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The ability of microorganisms to exchange electrons directly with their en-

vironment has large implications for our knowledge of industrial as well as for

environmental processes. For decades, it has been known that microbes can use

electrodes as electron acceptors in microbial fuel cell settings. Recently, it has

been shown that organisms are also capable to accept electrons directly from an

electrode for fixation of carbon dioxide into multi-carbon molecules (Microbial

Electrosynthesis). The origin of these industrially relevant processes probably lies

in the ability of microorganisms to transfer electrons directly between each other.

Such interactions between microorganisms play a major role in the functioning

of global biogeochemical cycles. Hence, there is a great need to gain mechanistic
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insights into the various factors governing microbial extracellular electron transfer.

In this thesis, a genome-scale systems biology approach is applied to character-

ize these three aspects of electromicrobiology (microbial fuel cell, microbial elec-

trosysnthesis, and interspecies electron transfer). First, we apply next-generation

sequencing (NGS) technologies to de novo assemble the complete genome sequence

of an enhanced electricity producing variant of an organism in a microbial fuel cell.

This was further extended to the characterization of regulatory networks govern-

ing electrogenic biofilm growth using multi-omic data sets. In the second part, a

genome-scale characterization of the metabolic capabilities of two electrosynthetic

bacteria is presented. Finally, we demonstrate how analysis of multi-omic data in

the context of genome-scale models of microbial consortia enables us to decipher

the underlying mechanism and cellular requirements for direct electron transfer in

microbial associations.
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Chapter 1

Introduction

1.1 What is Electromicrobiology?

The ability of microorganisms to exchange electrons directly with their en-

vironment has large implications for our knowledge of industrial as well as for

environmental processes. Electron transfer reactions are known to be fundamen-

tal to energy conservation and metabolism of bacteria. The study of electronic

properties of microorganisms that govern these interactions with the environment

is called electromicrobiology [8]. Microbial extracellular electron transfer is the

underlying driver of electromicrobiology. Advances in this field have been largely

dominated by the study of dissimilatory metal reduction and microbial fuel cells

(Fig. 1.1A).
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Figure 1.1: Aspects of Electromicrobiology: A. Microbial Fuel Cell where
the organism respires on organics and uses extracellular electron acceptors such
as electrodes or metals to derive energy; B. Microbial Electrosynthesis: The sce-
nario where, microbes use electrode as the electron donor to fix CO2 to organic
compounds like butanol; C. Direct Interspecies Electron Transfer : Syntrophic as-
sociations in which microorganisms establish electrical connections for the transfer
of electrons from one partner to another

1.1.1 Microbial Fuel Cells

Microbial fuel cells are devices that typically utilize bacterial metabolism to

harvest electrical current from a wide range of organic substrates. Geobacteraceae

are one such class of organisms that can use electrodes as electron acceptors for

anaerobic respiration and thus making it possible to harvest electricity from waste

organic matter.[9]. The other major class of bacteria that have been shown to

be capable of generating electricity in a microbial fuel cell is Shewanella. How-

ever, these two classes of bacteria adopt very different mechanisms for electron

exchange with extracellular electron acceptors such as the electrode. While She-

wanella oneidensis interacts with electrodes primarily through soluble electron

shuttles (flavin molecules), Geobacteraceae establish direct contact with the elec-

trode surface via outer-survace c-type cytochromes [8]. One of the members of this

class, Geobacter sulfurreducens produces the highest current densities known for

pure cultures, in microbial fuel cells. The availability of the full genome sequence

for G. sulfurreducens and the fact that it is amenable to genetic manipulations
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have made it the model organism for studies related to microbial fuel cells. G.

sulfurreducens is also referred to as electricigens, since it conserves energy by ox-

idizing organic compounds like acetate to carbon dioxide and transfer electrons

to anodes. Genome-scale studies and electrochemical analyses have indicated that

the Geobacter cells form microbial nanowires that establish long range contact

with anodes and facilitate direct electron transfer.[10]. It has further been shown

that the pili in Geobacter have tunable metallic like conductivity and aid in the

formation of conductive biofilms [11].

1.1.2 Microbial Electrosysnthesis

Apart from the application of microbial fuel cells, two other potential ap-

plications of electromicrobiology have been demonstrated recently. One of these

applications exploits the possibility of electron flow in the reverse direction com-

pared to microbial fuel cells. One such application is called the process of microbial

electrosynthesis, where electrons are fed to microorganisms at the cathode to enable

reduction of carbon dioxide (Fig. 1.1B) [12]. In this process, the bacteria on the

cathode uses electrons as the only source of energy for directly converting carbon

dioxide into multi-carbon organic compounds. This is the scenario where microbes

use cathodes as the electron donor to reduce carbon dioxide to multi-carbon organic

compounds. This process can be leveraged to produce liquid transportation fuels

and other useful commodity chemicals. Microbial electrosynthesis can be thought

of as an artificial form of photosynthesis when driven by solar power. However,

microbial electrosynthesis differs significantly from photosynthesis in that carbon

and electron flow is primarily directed to the formation of extracellular products,

rather than biomass. So far, only a few acetogenic microorganisms have been

shown to be capable of accepting electrons from the cathode to reduce carbon

dioxide to limited organic compounds such as acetate and 2-oxobutyrate [13].
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1.1.3 Direct Interspecies Electron Transfer

Insights from investigation into microbe-electrode interactions have also im-

pacted understanding of functioning of anaerobic ecosystems. The nutritional de-

pendencies between microorganisms govern the functioning of these ecosystems and

thereby play a major role in regulating the global biogeochemical cycles. Syntrophy

is one such microbial association that is central to the functioning of a diversity of

methanogenic environments such as wetlands, aquatic sediments, animal intestinal

systems, and oil reservoirs, as well as in anaerobic digesters converting organic

wastes to methane. As recently reviewed in detail [14], the metabolism of many

organic compounds in methanogenic systems, such as fatty acids and aromatic

compounds, requires cooperation between the microorganisms metabolizing those

compounds and methanogens. Furthermore, the metabolism of compounds that

can be fermented, such as sugars and amino acids, is also often improved by syn-

trophic interactions between fermentative microorganisms and methanogens. This

is because although the overall conversion of fatty acids, aromatics, and fermenta-

tive compounds to methane and carbon dioxide is thermodynamically favourable,

methanogens cannot effectively utilize any of these multi-carbon compounds, with

the exception of the simplest organic acid, acetate. Therefore, other microorgan-

isms must metabolize the organics that methanogens cannot utilize to acetate.

This requires a partial anaerobic oxidation of the organic compounds, typically

with the production of carbon dioxide and reducing equivalents that the cell must

dispose in order to regenerate intracellular electron acceptors, such as NAD, FAD,

and ferredoxin, that are required for continued metabolism. The classic, best un-

derstood method for the regeneration of reduced electron carriers is the reduction

of protons to produce hydrogen ([15], [16], [14]). The oxidation of most intracellu-

lar electron acceptors with the reduction of protons is energetically unfavourable

at standard conditions and thus hydrogen can only be produced if methanogens

rapidly consume the hydrogen produced and maintain hydrogen at concentrations

low enough to make their production energetically favourable. The concept of

interspecies hydrogen transfer was first elucidated over 40 years ago and many

studies have provided evidence consistent with interspecies hydrogen transfer or
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the functionally equivalent interspecies formate transfer ([15], [16], [14]).

However, recent studies have described the possibility of direct interspecies electron

transfer (DIET) as an alternative to the long-standing paradigm of interspecies hy-

drogen transfer in some methanogenic environments [17, 18, 8]. Defined co-cultures

of Geobacter metallireducens and Geobacter sulfurreducensgrow syntrophically via

DIET in medium with ethanol as the electron donor and fumarate as the electron

acceptor [19, 20, 21].

The exact mechanism of electron transfer during DIET or during micro-

bial electrosynthesis is not fully known yet. However, it has been shown that in

Geobacter species, different outer membrane cytochromes and pili genes are over-

expressed under conditions of electron transfer to and from electrodes [22]. This

suggests that the mechanisms for electron transfer from electrodes to the microbe

could differ significantly from the mechanisms for electron transfer to electrodes.It

also remains to be seen which of these mechanisms would Geobacter species adopt

in the case of electron transfer to syntrophic partners.

This thesis aims to adopt a genome-scale systems biology approach to char-

acterize various metabolic and regulatory aspects of these three applications of

electromicrobiology.

1.2 Understanding the microbial genotype - phe-

notype relationship using genome-scale sys-

tems biology approaches

One of the central goals of systems biology is to achieve a fundamental

understanding of relationship between genotype and phenotype. The advent of

genome-sequencing proved to be a turning point in enabling our understanding

of this fundamental relationship. Full genome sequences provide comprehensive,

albeit not yet complete, information about the genetic elements that create an
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organism. The comprehensive understanding for some cellular processes, such as

metabolism, has resulted in structured knowledge-bases that can be mathemati-

cally represented [23, 24, 25]. This mathematical representation enables the com-

putation of phenotypic states [26, 27, 28, 29] based on genetic and environmental

parameters. Remarkably, this provides a mechanistic representation of the micro-

bial metabolic genotype-phenotype relationship.

Constraint-based models of genome-scale metabolic networks capture the

genotype-phenotype relationship by simultaneously accounting for constraints on

phenotype imposed by physicochemical laws and genetics. The realization that

these quantitative genotype-phenotype relationships could be constructed from a

genome has driven the emergence of this area of research, and the flood of in-

creasingly rich high-throughput data has accelerated the evolution of constraint-

based reconstruction and analysis (COBRA) methods from a set of basic tools for

metabolic network analysis into a powerful analytical framework that is increas-

ingly used.

The COBRA approach is based on a few fundamental concepts. These con-

cepts include the imposition of physicochemical constraints that limit computable

phenotypes (Fig. 1.2a-d), the identification and mathematical description of evo-

lutionary selective pressures (Fig. 1.2e), and a genome-scale perspective of cell

metabolism that accounts of all metabolic gene products in a cell (Fig. 1.2d,f).

These fundamental concepts are briefly described here.

Metabolism is a complex network of biochemical reactions. The reaction

occurrence is limited by three primary constraints: reaction substrate and enzyme

availability, mass and charge conservation, and thermodynamics. For metabolism,

reaction substrates must be present in a cells microenvironment or produced from

other reactions, and enzymes must be available. Mass conservation further lim-

its the possible reaction products and their stoichiometry, while thermodynamics

constrain reaction directionality. For a given organism, this information can be

obtained from careful biochemical and genetic studies or inferred from related or-

ganisms, and then catalogued in metabolic reconstruction knowledgebases [23, 25].
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In the COBRA framework, a metabolic reconstruction is converted into an

in silico model by mathematically describing the reactions and adding network

inputs and outputs (e.g., uptake and secretion products). Much like a cell has

one genome and many transcriptional states, an organism has one metabolic re-

construction from which context-specific models can be derived, each representing

cellular functions under different conditions.
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modynamics and catalytic capacities (Vm=Vmax), described by upper and lower
bounds on flux for each reaction (green). (c) Reaction constraints result in a solu-
tion space that contains all feasible flux distributions. Additional constraints (e.g.,
mass balance, the steady-state assumption, and measured metabolite consumption
rates) reduce the space of feasible flux distributions, as shown by the pink line. (d)
In vivo biochemical networks involve additional complexity. Gene regulation can
change the abundance of catalysts (e.g., the transformation of D to E). Often com-
ponents are also localized in different organelles (e.g., E and F), thereby blocking
reactions. (e) The biomass objective function describes an evolutionary pressure
for microbial growth, and describes the metabolic demands to make basic metabo-
lite building blocks for all cellular components (e.g., membranes, macromolecules,
ATP, etc.). (f) The association of metabolism with the genome is done by mathe-
matically linking the genome to transcripts, proteins, and chemical reactions. The
gene-protein-reaction schema is used to describe gene association in the models,
and provide an interface for the integration of high-throughput data.
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Physicochemical constraints on the metabolic network are mathematically

described by a matrix representing the stoichiometric coefficients of each reaction

((Fig. 1.2a-b). Known upper and lower bounds on each reaction flux are im-

posed as additional constraints. Mathematically, these constraints define a multi-

dimensional solution space of allowable reaction flux distributions, and the actual

expressed flux state resides in this solution space. Additional constraints can fur-

ther shrink the solution space to focus in on the actual flux state of the network

((Fig. 1.2c). These additional constraints may include enzyme capacity, spatial

localization, metabolite sequestration, and multiple levels of gene, transcript, and

protein regulation ((Fig. 1.2d).

Constraint-based modeling has rapidly developed since the advent of whole-

genome sequencing [30, 31]. A genome provides the genetic basis for an organisms

metabolic network, and genome annotation defines the relationships between genes,

enzymes, and the reactions they catalyze ((Fig. 1.2f) [32]. Annotated genomes

and their associated biochemical and genetic data have facilitated the development

of carefully curated metabolic network reconstructions containing thousands of re-

actions. When a reconstruction knowledgebase for an organism is converted into a

genome-scale model (GEM), the mathematical representation provides constraints,

and the objective function can be used to represent the optimal biological functions

the organism strives to achieve. Thus, simulation of an organisms phenotypes can

be performed using its GEM.

The genome-scale view of metabolism of these models has two primary im-

plications. First, in principle, they account for all known metabolic genes in a cell.

Thus, when used in genome-scale dataset analysis (e.g., proteomics, metabolomics,

etc.) [33], they provide novel insight since they account for real chemical con-

nections between components (Fig. 1.2f). Second, since metabolic genes are

associated with the biochemical functions of their gene products, simulations of

metabolite flow through the network can provide mechanistic predictions of how

each gene product affects the metabolic network function. Thus, cell phenotypes

can be computed and data can be interpreted with GEMs, thereby providing mech-
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anistic insight into how the cell genotype may contribute to the cell phenotype.

Furthermore, the recent advances in genomic techniques have provided unprece-

dented access to data spanning multiple levels of cellular organization such as the

transcriptome and the proteome. Since reconstructed networks leverage genomic

data for insight and phenotype prediction, the development of COBRA methods

has accelerated, and evolved into over hundreds of methods with various appli-

cations including biological discovery, metabolic engineering, studying bacterial

evolution.

1.2.1 Application of COBRA methods to characterize mi-

crobial community interactions

Individual COBRA methods can answer numerous scientific questions. How-

ever, multiple methods can be deployed in parallel to obtain additional insights

into a question of interest. Moreover, different models can be easily swapped or

combined to test hypotheses relevant to different species. Thus by using a commu-

nity of methods and several data types, deeper insights into larger questions may

be attained. For example, COBRA methods have complemented each other and

provided insight into microbial community interactions.

The community structure in an organisms microenvironment can shape

metabolic pathways usage. Organisms compete for scarce resources or depend on

the metabolic capabilities of their cohabitants. Evolution often selects for cells that

leverage this community structure [4]. COBRA methods are now characterizing

metabolisms role in microbial community structure [34, 35, 36]. These studies

are providing insight into mutualism [37], competition [2], parasitism [38, 39], and

community evolution [4, 40].
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Figure 1.3: Integrating COBRA methods to study community interac-
tions COBRA methods are providing insight into the metabolic interactions in
various types of microbial communities. (a) To study the mutualistic behavior of
co-dependent mutant E. coli, researchers used MOMA [1] to simulate synergistic
growth of pairs of auxotrophic E. coli. (b) Shadow prices from FBA simulations of
these pairs were used to compute cooperation efficiencies between strains, which
were subsequently compared with measured fitness improvements. (c) Competi-
tion in communities was modeled using DMMM [2] to understand how communities
of Geobacter and Rhodoferax compete for resources, and how the demographics
vary under different nutrient ratios, thereby affecting the efficiency of bioremedi-
ation efforts. Host-pathogen interactions between M. tuberculosis and a human
macrophage were studied using COBRA. (d) While transcriptomic data were em-
ployed to build host-pathogen models at different stages of infection, the cellular
objective of internalized M. tuberculosis is not known, so refinements to the ob-
jective function were predicted from transcriptomic data to account for changes
in required amounts of compounds like lipids and amino acids (AAs). (e) This
information was used to compute flux states of internalized M. tuberculosis with
MCMC sampling [3]. This demonstrated a suppression of central metabolism and
activation of the glyoxylate shunt, represented here by enolase and isocitrate lyase,
respectively. The role of communities in evolution has been studied using Reduc-
tive evolutionary simulation [4]. In particular, this method predicted the minimal
set of genes needed to for Buchnera to grow in the rich innards of the aphid. The
predicted minimial gene sets (f) and temporal order of gene loss (g) were consistent
with the gene content and phylogenetic structure of several Buchnera species.



12

Mutalism

Synthetic mutualism between auxotrophic E. coli mutants was recently

studied using COBRA methods [37]. The authors grew pairs of auxotrophic mu-

tants and then modeled their coupled metabolism using MOMA to identify mutant

pairs that exchange essential metabolites to improve growth (Fig. 1.3a). FBA

shadow prices demonstrated the balance between the cost (from metabolite loss)

and the benefit (from receiving missing essential metabolites) to each rescued aux-

otroph. The cooperative efficiency (i.e., the ratio of uptake benefit to production

cost) recapitulated the observed growth of the co-cultures. Substantial increases

in growth (Fig. 1.3b) were witnessed in co-cultures that exchanged beneficial, but

less costly metabolites (i.e., higher cooperative efficiency). Although it is difficult

to directly measure metabolite exchange between the auxotrophs, the computed

cooperation efficiency provides an indirect quantitative assessment of the metabo-

lite cross-feeding in this mutualistic system.

Competition

Metabolic competition for scarce nutrients has also been assessed with CO-

BRA methods. Dynamic multi-species metabolic modeling (DMMM) character-

ized the competition for acetate, Fe(III), and ammonia between Geobacter sul-

furreducens and Rhodoferax ferrireducens in subsurface anoxic environments (Fig.

1.3c) [2]. DMMM simulates the growth rate of both organisms and the rates of

change of external metabolites, to dynamically predict population changes in the

community. Using DMMM, the community composition was predicted under geo-

chemically distinct conditions of low, medium, and high acetate flux. Under low

acetate flux, DMMM predicts Rhodoferax dominates the community when suffi-

cient ammonia is available, whereas Geobacter dominates under low ammonia and

high acetate flux. This difference was attributed to the nitrogen fixation abilities

of Geobacter, as well as its higher acetate uptake rate compared to Rhodoferax.

Moreover, it was also predicted that under nitrogen fixing conditions, Geobacter

increases its respiration at the expense of biomass production, thus showing how

balancing community structure can impact the efficacy of uranium bioremediation
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in low ammonium zones.

Parasitism

Host-pathogen interactions have been studied with COBRA methods [38].

A recent study modeled the metabolic interactions between a human alveolar

macrophage and M. tuberculosis [39]. Context-specific models of infection were

built with GIMME [41] and Shlomi-NBT-08 [42] using transcriptomic data from

three types of M. tuberculosis infections. Next, the M. tuberculosis objective func-

tion was revised using infection-specific gene expression data to better represent

the metabolic activity of the internalized pathogen (Fig. 1.3d). Gene deletion

analysis was compared with in vivo gene essentiality data, and MCMC sampling

was also used to demonstrate a substantial alteration in metabolic pathway usage

in M. tuberculosis during macrophage infection, including a suppression of glycol-

ysis and an increased dependency on glyoxylate metabolism (Fig. 1.3e). This

constraint of central metabolism during M. tuberculosis infection was also sug-

gested by DCP, another method related to FBA [43]. This suppression of certain

metabolic pathways with an increased dependency on normally latent pathways

may provide novel antibiotic targets.

Community evolution

In evolution, genetic drift and selective pressures cause organisms to opti-

mize their cellular machinery for a particular niche [44]. This assumption of cellu-

lar optimization has made COBRA methods useful tools to investigate hypotheses

concerning organismal evolution, as reviewed by Papp, et al. [29]. In nature, the

optimization of microbial metabolism is a multi-species affair, as demonstrated by

the aphid endosymbiont Buchnera aphidicola. This descendant of the Enterobac-

teriaceae family has suffered drastic loss of genomic material as it evolved in its

hosts nutrient-rich innards. Since B. aphidicolais related to E. coli, reductive evo-

lutionary simulation (a gene deletion analysis derivative) [4] on the E. coli model

provided minimal metabolic gene set predictions. These predicted minimal sets

are highly consistent with the metabolic gene content of B. aphidicola (Fig. 1.3f).
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In addition, the predicted temporal order of gene loss was significantly consistent

with the phylogenetically reconstructed gene loss timing among the genomes of five

Buchnera species (Fig. 1.3g) [40], thus suggesting that the bacterium optimized its

pathway usage for its new rich habitat. Interestingly, metabolic pathways retained

in the computed minimal gene sets highlight the bacteriums role in symbiotic evo-

lution. Retained pathways contained reactions needed for producing riboflavin and

essential amino acids lacking from the aphid diet, thereby highlighting their role

in the symbiotic relationship [4]. Thus, COBRA methods are helping to describe

how the community shapes gene content in evolving symbiotic communities [29].

1.3 Extending systems biology to characterize

electromicrobiological applications

Genome-scale metabolic reconstructions have been used for a wide range

of applications [28] mainly facilitated by constraint-based modeling (COBRA)

[45]. The COBRA process consists of a network reconstruction workflow followed

by its conversion into a mathematical format. The reconstruction and model-

ing techniques have been well developed and documented over the last ten years

([46],[25],[47]). This technique was applied first on Geobacteraceae to build the

genome-scale metabolic model of Geobacter sulfurreducens [48] in an initial at-

tempt to determine if genome-scale models could be used to predict bioremedia-

tion. This model has been used to describe growth under a diversity of conditions

([49]); predict the phenotype of gene deletions with 90% success ([50]); and was a

valuable tool for metabolic engineering [51]. More recently, the metabolic model

for Geobacter metallireducens was also developed [52]. Additional modeling has

provided important insights into the factors leading to effective uranium bioreme-

diation by Geobacter species ([53]). The application of genome-scale models has

greatly improved understanding of bioremediation at the Rifle Site CO. However,

there has not been much progress in terms of modeling microbe electrode interac-

tions with Geobacteraceae. Therefore, the primary goal of the research described

here is to extend the scope of COBRA approaches and genome-scale systems biol-
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ogy methods to characterize electromicrobiological applications.

1.3.1 Characterizing microbial fuel cells

As mentioned earlier, while a large number of cytochromes (111) that fa-

cilitate the electron transfer to electrodes in microbial fuel cells, little is known

about the explicit mechanism of all of these outer membrane cytochromes and

their role in electron transfer. Attempts to improve current production by genetic

manipulation and overproduction of cytochromes or nanowires were met with little

success.[51]. This indicates that current production by bacteria in a microbial fuel

cell is a highly regulated process that requires more changes than in a few genes

related to bacterial respiration.

