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Executive Summary
Intersections are dangerous: 40% of all crashes, 50% of serious collisions, and 20% of fatalities occur in
intersections. Bay Area fatalities increased 43% between 2010 and 2016 to reach 455 killed, of which, in San
Francisco, 62% were cyclists or pedestrians. Intersections are challenging because of complex interactions
among pedestrians, bicycles and vehicles; absence of lane markings to guide vehicles; split phases that
prevent determining who has the right of way; obstructions from stopped vehicles; and illegal movements.
Improving intersection safety is urgent. There have been two policy responses: Vision Zero and Automated
Vehicles.

At least 9 cities in California, including San Diego, Los Angeles, San Francisco and Sacramento, have
adopted Vision Zero (VZ) Action Plans to eliminate serious accidents and deaths by restricting vehicle
movement while facilitating walking and biking. VZ investments focus on physical modification of the road
infrastructure to favor walking and biking. But the safety record of these modifications is mixed, and some
changes are expensive, e.g. the 13 ‘protected intersections’ built in 2015-16 each cost between $250K and
more than $1M.

Automated vehicle (AV) manufacturers offer a dramatic path to safety, claiming that with their 3D maps,
many sensors and tireless robotic driving, AVs will prevent 94% of all crashes involving human error. In
fact, AV safety performance (accidents and disengagements per automated vehicle miles traveled) today is
13 to 100 times worse than that of human drivers; AV fatality rate is equally bad. AVs also find intersections
challenging: 58 of 66 (88%) AV crashes reported to the DMV occurred in intersections. Even if AVs
eventually become safe, it will be 15 years before they are widely deployed. Meanwhile pedestrians and
cyclists face high risk of injury and death.

This project seeks to remove one important cause of intersection accidents: drivers, pedestrians and cy-
clists make mistakes because they lack sufficient information about the movement of others as they proceed
through an intersection. There is spatial and temporal uncertainty. Spatial uncertainty arises from the fact
that the traffic signal we see as we approach the intersection does not tell us who else entering from the other
approaches has the right of way. For example, if we are making a right turn, we do not know which other
driver, pedestrian or cyclist also has the right of way conflicting with our own right turn. Second, if we are
approaching the intersection during green or yellow we don’t know if there is enough time for us to drive
through before the light changes to red. Third, we may not see conflicting movements due to blind spots
created by vehicles stopped in adjacent lanes. Fourth, we may not see red light violators.

This missing information can be supplied by an ‘intelligent intersection’. It describes the signal from all
approaches; predicts when the signal phase will change; uses sensor data to determine which blind spots
are occupied; and predicts red light violations before they occur. The intelligent intersection broadcasts this
information via radio and can be received by a connected vehicle or indeed anyone in the intersection with
a smartphone or bluetooth device, so most intersection users will get this information.
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Vision Zero investments may improve safety, but they can be expensive and reduce mobility. Automated
vehicles may in 15 years yield safety benefits. The intelligent intersection complements both approaches be-
cause neither approach provides the information which serves as an additional safety buffer for pedestrians,
cyclists and drivers.

Our objective is to design this intelligent intersection infrastructure and evaluate its performance in terms
of safety and mobility benefits. Upgrading to an intelligent intersection costs between $25K and $100K,
depending on what sensors are already in place. Traffic data collected at an intersection can be analyzed
to estimate how many crashes can occur. Intersections can be ranked accordingly and limited funds can be
directed at the most unsafe intersections.
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Chapter 1

Introduction
Intersections are very dangerous. 40% of crashes, 50% of serious collisions, 20% of fatalities occur in
intersections. Bay Area fatalities increased 43% between 2010 and 2016 to reach 455 killed, of which, in
San Francisco, 62% were cyclists or pedestrians. It is claimed that AVs will prevent 94% of all crashes
involving human error with no sacrifice of mobility. However, the safety performance of AVs today is
far below that of human-driven cars. Responding to the road safety crisis, cities have launched Vision
Zero (VZ) plans, seeking to eliminate traffic injuries and deaths, through physical modification of the road
infrastructure to reduce vehicle mobility and create a safe passage for cyclists.

However, crashes happen because drivers, cyclists and pedestrians face uncertainties that lead to wrong
decisions and end in crashes. Spatial uncertainty occurs when an agent at an intersection is unable to detect
other agents; temporal uncertainty occurs when the agent is unable to accurately predict its own and others’
right of way. These challenges are not fully addressed by the ‘road diet’ and road redesign prescribed in VZ
plans. Nor are they handled by AVs that only rely on on-board sensors.

These uncertainties can be addressed by an Intelligent Intersection. The intelligent intersection does not
require costly physical modification of road infrastructure, but provides the following functionality:

1. Communicate not just with connected vehicles (CVs), but with all connected agents crossing the
intersection, including vehicles, bicyclists and pedestrians.

2. Inform agents approaching the intersection about current signal phase and its estimated remaining du-
ration. Phases in actuated signals vary depending on presence and volume of vehicular and pedestrian
traffic.

3. Inform agents crossing the intersection about their potential blind zones.
4. Inform agents about the detected activity in their blind zones e.g., a bicyclist can be notified about a

pedestrian that [s]he cannot see, but who may be crossing her/his path.
5. Accept ‘give-me-green’ requests from the approaching agents and prioritize signal phasing appropri-

ately.
6. Warn agents crossing the intersection about detected red light violations. To ensure safety, violators

must have the right of way.

The intersection intelligence has three components: sensing, interpretation of sensor measurements and con-
nectedness. With the advent of new technologies, urban intersections are being increasingly equipped with
various types of video and in-pavement sensor architectures to facilitate round-the-clock monitoring and
optimization of multimodal flows. Unlike the moving frame of reference of the AV, the sensors associated
with the intersection are fixed and embedded within the infrastructure, such as in-pavement sensors in the
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vehicular lanes and crosswalks, signal controller status, overhead cameras, etc. This difference in perspec-
tive can be exploited to alert agents traveling in the intersection about the presence of others in advance of
their arrival into their detection zones, thus potentially gaining critical time (fractions of a second) in taking
better decisions.

In addition to the potential of infrastructure to vehicle (I2V) information, infrastructure sensors themselves
can also be used to routinely monitor safety-critical dynamics of modes, such as drivers yielding to pedes-
trians, pedestrians crossing on red, red-light running, etc., over long periods of time. Thus, using advanced
sensing platforms to proactively monitor safety-critical events of multi-modal road users provides an oppor-
tunity to supplement the traditional assessment of the safety performance of these facilities, which is largely
based on either crash history or citizens’ grievances. These come at a cost of between $25K and $100K
per intersection depending on its size and sensor configuration. With over 300,000 signalized intersections
in the U.S., methodologies described in this report will help identify intersections whose instrumentation is
critical or, at least, is desired to ensure safe and efficient AV operation.

The rest of this report is organized as follows:

• Chapter 2 provides the background for the presented research.

– Section 2.1 explains the challenges of AV operation at urban intersection.

– Section 2.2 analyzes the accident of an Uber AV in Tempe, AZ, in March 2017, and its causes.

• Chapter 3 addresses intersection analysis.

– Section 3.1 discusses intersection operational design domain.

– Section 3.2 presents methodology for identification of potential blind zones.

– Section 3.3 introduces methodology for assessing intersection’s safety.

– Section 3.4 talks about detection of objects in blind zones.

• Chapter 4 describes the concept of an intelligent intersection.
• Chapter 5 presents the Intelligent Intersection Toolbox (IIT), a software library of algorithms needed

for the implementation of intersection intelligence.
• Chapter 6 shows how to classify of intersections by their complexity, using city of Berkeley as a case

study.
• Chapter 7 concludes the report.
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Chapter 2

Background

2.1 Why Intersections are Unsafe

Unlike streets with well-defined lane dividers, intersections do not have markers in the pavement that sepa-
rate users and movements. The paths of vehicles, bicyclists and pedestrians cross each other within intersec-
tions, creating ‘conflict zones’ and the potential for crashes. So avoidance of crashes requires the movements
of different agents to be separated in time or space. It is impossible to fully achieve this separation and so
the risk of intersection crashes remains.

