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Abstract

Phase Transitions in the Early Universe

by

Carroll L. Wainwright

I explore the theory and computation of early-Universe finite-temperature phase transitions

involving scalar fields. I focus primarily on the electroweak phase transition, but some of

the methods I develop are applicable to any scalar-field cosmological phase transition (such

as the computation of the lifetime of zero-temperature metastable vacua). I begin by

examining phase transition thermodynamics with many extra coupled degrees of freedom,

finding that such transitions have the potential to produce large amounts of entropy and

can significantly dilute the concentration of thermal relic species (e.g., dark matter). I then

detail a novel algorithm for calculating instanton solutions with multiple dynamic scalar

fields, and present a computational package which implements the algorithm and computes

the finite-temperature phase structure. Next, I discuss theoretical and practical problems

of gauge dependence in finite-temperature effective potentials, using the Abelian Higgs and

Abelian Higgs plus singlet models to show the severity of the problem. Finally, I apply

the aforementioned algorithm to the electroweak phase transition in the next-to-minimal

supersymmetric standard model (NMSSM). My collaborators and I find viable regions of

the NMSSM which contain a strongly first-order phase transition and large enough CP

violation to support electroweak baryogenesis, evade electric dipole moment constraints,

and provide a dark matter candidate which could produce the observed 130 GeV gamma-

ray line observed in the galactic center by the Fermi Gamma-ray Space Telescope.
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Chapter 1

Introduction

The history of the Universe, in a certain sense, is one which is best told backwards:

scientists know much more about the effect than the cause, and we ought to start with what

we know. The effect is the messy state of the present. This includes the state of the galaxy

and large-scale cosmology; the state of the solar system and its planets; the state of Earth

and its inhabitants; the state of the State and the people and all the complicated social

institutions of which I personally know very little. The cause is the underlying fundamental

physics and the initial conditions at the big bang, about which no one knows more than

very little (although theories abound).

So, let us start with the present, ignoring, for simplicity, all features that are

smaller than a galaxy. The Universe is currently made up of 4.9% ordinary baryonic matter

and 26.8% dark matter (the best measurements of cosmological parameters come from the

very recent results of the Planck experiment [1]). The baryonic matter composes virtually

everything that people can see (electrons are not baryons, but they are tiny compared to
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atomic nuclei), as well as a large amount that we cannot see, or at least cannot see in visible

light, such as interstellar gas. Dark matter is simply the name we give to the matter that

we cannot see by any electromagnetic means, although we have been able to infer a great

deal about it by observing its effects upon visible matter. It must be made of small particles

(it cannot primarily be large clumps of dark baryonic matter or black holes); it must be

cold (it cannot be moving at relativistic speeds); it must be electrically non-interacting

(it cannot emit or reflect light); and it must be long-lived (it cannot decay to ordinary

matter or radiation with a lifetime shorter than the age of the Universe). No particle in the

Standard Model of particle physics fits this description. There are well-motivated theories

beyond the Standard Model with dark matter candidates, but no one yet knows which of

these theories is correct.

All of the matter in the Universe is flying away from all of the other matter in

the Universe at a rate governed by the Hubble constant: H0 = 67.3 ± 1.2 km/s/Mpc.

That is, two objects that are one megaparsec apart will tend to be moving with a relative

speed of 67.3 kilometers per second in opposite directions. Or, perhaps more accurately,

the distance between any two objects is growing at a rate of 67.3 km/s/Mpc even though

in certain (co-moving) coordinates the two objects remain in exactly the same spots. This

cosmic expansion is partly due to momentum — a universe in expansion tends to stay

in expansion — and partly due to the remaining 68.3% of the Universe’s energy budget.

Ordinary matter acting through gravity slows down the expansion, but we know that the

expansion is actually speeding up. We call the cause of the speed-up dark energy. It must

have a few exotic properties (it has negative pressure, for instance), but we otherwise know
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very little about what it actually is.

As we go back in time the expansion looks like contraction and the universe shrinks.

The total amount of matter stays the same (at first), but the total amount of dark energy

decreases. The density of dark energy stays constant, but since the total volume of the

universe goes down the relative importance of dark energy goes down as well. Larger

galaxies form out of the collisions of smaller proto-galaxies, and proto-galaxies and the

earliest stars form out of over-dense regions in the primordial gas. Before this, the Universe

was dark. But as we keep going back in time the primordial gas gets hotter and hotter:

the Universe adiabatically cooled as it expanded in much the same way as air cools as it

expands when one blows on a hot bowl of soup. If we go back far enough, to roughly

13.4 billion years ago or 380,000 years after the big bang, the primordial gas becomes an

optically thick primordial plasma. This is as far as we can see by conventional means, and

the plasma to gas transition constitutes the surface of last scattering, which we see today as

the cosmic microwave background radiation (CMB). A tremendous amount of information

can be inferred from the CMB (again, see [1]), but we can go back further still.

Before 70,000 years after the big bang, and at temperatures of roughly 1 eV (or

12,000 kelvin), radiation energy dominated over matter density. The matter density is

inversely proportional to the Universe’s volume, but the radiation density is inversely pro-

portional to the volume to the 4/3 power, so it dominates when the Universe was small

and hot. Rewinding to much earlier times, on the order of minutes after the big bang and

at temperatures of around 10 MeV, the individual primordial atomic nuclei split into their

constituent parts. The transition from free neutrons and protons to stable nuclei is known
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as big bang nucleosynthesis, and it is extremely well-described by Standard Model physics.

The observed primordial abundances of light elements beautifully matches our theoretical

expectations [2], and represents a triumph of modern cosmology. With big bang nucleosyn-

thesis, we are confident we understand the basic evolution of the Universe starting at just

a few minutes after the big bang. But, we can go back further still.

At this point, data is no longer a reliable guide (yet!), and we must instead rely

on theoretical knowledge. At even higher temperatures and earlier times, the neutrons and

protons must have been broken into their constituent parts: quarks and gluons. The tran-

sition from the quark-gluon plasma into baryons and mesons is called the QCD (quantum

chromodynamic) phase transition, and it happened at a temperature of around 100 MeV.

Before this, at temperatures above about 100 GeV, even the force-carrying bosons

are broken into simpler parts. The W± and Z0 bosons are normally massive (which is why

the weak force is so weak), and they get their masses from the Higgs mechanism. The

Higgs field is closely linked to the weak vector fields: it has four degrees of freedom, three of

which, due to a broken symmetry, become the longitudinal parts of the W± and Z0 bosons,

with the remaining degree of freedom acting as the Higgs boson. At very high temperature

the Higgs is unlinked from the weak bosons, which are then indistinguishable from the

photon. This is known as the electroweak phase transition (EWPT). Above the EWPT,

electroweak symmetry is unbroken and the Higgs field has zero vacuum expectation value

(vev). Below the transition, the Higgs gets a non-zero vev and the weak and electromagnetic

forces separate.

If we keep going back, theories get more uncertain (but again, there are lots of
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well-motivated ideas). At around 1016 GeV, the electroweak force may have been unified

with the strong nuclear force, in much the same way as the electric force is unified with

the weak nuclear force. At some point supersymmetry may have been unbroken. At the

very beginning of the Universe, there was almost definitely an inflationary epoch which

exponentially grew space and set the seeds of primordial fluctuations which would later

collapse into the structures that we see today.

The grand goal of this thesis (and of my five years of doctoral study) is to push

our knowledge a little bit further back from where we are confident we know the answers

— to determine a small piece of cosmic history before big bang nucleosynthesis. I focus on

the theory and phenomenology of phase transitions involving scalar fields. The electroweak

phase transition, in particular, has a rich set of phenomenological possibilities which may be

probed and verified in current and upcoming experiments. The electroweak phase transition

may have produced a substantial amount of entropy and heat, leading to an altered thermal

history; it may have produced a measurable stochastic gravitational radiation background;

and it may have been responsible for matter’s predominance over anti-matter in the present

via electroweak baryogenesis.

