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ABSTRACT OF THE DISSERTATION 
 
 
 

Chaotic Ultrasonic Excitation and Statistical Pattern Recognition for Structural 
Damage Classification 

 
 
 

by 
 
 
 

Timothy R. Fasel 
 
 

Doctor of Philosophy in Structural Engineering 
 
 

University of California, San Diego, 2009 
 
 

Professor Michael D. Todd, Chair 
 
 
 
 

The desire to push aging civil, mechanical, and aerospace structures beyond 

their intended design lives has highlighted the need for structural health monitoring 

(SHM) strategies that are able to detect, locate, and quantify various forms of damage 

within them. SHM strategies may also be tailored for newly-deployed structures in an 

attempt to optimize their performance and maintenance over an entire life cycle so that 
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total ownership costs are reduced. Specifically within the aerospace industry, standard 

non-destructive evaluation (NDE) techniques have been used for decades for 

inspection of components and systems. One of the most common and widely-accepted 

NDE domains is ultrasonic inspection, where components are imaged with the 

component out of service. Recent advances in sensor technology, distributed networks, 

and advanced signal processing techniques have begun to be exploited for in situ 

ultrasonic (and other forms of) SHM systems that are being deployed in a wide variety 

of real-world structures. In most cases, however, the ultrasonic excitation signals and 

feature extraction techniques being employed are the same as the standard NDE 

methods that have been in use for decades and are only applicable to relatively simple 

component geometries. This dissertation contributes to the body of knowledge in this 

field by introducing a new class of excitation signals and pattern recognition 

algorithms that, when paired with novel sensor networks, improve on the ability of 

standard SHM techniques to locate and identify damage on more complex geometry 

systems, including bolted joints and composite materials. 

This dissertation describes a methodology whereby chaotic guided waves are 

created and optimized (in a detection sense) and used as probes to perform damage 

assessment by building both time- and state-space domain models (rooted in pattern 

recognition) and using statistical modeling for performing damage classification under 

Type I/II error control. Multiple chaotic ultrasonic excitation formats are explored, 

including short-time chaotic wave packets and long-time chaotic bulk insonification, 

in which the diffuse, reverberant wave field is examined to identify structural changes. 

This method of insonification, in addition to enhanced pattern recognition techniques, 



 

xx 

 

allows this damage detection scheme to be employed on complex structural 

geometries with which standard ultrasonic-based SHM methods cannot be used. 

The outlined SHM method is applied to various test structures with different 

forms of induced damage including an aluminum plate with corrosion damage, bolted 

connections on several aluminum test structures (single and multiple-bolt 

configurations) and several adhesively-bonded composite wing-to-spar structures. 

Chaotic signal creation parameters are optimized for the composite structures and 

attempts are made to examine and, where possible, compensate for several sources of 

variability, such as temperature, within-unit variability and unit-to-unit variability.
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1 INTRODUCTION 

Civil, mechanical, maritime, and aerospace structures are relied upon daily by 

most of the world’s citizens to perform reliably and safely. All structures constantly 

interact with forces that tend to, over some time scale, degrade structural integrity. 

Sudden catastrophic events, e.g. earthquakes, can also introduce unexpected (and 

undesigned-for) damage into structures that could lead to significant economic or life-

safety losses. The consequences of these losses supports a need for performing 

structural integrity assessments in a manner that supports improved life cycle 

performance of the structure: detecting performance-degrading trends in a way that 

supports decision-making to optimize safe service life at a minimized total ownership 

cost. 

This need has subsequently led to research in the areas of non-destructive 

evaluation (NDE), structural health monitoring (SHM) and condition monitoring 

(Sohn, Farrar et al. 2003). NDE methods are based on visual procedures or localized 

experimental methods such as acoustic or ultrasonic methods, magnetic field methods, 

radiography, eddy-current methods and thermography (Bray and McBride 1992). A 

number of these approaches are highly-specific (and successful) at detecting various 

forms of damage or defects, but they share common limitations in usage such as 

highly localized applicability (small inspection range), non-automated expert 

execution, long inspection times and the lack of in-service inspectability. SHM is an 
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implemented damage detection strategy that samples dynamic response measurements 

(from either an active or passive excitation source) that are recorded by a distributed 

array of sensors in-situ on the structure. Features that are sensitive to the particular 

type of damage that is likely to occur are then extracted from the recorded response 

measurements using advanced signal processing techniques. Statistical analysis is then 

employed on the damage-sensitive features to determine the structural health of the 

system (Farrar and Worden 2007).  As SHM strategies have developed in recent years, 

individual application domains have created new terms for this general in-situ 

approach, such as condition monitoring in rotating machinery (Barron 1997), health 

and usage monitoring (HUMS) in the rotorcraft industry and process control in 

manufacturing operations. 

1.1 Motivation 

Traditional NDE methods for structural assessment are often expensive and 

time-consuming operations involving human operators and visual inspection. For 

example, the 1994 Northridge earthquake showed that steel moment-resisting frame 

structures are susceptible to brittle joint failure. During this earthquake, over 70% of 

steel frame buildings in Northridge suffered from some form of damage at moment-

resisting joints. However, many of the damaged joints remained undetected until one 

was accidentally found. The cost of visually inspecting a single joint, by removing the 

architectural cladding and fire retardant, was approximately $10,000 (Paret 2000). 
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The total costs of these inspections, and the subsequent necessary repairs, are 

not negligible. For example, Hall and Conquest estimate that 27% of total life-cycle 

costs for an aircraft are associated with inspection and repair (Hall and Conquest 

1999) and life-cycle costs are generally much higher than the purchase or 

manufacturing cost of an aircraft (Boller and Staszewski 2004). In addition to the cost 

of the inspection procedure, there is an additional cost associated with the removal of 

the structure from service, as is typically the case with aircraft, construction and 

military applications. 

In addition to economic concerns resulting from loss of operation time and 

inspection costs, loss of human life is also of paramount concern for aircraft and civil 

structures. Recent incidents have illustrated the vital need for integrated online SHM 

systems in critical structures in order to protect human life. One famous example 

occurred in April, 1988 when Aloha Airlines Flight 243 suffered an explosive 

decompression in the fuselage that tore off a large section of the roof and resulted in 

the death of a flight attendant. Another aeronautical accident occurred on Alaska 

Airlines Flight 261 in January, 2000 when the horizontal stabilizer trim system 

jackscrew assembly failed resulting in the destruction of the plane and the death of all 

passengers and crew aboard. The collapse of the I-35W bridge in Minneapolis, MN in 

August, 2007 resulted in the death of thirteen people and injured 145. 

Aerospace structures are increasingly being fabricated using composite 

materials due to their high strength-to-weight ratio. For example, the newly designed 

Boeing 787 Dreamliner will become the first full-size commercial aircraft with 
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composite wings and fuselage. Composites on the 787 will account for fifty percent of 

the weight of the aircraft and aluminum will comprise only 12 percent of the aircraft. 

By comparison, the Boeing 777 (designed in the early 1990s) is comprised of only 12 

percent composites and 50 percent aluminum by weight (Griffiths 2005). However, 

the long-term fatigue and degradation properties of these composite materials are still 

being researched. This lack of fundamental material properties knowledge necessitates 

the use of SHM as a means of assessing structural integrity because no long-term data 

are available to compile a reasonable time-based maintenance schedule. In this 

approach, maintenance and repairs are performed at regularly scheduled intervals 

based on assumed wear of the structural component involved. This maintenance is 

performed regardless of the actual condition of the component and therefore may be 

unnecessarily economically burdensome because parts that are still structurally sound 

may be getting replaced. 

The economic impact of this time-based maintenance approach has led to the 

desire to implement a condition-based maintenance scheme. This approach would 

only replace a structural component when the true condition of the part necessitated its 

replacement or repair. There is no way to implement a condition-based maintenance 

approach without an effective and accurate SHM system that provides near real-time 

assessment of the structure’s performance. 
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1.2 Statistical pattern recognition for SHM 

The SHM process involves the extraction and classification of damage-sensitive 

features from recorded dynamical system responses. This process is essentially a 

statistical pattern recognition paradigm that must come to a decision about the health 

of a structure by comparing data taken from the current state of the structure with data 

taken while the structure was in a known baseline or reference state. This comparison 

via statistical pattern recognition is accomplished using the following four-part 

process first outlined by Farrar et al.: (1) operational evaluation, (2) data acquisition, 

(3) feature selection and (4) statistical model development (Farrar et al. 1999).  

Operational evaluation determines the conditions under which the system to be 

monitored functions. The first step in this assessment is to define and, to the extent 

possible, quantify the damage that is to be detected. Limitations on types of data that 

can be gathered for use during the damage detection process are also strictly defined 

during this stage. Operational and environmental conditions must also be identified. 

The SHM system that is implemented is then able to be customized to the specific 

requirements of the particular application 

Data acquisition in a SHM process begins with the selection of the types of 

sensors to be used, placement and number of sensors, and the hardware used to 

transmit the data from the sensors into storage. Intervals at which data are taken must 

be explored, as the amount of data necessary depends on the specific structure as well 

as the type of damage to be detected. 
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Feature extraction involves the selection of certain information from the 

measured data that distinguishes between a damaged and an undamaged structure. 

This extraction often involves condensation of the large amount of available data into 

a much smaller data set that can be better analyzed in a statistical manner. Ideally, this 

condensed data should be as insensitive as possible operational noise and 

environmental effects while maintaining desired sensitivity to the damage to be 

detected. 

Statistical model development is the area of SHM that is least developed to 

date. Very few of the available SHM techniques have incorporated algorithms that 

analyze the extracted features from the data and unambiguously determine the damage 

state of the structure within the typical variation that would occur on the structure, 

usually due to operational and environmental influences. Examination of the 

aforementioned features using rigorous statistical procedures should yield information 

that allows a diagnosis of damage state in the monitored structure. There are three 

general types of statistical models for SHM: (1) group classification, (2) regression 

analysis and (3) outlier detection (Worden and Manson 2007).  

Group classification and regression analysis are used in a supervised learning 

paradigm. Supervised learning SHM paradigms have data available from the structure 

in undamaged (baseline) and various known damaged states as long as the structure 

can be reversibly tested for damage (e.g. bolted connections) or there are physical 

samples with various defect levels available for testing. Alternatively, high-fidelity 

physics-based models can also be used to simulate the structure in different known 
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damage states, provided the models have been independently validated in some way. 

Group classification involves a decision placing the current state of the structure into 

one of a discrete number of states that have been previously described through 

experiments or modeling. Regression analysis is used in cases where a continuous 

quantification of structural condition is required, such as length of a crack. Outlier 

detection is an unsupervised learning technique. In unsupervised learning no data are 

available except that gathered from the structure in its current state. Statistical models 

are then employed to detect when an extracted feature has undergone a statistically 

significant change (a statistical outlier has been produced) to determine whether 

damage has occurred. 

There are five levels of damage state evaluation that are possible for any given 

system and each level provides greater knowledge of the damage but is also more 

difficult to ascertain. These five levels were first described by Rytter as: (1) damage 

existence, (2) damage location, (3) damage type, (4) extent of damage and (5) 

prediction of the amount of useful life left in a structure, or prognosis (Rytter 1993). 

Supervised learning SHM paradigms may be able to identify all five levels of damage 

state evaluation. Unsupervised learning is likely only able to identify damage 

existence and location. 

This dissertation will implement the aforementioned statistical pattern 

recognition paradigm (including both supervised and unsupervised learning 

techniques) on a number of applications. Bolted connections between metal structural 

components and adhesively-bonded connections between composite structural 
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components are examined. These connections are commonly found in many civil, 

aerospace and maritime structures. 

1.3 History of SHM for bolted and bonded connections 

Many currently employed vibration-based SHM methods use low frequency 

broadband excitation as input to an examined structure. These methods are able to 

perceive the existence of incipient damage, but are mostly unable to identify the 

precise location(s) of damage within the structure because only global dynamical 

behavior is excited (Doebling et al. 1996; Doebling et al. 1998). The most prevalent 

method currently employed in practical field applications for damage location 

identification in structural joints is ultrasonic testing, especially in the aerospace 

industry (Guyott et al. 1986). These ultrasonic waves have proven to be a useful tool 

for damage detection and localization because of the small length and time scales on 

which they operate. One such conventional ultrasonic bond inspection technique is 

known as the Fokker bond method. This ultrasonic inspection is executed in ground 

tests of aircraft and consists of measuring the frequency-dependent reflection 

coefficients of ultrasonic waves propagating through the bonded or jointed sub-

structure in the megahertz frequency range (Guyott and Cawley, 1988). This technique 

has been successfully implemented for some time, but it has several limitations that 

cause continuous in situ SHM to be infeasible. It is inherently an off-line technique, 

requires bulky test equipment and an expert technical operator, and has a very limited 

spatial inspection range. 
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This problem of damage localization for in situ health monitoring has recently 

been addressed using guided ultrasonic waves (Alleyne et al. 1996; Wilcox et al. 

1999). These guided waves are suitable for continuous monitoring because relatively 

few actuators/sensors need to be used by exploiting the waveguide geometry of the 

structure (plates, rails, bars, etc.). While some work has been done using guided waves 

created with air-coupled transducers (Castaings et al. 1996; Tuzzeo and Lanza di 

Scalea 2001) or laser vibrometry (Staszewski et al. 2004), these methods are difficult 

to implement for continuous health monitoring. Most researchers have turned to the 

use of piezoelectric actuators/sensors as an effective means of in situ ultrasonic 

damage detection (Giurgiutiu and Zagrai 2002; Wait et al. 2004; Giurgiutiu 2005). 

Some of the most frequently employed SHM methods that use actively created guided 

ultrasonic waves to interrogate adhesively bonded joints involve the examination of 

dispersion curves and attenuation coefficients (Xu et al. 1990; Pilarski and Rose 1992; 

Seifried et al. 2002) as well as reflection and transmission characteristics (Rokhlin 

1991; Lowe and Cawley 1994). Many of these methods also apply the use of 

denoising and wavelet transforms to increase signal-to-noise ratio and to selectively 

examine individual mode propagation of sensed waveforms (Abbate et al. 1997; Lanza 

di Scalea et al. 2004). These techniques are well established and can work in certain 

structures with simple geometries (plates, beams, etc.) or on sections with constant 

cross-section properties in the wave propagation direction (rails). However, these 

methods cannot easily be applied to irregular geometries, such as bolted joints, 

because of mode conversion and wave interference effects that arise as a result of 
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As a means of addressing the shortcomings of current guided ultrasonic wave 

health monitoring techniques, this dissertation employs a class of statistical pattern 

recognition algorithms originally developed in the vibration (lower-frequency 

acoustic) domain that are based on state space analyses using auto- or cross-prediction 

methods. These methods employ chaotic excitations and attractor-based prediction 

error algorithms and have demonstrated the capacity to detect bolt preload loss in 

various test bed structures with enhanced sensitivity over traditional vibration-domain 

analyses (Nichols et al. 2003; Todd, Erickson et al. 2004). Unfortunately, these chaotic 

excitations are also low frequency in nature and are therefore unable to localize 

damage within a structure. This dissertation uses the benefits of combining ultrasonic 

guided waves (small length and time scales) with chaotic excitations (which enable 

and enhance pattern recognition techniques) for damage detection of bolted and 

adhesively-bonded connections via bulk insonification. This synthesis of techniques is 

accomplished by shifting the energy of a low-frequency chaotic process, such as the 

common Lorenz signal, into the ultrasonic frequency range (>20 kHz) and launching it 

into the structure as a guided wave. These chaotic ultrasonic waves (CUWs) are 

imparted to a structure by a particular kind of piezoelectric actuator known as a Macro 

Fiber Composite (MFC) patch and do not require a large energy input into the system. 

An MFC patch is also used to acquire the vibration response in an active sensing 

manner. A schematic of an MFC patch can be seen in Figure 1.2. The combination of 

chaotic ultrasonic excitation and attractor-based prediction error metrics, which 

require no knowledge of structural geometry, results in a procedure that can be used 
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increased ability of the system to resolve damage via statistically robust computation 

of features. 

