an established genotype-level approach 

MultiPhen [O'Reilly et al., 2012] based on simulations and analysis of real data. We also 

show that BAMP is statistically equivalent to the classical case-control test of association for 

binary traits at the allelic level.

We observe that for four traits, in comparison with MultiPhen, BAMP yields a consistent 

marginal increase (1% – 7%) in power for detecting association multiple traits. We also find 

that, for one or two binary traits under a recessive mode of inheritance, the allelic tests offer 

much higher power compared to MultiPhen. It is also found that MultiPhen produces 

marginally higher power for a single binary trait under dominant mode of inheritance.

While the actual frequencies of causal variants with additive, dominant, and recessive 

genetic effects are somewhat unknown, additive genetic effects are believed to be the most 

common and the recessive effects be least common [Henn et al., 2015]. Hence, the 
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simulations carried out assuming additive genetic effects for the QTL are most reflective of 

the overall power difference among the methods.

However, we observe that the allelic tests produce a consistent marginal increase in power 

for four phenotypes and the increase reaches maximum for two binary traits with recessive 

mode of inheritance. So, for analyzing multivariate phenotypes, there is no risk of loss in 

power but marginal gain if one employs the combined strategy of BAMP and MultiPhen 
instead of implementing MultiPhen alone. Our example using the GERA cohort shows some 

support for this, since BAMP picked up the only genome-wide signal on chromosome 11 

which MultiPhen did not. Both of the real data analyses also demonstrate the possible 

increase in power in terms of smaller p-values for the majority of top SNPs, that satisfy 

HWE, produced by the allelic tests in comparison with MultiPhen.

For four traits, the simulation results are provided for a single choice of marker allele 

frequency. However, we performed simulations for other choices of it and observed similar 

behavior of the methods (results not provided for brevity). DAMP offers a substantial 

computational gain over the other two methods, and hence, is a useful alternative for very 

large GWAS.

We also observe that, for normally distributed phenotypes, DAMP and BAMP produce 

similar power. However, for non-normal traits, BAMP yields slightly higher power 

compared to DAMP. It may be due to the fact that, under normality of the phenotypes, the 

sample means of the multivariate phenotypes within both the groups corresponding to two 

alleles follow exact multivariate normal distribution, whereas for non-normal traits, the 

sample means follow multivariate normal asymptotically.

Under the null hypothesis, both the test statistics for MultiPhen and BAMP are distributed as 

chi-square with k degrees of freedom while testing for k phenotypes. But the number of 

parameters (intercept) in BAMP is one less than that in MultiPhen and this is the main 

reason behind the increase in power.

As opposed to MultiPhen and BAMP, DAMP can not directly incorporate covariates in the 

model. However, it is a common practice to separately adjust for the relevant covariates 

before the final genome-wide analysis. Yan et al. [2013] has explored the effects of 

population structure in the inverted regression model of MultiPhen and demonstrated that 

adjusting for ancestry principal components [Price et al., 2006] in the regression works well 

to control for population stratification. Since, BAMP is the allelic version of MultiPhen, it is 

possible to adjust for population structure in similar way. Considering the above issues and 

the increased power, for mapping association with multivariate phenotypes, we recommend 

the hybrid approach of employing BAMP and MultiPhen depending on the HWE than 

implementing MultiPhen alone.

Apart from the methods considered in this article, some other methods also can incorporate 

phenotypes of mixed type (discrete and continuous). Liu et al. [2009] proposed a method 

based on the theory of generalized estimating equations (GEE) primarily for two phenotypes 

that may comprise a binary phenotype as well. The method can be extended for a larger 

number of traits. However, a practical limitation of the approach is that the continuous 
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phenotypes need to be normally distributed which is not desirable for non-normal traits. He 

et al. [2013] proposed a flexible framework for analyzing multivariate phenotypes. Instead 

of jointly modeling the phenotypes directly, the joint test statistic is formulated based on the 

marginal score statistics for the univariate phenotypes accounting for the covariance matrix 

of the score statistics. They also extended their approach for family based data. They 

compared their method with TATES [van der Sluis et al., 2013], which provides an overall p-

value of association combining p-values for individual traits while adjusting for correlations 

between them, and found that TATES competes well with their method. We note that 

Galesloot et al. [2014] compared six different methods of analyzing multivariate phenotypes 

including MultiPhen and TATES. Four methods that were found to perform good include 

both MultiPhen and TATES. Since, in our simulation study, the proposed allelic tests 

perform consistently better than MultiPhen, we anticipate that the allelic tests would offer 

competitive performance in comparison with the methods considered in He et al. [2013] and 

Galesloot et al. [2014]. We also note that, from both theoretical and computational point of 

view, the methods considered in this article are simpler compared to those proposed in Liu et 

al. [2009] and He et al. [2013], and yet inherit the flexibility of incorporating phenotypes 

with arbitrary distribution.