Traffic signal control provides limited separation because it does not simultaneously give the right-of-way
(green light) to two conflicting movements. Although critical to safety, its effectiveness is often compro-
mised. A driver (or autonomous vehicle) planning a certain movement (say a left turn) can see from the
signal light whether her own planned left turn is permitted, but she may be unable to figure out whether
another conflicting movement (say a through movement or a right turn by another vehicle or bicycle, or a
pedestrian crossing) is also permitted. That is, the signal light visible to the driver does not provide the
complete phase information. Similarly, a pedestrian or bicyclist undertaking a movement may be unaware
of a permitted conflicting vehicle movement. This spatial uncertainty about rights-of-way is eliminated by
an intelligent intersection that provides the complete phase information.

Furthermore, road users do not rely solely on their current view of the traffic signal. They also (implicitly)
predict how the signal will change in the next few seconds. An accurate prediction of the duration of the
current phase and the upcoming phase can be supplied by the intersection, thus reducing temporal uncer-
tainty about rights-of-way. This information can be provided by processing signal phase data accumulated
at the intersection. The information is part of the signal phase and timing (SPaT) I2V message that the SAE
has standardized [20]. Intelligent intersections would broadcast SPaT messages [9].

Even when the driver (bicyclist or pedestrian or AV) knows the complete phase, her knowledge of the
intersection state will be limited by the extent to which her view of the intersection is obscured by other
users. If the driver cannot fully see a conflict zone, she must guess whether there is a hidden user undertaking
a movement in the conflict zone. This dilemma can lead either to slow driving that is overly cautious (when
there is no hidden user), or to driving optimistically at a normal speed with greater risk of a crash (because
there is a hidden user). The intelligent intersection can process sensor measurements to determine the
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presence or absence of a hidden user and communicate that to the driver, thereby eliminating the risk of an
overly pessimistic or optimistic assessment [11].

Lastly, even when no conflicting movement is present, a crash may occur from the illegal movement of
another car, bicycle or pedestrian. A common example is a car or bicycle running a red light or a pedestrian
crossing against a ‘dont walk’ signal. If appropriate sensor measurements (similar to that collected by a
red-light camera system) can be acquired and processed rapidly, the driver at risk could be warned to take
evasive action [1].

In summary, by acquiring and processing appropriate sensor data the intelligent intersection can broadcast
messages that give complete phase information, predict the signal phase and timing in the next cycle, accu-
rately assess the occupancy of blind zones, and warn of the danger from traffic signal violators. All agents
in the intersection can receive these messages via their cellphone or bluetooth device. Upgrading to an intel-
ligent intersection costs between $25K and $100K, depending on what sensors are already in place. Traffic
data collected at an intersection can be analyzed to estimate how many crashes can occur. Intersections can
be ranked accordingly and limited funds can be directed at the most unsafe intersections.

2.2 Case Study: Uber Accident in Tempe, AZ, in March 2017

The accident illustrated in Figure 2.1 occurred on March 24, 2017. Vehicle V1 (Honda CRV) northbound
in the left turn lane of S. McClintock Dr entered the intersection during green with 5s left in the crosswalk
timer, stopped, made a slow left turn onto E. Don Carlos Ave, and collided with vehicle V2 (Uber automated
Volvo), southbound in lane 3 of S. McClintock Dr, which had entered the intersection on yellow at 38 mph
(56 fps). After being hit, the Volvo continued across the intersection, struck a traffic signal pole, flipped on
its side and collided with Vehicles V3 (Hyundai EST) and V4 (Ford Edge), which were stopped in traffic
southbound in lane 2 of S. McClintock Dr. The self-driving Uber had the right of way and was programmed
to enter the busy intersection at the speed limit while the light was yellow, but a human driver likely would
have slowed down [15].

Four possible errors contributed to the accident. The Uber automated Volvo (V2)

1. may not have known that traffic in the opposing direction was permitted to turn left;
2. did not predict that the light would turn yellow before it entered the intersection;
3. did not consider that the vehicles stopped in the adjacent lanes 1 and 2 prevented it from seeing a

left-turning vehicle until the Uber was within 10 feet of the stop bar and at a speed of 56 fps it could
not come to a stop within 10 feet. (At a deceleration of 32 f/s2, the Uber would stop in 49 ft.)

The Honda (V1) driver’s view

4. was obstructed by vehicles stopped in lanes 1 and 2 and she could only see 10 feet into lane 3, and
seeing no vehicle there, concluded that none was going to cross the intersection; she did not realize
that the obstruction by stopped vehicles was hiding a vehicle more than 50 feet away approaching at
40 mph.

Figure 2.2 shows a snapshot of a PreScan [10] simulation of the described collision: 2 seconds before the
impact V1 and V2 do not see each other.
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Figure 2.1: Left: diagram from the police report of an intersection where a Honda CRV (V1) traveling north
made a left turn and collided with an Uber automated Volvo (V2) traveling south at 38 mph in a 40 mph
zone. After the collision, the Uber Volvo hit a signal pole, and two other vehicles (V3, V4), shown in the
inset. Right: the accident caused heavy damage but no one was seriously injured. Source: [24].

Errors 1 and 2 could easily be prevented by a SPaT message that gives the current phase and predicts when
it will end [9]. Error 3 could be prevented by a calculation of the ‘blind spot’ due to the occlusion from the
vehicles stopped in the adjacent lane, together with an intersection blind zone occupied message. Error 4 is
difficult to avoid but it could be prevented by a warning sign (Signalized Left Turn Assist System) proposed
in the CICAS program [23, 13] or by another blind zone occupied message. The blind zone messages could
be triggered by strategically placed sensors within the intersection as described in Section 3.4.

Notice that all errors 1-4 above are due to insufficient information that placed the drivers in a dilemma:
should they be optimistic and proceed at a normal speed and risk an accident, or should they be pessimistic
and slow down or stop.

The accident described above is one of several scenarios that pose dilemmas and induce errors of judgment
on the part of intersection drivers [11]. Six other common scenarios are described below and illustrated in
Figure 2.3.

1. right-turn-on-red (RTOR) signal phase confusion and limited line of sight (LOS): RTOR vehicle can
not determine if opposing traffic has the right of way;

2. delayed reaction to pedestrian crossing: right turn on green (RTOG) vehicle needs a couple of seconds
to detect pedestrian walking direction;
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Figure 2.2: PreScan simulation of V1 and V2 collision—snapshot of the scenario 2 seconds before the acci-
dent.

3. yellow interval dilemma: the following through vehicle does not know when the traffic signal will
turn yellow, which might trigger a rapid response from the lead vehicle;

4. left-turn alert: left-turn-on-green (LTOG) vehicle cannot detect the right turn vehicle; both share the
same lane, creating conflict;

5. limited LOS for pedestrians/bicyclists: vehicle waiting to turn left blocks the LOS of RTOR vehicle,
so it cannot see the pedestrian on the crosswalk;

6. collision with red light violator.
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Figure 2.3: Common intersection conflict scenarios.
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Chapter 3

Intersection Analysis

3.1 Intersection Operational Design Domain

We analyze the intersection ODD in four steps. In step 1, trajectories of users (vehicles, bicycles, pedes-
trians) are grouped into ‘guideways’ corresponding to their movements within an intersection. In step 2,
‘conflict zones’ are identified as regions where two guideways intersect, creating the potential for an acci-
dent. In step 3, a procedure is used to determine if a planned movement can be safely executed with the
information made available to the user. This information consists in what users themselves can see or sense
of the other users in the intersection, together with the SPaT message from the intersection. The message
gives the full current phase and an estimate of the time when the phase will change. Most conflicts are
resolved by step 3. The conflicts that remain are due to blind zones. Step 4 computes potential blind zones
and is discussed in Section 3.2.

The approach is described for a standard four-leg intersection. Upon entering any leg, a vehicle may turn
left, turn right, or go straight, giving in all 12 vehicle movements or phases. The eight non-right turn vehicle
movements are numbered 1 through 8 and denoted φ1, · · · ,φ8, as in the inset diagram of Figure 3.1 [8].
Signal lights control which phases are active or actuated, i.e. which movements have the green light. Right
turn phases are not numbered, because it is assumed they are always permitted. Pedestrians can only use
crosswalks, so they have four movements, phases P2, P4, P6, P8, parallel to φ2,φ4,φ6,φ8. Pedestrian move-
ments are regulated by the ‘walk/dont walk’ signal, simultaneously with the corresponding phases, so P2
gets ‘walk’ or ‘dont walk’ at the same time that φ2 gets ‘green’ or ‘red’, etc. Bicycles move alongside
vehicles, so they have 12 movements as well, permitted concurrently with the corresponding vehicle move-
ments. (This is a simplification for ease of exposition: pedestrian, bicycle and vehicle movements need not
be concurrent.)