Section 3 describes the feature extraction via data-driven predictive models 

that are employed in this dissertation. A prediction error model based on attractor 

reconstruction and state-space embedding is introduced as a means of damage 

detection. Auto-regressive (AR) time series models that are used in the dissertation are 

also detailed here and their application to a novel group classification scheme is 

discussed. These damage-sensitive features are demonstrated on a variety of structural 

connections, including bolted metal connections and adhesively-bonded composite 

connections. Bolted connections are especially suitable for damage classification 

studies because damage levels are both controllable and reversible. 

Section 4 provides an overview of several experimental platforms on which the 

state-space prediction error feature is employed in this dissertation. One test structure 

examined is an aluminum portal structure with bolted angular connections in which 

damage is induced by reduction of bolt preload. A second test structure is a large 

aluminum plate that is damaged via corrosion. Subsequent comparison of state-space 

prediction error feature performance to AR model based performance show that the 

added computational complexity of the state-space method does not improve detection 

performance over a much simpler AR model. 

Section 5 then details several new experiments that were performed using a 

group classification algorithm based on the use of AR model coefficient vectors as 

damage discriminators. Single-bolt lap joints and multiple-bolt frame structures are 
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examined using a subset of this classification algorithm. Several experiments 

involving composite wing-to-spar bonded joints are then conducted and employ the 

full classification algorithm. In these composite bonded structures damage is created 

by inserting various sizes of Teflon into the bond region before bonding to simulate 

disbond conditions. These experiments examine the effect of changing chaotic 

ultrasonic excitation creation parameters on structural assessment as well as the effects 

of temperature variability, within-unit variability and unit-to-unit variability on the 

outlined classification scheme. 

Section 6 concludes the dissertation with a summary of results and a discussion 

of open research questions and further work that can be undertaken to explore these 

issues. 

This dissertation contributes to the SHM body of knowledge by introducing a 

new class of ultrasonic excitation signals, an overall methodology for performing the 

damage detection problem and demonstrating its effectiveness on a number of 

challenging applications for which standard ultrasonic techniques are difficult to 

implement. The use of bulk chaotic insonification techniques instead of traditional 

single guided mode tracking allows this damage classification scheme to be employed 

on a greater number of real-world structures because complex (e.g. bolted, angular) 

connections do not negatively affect the discrimination ability of the proposed SHM 

pattern recognition algorithm. 
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2 CHAOTIC ULTRASONIC WAVES 

SHM systems require sufficient excitation to excite the structure to the extent 

that changes in the dynamic behavior of the structure can be identified and attributed 

to a change in structural integrity. There are two methods of setting up a sensor 

network on a structure for SHM: passive sensing and active sensing. Passive sensing 

uses existing inputs to a structure (such as cars driving over a bridge or wind blowing 

against a building) as the only input to the structure. This method of sensing is usually 

unable to detect small levels of damage because the energy exciting the system is too 

small to effectively change the system dynamics. In active sensing an excitation is 

applied to the structure for the specific purpose of structural state identification. In the 

vibration domain this excitation is usually supplied via an electro-magnetic shaker. In 

the ultrasonic domain most research has used piezoelectric devices to excite the 

system, although as previously mentioned laser vibrometry and air-coupled 

transducers are also used. Active sensing has several advantages over passive sensing 

including the ability to supply user-prescribed excitations to the system to elicit 

specific dynamic responses expected to be sensitive to damage-induced changes and 

the ability to tailor those excitations for specific damage type classification and for 

specific pattern recognition techniques. This dissertation employs active sensing 

techniques using specially tailored ultrasonic waves, specifically ultrasonic waves that 

are chaotically modulated in order to enhance pattern recognition algorithm 

effectiveness.  
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Chaos arises in the dynamics of certain nonlinear systems that are 

distinguished by extreme sensitivity to initial conditions (Abarbanel 1996). Small 

changes, or perturbations, to the initial state of a chaotic nonlinear system 

exponentially diverge and can result in very different steady state dynamics. Nonlinear 

systems, even in the chaotic regime, are deterministic. This means that for a given 

initial condition, the dynamics evolve in exactly the same way for a given input. 

The chaotic ultrasonic signals used in this dissertation are fundamentally 

created via amplitude modulation, i.e., by multiplying a single ultrasonic frequency 

tone by an amplitude envelope that is created by a chaotic process. The waveform 

appears as a narrowband, chaotically-modulated signal centered at the same central 

frequency as the original ultrasonic tone. A chaotic waveform is able to enhance 

prediction error based damage detection features because the signal is deterministic, 

and because of the phase space diversity associated with the chaos. The deterministic 

aspect of chaotic inputs was used in the context of SHM by Todd et al. when they 

showed that an attractor-based detection feature had superior performance to modal-

based features at detecting loss of stiffness in a computational spring-mass system 

when excited by a chaotic waveform (Todd et al. 2001). A number of studies 

involving chaotic excitation were then completed in the following years (Trickey et al. 

2002; Nichols et al. 2003; Nichols, Todd, and Wait 2003; Moniz et al. 2004; Nichols 

et al. 2004). There are also a large number of state-space features that can be 

employed for damage detection that do not necessarily use chaotic excitation. These 

state-space features will be further discussed in Section 2.2. It is clear, however, that 
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chaotic excitations can be used effectively for SHM applications. This dissertation 

seeks to use the effectiveness of chaotic excitation for damage detection in the 

ultrasonic regime and therefore a method for creating chaotic ultrasonic signals must 

be detailed. 

2.1 Chaotic ultrasonic signal creation 

A chaotic ultrasonic waveform yn is created by simple amplitude modulation of 

an ultrasonic carrier as detailed in the following Eq. (2.1); 

)1()/2sin( nscn xdfnfy ⋅+⋅= π  (2.1)

where yn is the modulated waveform, fs is the sampling frequency (the hardware used 

in this dissertation samples maximally at 4 MHz for a high-fidelity waveform), fc is 

the desired carrier frequency (typically, in the hundreds of kHz in the applications in 

this dissertation), d is the modulation depth, and xn is a chaotic waveform produced by 

a separate chaotic process. Thus, the waveform xn appears as a narrowband, 

chaotically-modulated signal centered at the desired central carrier frequency, fc, or a 

chaotic ultrasonic wave (CUW). In this work, the chaotic process was obtained as the 

x1 output of the well-known Lorenz system 
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There is nothing unique about the Lorenz system for generating chaotic output; 

any system capable of producing a chaotic output is suitable, but the Lorenz system 

shown in Eq. (2.2) has a robust parameter region for producing chaotic output and was 

selected for this study. Eq. (2.2) is integrated using a time-step R/fs, where R is a 

frequency ratio that can be modified to change the fundamental time scales of the 

chaotic signal. This dissertation uses several values of R that affect the frequency 

regime in which the power of the chaotic signal lies. This chaotic signal is normalized 

through division by the maximum of the absolute value of the signal so that the values 

range from -1 to 1.  The modulation depth d controls signal bandwidth, and if it is 

greater than one, the resulting signal will be over-modulated and will result in a phase 

inversion at the points where |d*xn|>1. These phase inversions would be detrimental to 

any prediction algorithm, and d is therefore restricted to the range 0<d≤1. Figure 2.1 

shows the effect of changing the frequency ratio R and the modulation depth d on the 

time series and power spectral density of the interrogating wave. 
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extraction part of the pattern recognition paradigm. Features that have been developed 

for state-space analysis in general include correlation dimension (Grassberger and 

Procaccia 1983; Logan and Mathew 1996), dynamic continuity (Pecora et al. 1997), 

nonlinear prediction error (Schreiber 1997), generalized interdependence (Arnhold et 

al. 1999), time scale separation (Cusumano and Chatterjee 2000), Lyapunov exponents 

(Trendafilova and Van Brussel 2001), local attractor variance ratio (Todd et al. 2001), 

parameter drift (Chaterjee et al. 2002), attractor dimension (Nichols et al. 2003) and 

phase space warping (Chelidze and Cusumano 2004). The idea is that these features 

may be compared between baseline and test cases to determine how the system 

response has evolved due to damage. 

A critical issue when employing such state-space embedology methods is the 

embedding dimension choice that will be used in the pseudo-attractor reconstruction 

(Sauer et al. 1991). Every orbit in a multivariate space has a characteristic fractional 

dimension that describes the way in which the number of points within a sphere of 

radius r scales as the radius shrinks to zero. There are various methods for determining 

the fractional dimension of a signal (Abarbanel 1996). The reconstruction theorem 

states that at a minimum the embedding dimension must be at least twice the fractional 

dimension of a signal to ensure that the signal is completely unfolded in state-space 

and will behave dynamically similar to the true system. However, this is an upper 

bound to the choice of embedding dimension, and it is usually possible to embed in a 

smaller dimension than this sufficient criterion dictates. 
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In SHM applications, it is desirable to keep the embedding dimension as low 

as possible to maintain damage detection resolution (statistically, many observations 

of low-dimensional features are superior to fewer observations of high-dimension 

features for classification problems) and to reduce computational demands, where 

appropriate. A low embedding dimension is especially necessary if these attractor-

based methods are to be employed in real-time monitoring systems, given the 

processing efforts required to execute them, e.g. nearest neighbors searching. In active 

sensing, where the interrogating ultrasonic waveform is prescribed with a certain 

dimension associated with the chaotic process used to create it, the signal is processed 

and received through various data acquisition and filtering components that 

themselves can be considered dynamic systems.  It is known that these actions can 

affect the dimension of a process (Pecora and Carroll 1996). Therefore, a 

dimensionality study is undertaken to examine the possible effects that a standard data 

acquisition (DAQ) process has on signal dimension through the launching process. 

The expected filtering due to waveform interaction with the structure itself may very 

well cause dimension increase as well, but undesired additional dimensional increase 

due to the DAQ, conditioning, or signal generation steps must be minimized for 

optimal efficacy of the overall approach. 

2.2.1 Attractor reconstruction 

Attractor-based methods perform pattern recognition algorithms on state-space 

attractors that are dynamically similar to the true system. Complete reconstruction of 
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the true state space attractor is often not possible because all of the state space 

variables are not able to be directly measured. However, Takens has shown that a state 

space attractor that maintains all the dynamic invariants of the true state space can be 

reconstructed by forming delayed copies of a single state space variable, e.g. 

acceleration (Takens 1981). This reconstruction can be shown in the following form: 
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The m pseudo-state vectors are delayed versions of the original signal with a 

time delay of T. Appropriate choices of embedding dimension m and time delay T will 

preserve the dynamics of the true state space. Care must be taken in estimating these 

parameters in order to form a reconstructed attractor that is most similar to the true 

attractor. For example, if the chosen time delay is too small the information in 

succeeding pseudo-state vectors will be highly correlated and contain a large amount 

of redundant information. However, if too large a time delay is chosen the coordinates 

in the state space reconstruction will become essentially uncorrelated and will not 

preserve the dynamics of the true system. Similarly, if too small an embedding 

dimension is chosen there will be false projections from higher dimensions onto the 

lower dimensions. For instance, if a simple sine wave is properly embedded in two 

dimensions it will appear as a circle in state space, whereas if it is only embedded in 

one dimension the state space reconstruction will appear as a line segment. Also, if too 
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large an embedding dimension is chosen the extra dimensions will no longer 

characterize the dynamic content of the signal but will be populated by noise effects. 

2.2.1.1 Optimum time delay T 

There are two main methods for calculating the optimum time delay for proper 

state space reconstruction of a signal. The first method chooses the time when the first 

zero-crossing of the autocorrelation function occurs (Abarbanel 1996). Another 

approach uses the first minimum of the average mutual information (AMI) function as 

the time delay in order to attempt to make each dimension as orthogonal (independent) 

as possible (Fraser and Swinney 1986). In all the following studies the latter of the 

outlined approaches is used. 

2.2.1.2 Proper embedding dimension m 

Again there are several approaches that have been investigated for finding the 

proper embedding dimension for state space reconstruction. Broomhead and King 

have suggested a method that uses the singular value decomposition (SVD) of the 

signal as a basis for estimating embedding dimension (Broomhead and King 1986). 

This method has certain requirements on sampling time and bandwidth that must be 

considered before using, so this study employs a more versatile method proposed by 

Kennel and Abarbanel known as the false nearest neighbor (FNN) method that does 

not have stringent usage requirements (Kennel and Abarbanel 1992). To implement 

this technique the optimum time delay must already have been chosen using one of the 
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previously mentioned methods. The FNN algorithm then embeds the data for m=1 and 

m=2. A nearest neighbor in Euclidian space is then calculated for each data point in 

the m=1 case. If one of these nearest neighbors is no longer the nearest neighbor for 

the m=2 case it is considered a false nearest neighbor. By summing up all the FNN 

and dividing by the total number of points, a percentage FNN for dimension m=1 is 

found. The FNN algorithm then embeds the data for m=2 and m=3 and repeats the 

outlined procedure. In this manner a percentage of FNN for each embedding 

dimension m is recorded. When this percentage falls below a threshold level, say 2%, 

or levels off for increasing m, it is concluded that the attractor has been sufficiently 

unfolded and the embedding dimension is chosen accordingly. 

2.2.2 Digital filters 

One of the most basic operations in digital signal processing (DSP) is the 

application of a filter to a discrete signal. There are two major categories of digital 

filters: finite impulse response (FIR) filters and infinite impulse response (IIR) filters.  

IIR filters are recursive, meaning they require knowledge of the prior output of the 

filter as well as present and past input to the filter. An IIR filter can be represented 

using the following equation: 
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FIR filters are non-recursive, meaning they require no knowledge of the output 

of the filter at previous time steps. An Nth order FIR filter can be represented using the 

following equation: 
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It is clear that if the ak coefficients are set to zero in the IIR filter Eq. (2.4) that 

it reduces to the FIR filter in Eq. (2.5). 

2.2.2.1 Effects of digital filters on embedding dimension 

It has been shown that Takens’ theorem applies to time series filtered with FIR 

filters, and furthermore that the FIR filter does not affect the dimension of the signal 

(Nichols et al. 2003; Broomhead et al. 1992). FIR filters behave in this manner 

because they can be characterized as a simple moving average process. Conversely, 

IIR filters can be characterized as a non-autonomous dynamical system. Therefore, 

interaction between the filter dynamics and the signal dynamics can make embedding 

dimension dependent upon the contraction rates associated with the filter dynamics 

(Badii et al. 1988). Davies and Campbell and Davies have shown that if the 

contraction rates associated with the filter are large enough with respect to the signal 

dynamics that the dimension of the attractor in the extended state space, which 

includes both the signal and the filter, remains unchanged (Davies and Campbell 1996; 

Davies 1997). Therefore, any SHM algorithm that involves digital filtering of an 

acquired signal must use FIR filters if a guarantee of no increase in dimension of the 
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signal is required. If an IIR filter is used, it will be necessary to confirm that no 

dimension increase has occurred. 

2.2.3 Typical data acquisition process 

A standard DAQ process can be represented using the block diagram in Figure 

2.2. The input analog signal is often first routed through an analog low pass anti-

aliasing filter. This filtering process limits the power spectrum of the input signal to 

half of the sampling frequency (Nyquist frequency). The low pass filter is carefully 

applied so as not to mirror aliased spectral components into the frequency bandwidth 

that is to be examined. If this anti-aliasing filter is not applied correctly, there is no 

way in which to distinguish which part of the spectrum comes from the original input 

signal and which part of the spectrum is a result of the mirrored spectral components. 

An anti-aliasing filter with a sharp-cutoff frequency is required and can often be the 

most expensive part of a DAQ system. Therefore, on many less expensive DAQ cards, 

the sharp-cutoff filter is simply left off or converted to a more simplified anti-aliasing 

filter with a gradual cutoff and used in conjunction with oversampling to ensure that 

aliasing is not a problem. 
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Figure 2.2. DAQ process block diagrams for analog-digital conversion (top) and digital-analog 
conversion (bottom). 

The discrete time signal may then be subject to dithering, which adds Gaussian 

noise to the signal with magnitude on the order 0.5 LSBRMS. This is used beneficially 

for applications involving averaging, such as calibration and spectral analysis. 