A notable difference between the models underlying BAMP and MultiPhen lies in the 

interpretation of the regression parameters (β1, . . . , βk) for BAMP and (γ1, . . . , γk) for 

MultiPhen. The regression parameters in BAMP denote the effects of the individual 

phenotypes on the minor allele frequency at a SNP and hence captures more relevant 

information compared to the regression parameters in MultiPhen which denote the effects of 

the different phenotypes on the genotype frequencies at the SNP. An additional flexibility of 

BAMP is its statistical basis on a binomial regression model constituted of logistic 

likelihoods that is much simpler than a proportional odds regression model. It may turn out 

to be more desirable in a Bayesian framework by placing suitable priors on the regression 

coefficients since a Bayesian approach involving likelihood based on a logistic regression 

model rather than a proportional odds regression model is more feasible not only from a 

methodological but also from a computational point of view.

While BAMP and MultiPhen would provide significant evidence of association even if a 

SNP is associated with a subset of phenotypes in the multivariate phenotype vector, an 

advantage of the methods is that these can be simultaneously used to identify the particular 

subset. One can individually test for the significance of each phenotype considering the rest 

of the primary traits as adjusting covariates using a similar likelihood ratio test that is 

distributed as chi-square with one degree of freedom under the null hypothesis of no 

association. However, it is important to carry out an appropriate correction for multiple 

testing (such as Bonferroni, Benjamini-Hochberg, or permutations based procedure) to 

ensure the appropriate overall false positive rate.

 Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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 Appendix

 Proof of property 1

For ease of exposition, we assume that the constituent phenotypes in the multivariate 

phenotype vector are either all continuous or all binary in nature. HWE is assumed at both 

the marker and trait loci. We first note that, if f1, f2, and f3 are the joint probability densities 

(in the case of continuous traits) or joint penetrances (in the case of binary traits) of 

(Y1, . . . , Yk) conditioned on the three genotypes at the trait locus, it is not possible that 

f1(y1, . . . , yk) = f2(y1, . . . , yk) = f3(y1, . . . , yk), for all possible values of (y1, . . . , yk). For 

notational convenience, we denote f1(.) = f1(y1, . . . , yk), f2(.) = f2(y1, . . . , yk), f3(.) = 

f3(y1, . . . , yk). The expressions of genotype probabilities at the marker locus conditioning 

on the phenotypes are derived in the following.
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 If part

In the logistic link function of BAMP:

Using the previous expressions of the probabilities of the genotypes at the marker locus 

conditioned on (y1, . . . , yk), we obtain the following equations:

Combining the last three equations we derive the following equation:

Now, suppose δ ≠ 0. In order to satisfy the above equation, pf1(.) + (1 – 2p)f2(.) (1 – p)f3(.) 

must be zero for all possible choices of (y1, . . . , yk), and hence all possible values of f1(.), 

f2(.), f3(.). But, there must be some choices of (y1, . . . , yk) for which f1(.), f2(.), f3(.) are not 

equal. Hence, to satisfy the condition, it must hold that p = 0, (1 – 2p) = 0, (1 – p) = 0, which 

implies that p = 0, p = 1/2, p = 1, simultaneously, and hence a contradiction. The argument is 

based on the following well known equivalence: ax + by + cz = 0, .

 Only if part

Let δ = 0. From the expressions of marker locus genotype probabilities conditioning on the 

values of traits, we obtain: P(M1M1|y1, . . . , yk) = m2; P (M1M2|y1, . . . , yk) = 2m(1 – m); 

P(M2M2|y1, . . . , yk) = (1 – m)2. It implies that P(M1|y1, . . . , yk) = m. In BAMP, 

. Thus, , for all possible 

(y1,..., yk). Hence, .

 Proof of property 2

Suppose Y1 is a binary trait where Y1 takes the value 1 for an affected individual and the 

value 0 for an unaffected individual. Thus, testing for β1 = 0 versus β1 ≠ 0 in BAMP is 
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equivalent to testing P(M1|case) = P(M1|Y1 = 1) = P(M1|Y1 = 0) = P(M1|control) versus 

P(M1|case) ≠ P(M1|control).