Figure 3.1 is used to describe the approach.

Step 1. Construct guideways. A trajectory is a path traced out by a vehicle as it moves through the
intersection. (Only permissible trajectories are considered.) A guideway is the bundle of vehicle trajectories
that make the same movement. A guideway starts from a single lane entering the intersection and ends in
a single outgoing lane. There are 12 vehicle guideways corresponding to the 12 phases. (There are more
than 12 guideways if there are more than three lanes in one leg.) For the remainder of this section we focus
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Figure 3.1: A vehicle’s right turn trajectory from the south in white. The guideway of all right turn trajec-
tories is in pink. Seven trajectories can conflict with the right turn: two other vehicle trajectories in white,
three bicycle trajectories in black, and two pedestrian trajectories in yellow. Trajectories and guideways
of non-conflicting movements are not shown. The inset diagram defines the vehicle and bicycle phases
φ1, ...,φ8 and the pedestrian phases P2, P4, P6, P8.

attention on the single white trajectory of the vehicle making a right turn from the south in Figure 3.1. Call
this the ego vehicle. Its trajectory is inside the pink guideway of all right turn trajectories.

The figure shows seven other trajectories that conflict with the ego vehicle’s right turn. There are two
other vehicle trajectories in white, one making a left turn from the north (φ5), the other making a through
movement from the west (φ8). Guideways for bicycles are adjacent to those for vehicles and the figure
displays three bicycle trajectories in black, one making a right turn from the south, another making a through
movement from the west (φ8), and the third making a left turn from the north (φ5). Pedestrian trajectories are
confined to the crosswalks, which form the four pedestrian guideways. Two pedestrian trajectories in yellow
are shown (P6 and P8). No bicycle or pedestrian guideway is shown. We will determine the information
needed by the ego vehicle’s to make its right turn movement safe. The other movements are analyzed
similarly.

Guideways may be mathematically specified or empirically constructed. Mathematically, a guideway for a
particular movement comprises all possible paths joining its entry and exit lanes, constrained by a reasonable
curvature. An empirical construction of a guideway would use GPS traces or videos capturing vehicles or
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bicycles making a particular movement.

Step 2. Identify conflict zones. The seven trajectories–two vehicle, three bicycle and two pedestrian–all
intersect the trajectory of the ego vehicle. The intersections of their guideways with the pink guideway
identify the seven conflict zones that the ego vehicle must cross. From the inset of Figure 3.1 one can see
that the following are all the conflict zones involving the ego vehicle:

1. Conflict with right turn bicycle from south;
2. Conflict with pedestrian on south crosswalk (P8);
3. Conflict with through vehicle from west (φ8);
4. Conflict with through bicycle from west (φ8);
5. Conflict with left turn bicycle from north (φ5);
6. Conflict with left turn vehicle from north (φ5);
7. Conflict with pedestrian on east crosswalk (P6).

The conflict zones CZ1, · · · , CZ7 can all be calculated ahead of time from a map of the intersection and
the guideways. They are shown in Figure 3.2 as disjoint rectangles for clarity, although in fact they overlap.
The ego vehicle must safely cross all seven conflict zones.

Step 3. Resolve conflicts. There are three parts to this step that determines which of the seven conflicts
can be resolved. Resolving a conflict means that the ego vehicle establishes sufficiently early whether or
not another user will occupy a conflict zone at the same time as the ego vehicle, resulting in a crash. If the
ego vehicle determines that another user will occupy a conflict zone simultaneously with the ego vehicle, we
assume the latter will use a collision avoidance procedure to avoid the accident; if the ego vehicle determines
the conflict zone is unoccupied, it ignores this conflict zone. Collision avoidance may simply require slowing
down or speeding up without changing the ego vehicle’s path [5].

Part 1. Using signal light visible to ego vehicle. Some of the seven conflicts can be resolved by considering
the signal light as seen by the ego vehicle, using the fact that two conflicting movements never simultane-
ously have the green light. Since the signal light may be red or green, the planned movement is either right
turn on red (RTOR) or right turn on green (RTOG).

(i) Suppose this is a RTOR movement. So phases φ6 and φ1 face a red light and P6 has ‘dont walk’ signal.
Hence conflict CZ7 cannot occur, but CZ1, CZ2, CZ3, CZ4, CZ5, CZ6 remain unresolved.

(ii) Suppose this is a RTOG movement. So phase φ6 faces a green light and P6 has ‘walk’ signal, phase
φ8 faces a red light and P8 has ‘dont walk’ signal. Hence conflicts CZ2, CZ3, CZ4 cannot occur, but CZ1,
CZ5, CZ6, CZ7 remain unresolved.

Part 2. Using ego vehicle’s intersection view. The vehicle must decide from its view of the intersection
which of the remaining conflicts can be resolved. Figure 3.3 shows a configuration of other potential users
in the intersection. (The following analysis must be carried out for the prevailing configuration.) E is the
ego vehicle making a right turn. U1, · · · , U7 are the other users whose movements conflict with E: U3, U6
are vehicles, U1, U4, U5 are bicycles, and U2, U7 are pedestrians. O is a vehicle stopped in the left turn
lane next to E and obstructs E’s view so E cannot see U2, U3, U4 (if they are indeed present) but can clearly
see U1, U5, U6, U7. So E can resolve CZ1, CZ5, CZ6, CZ7. However, O prevents E from seeing whether
or not U2, U3 and U4 are in fact present and pose a threat, so conflicts CZ2, CZ3, CZ4 remain.

(i) Suppose E is making a RTOR movement. Then the unresolved conflicts are CZ2, CZ3, CZ4.
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Figure 3.2: The intersection of the seven guideways with the pink guideway yields seven conflict zones,
CZ1, . . ., CZ7. The conflict zones are shown disjoint for clarity, although in fact they overlap.

(ii) Suppose E is making a RTOG movement. Then all the conflicts are resolved since U2, U3, U4 cannot
move, and E can safely complete the right turn.

Parts 1 and 2 delineate the conflicts that can be resolved by drivers and AV systems today.

Part 3. Using signal phase and timing (SPaT) information. An intelligent intersection broadcasts a SPaT
message every 100ms. The message consists of the complete signal phase (i.e. the signal phases faced by
users at all legs) and an estimate of the time when the phase will change. (In an actuated signal phase
durations are not deterministic, and must be estimated [9].) We now see how SPaT information can help
resolve additional conflicts.

Suppose E is making a RTOR movement and cannot resolve CZ2, CZ3, CZ4 because of obstruction by O.
The red signal seen by the ego vehicIe is compatible with the four possible signal light configurations shown
in Figure 3.4. The ego vehicle does not know which configuration prevails, but discovers it from the SPaT
message. In configurations I and II West-East movement is permitted, so U2, U3 and U4 all can move and
E cannot resolve CZ2, CZ3 and CZ4. In configuration III, only U2 can move, so E cannot resolve CZ2. In
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Figure 3.3: The ego vehicle must determine which of conflicts CZ2, CZ3, CZ4, CZ5 can be eliminated from
what it sees of the intersection. O obscures the triangular region from the ego vehicle’s field of view so it
cannot see U2, U3, U4, hence CZ2, CZ3, CZ4 remain.

configuration IV U2, U3 and U4 cannot move, so all the conflicts are resolved, and E can complete the right
turn.

Thus upon receiving the SPaT message, it remains for E to resolve either conflict U2 (in configuration III)
or conflicts U2, U3 and U4 (in configuration I). This is discussed in Section 3.4.

The SPaT message will also tell the ego vehicle that its signal will change to green in time T . So after T , the
vehicle’s movement will automatically change from RTOR to RTOG and, as we have just seen, all conflicts
will be resolved. T may be as long as the cycle time, up to 2 mins. The ego vehicle may decide it is worth
waiting for time T to complete its movement. Many AVs today are programmed not to engage in RTOR
movements, e.g. [19, 4]. Ironically, delivery vans are encouraged to avoid left turns and take right turns
only [21].

Identification of potential blind zones will complete the definition of the intersection ODD, and is described
next.
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Figure 3.4: The possible signal light configurations (I-IV) compatible with RTOR movement of the ego
vehicle.

3.2 Potential Blind Zones

AV safety rests on the proposition that if a vehicle can identify the objects in its field of view and if it can
predict how each object will behave, it can safely drive itself. We are now concerned with the situation in
which there are objects that are not visible to the AV because other vehicles obstruct the AV’s view, leading
to the creation of blind zones. Such obstruction is commonplace in intersections. Our objective is:

1. Inform a vehicle crossing the intersection about its potential blind zones; and
2. Inform the vehicle about the presence of agents (other vehicles, bicyclists or pedestrians) in those

blind zones.