Oversampling cannot remove the quantization error that is inherent in ADC, but by 

combining oversampling, dithering, and averaging, the effects of quantization error 

can be effectively removed and the stepped nature of the signal that results from using 

a sample and hold circuit is eliminated. In high-speed DAQ processes that do not 

involve averaging or spectral analysis, it is usually a good idea to disable dithering to 

reduce unwanted noise. 

Sampling of the analog input signal is achieved using a “sample and hold” 

circuit. This circuit takes the signal value at a particular sampling instant and holds it 

over the entire sampling period. The result is a stepped signal as is shown in Figure 

2.3. This is a necessary step as the analog-to-digital converter (ADC) requires a 

constant value for a portion of the sampling period so that it has time to decide on the 

correct digital value to represent the analog voltage. The most common ADC in high-
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speed DAQ applications transforms the analog stepped signal from the output of the 

sample and hold circuit into discretely sampled digital binary values using a technique 

known as successive approximation. This process involves stepping through each 

value in the binary word from the most significant bit (MSB) to the least significant bit 

(LSB) to find the binary word value that most closely approximates the numerical 

analog value. Because only a certain number of digital values are available, depending 

on the length of the binary word used to describe a particular value (e.g. 12-bit or 16-

bit), there is necessarily a quantization error during ADC. The effect of quantization 

error on dimension has been studied before, although not using this method, such as in 

Kumaraswamy et al. in which a mathematical relation between the performance of a 

vector quantizer and the intrinsic "fractal" dimension of a data set is established 

(Kumaraswamy et al. 2004). 

 

Figure 2.3. Example (idealized) output of a sample and hold circuit. 

In many DAQ applications a digital signal must be converted into an analog 

signal, e.g. to drive an electromechanical shaker for vibration analysis of structures. 
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This, for example, is a key component of modulated chaotic waves for use in 

ultrasonic active sensing for SHM.  The first step is a digital-to-analog conversion 

(DAC), which generates a sequence of electrical pulses at each sampling time step 

whose amplitude is proportional to the value of the corresponding digital samples. The 

most common manner in which the amplitude of these pulses is determined is to sum 

the currents of switched current sources with respect to an analog reference voltage 

and is known as a multiplying DAC. If the conversion process involves digital 

samples with N-bit resolution, the converter provides N current sources. For instance, 

if the LSB of the digital word is represented by a current I, then each succeeding 

source has current values of 2*I, 4*I, all the way up to a value of 2N-1*I for the MSB. 

Current sources are then switched on or off depending on the value of the 

corresponding bit of the digital word. Current sources are preferred over voltage 

sources for this method because they have a higher achievable conversion speed. 

Unfortunately, in practical implementations when a DAC switches from one 

voltage level to another it produces glitches in the output analog signal due to released 

charges. The largest glitches occur when the MSB switches values. The result is a 

period in which the analog output value is uncertain. To combat this problem, a circuit 

known as a "de-glitcher" is used to sample the output of the DAC when it has reached 

a stable voltage and to provide an impulse at this voltage with a well-defined length, 

usually the sampling period. This process is known as a zero-order hold and results in 

a stepped signal. It is somewhat analogous to the sample and hold circuit used in 

ADC. 
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If the stepped analog signal received from the output of the de-glitcher circuit 

is input into an ideal low-pass reconstruction filter, the high frequency content (steps) 

of the signal is removed. The low-pass filter interpolates the digital samples to 

reproduce the intended analog output signal. In reality, an ideal low-pass filter cannot 

be achieved, and the amount of effort spent trying to closely replicate the ideal filter 

performance depends upon the application. In applications where the best possible 

reconstruction of the signal is desired, oversampling techniques that allow linear-phase 

filtering in the digital domain (FIR filters) are often used. Again, the use of an FIR 

filter will not increase the dimension of the signal. 

2.2.4 Data acquisition simulation 

The simulated DAQ system used in this dissertation is designed to emulate the 

DAQ card that is being used in subsequent physical experiments, the National 

Instruments PCI-6036E. It does not incorporate an anti-aliasing low pass filter. 

Therefore, in this study, the effects of a low pass filter will not be examined. The card 

uses standard sample and hold circuitry and performs ADC using successive 

approximation and 16-bit resolution. Dithering is automatically enabled and cannot be 

turned off. DAC is performed using the multiplying method that is described above. 

No analog low pass filters are available so these effects will also not be considered. 

A Lorenz chaotic signal is created using the system of equations shown in Eq. 

(2.2). This signal has significant frequency information from 0-10 Hz. In this study, 

the simulated "analog" version of the signal is discretely sampled at 50 kHz. The 
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effect of dithering is then added to the signal by adding noise that ranges from 

±0.5*LSB. The sample and hold circuit is implemented by sampling the simulated 

analog signal at 500 Hz. The ADC is simulated using a simple b-bit digitize function 

that transforms all the actual values of the signal to integers between 12 1 +− −b  and 

12 −b . Signals are digitized using 4, 8, 12, 16, 20, and 24-bit ADC. After each step in 

the DAQ processes the dimension of the signal is verified using the FNN approach 

that is outlined in Section 2.2.1.2. 

2.2.5 Simulation results 

Figure 2.4 shows results of the FNN algorithm for the original "analog" signal 

as well as the "analog" signal plus dither for varying levels of ADC resolution. The 

signals corresponding to 4-bit and 8-bit ADC resolution are clearly higher dimensional 

than the remaining signals. This is because the amplitude of the dither added to the 

signal is large and, because white noise is infinite dimensional, the decreased signal-

to-noise ratio (SNR) results in a higher dimensional signal. Therefore, using dither in 

ADC systems with low resolution without averaging is not suggested and will not be 

used for the remainder of this study. However, for ADC resolutions of 12-bits and 

above, the FNN approach cannot distinguish between the dithered and original signals. 

The proper embedding dimension for the original Lorenz signal is known to be m=3 

which is the same result as is seen in Figure 2.4. 
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Figure 2.4. Embedding dimension after dithering for various levels of ADC resolution. 

The sample and hold circuit introduces a stepped nature to the signal which can 

be interpreted as high frequency content at each of the discontinuities. This high 

frequency content has an effect similar to noise contamination and will cause the 

percentage of FNN to level off or even begin to increase for higher embedding 

dimensions. This effect can be seen in Figure 2.5. The original Lorenz signal and the 

dithered signals are indistinguishable after the sample and hold is performed, as one 

should expect since this was also the case after dither was added. For this case it is 

concluded that the proper embedding dimension is m=3 for all the signals, despite the 

rise in percent FNN for higher embedding dimensions. This decision is made knowing 

that there is some high frequency content that cannot be characterized for any 

embedding dimension, and so the lowest dimension that satisfactorily unfolds the 

original signal content is used. 
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Figure 2.5. Embedding dimension after sample and hold for various levels of dither. 

Figure 2.6 shows the signals after they have been put through the ADC. 

Clearly, using an ADC with a low resolution (4-bit, 8-bit) results in increased 

embedding dimension. This is a direct result of the large quantization error for these 

low resolution ADC systems. The discrete time signal of quantization errors is often 

uncorrelated in complex signals and can therefore be characterized as a white noise 

process. This addition of white noise to the signal reduces the SNR in much the same 

way as adding dither and can therefore increase the dimension of the signal. The SNR 

decreases by approximately 6 dB for each bit subtracted from the digital word length 

of the quantized samples. Thus, the SNR for a 12-bit quantizer is 24 dB higher than 

for an 8-bit quantizer. For ADC with a resolution of 12-bits and above, the embedding 

dimension remains unchanged. 
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Figure 2.6. Embedding dimension after ADC for different ADC resolutions. 

As can be seen below in Figure 2.7, embedding dimension increases as the 

frequency ratio R increases and the modulation depth d increases for a chaotic 

ultrasonic signal centered at 200 kHz. This result is expected because signal 

bandwidth rises as each of the two parameters increase, as is seen in Figure 2.1. As the 

bandwidth of the signal grows it differs more from a two-dimensional sine wave and 

becomes increasingly multi-dimensional. For chaotically amplitude-modulated signals 

the embedding dimension is unaffected during the DAQ process as long as the card 

has 12-bit precision or higher. 
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Figure 2.7. Embedding dimension of modulated signals using (a, top) d = 1.0 and (b, bottom) R = 
0.25. 

2.2.6 Experimental results 

In order to verify simulation results that showed that there is no dimension 

increase using a DAQ card as the signal goes through a DAC or ADC process, a 

chaotic ultrasonic signal centered at 200 kHz is created and applied to the DAC on a 
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16-bit NI PCI-6036E DAQ card. That signal is then converted back to digital data 

using the DAQ card’s ADC. The estimated embedding dimension of the signal that 

had been routed through the DAC and ADC was identical to the original signal. 

2.2.7 Effect of signal-to-noise ratio 

Signal-to-noise ratio (SNR) can be defined in decibel form using the following 

Eq. (2.6) 

⎟⎟
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where A is the root-mean-square (RMS) value of the signal or noise amplitude. 

Therefore an order of magnitude increase in signal amplitude will result in the SNR 

rising by 20 dB. To identify the effect of SNR on signal dimension white noise is 

added to the standard Lorenz signal and then to a chaotic ultrasonic signal centered at 

200 kHz. As can be seen in Figure 2.8, embedding dimension decreases as SNR 

increases. This agrees with prior observations in Section 2.2.5 made about the effect of 

SNR on embedding dimension. 
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Figure 2.8. Embedding dimension of (a, top) standard Lorenz signal and (b, bottom) 200 kHz 
chaotic amplitude-modulated signal for various levels of SNR. 

2.3 Section summary 

This section outlined a method for creating chaotic amplitude-modulated 

ultrasonic signals. Several signal creation parameters are introduced and their effects 

on signal characteristics such as power spectral density are detailed. A study of the 
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embedding dimension of chaotic ultrasonic signals (through the creation and data 

acquisition processes) is also presented. The concepts of state-space embedding and 

attractor reconstruction are introduced as a means to estimate embedding dimension. 

A low signal dimension is necessary to provide reduced processing and storage 

requirements and increase the ability of the system to resolve damage via statistically 

robust computation of features. It is shown that the DAQ process does not 

substantially alter the embedded dimension of a chaotic signal as long as the 

ADC/DAC resolution is at least 12-bits. 
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3 FEATURE EXTRACTION VIA DATA-DRIVEN 

PREDICTIVE MODELS 

There are several damage-sensitive features used in this dissertation that are 

based on a statistical pattern recognition paradigm. In this section, a prediction error 

model based on attractor reconstruction and state-space embedding is introduced as a 

means of damage detection. Auto-regressive (AR) time series models that are used in 

the dissertation are also detailed and their application to a novel group classification 

scheme is discussed. These damage-sensitive features are derived from data-based 

modeling and not physics-based modeling as no knowledge of the relevant physics of a 

particular tested structural component is used. 

3.1 State-space prediction error 

The basic concept of the attractor-based prediction error method can be framed 

as problem in pattern recognition. A baseline attractor is constructed using dynamical 

data gathered from a structure in its baseline (presumably "undamaged") state. A 

comparison attractor is then constructed using data gathered from the structure in a 

future unknown state. If the structure has been damaged before the comparison set of 

data is acquired, the hypothesis is that the state space geometry of the comparison 

attractor should be different than that of the baseline attractor. Qualitatively these two 

attractors are simply compared using a geometric pattern recognition algorithm. 
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Quantitatively this comparison is achieved by tracking the time evolution of points on 

the baseline attractor and the time evolution of related points on the comparison 

attractor and then calculating the Euclidian distance between these points some s time 

steps into the future. 

3.1.1 Prediction error model 

The first step in the basic prediction error algorithm is to choose a set of F 

random fiducial points from the baseline attractor X1(n). These fiducial points are then 

related to a corresponding set of F fiducial points on the comparison attractor X2(n). 

This relation can be either temporal (each fiducial point chosen on the comparison 

attractor has the same time indices as those from the baseline attractor) or spatial (each 

fiducial point chosen on the comparison attractor is located at the same geometrical 

point in state space as those from the baseline attractor). For the following studies a 

temporal correlation is used. A set of P nearest neighbors to each fiducial point on the 

baseline and comparison attractors is then established. Points that are closely 

temporally related to a fiducial point are not considered nearest neighbors because the 

algorithm seeks to characterize the geometrical evolution in time of the particular 

region of the attractor surrounding the fiducial point and temporally related points 

would skew the results of this measurement. The points are excluded from the nearest 

neighbor searching algorithm through the use of a Theiler window (Theiler 1986). 

The P nearest neighbors for each fiducial point on the baseline and comparison 

attractors are then time evolved s time steps into the future. The mass centroid of these 



41 

 

 

time evolved nearest neighbors is calculated. Prediction error is then calculated as the 

Euclidian distance between the centroid of the comparison neighbors and the centroid 

of the baseline neighbors as can be seen in Eq. (3.1): 

)()( 12, sncsnc fffffCC +−+=γ  (3.1)

where γCC,f is the prediction error for a particular fiducial point f that is a subset of the 

total number of fiducial points F, c2f(nf+s) is the centroid of the neighborhood of the 

comparison attractor (evolved s time steps from the initial time nf), c1f(nf+s) is the 

centroid of the neighborhood of the baseline attractor, and s is referred to as the 

prediction horizon. This method is shown graphically in Figure 3.1. 

 

Figure 3.1. State space prediction error metric. 

3.1.2 Prediction error resampling 

After performing the above outlined procedure a set of prediction error metrics 

the size of the number of initially chosen fiducial points F is acquired. In general, the 

distribution of these prediction errors is unknown and may not be characterized as 
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Gaussian in nature. However, by using a bootstrapping technique that is based on the 

central limit theorem, these prediction errors can be resampled to obtain a new set of 

errors whose distribution tends toward Gaussian. This is done by taking a random 

sampling of the prediction errors (in the following studies 30% of the total number of 

prediction errors) and calculating the mean of these randomly sampled values. This 

procedure is repeated until the new set of mean prediction errors is the same size as 

the original number of fiducial points. These new mean prediction errors are now 

approximately normally distributed. Prediction errors can now be tracked as the 

structure is tested in future unknown states, and a significant increase in the error level 

will indicate that a structural change has taken place. 

3.2 Auto-regressive model 

Computing prediction error using the above outlined state-space method can be 

computationally expensive, especially for large data sets, primarily because of the 

neighbor-searching requirements. The full state-space method may be thought of as a 

generalized regression procedure, where one attractor is assumed to be spatio-

temporally correlated with another attractor.  A much simpler regression model class 

is that of the auto-regressive (AR) models which have previously been shown to be 

useful as a damage classifier (Sohn and Farrar 2001; Sohn et al. 2001).  The discretely 

observed output time series x(n) is modeled with an AR model  (e.g., an FIR filter) of 

the form: 
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where p is the order of the AR model with associated coefficients αi and residual error 

e(n). This dissertation examines various model orders p to determine the most suitable 

model order for each particular damage detection scheme. The AR coefficients are 

estimated through minimization of the sum-of-squared forward prediction errors 

(Brockwell and Davis 1991). All signals are normalized through subtraction of the 

mean and division by the standard deviation of the signal before use of the AR model. 

3.2.1 Standard deviation of the residual error 

One type of damage-sensitive feature is calculated by taking the standard 

deviation of the residual error time series. This particular metric is used instead of the 

RMS value because the standard deviation is the nearest analogue to the prediction 

error calculated using a spatio-temporal regression. The efficacy of this damage 

feature is compared to the state-space prediction error method in Section 4.2.2. 

3.2.2 Damage classification scheme 

Instead of using residual error derived from an AR model as a damage 

discriminator, calculated AR coefficients themselves can be used a damage-sensitive 

feature. This dissertation examines the ability of a two-part classification scheme to 

determine the existence and size of damage in a structure using a supervised learning 

paradigm. This classification scheme can also be employed with an unsupervised 
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learning technique to classify whether a structural connection for which there is no 

baseline data (only data from a similar test structure or validated model) is damaged or 

undamaged. The classification approach uses features derived from an autoregressive 

(AR) model coefficient vector cross-assurance criterion as well a group classification 

scheme with its basis in information theory. Throughout this section, data from a 

physical experiment on several composite adhesively-bonded wing-to-spar test 

structures, that will be discussed in detail in Section 5.3.2, is used to illustrate the 

effectiveness and necessity of the two-part damage classification scheme. Two of 

these structures have various disbonds built into the bond line through the use of 

Teflon inserts and one of the structures has no damage built in. The experiment 

outlined in Section 5.3.2 uses the two-part supervised learning classification scheme 

outlined in this section to not only to classify disbond size but also to classify whether 

a bond for which baseline data comes from a similarly configured test structure is 

undamaged or has some form of disbond. 