On the other hand, adaptive evolution and selection pressures have met with

greater success. By applying a selection pressure of -400mV at anodes, a novel

strain KN400 was isolated from the biofilm after 5 months. This strain was found

to be capable of enhanced electricity production (8 times higher power production)

and also possess clear phenotypic differences in the outer surface that interacts with

the electrode [54]. In order to completely characterize KN400 and understand the

basis for the observed phenotype it is extremely important to have the complete

genome sequence.

Chapter 2 of this thesis describes the application of next-generation se-

quencing (NGS) technologies to de novo assemble the complete genome sequence

of an enhanced electricity producing variant of G. sulfurreducens. Chapter 3 of this

thesis pertains to the characterization of regulatory networks of G. sulfurreducens

at multiple levels of complexity and at diverse growth conditions. Specifically,

this chapter deals with the properties of the sigma factor regulatory network at a

genome-scale for G. sulfurreducens growing as an electrogenic biofilm.
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1.3.2 Characterizing microbial electrosynthesis

In order to completely understand the process of microbial electrosynthe-

sis and successfully apply it for metabolic engineering efforts to produce liquid

transportation fuels and commodity chemicals, it is imperative to characterize

the metabolic and energetic constraints on carbon fixation and electron transfer

pathways. This is of prime importance especially because, the metabolism of the

bacteria acting as the catalyst is the effective rate limiting step for the process.

Constraint-based metabolic modeling and analysis has been a valuable tool for

discovering and understanding new capabilities and content in bacteria, as well as

in guiding synthetic biology efforts for targeted production. Chapter 4 presents

the genome-scale reconstructions of two such electrosynthetic bacteria and also the

description of a modeling framework to characterize microbial electrosynthesis.

1.3.3 Investigating direct interspecies electron transfer in

syntrophic associations

While several biochemical approaches have been able to describe the over-

all physiological activity and mechanisms of many syntrophic associations [55, 56],

there has been a lack of a mechanistic understanding of the relationship between the

complex nutritional and energetic dependencies and their functioning. This calls

for the development of genome-scale approaches that can provide a link between

the genotypes of the microbes, their reaction mechanisms and eventually their ef-

fect on the functioning of the microbial community [57, 58]. One of the major

goals of microbial ecology and systems biology is to comprehensively understand,

characterize and obtain meaningful insights into the various modes of interactions

in communities and their functional effect on the ecosystem [59]. However, the

full realization of the potential of CoSy biology has been impeded by the lack

of a comprehensive characterization of the various mechanisms of energy transfer

and their effect on the functioning of the microbial associations. In Chapter 5, a

multi-omics modeling workflow that combines genomic, transcriptomic, and phe-

notypic data with constraint-based modeling using genome-scale metabolic models
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to investigate metabolic dynamics and mechanisms of electron flow in syntrophic

co-cultures is presented. This workflow also includes the modeling of direct inter-

species electron transfer.

Chapter 1 is in part adapted from Lewis, N.E., Nagarajan, H, Palsson,

B.Ø. Constraining the metabolic genotype-phenotype relationship using a phy-

logeny of in silico methods. Nat. Rev. Microbiol. (2012) Feb 27;10(4):291-305.

doi: 10.1038/nrmicro2737.. The dissertation author was a co-author of this paper.



Chapter 2

De novo assembly of the

complete genome of an enhanced

electricity producing variant of G.

sulfurreducens

2.1 Abstract

State-of-the-art DNA sequencing technologies are transforming the life sci-

ences due to their ability to generate nucleotide sequence information with a speed

and quantity that is unapproachable with traditional Sanger sequencing. Genome

sequencing is a principal application of this technology, where the ultimate goal

is the full and complete sequence of the organism of interest. Due to the nature

of the raw data produced by these technologies, a full genomic sequence attained

without the aid of Sanger sequencing has yet to be demonstrated.

We have successfully developed a four-phase strategy for using only next-

generation sequencing technologies (Illumina and 454) to assemble a complete mi-

crobial genome de novo. We applied this approach to completely assemble the 3.7

Mb genome of a rare Geobacter variant (KN400) that is capable of unprecedented

current production at an electrode. Two key components of our strategy enabled

18
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us to achieve this result. First, we integrated the two data types early in the pro-

cess to maximally leverage their complementary characteristics. And second, we

used the output of different short read assembly programs in such a way so as to

leverage the cotmplementary nature of their different underlying algorithms or of

their different implementations of the same underlying algorithm.

The significance of our result is that it demonstrates a general approach

for maximizing the efficiency and success of genome assembly projects as new

sequencing technologies and new assembly algorithms are introduced. The general

approach is a meta strategy, wherein sequencing data are integrated as early as

possible and in particular ways and wherein multiple assembly algorithms are

judiciously applied such that the deficiencies in one are complemented by another.

2.2 Introduction

The sequencing of the first bacterial genome in 1995 has left a lasting impact

on the field of prokaryotic genomics. The next revolution in the field of genomics

has been the development and progress of high-throughput sequencing technolo-

gies. These next-generation sequencers, mainly those from Illumina and 454 Life

Sciences (454), generate millions of short reads that are more error-prone than the

traditional Sanger sequencing. However, these technologies have greatly reduced

the cost of sequencing per base and thus have opened up a wide range of applica-

tions. The major applications include resequencing of closely related individuals

for personalized genomics and de novo sequencing of new microbial genomes.

De novo sequencing using next-generation technologies has necessitated the

development of new algorithms for assembling the short and more error-prone reads

that they generate. Several de novo assembly algorithms based on de-Bruijn graphs

(EULER-SR [60] and Velvet [61]), hash-extension (VCAKE) [62], overlap layout

(EDENA) [63] and for paired-end reads (ALLPATHS) [64] have been recently de-

veloped. These algorithms are capable of assembling millions of short-reads from

next-generation sequencing technologies into thousands of contigs with varying de-
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grees of efficiency.

While 454 reads are longer than Illumina reads (˜250-450 bp compared to

˜36-100 bp), they have a higher indel error rate when compared to Illumina reads.

The longer 454 reads, though, inherently offer advantages over the shorter Illumina

reads for de novo assembly. Illumina reads, despite being much shorter, provide a

higher depth of coverage than 454 reads. This complementary nature of Illumina

and 454 reads has been exploited by some recent methods that have produced an

assembly of P. syringae pathovar oryzae, consisting of 126 scaffolds, 2002 unincor-

porated contigs, and an N50 of 91.5 kb [65]. Another report integrated these two

data types using a different approach to assemble an Acinetobacter baylyi strain

into 10 scaffolds with an N50 of 1Mb [66]. Salzberg and colleagues assembled a

virulent strain of P. aeruginosa PA01 into a large 6.3 Mb scaffold [67] using a

mixed comparative and de novo approach that included a gene-boosted strategy.

However, this approach heavily relied on comparative information and thus cannot

be classified as de novo.

Despite these recent reports that indicate significant progress by integrating

Illumina and 454 technologies, complete de novo assembly of microbial genomes

from only short reads and without aid from Sanger sequencing still remains an

unsolved challenge. This challenge is critically important [68], for a single, circular

nucleotide sequence of the complete chromosome is a necessary prerequisite for con-

fident and complete research based on a genome. As an answer to this challenge,

we have developed a strategy (Meta-Assembly) for complete, whole-genome de

novo assembly and applied it to a novel Geobacter variant (KN400) that is capa-

ble of unprecedented current production at an electrode [54]. Our Meta-Assembly

strategy adopts a bi-level integrative approach that leverages the different and

complementary results provided by multiple assembly programs over and above

the integration of complementary data types to obtain a complete, whole-genome

assembly. We have applied this strategy using 50X Illumina GA1 singleton reads

and 16X 454 GS-FLX paired-end sequencing reads and assessed our finished as-
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sembly by sequencing nearly 1% of the genome by Sanger sequencing and by a

comparison to the genome of a highly related strain.

2.3 Results

2.3.1 Meta-Assembly strategy

Our Meta-Assembly approach (Figure 2.1) consists of four distinct phases:

Hybrid Assembly, Scaffold Bridging and Finishing, Scaffold Ordering and Genome

Finishing.
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Figure 2.1: Assembly Strategy: A) Hybrid Assembly Phase; B) Scaffold Bridg-
ing and Finishing Phase; C) Scaffold Ordering Phase: The left branch of the de-
cision tree consists of permutations that can be confirmed by the PCR performed
while the right branch consists of those permutations that cannot be confirmed by
the particular PCR. The faded permutations are those which have been eliminated
by the PCRs while those in bold are those that are remaining. (Gel Inset: Showing
PCR products for all the 9 PCRs performed in the search strategy to confirm the
correct orientation of the scaffolds); D) Genome Finishing Phase.
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In the Hybrid Assembly phase (Figure 2.1A), we first filtered and assembled

the Illumina reads alone using the de-Bruijn graph based algorithm EULER-SR

[60]. This assembly consisted of 4233 contigs with an N50 of 1.48 Kb. We then

assembled these contigs, along with all of the reads not assembled by EULER-SR

[60] and all of the 454 reads (i.e. neglecting the pair information) using Roche’s

algorithm Newbler. This combining step was a critical aspect in maximizing the

complementary information in Illumina and 454 reads, as shown by the resulting

assembly of 270 hybrid contigs with an N50 of 92.67 kb (Table. 2.1). We then

leveraged the mate pair information by combining these 270 “hybrid” contigs with

the paired 454 reads using Newbler’s scaffolder. The contigs that did not form part

of one of the output scaffolds (unscaffolded contigs) were utilized later in the final

Finishing phase. This scaffolding step resulted in a greatly improved assembly,

giving three de novo scaffolds of lengths 3.18 Mb, 5.7 kb and 524 kb (respectively

scaffolds A, B, and C in Fig. 2.1A) with a total length of 3.7 Mb.

Exploiting the complementary nature of assembly algorithms signifi-

cantly improves the quality of the de novo scaffolds

The de novo scaffolds A and C from the Hybrid Assembly phase contained

numerous stretches of degenerate nucleotides, and to resolve them we applied a

post-processing step that exploited the coverage provided by short-reads. We de-

veloped a Scaffold Bridging and Finishing phase for the purpose of linking the de

novo scaffolds and for resolving the intra-scaffold degenerate nucleotide positions

that were introduced by the scaffolder (Fig. 2.1B). In this phase, we leveraged the

complementary nature of the assemblies generated by programs like EULER-SR

[60], Velvet [61] and Newbler. Since EULER-SR [60] and Newbler generate slightly

different sets of contigs, we created a second set of hybrid contigs from Illumina

and 454 reads using EULER-SR. We aligned these hybrid contigs against the de

novo scaffolds using NUCMER and analyzed the alignment for the threes scenarios

that could potentially bridge the scaffolds and resolve the degenerate nucleotides

(Methods and Fig. 2.2). We found that none of the hybrid EULER-SR [60] con-

tigs aligned in such a way that they bridged any pair of de novo scaffolds (Fig.
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2.2A). We were able to resolve all intra-scaffold degenerate nucleotide positions by

either substituting the corresponding bases from hybrid EULER-SR [60] contigs

that overlapped with flanking regions of Ns in the de novo scaffolds (Fig. 2.2B),

or by removing the degenerate bases when the regions flanking them aligned to

contiguous regions on the hybrid EULER-SR contigs (Fig. 2.2C). (We imple-

mented the same approach using hybrid contigs generated by Velvet [61] as the

complementary set instead of EULER-SR [60] and obtained a similar result.) At

this stage, our assembly could contain small indels due to 454 sequencing or due

to our custom program. To correct these, we aligned the Illumina reads using the

Smith-Waterman capabilities of MosaikAligner (Stromberg and Marth in prepa-

ration). We also analyzed these scaffolds for potential repeats/duplications by

examining the read coverage and also the multiplicity of the vertices in the repeat

graph that is part of EULER-SR’s output. This analysis revealed that scaffold B

was indeed duplicated and a BLAST [69] search identified it as an rRNA gene. At

the end of this phase, then, our assembly consisted of four scaffolds, identified in

Fig. 2.1B as A (3.15 Mb), B (5.7 Kb) occurring twice, and C (518 Kb).
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Figure 2.2: Custom program used in the Scaffold Bridging and Finishing
Phase of the assembly process.
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Table 2.1: Summary and Statistics of different stages of Meta-Assembly. Phase
A is the Hybrid Assembly that comprises of three distinct steps.

Phase Assembler No. of
Scaffolds

N50(kb) Degenerate
Positions

Assembly
Size(Mb)

A EULER-
SR(Illumina
Alone)

4233 1.487 0 3.51

A Newbler(454
Reads + Illu-
mina)

270 92.67 0 3.72

A Newbler Scaf-
folder (Mate
Pairs)

3 3184.3 41421 3.71

B Scaffold
Bridger/Finisher

4 3184.3 0 3.71

C Scaffold Order-
ing

1 3714.2 0 3.71

D Finisher 1 3714.2 0 3.71

An efficient PCR-based search strategy results in the correct orientation

of the scaffold and a circular genome

In the Scaffold Ordering phase, we considered the KN400 genome to be a

signed circular permutation of the four scaffolds–giving 24 unique possible permu-

tations (Fig. 2.1C). To determine the correct relative orientation of the scaffolds,

we employed a polymerase chain reaction (PCR)-based search strategy. Our ap-

proach consisted of nine PCRs, six of which serially eliminated 23 possible permu-

tations. The orientation ABcB was confirmed by the remaining three PCRs (Figure

1C). This PCR-based ordering approach enabled us to link the four scaffolds into

one circular chromosome of 3.71 Mb. This approach must not be confused with

the standard gap-closing approaches adopted, because we do not use PCRs to fill

gaps but only to confirm the relative orientation of the scaffolds and just link them

up. That is, there were no intervening nucleotides between the four scaffolds. In

fact, our approach goes a step further in validating the sequence by accounting

for the reverse complement of the scaffolds, thereby eliminating any potential false

rearrangements that might be introduced in the assembly.



25

Depth of coverage offered by Illumina reads corrects the indels intro-

duced by 454 and scaffold finishing and ordering:

We corrected for indels and any errors introduced during our scaffold fin-

ishing and scaffold ordering phase by aligning the Illumina reads to the ordered

scaffold ABcB using MosaikAligner (Stromberg and Marth in preparation). The

result was a complete circular genome consisting of 3,714,272 bp. The statistics of

changes made by this alignment are provided in Table 2.2. The genome can be

accessed from GenBank under the accession number CP002031.

Table 2.2: Changes made due to alignment of Illumina reads in the Genome-
Finishing Phase

Changes Number of Changes
SNPs 101
Deletions 18
Insertions 7

2.3.2 Assembly validation

To validate the de novo assembly approach adopted here and to estimate

the accuracy of the obtained genome sequence, we amplified 32kb (˜1% of the

genome) of KN400 and performed Sanger sequencing on both the forward and

reverse strands (Fig. 2.3A). We compared these sequenced regions to the cor-

responding genomic region obtained from Meta-Assembly using megaBLAST [70]

alignment algorithm.We found that out of the 32680 bp sequenced by Sanger se-

quencing, there were 32675 perfect matches, four SNPs and one 1 bp insertion with

respect to the assembled KN400 genome sequence. All of these differences occur in

a 30 bp region of the genome that is covered by just one 454 read. This means that

the accuracy of this short region is a direct reflection of the quality of the single

overlapping read. For this work, we utilized first generation short read technolo-

gies, and read quality and quantity have dramatically improved thereafter. Such

low coverage regions are rare even in our assembly, and with contemporary data

output they would likely be nonexistent. That is, investigators using our approach

with the improved read data would almost certainly not have such assembly er-
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rors because 1) there would likely be no such regions since data output is so high

and 2) the accuracy of individual reads is so much higher. It is worth pointing

out that any approach based on short reads would be limited by the single 454

reads spanning this region, but what sets our approach apart is that we were able

to actually place this single read in the context of assembling a circularly-closed

bacterial genome.

B

Gene Prediction:

RAST & Manual Curation

3356 ORFs, 54 RNAs

Comparative Genomics:

BLAST, Smith Waterman

 1. Genomic Regions unique to KN400.

 2. Genomic di!erences with PCA.

 3. Hypothesis on the evolution and 

      novel phenotype of KN400.

KN400 Genome sequence

A

PCR amplify 1% of 

genome. 

Sanger sequence

~ 80 pairs of Sanger reads 

  (both strands)

Align to corresponding 

KN400 regions 

(megaBLAST)

 
Accuracy of meta-assembly 

estimated.

Figure 2.3: Assembly Validation approaches: A) Sanger sequencing ap-
proach; B) Comparative Genomics approach.
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2.3.3 KN400 is the first microbial genome that has been

completely assembled de novo using only next - gen-

eration sequencing technologies

We predicted 3356 ORFs and 54 RNAs in the KN400 genome using the

RAST pipeline [71] and manual curation. We found the completed KN400 genome

to be collinear over its entire length with no major rearrangements (Fig. 2.4)–

and approximately 97% identical at the sequence level to Geobacter sulfurreducens

PCA [72]. Because the genomes were so similar, we evaluated the correctness of

our de novo assembly by assessing the commonalities and the differences between

PCA and KN400 genomes. We adopted a comparative genomics approach at the

ORF level to assess the differences and similarities between KN400 and PCA (Fig.

2.3B).

KN400

P
C

A

A

Figure 2.4: Genome-Level comparison of KN400 and PCA. Shown in this
figure is a dot-plot of the genome-wide alignment of KN400 and PCA. Along the
X-Axis is the KN400 genome and the PCA genome is shown along the Y axis.
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Meta-Assembly approach facilitates accurate prediction of genomic re-

gions unique to PCA

We identified three primary genomic regions that were specific to the PCA

strain and had no correspondence with the KN400 genome: a 32kb region be-

tween GSU0039 and GSU0064 (in KN400) (Region 1), a 78kb region between

GSU2105 and GSU2183 (Region 2), and a 16 kb region between GSU2588 and

GSU2601 (Region 3). The largest region, GSU2105-GSU2183, had 79 genes in

PCA between the orthologs to ORFs KN400 2161 and KN400 2163. Forty-six

of these genes were hypothetical, and 11 were transposases or other integrative

genetic elements. The remaining genes were predicted to encode several sensors

and regulators and a DNA-binding repair protein. The deletion of this region

was confirmed by performing a PCR over the break (Fig. 2.5). The second

largest region, GSU0039-GSU0064, had 26 genes in PCA between the orthologs to

KN400 0039 and KN400 0040. Fifteen of these were hypothetical and 4 were trans-

posases. In addition, there were 3 CRISPR-associated proteins. The third region,

GSU2588-GSU2601, had 11 genes in PCA between the orthologs to KN400 2568

and KN400 2571. Four of these were transposases and seven hypothetical proteins.

The abundance of transposons in these PCA-strain-specific regions suggests that

they resulted from the activity of mobile genetic elements within the Geobacter

sulfurreducens genome since the time the two strains diverged. None of these re-

gions encoded any protein predicted to be required for growth in the PCA strain

[48].
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200 bp

500 bp

PCA
KN

400

(-)
ve

PCA

BA

KN400 break

Forward Primer: TTTCCCCCGGAAAAGCAA

Reverse Primer: GAGCCCCTGCGCTAAATACATA

region 2

Figure 2.5: Gel Picture confirming the 79 kb deletion(Region2) in KN400.
PCR was performed with primer sets in order to amplify over the break (shown in
panel B). The expected product size is 207bp. Panel A shows that we can amplify
over the break only in KN400 and not in PCA, confirming the deletion of region 2
in KN400.
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Genomic Regions unique to KN400 relative to PCA provides insights

into possible evolutionary paths for KN400

Of the 3356 ORFs predicted in KN400, we found that 3088 (92%) had

complete reciprocal orthologs with the same relative ordering in PCA. Conservation

of the orthologs between the two genomes was quantified by the ratio of the bit

scores from a KN400-PCA to a KN400-KN400 BLAST alignment. The orthologs

had an average bit score ratio of 93.0%.

We compared the remaining 268 proteins in KN400 that did not have re-

ciprocal orthology in PCA to all proteins in the NCBI RefSeq database [73] to

determine the organism which encoded the protein with the highest sequence sim-

ilarity. Fifty-six proteins had no significant match in the database, indicating they

were specific to the KN400 genome, and were annotated as hypothetical proteins.

Thirty-six proteins were most similar to PCA, and 90 were most similar to other

Geobacteraceae, indicating that they were vertically inherited. This left 86 pro-

teins that were found in the KN400 but were most similar to a non-Geobacteraceae

species. These 86 genes were found primarily in 12 small regions in KN400 that

aligned poorly with the PCA genome. These regions ranged in size from 3.3 to

21.2kb, and seven of them included genes for at least one transposase or integrase.

In particular, copies of the two-subunit transposase ISGsu7 were associated with

strain-specific islands in both PCA and KN400. This supports the idea that these

regions may also have been produced by the activity of mobile genetic elements

since the two strains diverged.

C -type cytochromes play a key role in the transfer of electrons from central

metabolism to external electron acceptors like Fe(III) and electrodes [74]. Compar-

ative analysis of KN400 and PCA showed that several genes encoding cytochromes

contain single nucleotide polymorphisms between the strains, including the gene

for the outer-membrane cytochrome OmcS (GSU2504), which has been shown to

be required for electron transfer to insoluble Fe(III)[75]. In addition, analysis of

the genes specific to the KN400 strain also shows that there are at least three

transport proteins that are not found in the PCA strain. Further analysis of the

link between these types of genetic differences and the phenotype of the KN400
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strain during electricity production is underway (Butler J.E. et al, in prep).