Achieving the first part of the objective would increase vehicle and intersection safety, thus completing the
description of the intersection ODD. Accomplishing the second part would improve vehicle and intersection
efficiency: when a given blind zone is empty or the agent dynamics in that zone does not lead to a conflict,
one can safely proceed at normal speed instead of disengaging, inching forward, or stopping and waiting.

Each potential blind zone is computed for a given guideway with respect to a given conflict zone. Recall
the Uber accident described in Section 2.2. We will use it to describe our approach to potential blind zone
computation. Consider the conflict zones of the south-to-west left turning guideway, shown in Figure 3.5.
CZ1, CZ2 and CZ3 are the conflict zones created by the intersection of this left turn with the three through
north-to-south movements. Coincident conflict zones CZ4 and CZ5 are between the left turn and the pedes-
trian crosswalk.1 Since the left turn is unprotected at this intersection, all these conflict zones can be active,
without any signal violation.

1A crosswalk creates two overlapping guideways going in the opposite directions, south-to-north and north-to-south, hence,
formally we have two conflict zones sharing the same area.
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Figure 3.5: Conflict zones of the south-to-west left turning movement at the intersection, where Uber acci-
dent occurred.

Figure 3.6: Conflict of guideways G0 and G3.

Let us focus on the conflict zone CZ3, where the Uber crash occurred. Denote by G0 the left-turning
guideway followed by the Honda CRV, and by G3 the guideway taken by the Uber Volvo. CZ3 is the
intersection of these two guideways. We are interested in the parts of these guideways leading to (i.e.
upstream of) CZ3 and depicted in Figure 3.6, and want to know if guideway G3 can always be seen from
guideway G0 (and vice versa), or if there are potential blind zones. At any particular point in G0 leading
to CZ3, we can construct a vision zone defined by given sensor heading, angle and radius.2 We call this
particular point of G0 an origin.

Consider the geometric intersection of this constructed vision zone with guideway G3 upstream of CZ3.
This geometric intersection can be gridded.3 Connect each grid node with the origin. These connections are
shown as straight gray dashed line segments in Figure 3.7. If such a connecting line segment intersects any

2Angle and radius are generally defined by the parameters of AV’s onboard sensing equipment, i.e. cameras and lidars. However,
we can always assume 360 degrees view, and the radius between 100 and 200 meters.

3Grid step can be taken to be 1 meter.
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Figure 3.7: Potential blind zone of guideway G0 with respect to guideway G3.

of the guideways other than G0 and G3 upstream of their conflict zones,4 then we mark this grid node as
blind. The reason for this mark is that queued vehicles in the guideways other than G0 and G3 (in our case,
these are G1 and G2) can create an occlusion by vehicles queued up upstream of their conflict zones. The
union of all blind grid nodes is a potential blind zone of guideway G0 with respect to guideway G3.

Figure 3.8: Potential blind zone of guideway G3 with respect to guideway G0.

This construction is repeated for guideway G3 with respect to guideway G0, and the potential blind zone of
G3 thus obtained is shown in Figure 3.8.

Although the origin can be anywhere in the reference guideway, we recommend placing it at decision points.
For G0, the origin can be just before the stop bar, or inside the intersection, where a vehicle (like Honda
CRV) is making a decision to wait or to go. For G3, the origin should be placed at the point of no return:
given the speed limit of 40 mph (20 m/s), and maximum deceleration of 4 m/s2, this point will be 50 meters
upstream of CZ3.

Having located the blind zones, we can compute the probability that they will be occupied for a given traffic
4In the example depicted in Figure 3.7, these are guideways G1 and G2.
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pattern and signal timing, which, in turn, would allow us to estimate intersection safety. We discuss this
estimation in the next section.

3.3 Estimating Intersection Safety

For the safety analysis, we will continue using the Uber accident scenario from Section 2.2. We employ the
notation summarized in Table 3.1. We consider a typical cycle, with the initial time as the beginning of the
green phase for the two conflicting movements (through and permissive left).

Symbol Description
Parameters

twait average waiting time at the stop bar for a left turning vehicle
tle f t−turn average left-turn time
tbu f f er time-to-collision threshold: collision is ‘declared’ if the difference between the arrival times

of two vehicles in the conflict zone is smaller than tbu f f er
G green time of current phase

nthrough initial queue length (number of vehicles) in the through lane
nle f t−turn initial queue length (number of vehicles) in the left-turn lane

nocc initial queue length (number of vehicles) in the lane(s) of potential occlusion
λthrough vehicle arrival rate at a through guideway (G3)

λle f t−turn vehicle arrival rate at the left turning guideway (G0)
λocc vehicle arrival rate at a guideway of potential occlusion (G1, G2)

µthrough vehicle departure rate of a through movement at full capacity
µocc vehicle departure rate of movement in the potential occlusion lane(s) in a jam

vthrough speed limit in the through movement lane
k jam vehicle density in the potential occlusion lane(s) in a jam

Random variables
Xthrough vehicle arrival time in one through guideway at its stop bar

Xle f t−turn vehicle arrival time in the left turning guideway at its stop bar
Hthrough headway of through movement if there is no queue

Estimated quantities
P1 probability of a collision danger in traffic state 1 in the presence of occlusion
P2 probability of a collision danger in traffic state 2 in the presence of occlusion
P3 probability of a collision danger in traffic state 3 in the presence of occlusion
D1 expected duration of traffic state 1
Locc length of queue (in meters) if there is a blind zone (occlusion)
ñocc number of vehicles in queue creating the occlusion

Table 3.1: Notation for safety analysis.

Note that the value of tle f t−turn generally depends on the radius of the left turning guideway that is determined
by the size of the intersection. The meaning of traffic states 1, 2 and 3 are explained below.

Occlusion condition
As noted in Section 3.2, blind zones occur from occlusions by queued vehicles. So we start by formulating
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the occlusion condition. An occlusion occurs when the queue(s) in the adjacent lane(s) is long enough. The
occurrence can be divided into two cases: (1) queues form; and (2) queues dissipate.

Figure 3.9: Occlusion schematic for the Uber accident scenario.

Figure 3.9 shows the occlusion schematic. L1,L2,L3 can be directly obtained from the geometry of the
intersection. We need to estimate L5, which is the length of the occlusion, Locc. For that, we must compute
L4. Suppose, there is no occlusion and the left turning vehicle decides to go or to wait. It will choose to go
if the upcoming through vehicle is far enough from the intersection. Thus, we have:

L4 = vthrough · (tle f t−turn + tbu f f er);

Locc = L5 =
L4 ·L1−L3 ·L2

L1 +L2
;

ñocc =

⌈
Locc

k jam

⌉
. (3.3.1)

So, given state {nocc,λocc,µocc}, we can compute Locc and ñocc. Consider the two cases of queue dynamics:

• Queue dissipates if λocc < µocc. The duration of no-occlusion is:

max
{

0,
nocc− ñocc

µocc−λocc
,G
}
. (3.3.2)

• Queue forms if λocc ≥ µocc. The duration of occlusion is:

max
{

0,
ñocc−nocc

λocc−µocc
,G
}
. (3.3.3)
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Since the two expressions above are same, we can use (3.3.3) as the time to change the occlusion status.

Probability of collision danger
The traffic flow pattern during the single green phase of the unprotected left turn can be decomposed into
three states, depicted in Figure 3.10. This diagram shows how the signal phase and the traffic state evolves
in time, represented by the color-coded horizontal line, where red switches to green, then green switches to
yellow. Our focus is on the green phase.

Figure 3.10: The three traffic states during the green phase for unprotected left turn.

State 1: Queues exit in both north-to-south through and south-to-west left-turn lanes. In the beginning of
the green phase, the vehicles going from north to south (through movement) will pass the conflict zone at
a steady rate with a small headway (e.g., 2 seconds) not letting any left turning vehicles to execute their
maneuver. If D1 ≤ G, then the original queue in the through lanes will dissipate within the green time, and
state 1 will change to state 2. Otherwise, the system will stay in state 1 during the whole green phase. Since
in state 1 no left-turning vehicles depart, we have:

P1 = 0; (3.3.4)

D1 =
nthrough

µthrough−λthrough
. (3.3.5)

State 2: The north-to-south through lanes have no queue, but there is a queue for the south-to-west left-
turn. In this case, a left turning vehicle waits for a gap between through vehicles, which would allow it
to complete its maneuver. We assume that this left turning vehicle waits for twait seconds and, if there no
through vehicle is coming, proceeds with its movement. Thus, there is a danger of collision if the gap
between two through-moving vehicles is shorter than twait plus the time required for the left turning vehicle
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to complete its maneuver. This is formalized in the expression (3.3.6).