Next, we derive the expression of the likelihood ratio test (LRT) statistic corresponding to 

BAMP. Suppose, we have n1 cases and n2 controls. Let n1M1 and n1M2 denote the number of 

M1 and M2 alleles among cases. Similarly, let n2M1 and n2M2 denote the number of M1 and 

M2 alleles among controls. Hence, n1M1 + n1M2 = 2n1 and n2M1 + n2M2 = 2n2.

Since the allele frequencies in cases and controls are the same under H0, we define 

. Under H1, we define the following quantities: 

 and . Thus, the 

LRT statistic is given by:

Suppose under H0, π0(α) is denoted as p0 (hence, p0 is a 1 – 1 function of α). Then, the 

numerator of λ(.) is the same as: supp0 p0(n1M1+n2M1) (1 – p0)(n1M2+n2M2). Similarly under 

H1, denote π1(α,β1) and π2(α,β1), by p1 and p2, respectively [(p1, p2) is a 1 – 1 

transformation of (α, β1)]. Hence, the denominator of λ(.) is the same as: supp1,p2 p1
n1M1 (1 

– p1)n1M2 p2
n2M1 (1 – p2)n2M2 and the LRT statistic simplifies to:

where under H0: p0 = P(M1), and under H1: p1 = P(M1|case) and p2 = P(M1|control). Thus, 

for a binary trait, testing for association using our model is equivalent to the classical test for 

difference in allele frequencies among cases and controls.
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Figure 1. 
The figures present the plot of test statistic values obtained by the three methods in 100 

replications (ordered in increasing order of the values obtained by MultiPhen) for the 

following two scenarios: in Table XI for ρ = 0.5, choice 3, LD = 0.66; and in Table XII for ρ 

= 0.8, choice 3, LD = 0.95, respectively.
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Figure 2. 
The figures present the plot of test statistic values obtained by the three methods in 100 

replications (ordered in increasing order of the values obtained by MultiPhen) for the 

following two scenarios: in Table XIII for ρ = 0.8, choice 3, LD = 0.95; and in Table IV for 

two binary traits with recessive mode of inheritance, respectively.
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Table I

Description of simulation scenarios. k: total number of traits, k1: number of associated traits. In tables X-XIII, 

since the third and the fourth traits are not associated with the QTL, we impose (a3, b3) = (a4, b4) = (0, 0) in 

each of choices 1-4.

trait-specific QTL effects and heritabilities

Tables (k, k1) choice 1 choice2 choice 3 choice 4

X (4,2) a1=1.0, b1=0.0 a1=1.0, b1=0.0 a1=1.0, b1=0.0 a1=1.0, b1=0.0

a2=1.0, b2=0.0 a2=2.0, b2=0.0 a2=1.0, b2=0.5 a2=–1.0, b2=0.0

h1
2 = 0.5 % , h2

2 = 0.5 % h1
2 = 0.5 % , h2

2 = 1 % h1
2 = 0.5 % , h2

2 = 0.5 % h1
2 = 0.5 % , h2

2 = 0.5 %

XI (4,2) same as Table X same as Table X same as Table X same as Table X

XII (4,2) In Table X, first continuous trait is converted to a binary trait

XIII (4,2) In Table XI, first continuous trait is converted to a binary trait

XIV (4,4) a1=1.0, b1=0.0 a1=1.0, b1=0.0 a1=1.0, b1=0.0 a1=1.0, b1=0.0

a2=1.0, b2=0.0 a2=2.0, b2=0.0 a2=1.0, b2=0.5 a2=–1.0, b2=0.0

a3=1.0, b3=0.0 a3=1.0, b3=0.0 a3=1.0, b3=0.0 a3=1.0, b3=0.0

a4=1.0, b4=0.0 a4=2.0, b4=0.0 a4=1.0, b4=0.5 a4=–1.0, b4=0.0

h1
2 = 0.5 % , h2

2 = 0.5 % h1
2 = 0.5 % , h2

2 = 1 % h1
2 = 0.5 % , h2

2 = 0.5 % h1
2 = 0.5 % , h2

2 = 0.5 %

h3
2 = 0.5 % , h4

2 = 0.5 % h3
2 = 0.5 % , h4

2 = 1 % h3
2 = 0.5 % , h4

2 = 0.5 % h3
2 = 0.5 % , h4

2 = 0.5 %

Genet Epidemiol. Author manuscript; available in PMC 2016 July 24.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Majumdar et al. Page 25

Table II

Summary of the results for the power of detecting multivariate association with four phenotypes by different 

methods described in Tables X-XIV.