2.3.4 Genomic characteristics of KN400 are typical of

microbial genomes at large

To assess whether KN400 was a particularly fortuitous choice for attempt-

ing a de novo assembly using only short reads, we assessed its genome complexity

by performing a comparative analysis using five different genomic properties that

have been characterized using 895 microbial genomes. We obtained data relat-

ing to the GC content, genome size, number of replicons, number of rRNAs and

number of tRNAs for a sample of 895 microbial genomes from the Genome At-

las Database (http://www.cbs.dtu.dk/services/GenomeAtlas-3.0/). We computed

the percentile ranks for KN400 genome to evaluate its relative complexity in the

space of all microbial genomes across these five dimensions (Fig. 2.6). Based on

size and GC content, the KN400 genome has percentile ranks of 53 (3.71 Mb) and

75 (61% G+C). Furthermore, about 60 % of the microbial genomes consisted of

a single replicon – as is the case with KN400. KN400 has two ribosomal RNA

operons, which is the most frequent number of rRNA operons among the 895 mi-

crobial genomes. Apart from large repeats like the rRNA operons, local inverted

repeats like transposases also characterize genomic complexity and thus have an

effect on the assembly process. To evaluate the transposase content of KN400, we

relied on a recent survey [76] of the transposases present in all available microbial

genomic and metagenomic databases. This survey found that the average genome

contains 11 transposases per 1kb. Based on this result, a genome the size of KN400

would be expected to contain 38 transposases. Our analysis indicated that KN400

contains 30 transposases. Based on these comparisons, we concluded that KN400

is a typical microbial genome and not an outlying “simple” genome.
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Figure 2.6: Density of five different genomic properties in the space of
microbial genomes. A) GC Content B) Genome Size C)Number of rRNAs D)
Number of Replicons E) Number of tRNAs. Shown in red circle, is the value of
KN400’s genomic property.
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2.4 Discussion

De novo assembly of complete microbial genomes using new DNA sequenc-

ing technologies and without the aid of Sanger sequencing has been an unsolved

challenge. We have developed a bi-level integrative approach, the Meta-Assembly,

that answers this challenge.

Our Meta-Assembly strategy is composed of four key phases. In phase one

we integrated Illumina and 454 reads at the very beginning of our assembly process

to generate hybrid contigs, instead of using Illumina reads only for error correction

of an assembly generated from just 454 reads [66]. This early integration step was

very important for reducing the number of degenerate nucleotide positions (Table.

2.1 & Table. 2.3) 3) and thus for the overall quality of the assembly. Incorporating

the Illumina reads early in the assembly process significantly reduced the number

of degenerate nucleotides in the assembly (˜41000 N’s) compared to when they

are used for just error correction of the assembly generated by Newbler (˜90,000

N’s). In addition, we used EULER-SR [60] instead of VCAKE [62] as the short

read assembler–in distinction from an earlier report [65]. The fact that de-Bruijn

graph based algorithms like EULER-SR [60] and Velvet [61] outperform VCAKE

[62] has been documented in an earlier study [77], and we found the same trend

with our data as well. Since assembly of Illumina reads is the first step of the

hybrid assembly phase, the quality of the initial assembly has the greatest impact

on the outcome of the entire process. Moreover, EULER-SR [60] is also capable of

performing a de novo assembly with a mixture of Illumina and 454 reads, but its

performance does not degrade with increasing read length ([77]). This proved to

be a significant advantage, for we were able to exploit the complementary nature

of EULER-SR [60] and Newbler to develop the Scaffold Bridging and Finishing

Phase–enabling us to resolve all of the degenerate nucleotides.

In the second phase, we maximized the complementary information pro-

vided by different assembly algorithms. This component of our strategy is a key

distinguishing aspect of our approach. Although Newbler alone was able to assem-

ble the reads into five scaffolds, the resulting assembly had a considerable number

of degenerate positions which could not be resolved just from an error correction
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Table 2.3: Comparison of the approach Meta-Assembly to other commonly used
assembly programs

Assembler Number of
Scaffolds

N50(kb) Degenerate
Positions

Assembly
Size(Mb)

Meta-Assembly 1 3714.2 0 3.71
EULER-SR 150 58 0 3.70
Velvet 329 45 486532 3.89
Newbler alone 5 3184.3 90449 3.72

step using Illumina reads (Table. 2.3). Similarly, while EULER-SR [60] and Velvet

[61] both generated high quality contigs, they do not perform as well as Newbler

with respect to leveraging the paired-end information in the 454 reads. Our results

clearly show that integrating more than one assembly algorithm is very important

for enhancing the quality of the assembly.

In the third phase, the simple PCR-based search strategy allowed us to

quickly order and orient the scaffolds into a circular genome. This is another unique

aspect of our approach in that we address the problem of relative orientation of

the scaffolds as well as their ordering with just a few PCRs. While we use the

PCRs to order the scaffolds into a circular genome, we did not fill any gaps as

no sequence information is obtained from the PCRs. We note that as technology

improvements allow paired-end sequencing reads with longer inserts, the necessity

of this PCR step will decrease.

In the fourth and final phase, we aligned Illumina reads against the ordered

scaffold to account for indels and errors induced during the scaffold finishing phase.

To our knowledge this is the first reported de novo assembly of a complete

genome using next generation sequencing technologies. Furthermore, our compre-

hensive comparative analysis of genomic characteristics of 895 microbial genomes

reveals that KN400 is a characteristic microbial genome and is not an outlier in the

space of all microbial genomes. We view our result as the demonstration of gen-

eral a strategy for assembling genomes, wherein multiple data types are integrated

at specific steps in the process to maximize the potential of their complementary

nature and wherein multiple assembly programs are utilized such that deficiencies
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in one algorithmic approach are compensated by the strengths of another algo-

rithmic approach. As new sequencing technologies and new assembly programs

become available, they can be readily incorporated in this framework. Genome

assembly will remain challenging for the foreseeable future, and we view the idea

of such a readily extensible meta approach as one of the most promising ways to

meet this challenge.

2.5 Materials and Methods

2.5.1 Data

We utilized an electrode isolated strain of a rare variant of Geobacter sul-

furreducens KN400that exhibits enhanced current production relative to Geobac-

ter sulfurreducens PCA [54]. For the purpose of a de novo assembly, we carried

out both Illumina sequencing and 454 Life Sciences pyrosequencing (shotgun and

paired end) for KN400. The details of the sequence data used are shown in the

Table 2.4.The paired end reads had an average insert size of 3020 bp and the

distribution of the fragment size is given in Fig. 2.7.
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Figure 2.7: Distribution of fragment sizes from 454 paired end sequenc-
ing data used for de novo assembly.
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Table 2.4: Details of the next generation sequencing data used for de novo as-
sembly of KN400

Technology Number of
Reads

Coverage

Illumina GA1 5048331 50X
Unpaired 454 125625 8X

Paired End 454 (GS FLX) 199523 8X

2.5.2 Meta-Assembly

Hybrid Assembly Phase

We assembled Illumina GA1 reads using the de-Bruijn graph based short-

read assembler EULER-SR [60] with the vertex size parameter set to 25. Prior to

assembling the short-reads, we filtered them for obvious failure modes using the fil-

terIlluminaReads script as part of the EULER-SR package [60]. We took all of the

454 reads as singletons (i.e. neglecting the paired end information) and assembled

them using Roche’s assembler (Newbler) with default parameters (minimum over-

lap length 40, minimum overlap identity 90%). In order to integrate the Illumina

and 454 technologies, we combined the contigs generated from the EULER-SR

[60] and Newbler assemblies using the incremental assembly option in Newbler to

generate a set of hybrid contigs. At this stage, we leveraged the mate-pair informa-

tion provided by the 454 reads in order to build scaffolds from these hybrid contigs.

Scaffold Bridging & Finishing Phase

In order to maximize the complementary nature of the assembly algorithms,

we developed a meta-approach that reconciles the assemblies produced by either

EULER-SR [60] or Velvet [61] and Newbler. The de novo scaffolds generated from

phase A are largely due to Newbler and contain a lot of degenerate nucleotides.

We created a second set of hybrid contigs from both the Illumina and 454 reads

using EULER-SR with a vertex-size of 25. Using the NUCMER alignment tool of

MUMMER package [78], we aligned these hybrid EULER-SR [60] contigs against
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the de novo scaffolds with the break length parameter of 10,000. We further

implemented a custom program (Fig. 2.2) which accounted for the following

three scenarios, in order to link up the de novo scaffolds and resolve the degenerate

nucleotides.

• If any of these contigs aligned in such a way that they were bridging any two

of the de novo scaffolds, those scaffolds were linked up (Fig. 2.2A).

• In the event that these contigs overlapped with the flanking regions of degen-

erate nucleotides (N’s), we replaced the N’s with the corresponding region of

the contig.(Fig. 2.2B)

• If the regions flanking the degenerate positions aligned to contiguous regions

in the contig set, we removed that stretch of degenerate nucleotides (Fig.

2.2C).

We further augmented this custom program with an alignment of Illumina reads

against these scaffolds in order to account for the indel errors due to 454 sequencing.

We used the MosaikAligner in the “all” alignment mode with a hash size of 13 and

20 bp as alignment candidate threshold, allowing a maximum of 4 mismatches.

Scaffold Ordering Phase

We considered the KN400 genome as a signed circular permutation of the

finished scaffolds and adopted a PCR based scaffold ordering approach in order

to orient them into a circular genome. We designed a search strategy comprised

of nine PCRs in order to determine the correct orientation. For performing the

PCRs, total G. sulfurreducens (KN400) genomic DNA was prepared using the

MasterPure Complete DNA Purification kit (Epicentre Biotechnologies, Madison,

WI) according to manufacturer’s directions. Taq DNA polymerase (QIAGEN Inc.,

Valencia, CA) was used for all PCR amplifications. The sequence and the location

details of the primer sets used for the PCRs are provided in Table. 2.5, while the

combinations of the primer pairs for each PCR and the expected amplicon size are

given in Table. 2.6.
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Table 2.5: Sequence and location of primers.( Lower case denotes reverse
complement)

Primer Sequence Location,Scaffold
B2F(b1R) TCAGCAACTCCCCTACTCCCATCA end,B (beginning,b)
B1R(b2F) CATCATCTCGCCTGCCGTGTCA beginning B,(end b)
A2F CTGGCGAAGGCGAACTGAAAGAC end,A
A1R TGACGCGACTCCTGATTGACCTC beginning,A
C2F(c1R) CGTGAAGCGATGTGCGAACTGAAC end,C (beginning,c)
C1R(c2F) GGGGCTCGTGAAGTCCAACAGTGA beginning C,(end c)

Table 2.6: Primer pairs and product analysis of each PCR during the Scaffold
Ordering Phase

PCR Primer pairs Product
Ob-
served
(Y/N)

Amplicon
size(if
ob-
served)

BB/bb B2F,B2R No NA
Bb B2F,b1R No NA
bB b2F,B1R No NA
Ab A2F,b1R No NA
BC B2F,C1R No NA
cB c2F,B1R Yes 351bp
AB A2F,B1R Yes 313bp
Bc B2F,c1R Yes 387bp
BA B2F,A1R Yes 404bp

Genome Finishing Phase

In order to account for any possible indel errors due to the 454 sequencing

as well as our Meta-Assembly approach, we re-aligned all of the Illumina reads to

the ordered scaffold using MosaikAligner (Stromberg and Marth in preparation)

with the same parameters as described in Phase B of the Meta-Assembly approach.

2.5.3 Validation by Sanger Sequencing

We validated our assembly approach and computed error rates by perform-

ing Sanger sequencing of about 1% of the KN400 genome.
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2.5.4 Gene Prediction and Comparative Analysis

At each step of the finishing process, we predicted open reading frames

(ORFs) in the KN400 draft genome using the Rapid Annotation by Subsystem

Technology (RAST) pipeline [71] in order to check if the standard properties like

gene density were characteristic of a bacterial genome. We performed a whole

genome alignment of KN400 and PCA using Mauve (Darling et al., 2004) with a

seed-weight of 15, a minimum island size of 50, and the Muscle 3.6 algorithm in

order to check for completeness of all the homologous gene sequence. We further

confirmed the absence of any genes with respect to PCA by aligning the Illumina

reads to the corresponding region.

Comparative Genomics Analysis

We obtained the PCA genome sequence, translated ORFs, and functional

annotation from NCBI (RefSeq ID NC 002939) and the RefSeq database [73] and

performed an alignment using BLAST [69] . We extracted the Identifiers, func-

tional annotations, and organism names for the closest matches for all ORFs. We

calculated bit score ratios as the bit score of the best match in a KN400-PCA

or KN400-RefSeq BLASTp or tBLASTn comparison adjusted by the bit score of

the KN400 protein aligned to itself or its own genome. Orthologs were defined

as reciprocal best matches in whole-genome KN400-PCA BLASTp comparisons

[79]. We also performed a bidirectional Smith-Waterman alignment of the ORFs

of KN40 and PCA using the ssearch35 program of the FASTAv3.5 package [80].
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Chapter 3

Characterizing the interplay

between multiple levels of

organization of bacterial sigma

factor regulatory networks

3.1 Abstract

Bacteria contain multiple sigma factors, each targeting diverse, but often

overlapping sets of promoters, thereby forming a complex network. The layout and

deployment of such a sigma factor network directly impacts global transcriptional

regulation and ultimately dictates the phenotype. Here, we integrate multi-omic

datasets to determine the topology, the operational, and functional states of the

sigma factor network in Geobacter sulfurreducens. This revealed a robust network

with a unique topology of interacting sigma factors. Analysis of the operational

state of the sigma factor network showed a highly modular structure with σN being

the major regulator of energy metabolism. Surprisingly, the functional state of the

network during the two most divergent growth conditions was nearly static, with

sigma factor binding profiles almost invariant to environmental stimuli. This first

comprehensive elucidation of the interplay between different levels of the sigma fac-

42
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tor network organization is fundamental to characterize transcriptional regulatory

mechanisms in bacteria.

3.2 Introduction

The core RNA polymerase in bacteria typically consists of five core sub-

units (α2ββω) and a dissociable sixth subunit, the sigma factor (σ), which is

critical for transcriptional initiation. When a given sigma factor associates with

the core RNA polymerase, the resulting holoenzyme acquires the ability to rec-

ognize promoter motifs and initiate transcription. All bacterial species contain a

housekeeping sigma factor that is responsible for initiation of transcription from

the majority of the promoters in the genome. Additionally, bacteria encode several

to dozens of alternative sigma factors that control transcriptional initiation of a

subset of the genes [81]. The number and the utilization of these alternative sigma

factors varies widely among different bacterial species, and is related to the diver-

sity of lifestyles [81, 82]. For example, while Escherichia coli, encodes seven sigma

factors, the soil bacterium Streptomyces coelicolor, contains 60 alternative sigma

factors [81]. The roles of these alternative sigma factors also differ substantially

and can range from spore formation, to stress responses, such as those occurring

while in stationary growth phase or during heat shock. Furthermore, these differ-

ent sigma factors often interact with each other by targeting overlapping sets of

promoters, thereby resulting in a complex regulatory network to modulate the va-

riety of cellular process [83]. Several approaches, mostly computational, have been

employed to determine binding sites for the elucidation of the regulatory network

[84, 85, 86]. While computationally derived binding sites have been used to recon-

struct sigma factor networks, these methods do not account for condition specific

binding information, and thus cannot determine the functional state of the net-

work. Therefore, experimental methods, such as chromatin immunoprecipitation

coupled to microarray (ChIP-chip) or to sequencing (ChIP-seq), have recently been

applied to determine condition specific binding of sigma factors to DNA directly

[87, 88]. Recently, we demonstrated the utility of a systems approach that inte-
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grates a diversity of multi-omics data to characterize the structural, operational,

and functional organizations of the genomes of the generalist E. coli and the spe-

cialist Geobacter sulfurreducens [89, 90]. Here, we elucidated the comprehensive

sigma factor network in G. sulfurreducens, a bacterium that has been studied ex-

tensively for its impact on the natural environment and its capability of electricity

production from organic waste [91]. The network of the four major sigma factors in

G. sulfurreducens (σD, σH , σN , and σS) was resolved by combining experimentally

determined sigma factor binding with computational approaches in the context

of the previously described transcriptional unit architecture [90]. In addition to

determining the topology of the G. sulfurreducens sigma factor network, we char-

acterized its operational state and its effect on the physiological functional state of

the cell. This comprehensive multi-level characterization of sigma factor regulons

and their complex regulatory network serves as the scaffold necessary to build the

entire transcriptional regulatory network.

3.3 Results

3.3.1 The topology of the sigma factor network in Geobac-

ter sulfurreducens

G. sulfurreducens encodes six different sigma factors. In addition to the

housekeeping σD, it also contains the extracytoplasmic stress σE , the flagellar σF ,

the heat stress σH , the nitrogen limitation related σN , and the stress and starvation

induced σS.
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Figure 3.1: Sigma factor network topology: (a) The topology of the in-
teraction network of the four major sigma factors in G. sulfurreducens. (b) The
topology of the interaction network of the four major sigma factors in E. coli. The
sigma factor network topology of G. sulfurreducens suggests a robust network with
all of the alternative sigma factors (σH , σN , and σS) regulating the housekeeping
σD. Auto-regulation of three sigma factors (σD, σH , and σN) in G. sulfurreducens
further highlights critical topological differences compared to the E. coli sigma
factor network.
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The network topology of the sigma factor network was determined using a

ChIP-chip approach to obtain the genome-wide binding profiles for the four major

sigma factors σD, σH , σN , and σS under various growth conditions (Supplementary

Table S1). Binding profiles of σD, σN and σS were obtained from cells grown with

acetate as electron donor either planktonically with fumarate or as a biofilm on an

electrode serving as the terminal electron acceptor. Furthermore, binding profiles

of σH and σN were obtained from cells under heat shock stress and nitrogen limi-

tation, respectively. σF was excluded since the 32 flagella genes controlled by this

sigma factor were found to be usually silent [54, 92]. Although several conditions

were assayed to induce σE , no suitable condition for σE could be obtained. Binding

peaks for σD, σH , σN , and σS under various conditions were identified by applying

two peak calling algorithms (NimbleScan and MA2C [93]) to the ChIP-chip data

sets. Peaks that were identified by both algorithms with at least a two-fold en-

richment were considered binding regions (see Methods). These bona fide binding

regions were subsequently mapped to the previously elucidated transcription unit

architecture of G. sulfurreducens [90] to determine the regulon of each sigma factor.

Overall, a total of 1,522 binding regions were identified in the G. sulfurreducens

genome (Table. 3.1 and Supplementary Table S1). These binding regions were

mapped onto the promoter regions of 1,339 transcription units, covering greater

than 80% (2,620 genes) of all genes. A total of 652 binding regions were identified

for σD, which controlled transcription of about 60% of the genome (2,050 genes),

confirming the role of σD as housekeeping sigma factor.

Table 3.1: Properties of regulons of the four major sigma factors in Geobacter
sulfurreducens

Sigma Factor Binding
events

Regulated
TUs

Regulated
genes

RpoD 652 875 2050
RpoH 275 337 791
RpoN 349 383 895
RpoS 246 357 838

Multiple genome-wide binding sites for σH (275), σN (349), and σS (246)

were identified. These binding sites controlled transcription of 802 (σH), 909 (σN),
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and 863 (σS) genes (Table. 3.1). We confirmed many genes previously described to

be regulated by σH , such as heat-inducible chaperones (e.g., hspA) [94], or by σN ,

such as the nitrogenase molybdenum-iron cofactor biosynthesis protein (nifEN)

[95]. In addition to nifEN being transcribed from a σN -specific promoter, σN was

the only sigma factor controlling this essential gene for nitrogen fixation. These

results are conform to previously identified regulons of these sigma factors1. Each

alternative sigma factor in G. sulfurreducens directly regulates 25% of the ORFs

in the genome (Table. 3.1), suggesting a broader role for these alternative sigma

factors in G. sulfurreducens. The topology of the G. sulfurreducens sigma factor

network indicated a robust network with all the alternative sigma factors (σH , σN ,

and σS) regulating the housekeeping σD (Fig. 3.1a). Specifically, σN is found

to auto-regulate itself and regulate σD, thereby suggesting a pronounced role for

σN in addition to σD. In contrast, σH , σN , and σS in E. coli exhibit a different

topology (Fig. 3.1b). Neither σH nor σN auto-regulate themselves in E. coli and

σN does not regulate σD. These topological differences enable G. sulfurreducens to

tightly regulate the expression of its sigma factors through feedback mechanisms

and thus impacting the operation of the sigma factor network.

3.3.2 The operational state of the sigma factor network

To determine the operational state of the sigma factor network in G. sul-

furreducens, we performed a functional enrichment analysis for the regulons of all

four major sigma factors (σD, σH , σN , σS). Genes with known functions were as-

signed to 24 subsystems based on the SEED database [96], and a hypergeometric

test was used to determine if a particular functional category is enriched in the regu-

lon. The regulon of σD was enriched in all major biosynthetic processes (nucleotide

and amino acid metabolism), and in cell wall and capsule synthesis. The regulon

of the heat stress σH was also enriched for nucleotide and amino acid biosynthetic

processes. The robust topology of the sigma factor network was evident from the

enrichment for genes involved in membrane transport and protein metabolism in

regulons of all four major sigma factors. Expectedly, σN was the main sigma factor

involved in regulating nitrogen metabolism. However, as hinted at by the topology
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of the network, the enrichment analysis revealed an expanded role for σN in the

operational state of the network. In addition to nitrogen metabolism, the σN regu-

lon was enriched for genes involved in other cellular processes, such as cell wall and

capsule synthesis, and membrane transport. Most importantly, σN was found to be

the primary sigma factor that regulates energy metabolism and respiration. Also,

18 genes that are transcribed from σN -dependent promoters encode two compo-

nent system genes, indicating its significant role in cell signaling and transcription

regulation. These results suggest a much more pronounced role for σN in G. sul-

furreducens than previously described. σS was the only other sigma factor whose

regulon was also enriched for genes involved in energy metabolism and respiration.

To assess the impact of the robust topology at the operational level, we investi-

gated the effect of genetic perturbations on the sigma factor network operation.

Since no validated essential gene list is available for G. sulfurreducens, we applied

an in silico knock-out approach using a genome-scale metabolic model [48, 97].

Such approaches have been successfully applied to predict gene essentiality [98]. A

total of 809 genes present in the G. sulfurreducens metabolic reconstruction were

individually knocked-out in silico, and growth simulations representing four differ-

ent conditions were performed. These conditions included planktonic growth with

either Fe(III) or fumarate as electron acceptor, growth as an electrogenic biofilm on

an electrode, and planktonic growth under nitrogen limitation. A gene was consid-

ered essential if the corresponding in silico knock-out resulted in growth-deficient

simulations in all four growth conditions. Most of the essential metabolic genes

were under the control of σD (Fig. 3.2). Among the 229 essential genes identified,

75 of them were controlled solely by σD, whereas over half of them (123) were reg-

ulated by σD and at least one other alternative sigma factor (Supplementary Table

S2). Only a handful of essential genes were not transcribed from a σD promoter,

but from an alternative sigma factor promoter. For example, the gene GSU1745

that encodes the essential outer membrane porin OmpA [99] was only associated

with a σN -dependent promoter. This observation is consistent with the previously

failed attempts to generate a rpoN (σN) knock-out strain for G. sulfurreducens

[95]. In addition to the genes essential across all four conditions, several genes
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were determined to be essential only under certain specific conditions. Moreover,

some of these genes were regulated solely by the housekeeping σD and few of them

were regulated by one of the alternative sigma factors. For example, 7 out of 17

genes that are involved in nitrogen metabolism had only σN -dependent promoters

associated, and were found to be essential only under nitrogen limiting growth.