Hthrough ∼ Exponential(λthrough);

K =

⌊
G− tbu f f er

twait + tle f t−turn

⌋
P2 =

K

∑
k=1

P
{(

twait + tle f t−turn
)

k− tbu f f er ≤ Hthrough ≤
(
twait + tle f t−turn

)
k+ tbu f f er

}
;

=
K

∑
k=1

{
e−λthrough[(twait+tle f t−turn)k−tbu f f er]− e−λthrough[(twait+tle f t−turn)k+tbu f f er]

}
. (3.3.6)

If the left-turn queue does not vanish, the system will stay in state 2; otherwise, it will switch to state 3.

State 3: There are no queues in north-to-south through or south-to-west left turning lane. In this case,
the flows of through-moving and left turning vehicles can be seen as two independent Poisson processes.
The probability of collision danger is computed as a probability of an event, when an arrival from through-
moving process occurs no more than 1 second before, or no more than 1 second after an arrival from the
left-turn process. This is formalized in the following expressions:

Xthrough(X1) ∼ Poisson(λthrough(λ1));

Xle f t−turn(X2) ∼ Poisson(λle f t−turn(λ2));

fX1,X2(x1,x2) = λ1λ2e−λ1x1−λ2x2 , x1 ≥ 0, x2 ≥ 0;

P3 = P
(
x1− tbu f f er ≤ x2 +(twait + tle f t−turn)≤ x1 + tbu f f er

)
=

∫
∞

0
dx2

∫ x2+twait+tle f t−turn+tbu f f er

x2+twait+tle f t−turn−tbu f f er

dx2 λ1λ2e−λ1x1e−λ2x2

=
λ2

λ1 +λ2

(
e−(twait+tle f t−turn−tbu f f er)λ1− e−(twait+tle f t−turn+tbu f f er)λ1

)
=

λle f t−turn

λthrough +λle f t−turn

(
e−(twait+tle f t−turn−tbu f f er)λthrough− e−(twait+tle f t−turn+tbu f f er)λthrough

)
(3.3.7)

In these probability calculations we made the following assumptions:

• it is the left-turning vehicle’s responsibility to find the gap for its maneuver;
• probabilities P1, P2 and P3 are computed for the situation when a blind zone exists;
• traffic violations are not considered, since they are unpredictable.

To summarize, the probability of collision danger can be computed in three steps:

1. determine occlusion condition from expression (3.3.1) – if there exists occlusion, go to step 3, other-
wise go to step 2;

2. from expression (3.3.3) estimate the time to occlusion;
3. use expressions (3.3.6) and (3.3.7) to estimate the probability of a collision danger.
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Example
Consider the following parameters:

• The left turning vehicle waits for twait = 3 seconds, and if noone appears in the through movement, it
performs its maneuver.

• It takes tle f t−turn = 2 seconds to complete the left turn.
• For a safe completion of this maneuver, the through-moving vehicle should arrive no less than tbu f f er =

1 seconds after the left turning vehicle leaves the conflict zone.
• Duration of the green phase is G = 30 seconds.
• The queue size in the through guideway at the beginning of the green phase is nthrough = 3 vehicles.
• There are nle f t−turn = 2 vehicles waiting to turn left in the beginning of the green phase.
• The vehicle arrival rate at the through guideway is λthrough = 0.25 vehicles per second (900 vph).
• The arrival rate of the left turning vehicles is λle f t−turn = 0.125 vehicles per second (450 vph).
• As the green phase starts, the vehicle departure rate at the through guideway is µthrough = 0.5 vehicles

per second (1800 vph).
• Lane width L1 = L2 = 7.5 meters – see Figure 3.9.
• Speed limit in the through lane is vthrough = 15 mps (≈ 35 mph).
• Vehicle density in the occlusion lane k jam = 0.2 vehicle per meter.

Plugging these into equations (3.3.6), (3.3.7) and (3.3.1), we get the results:

• P1 = 0;

• P2 = 0.202;

• P3 = 0.048; and

• ñocc = 4.

Extending the analysis to other scenarios
In the scenario above, the through movement can be replaced by the right-turn movement. Everything will
be the same, except for the arrival rate of the right turning vehicles. Another type of collision scenarios
caused by occlusions involves the conflicting movements during the signal phase change.

Figure 3.11: PreScan simulation snapshot — 1 second before the vehicle-pedestrian conflict.

Consider the scenario presented in Figure 3.11. A through-moving vehicle approaches the intersection in
the right most lane, when its light changes from red to green. So, instead of going to full stop, the vehicle
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accelerates. At the same time, a pedestrian is trying to finish the intersection crossing, when he sees his
light changing from green (blinking red) to red. Neither the vehicle, nor the pedestian can see each other
due to occlusion caused by the queued vehicles. The schematic of this conflict is shown in Figure 3.12.
The probability of collision danger in this case is computed similarly to this probability in State 3 discussed
above, but with more constraints. The additional notation is summarized in Table 3.2.

Symbol Description
vped pedestrian speed when crossing on yellow
λped arrival rate of pedestrians
Lped distance to conflict zone from the beginning of the crosswalk from pedestrian’s direction

Table 3.2: Additional notation for the pedestrian scenario.

Figure 3.12: Vehicle-pedestrian conflict schematic.

Probability of collision danger can be expressed as follows:

P(pedestrian cannot finish crossing) = 1− e
−λped

(
Lped
vped
−1
)

P(pedestrian and vehicle arrive simultaneously) =
λped

λthrough +λped

(
e
−
(

Lped
vped
−tbu f f er

)
λthrough− e

−
(

Lped
vped

+tbu f f er

)
λthrough

)
P(collision danger | occlusion) = P(pedestrian cannot finish crossing)×

P(pedestrian and vehicle arrive simultaneously) . (3.3.8)

If vped = 2 mps, λthrough = 0.2 vehicle per second, λped = 1
60 pedestrians per second, and Lped = 12 meters,

then P(collision danger | occlusion) = 0.80×0.009 = 0.00075.
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3.4 Detecting Activity in Blind Zones

Detection of activity in the potential blind zones is needed only if the corresponding conflict zones are
not eliminated in the three-step process of building the intersection ODD discussed in Section 3.1. If the
active conflict zones exist, and the presence of potential blind zones for them is established, we want to
put detection into those zones to enable informing vehicles with obstructed vision about potential dangers.
Referring to the Uber accident example, Figures 3.13 and 3.14 show zones, where detection is required
(desired) for the south-to-west left-turn and north-to-south through movements accordingly. These figures
also show a tentative traffic sensor configuration.

Figure 3.13: Desired detection for the south-to-west left turn movement.

Figure 3.14: Desired detection for the north-to-south through movement.

For the left turn, we need to monitor the crosswalk and three north-to-south guideways. Before performing
its maneuver, the left-turning vehicle must make sure that there are no pedestrians in the crosswalk. Then,
if there is no danger from the visible traffic and nobody is present in the blind zone, the left turn can be
completed.

For the north-to-south through movement, the danger comes from the left-turning vehicle(s) that may be
present in its blind zone in two forms:

1. left-turning vehicle is in the middle of the intersection, between the stop bar and the exit detectors,
waiting for an opportunity to complete the maneuver; and

2. left-turning vehicle is between the approach and the stop bar detectors, but it may be going fast enough
to cause a conflict with the vehicle moving from north to south.
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The extent of desired detection zones is determined by the assumptions about agent dynamics. The detector
placement should satisfy the following requirements:

• the approach detector is far enough to give enough time for the conflicting movement to slow
down/stop;

• at the same time, the approach detector is close enough to ensure the prediction is as accurate (the
closer the detector, the smaller is the trajectory uncertainty);

• if only one detector can be deployed, it should serve as many movements as possible.

Figure 3.15: Computing desired distance from the approach detector to the stop bar.

The algorithm for placing the approach detectors has five steps:

1. Fix the two conflicting movements.
2. For the movement that needs detector(s), obtain the distribution of the time needed to go from different

positions in the guideway to the conflict zone. Identify a reasonable minimum travel time to the
conflict zone, as shown in Figure 3.15. We recommend using the value of the mean minus one
standard deviation for such minimum travel time.
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3. For the other movement, the one receiving the information from the detector, compute the minimum
distance and time to stop right before the conflict zone using the values of speed limit and admissible
deceleration.