The rest of this thesis is organized as follows. In chapter 2, I discuss phase transi-

tion thermodynamics and a transition’s potential to dilute the abundance of thermal relics.

Chapter 3 details a numerical method for calculating instantons in multiple-field scenarios.

These instantons are the bubbles of low-temperature phase (“true vacuum”) that nucleate

and then grow to fill the expanding Universe. In chapters 4 and 5, I discuss gauge prob-

lems in finite-temperature field theory, and how naive calculations lead to gauge-dependent
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results. Chapter 4 focuses on the simplest possible such theory — the abelian Higgs model

— while chapter 5 extends the theory to include a singlet, which one may have expected

to mitigate the problem. However, I show that the problem persists even with the extra

singlet. Chapter 6 details a region of the next to minimal supersymmetric standard model

(NMSSM) which not only can produce the observed baryon asymmetry, but also evades

electric dipole moment constraints and provides a dark matter candidate which matches

the 130 GeV line seen by the Fermi gamma-ray space telescope. I conclude in chapter 7,

and briefly mention some of the work I performed during my graduate studies not otherwise

mentioned in this thesis, as well as plans for future study.
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Chapter 2

The impact of a strongly

first-order phase transition on the

abundance of thermal relics
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The particle content of the Minimal Supersymmetric extension of the Standard

Model (MSSM) of particle physics (see e.g. [3]) provides a stable weakly interacting mas-

sive particle which is, in principle, a viable particle dark matter candidate: the lightest

neutralino. If the latter is the lightest R-parity odd particle, its thermal relic abundance

can be close to the inferred density of dark matter on cosmological scales [4], whose ratio

to the universal critical density is estimated to be Ωastro = ρDM/ρc = 0.113 h−2 [5], with h

the present day Hubble expansion rate normalized in units of 100 km per sec per Mpc.

Several studies have pointed out that the thermal relic abundance of neutralinos

in MSSM models where they are the lightest supersymmetric particles actually ranges over

several orders of magnitude, simple estimates of their relic abundance being therefore only

a generic order-of-magnitude estimate (see e.g. [6, 7]). Specifically, if the lightest neutralino

has unsuppressed couplings to gauge bosons, and is heavy enough for annihilation to massive

weak interaction gauge bosons to be kinematically open, it rapidly annihilates into W+W−

and/or ZZ final states, and its relic density Ωparticle is below the dark matter density, at least

for neutralinos lighter than about a TeV. If the lightest neutralino has suppressed couplings

to gauge bosons, as is the case for bino-like or singlino-like neutralinos, or if neutralinos are

very heavy, the neutralino relic density is instead typically much larger than the universal

dark matter density.

MSSM models with under-abundant neutralino relic density are phenomenologi-

cally perfectly viable: the lightest neutralino can very well not be the only contributor (or

it can be a sub-dominant contributor) to the universal dark matter, in a standard cosmo-

logical setup. While modified cosmological setups can be concocted to enhance the thermal

8



relic abundance of neutralinos in those cases (for instance in the presence of non-thermal

production [7], or of a faster expansion rate at the epoch of the lightest neutralino freeze-out

[8, 9]), MSSM models with over-abundant relic neutralinos are, in principle, ruled out. A

caveat to this conclusion is the possibility of an episode of entropy injection occurring at

temperatures below the decoupling of neutralinos from the universe’s thermal bath (entropy

injection before freeze-out would not change today’s relic abundance of neutralinos).

Ref. [7] gives a thorough discussion of such a class of scenarios for the specific case

of an additional scalar field that drives both the entropy dilution and possibly the non-

thermal production of neutralinos, as well as a modified cosmological expansion rate if the

energy density associated to the scalar field dominates the universal energy budget. Specific

examples of setups that can produce a dilution in the relic abundance of neutralinos (or, for

that matter, of any other thermal relics decoupled from the thermal bath before entropy

injection) include for example models with moduli [10] or Q-ball decays [11], and scenarios

with low-temperature or even weak-scale inflation [12, 13, 14]. While a phase transition

that plausibly occurred after the neutralino freeze-out is the QCD phase transition, lattice

simulations [15] clearly indicate that the transition is not strongly first-order (see e.g. the

discussion in Ref. [16]).

In the present study, we consider a specific instance of a possible source of dilution

for the thermal relic abundance of relic neutralinos from the early universe, namely the

electro-weak phase transition (EWPT). In the minimal formulation of the Standard Model

Higgs sector, the EWPT is very weakly first-order, or entirely absent, as found e.g. in

the non-perturbative analysis of Ref. [17]. However, a strongly first-order phase transition
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can occur within the MSSM, or even in very simple extensions of the scalar sector of the

Standard Model (for instance via the inclusion of additional singlet scalars [18, 19, 20]).

Other possibilities include for instance models with multiple hidden sector scalars coupled

only to the Higgs sector (which thus acts as a “portal” to the hidden sector, as envisioned

in Ref. [21, 22, 23]). This possibility, which includes scenarios with tree-level conformal

invariance where the Higgs mass is generated via dimensional transmutation, has been

discussed and studied in detail in Ref. [24] and [25]. A strongly first-order phase transition

needs to actually be posited in the context of scenarios where the baryon asymmetry is

produced at the EWPT, to prevent the “washout” of the generated baryon number density

by sphaleron processes (for a pedagogical introduction to the framework of electro-weak

baryogenesis see e.g. Ref. [26]; classic studies on MSSM baryogenesis include [27] and [28];

recent discussions of the phenomenology of electro-weak baryogenesis in the MSSM are

given in Ref. [29, 30]). In this case, the order parameter can be considered to be the ratio

of the SU(2) Higgs background field φ =
√

2〈H0〉 to the critical temperature for the phase

transition, Tc, and a strongly first-order phase transition corresponds to φc/Tc & 1 [26].

The entropy injection produced in any first-order phase transition can play a rel-

evant role in the thermal history of species that froze out prior to the phase transition,

since their relic density will be diluted away by an amount dependent upon the relative

entropy injected to the entropy in the species in thermal equilibrium. Interestingly, the

CERN Large Hadron Collider (LHC) might potentially inform us on both the details of the

scalar electro-weak sector and of the EWPT in particular (including possible non-minimal

extensions of the scalar sector [18, 19, 20]), as well as on the mass of a putative dark matter
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particle. In some cases, data from the LHC might even enable us to infer, via the knowledge

of particle masses and couplings, the thermal relic abundance of a stable neutralino that

might be the main dark matter constituent (explicit examples with realistic assumptions on

the LHC performance are given in Ref. [31]). A mismatch between the observed cold dark

matter abundance and the inferred relic abundance of candidate particles discovered with

colliders can have very profound consequences. If the resulting inferred thermal abundance

were larger than the cold dark matter density, then the answer to the ensuing conundrum

might lie in the EWPT and in the Higgs sector, and thus again in physics that can, and

will, be tested with the LHC.

The present study is organized as follows: in the next section we describe in detail

how a first-order phase transition affects the abundance of a species that froze out prior to

the temperature at which the phase transition occurred; the following sec. 2.2 explores the

ranges of freeze-out temperatures and of relic abundances relevant to the case of the lightest

neutralinos of the MSSM. The ensuing sec. 2.3 describes simple models for the EWPT, and

sec. 2.4 describes their impact upon the relic density of MSSM neutralinos. These last two

sections present our main results. Finally, sec. 2.5 summarizes and concludes.

2.1 Relic Density Dilution: Thermodynamics

We are concerned here with determining the dilution of a relic species that decou-

pled (or “froze-out”) from the thermal bath in the early universe by entropy injected during

a first-order phase transition occurring after the species’ freeze-out. The basic thermody-

namics of the dilution, which we describe in the present section, is fully general, and does
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not depend upon the specifics of the model for the phase transition.