These results clearly indicated that although most cellular processes essential un-

der all conditions are regulated by σD, certain condition-specific essential processes

are controlled by alternative sigma factors. Furthermore, 15 of the 229 essential

genes had promoters associated with all four sigma factors. These included genes

encoding for ATP synthase, as well as genes involved in amino acid and nucleoside

biosynthesis. By utilizing multiple sigma factors for the most critical genes in the

metabolic pathways, cells are able to fine tune expression levels under various con-

ditions to easily adapt to environmental changes. A similar utilization of multiple

sigma factor was also observed for genes related to other crucial cellular processes

that are not part of the metabolic reconstruction, including genes involved in tran-

scriptional machinery, such as infA, infB (transcription initiation factors), nusA

(transcription elongation factor), rho (transcription termination factor) and rpoD

(σD) itself. This broader role for alternative sigma factors in the operation of G.

sulfurreducens sigma factor network is a likely reflection of its robust topology.
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Figure 3.2: Operational state of the G. sulfurreducens sigma factor net-
work: The interaction network of the four major sigma factors with the metabolic
genes in G. sulfurreducens is shown. An in silico gene essentiality screen was car-
ried out under four different conditions to assess the effect of genetic perturbations
on the sigma factor network operation. The genes determined to be essential under
all four conditions are shown by red nodes; other non-essential genes are shown in
gold.
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3.3.3 Functional effect of the sigma factor network opera-

tion

One of the important features of bacterial sigma factor usage is the selective

preference for use of different sigma factors depending on the growth condition.

For example, it is known in E. coli that the intracellular level of σS is extremely

low during exponential growth. Only when cells are in stationary phase, σS accu-

mulates in the cell, binds to promoters of its regulon and activates their expres-

sion [100]. To investigate the functional state of the sigma factor network in G.

sulfurreducens, we compared binding profiles of σD, σN , and σS under different

growth conditions. The largest change in the transcriptome between all conditions

examined was observed while cells were grown planktonically compared to an elec-

trogenic biofilm on an electrode. The two divergent physiological states resulted

in a difference of expression (at least two-fold) of >10% of the genome between

these conditions (Fig. 3.3a). Comparison of sigma factor binding profiles revealed

that all three sigma factors were active in both the planktonic cells as well as

in the biofilm. σS, different to its counterpart in other bacteria, regulated over

800 genes in the exponential phase where cells had sufficient nutrients and carbon

supply. Almost 30% of these genes were transcribed only from a σS-dependent

promoter under this condition. The overall binding profiles of the three sigma fac-

tors during these two divergent physiological states were surprisingly similar (Fig.

3.3b), indicating that differential gene expression was not primarily regulated at

the sigma factor level in G. sulfurreducens. The σD regulon expanded from 1,974

genes in planktonic cells to 2,011 genes in electrogenic biofilm-forming cells with

only 40 genes exhibiting differential σD binding under these two conditions. The

σN regulon changed from 863 to 856 genes, with 50 genes differentially expressed.

The functional regulon for σS in exponentially grown planktonic cells (814 genes)

was similar to the one for cells forming an electrogenic biofilm (807 genes), with

81 genes differentially expressed. To further elucidate the functional state of the

sigma factor network, we assessed alternative usage of sigma factors under different

growth conditions, and identified genes containing binding sites for multiple sigma

factors in the promoter region. Although the transcriptome of the cell changed by
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more than 10%, different sigma factor usage at the same promoter region was not

observed.
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Figure 3.3: Functional state of the G. sulfurreducens sigma factor net-
work: (a) Comparative transcriptomic profile between G. sulfurreducens grown
as planktonic cells reducing fumarate and as an electrogenic biofilm on an anode.
About 10% of the transcriptome showed differential expression between the two
conditions. (b) Venn diagram showing the comparative binding profiles of the
three sigma factors σD, σN , and σS for planktonic cells and electrogenic biofilm.
The size of each sigma factor regulon from electrogenic biofilm cells is shown in
parentheses. The invariant binding profiles between the two conditions indicate a
near-static functional state for the sigma factor network in G. sulfurreducens.
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This near-static nature of the sigma factor binding profiles prompted us to

analyze the network under additional growth conditions, early stationary phase (for

σS) and nitrogen fixing condition (for σN). The binding profiles of σD, σN , and σS

were highly similar across these growth conditions as well. For example, the binding

profiles of σS in exponentially grown cells were similar to early stationary phase

(both planktonic), confirming that σS is present and active under both exponential

and stationary phases of growth in G. sulfurreducens (Fig. 3.4). Only a few cases

of conditional sigma factor usage were identified. Genes that are directly related

to nitrogen fixation were not transcribed when ammonium was used as nitrogen

source, but were specifically activated under nitrogen limitation with binding of

σN in their promoter regions, indicating conditional binding and activity of σN at

these promoters. This conditional usage of σN is likely due to the difference in

the modulation of σN activity. Unlike the other sigma factors, the activity of σN

depends on the expression and binding of σN -dependent transcription factors to

σN targeted motifs.
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Figure 3.4: Analysis of RpoS protein concentrations during growth of
G. sulfurreducens. (A) Samples were collected from batch grown, wild type G.
sulfurreducens on fresh water acetate media with fumarate as an electron acceptor.
(B) Proteins were separated using electrophoresis on a 10% polyacrylamide gel.
RpoS protein concentrations during exponential phase and stationary phase were
determined using Western blot analysis. RpoS ( 42 kDa in size) concentrations
remained at fairly constant levels across all the five time points (P1-5).
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While the comparative analysis of the sigma factor binding profiles suggests

a near-static functional state of the sigma factor network, functional enrichment

of the different regulons indicated modularity in its operation. To gain further

insight into the effect of this modularity on the physiology of G. sulfurreducens,

we analyzed the changes in expression between the two most divergent growth

conditions (planktonic and electrogenic biofilm) in the context of the genome-scale

metabolic network [48]. This analysis revealed that σN primarily controls the en-

ergy metabolism during the shift from planktonic growth reducing fumarate to

growth as an electrogenic biofilm, reiterating the trends observed from the func-

tional enrichment analysis. Specifically, the gene encoding for DcuB, the terminal

step in fumarate reduction, is regulated by σN and its expression decreases by

more than 4-fold during the shift to electrogenic growth. Moreover, OmcZ and

other outer membrane cytochromes (OmcO, OmcN, and OmcP) that are involved

in electron transfer to the anode [101] are also under σN control and their expres-

sion levels are upregulated during this particular shift. Additionally, σN -controlled

uptake hydrogenases that are not required for growth of G. sulfurreducens on the

electrode were downregulated over 8-fold (Fig. 3.5). On the other hand, σD reg-

ulated biosynthetic processes that are critical during this particular growth shift.

This is manifested in the 2-fold increase in expression of a gene involved in iron-

sulfur-cluster biosynthesis, recharge and transfer (GSU2570) during growth as an

electrogenic biofilm. These results indicate that the near-static functional state of

the sigma factor network mirrors the modularity of its operational state.
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Figure 3.5: Coordinated regulation of energy metabolism by the alter-
native sigma factors: Analysis of the differences in expression and sigma factor
binding profiles between the two divergent growth conditions (planktonic cells and
electrogenic biofilm) in the context of the genome-scale metabolic network. A
snapshot of the key steps involved in the energy metabolism during this shift is
shown. σN primarily regulated energy metabolism during this shift by controlling
the terminal steps in the respective respiratory processes (DcuB, and the outer
membrane cytochromes, OmcO/P and OmcZ). σS regulated the NADH dehydro-
genase (nuo operon). The genes upregulated and downregulated in this shift are
shown in green and red, respectively. OmcZ and NuoIJKL were also found to be
co-regulated by σD. The alternative sigma factors thus play a major role in the
tight regulation of energy metabolism during this shift.
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3.4 Discussion

In eubacteria, sigma factors play a critical role in transcriptional initia-

tion by conferring promoter-binding specificity to the bacterial RNA polymerase.

Understanding the complex network formed by the housekeeping and alternative

sigma factors and their regulons is foundational to elucidate mechanisms of tran-

scriptional regulation and to realize the genotype-phenotype relationship. A com-

prehensive study of bacterial transcriptional regulation relies on extensive genome-

scale characterization of multiple cellular processes. Here, we used the multi-

dimensional annotation of the G. sulfurreducens genome [90] as the pivotal scaffold

to gain further insights into its transcriptional regulatory mechanisms. Specifically,

we expanded our systems approach that integrates a wide range of omics data, to

unravel the transcriptional regulation modulated by sigma factors in G. sulfurre-

ducens. We determined the binding sites of sigma factors on a genome-wide basis

and reconstructed the regulons for each of them under a variety of physiological

states. In addition to determining the topology of the sigma factor network, we

characterized the operational state of the network and analyzed its effect on the

functional state (Fig. 3.6). This comprehensive sigma factor regulatory network

covers more than 80% of the genome and provides a framework to reconstruct the

complete transcriptional regulatory network in this organism.
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Figure 3.6: Interplay between the multiple levels of sigma factor network
organization. The robust topology of the sigma factor network in G. sulfurre-
ducens suggests a broader role for alternative sigma factors. This resulted in a
modular operational state with σN primarily regulating genes involved in energy
metabolism and maintaining redox homeostasis, while the housekeeping σD regu-
lated biosynthetic processes. The sigma factor network has a near-static functional
state with invariant binding profiles between the two divergent growth conditions
(planktonic cells and electrogenic biofilm). Analysis of the transcriptomic changes
and sigma factor binding profiles during this shift indicated that the necessitated
tight regulation of energy metabolism during this shift is mirrored in the modular-
ity of the operational state. This coordinated regulation in the operational state
can further be attributed to the robust topology of the sigma factor network where
the major sigma factors auto-regulate each other providing feedback mechanisms
to fine tune expression.
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Using the transcription unit architecture, we determined that the house-

keeping σD has over 2,000 genes in its regulon, and the other three alternative sigma

factors each regulate the expression of 25% of the G. sulfurreducens genome. The

experimentally determined transcription unit architecture and sigma factor regu-

lons further enabled us to elucidate the binding motifs of these four major sigma

factors. The binding motifs of the three σ70 family sigma factors (σD, σH , and

σS) closely resembled the classic sigma factor binding motifs in bacteria, but show

slight differences in individual base pairs within the motifs (Fig. 3.7). The motif

of σN is comparable to the known σN motif described in other bacteria (Fig. 3.7).

The reconstructed network further revealed that all of the alternative sigma fac-

tors in G. sulfurreducens regulate the housekeeping σD, thereby forming a robust

network. Another unexpected feature of the sigma factor network in G. sulfurre-

ducens is the auto-regulation of its sigma factors. Both σN and σH auto-regulate

their own expression, which is not the case in E. coli, but known in other bacte-

ria, such as in Rhizobium leguminosarum (σN) [102] and Caulobacter crescentus

(σH) [103]. This feature could influence the operation of the sigma factor network

in G. sulfurreducens by providing a direct feedback mechanism to fine-tune its

sigma factor transcription levels. Additionally, the topology of the sigma factor

network suggests a greater role for the alternative sigma factors than what has

been reported for E. coli.

The robust topology of the network resulted in a modular operational state

with σN primarily regulating genes involved in energy metabolism and maintain-

ing redox homeostasis, while the housekeeping σD regulated biosynthetic processes.

Contrary to its typical role of controlling stress response [104], the regulon of σS in

G. sulfurreducens is enriched for regulating energy metabolism. Consistent with

this functional difference, the activity and protein levels of σS are almost un-

changed between exponential and stationary growth phase (Fig. 3.4), a feature

typically exhibited by housekeeping sigma factors. However, the size of RpoS (40

kDa) [105] and its binding motif are typical of bacterial σS (Fig. 3.4, Fig. 3.7).

Taken together, the lack of an auto-regulatory feature and a capability to regulate

other sigma factors further preclude the classification of this σS homolog in G.
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sulfurreducens as an alternative housekeeping sigma factor. It could be speculated

that another sigma factor, particularly σE , controls the main stress response in G.

sulfurreducens. However, induction of σE was neither observed under stationary

phase growth nor during heat or cold shock, suggesting a limited role of σE under

these conditions. This leads us to postulate that there is no designated sigma factor

in G. sulfurreducens that is predominantly active under stationary phase growth.

The effect of the robust topology on the operational state was further manifested

in the shared regulation of 40% of the genes in the network by at least two sigma

factors, providing a regulation redundancy that guarantees robust expression of

these genes regardless of environmental stimuli. Indeed, most critical genes of cel-

lular functions, such as ATP synthase, were under the regulation of σD and at least

one alternative sigma factors. Certain condition-specific essential genes, however,

were regulated solely by alternate sigma factors. For instance, all genes encoding

key enzymes for nitrogen assimilation (GDH, GS, and GOGAT) and the essen-

tial outer membrane porin (ompA) are transcribed by σN -dependent promoters.

Therefore, while it has been possible to delete σS in G. sulfurreducens without

affecting its viability [106], σN deletion has not produced a viable phenotype [95].

Bacteria selectively regulate the relative abundance of different sigma factors in

response to environmental stimuli. Typically, the usage of anti-sigma factors or

sophisticated protease cascades [82, 107] can lead to a dynamic sigma factor reg-

ulatory network in which different portions of the network are switched on or off

depending on the environment stimulus. However, our reconstructed sigma factor

regulatory network in G. sulfurreducens substantially differs from this model with

a near-static network state between diverse physiological conditions. Systems-level

analysis of transcriptomic changes and comparative binding profiles between the

most divergent growth conditions attributed this difference in the functional state

to topological and operational properties of the sigma factor network. In G. sul-

furreducens, σD regulates biosynthetic processes and other housekeeping functions,

while σN is the primary sigma factor that regulates energy metabolism to maintain

redox homeostasis. The two divergent growth conditions evaluated here represent

very different modes of respiration, with electrogenic biofilm growth requiring ex-
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tracellular electron transfer as opposed to intracellular fumarate reduction during

planktonic growth. Both these growth modes necessitate a tight regulation of

energy metabolism and maintenance of redox homeostasis, unlike the shift from

respiration to fermentation in E. coli. Thus, the modular operational state is

fundamental to the tight regulation of energy metabolism manifested in this near-

static functional state of the sigma factor network. This is likely a consequence of

the potential feedback mechanisms revealed by the robust topology of the network

(Fig. 3.6).

Figure 3.7: Binding motif of the four major sigma factors in Geobacter

sulfurreducens
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The mechanisms controlling the levels of alternative sigma factors and how

they compete with σD for the core RNAP under different conditions needs further

investigation. It is known for E. coli and some other bacteria that the σD-sequester

Rsd plays an important role in modulating σD availability and therefore facilitates

the recruitment of alternative sigma factors. However, a homolog of this protein

and other known anti-sigma factors could not be identified in G. sulfurreducens.

Additionaly, the G. sulfurreducens genome does not encode for the ClpXP protease

cascade (including RssB and SprE) [108] to regulate the stability of σS, allowing

the accumulation of stable σS during exponential phase (Fig. 3.4). This further

highlights the difference in the modulation of the sigma factor network of G. sul-

furreducens and E. coli. It is possible that in a tightly controlled near-static sigma

factor network, the dynamic response of the organism to environmental stimuli

occurs predominantly at the level of the transcriptional regulatory network (Fig.

3.6). Also, it is known that ppGpp could target the RNA polymerase holoenzyme

and modulate its activity on promoters [109]. Monitoring intracellular levels of

ppGpp in G. sulfurreducens revealed that relGsu (RelA homolog) is involved in

stress response such as stationary phase growth [110]. To evaluate the physiological

role of sigma factors in response to such stress conditions, it would be informative

to investigate the intracellular ppGpp levels in a double mutant of G. sulfurre-

ducens (∆rpoS::relGsu). Additionally, post-transcriptional regulation, or trans-

acting transcription factors might be deployed instead to tune gene transcription

in response to environmental changes in G. sulfurreducens. In summary, we have

experimentally reconstructed a comprehensive sigma factor regulatory network in

G. sulfurreducens. The robust network topology of this regulatory network is dif-

ferent from what has been described so far for other bacterial species. In addition

to the topology, the detailed characterization of the operational state highlighted

critical functional differences between the sigma factor network of a specialist like

G. sulfurreducens and a generalist like E. coli. Analyzing the sigma factor regu-

latory network in the light of a comprehensive transcription unit architecture of a

bacterium provides a framework to map binding activities of transcription factors

as well as regulatory events of small signal molecules and will further our under-
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standing of principles underlying transcription regulatory networks in bacteria.

3.5 Methods

3.5.1 Bacterial strains, medium, and growth conditions

G. sulfurreducens (ATCC 51573) was grown under strictly anoxic conditions

at 30oC in mineral salt medium as previously described [111], with acetate as

electron donor and fumarate or ferric citrate as electron acceptor. For growth in

the absence of fixed inorganic nitrogen, ammonium chloride was omitted from the

medium and N2 served as the only nitrogen source. Cells in microbial fuel cells were

grown as described previously [112]. For heat shock condition, cells were grown in

mineral salt medium at 30oC until mid-exponential phase and then incubated in

a 42oC water bath for 15 minutes.

3.5.2 ChIP-chip and ChIP-seq

ChIP-chip for RpoD was performed as described previously [90]. ChIP-

chip for RpoH, RpoN and RpoS, was carried identical as described for RpoD but

with polyclonal antibodies generated using rabbits as host animals. Genome wide

sigma factor binding sites were determined for cells grown under various conditions.

Prior to microarray hybridization, real-time quantitative PCR targeting previously

known binding regions were carried out to verify enrichment of IP DNA fragments.

qPCR and amplification of DNA was performed as previously described [87]. Mi-

croarray hybridization, wash and scan were performed in accordance with manu-

facturers instruction (Roche Nimblegen). ChIP-seq was performed with NEBNext

ChIP-Seq Library Prep Master Mix Set for Illumina (NEB) with indexed adap-

tors (Illumina). Sequence data were then aligned onto the G. sulfurreducens PCA

genome (NC 002939) using Mosaik Aligner.
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3.5.3 Identification of sigma factor binding regions

Binding regions of sigma factors were determined with both NimbleScan

software as described before [90] and MA2C [93], and binding regions called in

both software packages were used in downstream analysis.

3.5.4 Binding motifs of the sigma factors in G. sulfurre-

ducens

Bacterial promoters can be grouped into two different families. The σD

sigma factor family includes the housekeeping σD as well as most of the alternative

sigma factors, such as σH and σS. The binding motifs for this sigma factor family

are generally composed of two consensus sequences centered at around -10 and

-35 from the transcription start site [81]. The second family which contains σN ,

contains -24/-12 type promoters1. Promoters from both families are composed

of multiple conserved elements, which are separated by variable length spacers,

making them hard to predict computationally. Our experimentally identifying

sigma factor binding regions in G. sulfurreducens consequently allowed elucidating

the sigma factor binding motifs unambiguously. For each sigma factor, binding

regions that were not shared with other sigma factors and additionally contained

an experimentally determined transcription start site (TSS) were considered. Using

BioProspector [113], we scanned 60 bp upstream of the TSS for potential two-part

motifs. The results showed that all sigma factors belonging to the σD familiy

(σD, σH , σS) contained a -35 element (TTGAC) that closely resemble the classic

bacterial σD -35 element (TTGACA), with a less conserved -10 motif (TANNNT)

(Fig. 3.7). The binding motif determined for σS had the least conserved -35

element within this family, but exhibited a relatively strong -10 and an extended

-10 element (G at -14). On the other hand, σH binding sites had a strong -35

elements but the least conserved -10 element. It is known that many cis promoter

elements can contribute to promoter selectivity of different sigma factors. For

example, σS promoters in E. coli contain a hallmark C base at position -13 to make

the promoter preferable to σS because of different charged amino acid located at
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the beginning of the domain 3 alpha helix [114]. The subtle differences in the sigma

factor binding motifs in G. sulfurreducens are very likely to contribute to the sigma

factor selectivity at different σD family promoters in vivo. The determined binding

motif for σN family promoters resembled the classic -24/-12 type motif found in

other bacteria. It is known that the activities of σN promoters are modulated by

an enhancer dependent mechanism, and the selective expression of σN promoters

under different conditions in G. sulfurreducens could depend on the activity of the

30 predicted σN dependent enhancers encoded in the G. sulfurreducens genome

[115].

3.5.5 Western blot

Cells were harvested, pelleted via centrifugation and if not processed im-

mediately, frozen at -80oC until use. Samples were resuspended in LDS sample

buffer (Invitrogen) containing 10x reducing agent (Invitrogen) based on optical

density in order to normalize protein content. Each sample was lysed at 95oC for

five minutes and subjected to electrophoresis in a 10% polyacrylamide gel (Invit-

rogen). Resolved proteins were electrotransferred to a Hybond-ECL membrane

(Amersham Biosciences). Nonspecific binding was prevented by incubating the

ECL membrane in nonfat dried milk overnight. The ECL Western detection kit,

100 µg of G. sulfurreducens RpoS polyclonal antibody and horseradish-peroxidase-

conjugated donkey anti-rabbit immunoglobulin G (Amersham Biosciences) were

used to detect the presence of RpoS.

3.5.6 Functional enrichment analysis of the regulons

The functional categories for the G. sulfurreducens genes were obtained

from the subsystems assigned in the SEED database [96]. To determine if the

regulons of each sigma factor were significantly enriched for any particular func-

tional category, a hypergeometric test was performed using the hygecdf function

in MATLAB. A p-value cutoff of 0.05 was used to determine significance.
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3.5.7 In silico gene essentiality simulations

Genes in the genome-scale metabolic model of G. sulfurreducens were indi-

vidually knocked out and in silico growth simulations were performed. This was

achieved using the singleGeneDeletion function of the COBRA toolbox [45].
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Chapter 4

Genome-scale metabolic

characterization of

electrosynthetic bacteria

A novel mechanism, known as microbial electrosynthesis, in which microor-

ganisms directly use electric current to reduce carbon dioxide to multi-carbon

organic compounds that are excreted from the cells into extracellular medium,

has recently been discovered. Microbial electrosynthesis differs significantly from

photosynthesis in that carbon and electron flow is primarily directed to the forma-

tion of extracellular products, rather than biomass. However, extensive knowledge

about the metabolism of the organism as well as its extracellular electron transfer

pathways is critical to realize the potential of this technology for the production

of the desired fuel compound. So far, only a few microorganisms have been shown

to be capable of accepting electrons from the cathode to reduce carbon dioxide to

limited organic compounds such as acetate and 2-oxobutyrate. Constraint-based

metabolic modeling and analysis has been useful for discovering and understand-

ing new capabilities and content in bacteria, as well as in guiding metabolic engi-

neering efforts for targeted production. Here, we present a detailed genome-scale

characterization of metabolic capabilities of two different electrosynthetic bacteria

Geobacter metallireducens and Clostridium ljungdahlii.