Tables Summary

Table X The traits are normally distributed. Both of the allelic tests consistently produce a marginal 1% – 2% increase in power compared 
to MultiPhen.

Table XI The traits are distributed as chi-square. The performance of MultiPhen is comparable to that of DAMP. However, BAMP performs 
slightly better than the other two tests offering a 1% – 3% increase of power.

Table XII The first associated continuous trait in Table X is converted into a binary trait. In this scenario, MultiPhen and DAMP perform 
similarly. But, BAMP performs better than MultiPhen producing an increase in power in the range 1% – 5%. For example, in 
choice 3, for LD=0.95, the power increase is 2% – 5%.

Table XIII The first associated continuous trait in Table XI is converted into a binary trait. DAMP performs marginally better than MultiPhen 
while BAMP performs consistently better than the other two methods. It produces higher power than MultiPhen with an increase 
in the range of 1% – 7%. For example, in choice 3, for LD=0.95, the increase in power of BAMP over MultiPhen is in the range 
of 5% – 7%.

Table XIV All the traits are associated with the QTL and distributed as chi-square. While DAMP and MultiPhen produce comparable power, 
BAMP yields a consistent increase in power compared to MultiPhen, ranging from 1% to 3%.
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Table III

Power comparison for a binary trait.

penetrances q = 0.2 penetrances q = 0.3

γ1 = 1, γ2 = 1.5 (recessive) (f0,f1,f2) MPhen BAMP DAMP (f0,f1,f2) MPhen BAMP DAMP

K = 0.1 (0.1,0.1,0.15) 0.16 0.28 0.28 (0.1,0.1,0.14) 0.47 0.64 0.64

K = 0.01 (0.01,0.01,0.015) 0.14 0.24 0.24 (0.01,0.01,0.014) 0.40 0.54 0.54

γ1 = 1.25, γ2 = 1.5(additive)

K = 0.1 (0.09,0.11,0.14) 0.87 0.88 0.88 (0.09,0.11,0.14) 0.93 0.93 0.93

K = 0.01 (0.009,0.011,0.014) 0.80 0.80 0.80 (0.009,0.011,0.013) 0.88 0.87 0.87

γ1 = 1.25, γ2 = 1.25 (dominant)

K = 0.1 (0.09,0.11,0.11) 0.76 0.71 0.71 (0.09,0.11,0.11) 0.76 0.7 0.7

K = 0.01 (0.009,0.011,0.011) 0.68 0.63 0.63 (0.009,0.011,0.011) 0.67 0.61 0.61
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Table IV

Power comparison for two binary traits. p : allele frequency at the QTL, m : allele frequency at the marker 

locus. Penetrance vectors (f0,f1,f2) for the disease 1 and 2 are presented in consecutive rows.

p=0.2,m=0.2 p=0.1,m=0.2

LD Penetrances MultiPhen BAMP DAMP Penetrances MultiPhen BAMP DAMP

O(TIerror) both recessive 0.051 0.052 0.052 both additive 0.052 0.051 0.051

0.33 (0.25, 0.08, 0.08) 0.19 0.23 0.24 (0.12,0.08,0.04) 0.15 0.15 0.17

0.66 (0.25, 0.08, 0.08) 0.52 0.69 0.71 (0.12,0.08,0.04) 0.47 0.47 0.50

0.95 0.75 0.93 0.93 0.78 0.78 0.80

p=0.1,m=0.3 p=0.1,m=0.2

LD Penetrances MultiPhen BAMP DAMP Penetrances MultiPhen BAMP DAMP

0 (TIerror) both dominant 0.052 0.051 0.051 recessive,additive 0.054 0.052 0.052

0.33 (0.1, 0.1, 0.02) 0.32 0.31 0.33 (0.25, 0.08, 0.08) 0.11 0.11 0.12

0.66 (0.1, 0.1, 0.02) 0.88 0.87 0.88 (0.12, 0.08, 0.04) 0.28 0.29 0.31

0.95 0.99 0.99 0.99 0.50 0.53 0.55
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Table VIII

P-values for the three SNPs each having a p-value less than 0.05 produced by at least one of the three methods.