Let F(φ, T ) be the finite temperature effective potential of the early universe,

where φ is the order parameter of the phase transition, for instance the vacuum expectation

value of the neutral component of the Higgs field. We assume that, for the temperatures

under consideration here, there are at most two minima of the potential. At very high

temperatures, the potential only has one minimum, at φ = 0. As the temperature drops, a

second minimum develops with a corresponding effective potential value larger than that at

φ = 0. The value of the potential at the second minimum relative to the first decreases with

decreasing temperature so that at T = 0 the second minimum is the absolute minimum

and there is spontaneous symmetry breaking. We define a “critical temperature” as the

temperature T = Tc when the two minima are degenerate. At some temperature T∗ < Tc,

the system transitions from φ = 0 to the new minimum: the tunneling probability from the

φ = 0 minimum to the true vacuum is of order unity.

First, let us assume that the transition temperature T∗ is very close to the crit-

ical temperature Tc so that supercooling is negligible. Here, we follow the discussion of

Mégevand and Sánchez [32] (see also [33]). Let s+ be the entropy density of the high-

temperature phase, and let s− be the entropy density of the low-temperature phase. We

may then write the total entropy density as

s = s+ − f∆s, (2.1)

where ∆s = s+ − s− and f is the volumetric fraction of the system in the low temperature

phase. Since the minima are degenerate at Tc, the system is in equilibrium and the total

12



entropy is conserved. The entropy density then scales as

s = s+

(ai
a

)3
, (2.2)

where ai is the scale factor of the universe at the beginning of the phase transition. The

transition is complete once f = 1. Plugging this into Eq. (2.1) and combining with Eq.

(2.2), one finds that the total expansion during the phase transition is

(
af
ai

)3

=
1

1−∆s/s+
=
s+

s−
. (2.3)

This is the equation we use to find the dilution in sec. 2.3.2.

Realistically, the system would not be in exact equilibrium—friction and collisions

in the walls of bubbles of true vacuum would release entropy, slightly increasing the dilution

[34]. This can be quantitatively captured by assessing the variation of the dilution factor

with a variation to the temperature at which the phase transition occurs, this variation

being driven by the mentioned effects (bubble collisions, friction in the bubble walls etc.).

If the entire transition occurs at a temperature an amount ∆T below Tc, then one can

show that the change in dilution D is ∆D = −3D(D − 1)(∆T/Tc), assuming a radiation

dominated energy density.

If T∗ � Tc, then the two phases are not in equilibrium at the beginning of transition

and Eq. (2.2) does not hold. Instead, there are three distinct stages to the phase transition:

a supercooling stage, a reheating stage, and a phase-coexistence stage. During supercooling,

entropy is conserved, so that

s+(T∗)
s+(Tc)

=

(
ai
a∗

)3

(2.4)

where a∗ is the scale factor at the minimum of supercooling. Assuming that reheating

happens quickly relative to the expansion rate, the energy density ρ of the universe does
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not change during reheating. The entropy, however, does. If a large enough amount of

reheating occurs, the universe will reach a phase coexistence stage at T = Tc. Conservation

of energy then gives the initial fraction of the universe in the low-temperature phase at the

beginning of phase coexistence:

ρ+(T∗) = ρ+(Tc)− f0[ρ+(Tc)− ρ−(Tc)]

= ρ+(Tc)− f0L

(2.5)

→ f0 =
ρ+(Tc)− ρ+(T∗)

L
, (2.6)

where L is the latent heat of the transition at Tc. The entropy density during phase-

coexistence is then

s = (s+ − f0∆s)
(a∗
a

)3
. (2.7)

Combining this with Eq. (2.1), we have the expansion during phase coexistence

(
af
a∗

)3

=
1− f0∆s/s+(Tc)

1−∆s/s+(Tc)
, (2.8)

which gives a total expansion of

(
af
ai

)3

=

(
1− f0∆s/s+(Tc)

1−∆s/s+(Tc)

)
s+(Tc)

s+(T∗)
. (2.9)

We use this equation in sec. 2.3.3 where the transition is strongly first-order.

2.1.1 Determining the transition temperature

We specify here the definition we adopt for the transition temperature T∗, given

its relevance in determining the dilution factor for a given effective potential. Shortly

after the universe cools below the critical temperature, bubbles of true vacuum nucleate via

14



thermal tunneling. Most of these are too small to grow—the pressure difference ∆p = −∆F

between the true and false vacuum is not large enough to overcome the surface tension of

their walls, so they collapse. Only large bubbles can grow. As the universe further cools,

the nucleation rate of larger bubbles increases dramatically. The phase transition begins

once the probability to nucleate a supercritical bubble in one Hubble volume is of order

1. Tunneling in cosmological phase transition was originally discussed in the seminal work

of Ref. [35, 36, 37] (see also Ref. [33]). For a pedagogical review of cosmological phase

transition, see e.g. Kolb and Turner [38].

The tunneling probability per unit time per unit volume goes with temperature

roughly as Γ ∼ T 4 exp−S3/T , where S3 is the three-dimensional Euclidean action

S3 = 4π

∫ ∞

0
r2dr

[
1

2

(
dφ

dr

)2

+ F(φ(r), T )

]
(2.10)

and where we assume spherical symmetry. The bubble shape φ(r) comes from the corre-

sponding Euclidean equation of motion

d2φ

dr2
+

2

r

dφ

dr
=

∂

∂φ
F(φ, T ), (2.11)

with the boundary conditions limr→∞ φ(r) = 0 and dφ
dr

∣∣∣
r=0

= 0. Finally, the requirement

that one supercritical bubble nucleates per horizon volume in a Hubble time yields a phase

transition temperature T∗ such that

∫ ∞

T∗

dT

T

(
2ζMPl

T

)4

exp−S3(T )/T = O(1), (2.12)

where MPl is the Planck mass, ζ = 1
4π

√
45
πg , and g is the effective number of relativistic

degrees of freedom (see Ref. [26]). For temperatures around the electroweak scale, Eq. (2.12)

implies that S3/T ∼ O(130–140).
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2.2 Salvaging MSSM models with over-abundant relics

In this section we calculate the degree of relic density dilution needed in MSSM

models as a function of the temperature at which neutralinos freeze out. This will allow

us to immediately determine whether a given MSSM model can or cannot be salvaged by

a strongly first-order electro-weak phase transition, the requirement being that the critical

temperature of the phase transition be smaller than the freeze-out temperature, and the

dilution factor be large enough to bring the neutralino relic density at or below the level of

the inferred average dark matter density in the universe.

We work in the context of the R-parity, flavor and CP-conserving MSSM, we en-

force that the lightest supersymmetric particle be the lightest neutralino, and parameterize

the soft supersymmetry breaking parameters that enter the relevant particle spectrum for

the calculation of the neutralino relic abundance with their values at the electro-weak scale

(we thus do not assume any grand unified structure for the soft supersymmetry-breaking

terms). We do not assume any relationship between the gaugino soft supersymmetry break-

ing masses, nor about their relative signs, but we assume a common mass scale for all

sfermions. Also, for simplicity we set to zero all trilinear scalar coupling with the exception

of third generation sfermions. The gluino mass (which does not enter into the calculation

of the relic abundance in the DarkSUSY code) was set to M3 = 3M2, which approximately

follows the usual supergravity relation. Details of our scan procedure, including lower and

upper limits for the scan as well as whether the sampling was carried out logarithmically

or linearly, are given in Table 2.2.