4. From step 2 and 3, we get the optimal detector location – it is the one, whose minimum time to reach
the conflict zone equals the minimum time to stop of its conflicting movement.

5. Repeat steps 1-4 for all active conflict zones to obtain detector placement for all lanes.

Example
Consider the following parameters of a four-legged intersection and vehicle dynamics:

• the size of the intersection is 20 meters by 20 meters;
• radius of the left turn is 10 meters;
• radius of the right turn is 6 meters;
• speed limit is 18 mps (40 mph);
• maximum acceleration is 5 m/s2;
• comfortable deceleration is 3 m/s2;
• minimum waiting time for the left and right turns is 1 second.

For such an intersection the placement of the approach detectors is summarized in Table 3.3.

Guideway receiving info Guideway with detector Distance to conflict zone
Through Left turn 10 meters
Left turn Through 108 meters
Through Right turn 16 meters
Right turn Through 88 meters
Right turn Left turn 10 meters
Left turn Right turn 16 meters

Table 3.3: Approach detector placement summary.
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Chapter 4

Intelligent Intersection

An intelligent intersection implements the intersection ODD analysis, including potential blind zone identi-
fication, detects traffic activity and broadcasts signal and traffic information to all connected agents crossing
the intersection. Although in this project we only considered connected vehicles (CVs) as connected agents,
we believe that bicyclists and pedestrians would greatly benefit from the information provided by the inter-
section infrastructure. Figure 4.1 shows a reference instrumentation that enables intersection intelligence.

The intersection is equipped with approach, stop-bar and departure magnetic sensors to detect vehicles;
micro-radars to identify crossing pedestrians and bicyclists; and optional CCTV cameras to enable video
monitoring. Wireless sensors transmit their data for processing to the CPU through an access point. CPU is
connected to the signal controller with a conflict monitoring card that prevents conflicting signal phases be-
ing activated together. This connection provides CPU with access to SPaT information as well as the ability
to activate certain phase. Red light violations are identified by the CPU when it detects an agent performing
a maneuver prohibited by current signal phase combination. Dedicated short-range communication (DSRC)
modem is used to broadcast the state of the intersection (SPaT + information about presence of agents at
specific lanes or crosswalks) and warnings about the detected red light violations to CVs. Currently, DSRC
is the backbone of I2V and used in connected vehicle and infrastructure deployments [22]. Emergency
vehicles and transit can use DSRC to send give-me-green requests. However, the development of cellular
technology may render DSRC obsolete. In the recent CV deployment in Washington, DC, Audi relies on
4G LTE in its communications with signalized intersections [7]. Amid the rapidly rising anticipation for
5G, industry believes that this will be the new communication layer used in V2V and I2V applications.

The purpose of the Bluetooth connector is to extend I2V technology presently enabled by DSRC to I2X1,
informing connected agents other than vehicles about the state of intersection and red light violations as
well as accepting give-me-green requests from those agents as they approach the intersection. These give-
me-green requests are functionally similar to push-to-walk buttons that one encounters at some pedestrian
crosswalks. Users will be able to issue give-me-green requests and get updates about the state of intersection
through a smartphone application.2 Data processed by CPU is uploaded to the cloud for long-term analysis
and archiving via cellular link.

The format of I2V messages is defined in the SAE J2735 standard [20]. Out of presently defined sixteen
J2735 messages, we focus on three:

1Generalizing the notion infrastructure-to-vehicle (I2V), we refer to the concept infrastructure-to-anyone as I2X.
2Starting in 2020, when the 5G subscription will commence, DSRC and Bluetooth will likely be replaced with 5G.

30



Figure 4.1: Schematic of reference intersection instrumentation.

• MAP, used to define the intersection layout. This message describes the intersection geometry by
a reference point (geospatial coordinates of the middle of intersection); approaches, including their
types – ingress, egress, barrier and crosswalk; and lanes within each approach. Thus, a vehicle getting
the MAP message can place itself with respect to the intersection.

• SPaT, which, as discussed before, stands for signal phase and timing. This message describes the
current signal phases also providing the state of all lanes in terms of vehicles/bicyclists/pedestrians
present in them, as well as any pre-emption or priority. Thus, upon receiving the SPaT message, a CV
knows the current state of intersection, and what to expect in the next few seconds.

• ICA, which stands for intersection collision avoidance. This type of message is typically used in
vehicle-to-vehicle communications: a connected vehicle issues this message if it violates the intersec-
tion. However, the combination of signal phasing and detector readings provide enough data for the
roadside equipment to generate ICA message and broadcast it.

The intersection map is constructed offline. The map may be downloaded by connected vehicles and other
users. The intersection software records the signal phase in order to calculate SPaT messages in real time,
for example using the algorithms described in [9]. The intersection broadcasts in real time the SPaT message
and the occupancy of the blind zones. These broadcasts are received by connected users of the intersection.

An intelligent intersection detects red light violators by combining signal phase and traffic detection data:
if the traffic movement is detected in guideways that have no right of way according to the current signal
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phase, a violation flag is raised. Figure 4.2 shows three frames of an intersection video camera. The camera
is triggered by the detection of the intruding vehicle at a high speed traveling into the intersection during a
red signal. The detection took place at least 2 seconds before the vehicle entered the intersection and could
warn the vehicle with the right of way. Also shown is a picture of a Google AV after a van crashed into it
as it entered the intersection 6 seconds into red. The Google AV could have been programmed to avoid the
crash with a 2-second warning.

car with ROW

Figure 4.2: Intrusion of red-light violator detected by intersection (source: [16]). Above: picture of a Google
AV crash by a red-light violator.

In the situation of an Uber accident described in Section 2.2, the intelligent intersection could have broad-
casted a SPaT message indicating:

1. the signal phase and its remaining time; and
2. presence of vehicles in guideways G0, G1, G2 and G3 (see Figures 3.7 and 3.8).

Then, everything would depend on whether the left turning Honda, or Uber Volvo, or both, were connected
and able to interpret the I2V SPaT message. If neither vehicle were connected the crash scenario would
repeat. If the left turning Honda were connected, it would be notified of the presence of danger in G3,
which it cannot see, and would wait till Volvo reaches the stop bar and becomes visible. Seeing the Volvo,
Honda can make the decision: to let pass, if Volvo goes fast enough, or to go if Volvo stops. If Uber Volvo
were connected, it would be informed about the presence of vehicle in G0 in front that it cannot see and
about the soon changing signal light. Not aware about the intent of the left-turning vehicle, it will brake to a
complete stop before conflict zone CZ3, letting Honda pass. Finally, if both vehicles were connected, Honda
would wait for Volvo to become visible, and Volvo would slow down before CZ3 until it can see Honda and
predict its intent. Then, if the traffic light is still green, Volvo would proceed through the intersection first,
otherwise, it would stop.
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Protected intersection
The intelligent intersection also functions as a limited but flexible protected intersection.

Figure 4.3: Schematic of a protected intersection. Source: [17]

Protected intersections [17] refer to physical modifications designed to improve the passage of cyclists
through an intersection. Its key features are (see Figure 4.3):

1. insertion of ‘refuge islands’ to sharpen turning radius of cars, forcing them to slow down to 5-10 mph
when turning right;

2. special bike lane setback as they cross the intersection;
3. forward stop bar for cyclists, far ahead of waiting cars;
4. special cyclist-activated traffic lights;
5. advance green traffic signals for cyclists; and
6. turn restrictions for cars, while all turns allowed for cyclists.

There are now 13 protected intersections in the U.S., each costing between $250K and more than $1M, all
built since 2015. The protected intersection at Hopkins Street and The Alameda in Berkeley, CA includes
four concrete refuge islands that guide bicycles as they approach the intersection and back towards the traffic
lane afterward. Pedestrians have a shorter crossing distance. The result is mixed. Drivers have complained
about the increased difficulty turning right. Tire marks have obscured the paint on the outside of some of the
islands, as drivers turn too sharply. At one corner tire marks record drivers unwilling to wait in a queue to
turn right and go into the bike lane instead. A resident who has been crossing this intersection for 17 years
told a reporter that “squeezing the traffic” into a narrower space makes this “a stressful intersection” and
irritates drivers [18]. Not all protected intersections incorporate the special bike signals. In Salt Lake City,
UT these signals were not added due to the need to install bicycle detection sensors. Similarly, the protected
intersection design in Davis, CA omitted bicycle-friendly signal timing, as it would “cause backups and
could decrease the safety of other parts of the corridor.”