3.2.2.1 Vector consistency criterion 

The first step in the damage classification algorithm is based on a comparison 

of AR coefficient vectors. Figure 3.2a shows averaged AR coefficients that are 

acquired using an AR model order of p=10 for three different bond conditions, 

including an undamaged bond as well as two different disbond sizes on a single 

adhesively-bonded composite test structure. Figure 3.2b shows averaged AR 

coefficients that are acquired using an AR model order of p=10 for three different 
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undamaged bond conditions on a similarly configured test structure. The figures show 

a clear difference in the shape of the AR coefficient vectors for different bond 

conditions whereas all undamaged bond conditions result in similarly shaped AR 

coefficient vectors. This result suggests that a feature which compares the shape of 

two AR coefficient vectors will lead to a quantifiable damage-sensitive metric. 

 

Figure 3.2. Averaged AR coefficient vector comparison for (a, left) different bond conditions and 
(b, right) three undamaged bond conditions. 

This dissertation proposes a feature based on the modal assurance criterion 

(MAC) that is commonly used in modal analysis to provide a measure of consistency 

between estimates of a modal vector (Allemang 2003). The MAC is a normalized 

scalar value detailing the level of orthogonality between a test modal vector and a 

reference modal vector as follows: 
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where ψt is the test modal vector, ψr is the reference modal vector, and H indicates the 

Hermitian operator or complex conjugate. The modal assurance criterion can have 
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values ranging from zero, representing complete orthogonality, to unity, representing 

parallel vectors (no orthogonality). Therefore if the two vectors are consistently 

related (not orthogonal), then the MAC value should approach unity.  This study uses 

a vector consistency criterion (VCC) similar to the MAC in order to measure the 

orthogonality of AR coefficient vectors. In this case the Hermitian operator simplifies 

to a vector transpose because the values of the AR coefficient vector are always real. 

The fact that the VCC feature can only have a value between zero and unity makes it 

useful as an extracted feature because scaling effects of the original signal will not 

affect any decision that needs to be made regarding the bond condition assessment. 

The hypothesis being tested is that two AR coefficient vectors should be very 

consistent (nearly parallel) if they are derived from modeled responses of structural 

connections with the same level (or lack of) damage. 

3.2.2.2 Step one: damage existence classification 

The determination of whether a connection of unknown condition is 

undamaged or damaged is accomplished using the following method.  

1. Generate a set of input signals 
2. Record structural responses for each input signal 

a. Twice for the undamaged condition (baseline) 
b. Once for each known damage condition 

3. Estimate AR coefficients from undamaged and damaged conditions 
4. Calculate distribution of VCC values 

a. Undamaged-undamaged comparison 
b. Undamaged-damaged comparison 
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First, a set of distinct 250-microsecond-long input signals are created from the 

data-generating process that has been previously described in Section 2.1. For each of 

these input signals a structural response is recorded once under each of the known 

undamaged and damaged conditions on a particular specimen, using a different 

actuator/sensor pair for each bond, as well as a second time for the undamaged 

condition. AR coefficients are then estimated for each of these structural responses 

using the method outlined in Section 3.2. These sets of AR coefficients form a 

database of structural responses for known structural conditions with each input signal 

that will be used to determine the condition of an unknown connection in a supervised 

learning fashion. 

For the first step of the bond condition assessment algorithm, which will 

identify only whether an unknown connection is damaged or undamaged, a 

distribution of VCC values is then calculated. This is accomplished by comparing, 

using Eq. (3.3), each of the AR coefficient vectors from responses to the first set of 

waveforms to probe the undamaged connection with each of the AR coefficient 

vectors from responses to the second set of waveforms to probe the undamaged 

connection. This calculation results in a large distribution of VCC values that describe 

the auto-correlation between the two sets of AR coefficient vectors that are both 

derived from the undamaged connection condition. A new set of input signals (created 

from the same underlying process as the supervised learning database input signals) 

are then applied to the structure for a structural connection whose damage state needs 

to be determined. AR coefficient vectors are again calculated for each of these new 
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structural responses. The AR coefficient vectors from the original undamaged 

connection condition are then compared with the new set of AR coefficient vectors 

from the unknown connection condition by calculating VCC values. This computation 

results in a second distribution of VCC values that describe the correlation between 

the AR coefficient vectors of the undamaged connection condition and the AR 

coefficient vectors of the unknown connection condition. 

3.2.2.2.1 Statistical classification 

A statistical measure must now be devised that can properly classify a 

damaged structural connection and at the same time properly classify an undamaged 

connection in a different geometric location using a different MFC sensor/actuator pair 

than the baseline undamaged connection. Figure 3.3a shows empirical probability 

density functions (pdfs) of VCC values for three different bond conditions, including 

an undamaged bond as well as two different disbond sizes from a single adhesively-

bonded composite test structure. Figure 3.3b shows empirical pdfs of VCC values for 

three different undamaged bond conditions in different geometric locations on a 

different, but similarly configured, test structure. It is clear that while there are 

differences in the pdfs of the undamaged bonds in Figure 3.3b that the difference 

between the pdfs of the undamaged bond and two disbond sizes in Figure 3.3a are 

much greater. A statistical decision boundary that can account for the small 

differences in the pdfs due to geometric conditions as well as MFC bonding 

characteristics while still correctly classifying the damaged bonds would be beneficial. 
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The pdfs are not normally distributed as can be seen from the elongated left tail. 

Therefore, standard statistical tests that assume normality such as the Student’s t-test 

cannot be used in this case. There are several non-parametric tests that can be 

employed for non-Gaussian distributions such as the Kolmogorov-Smirnov test or the 

Mann-Whitney U test, but for this application these tests decidedly classify the various 

undamaged pdfs as being from different parent distributions. A solution to this 

problem is to set a lower confidence limit on an undamaged pdf so that the other 

undamaged pdfs would not result in a significant number of outliers (VCC values less 

than the lower bound), but still produce a significant number of outliers for the 

damaged pdfs. 

 

Figure 3.3. VCC value empirical pdf comparison for (a, left) different bond conditions and (b, 
right) three undamaged bond conditions. 

3.2.2.2.2 Extreme value statistics 

Extreme value statistics (EVS) are used to set the lower confidence limit on the 

non-normal distributions that are produced using the above outlined method. EVS is 
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used in this analysis to accurately model the behavior of the feature distribution’s tails. 

The basis of this branch of statistics stems from the following situation. If a moving 

window is taken along a vector of samples and an extremum value (minimum or 

maximum) is selected from each of these windows, the induced cumulative 

distribution function of the extrema of the samples, as the number of vector samples 

tends to infinity, asymptotically converges to one of three possible distributions: 

Gumbel, Weibull or Frechet (Castillo 1988). The following equations detail the 

Gumbel, Weibull and Frechet distributions for minima because that is what this study 

uses. 
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where λ , δ , and β  are the model parameters that are estimated from the data. There 

are similar functions that apply to the converged distributions for the maxima of the 

sample sets. 

The appropriate distribution is chosen by plotting the cumulative distribution 

function (cdf) of the extracted vector of minima on the probability paper for a Gumbel 

distribution (Castillo 1988). Probability paper is designed so that the cdf for a 
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particular cumulative distribution will plot in a linear fashion by transforming the 

vertical scale of the plot. In this case, if the vector of minima has a Gumbel minimum 

distribution, the cdf will be a straight line when plotted on Gumbel probability paper. 

Otherwise, the cdf will have an associated curvature. If this curvature is concave, the 

feature vector has a Weibull minimum distribution. Similarly, if the curvature is 

convex the feature vector has a Frechet minimum distribution. In this study the 

distribution of minima taken from the parent undamaged VCC distributions has a 

Gumbel minimum distribution. Model parameters are then estimated by fitting the 

chosen distribution to the data as outlined in Castillo (Castillo 1988). 

Once the model parameters are chosen, it is possible to generate confidence 

limits that can be applied to the distribution. These limits are more accurate than those 

obtained when assuming a Gaussian distribution, as long as the parent distribution is 

not Gaussian. The threshold corresponding to a specific confidence level for the 

Gumbel minimum distribution is given by the following equation (Worden et al. 

2002): 

Gumbel: ⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −−+=

2
n1lnlnx min
αδλ  (3.7)

where n is the window size used to extract the minima, and α  is the associated Type I 

error of the confidence limit. Type I error is simply the percentage of false positives 

that are expected to appear. For example, when using a 95% confidence interval the 

Type I error is expected to be 5% ( 05.0=α ). By using the confidence limit calculated 

through EVS the damage state classification algorithm is able to differentiate between 
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undamaged and damaged connections. To further differentiate between different sizes, 

levels or types of damage a second classification scheme is used. 

3.2.2.3 Step two: damage size/type classification 

This dissertation uses a novel statistical classification technique with its basis 

in information theory to classify different sizes, levels or types of damage in structural 

connections. The classification method is based on a fundamental theorem of 

Shannon’s information theory that states that “the best compression for any given data 

set comes from a codebook designed exactly for the statistics of that source; any other 

codebook will give worse results” (Shannon 1949). For instance, if one has a 

codebook (e.g. taking language elements like words into shorter codes) consisting of 

English words and another consisting of French words etc., then a new time series of 

letters can be represented in the shortest compressed format when using the English 

codebook versus all others if the new text is, in fact, written in English. Compression 

performance is the classic text categorization methodology. Recently, information 

theory has been applied to continuous time signals, where compression performance is 

related to prediction error, and a codebook is the model for a source that produces time 

series data. In this study the source is a chaotically-modulated ultrasonic wave 

propagating through a structural connection. These time series can then be classified 

using prediction error as a means of virtual data compression (via the AR coefficient 

vectors). This idea leads to a procedure for classifying time series using cross-

prediction error as literal “data compression” in the sense that maximal information 
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recovery on decompression is not actually necessary, just its “virtual” performance as 

a representative data model. The model for the response time series is the same auto-

regressive model used for the undamaged/damaged discrimination that has already 

taken place. Of course, the better the underlying statistical model is the more the 

classification performance will improve. 

The entire damage state classification technique can be summarized as follows. 

The same database of AR coefficients that was created using a set of chaotic ultrasonic 

guided waves is again used to decide the state of the damaged connection. In this case 

only AR coefficients from the damaged paths are used because it is now known that 

the test path has some form of damage after using the first classification technique. A 

new input signal (created from the same underlying process as the training database 

input signals) is then applied to the structure along the known damaged bond condition 

path. One of the sets of AR coefficients in the training database for each of the paths 

with disbond damage is then used to estimate the structural response to the new input 

signal. One set of coefficients from the training database will minimize the sum of the 

squared residual errors and these coefficients are associated with a known size, level 

or type of damage in the training database. This damage state is then classified as the 

state of the unknown connection that is being probed (a “vote” for classification of a 

particular damage state). This comparison takes place for each of the remaining input 

signals in the training database. This entire process is then repeated using a large set of 

input signals that are imparted to the structure in its unknown damage state (the same 

data as was used in the first classification step). The votes for each damage state are 
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then summed and the plurality of votes is the estimated condition of the bond. The 

entire two-part statistical damage state classification paradigm is depicted visually in 

Figure 3.4. 

 

Figure 3.4. Ultrasonic statistical classification paradigm. 

3.3 Section summary 

This section introduced several damage-sensitive feature extraction algorithms 

that will be applied to physical experiments in the following sections of the 

dissertation. Section 4 details initial studies on bolted connections and corrosion in a 

plate that are performed using the state-space prediction error feature outlined in 

Section 3.1. The AR model-based classification schemes introduced in Section 3.2.2.2 
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and Section 3.2.2.3 are applied to both bolted connections and adhesively-bonded 

composite connections in Section 5. 
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4 STATE-SPACE PREDICTION ERROR 

APPLICATIONS 

The following experiments all employ the state-space prediction error feature 

described in Section 3.1. Section 4.1 shows that the state-space prediction error 

feature, along with a modified chaotic burst excitation signal (1 MHz frequency over a 

very short time period), is able to locate and identify the size of corrosion damage in 

an aluminum plate. Section 4.2 applies this state-space prediction error algorithm to an 

aluminum portal structure with bolted angular connections. This method is effective at 

identifying incipient levels of bolt preload loss. Section 4.2.2 then shows that the AR 

model-based damage feature described in Section 3.2.1 has comparable damage 

identification capability to the state-space prediction error, but at a much-reduced 

processing power, making it more apt for embedded SHM applications.  

4.1 Corrosion detection in a metal plate 

In this study, an experiment is undertaken using an aluminum plate with an 

array of piezoceramic patches bonded to one side. Damage is initiated through the 

process of electrolytic corrosion. The previously outlined spatio-temporal prediction 

error algorithm is used to determine the existence, location, and extent of damage. The 

actuation signal that is used in this experiment was created using the procedure 

outlined in Section 2.1 with a center frequency of 1 MHz and is sampled at a rate of 25 

MHz. A 40 microsecond portion of this signal is then taken and multiplied by a 

Hanning window to create a burst-type signal. This very short signal is then zero-
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padded with 2048 pretrigger points that are later used to remove DC offset from the 

signal and enough zeros are added to the end of the signal so that the entire signal 

length is one millisecond. Figure 4.1 shows the entire signal as well as a close-up of 

the 40 microsecond burst portion of the signal as it exits the amplifier. 

 

Figure 4.1. Excitation signal used for corrosion in a metal plate experiment. 

Testing is performed on a 1.2m x 1.2m x 1.6mm (4ft x 4ft x 0.0625in) plate 

made of aluminum 6061-T6. During testing the plate is suspended above the ground in 

a free-free orientation using wire and surgical tubing. Nine piezoceramic (PZT) 

patches of radius 3 mm (0.125 in) were attached to the plate using cyanoacrylate with 

a grid spacing of 30 cm (12 in). Wires from each piezoceramic patch were routed into 

a National Instruments (NI) PXI-2527 multiplexer set up in dual 16x1 2-wire mode. 

This multiplexing is done so that both the actuator and sensor patch can be quickly 

specified through switching software instead of hardwiring the particular pair for each 

test. The excitation signal specified above is sent from a NI PXI-5412 signal generator 

at a rate of 25 MS/s with 14-bit resolution with a voltage range of ±9 V. This signal is 

sent through a Krohn-Hite 7602 wideband power amplifier and exits with the above 
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pictured voltage range of approximately ±28 V. The multiplexer routs this amplified 

signal to the appropriate piezoceramic patch and the ensuing response is received at a 

given sensing piezoceramic patch. This sensed signal then goes through the 

multiplexer to a NI PXI-5122 high speed digitizer that also samples at 25 MS/s with 

14-bit resolution. This process is repeated for all possible sensor paths with the 

multiplexer switching, synchronization, and data acquisition being controlled by a 

custom created LabVIEW virtual instrument file. This experimental setup and the 

layout of the nine piezoceramic actuators can be seen in Figure 4.2. 

 

Figure 4.2. Corrosion in a metal plate experimental setup. 

Each sensor signal is averaged 10 times and only the first 1500 points (60 

microseconds) of the recorded wave packet is kept. Only 1500 points are kept so that, 

to the degree it is possible, only the direct path between the actuator/sensor pair is 

interrogated. If more points were kept the signal would contain more reflections from 

indirect paths. This process is then repeated 100 times with successive records added 

to the end of the last one so that a total record length of 150,000 points is achieved. 

Each record is broken up into 4 runs of length 37,500 points. The signal is extended 

Damage 1 & 2 

Damage 3a
Damage 3b

Multiplexer/DAQ 
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and split up into runs in order to form more robust statistical features. All runs are 

normalized by subtracting the mean and dividing by standard deviation before 

embedding in order to remove any possible environmental variation from the signal. 