Once a particular MSSM setup is defined by the random parameter values picked
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Parameter Lower Lim. Upper Lim. Scan Type

|µ| 66 GeV 20 TeV Log
|M1| 40 GeV 20 TeV Log
|M2| 83 GeV 20 TeV Log
mf̃

3
2min(M1,M2, µ) 20 TeV Log

Af̃ -3 3 Lin

mA 200 GeV 20 TeV Log
tanβ 2.5 60 Lin

Table 2.1: Ranges for the parameter space scan we employ for our fig. 2.1.

by the procedure outlined above, we require that the resulting particle setup be compatible

with updated versions of the limits from collider searches, rare decays and electro-weak

precision measurements described in Ref. [39]. We then calculate the thermal relic abun-

dance of the lightest neutralinos, in the context of a standard cosmological setup, with the

DarkSUSY package [39].

The two parameters we are interested in for the present study are the thermal

neutralino relic abundance, and the temperature at which the neutralino freezes out: a

phase transition occurring at temperatures larger than the freeze-out temperature would

not affect the relic abundance of neutralinos, since the latter would be in thermal equilibrium

after the phase transition and its number density would re-equilibrate to the other thermal

species. We define the freeze-out temperature according to the prescription of Ref. [40],

that sets it as the temperature where the comoving neutralino number density is a factor

2.5 larger than its asymptotic zero-temperature value.

Fig. 2.1 shows the minimal dilution factor required to bring the thermal neutralino

relic abundance below the upper limit set by determinations of the average universal dark

matter density, Ωastroh
2 ' 0.113 [5] as a function of the neutralino freeze-out temperature.
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Figure 2.1: A scatter plot of MSSM models on the plane defined by the ratio of the
models’ thermal neutralino relic abundance (Ωparticle) over the universal dark matter density
(Ωastro), versus the neutralino freeze-out temperature Tfo. Red points correspond to bino-
like lightest neutralino, while blue and green points to wino- and higgsino-like lightest
neutralinos, respectively. Models above the horizontal line at Ωparticle/Ωastro = 1 are over-
abundant, and are ruled out unless a dilution mechanism such as the one we discuss in the
present study is operative. See the text for definitions and details.

Loosely, the latter is a factor of 20-25 times smaller than the neutralino mass, which thus

increases linearly with the x-axis. We indicate with blue dots models where M2 < M1, µ,

i.e. models corresponding to a dominant wino component in the lightest neutralino mass

eigenstate; green dots correspond to models with µ < M1, M2 (higgsino-dominated lightest

neutralinos) and red dots to M1 < M2, µ (bino-dominated lightest neutralinos).

Notice that the pair annihilation of bino-like neutralinos proceeds through a variety

of channels, including squark and higgs exchanges, which dramatically depend on the details

of the spectrum of the relevant particles. This induces a wide scatter in the relic abundance

versus mass (or freeze-out temperature) of bino-like models, as evident in fig. 2.1. On the

other hand, for dominantly wino- and higgsino-like neutralinos, the dominant annihilation

modes always proceed through gauge boson pairs, mediated by chargino (or by the next-to-

lightest higgsino in the case of ZZ final state) exchange. In this case, the pair-annihilation
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cross section is fixed by gauge couplings and by the mass of the neutralino/chargino system,

modulo kinematic threshold effects for neutralino masses near the gauge boson mass (this

shows up in fig. 2.1 for Tfo ∼ 2− 5 GeV). This is the reason why the wino and the higgsino-

like models all fall approximately on a line in the log-log plot of fig. 2.1.

MSSM models whose relic abundance can be salvaged by a strongly first-order

electro-weak phase transition therefore feature either higgsino-like lightest neutralinos with

masses larger than a TeV, or wino-like neutralinos with masses in excess of 2 TeV, or

bino-like neutralinos in a wide mass range, provided the freeze-out temperature is large

enough to be above the temperature at which the phase transition occurs. We discuss the

possible effects of entropy dilution in the electro-weak phase transition and its impact on

the MSSM parameter space in the following section, where we show which regions of fig. 2.1

can potentially be salvaged by the resulting entropy injection.

2.3 Relic Density Dilution and First-Order Phase Transi-

tions

2.3.1 Overview of the Field-Theoretical Setup

We calculate here the dilution of a thermal relic due to a first-order phase transition

driven by a scalar field φ. Since we are interested in the specific case of the EWPT, as an

illustrative instance we consider here the effective potential of the neutral component of the

scalar electro-weak sector of the Standard Model φ. The extension to the Standard Model

we then take into consideration will include an additional set of fermionic and/or bosonic

degrees of freedom, which might be thought of as being singlets under the Standard Model
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gauge group, but that might transform nontrivially under a hidden sector gauge group,

and are coupled to the visible sector only through the Higgs sector [21, 22, 23, 24, 25].

These class of models includes so-called Higgs Portal scenarios, where (partly) secluded

hidden sectors communicate with the Standard Model (the “visible” sector) exclusively via

interactions in the Higgs sector [22]. Early studies on such models include those listed in

Refs. [41, 42, 43, 44, 45, 46, 47], where the Higgs portal was often invoked in the context

of identifying a viable particle dark matter candidate. The existence of hidden sectors

that might be only partially secluded is ubiquitous to extension to the Standard Model,

such as those based on high-rank GUT models, e.g. where the GUT group is E6 [48], in

gauge-mediated supersymmetry breaking setups (for a review, see e.g. [49]) as well as in

the landscape of string compactifications [50]. In all of these setups, a potentially large

number of (fermionic or bosonic) degrees of freedom, neutral under the Standard Model

gauge interactions, might interact with the Higgs sector alone.

At tree-level, the effective potential associated to the field φ only we consider here

is:

V0(φ) = −1
2λv

2φ2 + 1
4λφ

4, (2.13)

while the zero-temperature one-loop corrections read:

V1(φ) =
∑

i

± gi
64π2

[
m4
i (φ)

(
log

(
m2
i (φ)

m2
i (v)

)
− 3

2

)
+ 2m2

i (φ)m2
i (v)

]
, (2.14)

where gi is the number of degrees of freedom of each particle species in the theory coupled

to φ, mi(φ) is the particle species mass, and the upper and lower signs correspond to bosons

and fermions, respectively. We consider only scalar bosons in this paper. Notice that the

potential for vector bosons would carry a constant of 5
6 in place of the 3

2 in Eq. (2.14) (see
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Ref. [24]). Note that both V0(φ) and V1(φ) have stationary points at φ = 0 and φ = v.

These points are respectively local maxima and minima of V0(φ). V1(φ) has a saddle point

at φ = v and either a maximum or a minimum at φ = 0, depending upon the leading sign.

We obtain the free energy density by adding the finite-temperature one-loop cor-

rection

F1(φ, T ) =
∑

i

giT
4

2π2
I∓

[
mi(φ)

T

]
+
∑

bosons

Tg

12π

[
mi(φ)3 − [mi(φ)2 + Πi(T )]3/2

]
, (2.15)

where I− and I+ are for the relevant thermal distribution functions for the bosonic and for

the fermionic contributions, respectively:

I∓(x) = ±
∫ ∞

0
dy y2 log

(
1∓ exp−

√
y2+x2

)
, (2.16)

and where the second summation is for the resummed Daisy diagrams with Πi(T ) = 1
3h

2
iT

2,

where hi is the Yukawa coupling. Assuming all particles acquire mass through a Higgs-like

mechanism in which the mass terms are of the form mi(φ) = hiφ (i.e. neglecting explicit

mass terms for all the additional degrees of freedom interacting with the field φ), the free

energy density takes the form

F(φ, T ) = λ(−1
2v

2φ2 + 1
4φ

4) +
∑
± gih

4
i

64π2

[
φ4

(
log

φ2

v2
− 3

2

)
+ 2v2φ2

]

+
∑ giT

4

2π2

[
I∓

(
hiφ

T

)
+
π(−1∓ 1)

12
D

(
hiφ

T
, hi

)]
(2.17)

where D(x, h) = (x2 + 1
3h

2)3/2 − x3. For our purposes, we can ignore a constant vacuum

energy term. It will also be interesting in our analysis to add a temperature independent

cubic term V ′0(φ) = α(1
2v

2φ2 − 1
3vφ

3) with α � λ to account for example for the possible

effects, at the level of the φ effective potential, of tree level cubic terms, driven by mixing
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with one or multiple gauge singlet scalar fields (see e.g. Ref. [51]). Notice that the purpose

of the quadratic term in V ′0 is to ensure that the vacuum expectation value is maintained

at φ = v at zero temperature.