66
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4.1 Introduction

Electrical energy is increasingly becoming critical for the sustainable pro-

duction of transportation fuels and biochemicals [116]. The recent discovery of

microbial electrosynthesis provides an attractive and novel approach for the genera-

tion of valuable chemicals and fuels from electricity [13]. Microbial electrosynthesis

represents the electricity-driven reduction of carbon dioxide into multi-carbon or-

ganic compounds, with the whole microorganism serving as the biocatalyst. When

the electricity driving the process is generated from solar power or photovoltaic

cells, microbial electrosynthesis can be thought of as an artificial form of photo-

synthesis. However, one of the critical factors distinguishing electrosynthesis from

photosynthesis is the routing of carbon and electron flow towards extracellular

products instead of biomass. Since the microorganism acts as the catalyst for this

process, the choice of the appropriate microbe is critical for the successful appli-

cation of microbial electrosynthesis.

There are two major metabolic constraints that govern the capabilities

of a bacterium to perform electrosynthesis. First, it must possess the requisite

metabolic machinery to fix CO2. Second, the microbe should contain the ap-

propriate electron transport system (ETS) that allows it to derive electrons di-

rectly from the electrode and pass it on to the appropriate reducing equivalents

(ferredoxin, NADH, NADPH) for biosynthesis. Microbial electrosynthesis was first

demonstrated by the production of acetate and 2-oxobutyrate by the gram-negative

acetogen Sporomusa ovata at -600mV [117]. Later a few additional acetogens such

as Moorella thermoacetica and Clostridium ljungdahlii have also been shown to be

capable of performing microbial electrosynthesis [13].

Acetogenic microorganisms have unique metabolic pathways and energy

conservation mechanisms that, if understood, could greatly increase options for

the design of microorganisms for production of biofuels and enhance the range of

biomass materials that could become economically viable feedstock. They were dis-

covered for their capability to autotrophically reduce CO2 to acetate and conserve
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energy simultaneously using the Wood-Ljungdahl pathway [118]. This mode of

carbon fixation is thought to be the most ancient aspect of metabolism [119]. De-

spite this, several physiological and biochemical aspects governing this metabolic

capability have been poorly characterized with several new discoveries being made

every year [120, 121]. One of the fundamental aspects of acetogenic metabolism

discovered recently is the concept of flavin based electron bifurcation. In this mech-

anism, there is a concomitant coupling of an endergonic redox reaction with the

oxidation of the same electron donor with higher potential electron acceptors. This

aspect is believed to play a key role in the energy conservation mechanisms of ace-

togens [122]. A comprehensive characterization of these aspects of metabolism and

energy conservation in acetogens is therefore fundamental to enhance the under-

standing of microbial electrosynthesis. To address this, we developed the genome-

scale metabolic model for the acetogenic bacteria C.ljungdahlii.

Apart from acetogens, a member of the class Geobacteraceae (Geobacter

metallireducens) is also capable of performing electrosynthesis on the cathode [123].

The members of Geobacteraceae have unique extracellular electron transfer capa-

bilities and have been one of the model organisms for studying microbe-electrode

interactions [8]. Moreover, Geobacter species are capable of reduction of insolu-

ble metal oxides coupled with the oxidation of a variety of organic compounds.

To characterize microbial electrosynthesis in Geobacter, it is therefore critical to

understand the energy conservation mechanisms governing aspects of extracellular

electron transfer and their interplay with metabolism. Constraints-based metabolic

modeling was applied first on Geobacteraceae to build the genome-scale metabolic

model of Geobacter sulfurreducens [48] in an initial attempt to determine if genome-

scale models could be used to predict bioremediation. This model has been used

to describe growth under a diversity of conditions ([49]); predict the phenotype of

gene deletions with 90% success ([50]); and was a valuable tool for metabolic en-

gineering [51]. More recently, the metabolic model for Geobacter metallireducens

was also developed [124]. Additional modeling has provided important insights

into the factors leading to effective uranium bioremediation by Geobacter species
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[53]. The application of genome-scale models has greatly improved understand-

ing of bioremediation at the Rifle Site CO [27]. However, these models lack a

detailed representation of the various extracellular electron transfer pathways and

the energetics associated with them. To account for these explicitly and incorpo-

rate the knowledge of other metabolic capabilities such as CO2 fixation, we have

significantly expanded and updated the scope of the genome-scale metabolic re-

construction of G. metallireducens.

This chapter presents the genome-scale characterization of the metabolic

and energetic aspects governing the two electrosynthetic bacteria G. metallire-

ducens and C. ljungdahlii.

4.2 Metabolic Reconstruction

4.2.1 Characterization of the Geobacter metallireducens

GS-15 genome-scale reconstruction

The updated reconstruction of G. metallireducens GS-15 was generated by

reconciling an existing genome-scale reconstruction [124] and an updated genome

annotation, performing bottom-up reconstruction of additional metabolic path-

ways [125], and functionally testing the reconstruction for performance (Fig. 4.1A).

Reactions that did not exactly match existing content were manually evaluated

using standard manual curation procedures [125]. The final reconstruction con-

tained 987 genes, 1284 reactions, and 1109 metabolites. The final reconstruction

was compared to the previous version [124] and an automatically generated re-

construction from the Model SEED framework [6] (Fig. 4.1B) to identify newly

reconstructed and unique content. The gene content in the G. metallireducens

reconstruction was compared reconciled with the automated reconstruction ob-

tained from ModelSEED [6]. The ModelSEED reconstruction was found to have

114 unique genes that were not present in the G. metallireducens reconstruction.

Upon further analysis, it was determined that 86 of these genes were involved in
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macromolecular synthesis, DNA replication and protein modifications which are

beyond the scope of a metabolic network. Out of the remaining 28 genes, 8 of them

did not have a specific reaction association in the ModelSEED (i.e. generic terms

such as aminopeptidase, amidohydrolase). The ModelSEED annotations of the 20

metabolic genes were compared with the updated genome annotation presented

in this work. It was found that these two sets of annotation were consistent for

only two genes (Gmet 0988 and Gmet 2683). These two genes were added to the

reconstruction by associating them to the appropriate reaction. In the case of the

18 genes, where a discrepancy existed between the updated genome annotation

and ModelSEED annotation, the updated annotation was taken as gold standard.

No reactions were added or removed from the reconstruction as a result of this

analysis. The G. metallireducens reconstruction contains 227 genes not in either

reconstruction, thus representing a significant advancement of coverage.
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Figure 4.1: Reconstruction Workflow: (a)The workflow describing the re-
construction of the G. metallireducens reconstruction. The reconstruction process
was initiated by comparing the updated genome annotation for G. metallireducens
to the existing reconstruction to create a list of discrepancies that was manu-
ally reviewed and curated. Content that was in agreement between the updated
annotation and reconstruction was used to generate a draft set of intracellular re-
actions. Lipid, membrane, murein, and LPS content was removed from this list as
a periplasm compartment was added to the reconstruction. Manual curation (12)
was aided by the KEGG [5], MODEL SEED [6], and MetaCyc [7] databases. Fur-
ther, numerous publications and literature sources (i.e., the bibliome) were used
to refine the network content. The manual review process resulted in a draft re-
construction that was used in conjunction with a formulated biomass objective
function in simulations to validate the content of the reconstruction and generate
a final version. B Venn Diagram showing the comparative analysis of network
content. C: Validation of network content with omics data.
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An analysis of the reaction content in the G. metallireducens reconstruction

was performed to identify content unique to G. metallireducens included in the

reconstruction that is not contained in the reconstructed networks for E. coli [126,

127], S. cerevisiae [128, 129], M. barkeri[130], H. pylori [131], S. aureus [132], Y.

pestis [133], K. pneumoniae [134], M. tuberculosis [135], Human Recon 1 [136], P.

putida [137] and T. maritima[138]. This G. metallireducens reconstruction contains

339 unique reactions compared to these networks (Table 4.1).

Table 4.1: Subsystem distribution of reactions unique to G. metallireducens
reconstruction

Subsystem Number of Reactions
Transport 80
Lipids and Glycan metabolism 64
Vitamins & Cofactor Biosynthesis 50
Energy Metabolism 35
Aromatic Compound degradation 27
Alternate Carbon Metabolism 24
Amino Acid Metabolism 18
Central Metabolism 16
Nucleotide Metabolism 11
Other 8
Metal Respiration 6
Total 339

Furthermore, in comparison to the earlier reconstruction, it was revealed

that there were a number of errors in the previous content which were fixed in the

iAF987 reconstruction. Several unique pathways not previously appearing in any

of the previously reconstructed networks used for comparison (Table 4.1) were

included in the iAF987 reconstruction. Structurally, the periplasm was included

as a distinct compartment in the reconstruction. The periplasm was determined

to be important as G. metallireducens has the unique ability to transfer electrons

extracellularly [8]. Thus characterizing the direct electron transfer pathways com-

pletely from the cytosol through the periplasm to the extracellular space will be

key to understanding this unique capability. Additionally, the periplasm com-

partment addition allows for more accurate representation of metabolism, such as

p-cresol and 4-hydroxy-benzyl alcohol degradation, which partially occurs in the
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periplasm [139]. The iAF987 reconstruction has several unique metabolic features.

Menaquinone biosynthesis via the futalosine pathway has been identified and re-

constructed in iAF987 [140, 141]. Iron-sulfur clusters are essential cofactors for

the function of many metalloproteins and several iron-sulfur cluster-binding pro-

teins (e.g., nitrite reductase) are encoded in the G. metallireducens GS-15 genome.

Similarly, molybdenum is an important cofactor for the function of proteins [142].

As such, these pathways were included in the reconstruction of G. metallireducens

GS-15 iAF987 and also the recently reconstructed E. coli K-12 MG1655 recon-

struction concurrently [143].

Omics data validates network content

To validate the content of the iAF987 network, omic data profiling a growth

shift on aromatic electron donor from acetate was integrated with the metabolic

model. Specifically, the metabolic adjustment predicted by the iAF987 model for

the shift from growth on acetate to benzoate was compared with differentially ex-

pressed genes observed in the transcriptomic data. This analysis, performed using

MADE [144] revealed a 97% consistency between model predictions for differen-

tially regulated genes and omic data (Fig. 4.1C). Specifically, the genes encoding

for benzoyl-CoA reductase and other reactions involved in benzoate utilization

were upregulated.

It was determined that this key enzyme that links the degradation of aromatic sub-

strates (electron donors) to central metabolism, is not ATP driven as previously

thought [124], but rather is likely membrane bound and proton translocating [145].

Thus, a proton translocating reaction was added to the reconstruction for this step

in metabolism. A translocation stoichiometry of 3 protons per electron was deter-

mined to be the likely extent of coupling through a thermodynamic analysis.

Functional Testing

The functional capabilities of the iAF987 reconstruction was evaluated by

simulating growth using the biomass objective functions (Methods). The capabili-
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ties of the model to predict growth on experimentally validated electron donors and

acceptors was tested. The iAF987 reconstruction was able to grow on 19 different

electron donors (3-Methylbutanoic acid, p-Cresol, 4-Hydroxy-benzyl alcohol, 4-

Hydroxybenzaldehyde, 4-Hydroxybenzoate, Acetate, Butanol, Butyrate (n-C4:0),

Benzoate, Benzaldehyde, Benzyl alcohol, Ethanol, Isobutyrate, Phenol, Propionate

(n-C3:0), Propanol, Pentanoate, Pyruvate, Toluene) and 8 different electron accep-

tors(Fe(III), Manganese Mn(IV), Uranium U(VI), Technetium Tc(VII), Vanadium

V(V), Nitrate, Nitrite, Anode Electrode).

4.2.2 Genome-scale reconstruction of the homoacetogen,

Clostridium ljungdahlii

The genome-scale metabolic network for C. ljungdahlii was reconstructed

using a four-step integrative reconciliatory workflow involving four published mod-

els of related Clostridia species and two draft models (Fig. 4.2). The first draft

metabolic model was generated based on the C. ljungdahlii genome annotation

[146] using the AutoModel functionality of SimPheny (Genomatica, San Diego),

while the second draft model was generated using the ModelSEED database [6].

In addition to these two draft models, homologs to C. ljungdahlii genes were iden-

tified in published genome-scale reconstructions of related Clostridia species (C.

acetobutylicum, C. thermocellum, and C. beijerenckii) [147, 148, 149, 150] using

Smith-Waterman alignment. A 60% amino acid sequence identity cutoff was used

to identify C. ljungdahlii homologs in the other Clostridia genomes. The reactions

corresponding to these genes in the respective Clostridia models were compiled

and reconciled with the two draft models. The list of discrepancies was manu-

ally curated with the aid of biochemical literature and databases such as KEGG

[5] and SEED [6]. Manual evaluation of new content from the annotation and

existing genome-scale reconstruction consisted of gathering genetic, biochemical,

sequence, and physiological data and reconciling this information to determine the

likelihood of each reaction being present in the organism. The curated reconstruc-

tion was evaluated for functional performance with the aid of a biomass objective

function that was formulated using an existing template (Methods). Using infer-
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ence based on pathway function, as well as the SMILEY computational algorithm

[151, 152] which predicts reactions which fills gaps in a metabolic network, reaction

content was added to the network so that it could produce the necessary biomass

components. This resulted in a final network consisting 633 genes, 767 reactions,

and 693 metabolites (iHN633). This iHN633 reconstruction represents the first

genome-scale metabolic model of an acetogen.
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Figure 4.2: Reconstruction Workflow: Iterative reconciliatory reconstruction
workflow adopted for generating the metabolic model for C. ljungdahlii.
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Functional Testing

The functional capabilities of the iHN633 reconstruction was evaluated by

simulating growth under different conditions using the developed biomass objective

function (Methods). The iHN633 was successfully able to simulate heterotrophic

growth on several substrates (fructose, gluconate, arabinose, ribose, xylose, pyru-

vate, and several other amino acids). Moreover, autotrophic growth with CO2

and H2 as well as just CO alone was also feasible with the iHN633 reconstruction.

Furthermore, the iHN633 model was able to successfully predict growth rate con-

sistent with experimental observations for heterotrophic growth on fructose. When

the iHN633 model was constrained with experimentally measured fructose uptake

rates (-1.8 mmol/gDWh), the growth rate predicted by the model (0.077 hr−1) was

in good agreement with experimentally measured growth rates (0.072 hr−1). The

acetate and ethanol production rates were also consistent with observed values.

Identification of a new nitrate reduction pathway in C. ljungdahlii

A novel nitrate reduction pathway for Clostridia was reconstructed in the

iHN633 model based on the C. ljungdahlii genome. This pathway could serve as

the third possible nitrogen assimilation route in addition to the glutamine syn-

thetase and glutamine:2-oxoglutarate aminotransferase or by fixing molecular ni-

trogen using a molybdenum-dependent nitrogenase. This pathway similar to the

one identified in Nautilia profundicola [153]. The nitrate reduction pathway con-

sists of a soluble nitrate reductase (NarABC), a nitrite reductase (ArsA1B1C),

and an additional hydroxyl amine reductase (Hcp1 or Hcp2) (Fig. 4.3). Sev-

eral Clostridia can use nitrate as final electron acceptor performing a primitive

nitrate respiration. The identification of this pathway represents an alternative to

investigate growth capabilities in ammonium free conditions.
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4.3 Key carbon fixation pathways

Autotrophic carbon fixation is one of the key metabolic characteristic im-

portant for microbial electrosynthesis. The assimilation of inorganic carbon (CO2)

to cellular carbon requires an energetic input as well as reducing equivalents. These

reducing equivalents have to be regenerated in a metabolic cycle that reduces in-

organic carbon to cellular carbon. Apart from the Calvin cycle used by plants and

photosynthetic organisms, there are five other carbon fixation pathways that have

been characterized till date [154]. Key enzymes which enable the function of these

pathways and the ATP requirement for each of these pathways had been identified

(Table 4.2) [154].

4.3.1 Carbon fixation pathways in G. metallireducens

The genome of G. metallireducens GS-15 encodes for two out of the six

known carbon fixation pathways. The pathways which are encoded in the G.

metallireducens genome and reconstructed in iAF987 are the reductive citric acid

(TCA) cycle [155]and the dicarboxylatehydroxybutyrate cycle [156] (Fig. 4.4A).

Key enzymes for the reductive TCA cycle include the 2-oxoglutarate synthase (ab-

breviated OOR2r in the reconstruction) and ATP-citrate lyase (ACITL) which
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Table 4.2: Known pathways for autotrophic carbon fixation and their energy
requirements

Pathway ATP equiv-
alent for 1
pyruvate

Calvin Cycle (Reduc-
tive PPP)

7

Reductive TCA Cycle 2
Wood-Ljungdahl
Pathway

1

3-hydroxypropionate
bicycle

7

3-hydroxypropionate-
4-hydroxybutrate
cycle

9

Dicarboxylate-4-
hydroxybutyrate
cycle

5

enable the citric acid cycle to run in reverse. For the dicarboxylatehydroxybu-

tyrate cycle, the key enzyme is 4-hydroxybutyryl-CoA dehydratase (4HBCOAH).

The genes encoding for these key reactions in the reconstruction are shown in

(Fig. 4.4B). The two pathways, the reductive citric acid (TCA) and the dicar-

boxylatehydroxybutyrate cycles, share four reactions in the citric acid cycle. The

reconstruction of these carbon fixation pathways led to the novel prediction of

a new growth condition for G. metallireducens. Previously, it was thought that

the only condition for evaluating autotrophic growth was during electrosynthesis.

However, with the expanded content including the carbon fixation pathways, it was

computationally predicted that G. metallireducens can grow with formate as the

electron donor and Fe(III) as the electron acceptor. Investigating flux distributions

revealed that the CO2 derived from formate oxidation is reduced via the reductive

TCA cycle to form acetyl-CoA which is subsequently assimilated into biomass. The

electrons derived from formate oxidation are split between this process as well as

for Fe(III) reduction. The energy gained by proton gradient formed during Fe(III)

reduction was instrumental for providing the required ATP for carbon fixation. A

detailed analysis of the energy conservation mechanism during Fe(III) reduction
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is provided in Section 4.4.1. This prediction of growth on formate and Fe(III)

has been experimentally validated. The importance of CO2 fixation for growth on

formate is further highlighted by a study done on G. sulfurreducens performing

Fe(III) reduction with formate as the electron donor. While G. sulfurreducens was

able to reduce Fe(III) with the electrons from formate, it required the addition of

0.1 mM acetate to assimilate cell carbon [157]. This was attributed to the lack of a

reductive TCA cycle in G. sulfurreducens due to the absence of the ATP-dependent

citrate lyase.
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4.3.2 Carbon fixation pathways in C. ljungdahlii

The C. ljungdahlii genome encodes for all the genes involved in the Wood-

Ljungdahl pathway of carbon fixation. Accordingly, this pathway was incorporated

into the iHN633 reconstruction. The pathway consists of two different branches,

one CO2 contributing to the methyl methyl group of acetyl CoA via the east-

ern branch and the other CO2 contributing to the carbonyl group of the acetyl

CoA via the western branch (Fig. 4.5). The key enzyme in this pathway is the

CODH/ACS complex which performs the dual activity of reducing CO2 to CO

via the carbon monoxide dehydrogenase activity and the subsequent formation

of acetyl CoA through the acetyl-CoA synthase. It has been suggested that the

CODH/ACS complex functions in a manner that the CO resulting from CODH

activity is kept as a bound metabolite in the complex to diminish thermodynamic

barriers involved in this energy intensive process [158]. Furthermore, the genome

of C. ljungdahlii suggested that CO oxidation to CO2 is likely to be catalyzed by

a different carbon monoxide dehydrogenase gene (CLJU c09090-09110) other than

the ones encoded by the CODH/ACS complex. Taking these into consideration,

the iHN633 reconstruction incorporates the CODH/ACS reaction as the net re-

action of carbon monoxide dehydrogenase and acetyl CoA synthase activity, and

associates the gene cluster CLJU c09090-09110 to the reaction representing CO

oxidation to CO2. The CODH/ACS complex uses corrinoid iron-sulfur protein

as a cofactor. The Wood-Ljungdahl pathway consumes one ATP equivalent for

the production of acetyl CoA in the methyl branch for the activation of formate

to formyltetrahydrofolate. The methylenetetrahydrofolate dehydrogenase reaction

catalyzed by the bifunctional FolCD (CLJU c37630) was assumed to be NADPH

dependent based on sequence similarity with the corresponding enzyme in the

acetogen Moorella thermoacetica [159, 160]. The energy conservation mechanisms

associated with autotrophic growth on CO2 and H2 using the Wood-Ljungdahl

pathway is discussed in detail in Section 4.4.2.



83

nadh

10fthf

nadph

h2o

5mthf

nad

co2

cfesp

coa

pi

for

fdxr-4:2

fdxr-4:2

methf

atp

fdxr-4:2

fdxo-4:2

fdxo-4:2h

fdxo-4:2

accoa

h

mlthf

h

nadp

thf

h2o

adp

h

mecfsp

CODH_ACS

MTHFR5

MTHFC

METR MTHFD

FTHFLi

FDH7

Wood-Ljungdahl pathway in C. ljungdahlii

CODH_ACS

&

CLJU_c37500 CLJU_c37590 CLJU_c37580 CLJU_c37550 CLJU_c37660 CLJU_c37570 CLJU_c37530 CLJU_c37670

CodhAcs

CLJU_c37500 CLJU_c37590 CLJU_c37580 CLJU_c37550 CLJU_c37660 CLJU_c37570 CLJU_c37530 CLJU_c37670

Gene associations for key enzymes (CODH/ACS complex)

W
e

st
e

rn
 B

ra
n

ch
 (

C
a

rb
o

n
y

l)

Eastern Branch (Methyl)

Figure 4.5: Carbon fixation pathways: A map of the Wood-Ljungdahl path-
way of carbon fixation and the genes encoding the CODH ACS complex.