The number of fiducial points used for each prediction error algorithm is 10% of the 

total number of points, or 3,750. The number of nearest neighbors used to calculate the 

mass centroid is 0.1% of the total number of points, or 37. 

Table 4.1: Actuator/sensor pairs for each interrogated path length. 

Path Length 12in Path Length 17in Path Length 27in 
(1—>2) (1—>5) (1—>6) 
(2—>3) (2—>4) (1—>8) 
(1—>4) (2—>6) (2—>7) 
(2—>5) (3—>5) (2—>9) 
(3—>6) (4—>8) (3—>4) 
(4—>5) (5—>7) (3—>8) 
(5—>6) (5—>9) (4—>9) 
(4—>7) (6—>8) (6—>7) 
(5—>8) 

 (6—>9) 
(7—>8) 
(8—>9) 

 

Table 1 is a summary of the actuator/sensor pairs that are employed in this 

experiment. The three path lengths used along with a corresponding actuator/sensor 

pair are 12 inches (1—>2), 17 inches (1—>5), and 27 inches (1—>6).  Pairs such as 

(1—>3) are not used because that path is effectively covered by (1—>2) and (2—>3).  

It should also be noted that for every listed pair the reverse of that pair is also used for 

redundancy, e.g. (1—>2) and (2—>1). 

Three runs of data are taken with the plate in the undamaged condition at 

different times to attempt to account for environmental variation. The first run is used 
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as the comparison between all other cases and the second two runs become baseline 1 

and baseline 2 in subsequent graphs. Damage is applied to the plate through the 

process of electrolytic corrosion. In this experiment, the aluminum plate acts as the 

anode and a coil of copper is used as the cathode. A DC voltage of 5V and 1A is 

attached to both the cathode and anode which are submerged in a saturated solution of 

salt water. The locations of the applied corrosion damage are shown in Figure 4.2. 

Damage cases 1 and 2 are applied in the same location at the midpoint between 

piezoceramic patches 2 and 5. Damage 1 is created by allowing the corrosion process 

to take place for one hour. Electrolytic corrosion is also allowed to act for 1 hour in 

damage case 2. Data is taken in between the successive application of corrosion 

damage at this location. The two stages of damage can be seen in Figure 4.3. 

 

Figure 4.3. Damage case 1 (a, left) and damage case 2 (b, right) are successive damages in the 
same location. 

Damage case 3 consists of two separate damage locations. Damage 3a (same 

size as damage 2) is located near actuator/sensor 7 and is created by corroding the 

plate for 1 hour. Damage 3b (same size as damage 2) is located between patches 8 and 

PZT 2 

PZT 5
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9, but is only allowed to corrode for 20 minutes. Thus damage 3b is of much smaller 

depth than all other damage cases. These two damage cases are pictured in Figure 4.4. 

 

Figure 4.4. Damage case 3a (a, left) and damage case 3b (b, right). 

4.1.1 Results 

4.1.1.1 Path length 12in 

Figure 4.5 depicts the state-space prediction error for all damage levels as well 

as their associated 10th and 90th quantile error bars. Redundant paths, such as (2—>1) 

for (1—>2), have been omitted as their results essentially mirror each other and 

leaving them out results in a clearer graph. The solid black line represents the path 

(2—>5) and shows a clear monotonic increase in prediction error from baseline to 

damage 1 to damage 2. This monotonic increase is an excellent result as it shows that 

this damage detection algorithm can not only identify the existence of damage, but 

that the nonlinear prediction error will increase for increasing damage. If prediction 

error did not have a positive correlation with damage size this method would have no 

PZT 7 
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potential to identify the extent of damage in any particular case. Damage 3a is shown 

to be close enough to PZT 7 that both paths involving that patch show a large increase 

in prediction error for damage case 3. The preceding damage locations all have fairly 

significant amount of damage, but damage 3b is a corrosion of only the surface of the 

plate. The path (8—>9) shows separation from all other undamaged paths for damage 

case 3 which shows promise that this method can be used to identify and locate very 

small corrosion damage. However, looking at the two previous damage cases it is clear 

that the prediction error level for damage 3b is actually less than level for several 

undamaged paths. This increase in prediction error for the undamaged paths for 

damage cases 1 and 2 are likely not caused by the damage itself because the prediction 

error returns to the baseline level for damage case 3. In fact, by examining the time 

histories themselves it can be seen that these differences appear to arise due to 

extremely slight differences in the synchronization and digitization performed by the 

National Instruments PXI data acquisition system. With this knowledge it may be 

possible to correct for this problem in subsequent testing, but it remains to be seen 

whether this increase in prediction error is an unavoidable byproduct of the current test 

configuration. Therefore, while damage case 3b has a prediction error that falls inside 

the range of several undamaged paths it is still promising that it is able to achieve 

separation from all undamaged paths for the final measurement. 
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Figure 4.5. Prediction error mean and error bars for 12in path length. 

4.1.1.2 Path length 17in 

Figure 4.6 shows the prediction error vs. damage case plot for the 17in path 

length. Again, damage 3a is clearly evident in the path (5—>7). Damage 3b does not 

appear in this figure because it is small and does not lay on one of the interrogated 

paths. For this path length damage case 1 yields some interesting results. Figure 4.3 

shows that damage 1 is nearly symmetric about the line from PZT 2 to PZT 5. 

However, the prediction error results show damage for those paths to the left of the 

damage, (1—>5) and (2—>4), but no apparent damage for the corresponding paths to 

the right of the damage, (2—>6) and (3—>5). This result appears to be 

counterintuitive until a larger picture of damage case 1, as seen in Figure 4.7, is 

examined. This picture shows several large dark spots on the plate to the left of the 

corrosion damage that were caused because the author was not careful to wipe up 

excess salt water that had spilled onto the plate before the electrolytic corrosion 
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process was started. Because of the symmetric nature of damage 1 it is deduced that 

the elevation of prediction error level for the paths (1—>5) and (2—>4) is a result of 

the slight corrosion that occurred outside the intended damage area due to the spilled 

salt water. This assertion is backed up by examining the prediction error levels for 

damage case 2. If the aforementioned paths had been "sensing" the actual damage 1 

the results for the 12in path length would result in larger prediction error for this case. 

For damage case 2, however, there is no change in prediction error from the previous 

damage case which means that the higher prediction errors for paths (1—>5) and (2—

>4) could only have been produced by the salt water corrosion spots. This is an 

important point because it means that this damage detection method should be able to 

locate damage better than it appears in Figure 4.6. If the salt water corrosion spots 

were not present then damage cases 1 and 2 would not be detectable using the 17in 

path length. 

 

Figure 4.6. Prediction error mean and error bars for 17in path length. 
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Figure 4.7. Picture of salt water corrosion spots around damage 1. 

4.1.1.3 Path length 27in 

Figure 4.8 shows that damage 3a is easily identified by the actuator/sensor pair 

that includes PZT 7 and that damage 3b is unable to be identified. Damage case 1 

shows no significant increase for either of the two paths, (1—>6) and (3—>4), that 

intersect at the damage location. This result shows that damage 1 is too small when the 

propagating wave has to travel 27in between the sensors and 13.5in in either direction 

before the wave interacts with the damage. This results shows a limitation for such 

long path lengths, but as can be seen for damage case 2, if the damage is large enough 

a long path length can still identify the existence of damage. Damage case 3 again 

shows an increase in the undamaged prediction error level that partially obscures the 

identification of damage 2. 



66 

 

 

 

Figure 4.8. Prediction error mean and error bars for 27in path length. 

4.1.1.4 Comparison to standard metrics 

For this section a five peak 100 kHz toneburst excitation was sent from PZT 2 

to PZT 5 and PZT 8 to PZT 9 ten times while the plate was in the undamaged 

condition. For damage case 1 and damage case 3b three more excitation responses 

were recorded. Figure 4.9 shows the averages of the normalized baseline time history 

(solid line) and the averages of the normalized damage case time history (dotted line) 

for the two small damage cases. It is clear that time-of-arrival and wave attenuation 

methods would be able to identify damage easily for damage case 1. However, 

damage case 3b shows almost no difference between the baseline and damaged 

waveforms. This result shows that the high frequency chaotic excitation used with 

spatio-temporal prediction error feature may have a greater sensitivity to guided wave 

metrics because, as noted in Section 4.1.1.1, our method is able to achieve separation 

between all undamaged paths and those paths that contain damage case 3b. 
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Figure 4.9. Sensed waveform for 100 kHz toneburst excitation with damage 1 between PZTs 2 
and 5  (a, left) and damage 3b between PZTs 8 and 9 (b, right). The dark line is undamaged and 

the dotted line is the damage case. 

4.2 Bolted joint preload monitoring 

A common structural sub-system used in design is the moment-resisting 

connection, often executed by threaded fastener assemblies. Threaded fasteners are 

popular due to advantages such as the ability to develop a clamping force and the ease 

with which they may be disassembled for maintenance or replacement. It is well 

known that such fasteners loosen under shock, vibration, or thermal cyclic loading, 

and a recent comprehensive discussion of these effects is given in (Hess, 1998). A 

combined finite element and experimental study of dynamic shear load-induced 

loosening has even shown that the minimum load required to initiate loosening is 

lower than previously reported (Pai and Hess, 2002). Because of the highly localized 

nature of bolt loosening and failure, most approaches in this field have involved two- 

and three-dimensional finite element formulations (Bursi and Jaspart, 1997; Bursi and 

Jaspart, 1998, Pai and Hess, 2002). These model-based approaches have been well 
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suited to studying the fundamental nature of the problem and guiding the design 

process, but they are not useful for in situ joint assessment in the field. 

Therefore, a proof of concept experiment is created to test the effectiveness of 

ultrasonic chaotic excitation and state-space prediction error in bolt preload loss 

detection. The excitation signal is created using the process outlined in Section 2.1 

such that the significant frequency information in the signal is between 80-85 kHz. 

This range was arbitrarily chosen as a region in which only two propagating wave 

modes exist and whose dispersion curves in that frequency region are mostly flat.  

Testing is carried out on the bolted aluminum frame portal structure shown in 

Figure 4.10. The structure is made up of two 30cm x 5cm x 1cm (12in x 2in x 0.375in) 

vertical bars connected to a 56cm x 5cm x 1cm (22in x 2in x 0.375in) horizontal bar 

by two 5cm x 5cm x 0.6cm (2.5in x 2.5in x 0.25in) angle brackets. The vertical 

members are connected to a 60cm x 15cm x 1cm (24in x 6in x 0.5in) aluminum base 

plate with two more angle brackets. Two MFC patches are attached to the structure 

with cyanoacrylate using a vacuum bagging procedure to ensure bond quality. These 

Smart Material Corp. MFC patches (M 2814 P2) measure 3.5cm x 1.8cm (1.4in x 

0.7in) and are approximately 2mm (0.075in) thick. The second sensing MFC patch is 

located directly below the patch pictured in Figure 4.10. The actuation signal is 

created by the output channel of a National Instruments PCI-6110 DAQ card at a rate 

of 4 MHz and has a voltage range of ±10 V. This signal is then routed through a 

Krohn-Hite 7602 wideband power amplifier and exits with a voltage range of ±20 V. 
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This amplified signal is sent to the actuation MFC while the sensing MFC 

simultaneously samples the structural response at a rate of 4 MHz. 

 

Figure 4.10. Aluminum portal structure with bolted angular connections. 

The entire length of the signal is 0.1 seconds long which gives a record length 

of 400,000 points. Each record is broken up into 5 runs of length 80,000 points. The 

signal is split up into runs in order to form more robust statistical features. All runs are 

normalized by their standard deviation before embedding in order to remove any 

possible environmental variation from the signal. The number of fiducial points used 

for each prediction error algorithm is 10% of the total number of points, or 8,000. The 

number of nearest neighbors used to calculate the mass centroid is 0.1% of the total 

number of points, or 80. This process is repeated after loosening the bolt shown in 

Figure 4.10 to initiate damage into the structure. The bolt is loosened through the use 

of piezostack that is placed around the bolt. Voltage to the piezostack is controlled by 

a Piezomechanik GmbH SVR-1000 amplifier that can output voltages between 1000 V 
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and -200 V. The bolt is torqued to 120 in-lb with 1000 V actuating the piezostack to 

form the undamaged condition. Voltage is then reduced by 50 V for successive 

damage levels with -200 V (which creates twenty-four damage levels) corresponding 

to approximately 80 in-lb. Torque levels and bolt preload between these two voltages 

are not linearly related to the piezostack voltage. 

4.2.1 Results 

Figure 4.11 depicts the state-space prediction error for all damage levels as 

well as their associated 10th and 90th quantile error bars. The results for this damage 

metric show that the state-space prediction error algorithm is able to statistically 

identify and separate very small levels of incipient damage due to bolt preload loss. 

There is a strict monotonic increase in prediction error across as the piezostack voltage 

decreases (bolt preload decreases). The damage metric levels off between 300 V and 0 

V and then begins to increase at a faster rate until the lowest piezostack voltage at -

200 V. The ability of this method to detect such small changes in bolt preload level is 

due to the high frequency content (and therefore short wavelength) of the excitation 

signal. A global excitation could never determine and locate damage at these incipient 

levels. Computing these prediction errors is computationally expensive, however, and 

therefore the performance of computationally inexpensive AR model metrics is 

examined. 
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Figure 4.11. Prediction error mean and error bars for increasing damage (decreasing piezostack 
voltage). 

4.2.2 AR model comparison 

The same data are examined using an AR model with an order of p=5 to see 

how well damage can be detected using a very simple forward linear predictor. 

Figure 4.12 depicts the standard deviation of the residual error e that is 

obtained from the AR model. Both standard temporal regression and the extended 

spatio-temporal regression trend similarly for increasing damage. The results from this 

much simpler calculation (as compared to the state-space prediction error) show that it 

may be possible in certain cases to use only standard deviation of the residual error as 

a damage feature instead of calculating attractor-based prediction errors. Therefore, in 

Section 5 only AR model-based features are used to discriminate damage. 
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Figure 4.12. Standard deviation of residual errors from AR model. 

4.3 Section summary 

The results from Section 4.1 indicate that the use of chaotic ultrasonic waves 

can be used for the detection of corrosion damage in plate-like structures. This effect 

is important because our method offers important advantages over standard time-of-

arrival and attenuation metrics in sensitivity to damage and performance under non-

ideal actuator/sensor bond quality. In this experiment it was discovered that PZT 1 and 

PZT 6 had degraded bonding conditions that significantly changed the shape of any 

wave that was excited or sensed by one of these two piezoceramic patches. This 

change in shape would make it difficult to institute any kind of standard time-of-

arrival or attenuation feature. It does not affect the spatio-temporal prediction error 

because this damage detection algorithm only looks for changes in attractor geometry 

from a baseline state. Thus, even if the undamaged attractor does not resemble the 
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undamaged attractors from paths with correctly bonded piezoceramic patches it is still 

possible to easily and automatically identify when and where damage occurs.  

The results from Section 4.2 indicate that the use of chaotic ultrasonic waves 

for the detection of incipient levels of bolt preload loss (even in a joint with a 

complicated geometry as is present in this experiment) is possible. The ability of the 

spatio-temporal attractor-based prediction error metric to identify small levels of 

incipient damage is particularly encouraging, as characterizing damage to a structure 

at its earliest stages allows for the possibility of condition-based maintenance. This 

method also has advantages over standard guided wave methods such as time-of-

arrival and wave attenuation, which can only be used on structures with simple 

geometries. The standard deviation of the residual errors obtained from a standard 

temporal AR model of order p=5 is a damage feature that is able to effectively resolve 

incipient damage levels at a significantly lower computation cost to the state-space 

prediction error method. 