In the high-temperature (low-φ) limit, Eq. (2.16) can be expanded as

I−(x) =−π
4

45
+
π2

12
x2 − π

6
x3 − x4

32
log

x2

ab

−2π7/2
∞∑

l=1

(−1)l
ζ(2l + 1)

(l + 2)!
Γ
(
l + 1

2

) ( x
2π

)2l+4
, and

(2.18)

I+(x) =− 7π4

360
+
π2

24
x2 +

x4

32
log

x2

af

+ 1
4π

7/2
∞∑

l=1

(−1)l
ζ(2l + 1)

(l + 2)!

(
1− 1

22l+1

)
Γ
(
l + 1

2

) (x
π

)2l+4
,

(2.19)

(see e.g. the seminal work of Ref. [33]; see also [32]) where log ab = 3
2 − 2γ + 2 log(4π),

log af = 3
2 − 2γ + 2 log π, γ is the Euler constant, ζ is the Riemann zeta function, and Γ is

the Gamma function.

In the low-temperature (high-φ) limit, the expansions are given by

I∓(x) = −x2
∞∑

k=1

(±1)k+1

k2
K2(kx), (2.20)

(again, see e.g. Ref. [33] and [32]) where K2 is the modified Bessel function of the second

kind of order 2.

There are a few important things to note about these expansions. The original

integrals in Eq. (2.16) are negative monotonically increasing functions with limx→∞ I±(x) =

0. They are similar in shape to upside-down bell-curves (see Fig. 2.2). The low-temperature

expansions have this same character for any finite number of terms. If we keep only terms

up to k = 8 (as we do for the numerical study we present in this analysis), the errors at

x = 0 are only 0.01% and 0.05% for I+ and I−, respectively. The errors drop exponentially
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Figure 2.2: The integrals of Eq. (2.16). Bosons correspond to I−(x) (black line), and
fermions correspond to I+(x) (red line). The dashed lines show the resummed Daisy diagram
contributions for h =0.2, 0.4, 0.6, 0.8, and 1.0.

for x > 0, with fractional errors of ∼ 10−10 at x = 2. In contrast, the high-temperature

expansion diverges towards ±∞ for a finite number of terms. For example, retaining even

up to l = 15 produces a visible divergence in I+(x) towards negative infinity at x = 3.5.

The benefit of the high-temperature expansions is that they contain an explicit cubic term,

whereas the low-temperature expansions do not. If the phase transition is weakly first-

order so that terms of order x5 can be ignored, then the cubic term is necessary to avoid a

continuous phase transition. Therefore, the low-temperature expansions underestimate the

strength of the transition when the transition is weak.

As argued in Ref. [25], higher-order corrections to the potential are subdominant

and can be safely neglected. In particular, Ref. [25], which adopts a setup very similar to

ours, finds that two-loop effects, as caluclated e.g. in [52], do not affect significantly the

structure of the effective potential. We thus neglect them here.
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2.3.2 Semi-Analytical Results in the High-Temperature Limit

If the phase transition is weakly first-order, we may use a temperature-dependent

quartic potential as an approximation to the free energy:

F(φ, T ) = D(T 2 − T 2
0 )φ2 + (1

3αv − ET )φ3 + 1
4λφ

4 − π2

90
glT

4. (2.21)

The constants D, E, and T0 come directly from the coefficients of Eq. (2.17) and Eqs. (2.18-

2.19), and gl = gb + 7
8gf are the effective number of degrees of freedom of particle species.

For this analysis we assume that D is positive, which does not necessarily follow from

Eq. (2.17).

It is much more simple to analyze this equation if we recast it in the dimensionless

form

F̃(ϕ, τ) = D(τ2 − 1)ϕ2 + E(x− τ)ϕ3 + 1
4λϕ

4 − π2

90
glτ

4, (2.22)

where F̃ = F/T 4
0 , ϕ = φ/T0, τ = T/T0, and x = 1

3αv/ET0. The critical temperature (the

temperature of degenerate minima), is then easy to find analytically:

τc =
−x±

√
y [y − (1− x2)]

y − 1
, (2.23)

where y = Dλ/E2. In all situations, the solution corresponding to the positive root is the

correct physical solution, while the negative root is an unphysical solution resulting from

the use of an approximate potential. Note that if x > 1 then by Eq. (2.23) x > τc and

the second minimum is at ϕ < 0 at τ = τc. Since the temperature-dependent terms in

Eq. (2.17) are even in φ while those in Eq. (2.21) are not, we reject all solutions with φ < 0

and demand that x < 1.
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If the transition temperature is close to the critical temperature, as we expect for

a weakly first-order phase transition, then Eq. (2.3) gives the correct amount of dilution.

The entropy density is s = −dF/dT → s/T 3
0 = −dF̃/dτ . In the high-temperature phase

at the critical temperature, we have s+/T
3
0 = 2π2

45 glτ
3
c . In the low temperature phase, the

minimum is ϕc = 2E(τc − x)/λ and the entropy difference is ∆s/T 3
0 = ϕ2

c(2Dτc − Eϕc).

Plugging in values, we get

∆s

s+
=

45

2glπ2

8E4

λ3

(
y − y − x

√
(x2 + y − 1)y

x2 + y

)(
y − x

√
(x2 + y − 1)y

x2 + y

)2

, (2.24)

which simplifies to

∆s

s+
≈ 45

2glπ2

8DE2

λ2
, (2.25)

in the limit that y � x, 1. Note that the cubic term does not have a noticeable effect upon

the dilution until it becomes quite large, which would violate our original assumptions.

In passing, we remark that, taking the above analysis at face value, in the Standard

Model, where the top quark and theW and Z bosons are the only relevant degrees of freedom

(see Ref. [26]), and D = 0.16, E = 0.0096, y ∼ 300 (dependent upon the Higgs mass), and

gl = 106.75, one finds a negligible dilution factor, namely:

(
af
ai

)3

=
s+

s−
≈ 1 +

∆s

s+
= 1 +

45

2glπ2

8DE2

λ2
≈ 1.0001. (2.26)

Interestingly, the semi-analytic setup outlined above also allows us to get an esti-

mate of the dilution factor expected in the context of the minimal supersymmetric extension

of the Standard Model with light scalar tops (see e.g. Ref. [27, 28, 30]), which has often

been considered in the context of electro-weak baryogenesis. In that case, the cubic term

E can be one order of magnitude larger than in the Standard Model, implying a dilution
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factor of at most 1.01. According to our equation (2.25) this means that in the MSSM the

dilution to the relic density of species freezing out prior to the electro-weak phase transition

is a small effect (at most a few percent).

2.3.3 Strongly First-order Phase Transitions: Numerical Solutions

If the phase transition is strongly first-order, Eq. (2.21) does not hold and we must

instead resort to the full expression for the free energy density with the low-temperature

expansion of Eq. (2.16). One must compute the dilution factor fully numerically.

In our models, we proceed with the following steps. First, we obtain a function

of the minimum of the true vacuum φ0(T ) up to the critical temperature by numerically

solving the differential equation

dφ0

dT
= −

(
∂2F
∂φ∂T

)/(
∂2F
∂φ2

)
(2.27)

with the initial condition φ0(T = 0) = v. We then calculate the transition temperature T∗

by calculating the Euclidean action at many temperatures and searching for S3/T ∼ O(130–

140). To account for a potentially wide range of transition temperatures and relativistic

degrees of freedom, we use S3(T∗)/T∗ = 170− 5 log(T/1 GeV)− 2 log(g). We then calculate

the dilution factor directly from Eq. (2.9) using s = −dF/dT .