84

4.4 Energy conservation mechanisms and elec-

tron transport system (ETS) of electrosyn-

thetic bacteria

Reconstructing Extracellular 

Electron Transfer Pathways

Identify all possible electron carriers 

(e.g. cytochromes, ferredoxin, 

quinone, NAD, FAD)

Enumerate all possible electron 

transport routes through these 

carriers. 

Assign appropriate stoichiometry 

and gene associations to the 

reaction.

Figure 4.6: Protocol adopted for reconstructing electron transfer
pathways

In order to accurately account for the various energy conservation mech-

anisms and ETS in the electrosynthetic bacteriaG. metallireducens and C. ljung-

dahlii, all the possible electron carriers (cytochromes, quinones, ferredoxin, NADH,

NADPH, FAD) were identified. A list of all possible redox reactions involving these

carriers was enumerated and an extensive thermodynamic and energetic analysis
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was performed on these key reactions to appropriately account for the proton

translocation stoichiometries. (Fig. 4.6).

4.4.1 Analysis of energy conservation and ETS of G. met-

allireducens

The most common terminal electron acceptor for Geobacter metallireducens

is Fe(III), which is reduced extracellularly. While wild-typeG. metallireducens

cannot reduce fumarate, it has been shown that engineering the dicarobxylate ex-

changer (dcuB) confers the capability to grow on fumarate as the terminal electron

acceptor [161]. The analysis described in Fig. 4.6 enabled the identification of key

energy conserving steps during respiration on both extracellular and intracellular

electron acceptors (Fig. 4.7). An example of this included findings related to the

fumarate reductase enzyme.

Fumarate reductase in Geobacter is electrogenic

Geobacter species derive 8 electrons from the oxidation of acetate through

the TCA cycle during Fe(III) reduction. The electrons are transferred to extra-

cellular Fe(III) via a chain of extra-cytoplasmic cytochromes and the membrane

bound menaquinone pool. Oxidation of succinate to fumarate in the TCA cy-

cle plays a critical role in transferring electrons to the menaquinone pool. In

Geobacter sp., this metabolic step is catalyzed by a bifunctional fumarate reduc-

tase/succinate dehydrogenase (FrdCAB) enzyme. While the redox coupling for

fumarate reduction using menaquinol is energetically favourable, the oxidation of

succinate using menaquinone is endergonic. This is primarily due to the fact that

succinate/fumarate redox couple is more electropositive than the electron accep-

tor menaquinone. It has also been proposed that this apparent energetic cost for

succinate oxidation could provide an explanation to the decreased growth rates

observed for G. sulfurreducens while respiring on Fe(III) compared to fumarate

reduction [161]. Moreover, initial studies in B. subtilisindicated the possibility of
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a transmembrane proton potential acting as the driving force for such a reaction

[162]. The previous Geobacter models [48, 124] do not account for this based on

biochemical evidence in organisms such as W. succinogenes. However, more recent

evidence indicates that succinate dehydrogenase catalyzed by the bifunctional Frd-

CAB does operate in a reverse redox loop in D. vulgaris [163]. This study shows

that succinate oxidation by menaquinol requires the dissipation of membrane po-

tential as a driving force. Furthermore, they attribute this coupling nature to the

absence of the uncoupling residue in FrdCAB of W. succinogenes. The presence

of this residue is shown to dissipate the proton potential generated by fumarate

reductase. Geobacter species also lack this residue. Hence, we propose that the

fumarate reductase of Geobacter species is also electrogenic. Thus, an electrogenic

fumarate reductase was incorporated in the iAF987 reconstruction for G. metal-

lireducens.
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To understand the energetics of intracellular electron transfer, physiolog-

ical data for G. metallireducens dcuB was collected during fumarate reduction

with different electron donors. Using the previously established maintenance en-

ergy values, it was found that setting the observed uptake rate for fumaratre of

the dcuB strain grown on fumarate and acetate (i.e., the input electron donor)

and optimizing for optimal growth (as simulated through maximal flux through

the biomass objective function) resulted in prediction of both the growth rate and

acetate uptake rate consistent with was measured in the growth screen experiment.

Importantly, no significant byproducts besides CO2 were predicted by the model

to be exported under this condition, which was consistent with the growth screen

experiment. This result demonstrated that the previously determined values for

the growth and non-growth associated maintenance are consistent for simulating

optimal growth of the G. metallireducens GS-15 dcuB strain with acetate as an

electron donor. Analysis of the G. metallireducens GS-15 dcuB strain grown with

ethanol and butanol as electron donors revealed that growth on these substrates

is suboptimal. Fig. 4.8 shows a Phenotypic Phase Plane (PhPP) analysis [164]

of optimal growth for the dcuB strain with the three different electron donors, ac-

etate, ethanol and butanol. Briefly, the experimental ranges of the electron donors

(acetate, butanol, ethanol) and the electron acceptor (fumarate) were analyzed

through modeling to understand optimal network behavior. A phase plane for

each condition is given where the diagonal represents the optimal ratio of donor

to acceptor when simulating optimal growth of the dcuB strain. Further, the ex-

perimentally observed values from the growth screen experiments are plotted on

the phase planes as averaged triplicate value with error bars for comparison. From

this analysis, growth with acetate as the electron donor revealed optimal behavior

and the experimental data is very near to the line of optimality. Growth with

ethanol and butanol as the electron donor revealed that these conditions are in the

suboptimal regions of growth when analyzed with the model and when considering

the experimentally-measured fumarate uptake rate for each condition, the amount

of electron donor was far lower than an optimal condition at that acceptor rate.

From this observation, one can hypothesize that growth with ethanol and butanol
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is inefficient due to hindrance of either key enzymes involved in electron transfer,

or through a modeling analysis of essential reactions that are different between

the growth simulations on the optimally-utilized substrate acetate, a poor alcohol

dehydrogenase in the network (the same alcohol dehydrogenases metabolize both

butanol and ethanol - Gmet 1046, Gmet 1053).
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Figure 4.8: Phenotypic analysis of respiration on intracellular electron
acceptors Phenotypic Phase Plane (PhPP) analysis of the G. metallireducens
GS-15 dcuB strain on three different carbon sources. The reconstructed model of
G. metallireducens GS-15 was utilized to analyze the growth of the dcuB strain
on acetate, ethanol, and butanol as electron donors with fumarate as the electron
acceptor. Inputs to the simulations were taken from the ranges observed in the
experimental growth screens of each. Each panel shows the line of optimality
on the diagonal, the donor limiting region in purple, and the acceptor limiting
region in green, and blue regions are regions that outside the functionality of the
network. Growth on acetate revealed an optimal ratio of donor and acceptor and
a growth rate near the optimal growth rate. Growth on ethanol and butanol
revealed that the cells were observed to be functioning in the suboptimal donor-
limiting regions and the growth rates are far below the optimal growth rate for the
observed acceptor (fumarate) uptake rates.
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Examining the cost of extracellular electron transfer

Utilizing experimental growth data of G. metallireducens respiring on iron,

we were able to hypothesize the cost of transferring electrons to extracellular sub-

strates. External electron transfer was examined using growth data of G. metallire-

ducens GS-15 cells respiring with various electron donors and Fe(III) as the electron

acceptor. The experimental data obtained for these studies were the concentra-

tions of the electron acceptor and donor over time, and from these measurements,

the calculation of the ratio of donor taken up by the cell to acceptor generated

by the cell is possible. Given the ratio of this redox reaction, we were able to

compare optimal performance of the network to what was observed. For the same

three substrates examined when using the dcuB strain, we examined the observed

donor to acceptor ratio and compared to modeling simulations. Given the net-

work that was originally reconstructed where electrons are transferred from inner

membrane cytochromes to the acceptor, Fe(III), without any energetic cost, the

ratio of donor to acceptor was suboptimal for all conditions examined (left panel

of Fig. 4.9). To approximate the actual cost of transferring electrons externally to

Fe(III), we tested different hypothetical costs that may be associated to electron

transfer. These costs were an ATP cost per electron transferred. The approach

was to determine the ATP cost needed to shift the observed ratio to the line of

optimality for all or some of the conditions. From this, it was determined that

cost of 0.4 ATP per electron transferred resulted in shifting the observed ratio to

the line of optimality for growth with acetate, ethanol, and butanol as the electron

donor. This results shows that there is one consensus change to the extracellular

electron transfer pathway to bring all three of the growth conditions tested to an

optimal network state, including growth on acetate which was previously described

as an optimal substrate.
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Figure 4.9: Phenotypic analysis of respiration on extracellular electron
acceptors (Fe(III)) Phenotypic Phase Plane (PhPP) analysis of G. metallire-
ducens GS-15 to examine the cost of extracellular electron transfer. The recon-
structed model of G. metallireducens GS-15 was utilized to analyze the growth of
wild type G. metallireducens GS-15 on acetate, ethanol, and butanol as electron
donors with Fe(III) as the electron acceptor. The far left column shows the calcu-
lated PhPPs and the observed experimentally measured ratio between substrate
uptake and Fe(III) conversion rate (dashed line). The hypothesis of a directly pro-
portional energetic cost to the Fe+3 conversion rate was examined and a cost of 0.4
ATP hydrolyzed per electron transferred to Fe(III) resulted agreement between the
line of optimality (i.e., the intersection of Fe+3 conversion limited and substrate
uptake limited regions) and the experimentally observed ratio for all three cases.
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4.4.2 Analysis of energy conservation and ETS of C. ljung-

dahlii during autotrophic growth

Acetogens have long been thought to be living at the thermodynamic limit

due to the energy requirements of the Wood-Ljungdahl pathway [120]. Given

that the ATP generated from acetate production is required for the activation of

formate, it has been proposed that acetogens should have additional energy conser-

vation mechanisms. Acetogens have generally been classified into those containing

respiratory cytochromes that establish a proton gradient (M. thermoacetica) and

those that do not. Organisms such as Acetobacterium woodii have been shown to

employ a sodium gradient as an energy conservation mechanism [120]. The genome

sequence has revealed that C. ljungdahlii falls into a third class of acetogen that

neither uses respiratory cytochromes nor a sodium gradient for energy conservation

[146]. As reviewed recently, flavin based electron bifurcation is expected to serve

as an alternative mechanism of energy conservation in acetogens [122].

Analysis of the iHN633 reconstruction of C. ljungdahlii reveals that electron

bifurcation and proton translocating ferredoxin oxidation are critical mechanisms

for energy conservation during autotrophic growth in C. ljungdahlii (Fig. 4.10).

Proton translocation by the membrane-bound Rnf complex while oxidizing ferre-

doxin and reducing NAD was predicted by the iHN633 model to be essential for

autotrophic growth (Fig. 4.10B). This prediction was further validated by the

lack of autotrophic growth in a strain where the Rnf complex was knocked out

(Tremblay et al. personal communication).

An electron-bifurcating transhydrogenase (Nfn complex) that couples exergonic

reduction of NADP with ferredoxin to drive the endergonic reduction of NADP

with NADH had been characterized in C. kluyveri [165]. A homolog to the

NfnAB genes in C. kluyveri was identified in the C. ljungdahlii genome. This

gene (CLJU c37240) was annotated as a glutamate synthase. As part of iHN633,

this gene has been assigned to the electron bifurcating transhydrogenase reaction

(Fig. 4.10C). This reaction is essential for the generation of NADPH during

autotrophic growth. Recently, a similar electron bifurcating NADPH transhydro-
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genase activity was also reported in the acetogen M. thermoacetica [166].

It was speculated that the highly exergonic reduction of methylene-tetrahydrofolate

by NADH can be a site for electron bifurcation to generate additional reduced ferre-

doxin from NADH [146]. Investigation of the A. woodii genome revealed that the

small sub unit of the methylene-tetrahydrofolate reductase (MetV) can act as a

flavoprotein that could aid in this proposed electron bifurcation, thereby indirectly

establishing a proton gradient through the Rnf complex [120]. A homolog to the

A. woodii MetV gene was identified next to the MetF gene in C. ljungdahlii and

investigation of the genome revealed a possible co-transcription of the MetV and

MetF genes (CLJU c37610 and CLJU c37620 respectively). Based on these evi-

dences, an electron bifurcating methylene-tetrahydrofolate reductase reaction was

included in the iHN633 reconstruction (Fig. 4.10A).

Another instance of electron bifurcation in the autotrophic growth of C. ljung-

dahlii was observed in the first step of hydrogen activation to reduce ferredoxin. A

bifurcating hydrogenase (HydABC) which uses the exergonic reduction of NADH

from hydrogen to drive the endergonic reduction of ferredoxin from hydrogen has

been identified to perform this process in A. woodii [120, 167]. There were two

sets of homologous genes identified in the C. ljungdahlii genome. However, only

one of them (CLJU c07070) was found to be essential for growth on hydrogen and

carbon dioxide (Ueki et al, personal communication). Hence this gene cluster has

been assigned to the bifurcating hydrogenase activity in the iHN633 reconstruction

(Fig. 4.10D).

In summary, the genome-scale modeling of C. ljungdahlii has revealed that

flavin based electron bifurcation is found to play a critical role in the essential

reactions for autotrophic growth.
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totrophic growth.

The genome sequence of C. ljungdahlii reported the absence of any quinone
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biogenesis genes [146]. However, reannotation and inspection of KEGG [5] re-

vealed partial coverage of the quinone biosynthesis pathway. Subsequent quinone

extraction and LC-MS analysis (Methods) revealed the presence of menaquinone

derivatives in C. ljungdahlii. However, these did not resemble the known respira-

tory quinones. Hence, it is believed that this quinone-like molecule could play a

role in accepting electrons during electrosynthesis. This provides a platform for

the identification of a potential novel component involved in electrosynthesis in C.

ljungdahlii.

4.5 Framework for modeling electrosynthesis

A mathematical framework was developed to enable the modeling of mi-

crobial electrosynthesis using constraint-based techniques. This framework relied

upon a genome-scale model that had the necessary energy conservation mechanisms

and electron transfer pathways, carbon fixation pathways that would enable au-

totrophic growth (Fig. 4.11A). The inputs into the system during electrosynthesis

are primarily CO2 and electrons from the cathode. Given that CO2 availability is

unconstrained, the flux of electrons into the cell is the limiting factor in electrosyn-

thesis. This is analogous to constraining a model with the substrate uptake rate

during normal growth conditions. The current uptake by the cells on the cathode

was transformed into the electron flux using conversion parameters representing

Faraday’s constant and the number of cells that can be packed on the surface of

the electrode. Electrode dimensions of 2.5 cm x 7.75 cm x 1.25 cm was used for

the calculation and the area of a single cell was assumed to be 2.75 ∗ 10−8 sq.cm

and its dry weight to be 0.42 pg[168]. A 10% packing efficiency on the electrode

was further assumed to calculate the conversion. This resulted in the following

relationship between the current drawn and the electron flux (E mmol/gDWh) :

dQ/dt = Ncell ∗ gDW/cell

dQ/dt = 2.505 ∗ E µA

Using this relationship, the electrosynthetic production of acetate and for-

mate by G. metallireducens was simulated by maximizing the energy generation
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(ATPM). Acetate was formed via the reductive TCA cycle and formate was formed

as a result of the formate dehydrogenase activity (Fig. 4.11B)
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Figure 4.11: Framework for modeling microbial electrosynthesis A:
Schematic for modeling microbial electrosynthesis. The current drawn by the mi-
crobe at the cathode is used as the input constraint to the model which contains the
necessary electron transfer pathways and carbon fixation pathways. This is then
used to simulate electrosynthetic conditions by maximizing for energy generation
and analyze the product formation scenarios. B: Simulation of electrosynthetic
production of acetate and formate in G. metallireducens.
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4.6 Methods

4.6.1 Reconstruction Process

The reconstructions for G. metallireducens and C. ljungdahlii were gen-

erated in a multi-step process. First, the genome annotations for the organism

were entered into the UCSD SimPheny (Genomatica, San Diego, CA) database.

The next step involved the reconciliation of the existing G. metallireducens recon-

struction and for C. ljungdahlii, the other Clostridial models. If an exact match

for the reaction did not exist in the UCSD SimPheny database on the level of

metabolites participating in the reaction, they were manually evaluated for inclu-

sion (see below). Next, a comparison of the metabolic content included in the

genome annotationnot in SimPheny was performed. Reactions that did not ex-

actly match existing content were manually evaluated. Manual evaluation of new

content from the annotation and existing genome-scale reconstruction consisted of

gathering genetic, biochemical, sequence, and physiological data and reconciling

this information to determine the likelihood of each reaction being present in the

organisms. This manual curation process has been described and reviewed several

times [23, 32, 125]. In the manual review process, the KEGG database [5], the

MODEL SEED database [6], and primary literature were used extensively in the

manual curation process. Confidence scores were given for each reaction along with

noteworthy evidence used to justify inclusion of a given reaction.

4.6.2 Generation of the Biomass Objective Function

The Biomass Objective Functions for both G. metallireducens and C. ljung-

dahlii were formulated using a previous template [127]. For G. metallireducens,

the biomass content previously determined for the close species Geobacter sulfurre-

ducens was used to determine the breakdown of macromolecules [48] except that

for total carbohydrate as the distribution in the murein, lipopolysaccharide, and

cytosolic fractions [169] was not indicated. Further, the genome annotation [170]

was used for the breakdown of chromosome bases. A study on lipid and LPS chain

length was used for the breakdown of acyl chain length [171] and the remaining
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content was approximated using the full profile presented for the gram-negative

bacterium E. coli [127].

For C. ljungdahlli, a similar template was followed [127, 172]. The protein content

was determined to be 43% and for the rest of the macromolecular breakdown, the

biomass content previously determined for a gram positive bacterium B. subtilis

and C. beijerenckii was used [173, 148]. However, for modeling teichoic acid com-

position, the distribution based on S. aureus was used due to similarity in terms

of low G-C content [174].

It should be noted that prediction of growth rate and unmeasured uptake rates

are relatively insensitive to realistic variations in biomass macromolecular weight

fractions [127].

4.6.3 Flux Balance Analysis Simulations

The reconstructed metabolic networks were represented in a mathematical

format in a stoichiometric matrix S, where the rows correspond to the metabolites

and columns correspond to the reactions in the network. Flux Balance Analy-

sis simulations were carried out as described in [175] using the COBRA Toolbox

[45] and the SimPheny framework (Genomatica, Inc., San Diego, CA) were used

for simulations. The objective used in the simulations were typically maximizing

growth through the biomass objective function.

4.6.4 Bacterial growth conditions

Clostridium ljungdahlii (ATCC 55383) was grown anaerobically in 100 ml

of PETC medium (ATCC medium 1754) within 125 ml serum bottles at 37oC.

Nitrogen was used as a carrier gas at a flow rate of 20 ml/min. Fructose, acetate and

ethanol concentrations were measured by HPLC, 717 plus AutoSampler (Waters)

using 5 mM sulfuric acid as mobile phase. Detection was done at 410 nm. G.

metallireducens GS-15 and dcuB strains were grown on fresh water media with

55mM Fe(III) citrate and 40mM fumarate as the electron acceptors respectively.

Both the strains were grown with acetate, ethanol, and butanol as electron donors.
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Acetate, ethanol, butanol, fumarate, and succinate concentrations were measured

using the same HPLC as used for C. ljungdahlii growth screens. The growth rate

during iron respiration was calculated from the Fe(II) production rate.

4.6.5 Quinone profiling

The quinone extraction was performed in C. ljungdahlii as in the protocol

outlined previously [176]. The extraction procedure was also implemented on E.

coli as a positive control. First, 2 ml of E. coli and 4 ml of Clostridium ljungdahlii

were quenched with 6 ml of ice-cold methanol (Sigma Aldrich). 6 mL of petroleum

ether was mixed with solution and the mixture was vortexed for 1 min. The mixture

was then centrifuged at 900xg for 2 min and the top phase was transferred to a new

tube. Another 3 mL of petroleum ether (Sigma Aldrich) was added to the residual

mixture and the steps after addition of petroleum ether were repeated. The upper

phase were mixed with the previous upper phase and the mixture was dried using

SpeedVac 110-120 (Savant). Finally, the dried extracted quinones were suspended

in 100 µL of ethanol (Sigma Aldrich). Quinone analysis was conducted using both

HPLC system with Pursuit XRs (Varian, CA) C18 reverse phase column with

methanol as a mobile phase and flow rate of 1.0 ml/min at ambient temperature,

and Accurate-Mass TOFMS 6230 (Agilent) at the UCSD Chemistry Core. As

standards, ubiquinone-10 and menaquinone-4 were used. A dual-wavelength UV

detector with 290 nm for ubiquinone and 248 nm for menaquinone detection was

used.

4.7 Conclusions

In this study, functional genome-scale metabolic networks have been gener-

ated for two electrosynthetic bacteria G. metallireducens and C. ljungdahlii. These

networks represent a detailed description of the key carbon fixation and energy con-

servation pathways the two major metabolic constraints governing electrosynthe-

sis. Computational modeling has revealed new relevant growth conditions critical

for characterizing autotrophic metabolism. In addition, physiological experiments
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have enabled the elucidation of novel components and key players of the electron

transport system in these electrosynthetic bacteria. Constraint-based metabolic

modeling has been successfully applied to various metabolic engineering projects.

These functional models will enable strain design strategies for optimal electrofuel

production. The advances made have, for the first time, enabled a genome-scale

characterization of electrosynthesis.
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Chapter 5

Multi-omic characterization and

modeling of interspecies electron

transfer mechanisms and

microbial community dynamics of

syntrophic associations

5.1 Abstract

Syntrophic associations are central to methanogenic communities and thus

play a fundamental role in governing major global biogeochemical cycles. While

biochemical approaches have described the physiological activity of these com-

munities, there has been a lack of a mechanistic understanding of the relationship

between the complex nutritional and energetic dependencies and their functioning.

Here, we present an integrated multi-omic workflow that combines genomic, tran-

scriptomic, and physiological data with constraint-based modeling using genome-

scale models to characterize interspecies electron transfer mechanisms and com-

munity dynamics of syntrophic associations. We apply this workflow to describe

the syntrophic ethanol oxidation by Geobacter metallireducens and Geobacter sul-

100
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furreducens at three levels of complexity. First, through a detailed reconstruction

of energetics involved in extracellular electron transfer, we provided mechanistic

insights into direct interspecies electron transfer (DIET) between the two organ-

isms. We further showed that genomic characteristics such as energy conservation

via respiration as opposed to substrate level phosphorylation, proton availability,

and optimality levels of interacting organisms influences the preference of DIET

over interspecies hydrogen transfer. Second, metatranscriptomic profiling in con-

junction with genome-scale modeling uncovered a synergistic relationship between

acetate transfer and DIET. Third, investigating the dynamics of the community

revealed that, while G. sulfurreducens responded to the selection pressure of rapid

syntrophic growth at the genomic and transcriptomic level, G. metallireducens

responded only at the transcriptome level. This further suggests that G. sulfurre-

ducens is under a greater selection pressure to adaptively evolve and streamline its

metabolic capabilities in order to establish DIET and maintain syntrophy. This

multi-omic approach will thus enhance our understanding of the dynamics and

functioning of syntrophic communities.