There are still several issues that remain unresolved. Further work must be 

done in trying to eliminate the unwanted increase in prediction error of the undamaged 

paths for several damage cases. If this reduction can be achieved (perhaps through a 

different data normalization technique) it will be possible to detect smaller levels of 

damage. The suitability of the excitation signal is another concern that must be 

addressed. The signal parameters for this experiment were chosen arbitrarily as an 

example of a short wave packet (40 milliseconds) that still exhibited a substantial 
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amount of chaotic behavior. It is possible that a more appropriate excitation could be 

used that would yield better results. 
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5 AUTO-REGRESSIVE MODEL APPLICATIONS 

This section will detail the use of the damage-sensitive features based on auto-

regressive (AR) models outlined in Section 3.2.2. These features are employed instead 

of the spatio-temporal prediction error techniques discussed in Section 4 because they 

possess similar abilities to discriminate damage as state-space prediction error, but at a 

fraction of the computation and storage cost. This reduction in processing complexity 

is especially important for any embedded SHM system. Section 5.1 uses the damage 

size/type classification procedure outlined in Section 3.2.2.3 on a single bolt metal lap 

joint and the same multiple bolt metal portal structure that is used as a test structure in 

Section 4.2. Section 5.2 then examines the possibility of using evolutionary algorithms 

to optimize (in a detection sense) the active chaotic excitation signal used for the 

single bolt lap joint. Section 5.3 first applies the same classification procedure outlined 

in Section 3.2.2.3 to an adhesively-bonded composite wing-to-spar specimen. This 

damage feature is used to identify multiple disbond sizes as well a poorly bonded 

section along the wing-to-spar bond. It is shown that this classification scheme is able 

to compensate for the effects of temperature variability generally experienced by an 

in-service aircraft. The complete two-step classification scheme introduced in Section 

3.2.2 is then used on a set of similarly configured composite wing-to-spar structures. 

The effects of within-unit and unit-to-unit variability are able to be studied by testing 

on multiple structures. 
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5.1 Bolted metal connections 

Having shown the ability of AR model-based features to identify incipient 

levels of bolt preload loss in Section 4.2.2, the damage classification scheme outlined 

in Section 3.2.2.3 is applied to two experimental test platforms. One structure is a 

single-bolt lap joint and the second structure is the portal assembly that has already 

been introduced in Section 4.2. The same chaotic ultrasonic excitation used in the 

initial bolt preload monitoring study discussed in Section 4.2 (significant frequency 

information in the signal is between 80-85 kHz) is also used for each of the two test 

structures in this section. Each input signal is applied to the structure 50 times and 

then averaged to reduce experimental noise. The actuation signal is created by the 

output channel of a National Instruments PCI-6110 DAQ card at a rate of 4 MHz and 

routed through a Krohn-Hite 7602 wideband power amplifier. This amplified signal is 

sent to the actuation MFC while the sensing MFC simultaneously samples the 

structural response at a rate of 4 MHz. 

5.1.1 Single bolt lap joint 

The first experimental apparatus on which testing was carried out is the single 

bolt lap joint shown in Figure 5.1. The structure is made up of two 30cm x 5cm x 1cm 

(12in x 2in x 0.375in) aluminum bars connected to each other with a single bolt. Two 

MFC patches are attached to the structure with one on both sides of the joint. Each of 

these Smart Material Corp. MFC patches (M 2814 P2) has an active area of 3.5cm x 
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1.8cm (1.4in x 0.7in), are approximately 2mm (0.075in) thick and are bonded to the 

structure 5cm (2in) from the bolted connection (on each side) using cyanoacrylate. 

Due to the symmetry of the problem, it is not important which patch is used as the 

sensor and which as the actuator and either configuration will yield similar results. For 

this experiment the transducer on the left side of the lap joint in Figure 5.1 is used as 

the actuator. 

 

Figure 5.1. Single bolt lap joint experiment. 

Table 5.1: Classification "vote" distribution of experimental lap joint data. 

Actual 
Condition 

Votes 
Outcome Condition 1

(Loose) 
Condition 2

(Finger) 
Condition 3
(3.5 N-m) 

Condition 4 
(14 N-m) 

Condition 1 
(Loose) 175 46 0 4 Correct 

Condition 2 
(Finger) 1 150 74 0 Correct 

Condition 3 
(3.5 N-m) 0 37 188 0 Correct 

Condition 4 
(14 N-m) 0 24 122 79 Incorrect 

 

In this study, using 30 distinct chaotic inputs, data is taken at each step of a 

bolt tightening sequence in which the bolt condition is: 'loose' (Condition 1), 'finger-
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tight' (Condition 2), 3.5 N-m (Condition 3), and 14 N-m (Condition 4). This sequence 

is then repeated three times to simulate assembly and disassembly of the joint in a real 

structure. The first two assembly/disassembly sequences are used to create a training 

database. Structural responses obtained during the third sequence are used as test 

inputs. To test the ability of the classification scheme described in Section 3.2.2.3 to 

correctly identify bolt preload condition, 15 of the 30 generated response time 

histories are selected as database training inputs. The remaining 15 responses are used 

as test set inputs. All four bolt condition time responses are examined for each of the 

15 test inputs. The classification scheme then determined, in each case, the actual bolt 

condition based solely on knowledge it acquired from the 15 database training inputs. 

Table 5.1 shows the vote results for the 4 conditions. Each row represents the actual 

condition of the bolt and each column is the number of classification votes assigned to 

that condition. If the statistical classifier correctly identified every test condition the 

table would only have votes along the diagonal. The correct bolt conditions are shown 

in bold. 

The true bolt condition was correctly assessed by the statistical classification 

algorithm in all cases but Condition 4 (the most tight), which was estimated by vote-

counting to be in Condition 3. There are several factors contributing to this damage 

case misidentification. First, specifying bolt torque on a real joint can be difficult and 

in this experiment an inexpensive torque wrench with a fairly low resolution was used. 

Second, the transfer relationship between torque and preload is hysteretic, nonlinear 

and is highly dependent on local contact, which will vary each time the bolt is 
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tightened. Third, in this experiment it was difficult to maintain the boundary 

conditions of the lap joint between tests and it is believed that this also led to inflated 

number of incorrect votes. Given these concerns, the actual preload indicated by a 

particular torque level may vary significantly from test to test and almost certainly 

contributed to a much lower percentage of correct identification of individual test 

cases (66%) than may have been possible in a more rigorously controlled experiment. 

In future tests an instrumented bolt can be used so that a direct measure of 

preload is available instead of just bolt torque. This should improve results, however 

in real world situations bolt preload will be specified by torque specifications. Other 

improvements that are not dependent on knowing exact bolt preload level are possible. 

Foremost among these are the choice of parameters that affect the creation of the input 

time signals (carrier frequency fc, frequency ratio R, modulation depth d) as well as 

feature extraction (AR model order, size of training and test databases). Using genetic 

algorithms (specifically differential evolution) to create an optimal input waveform is 

discussed in Section 5.2. 

5.1.2 Multiple bolt portal structure 

As mentioned in the previous section, it is believed that a test bed with more 

reliable end boundary conditions should result in a greater percentage of correct 

classifications. It is also desired to test a structure that had multiple bolted connections 

in order to examine the ability of the statistical classification algorithm to identify 

multiple damage locations within a structure. This ability to locate damage within a 
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Table 5.2: Test conditions of the multiple joint frame structure. 
Case Bolt 1 Condition Bolt 2 Condition 

1 Tight Tight 
2 Finger Tight Tight 
3 Loose Tight 
4 Tight Finger Tight 
5 Tight Loose 
6 Finger Tight Finger Tight 
7 Loose Loose 
8 Tight Tight 
9 Finger Tight Tight 

10 Loose Tight 
11 Tight Finger Tight 
12 Tight Loose 
13 Finger Tight Finger Tight 
14 Loose Loose 
15 Tight Tight 
16 Finger Tight Tight 
17 Loose Tight 
18 Tight Finger Tight 
19 Tight Loose 
20 Finger Tight Finger Tight 
21 Loose Loose 

 

Table 5.3: Classification "vote" distribution of multiple joint frame data. 

Damage 
Case 

MFC 1(Bolt 1) MFC 2 (Bolt 2) 

Tight Finger 
Tight Loose Tight Finger 

Tight Loose 

15 225 0 0 225 0 0 
16 0 152 73 225 0 0 
17 2 115 108 225 0 0 
18 225 0 0 0 134 91 
19 225 0 0 0 98 127 
20 1 140 84 0 196 29 

21 0 3 222 06 1 224 
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The classification vote chart for each MFC sensor is shown in Table 5.3. The 

bold numbers in each row indicate the true condition of the bolt. Therefore a correct 

classification is made if the bold number is the largest in its row. As such, the correct 

classification was made in each case except for bolt 1 in damage case 17. The damage 

localization ability of this method is still strong as the overall percentage of correctly 

identified individual test cases is 84%. The 'tight' condition was classified correctly for 

almost every individual test signal. However, the distinction between 'finger tight' and 

'loose' is less clear (especially given that ‘finger tight’ is a very qualitative, non-

repeatable condition). This unclear discernability between the ‘finger tight’ and ‘loose’ 

damage conditions suggests grouping these two damage cases into one simple ‘loose’ 

category and using the classification scheme to make a decision only whether the joint 

is damaged or undamaged. 

Table 5.4: Classification "vote" distribution of multiple joint frame data for 
healthy/unhealthy determination. 

Damage 
Case 

MFC 1(Bolt 1) MFC 2 (Bolt 2) 

Tight Loose Tight Loose 

15 225 0 225 0 
16 0 225 225 0 
17 2 223 225 0 
18 225 0 0 225 
19 225 0 0 225 
20 1 224 0 225 
21 0 225 0 225 

 

Therefore, the categories 'finger tight' and 'loose' were combined into a more 

general 'loose' category by establishing the critical threshold value at a preload level of 
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‘finger tight’. In this attempt to make a purely healthy/unhealthy joint status 

determination, proper classification is achieved with each damage case. This simple 

classification works so well that votes for individual test responses choose the correct 

joint configuration greater than 99% of the time, as can be seen in Table 5.4. 

5.2 Optimized excitations 

Section 5.1 detailed the ability of active chaotic ultrasonic excitation combined 

with an AR model-based classification scheme to detect bolt preload loss and location 

in a multiple-joint frame structure. However, the waveform used in the previous 

section was not examined for suitability to the particular application. The use of 

evolutionary algorithms to optimize active excitations has already been studied in the 

vibration domain (Olson et al. 2007; Olson et al. 2009a; Olson et al. 2009b). 

Therefore, in this section the parameters that are required to create a particular chaotic 

ultrasonic excitation are manipulated by an evolutionary algorithm in order to change 

the dynamic properties of the waveform. Each generated waveform is then applied to 

the structure in a damaged and undamaged state. The fitness of each solution is 

measured by how well the damaged state can be differentiated from the baseline 

undamaged state and evolutionary pressure forces the creation of a waveform with 

improved detection capability. The simple bolted lap joint shown in Figure 5.1 is used 

as the test structure for this study. The bolt is loosened through the use of a piezostack 

actuator that is placed around the bolt. Voltage to the piezostack is controlled by a 

Piezomechanik GmbH SVR-1000 amplifier that can output voltages between 1000 V 
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and -200 V. The bolt is torqued to 120 in-lb with 1000 V actuating the piezostack to 

form the undamaged condition. Voltage is then reduced to -200V for the damaged 

condition which corresponds to approximately 80 in-lb. 

5.2.1 Feature extraction 

Once the chaotic ultrasonic wave is launched into the structure and detected, 

after its interaction with the joint, the primary task remains what feature(s) from the 

measured waveform may be extracted to assess the joint. Two structural response time 

series are obtained while the joint is in an undamaged state and one response time 

series is gathered while the joint is in a damaged condition. One of the undamaged 

responses is used to create an AR model of order p=5 to be used as the baseline. 

Residual errors are then calculated from the remaining undamaged signal as well as 

the damaged signal using the baseline AR coefficients. Therefore for each tested 

excitation, a distribution of residual errors from the baseline-undamaged comparison is 

gathered as well as residual errors corresponding to the baseline-damaged comparison. 

The fitness of the prescribed excitation signal is then calculated with the following 

function: 

cb

2
cb )(fitness

σσ
μμ −

=  (5.1)

where μb and σb are the mean and standard deviation of the baseline-undamaged 

comparison and μc and σc are the mean and standard deviation of the baseline-

damaged comparison. The fitness function is designed to reward excitations that result 
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in a larger separation of means of the residual error from the AR model. In addition, a 

smaller variance will result in higher fitness. 

5.2.2 Differential evolution 

The evolutionary algorithm that is employed in this study is known as 

differential evolution and was first introduced by Storn and Price (Storn and Price 

1997). Like all genetic algorithms, differential evolution seeks to steer a randomly 

generated initial population toward an optimal solution via multiple generations of 

mutation, crossover and selection. Populations are comprised of vectors that contain 

real values for a number of parameters that are to be optimized. Suitability of a 

particular solution vector is assessed with the fitness function shown in Eq. (5.1). Each 

vector in the population is compared with a trial vector that has been created through 

mutation and crossover. The vector of parameters that produces a higher value using 

the fitness function is advanced to the next generation until the population becomes 

saturated with high fitness solutions. 

Mutation is accomplished through the use of vector differentials. Two vectors 

V1 and V2 are randomly chosen from the population and subtracted to form a vector 

differential. The mutated vector is then constructed by multiplying this differential by 

a scaling factor F and then adding this to a third vector V3 so that the overall 

expression for the mutation vector is V3 + F*( V1- V2). A target vector from the 

population is then chosen for the crossover step in which one value from either the 

target vector or mutated vector is chosen for each parameter to create the trial vector. 
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This selection is accomplished by generating a random number between zero and 

unity. If this number is less than the crossover constant CR then the value from the 

target vector is selected and if it is greater than CR the value from the mutated vector 

is chosen. This is repeated for each parameter in the vector. The parameters from the 

target and trial vectors are then used to create two excitation signals. The vector 

producing the excitation signal that results in a higher fitness value is then advanced to 

the next generation. The particular algorithm used in this study also employs elitism; 

the maximum fitness in each generation is automatically saved and advances to the 

next generation. 

Table 5.5: Allowable values of parameters to be optimized. 

Parameter Minimum Value Maximum Value 

R 1E-6 0.25 
d 0.1 1 
fc 40 kHz 400 kHz 
N 4000 100000 

 

The four parameters that comprise a vector in the differential evolution 

algorithm are frequency ratio R, modulation depth d, carrier wave frequency fc and 

signal length N. The minimum and maximum allowable values for these parameters 

are summarized in Table 5.5. A population size of 10 is used in this study and the 

algorithm is run for 100 generations. The scaling factor has a value of F = 0.9 and the 

crossover constant is CR = 0.5. 
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5.2.3 Results 

Figure 5.3 depicts the results of the experiment by showing the maximum 

fitness for each generation of the differential evolution algorithm. At the end of 100 

generations the maximum fitness is 1.46 which is two orders of magnitude greater 

than the initial random population average fitness of 0.01. The maximum and average 

fitnesses were still increasing in the 97th generation so it is likely that a larger number 

of generations could have produced a result with higher fitness. 

 

Figure 5.3. Maximum and average fitness vs. generation. 

Table 5.6: Optimal parameter values. 

Parameter Optimal Value 

R 6.92E-4 
d 1 
fc 400 kHz 
N 100000 
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Table 5.6 shows the parameter values that were able to produce the maximum 

fitness values. It is clear that the evolutionary algorithm preferred the maximum 

allowable value for modulation depth, carrier wave frequency, and signal length. This 

implies that if carrier wave frequency or signal length had been allowed to increase 

beyond the maximum allowable values that a greater fitness value could be obtained. 

Figure 5.4 shows the excitation signal that these optimal values produced, the residual 

error from the baseline-damaged comparison as well as the residual error distributions 

of the baseline-undamaged and baseline-damaged comparisons. It is clear that the 

differential evolution has produced a solution that is a two-tone beat sequence. This 

two-tone optimal excitation was also discovered in studies by Olson et al. (Olson et al. 