For definiteness, we consider two classes of models: one with only additional

scalar bosonic degrees of freedom, and one with an equal number of additional bosonic

and fermionic contributions. An explicit realization of the former case is given by the mul-

tiple hidden sector scalars Si discussed in Ref. [24, 25], where the coupling between the

hidden and the visible sector occurs only through renormalizable terms in the potential
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Figure 2.3: Dilution factors for boson-fermion models (dotted red and dashed green) and
purely bosonic models (solid black) as functions of the temperature at the end of reheating
(left) and the number of fermion and boson degrees of freedom (right). For the purely
bosonic models, the highest line corresponds to the highest Yukawa coupling for which the
point at φ = 0 is a minimum at zero temperature. The three lower lines have 0.7, 0.8
and 0.9 times this value. For boson-fermion models, the four dotted red lines correspond
to Yukawa couplings identical to those in the bosonic cases, while the dashed green lines
corresond to Yukawa couplings of 0.5, 0.75, and 1.0.

proportional to H†HS2
i . The latter, instead, alludes to a supersymmetric particle content

for the additional degrees of freedom; one possible example is an extension to multiple extra

generations of fermion-sfermions along the lines of the analysis of Ref. [53], that discusses

the impact on the EWPT of a supersymmetric model with four chiral matter generations.

For the ease of analysis, all massive particles in a given model have the same

Yukawa coupling so that we effectively have only one (or two) massive particle species with

a potentially large number of degrees of freedom. In each case, the degrees of freedom per

fermion and/or boson range from 10 to 10,000. We additionally add massless bosons (i.e.,

h = 0) with gl = 100 degrees of freedom, which approximates the number of relativistic

degrees of freedom in the standard model. That is, we have a variable number of degrees

of freedom for massive particles, but keep the number of massless particles constant. The

latter just adds the φ-independent term −π2glT
4/90 to the free energy of Eq. (2.17), and
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Figure 2.4: Reheating temperature as a function of fermion and boson degrees of freedom.
Lines correspond to the same models as in Fig. 2.3, with higher Yukawa couplings resulting
in lower reheating temperatures.

gives an additional suppression to the factor ζ of Eq. (2.12). Note that the addition of

massless particles does not change the phase transition temperature or dynamics. It does,

however, add entropy to both the high and low-temperature phases, which decreases the

overall dilution factor via Eq. 2.9. In the boson-only models, large couplings turn the point

at φ = 0 into a maximum at zero temperature via the quadratic term in Eq. (2.14). We

limit ourselves to the maximum couplings for which this is not the case. In all cases, we set

the zero-temperature Higgs mass to be mh = 150 GeV.

Figures 2.3 and 2.4 display our results. The black lines correspond to models

without any fermion contribution and variable Yukawa couplings. The models in the highest

of these lines have the maximal couplings for which the point at φ = 0, T = 0 is a maximum,

while the lower lines have 0.9, 0.8, and 0.7 times the maximum couplings. The dotted red

and dashed green lines correspond to models with equal fermion and boson contributions.

The dotted red lines have the same couplings as the solid black lines, while the dashed green

lines have fixed couplings of 0.5, 0.75, and 1.0. For boson-fermion models with reasonably

large Yukawa couplings and many degrees of freedom, one can achieve dilution factors on
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the order of 100. Purely bosonic models, on the other hand, can only reach dilution factors

on the order of 10. The largest aspect contributing to this discrepancy is the range of

Yukawa couplings available to the different cases. At g = 10,000, the maximum coupling

for bosons is only hb = 0.23, while the highest plotted dilution factor for a boson-fermion

model has hb = hf = 1.0. When purely bosonic and boson-fermion models have identical

couplings, the bosonic models tend to have slightly higher dilution factors.

One can easily explain two of the important qualitative features of Figs. 2.3 and 2.4

by examining the free energy of Eq. (2.17). First, the temperature of the phase transition

tends to decrease with increasing degrees of freedom. The temperature-dependent term in

the free energy has a coefficient of gT 4. When this term is large, the second minimum of

the potential disappears and the origin becomes the true vacuum. Thus, we expect the

temperature of the transition to scale as T ∝ g−1/4, as seen in Fig. 2.4. Second, the dilution

factor tends to increase with increasing Yukawa couplings and decreasing temperature scales.

If either h is large or T is small, then the temperature-dependent term is nearly zero except

for small φ, excluding resummed Daisy terms (see Fig. 2.2 for the behavior of I±(x)).

Therefore, the entropy s = −dF/dT is much smaller in the true vacuum than it is at the

origin. Including the Daisy terms, the negative slope of I−(x)− π
6D(x, h) tends to decrease

the entropy at high φ. If the transition reaches a phase coexistence stage, then the small

entropy leads directly to a high dilution factor via Eq. (2.3). This effect dominates when

hφ/T ≈ hv/T & 5, which is the case for the boson-fermion models in Fig. 2.3 with h ≥ 0.5

(dashed green lines).
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Figure 2.5: Dilution factors for models with cubic terms (red lines) added to the boson-
fermion models in Fig. 2.3 with Yukawa couplings of h = 0.5 (black line). The red lines
have cubic strengths of α/λ = 0.05, 0.15, and 0.50.

2.3.4 Models with Tree-Level Cubic Terms

We also examine what happens when we add a tree-level cubic term V ′0(φ) =

α(1
2v

2φ2 − 1
3vφ

3) to the free energy. Fig. 2.5 shows cubic terms added to boson-fermion

models with Yukawa couplings fixed at hf = hb = 0.5. The models are otherwise exactly

the same as those in the previous section: gl = 100, mh = 150 GeV, and the boson/fermion

degrees of freedom gf = gb range from 10 (corresponding to the lower-right portion of

Fig. 2.5) to 10,000. The black line has no added cubic term, while the red lines have cubic

strengths of α/λ = 0.05, 0.15, and 0.50. Even large terms with α = 1
2λ do not seem to

significantly impact the dilution factor. The effects of cubic terms upon purely bosonic

models and models with smaller Yukawa couplings are qualitatively similar.
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Figure 2.6: An overlay of dilution factors for boson and boson-fermion models on top of a
scatter plot of dark matter abundance in different MSSM models. The points are the same
as those in Fig. 2.1. The green, black, and red lines correspond to the highest green, black,
and red lines of Fig. 2.3. The two boxes show which MSSM models are viable for dilution
models with hf = hb = 1.0 and gb, gf ≤ 10,000 and 1,000.

2.4 Supersymmetric Dark Matter and a Strongly First-Order

Phase Transition

We determine here which MSSM models with neutralino dark matter might not

overproduce dark matter given a strongly first-order phase transition. Figure 2.6 shows an

overlay of the dilution from different models of phase transitions on top of our scan of the

dark matter abundance in MSSM models. Red, green and blue points correspond to bino,

higgsino, and wino-like models, while the solid black, dotted red, and dashed green lines

correspond to phase transition models with only bosons at their maximal Yukawa couplings,

bosons and fermions at the same Yukawa couplings, and bosons and fermions with fixed

Yukawa couplings of hf = hb = 1.0. These are the same as the highest of the black, red

and green lines in Fig. 2.3.

The freeze-out temperature of the dark matter must be larger than the final re-

heating temperature of the phase transition if the transition is to have an effect upon dark
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matter abundance. Therefore, any point that lies to the right of any of the three lines

can be diluted to the cosmic relic abundance by a sufficiently strong phase transition. If a

point lies between the lines, then one can easily pick a phase transition model that produces

the correct amount of dilution. Note that only MSSM models with an overabundance of

dark matter are problematic—if a given phase transition model over-dilutes a given MSSM

model of dark matter, then the two models can still be mutually viable if the neutralino

dark matter does not constitute the entire universal dark matter abundance.