5.2 Author Summary

The decomposition of organic matter in anoxic environments is a major

part of the global carbon cycle. This degradation relies in large part on the trans-

fer of metabolites involving different organisms. While biochemical approaches

have been able to shed light on the overall physiological activity and mechanisms

of such syntrophic associations, it has been challenging to gain comprehensive in-

sights into the factors favoring different electron transfer mechanisms, genomic fea-

tures of individual constituents, as well as the dynamics of these communities. We

applied a multi-omic modeling workflow that combines genomic, transcriptomic,

and phenomic data with constraint-based modeling using genome-scale models to

investigate metabolic dynamics and mechanisms of electron flow in the syntrophic

association of Geobacter metallireducens and Geobacter sulfurreducens. Through

a detailed reconstruction of pathways involved in extracellular electron transfer,
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mechanistic insights into direct interspecies electron transfer between the two or-

ganisms are provided. Furthermore, G. sulfurreducens adapted to the selection

pressure of rapid syntrophic growth by changes on the genomic and transcriptomic

level, while G. metallireducens responded only at the transcriptomic level. This

could have implications for our understanding of adaptive responses and factors

that shape the evolution of these syntrophic communities, thereby expanding our

knowledge of the global carbon cycle.

5.3 Introduction

Microorganisms in nature do not exist as pure cultures, but rather are in-

volved in a wide variety of interactions and nutritional interdependencies with their

bacterial and eukaryotic neighbours in their ecosystem. Syntrophy is one such nu-

tritional dependency where two or more microbes combine each other’s metabolic

capabilities for the degradation of a particular substrate that neither is capable of

performing individually [177]. Syntrophy in which electrons are shared between two

partners are central to the functioning of a variety of methanogenic environments

such as wetlands, aquatic sediments, animal intestinal systems, and oil reservoirs,

as well as in anaerobic digesters converting organic wastes to methane[178, 179].

Furthermore, interspecies electron transfer is considered to play an important role

in microbial aggregates that anaerobically oxidize methane with the reduction of

sulphate [180].

Traditional biochemical approaches have been able to shed light on the

overall physiological activity and mechanisms of electron transfer in many of these

microbial communities [55, 56]. Despite these approaches, it has been challeng-

ing to gain comprehensive insights into the dynamics, the factors favouring one

mechanism of interspecies electron transfer over the other, as well as genomics fea-

tures for the metabolic activity of individual constituents. This has necessitated

for the development of genome-scale approaches that can provide a link between

the genotypes of the microbes, their reaction mechanisms, and eventually their

effect on the functioning of the microbial community [57, 58]. One of the major



103

goals of microbial ecology and systems biology is to comprehensively understand,

characterize, and obtain meaningful insights into the various modes of interactions

in communities and their functional effect on the ecosystem [59].

Constraint-based modeling approaches (COBRA) have provided significant

mechanistic insights into the genotype-phenotype relationship of single bacterial

species [97]. Recently, several COBRA methods have been deployed to investigate

the various microbial interactions such as mutualism, competition, and parasitism

[97, 34, 36, 181, 37, 35]. One of the first such modeling studies applied flux bal-

ance analysis to investigate the mutualism between the sulfate-reducing bacterium

Desulfovilbrio vulgaris and the methanogenic archaeon Methanococcus maripaludis

[35]. An extension of dynamic flux balance analysis has also been used to character-

ize the competitive relationship between Geobacter sulfurreducens and Rhodoferax

ferrireducens in the subsurface [2]. A COBRA-based computational framework has

been applied to determine the media compositions that induce putative symbiotic

interactions between all possible combinations of seven different microorganisms

[34]. While this provided the proof-of-concept for integration of multiple genome-

scale metabolic models, the nature of the microbial partners evaluated in this

study precluded a detailed mechanistic investigation into all possible modes of in-

teractions. Most recently, a general multi-objective optimization framework has

been developed for analyzing interspecies metabolite transfers during various types

of multi-species interactions[181]. Extension of these community systems (CoSy)

biology [59] approaches for studying syntrophic associations requires a comprehen-

sive characterization of the various mechanisms of energy transfer and their effect

on the functioning of the microbial community.

The long standing paradigm for interspecies electron transfer in anaero-

bic methanogenic consortia has been interspecies hydrogen transfer, in which the

electron-donating partner disposes of electrons by reducing protons to produce hy-

drogen and the electron-accepting partner accepts electrons by oxidizing hydrogen

with the reduction of carbon dioxide to methane [177]. However, direct interspecies

electron transfer (DIET) appears to be an alternative to interspecies hydrogen

transfer in some methanogenic environments [17, 18, 8]. Defined co-cultures of
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Geobacter metallireducens and Geobacter sulfurreducens grow syntrophically via

DIET in medium with ethanol as the electron donor and fumarate as the electron

acceptor [19, 20, 21] and provide a model for syntrophic growth in which both part-

ners are genetically tractable [182, 183]. Furthermore, a syntrophic co-culture in

which G. sulfurreducens also functions as the electron-accepting partner, but which

functions via interspecies hydrogen transfer, is available for comparison [20].

Here, we expanded the scope of CoSy biology by developing an integrated

modeling framework that combines physiological, transcriptomic, and next gener-

ation sequencing (NGS) data with genome-scale metabolic models to simulate and

investigate syntrophic interactions and their associated electron transfer mecha-

nisms. Specifically, we applied this framework to characterize the mechanistic

basis of the syntrophic association of G. metallireducens and G. sulfurreducens.

By modeling different genetic perturbations of this system, we provide additional

insights into the process of DIET, hypothesized to be an important mode of elec-

tron transfer in certain syntrophic associations. We further use transcriptomic

and genomic data to describe the dynamics of the interaction between the two

individual Geobacter species and elucidate their adaptive response to syntrophic

growth.

5.4 Results

5.4.1 Integrated framework for modeling syntrophy and di-

rect electron transfer

A four-step modeling workflow was developed for the genome-scale inves-

tigation of metabolic interactions and electron flow in the syntrophic association

between G. metallireducens and G. sulfurreducens. The first step was to repre-

sent the extracellular electron transfer pathways through all the known electron

carriers in the cell, including cytochromes, quinone, ferredoxin, NAD, and FAD

(Fig. 5.1A). In addition to accurately assigning the stoichiometry associated with

the respective redox reactions, these pathways also account for thermodynamic
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consistency, appropriate gene association, and cellular localization of the differ-

ent electron carriers. This protocol was implemented to significantly expand and

update the previous genome-scale reconstructions of G. metallireducens and G.

sulfurreducens [124, 184, 27], to explicitly account for a detailed representation of

the energy metabolism involved in extracellular electron transfer. The reconstruc-

tions were also updated to included the most updated annotations, and a distinct

periplasm compartment. This resulted in a G. metallireducens model (iAF987)

consisting of 987 genes and 1284 reactions and a model for G. sulfurreducens

(iHN837) consisting of 837 genes and 1085 reactions, respectively (Fig. 5.1B,

Methods). In the third step, modeling of metabolic interactions between the two

species was enabled by integrating the two expanded genome-scale metabolic mod-

els into a combined model using an extension of the compartmentalized modeling

approach [36, 181, 34]. This integrated genome-scale model of syntrophy consists

of five compartments, where each species was assumed to have independent cytosol

and periplasm compartments. The fifth compartment, the shared metabolite pool

(SMP), represents an extracellular environment common to both the constituents.

This integrated model consisted of 1824 genes and 2333 reactions in total. The

transport reactions in the respective genome-scale models were interfaced with the

SMP to facilitate metabolic exchanges between the constituents of the consortium

as well as with the environment (Fig. 5.1C). In the fourth step, direct interspecies

electron transfer (DIET) between the two species was accounted for by introducing

a reaction that represents the stoichiometric transfer of electrons between metabo-

lites that correspond to their respective outer-membrane cytochromes. Outer-

membrane cytochromes in Geobacter species have been shown to play a critical

role in extracellular electron transfer to minerals as well as other external electron

acceptors such as the anode of a microbe fuel cell[101, 185]. Specifically, the gene

encoding OmcS of G. sulfurreducens was shown to be essential for DIET in this

syntrophic consortium [19]. Hence, this gene has been associated with the reaction

representing DIET. The maximum electron transfer flux through DIET (V max
DIET )

was calculated based on the midpoint potential of OmcS (Fig. 5.1D, Methods).

This integrated workflow enabled a multi-level characterization of the metabolic
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interactions and electron flow in the syntrophic association of G. metallireducens

and G. sulfurreducens.
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5.4.2 Analysis of carbon and electron flow governing the

syntrophic association

Constraint-based modeling methods were applied to the integrated genome-

scale metabolic model to characterize the carbon and electron flow defining the

syntrophic association of G. metallireducens and G. sulfurreducens with ethanol

and fumarate as the respective electron donor and acceptor. The community model

was optimized for the objective of maximal growth of both constituents (G. met-

allireducens and G. sulfurreducens) with the addition of a constraint for simu-

lating DIET. Specifically, the electron transfer flux through DIET (VDIET ) was

constrained to its maximal value (V max
DIET ) calculated based on the midpoint po-

tential of the cytochrome OmcS (Fig. 5.1D, Methods). Experimentally measured

physiological uptake rates (Fig. 5.2) and product secretion rates were used as the

input/output constraints for the simulation. Thermodynamically infeasible loops

were eliminated from the simulations using the loopless COBRA (ll-COBRA) pro-

cedure [186]. The ratio of flux through the respective biomass objective functions

was used to estimate the relative abundance of the constituents in the commu-

nity. Model simulations revealed that G. sulfurreducens accounted for 73% of the

consortium (Fig. 5.3). This prediction is in accordance with experimental obser-

vations of a G. sulfurreducens dominated coculture with a composition of around

75% G. sulfurreducens [19]. DIET was predicted to be the optimal mode of elec-

tron transfer in this consortium with electron transfer flux through DIET being at

its maximal value (V max
DIET ). Further analysis of the flux distribution revealed that

G. metallireducens secreted acetate into the SMP as a result of ethanol oxidation.

The secreted acetate was predicted to be utilized by G. sulfurreducens as a carbon

source for growth. Acetate was also predicted to serve as an electron donor for fu-

marate reduction via the TCA cycle in G. sulfurreducens (Fig. 5.4). To assess the

accuracy of these model-predicted flux distributions, a context-specific model based

on transcriptomic profiling of this coculture was constructed using the GIMME al-

gorithm [41]. This algorithm implements an optimization framework as well as a

scoring function to determine the model that best describes the gene expression

levels and metabolic objectives of the cell under the given conditions. The flux
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distribution from the resulting context-specific model consisting of 988 reactions

and 993 metabolites was found to be 99% consistent with transcriptomic data.

Reactions such as citrate synthase and aconitase of G. metallireducens, formate

dehydrogenase and the uptake hydrogenase of G. sulfurreducens, were not active

in this context-specific model. This prediction agrees with the demonstration of

syntrophic growth between G. metallireducens and a mutant of G. sulfurreducens

lacking both the uptake hydrogenase and formate dehydrogenase [20]. An in silico

simulation where each reaction was knocked out individually to assess their effect

on the growth revealed that apart from uptake of ions, the main reactions predicted

to be essential for sustenance of syntrophic interaction in this consortium are those

involved in the ethanol oxidation, fumarate reduction, and direct electron transfer

between G. metallireducens and G. sulfurreducens.
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Figure 5.2: Physiological growth screens performed on the WT and CS
K.O strains. The uptake rates calculated from this data were used to constrain
the model. While constraining the model with uptake rates, the fumarate uptake
rate was calculated as the net fumarate and malate rates.
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Since both G. metallireducens and G. sulfurreducens are capable of fixing

nitrogen, the impact of this energy intensive process on the syntrophic interaction

between them was investigated by simulating syntrophic growth in ammonia free

media. This analysis predicted that if G. sulfurreducens were to be the organism

fixing nitrogen for the community, the composition of the community would have

to be at least 45% G. metallireducens. On the other hand, no feasible interaction

was predicted if G. metallireducens had to be the organism solely responsible for

fixing nitrogen for the community. This prediction is validated by the lack of

syntrophic growth observed in a coculture of G. sulfurreducens nifD mutant which

is unable to fix nitrogen [182] and a G. metallireducens strain pre-adapted to fix

nitrogen in a medium containing N2 gas as the sole nitrogen source (Fig. 5.5).
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Figure 5.5: Impact of nitrogen limiting conditions on the syntrophic
association. To assess the impact of nitrogen fixation on the syntrophic associa-
tion, simulations were carried out in ammonia free media. In a scenario where G.
sulfurreducens is the sole organism fixing nitrogen, the maximum relative abun-
dance G. sulfurreducens could achieve was around 45%. No feasible scenarios were
computed for syntrophic growth of both organisms, if G. metallireducens had to
be the sole organism fixing N2.

5.4.3 Transcriptomic profiling analyzed in the context of

the integrated model provides insights into the dif-

ferent mechanisms of electron transfer

To gain further insights into the different mechanisms of electron transfer

in the consortium, we modeled two other mutant strains, where the possibility

of acetate transfer or hydrogen transfer was eliminated. This was achieved by

the deletion of citrate synthase (CS K.O. strain) and the uptake hydrogenase of

G. sulfurreducens (hyb K.O. strain) to eliminate acetate oxidation and hydrogen

transfer, respectively (Table. 5.1) [21]. Transcriptomic profiling by RNA-seq
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on these three strains provided an additional layer of context to the community

model to assess the functional effect of these perturbations to electron transfer

mechanisms.

Table 5.1: Details of the different mutant strains modeled to obtain insights into
mechanisms of electron transfer

Strain Gene deleted Possible
modes of elec-
tron transfer

WT none DIET + Acetate
+ Hydrogen

CS K.O. gltA(Citrate
Synthase) of G.
sulfurreducens

DIET + Hydro-
gen

hyb K.O. hybA (Hydroge-
nase) of G. sul-
furreducens

DIET + Acetate

Eliminating the possibility of hydrogen transfer resulted in the differential

expression of 145 genes in G. sulfurreducens (Fig. 5.6A). Specifically, we observed

an increased expression (> 4 fold) of the outer membrane cytochromes (omcS,

omcT ) that are believed to be involved in DIET and a significant downregulation

(> 15 fold) in expression of the other hydrogenase (hya) in addition to the deleted

hyb. Consistent with the lack of hydrogenase activity in the context-specific model

for the WT strain, the predicted flux distribution for the hyb K.O. strain was simi-

lar to that of the WT strain. This similarity was further supported by comparable

ethanol and fumarate uptake rates observed in both these strains [21] (Fig. 5.6B).

Eliminating the possibility of electron transfer through acetate oxidation by

the deletion of the citrate synthase gene of G. sulfurreducens (CS K.O. strain) re-

sulted in the differential expression of 485 genes in both G. metallireducens and G.

sulfurreducens (Fig. 5.6A). 145 genes out of the 485 differentially expressed genes

encoded for at least one reaction in the genome-scale model. A statistical analysis

on these 145 genes based on the metabolic subsystems revealed a significant en-

richment for genes involved in energy metabolism and electron transfer ( p-value

0.01). Experimentally measured physiological uptake rates for the CS K.O. strain

were used to constrain the model and to simulate the effect of the elimination
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of additional electron transfer via acetate. The optimal ratio of the constituents

in this consortium was predicted to be 44% G. metallireducens, which compared

well with the experimental observation of about 50%. As expected, 67% acetate

secreted by G. metallireducens accumulated in the SMP, due to the inability of G.

sulfurreducens to oxidize it. In accordance with this prediction, the expression of

acetate transporter genes in G. sulfurreducens decreased significantly (>15 fold)

compared to that of the WT strain. Similar to the WT strain, DIET was predicted

to be preferred over interspecies hydrogen transfer in the CS K.O. strain. However,

the electron transfer flux through DIET in the CS K.O. strain occurred at just 75%

the maximal value (V max
DIET ). This suboptimal electron transfer scenario observed

in the CS K.O. strain could potentially result in a lower electrical conductivity in

this consortium compared to the WT strain.
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Figure 5.6: Insights into mechanisms of electron transfer from transcrip-
tomic data. A: Fold changes observed for the differentially expressed genes in
the hyb K.O strain and CS K.O strain. B: Metabolic interpretation of the tran-
scriptomic differences in the hyb K.O strain relative to the WT strain. The main
genes unregulated in the hyb K.O strain include the outer membrane cytochromes
that are associated with the pathway for DIET in the consortium. C: Metabolic
adjustments in the CS K.O strain based on the transcriptomic data. The elimi-
nation of interspecies electron transfer via acetate oxidation confers a suboptimal
direct electron transfer phenotype to the consortium. This is mirrored by the
significant suppression of the electron transfer pathway involved in DIET in G.
metallireducens. D: Interaction motif describing the synergistic and antagonistic
relationship between DIET, acetate transfer and interspecies hydrogen transfer.

The metabolic adjustment to this functional state was investigated by in-

tegrating the fold changes in gene expression of the two strains with the genome-

scale model using MADE [144]. This analysis revealed that the agreement between

metabolic adjustment predicted by the model with the transcriptomic profiling was

87% accurate with a significant increase in flux for 17 reactions and decrease in

flux for 91 reactions. The reactions showing significant decrease in fluxes corre-

sponded to the electron transfer pathway of G. metallireducens involved in DIET

(CYTMQOR3pp D, NADH17pp D, OMCPPCO D) (Fig. 5.6C). The changes
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in the flux distribution observed from expression data were also further corrobo-

rated by the use of randomized Monte-Carlo sampling on the genome-scale model

(Methods). This significant suppression of the critical components of the elec-

tron transfer pathway out of G. metallireducens mirrors the suboptimal electron

transfer scenario observed upon eliminating the additional electron transfer via ac-

etate (Figure 3C). Taken together, the integrated analysis of transcriptomic data

with genome-scale model of syntrophy revealed a unique interaction motif between

the different modes of electron transfer. Since the elimination of acetate transfer

conferred a suboptimal electron transfer and the elimination of the hydrogenase

gene enhanced the expression of genes involved in DIET, we postulate that ac-

etate transfer is synergistic to DIET and interspecies hydrogen transfer has an

antagonistic relationship with DIET (Fig. 5.6D).

5.4.4 Investigating the dynamics of adaptation to syntro-

phy

The obligate syntrophic association between the two Geobacter species was

achieved through adaptive laboratory evolution under a selection pressure to switch

from their Fe(III)-reducing growth mode to rapid syntrophic growth in ethanol-

fumarate medium. Other members of the Geobacteraceae like Pelobacter carbino-

licus, have been previously shown to evolve from an Fe(III) reducer to a syntroph

performing interspecies hydrogen transfer [187, 20, 188]. In the association de-

scribed in this study, G. metallireducens functions as an ethanol-oxidizing syn-

troph performing DIET[19]. On the other hand, the selection pressure dictates G.

sulfurreducens to depend on G. metallireducens to derive its carbon source as well

as electrons for growth while reducing fumarate. The genome-scale model of the

consortium was used to investigate what effect the selection pressure had on how

the partners adapted for syntrophic growth as well as their interaction dynamics.

First, we assessed the entire spectrum of feasible interactions in this consortium by

evaluating the effect of relative rates of ethanol oxidation and fumarate reduction.

This phenotypic phase-plane analysis [164] indicated the presence of two distinct

feasible phases (Phase A and Phase B) based on the presence or absence of a lim-
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itation on fumarate reduction rate. The line of optimality represents the ethanol

and fumarate uptake rates that correspond to optimal growth of the consortium

(Fig. 5.7). Phase A is closer to the line of optimality and there is no limita-

tion due to fumarate uptake rate. In addition, this phase is also characterized by

maximal electron transfer flux through DIET as described by V max
DIET . This state

reflects the ideal scenario for both G. metallireducens and G. sulfurreducens in this

consortium. Experimentally determined uptake rates of WT aggregates are rep-

resentative of Phase A, with maximal electron transfer through DIET. Typically,

in Phase A, G. sulfurreducens dominates the consortium and is most abundant.

Phase B reveals a scenario where a limitation due to fumarate uptake rate results

in a state of suboptimal electron transfer flux. Specifically, the electron transfer

flux from G. metallireducens to G. sulfurreducens is limited by the rate of electrons

that G. sulfurreducens can transfer to fumarate. While, G. sulfurreducens still de-

rives the requisite amount of electrons to reduce fumarate, G. metallireducens is

forced to find other ways to transfer the electrons it derives from ethanol oxidation.

An example of the physiological characteristic exhibited in Phase B would be the

CS K.O strain, with a relative abundance of G. metallireducens closer to 50%, the

inability to oxidize acetate, and suboptimal DIET. This dynamics suggests that G.

sulfurreducens is the partner likely to have actively responded to the selective pres-

sure of rapid syntrophic growth. Consistent with this, a 1 bp deletion in GSU1495

encoding PilR of G. sulfurreducens shown to promote syntrophic growth via direct

exchange of electrons in cocultures after 100 generations, was preserved at the end

of 780 generations. Strikingly, even after 780 generations, no genetic mutations

were observed in G. metallireducens. While G. sulfurreducens undergoes several

genomic changes in addition to transcriptomic changes to actively respond to the

pressure of rapid syntrophic growth, G. metallireducens responds only at the level

of the transcriptome by regulating its expression (Fig. 5.6C).
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Figure 5.7: Dynamics of interaction between the partners as they re-
spond to selection pressure of syntrophic growth. Phenotypic phase plane
analysis reveals the presence of two distinct phases with maximal and suboptimal
direct interspecies electron transfer.

5.4.5 Comparative analysis of interspecies electron trans-

fer mechanisms

In contrast to electron exchange via DIET in the G. metallireducens/G.

sulfurreducens co-cultures, co-cultures of Pelobacter carbinolicus and G. sulfurre-

ducens growing in a similar ethanol/fumarate medium exchange electrons via in-

terspecies hydrogen transfer [20]. This difference can be attributed in part to the

inability of P. cabinolicus to make effective electrical connections with extracellular

electron acceptors [189] as well as the inability of G. metallireducens to generate

hydrogen gas [190]. Electron transfer mechanisms are fundamental for syntrophic

interactions to exist, and therefore it is important to assess their influence on the

energetic yields of the interacting organisms. Therefore, for an appropriate com-
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parison of the energy yields of the respective partners during the different modes

of interspecies electron transfer, the coculture of P. carbinolicus and G. sulfurre-

ducens was used as the system of choice for the hydrogen transfer scenario.