2007; Olson et al. 2009). Also, the sinusoid is somewhat undersampled with only 10 

samples per period (400 kHz sinusoid sampled at 4 MHz). Figure 5.4b shows that the 

largest residual errors occur at the beginning of the time series when the waveform has 

just travelled through the joint and arrived at the sensing MFC. However this region of 

larger residual error is not what causes the fitness to increase as the errors are 

symmetrical and therefore do not affect the mean. In fact it is the long region of 

relatively low residual error during which the lap joint is undergoing full-field 

insonification that the residual errors become bimodal (as can be seen Figure 5.4c) 

which causes the mean to shift. This region is the reason the evolutionary algorithm 

chose the longest possible signal length. Figure 5.4c shows that with the extracted 

feature and fitness calculation used in this study that there is not a very large 

separation between undamaged and damaged distributions as both are centered on 
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zero. It appears that the bimodal nature of the damaged distribution is the cause of the 

high fitness value. 

 

Figure 5.4. (a, top left) Optimal excitation signal; (b, top right) residual error e(n) from the baseline-
damaged condition using optimal excitation; (c, bottom) baseline-undamaged and baseline-damaged 

residual error distributions using optimal excitation. 

5.2.4 Conclusions 

In conclusion, evolutionary algorithms identified an optimal excitation whose 

fitness is two orders of magnitude greater than the fitness of an excitation formed from 

random parameters. This optimal excitation is largely sinusoidal in nature that is likely 

a byproduct of the AR model prediction error feature that is used for damage 



90 

 

 

discrimination. It is also shown that long signal lengths gave higher fitness results due 

to the bimodal nature of residual errors during the full-field insonification stage of the 

excitation response. 

It is worth noting that when using genetic algorithms there is no guarantee that 

a truly optimal global solution will be found by the algorithm, which can settle on a 

less optimal local maximum fitness. However, an increase of fitness of two orders of 

magnitude is still quite improved for a proof of concept study. There are several 

changes that could be made to this algorithm to improve the optimality of the solution. 

By using unaltered residual error output from an AR model, the error distribution will 

always have a mean at or near zero. If the absolute value of the residual error is used 

instead it would be possible to separate the means and therefore the distributions of the 

undamaged and damaged cases. With a non-zero mean, evolutionary pressures should 

prioritize a shorter, more chaotic signal with only the large residual error portion 

remaining instead of the long region of relatively low residual errors. This would lead 

to much better damage resolution and higher fitness values. Another parameter that 

was not optimized in this study was the order of the AR model. However, the two 

orders of magnitude improvement in fitness over random excitation parameters proves 

that signal optimization is an important task for any SHM system, and that 

evolutionary algorithms are capable of optimizing these parameters. 
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5.3 Adhesively-bonded composite joints 

5.3.1 Single composite plate 

This study examines the ability of the damage size/type classification method 

outlined in Section 3.2.2.3 to classify different bond state damage conditions of an 

adhesively-bonded composite joint, including various disbond sizes and a poorly cured 

bond. The test structure is analogous to a wing skin-to-spar bonded joint and consists 

of a custom made 8-ply [0/±45/0]s carbon fiber-reinforced plastic (CFRP) plate that is 

bonded to a tubular CFRP spar. The CFRP plate measures 30cm x 30cm x 1mm (12in 

x 12in x 0.04in) square and the spar has an outer square diameter of 5cm x 5cm (2in x 

2in) with a wall thickness of 6mm (0.25in). The bonded area contains two different 

disbond sizes of 1.6cm2 and 6.4cm2 (0.25 in2 and 1.0 in2) created using Teflon inserts 

as well as a portion of the bond that has been poorly cured by using only 50% of the 

prescribed level of hardener. An active excitation signal is imparted to the structure 

through a MFC patch on one side of the bonded joint and sensed using an equivalent 

MFC patch on the opposite side of the joint and there is an MFC actuator/sensor pair 

for each bond condition to be identified. The test structure is pictured in Figure 5.5. 



 

Figure 5.5. 
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three times with the first two time history responses being used for the training 

database and the remaining responses used to determine bond condition for the test set 

inputs. In each case the actual bond condition is determined based solely on 

knowledge it acquired from the 15 database training inputs. 

5.3.1.1 Optimal parameter investigation 

In order to determine the set of input signal parameters that produce optimal 

bond state identification, the statistical classification scheme is employed for an array 

of signal parameters and the overall ability of each set of parameters to correctly 

identify each bond state is then examined. Previous numerical and experimental work 

done by Matt, Bartoli and Lanza di Scalea on the same test structure showed that, 

when using through transmission characteristics of simple toneburst inputs, an 

excitation frequency of 200 kHz was best able to identify bond state condition due to a 

coupling of S0 and A1 modes at that frequency (Matt et al. 2005; Lanza di Scalea et al. 

2007). In this study a number of excitation center frequencies from 100 kHz to 300 

kHz are considered, as well as frequency ratios ranging from 0.01 (nearly sinusoidal) 

to 0.50 (highly chaotic). When considering the feature extraction parameters a number 

of AR model orders from 3 to 25 are employed. Figure 5.6a-d depicts the ability of the 

statistical classification scheme to correctly identify bond condition by plotting the 

percentage of correct votes against the various signal input and feature extraction 

parameters already discussed. 
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Figure 5.6. Classification scheme results showing percentage of total correct votes vs. (a, top left) 
frequency ratio, (b, top right) AR model order, (c, lower left) center frequency and (d, lower 

right) center frequency for each individual bond condition. 

Figure 5.6a shows the ability of the statistical classification scheme employed 

together with chaotic insonification to correctly identify bond condition for various 

frequency ratios. As previously mentioned, the lower the frequency ratio the more 

sinusoidal the input signal appears and conversely the higher the frequency ratio the 

more chaotic the input signal appears. This signal parameter characteristic occurs 

because as the frequency ratio becomes small, the chaos operates on a longer time 

scale. If a small enough time window is used to create the signal, a very small R value 

will result in the chaotic time scale being much longer than that of the entire signal. In 

this case the signal will appear to be almost sinusoidal. The opposite effect holds true 

if a large frequency ratio is used because the time scale the chaos operates on will be 
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much smaller than the length of the signal and the signal will therefore contain more 

chaotic information. It is clear that a signal with more chaotic information, when 

paired with this pattern recognition scheme, is best able to determine true bond state 

condition. There is negligible difference between a frequency ratio of 0.3 and 0.5 but 

the overall trend that a more chaotic signal provides greater classification ability is a 

sufficient conclusion. Figure 5.6b depicts the effect of AR model order on the damage 

identification ability of the statistical classification scheme. In general, if too low of an 

AR model is used (anything less than 10) the percentage of total correct votes has a 

noticeable decrease. When averaged over all frequency ratios and center frequencies 

an AR model order of 10 does slightly better than higher AR model orders. However, 

the effectiveness of a particular model order is clearly dependent on the particular 

frequencies in which the chaotic information is present. Closer investigation of the 

data reveal that, depending on the signal input parameters, an AR model order 

somewhere between 10 and 20 will produce optimal classification of each particular 

bond state. 

Figure 5.6c illustrates the effect of various center excitation frequencies on the 

ability to correctly classify bond condition. The graph shows that center frequency is a 

highly important parameter as there appears to be “sweet spots” where the algorithm 

correctly classifies almost 100% of individual test cases (150 kHz and 200 kHz) as 

well as several frequencies which do not perform as well including 175 kHz which is 

intermediate to the two sweet spots in the frequency regime. As previously mentioned, 

numerical simulations (Matt et al. 2005) showed a mode coupling occurring at 200 
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kHz which could be the reason for the excellent performance of the damage detection 

algorithm across all frequency ratios and model orders at that frequency. The same 

study does not indicate a mode coupling effect at 150 kHz. However, these are only 

numerical results, and the true physical structure may contain mode coupling effects at 

150 kHz. Figure 5.6d shows that the undamaged bond condition is correctly identified 

for almost 100% of the individual input signals for any center frequency. The ability to 

discern the poorly cured bond state appears to decrease as center frequency increases 

and the small disbond case is the most often misidentified bond condition, as would be 

expected due to its size. 

5.3.1.2 Temperature variability 

The experimental apparatus used in this study is meant to simulate a wing skin-

to-spar bonded joint that is used in aerospace applications. Therefore, if this statistical 

classification scheme using chaotic insonification is to be used for in situ health 

monitoring, including in-flight and on the ground, its behavior and effectiveness 

relative to external temperature must be considered. This study therefore employs the 

use of a thermal chamber to test the efficacy of the above outlined method for 

temperatures varying from -40°C to 40°C, a range that covers most flight and ground 

conditions. For the thermal chamber test a center frequency of 200 kHz, frequency 

ratio of 0.5 and AR model order of 10 are employed as these parameters produced 

near 100% correct identification of individual test signals for the room temperature 

experiments. Figure 5.7 shows the initial thermal chamber results for cases in which 
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the baseline AR coefficients are determined at various temperatures. It is clear that the 

damage detection algorithm only performs well at temperatures close to that of the 

temperature at which the baseline AR coefficients are determined. A temperature 

change of more than 10 degrees Celsius usually results in significant reduction of 

classification effectiveness. However, when the proper baseline AR coefficients are 

used for a particular temperature the statistical classification method still achieves near 

100% correct classification of individual test signals. 

 

Figure 5.7. Percentage of total correct votes vs. temperature for cases in which the baseline AR 
coefficients are determined at various temperatures. 

It is therefore possible to correct for temperature variations by storing baseline 

AR coefficients for the range of temperatures that the intended apparatus is likely to 

see during real world applications. It still must be determined how many sets of 
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baseline AR coefficients must be stored and what the proper method for interpolation 

between these temperatures is. Therefore, this study examines using baseline AR 

coefficients taken every 20 degrees Celsius (-40°C, -20°C, 0°C, 20°C, 40°C) which is 

referred to in the following figures as 5tempbase and using baseline AR coefficients 

taken every 10 degrees Celsius (-40°C, -30°C , -20°C, -10°C, 0°C, 10°C, 20°C, 30°C, 

40°C) which is referred to in the following figures as 9tempbase. Testing was carried 

out at 5 degree Celsius temperature increments. It can be seen in Figure 5.8 that the 

value of each AR coefficient tends to shift in a fairly reliable manner, usually in a near 

linear fashion, as the temperature changes. It is then possible to create a baseline of 

AR coefficients at all temperatures using polynomial fits from testing carried out at 

only a few intermediate temperatures. 

Figure 5.8. Actual coefficient values vs. temperature for the first (left) and second (right) AR 
coefficients. 

Figure 5.9 shows the effectiveness of using various order polynomial fits (from 

linear to fourth order) to determine baseline AR coefficients for intermediate 

temperatures. It is clear that using baseline AR coefficients determined every 10 
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degrees Celsius produces better results than using baseline AR coefficients determined 

every 20 degrees Celsius. In both cases a fourth order polynomial produces the highest 

percentage of total correct votes over all temperatures with no lower result than 92% 

for the 5tempbase case and no lower result than 98% for the 9tempbase case. 

However, because the AR coefficients were being fit to a polynomial the optimal AR 

coefficients for a particular temperature were not always used as the polynomial does 

not necessarily go directly through this known data point. 

 

Figure 5.9. Percentage of total correct votes for various fitting techniques using the 5tempbase (a, 
left) and 9tempbase (b, right) methods. 

Therefore, a lookup table method in which the AR coefficients for 

temperatures in the baseline database are directly used, and any intermediate 

temperatures are simply linearly interpolated, is also examined. Figure 5.10 shows the 

result of using this method. It is clear that even in the 5tempbase case (baseline AR 

coefficients determined in 20 degree Celsius increments) that linear interpolation of 

AR coefficients for intermediate temperatures results in 100% correct classification of 

individual test cases. This result is not surprising given that Figure 5.8 shows that the 
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AR coefficients trend almost piece-wise linear as temperature changes. This study 

therefore concludes that the best method for temperature correction is to store baseline 

coefficients for a small number of temperatures that span the known operational 

values of the structure and then to linearly interpolate via a lookup table the AR 

coefficients necessary to correctly classify bond condition for any intermediate 

temperatures. 

 

Figure 5.10. Percentage of total correct votes for direct linear lookup table using the 5tempbase 
and 9tempbase methods. 

5.3.2 Multiple composite plates 

The previous section showed the ability of the bond state assessment algorithm 

outlined in this study to compensate for temperature variations (variability due to the 

environment). Other types of variability that can affect the outcome of this scheme 

include unintentional inhomogeneities in a single manufactured specimen (“within-

unit” variability) and inconsistencies in the manufacturing process itself across 

specimen lots (“unit-to-unit” variability). Within-unit variability includes the effects of 
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manufacturing variability along the bond line, MFC bond condition inconsistency, and 

geometric effects that result from different placements of the MFC sensor/actuator 

pairs. This study examines the ability of the full two-part supervised learning 

classification scheme outlined in Section 3.2.2 to not only to classify disbond size but 

also to compensate for the different sources of variability discussed above. This 

classification is performed using data from a similarly configured composite bond for 

which baseline data are available. The test structures are again analogous to a wing 

skin-to-spar bonded joint and there is an MFC actuator/sensor pair for each bond 

condition to be identified on three composite wing-to-spar adhesive bonded joints. The 

test structures consist of a carbon fiber-reinforced plastic (CFRP) plate (manufactured 

by McMaster-Carr) that is bonded to a tubular CFRP spar using Loctite® Hysol® 

9462 'Two Component Epoxy Adhesive'. The CFRP plate measures 12in x 12in x 

0.016in square and the spar again has an outer square diameter of 2in x 2in with a wall 

thickness of 0.25in. The bonded area for two of the specimens contains two different 

sizes of disbond (0.25 in2 and 1.0 in2) that are created using Teflon inserts. The 

structures with disbonds are labeled Plate 1 and Plate 2. The third test structure (Plate 

3) was manufactured with no disbonds so all paths are undamaged and geometric 

effects can be studied. The locations of the MFC actuators/sensors for Plate 1 and 

Plate 2 are pictured in Figure 5.11. C-scans that depict the bond state of each specimen 

can be seen in Figure 5.12. 
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Figure 5.11. Experimental platform showing location of bottom-mounted MFC actuators on Plate 
1 (a, left) and top-mounted MFC actuators on Plate 2 (b, right). 

 

 

 

 

Figure 5.12. C-scan images showing locations and sizes of disbonds for Plate 1 (a, top) and Plate 2 
(b, middle) as well as undamaged Plate 3 (c, bottom). 

Plate 1 features two MFC actuator/sensors that are attached to the CFRP plate 

on each side of the bond for both of the damaged bond states as well as one pair for 

the undamaged bond area for a total of six MFC patches. The MFC patches are located 

on the spar side of the bond as seen in Figure 5.11. The MFC patches on Plate 2 are 

located on the opposite side of the CFRP plate from the bonded area. Plate 3 also has 



103 

 

 

six MFC patches that are bonded on the spar side of the structure, as in Plate 1. Each 

of the MFC patches are bonded to the structure using Loctite® Hysol® E120HPTM 

epoxy adhesive. Each MFC patch is affixed to the structure one inch from the spar 

bond line. Each input signal is applied to the structure 25 times and then averaged and 

filtered to reduce experimental noise. 

For the following experiments, in order to test the ability of the classification 

scheme described in Section 3.2.2 to correctly identify bond condition, 90 time 

response histories are created using a specific set of signal creation parameters. Half of 

these 90 generated response time histories are selected as database training inputs. The 

remaining 45 responses are used as test set inputs. All three bond conditions on each 

structure are probed three times with the first two time history responses being used 

for the training database and the remaining responses used to determine bond 

condition for the test set inputs. In each case the actual bond condition is determined 

based solely on knowledge it acquired from the 45 database training inputs. 

5.3.2.1 Optimal parameter investigation 

A preliminary study is undertaken to determine the set of input signal 

parameters and extracted feature parameters (such as AR model order) that produce 

optimal bond state identification for the new set of test structures. This study uses 

receiver operating characteristic (ROC) curves as a means of identifying in a rigorous 

statistical manner the optimal parameters necessary for the classification scheme to 
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operate efficiently, including the choice of alpha (Type-I error) that results in the best 

trade-off between Type-I and Type-II error. 