The two boxes in Fig. 2.6 show which MSSM models are viable given the most

optimistic phase transition models (that is, boson-fermion models with hf = hb = 1.0) with

degrees of freedom gf = gb = 1,000 (inner box) and 10,000 (outer box). With 1,000 d.o.f.,

almost all of the over-abundant higgsino and wino-like models are viable. With 10,000

d.o.f., a handful of bino-like models become viable as well. However, there are no viable

models with freeze-out temperatures less than ∼ 20 GeV or overabundances greater than a

factor of ∼ 200 unless they are accompanied by phase transitions with very large (> 10,000)

particle degrees of freedom. This includes most of the bino-like models and a small subset

of the low-mass higgsino-like models.

2.5 Summary

A strongly first-order electro-weak phase transition, warranted in the context of

scenarios for the production of the observed baryon asymmetry at the electro-weak scale, can

lead to a significant dilution of the thermal relic abundance of the lightest supersymmetric

particle, if the latter is stable. In this paper we studied the impact of toy models for the
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electro-weak sector on the relic abundance of MSSM neutralinos. Specifically, we considered

the effect on the electro-weak sector of adding a large number of bosonic or bosonic-plus-

fermionic degrees of freedom, which affects both the one-loop temperature-independent and

the temperature-dependent contribution to the effective potential of the Higgs field. We

noted that for neutralino freeze-out temperatures between 20-40 GeV, corresponding to

neutralino masses at or above 400 GeV, the dilution due to the entropy injected in the

first-order electro-weak phase transition can be as large as 10–100 if we postulate a large

number of extra degrees of freedom (103 − −104). Numerous MSSM models exist that

could be viable if such a dilution effect is in fact operative. For models with a more modest

number of additional d.o.f. (say, of the same order of the Standard Model d.o.f.), the

dilution can still be on the order of 2. We find that a cubic term in the effective potential

has a comparatively small effect upon the relic abundance of species. Also, we showed that

the dilution expected in the context of the MSSM without additional degrees of freedom

coupled to the Higgs sector is a very small effect, at most at the few-percent level.

Should future data from the LHC point towards a neutralino relic abundance larger

than the cosmological dark matter density, the origin of the mis-match might lie in the same

electro-weak scale physics that the LHC itself will concurrently explore. Interestingly, this

can be profoundly intertwined with the question of the origin of the matter-antimatter

asymmetry in the early universe, opening up the possibility that electro-weak physics lie

at the core of both dark and visible matter, and that the LHC will soon shed light and

perhaps unveil this scenario.
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Chapter 3

Computing Cosmological Phase

Transition Temperatures and

Bubble Profiles with Multiple

Fields
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Phase transitions driven by scalar fields likely played an important role in the very

early evolution of the Universe. In most inflationary models, the dynamics are driven by

the evolution of a scalar inflaton field, while at later times electroweak symmetry break-

ing is thought to be driven by a transition in the Higgs field vacuum expectation value.

Electroweak scale physics is currently being probed by the LHC, so the phenomenology

of the electroweak phase transition is of particular interest. A strongly first-order elec-

troweak phase transition would have been a source of entropy production in the early

Universe (thereby changing the evolution of its scale with respect to temperature) and pro-

duced a stochastic background of gravitational radiation[54], perhaps observable by future

space-based gravitational radiation observatories[55]. In addition, a strongly first-order

electroweak phase transition may have satisfied the Sakharov conditions[56] and been re-

sponsible for the current baryon asymmetry of the universe (for recent studies see e.g.

Refs. [57, 58, 59, 30, 60, 61, 62, 63, 19, 64, 65, 66, 67, 68, 69]), or may have affected the

relic density of (for example) dark matter particles [70, 71, 72].

In the standard model, the electroweak phase transition is not strongly first-order

unless the Higgs mass is below ∼ 70 GeV[73, 74, 75], which is excluded by the current LEP

bound of 114.4 GeV[76]. However, electroweak baryogensis can be saved in extensions to

the standard model, many of which include extra dynamic scalar fields (such as two-Higgs-

doublet models [77, 78, 79, 80, 81, 82, 83]). The amount of produced baryon asymmetry

depends crucially upon the dynamics of the phase transition, and particularly upon the

bubble-wall profiles that separate the high- and low-temperature phases. These profiles

are fairly easy to calculate using effective field theory if there is only one scalar field, but
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multiple fields greatly increase the computational complexity.

In this paper, I present an easy-to-use numerical package (CosmoTransitions) to

analyze phase transitions in finite temperature field theory with multiple scalar fields. The

program consists of three basic parts (see fig. 3.1): modules for finding the tunneling solution

(bubble wall profile) between different vacua, a module for finding critical temperatures and

phase transitions, and an abstract class to define specific field-theoretic models and their

effective potentials. In section 3.1, I describe the algorithms for finding bubble wall profiles

for both single and multiple fields. Section 3.2 describes the algorithm for finding phase

transitions, while section 3.3 describes how one can implement a specific model in a simple

program. Finally, I present numerical results in section 3.4 and conclude in section 3.5.

To download the latest version of CosmoTransitions, visit http://chasm.ucsc.

edu/cosmotransitions.

generic_potential.py

transitionFinder.py pathDeformation.py

tunneling1D.py

specific model
(subclass)

Figure 3.1: Overview of the CosmoTransitions package file structure. The
files pathDeformation.py and tunneling1D.py find critical bubble profiles,
transitionFinder.py finds the minima of finite temperature potentials as a func-
tion of temperature and analyzes phase transitions, and generic potential.py defines an
abstract class that can easily be subclassed to examine a specific model.
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3.1 Calculating bubble profiles

First-order cosmological phase transitions proceed by the nucleation of bubbles of

true vacuum out of metastable false vacuum states. The bubbles have both surface tension

and internal pressure, so that large bubbles tend to expand and small bubbles tend to

collapse. Critical bubbles—bubbles that are just large enough to avoid collapse—will drive

the phase transition.

Given a Lagrangian

L =
1

2
(∂µ~φ)(∂µ~φ)− V (~φ), (3.1)

where ~φ is a vector of scalar fields, a critical bubble can be found by extremizing the

Euclidean action

SE =

∫
ddx

[
1

2

(
∂µ~φ

)2
+ V (~φ)

]
, (3.2)

where d = 4 (3) for tunneling at zero (finite) temperature. This quantity is critical for

finding the nucleation rate, and thereby determining the phase transition temperature and

whether or not the transition actually happens (see Refs. [35, 36, 37] for seminal work on

phase transitions in quantum field theory). The bubble nucleation rate per unit volume

is Γ/V = Ae−SE at zero temperature and Γ/V = Ae−SE/T at finite temperature. The

prefactor A is quite difficult to calculate, but it has only weak temperature dependence and

can generally be estimated on dimensional grounds (see, e.g., Ref. [26]). By requiring that

the expectation value for one bubble to nucleate per Hubble volume is ∼ O(1), one can

show that the bubble nucleation temperature for weak-scale fields is given by SE/T ∼ 140.
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Assuming spherical symmetry, the bubble’s equations of motion are

d2~φ

dρ2
+
α

ρ

d~φ

dρ
= ∇V (~φ). (3.3)

At finite temperature, ρ is simply the spatial radial coordinate and α = 2. At zero tem-

perature, ρ2 = r2 − t2 and α = 3. The program defaults to α = 2, but this can be

overridden when using either pathDeformation.py or tunneling1D.py directly, ignoring

the temperature-dependent routines in transitionFinder.py. Let ~φT and ~φF denote the

true and false vacua, respectively. Then in order for the solution to match the field at

infinity, we require that ~φ(∞) = ~φF . We also demand that d~φ
dr

∣∣∣
ρ=0

= 0 so that the bubble

is non-singular at the origin.