The protected intersection imposes significant mobility cost. As seen in Figure 4.3 the right turn pockets
have been eliminated so that right turn and through vehicles must share the same lane; the former will block
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the latter as they wait to complete the turn, resulting in a significant reduction in the intersection throughput.
This reduction is a permanent imposition even when there is no bicycle traffic or when emergency vehicles
need to travel quickly.

An intelligent intersection can be enhanced to provide several safety benefits. Bicyclists could put apps
in their smartphones that alert the intersection controller of their location and direction thereby serving
as a mobile bicycle sensor. Knowing how many bicycles there are and their desired turn movements, the
controller could adaptively set the duration of the bicycle signal to reduce backups. The SPaT calculation
could be used to signal to bicyclists that they should speed up or slow down to avoid stopping as in the “Flo”
system introduced in Utrecht [12].

The cost of an intelligent intersection is relatively small, estimated at $25K and $100K, depending on the
size of the intersection and the extent of preexisting sensing. The safety benefits of an intersection upgrade
depends on the traffic demand. From the map of the intersection one can calculate the conflict zones and
roughly estimate queues to see how frequently blind zones will occur. On that basis one can rank intersec-
tions and target limited funds.
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Chapter 5

Intelligent Intersection Toolbox

Implementation of the intersection’s intelligence relies on the following algorithm families:

1. analysis of intersection geometry to identify possible maneuvers, conflicts and blind zones;

2. computation of blind zone activation likelihood, given a traffic pattern and signal timing;

3. classification of conflicts and blind zones by their importance;

4. computation of optimal and minimal viable sensor placements in the intersection to ensure desired
coverage of blind zones;

5. interpretation of sensor readings to determine traffic presence and dynamics in the blind zones;

6. signal phase prioritization to ensure safe and efficient passage of different travel modes; and

7. prediction of signal phase duration for adaptive and actuated signals.

These algorithms are being implemented in the open source Python package called Intelligent Intersection
Toolbox (IIT) [2]. Presently, we have implemented the algorithms for analysis of intersection geometry,
including conflict and blind zone identification and classification.
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Figure 5.1: Intelligent Intersection Toolbox – workflow.

The workflow of the IIT’s intersection geometry analysis is presented in Figure 5.1. IIT uses Open-
StreetMap [3] as a source for road geometry and provides the following API:

• api.get_data() – one can specify city or given .osm file; returns all streets.
• api.get_intersecting_streets() – returns list of all intersections.
• api.get_intersection() – returns available data about intersection.
• api.get_guideways() – returns geometry of vehicle, rail and bicycle guideways.
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• api.get_crosswalks() – returns geometry of pedestrian crosswalks.
• api.get_conflict_zones() – returns potential conflict zones for a given guideway.
• api.get_blind_zones() – returns potential blind zones for a given guideway and conflict zone.
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Chapter 6

Intersection Classification

Heterogeneity of intersections and hazardous conditions can vary significantly, and there is no generally
accepted definition of “complexity” of intersections. In light of this, it is necessary to define and categorize
the “complexity” of intersection based on their geometric design and layout, operation rules, and traffic.
The objective of the intersection classification is to assess the diversity in the complexities of signalized
intersections, as different intersections may raise different perception and decision-making challenges from
the perspective of AV deployment and testing. Intersection complexity may vary due to differences in
number of infrastructure elements (e.g., number of approaches and lanes), type of intersection geometry
(e.g., presence of grade, skewness of approaches), and type of signal control operations (e.g., multi-phase
signals, lead-pedestrian intervals). While all these intersection attributes are not readily available for a city-
level analysis, it is possible to obtain information about the intersection infrastructure from open source
databases such as OpenStreetsMap (OSM) [3]. In this section, we will demonstrate the development of a
typology for signalized intersections for the City of Berkeley.

To demonstrate a generalizable approach for classifying intersections, we used data from OSM. In partic-
ular, we obtained OSM data for the entire city of Berkeley through a Python package developed as part
of this project [2]. Using this package, we can query for any city, and obtain location information about
all intersections within the city. In addition, we also obtained the following attributes with regards to each
intersection:

1. Names of each approach associated with the intersection. For each approach, the following infras-
tructure elements are also documented:

• Number of lanes
• Presence of left-turn channelization
• Presence of bicycle lanes/tracks
• Bearing angle and compass of the segment (indicating the directionality of the road)
• Maximum speed limit
• Functional classification: motorway, trunk, primary, secondary, tertiary, residential, others

2. Presence/absence of traffic signal control

Collectively, the above-mentioned intersection attributes help us in distinguishing different types of signal-
ized intersections. Moreover, the infrastructure-based attributes provided above are well aligned with the
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overarching goals of identifying guideways, conflict zones and blind zones, as variation in number of lanes
and presence/absence of bicycle lanes, impact the number of unique movements and interactions that are
likely to be observed at an intersection. In addition to these factors, blind zones may also be impacted by
skewness of the intersection.

Using OSM, we obtained data associated with 1354 intersections in Berkeley. Out of these, we identified
225 intersections to traffic signals, which were utilized for developing an intersection typology.

Finally, we acknowledge that OSM does not include any operational details about the signal plan, which is
also an important determinant when assessing intersection complexity. However, such information can be
easily incorporated into the classification approach when available at citywide level.

6.1 Classification Approach

In order to systematically classify signalized intersections, we chose 4 key indicators that we believe to be
directly linked to the complexity of the intersection, especially in the context of the number of guideways
and conflict zones that can be observed at an intersection.

These indicators are as follows:

1. Number of approaches: The number of road segments leading into the intersection. As the number of
approaches increase, the number of associated guideways and conflict zones will also increase.

2. Presence of dedicated left-turn channelization: The presence of dedicated left-turn channelization
can act as a proxy for both significant left-turn traffic, as well as potential increase in operational
complexity of the intersection (e.g., presence dedicated or permissive left-turns).

3. Presence of bicycle lanes: Presence of a dedicated bicycle lanes implies that both conventional and
autonomous vehicles have to be cognizant of cyclists at the intersection, especially when making
turns.

4. Maximum difference in number of lanes across approaches: While number of lanes can be correlated
with the vehicular throughput of the intersection, differences across approaches with regards to the
number of lanes may represent some asymmetry across approaches, such as motorway intersecting
with a residential street. In such instances, the complexity of navigating the intersection, especially
when approaching from a minor approach to make maneuvers such as right-turns-on-red may be
present challenges.

Using the above-mentioned parameters, we proposed the following ten categories of signalized intersections:

1. intersections with more than 4 approaches;
2. intersections with 4 approaches: presence of both left-turn lanes and bicycle lanes along at least one

of its approaches;
3. intersections with 4 approaches: presence of left-turn lanes along at least one of its approaches, but

no bicycle lanes present;
4. intersections with 4 approaches: neither left-turn or bicycle lanes present, but different number of

lanes across approaches;
5. intersections with 4 approaches: other;
6. intersections with 3 approaches: presence of both left-turn lanes and bicycle lanes along at least one

of its approaches;
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7. intersections with 3 approaches: presence of left-turn lanes along at least one of its approaches, but
no bicycle lanes present;

8. intersections with 3 approaches: neither left-turn or bicycle lanes present, but different number of
lanes across approaches;

9. intersections with 3 approaches: other; and
10. intersections with 2 approaches.

In the above-mentioned categorization, we hypothesize that more number of approaches per intersection
implies greater complexity. In addition, we observe additional differences in other infrastructure elements
that may influence the complexity of intersection navigation. Here are some observations pertaining to the
above categories:

• Intersections with more than 4 legs may lead to an increase in number of guideways/conflict zones,
presence of more skewed approaches, when compared to 2/3/4 approach intersections.

• Among intersections that share the same number of approaches, we argue that presence of left-turn
lanes and bicycle lanes lead to more complexity at the intersection, when compared to only one of
those attributes present. Please note that this specification only requires that there be at least one left-
turn lane channelization and one bicycle lane present along any of the approaches of the intersection.

• In the absence of dedicated left-turn lanes and bicycle lanes, variation in the number of lanes per ap-
proach across the different legs of the intersection may also lead to some challenges when navigating
through an intersection.

• Lastly, we used a single category to represent all signalized intersections with only 2 approaches.
Such intersections may correspond to mid-block intersections, or 3/4-legged intersections involving
one-way streets.