The classification algorithm can have one of four outcomes for a particular test 

case. A true positive occurs when the bond being interrogated is damaged and the 

algorithm also concludes that it is damaged. If the algorithm concludes that this 

damaged bond is undamaged that is referred to as a false negative. A false positive 

occurs when the bond being interrogated is undamaged and the algorithm concludes 

that it is damaged. Similarly, if the algorithm correctly concludes that this undamaged 

bond is undamaged that is known as a true negative. ROC curves are formed by 

plotting the rate of true positives found by the classification scheme (true positives 

divided by true positives plus false negatives) against the false positive rate (false 

positives divided by false positives plus true negatives). Essentially, the more area 

under a ROC curve the better job of correctly identifying bond state that particular 

parameter is doing because there will be a high number of true positives compared to a 

low number of false positives. 

The bond state assessment algorithm is used for an array of signal parameters 

and the overall ability of each set of parameters to correctly identify each bond state is 

then examined. In this study a number of excitation center frequencies from 100 kHz 

to 350 kHz are considered, as well as frequency ratios ranging from 0.15 (slightly 

chaotic) to 0.50 (highly chaotic). When considering the feature extraction parameters a 

number of AR model orders from 5 to 30 were employed. Figure 5.13a-d depicts the 

ability of the VCC/EVS-based statistical classification scheme to correctly identify 
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bond condition by plotting the receiver operating characteristic (ROC) curve. This plot 

depicts the true positive rate against the false positive rate for all possible 

classifications (both undamaged and damaged).  

 

 

Figure 5.13. ROC curves for (a, top left) Plate 1 center frequencies, (b, top right) Plate 2 center 
frequencies, (c, lower left) Plate 1 frequency ratio R and (d, lower right) Plate 1 AR model order. 

Figure 5.13a shows various ROC curves acquired by changing the center 

frequency of the excitation signals on Plate 1. Performance of the bond state 

assessment algorithm increases from a center frequency of 100 kHz up until 300 kHz, 

at which point the performance degrades as the center frequency continues to increase 

to 350 kHz (only center frequencies from 250 kHz to 350 kHz are shown here). This 
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means that for the particular geometry of the test specimen and with MFC patches 

affixed to the same side of the plate as the bond line that a center frequency of 300 

kHz is best suited for bond state assessment. Figure 5.13b depicts the same change in 

center frequencies as Figure 5.13a except that the data is from Plate 2 which has the 

MFC patches bonded on the opposite side of the bonded spar. There is similar 

behavior to the previous plot in which performance increases from 100 kHz to a 

particular optimal frequency and then decreases again. However in this case the 

optimal center frequency is 275 kHz. This change is due to the different way the 

guided wave propagates through the bond when introduced to the plate on the opposite 

side of the spar. 

Figure 5.13c shows the ability of the statistical classification scheme employed 

together with chaotic insonification to correctly identify bond condition for various 

frequency ratios on Plate 1. A frequency ratio of 0.3 appears to be best suited for bond 

state assessment. The ROC curves for Plate 2 frequency ratios are very similar and 

again show that a frequency ratio of 0.3 is optimal. Figure 5.13d depicts the effect of 

AR model order on the damage identification ability of the statistical classification 

scheme. All AR model orders appear to work approximately equally well, except for 

an order of 5, with an AR model order of 20 performing the best among the group. 

Again Plate 2 shows similar results for the AR model order. It is not possible to create 

a ROC curve for Plate 3 as there are no true positive results because there is no 

damage (and thus, no hypothesis test). Figure 5.14 shows the optimal ROC curves for 

Plate 1 and Plate 2. 
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Figure 5.14. Optimal ROC curves for (a, left) Plate 1 and (b, right) Plate 2. 

5.3.2.2 Temperature variability 

The proposed classification scheme must still be evaluated for temperature 

robustness on the multiple wing skin-to-spar specimens in order to validate it for 

aerospace applications. This study again employs the use of a thermal chamber to test 

the efficacy of the above outlined method for temperatures varying from -40°C to 

40°C, a range that covers most flight and ground conditions. The optimal set of 

parameters that will be used in the following experiments is a center frequency of 300 

kHz for Plate 1 and Plate 3 (MFC patches on the same side as the bond) and a center 

frequency of 275 kHz for Plate 2 (MFC patches on the opposite side as the bond). A 

frequency ratio of 0.3 will be used for all specimens as well as an AR model order of 

20. These are the most optimal parameters that were identified using ROC curves in 

the previous section. 
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5.3.2.2.1 Step one: damage existence classification 

An alpha level of 0.05 (5% type I error) is used to choose the lower confidence 

limit for the undamaged VCC distribution. Figure 5.15 shows the percentage of 

outliers for each bond state being inspected on Plate 1 and Plate 2. This percentage of 

outliers is plotted against temperature and the “training database” of AR coefficient 

vectors has been acquired at each temperature. If the percentage of outliers is above 

the 5% type I error that has been specified, the bond state assessment algorithm has 

determined that the unknown bond being inspected is damaged.  

 

Figure 5.15. Percentage of outliers vs. temperature for each bond condition on (a, top left) Plate 1, 
(b, top right) Plate 2. 

Figure 5.15a and Figure 5.15b show that for every temperature the undamaged 

path and paths with disbonds are correctly classified because the blue undamaged line 

is always below the decision boundary and the red and green disbond lines are always 

above the decision boundary. It is therefore possible to correct for temperature 

variations by storing baseline AR coefficients for the range of temperatures that the 

intended apparatus is likely to see during real world applications. However it is not 
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necessary to store AR coefficients for all possible temperatures because only a few 

temperatures need to be stored and AR coefficients for intermediate temperatures can 

be linearly interpolated between existing baseline AR coefficients. This study again 

uses the 5tempbase and 9tempbase methods of AR coefficient interpolation outlined in 

Section 5.3.1.2. Testing is carried out at 5 degree Celsius temperature increments. 

Figure 5.16 depicts the same results as are seen in Figure 5.15 except that AR 

coefficient values are linearly interpolated at temperatures for which no baseline data 

is present. The 5tempbase method depicted in Figure 5.16a works well except for two 

temperatures at which the number of outliers for the undamaged path rises above the 

critical threshold. The 9tempbase method shown in Figure 5.16b has 100% correct 

classification at all temperatures. This study reaffirms that the best method for 

temperature correction is to store baseline coefficients for a small number of 

temperatures that span the known operational values of the structure and then to 

linearly interpolate, via a lookup table, the AR coefficients necessary to correctly 

classify bond condition for any intermediate temperatures. 
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Figure 5.16. Percentage of outliers for Plate 2 using the 5tempbase (a, left) and 9tempbase (b, 
right) methods of AR coefficient interpolation. 

5.3.2.2.2 Step two: disbond size classification 

Having already determined what paths have some form of disbond or damage, 

the second bond state assessment algorithm employed in this study seeks to classify 

the size of the disbond. Figure 5.17 shows the percentage of total correct votes for 

each disbond size using either the 5tempbase or 9tempbase AR coefficient 

interpolation method for Plate 1 and Plate 2. The 5tempbase and 9tempbase methods 

appear to work equally well and the large disbond is correctly identified in almost 

100% of individual cases. The small disbond is occasionally misclassified but the 

lowest result at 15°C on Plate 2 is still greater than 90% correct classification. 
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Figure 5.17. Percentage of total correct votes for each disbond size using the 5tempbase and 
9tempbase AR coefficient interpolation methods on Plate 1 (a, left) and on Plate 2 (b, right). 

5.3.2.3 Other sources of variability 

It is possible to observe the resulting effects of within-unit variability by 

examining Plate 3, in which all paths were undamaged. Figure 5.18 shows the number 

of outliers using the VCC feature for Plate 3. In this figure, one path was chosen to be 

the baseline undamaged path and the other two paths were used as test cases. The 

number of outliers for each of the two test undamaged paths is above the 5% threshold 

but are less than 7.5% and much less than the number of outliers seen in the paths with 

disbonds on Plate 1 and Plate 2 shown in Figure 5.15a and Figure 5.15b. This result 

only comes from one test structure, but it appears that it may be possible to build a 

safety factor (in this case 1.5) into the lower confidence limit to account for the 

various sources of within-unit variability on a particular structure and still be able 

identify when and where the state of the bond has been changed. This result is 

important because it means it may not be necessary to store baseline data for every 
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MFC actuator/sensor pair in a structure as it may be possible to generalize baseline 

data from elsewhere in the structure as long as the geometries are similar. 

 

Figure 5.18. Percentage of outliers vs. temperature for each bond condition on Plate 3. 

Unit-to-unit variability arises due to inconsistent manufacturing processes from 

specimen to specimen, which compound the within-unit sources of variability 

previously discussed. In well-controlled automated industrial applications with very 

tight tolerances or requirements, unit-to-unit variability is typically lower than within-

unit variability. However, in this study each specimen was manufactured individually 

by hand, and consequently the unit-to-unit variability is considerably larger than 

within-unit variability. Figure 5.19 illustrates the large effect of this manufacturing 

inconsistency. Figure 5.19a shows averaged AR coefficients that are acquired using an 

AR model order of p=10 for the three different bond conditions on Plate 1 and the 

undamaged bond condition on Plate 3 that is in the same geometric location as the 

undamaged bond condition on Plate 1. Inspection of Figure 5.19a reveals that the AR 

coefficient vector from the undamaged bond condition on Plate 3 differs as much from 

the AR coefficient vector from the undamaged bond condition on Plate 1 as the AR 
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coefficient vectors from the two disbond conditions on Plate 1. This large difference 

between the AR coefficient vectors from the undamaged bond condition in the same 

geometric location on each plate shows that the unit-to-unit variability is too large to 

use baseline data gathered on one specimen to discern the damage state of a second 

specimen. This conclusion is depicted graphically in Figure 5.19b, which shows the 

percentage of outliers vs. temperature for each bond state on Plate 1 using the 

undamaged bond condition on Plate 3 as the baseline undamaged condition. The 

percentage of outliers for the undamaged bond condition on Plate 1 is well above the 

decision boundary and would therefore be classified as damaged if the undamaged 

bond condition from Plate 3 were used as a baseline. Thus it is concluded that for the 

manufacturing techniques used in this study (individual test specimen construction by 

a non-expert human technician) that unit-to-unit variability is too large to allow for 

baseline data gathered from one plate to be used to diagnose the bond condition of a 

second plate. This result does not preclude the possibility that with more controlled 

manufacturing processes that unit-to-unit variability could be small enough that 

baseline data from only one specimen would be needed to properly assess the bond 

condition of a specimen lot. 



114 

 

 

 

Figure 5.19. Averaged AR coefficient vector comparison for each bond condition on Plate 1 vs. 
undamaged bond condition on Plate 3 (a, left). Percentage of outliers vs. temperature for each 

bond condition on Plate 1 using undamaged bond condition on Plate 3 as the undamaged baseline 
(b, right). 

5.4 Section summary 

This study has shown the structural health monitoring capability of chaotically 

modulated ultrasonic waves that are imparted to a bolted metal joint or a composite 

bonded wing skin-to-spar structure through a piezoelectric patch. The classification 

damage detection scheme was shown to be effective in identifying bolt preload 

configuration in experiments on single and multiple joint structures. For the single 

composite structure experiment in Section 5.3.1 the damage size/type classification 

scheme is shown to be effective in identifying various bond damage states including 

different disbond sizes as well as poorly cured bonds and has the ability to compensate 

for temperature variation. This study has also shown the ability of a two-part bond 

state assessment algorithm to correctly classify the existence and size of a disbond 

within a composite bonded wing skin-to-spar structure. The use of vector consistency 
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criterion (VCC) values derived from comparison of AR coefficient vectors, in 

combination with outlier analysis based on extreme value statistics, allows damage 

existence classification to be possible even without baseline data from every MFC 

sensor/actuator pair in a structure. Disbond size can then be determined in a 

supervised learning manner by employing a classification technique derived from 

information theory. This method also has the ability to compensate for temperature 

variability provided baseline AR coefficients have been recorded at a suitable number 

of temperatures that span the operating range of the structure (and that temperature is 

independently measured in situ during operation, which is, in practice, typically done).  
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6 CONCLUSIONS, CONTRIBUTIONS AND FURTHER 

WORK 

6.1 Conclusions and contributions 

The desire to push aging civil, mechanical, and aerospace structures beyond 

their intended design lives has highlighted the need for structural health monitoring 

(SHM) strategies that are able to detect, locate, and quantify various forms of damage 

within them with a goal of improved life cycle engineering from design to retirement. 

Recent advances in sensor technology, distributed networks, advanced signal 

processing techniques and pattern recognition algorithms have begun to be exploited 

for in situ SHM systems. SHM systems using active ultrasonic excitations are 

especially suited to the problem of damage localization and classification due to the 

high frequency regime (small wavelength) of the excitation signal. In most cases, 

however, the ultrasonic excitation signals and feature extraction techniques being 

employed for in-situ assessment are only applicable to relatively simple component 

geometries due to the highly complex modal interactions with boundaries and other 

impedance-mismatched substructures. This dissertation contributes to the growing 

body of knowledge in this field by introducing a new class of excitation signals and 

pattern recognition algorithms that, when paired with novel sensor networks, improve 

on the ability of standard SHM techniques to locate and identify various forms of 

damage on more complex geometry systems, with a focus upon bolted and adhesively-

bonded composite joints. 
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This dissertation describes a methodology whereby chaotic guided waves are 

created and optimized (in a detection sense) and used as probes to perform damage 

assessment by building both time- and state-space domain models (rooted in pattern 

recognition) and using statistical modeling for performing damage classification under 

Type I/II error control. Multiple chaotic ultrasonic excitation formats are explored, 

including short-time chaotic wave packets and long-time chaotic bulk insonification, 

in which the diffuse, reverberant wave field is examined to identify changes 

commensurate with relevant damage modes. This method of insonification, in addition 

to enhanced pattern recognition techniques, allows this damage detection scheme to be 

employed on complex structural geometries with which in situ standard ultrasonic-

based SHM methods cannot be used. 

The outlined SHM method is applied to various test structures with different 

forms of induced damage including an aluminum plate with corrosion damage, bolted 

connections on several aluminum test structures (single and multiple-bolt 

configurations) and several adhesively-bonded composite wing-to-spar structures. The 

AR model-based classification schemes outline in Section 3.2 and used successfully 

on multiple test platforms in Section 5 are especially promising for use in continuous 

SHM because of their low computation requirements. Chaotic signal creation 

parameters are optimized for individual test structures and the outlined SHM method 

is shown to be able to correct for multiple sources of variability, such as temperature, 

within-unit variability and unit-to-unit variability. 
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6.2 Future work 

There are several avenues of further work that can be evaluated to improve the 

efficacy of the proposed SHM method and verify its applicability to real-world 

structures. Issues that need to be examined include the relation of sensor/actuator 

density to damage classification effectiveness as well as how close an MFC needs to 

be placed to the monitored joint to be able to detect damage (range dependence).  

While beyond the scope of this dissertation, the specific placement of the MFC 

sensing array can have profound effects on the detection and classification ability of 

the approach (Flynn and Todd 2009). Also, in this research the optimal choice of 

parameters that affect the creation of the input time signals (carrier frequency fc, 

frequency ratio R, modulation depth d) as well as feature extraction (AR model order, 

size of training and test databases) is largely determined by examining a range of 

values for each of these parameters and choosing the set of parameters that optimize 

detection capability. This ad hoc method works reasonable well, but it was shown in 

Section 5.2 that it may be possible to use genetic programming to determine a global 

optimum parameter solution that is not easily found by only testing a few finite 

parameter vectors. Using genetic algorithms (specifically differential evolution) to 

create an optimal input waveform for maximum damage discernment should greatly 

improve the effectiveness of the outlined SHM method.  

Several issues regarding the use of this SHM method on real-world structures 

must also be examined. The effect of environmental noise was largely negated in each 
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experiment by using highly shielded cabling. Such thick cabling may not be suitable 

for use in real-world structures (such as aircraft), and so the effects of noise on the 

ability of the classification algorithm to correctly identify damage location, type, and 

size may become more apparent. There is also a need to examine the effect that 

dynamic loading of a structure during in-service conditions will have on the efficacy 

of this SHM method. This is especially important for aerospace applications in which 

structural components undergo a significant dynamic load. The loading issue could be 

addressed by augmentation with either physics-based models (derived from finite 

element analyses) or probabilistic load models. 
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