SNP ID rs1801133 rs12676 rs9001

MPhen 0.072 0.049 0.0047

BAMP 0.035 0.018 0.0051

DAMP 0.026 0.013 0.0097
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Table IX

Results for GERA cohort data

Chrom rsID HWEpv BAMP MultiPhen HYPER DIA2 CARD CANCER Gene name

Chr1 rs 1408420 0.51 6.20×10–8 3.64×10–8 0.66 0.30 0.16 3.13×10–9 RCC2

Chr2 rs1275988 0.81 1.38×10–9 6.1×10–10 1.89×10–11 0.78 0.84 0.84 KCNK3

Chr2 rs700635 0.68 4.55×10–9 6.21×10–9 0.031 0.91 0.67 9.93×10–11 CASP8

Chr2 rs3769823 0.11 1.06×10–8 4.34×10–9 0.17 0.97 0.60 7.54×10–11 ALS2CR12

Chr3 rs6769511 0.16 7.65×10–9 1.15×10–8 0.002 1.30×10–9 0.67 0.02 MIR548AQ

Chr3 rs7651090 0.06 1.04×10–8 1.8×10–8 0.002 4.19×10–9 0.86 0.013 IGF2BP2

Chr6 rs12203592 0.007 3.98×10–46 1.52×10–45 0.006 0.4 0.7 1.38×10–48 DUSP22

Chr6 rs12210050 0.51 1.0×10–14 3.29×10–14 0.28 0.59 0.39 4.23×10–17 EXOC2

Chr7 rs1708302 0.17 4.24×10–12 6.2×10–12 0.11 3.51×10–14 0.14 0.32 JAZF1

Chr7 rs849138 0.22 5.13×10–11 7.15×10–11 0.051 3.95×10–13 0.2 0.24 JAZF1

Chr7 rs10274928 0.36 1.81×10–10 2.03×10–10 0.03 2.48×10–12 0.04 0.32 JAZF1

Chr8 rs 13266634 0.97 1.10×10–8 5.59×10–8 0.28 1.30×10–9 0.50 0.07 SLC30A8

Chr9 rs6475606 0.16 2.80×10–8 2.70×10–8 0.01 0.79 7.35×10–8 0.004

Chr9 rs2383207 0.19 3.16×10–8 2.49×10–8 0.0002 0.89 2.14×10–8 0.052

Chr10 rs4506565 0.95 2.04×10–49 4.80×10–49 0.002 1.51×10–55 0.17 0.87 TCF7L2

Chr10 rs55899248 0.32 1.17×10–40 1.32×10–39 0.001 5.0×10–46 0.99 0.72 TCF7L2

Chr10 rs12255372 0.91 5.65×10–39 2.07×10–38 0.016 8.25×10–45 0.21 0.83 TCF7L2

Chr10 rs7899529 0.73 3.93×10–19 4.36×10–19 0.008 1.04×10–22 0.15 0.34 TCF7L2

Chr10 rs61872790 0.60 1.03×10–14 6.51×10–14 0.01 1.08×10–17 0.85 0.95 TCF7L2

Chr10 rs11196l74 0.00005 2.81×10–13 2.54×10–14 0.004 1.57×10–16 0.35 0.79 TCF7L2

Chr10 rs7079711 0.77 1.44×10–10 1.24×10–10 0.86 5.83×10–12 0.98 0.13 TCF7L2

Chr10 rs12255678 0.88 1.39×10–9 7.58×10–10 0.003 6.72×10–11 0.58 0.06 TCF7L2

Chr10 rs7896811 0.005 1.38×10–7 4.35×10–8 0.68 6.61×10–9 0.9 0.24 TCF7L2

Chr11 rs67279079 0.49 1.0×10–8 2.78×10–7 0.69 0.079 0.16 5.15×10–10 TYR

Chr16 rs12922197 0.006 2.52×10–11 3.48×10–12 0.93 0.61 0.76 6.55×10–14 ANKRD11

Chr16 rs74836424 0.52 1.4×10–10 4.87×10–11 0.46 0.38 0.73 8.67×10–13 CDK10

Chr16 rs 4408545 0.02 5.69×10–8 4.35×10–8 0.30 0.48 0.38 9.90×10–10 CENPBD1

Chr20 rs4911442 0.19 9.36×10–10 1.38×10–9 0.33 0.47 0.78 4.69×10–12 NCOA6

Chr20 rs62212235 0.86 4.78×10–9 4×10–9 0.84 0.41 0.38 3.64×10–11 DYNLRB1

Chr20 rs62211619 0.0006 5.0×10–8 2.27×10–8 0.90 0.93 0.57 1.26×10–10 ACSS2
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