The genome-scale metabolic model of G. metallireducens was modified to

account for the major differences involved in ethanol and hydrogen metabolism of

P. carbinolicus. This modification mainly included the production of hydrogen via

electron confurcation due to the addition of a NADP-dependent hydrogenase and

the Nfn complex, the addition of the Rnf complex, and the acetylating acetalde-

hyde dehydrogenase. The phenomenon of electron confurcation has been shown

to play an important role in interspecies hydrogen transfer during syntrophic as-

sociations [191]. The relative efficiency of the different modes of electron transfer

was evaluated using the genome-scale model of this coculture and the syntrophic

consortium of the two Geobacter species to obtain insights into the potential differ-

ences in energy conservation mechanisms. Specifically, the maximum molar yield

of ATP obtained per mole of electron donor (ethanol) for both the partners in each

of the different scenarios was computed.

The predicted energy yields of the two partners during DIET mirrored the

ratio of the relative abundance observed in the CS K.O. strain. The presence of

additional electron transfer via acetate was found to enhance the efficiency of DIET

by 24% (Fig. 5.8A). In this case, the predicted relative energy efficiencies of the

two partners involved were consistent with the observed and predicted values of

their relative abundances in the WT strain. The energy yield of G. sulfurreducens

was predicted to be about 82% of the total energy yield during hydrogen trans-

fer. This prediction is in good agreement with the reported relative abundance

of 85% G. sulfurreducens in its syntrophic association with P. carbinolicus [20].

While the energy yield for the electron accepting organism (G. sulfurreducens)

during interspecies hydrogen transfer was of similar order of magnitude compared

to DIET (2.7 vs 3.5), the energy yield of the electron donating organism was about

4 times lower during the case of interspecies hydrogen transfer (Figure 5A). The

metabolic characteristic governing this significant difference was found to be the
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mode of energy conservation adopted by P. carbinolicus and G. metallireducens

during interspecies hydrogen transfer and DIET respectively. P. carbinolicus was

found to primarily generate ATP via substrate level phosphorylation, whereas G.

metallireducens conserved energy via respiration aided by the establishment of a

proton gradient during DIET (Fig. 5.9). This mechanistic difference potentially

explains the higher relative abundance of the electron accepting organism during

interspecies hydrogen transfer as observed in the coculture of P. carbinolicus and

G. sulfurreducens [20].
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The effect of microbial community dynamics on the preferential occurrence

of DIET or interspecies hydrogen transfer was analyzed using a genome-scale model

of syntrophy between G. metallireducens with the added capabilities of interspecies

hydrogen transfer and G. sulfurreducens. The biochemical constraints that govern

microbial communities often result in constituents operating at varying levels of

optimality that compromises their respective growth objectives [192]. Using the

genome-scale model, the entire spectrum of optimality for both the electron do-

nating and electron accepting organisms were scanned to assess the occurrence of

DIET and interspecies hydrogen transfer. It is important to note that the level

of optimality is not equal to relative abundance of cells, but rather reflects the

strategy adopted to optimize biomass yield. It was observed that interspecies hy-

drogen transfer occurred in addition to DIET, whenever the optimality levels of
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the electron accepting organism was at least 1.8 times that of the electron donating

organism (Fig. 5.8B). In other words, when interspecies hydrogen transfer was

modeled in silico to occur along with DIET, G. sulfurreducens tends to adopt a

strategy that is relatively more optimal. If the community operates in a manner

such that the relative optimality levels of the two organisms are of similar orders

of magnitude, it is predicted that the energetic requirements of G. metallireducens

preclude the possibility of interspecies hydrogen transfer occurring. The is largely

due to the energetic advantage conferred to the electron donating organism due to

the proton gradient established during DIET compared to interspecies hydrogen

transfer (Fig. 5.9). To further explore other environmental factors that could

determine the preference of DIET as the mode of electron exchange, a sensitivity

analysis was preformed. This revealed that the proton intake flux by the partner

accepting electrons (G. sulfurreducens) was the critical factor that affected the

efficiency of DIET (Fig. 5.10). While proton intake flux had no impact on the

energy efficiency during interspecies hydrogen transfer, it had a linear effect on the

energy yield in DIET and DIET+acetate transfer. Hence, a combination of ge-

nomic characteristics, environmental factors such as proton availability in the local

microenvironment, and aspects of community dynamics like relative optimality of

electron acceptor and donor organisms are expected to play a role in determining

the preference of interspecies electron transfer mechanisms.
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5.5 Discussion

Microorganisms engage in diverse partnerships and complex interactions in

their natural environment. The extent of these microbial partnerships and the na-

ture of their interactions play a crucial role in the cycling of nutrients and energy

in the environment. Syntrophic associations between microorganisms are dom-

inant mediators of all the major biogeochemical cycles in anoxic environments

[178, 179, 180]. The obligate nature of most of these syntrophic associations

necessitate a tight coupling of the metabolism and energetics of the interacting

microorganisms, typically resulting in the formation of compact aggregates that

operate at thermodynamic equilibrium [177]. A comprehensive characterization of
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these complex nutritional and energetic dependencies is fundamental to the un-

derstanding of this crucial environmental process. Despite the rapid development

of high-throughput sequencing and metagenomic technologies, almost all modeling

approaches used to study these interspecies interactions have been limited to char-

acterizing the metabolic exchanges between the constituents without accounting

for the functional effect of the potentially different mechanisms of reducing equiv-

alent transfer. Here, for the first time, we present a multi-omic modeling workflow

to investigate metabolic dynamics and mechanisms of electron flow in the labora-

tory evolved syntrophic coculture of G. metallireducens and G. sulfurreducens at

three distinct levels of complexity.

The detailed reconstruction of the energetics associated with extracellu-

lar electron transfer pathways enabled the mechanistic basis of investigation of

the relative efficiencies of direct interspecies electron transfer (DIET) versus other

alternatives. In the syntrophic association of G. metallireducens and G. sulfurre-

ducens, the model predictions reaffirmed the prevalence of DIET as the mode of

electron exchange. The reactions essential to the maintenance of this syntrophic

association exclusively corresponded to those involved in DIET. Furthermore, the

energetic efficiency of DIET was predicted to be directly impacted by the proton in-

flux, unlike the case of interspecies hydrogen transfer. This study further presents

a comparative analysis of the factors that determine the preference of DIET or

interspecies hydrogen transfer. Specifically, this is demonstrated by analyzing a

similar system of syntrophic ethanol oxidation involving P. carbinolicusand G.

sulfurreducens. This revealed that metabolic features such as energy conservation

via proton gradient or substrate-level phosphorylation, environmental factors such

as proton availability in the local microenvironment, and microbial community

dynamics could play a role in deploying DIET or interspecies hydrogen transfer

mechanisms during syntrophic associations.

In addition to characterizing the syntrophy at the level of metabolites

and electron flow, our integration of transcriptomic and physiological data with
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genome-scale models enabled us to describe the interplay between the mechanisms

of electron flow. By modeling genetic perturbations that eliminated interspecies

hydrogen transfer and additional electron transfer via acetate, we were able to

arrive at an interaction motif to resolve the synergistic effect of acetate transfer

on DIET. The ability to extract such interaction motifs is of particular impor-

tance when studying complex microbial communities where multiple mechanisms

of electron exchange are likely to be prevalent. It is possible that other syntrophic

consortia will exploit a similar synergy of different electron flow mechanisms in

a condition-dependent manner. The knowledge of such unique interaction motifs

between modes of electron transfer will also have a significant impact on the design

of synthetic syntrophic consortia for several biological engineering applications in

the future [193].

Finally, we were able to obtain novel insights into the dynamics of inter-

action between the partners in the consortium and the mechanisms of how they

adapted to the selective pressure of syntrophic growth. Two distinct phases of syn-

trophic growth characterized by maximal and suboptimal electron transfer were

observed. As the electron transfer scenario transitioned from suboptimal to maxi-

mal (Phase B to A), the relative abundance of G. sulfurreducens increased. This

led us to postulate that G. sulfurreducens actively drives the association by domi-

nating the interaction dynamics. This inference was found to be consistent with a

previous finding that the beneficial mutation that promoted syntrophic association

was in G. sulfurreducens. In other words, the organism that relies on the electrons

transferred (G. sulfurreducens) from its partner had the need to actively respond

to the selection pressure by undergoing changes at the genomic level. However,

the partner that provides electrons (G. metallireducens) seemed to respond only at

the level of the transcriptome. This type of dynamics could have several evolution-

ary implications, suggesting that in syntrophic associations, the accepting partner

streamlines its metabolic capabilities to enhance the most efficient mode of electron

transfer. This could be of particular relevance when characterizing methanogenic

consortia. Given that methanogens are typically involved in syntrophic relation-
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ships, it is possible that they respond similarly to the availability of the electron

donor by streamlining their metabolic capabilities for the most efficient utilization

strategy. In fact, a recent study on the functional response of M. maripaludis to

syntrophic growth in association with D. vulgaris revealed that, the methanogen

uses paralogous genes to adapt to the changing substrate availability when grow-

ing syntrophically compared to growing as a monoculture [194]. An approach like

the one presented here, that integrates genome resequencing, metatranscriptomics,

and genome-scale modeling, would likely allow for a deeper mechanistic insight into

the dynamics and adaptation of the syntrophic interaction of M. maripaludis and

D. vulgaris.

In summary, this study represents a multi-omic approach to elucidate the

electron transfer mechanism and to characterize the metabolic phenotype of a

laboratory evolved syntrophic consortium at multiple levels of complexity. This

integrated approach demonstrates that energetic limits due to obligate syntrophic

associations are reflected in the genome and the transcriptome of the microor-

ganisms, thereby providing a comprehensive alternative framework for detailed

mechanistic characterization. Since the approach developed here is modular, it

can be easily extended for the characterization of other complex communities.

The models being developed in these studies will be important for understanding

the functioning of anaerobic microbial communities and could aid in predicting the

influence of environmental changes on methane emissions and other aspects of the

carbon cycle.

5.6 Methods

5.6.1 Reconstructing a genome-scale model of syntrophy

In order to model the syntrophy between G. metallireducens and G. sul-

furreducens, the existing genome-scale metabolic reconstructions of the two species

were updated and expanded. A comparative reconciliatory process involving au-

tomated reconstructions from MODEL SEED [24], draft reconstruction based on
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the updated genome annotation, existing reconstruction, and extensive manual cu-

ration was used to update and expand the metabolic model of G. metallireducens

(Refer to Supporting Material - (GmetReconpaper)). This updated model was

used to expand the genome-scale metabolic model of G. sulfurreducens. Homologs

to G. sulfurreducens genes were identified in the G. metallireducens genome using

a bi-directional Smith-Waterman alignment. A 60% ID cutoff was used to iden-

tify the homologs. The most recent updated annotation (AE017180 version 2)

of G. sulfurreducens was then used to curate the homology matches. A distinct

periplasmic compartment was also incorporated into the model. This procedure

also included the explicit reconstruction of the extracellular electron transfer path-

ways as described in Fig. 5.1A.

The two genome-scale reconstructions were integrated into a combined

model by extending the compartmentalized framework. A compartment called

the shared metabolite pool (SMP) was introduced. This compartment was meant

to facilitate the exchange of metabolites between the two genome-scale models as

well as their interaction with the extracellular environment. To achieve this, the

outer-membrane transporters in each of the genome-scale models were replaced

by transporters that facilitated transfer from the respective periplasmic compart-

ments to the SMP. Exchange reactions were added for all metabolites present in

the SMP (Fig. 5.11).
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Figure 5.11: Detailed schematic of the expansion of the compartmen-
talized framework adopted for integrating two different genome-scale
metabolic models. The outer membrane transporters in each of the metabolic
models were replaced by transporters that facilitated transfer from the respec-
tive periplasmic compartments to the SMP. Exchange reactions were added for all
metabolites present in the SMP.

5.6.2 Modeling direct interspecies electron transfer

DIET was accounted for by introducing a reaction that represents the sto-

ichiometric transfer of electrons between the outer-membrane cytochromes of the

two Geobacter species. The flux through this reaction was constrained based on

the midpoint potential of OmcS, an outer-membrane cytrochrome of G. sulfurre-

ducens. The maximum electron transfer flux through DIET was calculated by

scaling the midpoint potential of OmcS(EomcS) using the formula

V max
DIET = EomcS

EF e(III)citrate

∗ Y(Fe/EtOH) ∗ VEtOH

In this equation, EFe(III)citrate represents the midpoint potential of Fe(III) citrate

and Y(Fe/EtOH) represents the ratio of Fe(III) reduction rate to the oxidation rate

of the electron donor (ethanol).

5.6.3 Physiological data measurements and growth condi-

tions

All growth experiments of G. metallireducens and G.sulfurreducens (WT

and CS K.O. strains) were performed using strict anaerobic culturing techniques
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as previously described [195]. Cultures were incubated in 160 mL serum bottles

sealed with butyl rubber stoppers and filled with 100 mL of media. The culture

medium was provided with 40 mM fumarate and 20 mM ethanol as the sole electron

donor as described [19]. For determination of substrate depletion and metabolite

production, samples were withdrawn under strict anaerobic conditions with hypo-

dermic needles and syringes. Samples were passed through 0.2 m Acrodisc filters

and were diluted prior to analysis. Changes in ethanol concentration over time

were monitored by gas chromatography as previously described [17]. Changes in

concentration of volatile fatty acids, such as fumarate, succinate, malate, and ac-

etate were determined by high performance liquid chromatography as previously

described [196]. Cell biomass increase over time was determined in four replicate

co-cultures (100 mL each) of G. metallireducens with G.sulfurreducens (WT and

CS K.O. strains). Aggregates were harvested at different growth stages by cen-

trifuging for 15 min at 4,000 rpm, washed in isotonic buffer, and pelleted at 4,000

rpm. The pelleted cell suspensions were freeze-dried for 48 hours on a Labconco

lyophilizer. Dry mass was weighed prior to re-suspension in 0.5% SDS for deter-

mination of total protein content using the bicinchoninic acid method [197] with a

protein standard.

5.6.4 Simulating syntrophic growth using the genome-scale

model

The genome-scale metabolic reconstruction of the syntrophic association

was represented in a mathematical format in the form a stoichiometric matrix

(S). The rows of the matrix represent the metabolites in the network, while the

columns represent the reactions. Flux balance analysis (FBA), where the flux

through a particular objective reaction is optimized subject to a set of constraints,

was used to characterize the system [175]. In this particular case, the objective of

the optimization was maximizing the flux through the biomass of both G. metal-

lireducens and G. sulfurreducens. Typically, the constraints for the optimization

problem include upper and lower bounds (ub, lb) for reaction fluxes calculated

from thermodynamic and enzyme kinetics. In this simulation, an additional con-
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straint on the flux through DIET was applied based on V max
DIET . Constraints on

ethanol, and fumarate uptake rates were applied based on experimentally mea-

sured physiological rates. All ions, and water were allowed to enter the network

freely. Additionally, the loopless COBRA constraint was applied to eliminate ther-

modynamically infeasible loops from the solution [186]. Reaction deletion analysis

and phenotype phase plane analysis were carried out using the singleRxnDeletion

and phenotypePhaseplane functions in the COBRA toolbox [45].

5.6.5 Monte Carlo sampling and differential reaction ac-

tivity

Monte Carlo sampling was applied on the integrated genome-scale model of

the syntrophic consortium to generate a set of uniform, feasible flux distributions.

A modified version of the artificially centered hit and run (ACHR) algorithm called

gpSampler [45, 3] was implemented to sample both the WT and CS K.O strains.

Differential reaction activity was computed based on the sampled flux distributions

as done in a previous study [39, 198]. Significance of change was determined at a

false discovery rate of 0.05 [199]. Using the gene-protein-reaction associations in the

genome-scale model, the genes corresponding to the reactions showing differential

activity were obtained. This was compared with the list of differentially expressed

genes obtained from transcriptomic profiling using RNA-seq.

5.6.6 Trasnscriptomic profiling of the aggregates

Total RNA was isolated from wild type and mutant aggregates using the

acid phenol method [200, 201]. Residual DNA was removed with a 30 minute

DNAse I digestion at 37oC (Qiagen) followed by purification with the RNeasy

Mini kit (Qiagen). A total of 2.5 µg of total RNA was treated with the Gram-

Negative RiboZero kit (Epicentre). Paired end, strand specific RNA sequencing

was performed using a variation of the dUTP method outlined in [202, 203] with

the following changes. 100 ng of rRNA subtracted RNA was fragmented with RNA

fragmentation reagents (Ambion) for 3 minutes at 70oC. First strand synthesis was
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primed using random hexamers (Invitrogen). Downstream library construction

was performed as previously described [204]. Final libraries were quantified using

qPCR (KAPA) and sequenced on an Illumina Genome Analyzer II.

5.6.7 Transcript quantification

The obtained RNA-seq reads were aligned to the concatenated genome se-

quences of G. metallireducens and G. sulfurreducens (RefSeq NC 002939) using the

short-read aligner Bowtie [205] with two mismatches allowed per read alignment.

To estimate transcript abundances, FPKM values were calculated using the tool

Cufflinks [206] with appropriate parameters set for the strand-specific library type

and upper-quartile normalization. Differential expression analysis was carried out

using cuffdiff, with upper-quartile normalization and appropriate parameters set

for strand-specific library type. A fold change of greater than 2-fold and false dis-

covery rate cutoff of 0.05 was used to determine significant differential expression

between two different conditions.

5.6.8 Functional enrichment analysis

To determine if the differentially expressed genes were enriched for any

particular metabolic subsystem in the genome-scale model, a hypergeometric test

was performed using the hygecdf function in MATLAB. A p-value cutoff of 0.05

was used to determine significance.

5.6.9 Resequencing and mutation identification

Nine parallel replicate co-cultures of G. metallireducens and G. sulfurre-

ducens were sequenced after 780 generations using Illumina sequencing and the

resulting mutations were compared to those identified after 100 generations [19].

The concatenated genomes of G. metallireducens(NC 007517) and G. sulfurre-

ducens(AE017180 version 2) were used as the reference for mutation identification.

Illumina reads from the nine different resequencing experiments were iteratively

aligned to this reference using MosaikAligner (Stromberg and Marth. The number
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of allowed mismatches in the alignment was increased from 0 to 5 in each iteration

with the unaligned reads used as the input for the subsequent iteration. The align-

ments were processed using a custom script written in-house (described in [207])

to obtain the fold coverage at single base-pair resolution. A coverage cutoff of

10X was employed for SNP identification and lack of coverage was used to identify

deletion. Furthermore, a particular location was deemed polymorphic in each of

the nine experiments, if the observed nucleotide count was greater than twice the

count of the actual nucleotide in the reference sequence at that position. Finally,

a particular location was considered to be a mutation, if it was found in at least

seven of the nine replicates.
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Chapter 6

Conclusions and Outlook

This thesis demonstrates how genome-scale systems biology approaches can

be applied to characterize electromicrobiological applications such as microbial fuel

cell, microbial electrosynthesis and interspecies electron transfer. In the first part

of this thesis, next-generation sequencing and multi-omics data integration was

applied to characterize the genomic and regulatory aspects of G. sulfurreducens

growing in a microbial fuel cell setting. Specifically, a de novo assembly strategy

was developed to elucidate the complete genome of an enhanced electricity pro-

ducing variant. Further, multi-omics data integration enabled the characterization

of sigma factor regulatory network governing electrogenic biofilm at a genome-

scale. This revealed insights into how energy metabolism is regulated in G. sul-

furreducens. Further studies on key transcription factors in this bacterium will

provide a comprehensive picture of the interplay between the regulation of energy

metabolism and microbial fuel cell performance.

In the second part of this thesis, the metabolism of two electrosynthetic

bacteria were characterized at the genome-scale. Specifically, key carbon fixation

and energy conservation pathways were analyzed. This part provided key insights

into potential novel components involved in electrosynthesis and serves as a frame-

work for genome-scale characterization of the process. In addition, the detailed

description of energy conservation mechanisms enabled us to elucidate potential

energetic costs involved in extracellular electron transfer. The modeling framework

133
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can be augmented as further biochemical discoveries on the various components of

extracelullar electron transport are made. This part of the thesis also presented the

first genome-scale model of an acetogen. Acetogenic microorganisms have unique

metabolic pathways and energy conservation mechanisms that, if understood, could

greatly increase options for the design of microorganisms for production of biofuels

and enhance the range of biomass materials that could become economically viable

feedstock. Hence the models developed in this part are expected to guide strategies

for strain design and engineering of autotrophic metabolism either using syngas

or under electrosynthetic conditions. This effort could potentially be strengthened

by the development of next generation genome-scale models that include biochem-

ical processes such as transcription, translation, protein translocation in addition

to metabolism [208]. These models will be of particular relevance for studying

aspects of extracellular electron transfer since most of the key components are

multi-heme proteins whose synthesis and translocation to the outer membrane are

energy intensive. Metabolic models do not account for such costs and a model

with expanded scope is expected to have an increased predictive power.

In the third part of this thesis a multi-omics modeling workflow that com-

bines genomic, transcriptomic, and phenotypic data with constraint-based model-

ing using genome-scale metabolic models to investigate metabolic dynamics and

mechanisms of electron flow in syntrophic co-cultures is presented. One of the key

aspects of this workflow is the modeling of direct interspecies electron transfer. The

models presented in this study will be important for understanding the function-

ing of anaerobic microbial communities and could aid in predicting the influence

of environmental changes on methane emissions and other aspects of the carbon

cycle. With this integrated approach, we demonstrate that energetic limits due to

obligate syntrophic associations are reflected in the genome and the transcriptome

of the microorganisms. This provides a complementary alternative framework that

relies on omics data for detailed mechanistic characterization of microbial commu-

nities. As stated earlier, the study of microbial interactions will also benefit from

the expansion in scope of metabolic models to include other biochemical processes.
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The insights learnt from electron transfer capabilities of single species and simple

microbial consortia can be extended to characterize complex microbial communi-

ties and microbiomes. Such an extension might require application of sequencing

technologies to characterize the composition of the microbiome and application

of transcriptomic technologies in conjunction with draft genome-scale metabolic

models to obtain mechanistic insights into the functioning of the community.
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