Table 6.1 provides some summary statistics associated with signalized intersections pertaining to each cat-
egory in the city of Berkeley. In addition to the parameters used for intersection classification, Table 6.1
also provides an average minimum skew angle for each intersection category. For instance, we observe that
intersections with more than 4 approaches has an average skew angle of 42 degrees, which is significantly
lower than what is observed for 2/3/4 approach intersections. We would expect this to be the case since
the angle between at least one of the adjacent approaches in a 5+ legged intersection would be less than 90
degrees. For comparison purposes, we would expect an intersection with two perfectly orthogonal streets to
have a minimum skew angle of 90 degrees.

Below we describe intersections representing each class.

Figure 6.1 shows a sample intersection at Dwight Way, Dwight Crescent and Seventh Street, which has 5
intersecting approaches. Here, we can observe that the skew angles associated with Dwight Crescent and its
adjacent streets would be substantially less than 90 degrees.

Figure 6.2 shows a sample intersection at Hearst Avenue and Oxford Street, which has 4 intersecting ap-
proaches. At this intersection, there are left turn lanes along along three of the four approaches, while there
is a bicycle lane present along southern leg of the intersection.

Figure 6.3 shows a sample intersection at Ashby Avenue and San Pablo Avenue, which has 4 intersecting
approaches with each having a dedicated left turn lane. However, in this instance, there is no bicycle lane
intersecting with the intersection.

Figure 6.4 shows a sample intersection at Channing Way and College Avenue, which has a bicycle lane
along Channing Way.
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Figure 6.1: Sample intersection with 5 or more approaches

Figure 6.5 shows a sample intersection at Martin Luther King Jr Way and Rose Street. This intersection
has no left-turn/bicycle lane. However, while Martin Luther King Jr Way has two lanes along both of its
approaches, Rose Street comprises of a single lane.

Figure 6.6 shows a sample intersection at Euclid Street and Cedar Street. This intersection has no left-
turn/bicycle lane, and all four approaches have identical number of lanes. However, our current classification
does not capture the significant vertical grade present along both intersecting streets.

Figure 6.7 shows a sample intersection at Sacramento Street and Delaware Street, which has 3 intersecting
approaches. At this intersection, there is a left turn lanes along Sacramento Street, while there is a bicycle
lane linking Ohlone Greenway (which is off-street bicycle trail) and Delaware Street.

Figure 6.8 shows a sample intersection at Bancroft Way and Shattuck Avenue, which has 3 intersecting
approaches even though it is a 4-legged intersection. In this case, since Bancroft Way is a one-way street, it
only corresponds to one approach. This intersection has two left turn lanes.

Figure 6.9 shows a sample intersection at Eunice Street, Henry Street and Sutter Street. It is a 3-legged
intersection which a bicycle lane along Sutter Street.

Figure 6.10 shows a sample intersection at Martin Luther King Jr Way and Way. This intersection has no
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left-turn/bicycle lane. However, while Martin Luther King Jr Way has two lanes along both of its approaches,
Bancroft Way comprises of a single lane.

Figure 6.11 shows a sample intersection at Derby Street and Claremont Boulevard. This intersection has no
left-turn/bicycle lane, and all three approaches have one lane each.

Figure 6.12 shows a sample intersection at Dana Street and Durant Avenue. In this case, since both intersect-
ing streets are one-way, even though it is a four-legged intersection, it only has two approaches. While this
intersection also has a bicycle lane, the classification for 2 approach intersection did not require its presence.

6.2 Future

Using the proposed intersection classification, we demonstrate the diversity of signalized intersections that
are observed even when considering a limited number of infrastructure elements. In addition to the parame-
ters considered in the study, we intend to capture other infrastructure elements such as bus stops and parking
spaces as factors which may impact the perception and decision-making of autonomous vehicles at/near
intersections. Beyond infrastructure elements, an assessment of different traffic signal control types is also
important. Finally, although our choice of parameters for clustering intersections are related to the concept
of guideway/conflict zones and crashes, future extensions of this work will also seek to cluster intersections
using the number and types of guideways, conflict zones and blind zones as clustering criteria.
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Figure 6.2: Sample intersection with 4 approaches, left-turn lane + bicycle lane
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Figure 6.3: Sample intersection with 4 approaches and at least 1 left-turn lane
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Figure 6.4: Sample intersection with 4 approaches and at least 1 left-turn lane
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Figure 6.5: Sample intersection with 4 approaches, no bicycle/left-turning lanes, but with variation in num-
ber of lanes across the approaches
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Figure 6.6: Sample intersection with 4 approaches (other)
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Figure 6.7: Sample intersection with 3 approaches, left-turn lane + bicycle lane
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Figure 6.8: Sample intersection with 3 approaches and at least 1 left-turn lane
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Figure 6.9: Sample intersection with 3 approaches and at least 1 left-turn lane
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Figure 6.10: Sample intersection with 3 approaches, no bicycle/left-turning lanes, but with variation in
number of lanes across the approaches
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Figure 6.11: Sample intersection with 3 approaches (other)
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Figure 6.12: Sample intersection with 2 approaches
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Chapter 7

Conclusion

Intersections present a very demanding environment for all the parties involved. Challenges arise from
complex vehicle trajectories; the absence of lane markings to guide vehicles; split phases that prevent deter-
mining who has the right of way; invisible vehicle approaches; illegal movements; simultaneous interactions
among pedestrians, bicycles and vehicles. Unsurprisingly, most demonstrations of AVs are on freeways; but
the full potential of automated vehicles – personalized transit, driverless taxis, delivery vehicles – can only
be realized when AVs can sense the intersection environment to safely and efficiently maneuver through
intersections. As is evident from intersection incidents with Google [25], Uber [14] and Tesla [6] AVs, their
performance can be improved.

AVs are equipped with an array of sensors (e.g., video cameras, RADARs, LiDARs, GPS) to interpret and
suitably engage with their surroundings. Advanced algorithms utilize data streams from such sensors to
support the movement of AVs through a wide range of traffic and climatic conditions. However, there exist
situations, in which additional information about the upcoming traffic environment would be beneficial to
better inform the vehicles’ in-built tracking and navigation algorithms. A potential source for such infor-
mation is from in-pavement sensors at an intersection that can be used to differentiate between motorized
and non-motorized modes and track road user movements and interactions. This type of information, in
addition to signal phasing, can be provided to the AV as it approaches an intersection, and incorporated
into an improved prior for the probabilistic algorithms used to classify and track movement in the AV’s
field of vision. Any connected vehicle (CV) with Advanced Driving Assistance System (ADAS) or an AV
can form a real-time map of an intersection, provided that its on-board sensing capability is augmented by
infrastructure sensors that

1. capture all vehicle movements in the intersection;
2. provide full signal phase information;
3. indicate vehicle encroachment on bicycle and pedestrian movements; and
4. detect hazardous illegal movements.

We refer to an intersection capable of providing all this functionality as an Intelligent Intersection. Intelligent
Intersection requires the following algorithms:

1. analysis of intersection geometry to identify possible maneuvers, conflicts and blind zones;
2. computation of blind zone activation likelihood, given a traffic pattern and signal timing;
3. classification of conflicts and blind zones by their importance;
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4. computation of optimal and minimal viable sensor placements in the intersection to ensure desired
coverage of blind zones;

5. interpretation of sensor readings to determine traffic presence and dynamics in the blind zones; and
6. prediction of signal phase duration for adaptive and actuated signals.

Additionally, we must be able to quantify intersection’s safety and mobility performance. All these algo-
rithms will be implemented in an open-source software suite called Intelligent Intersection Toolbox [2] that
we started developing in the course of this project. The impacts of this development will include:

• Cities will be given a tool to evaluate performance of their signalized intersections. In particular, com-
pare potential improvements resulting from VZ plans with those provided by Intelligent Intersection.

• Caltrans and DMV are unavoidably getting more engaged in the regulation (i.e. design, testing and
modifying the rules of deployment) of AVs in California. In most intersections safe operation of
AVs will require augmentation of their capabilities with infrastructure-based sensing. Such sensing
capability must be provided by Caltrans and local transportation authorities both because they own
and operate the intersection and because this capability will be provided to all AVs. This project is a
step towards specifying what these sensing capabilities should be.

• For AV makers it is important to know, which intersections have hidden dangers, such as blind zones.
Knowledge of blind zones improves AV’s safety. Additional real-time information about presence of
agents in blind zones improves AV’s efficiency.
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