Note that this procedure is limited by the validity of perturbation theory and of the

effective potential. Ideally, once all model parameters are set, one should perform a lattice

Monte-Carlo simulation to compute the nucleation rate and bubble profile as accurately as

possible [84, 85]. However, this is often computationally impractical.

3.1.1 One-dimensional solution

When the field has only one dimension, the solution to the critical bubble profile

can easily be solved by the overshoot/undershoot method (see, e.g., Ref. [86]). Here, it is

easiest to think of the problem as that of a classical particle moving under the influence of

the inverted potential −V (φ) plus a peculiar looking friction term, where φ takes on the

role of a spatial coordinate and ρ acts as the time coordinate. The problem then is to find

the initial placement of the particle near φT such that it rolls down the potential and comes

to a stop at φF when ρ =∞ (see figure 3.2). If the particle rolls past (overshoots) φF , then
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Figure 3.2: The equations of motion for a field with a potential V (φ) can be thought of as
the equations for a particle moving in an inverted potential −V (φ).

the initial placement was too close to φT . If it doesn’t have enough energy to make it to

φF (an undershoot), then the initial placement needs to be closer to ~φT . Through trial and

error, one can find the initial placement to arbitrary precision.

The code presented with this paper follows the general overshoot/undershoot

method, implemented by the class tunneling1D.bubbleProfile. Calculation of thick-

walled bubbles is straightforward, but thin-walled bubbles require extra consideration. In

thin-walled bubbles, the transition from φ ≈ φT to φ ≈ φF happens over a distance much

shorter than the bubble’s overall size. In the particle analogy, the particle sits very close

to φT for a very long time before quickly rolling down the potential and stopping at φF .

Extreme accuracy in φ0 = φ(ρ = 0) would be needed to reliably calculate the wall profile,

since a small change in φ0 would lead to a large change in the radius of the bubble. Instead,

I define a new variable x such that φ0 = φT + e−x(φF − φT ), and use it as the initial

condition to vary instead.

For small ρ and φ ≈ φT , the equation of motion can be approximated as

d2φ

dρ2
+
α

ρ

dφ

dρ
=
d2V

dφ2

∣∣∣∣
φ=φT

(φ− φT ) (3.4)

which has the exact solution

φ(ρ)− φT = Cρ−νIν
(
ρ
√
b
)

(3.5)
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φA

φB

φC

Figure 3.3: A problematic potential with more than two minima. A tunneling solution from
φA to φC is only guaranteed to exist for the topmost potential (blue line).

where ν = α−1
2 , b = d2V

dφ2

∣∣∣
φ=φT

, and Iν is the modified Bessel function of the first kind. For

α = 2, this simplifies to φ(ρ)−φT ∝ 1
ρ sinh(ρ

√
b). These can be numerically inverted to find

ρ(φ), which allows one to calculate the approximate radius of a thin-walled bubble without

performing any integration. The integration can then start at the edge of the bubble wall,

which both increases accuracy and decreases computation time.

The overshoot/undershoot implementation is fairly robust, but there are situations

in which it either does not work or is unreliable. Consider the potentials shown in figure 3.3.

They each have three minima φA < φB < φC , with V (φA) > V (φC). If one tries to calculate

the bubble profile for tunneling from φA to φC , only the topmost potential is unproblematic.

There, there will be a solution where the field starts near φC , rolls over the bump at φB, and

ends up at φA. In the bottommost potential, no such solution exists. The minimum at φB is

the true vacuum of the theory, so the field will tunnel from φA to φB, ignoring φC completely.

The overshoot/undershoot method will return this solution (any initial φ0 > φB will register

as an undershoot), but it won’t perform any optimization for thin-walled bubbles and may

have poor accuracy. In the middle case, with V (φA) > V (φB) > V (φC), there may or may

not be a direct tunneling solution from φA to φC . Using the particle analogy, it could be
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that any particle that starts near φC and has enough momentum to get beyond φB will

necessarily overshoot φA. In this case, the field can only tunnel to φC in two steps: first by

tunneling to φB, and then by tunneling to φC in a separate nucleation event. The algorithm

in tunneling1D.bubbleProfile will only ever return the first of these transitions, and it

may have poor accuracy.

3.1.2 Multi-dimensional solution and path deformation

With the solution to the one-dimensional problem in hand, we are ready to tackle

the more challenging problem with multiple field dimensions. The overshoot/undershoot

method no longer works because we required the unique topology of the one-dimensional case

to determine whether a particular solution overshot or undershot the boundary condition

at ρ =∞. Instead, I propose a method of path deformation.

First, assume as an initial guess that the tunneling occurs on some fixed path in

field space. That is, ~φguess = ~φ(x), where x parametrizes the path and for simplicity we

require that
∣∣∣d~φdx
∣∣∣ = 1. The equations of motion split into two parts—one parallel and one

perpendicular to the path:

d2x

dρ2
+
α

ρ

dx

dρ
= ∂

∂xV [~φ(x)] (3.6)

d2~φ

dx2

(
dx

dρ

)2

= ∇⊥V (~φ), (3.7)

where ∇⊥V represents the components of the gradient of V that are perpendicular to

the path. Equation 3.6 is the same as the one-dimensional equation of motion, which we

can solve by the overshoot/undershoot method. If the path guess ~φ(x) is correct, then

the solution to equation 3.6 will also solve equation 3.7. The trick then is to find the
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Figure 3.4: Path deformation in two field dimensions. The normal force exerted on the
starting path (blue straight line) pushes it in the direction of the true tunneling solution
(green curved line).

right path. A similar approach of path deformation has been proposed by Ref. [87], while

Refs. [88, 89, 90] use alternate methods to solve the equations of motion. I have previously

employed the basic algorithm described below in the context of zero-temperature phase

temperatures and singlet scalar dark matter models [91].

Using the particle analogy, we can think of the path guess as a fixed track on which

the particle moves through the multi-dimensional space. Equation 3.6 describes the forces

parallel to the track and thus determine the particle’s speed. Equation 3.7 does not effect

the motion of the particle, but instead determines the normal force N that the track must

exert on the particle to keep it from falling off: N = d2~φ
dx2

(
dx
dρ

)2
− ∇⊥V (~φ). For the right

path, N = 0. Given a starting guess, one can deform the path to the correct solution by

continually pushing it in the direction of N (see figure 3.4).

I implement this general method in the CosmoTransitions package using B-splines

in the module pathDeformation.py. Each path is written as a linear combination of spline

basis functions plus a linear component connecting its ends: ~φ(y) =
∑

i βi
~φi(y) + (~φ0 −
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~φF )y + ~φF , where y parametrizes the path (0 ≤ y ≤ 1, and generally
∣∣∣d~φdy
∣∣∣ 6= 1), βi are

the spline coefficients, ~φi(y) are the basis functions, and ~φi(0) = ~φi(1) = 0. This fixes the

path’s endpoints at ~φ0 ∼ ~φ(ρ=0) and ~φF . Generally, only a small number of basis functions

is needed to accurately model the path (∼ 10 per field direction) unless it contains sharp

bends or many different curves.

Before any deformation, the algorithm first calculates the bubble profile along the

starting path using the overshoot/undershoot method. Then it deforms the path in a series

of steps without recalculating either the one-dimensional profile or
∣∣∣d~φdρ
∣∣∣. At each step it

calculates the normal force for a relatively large number of points (∼ 100) along the path,

rescales the normal force by |~φT − ~φF |/|∇V |max, and moves the points in that direction

times some small stepsize. If the one-dimensional solution is thick-walled (that is, ~φ(ρ=0)

is not very close ~φT ), the algorithm also moves ~φ0 in the direction of N averaged over the

first several points (note that N(ρ=0) = 0 as long as the path aligns with ∇V ). Otherwise,

~φ0 stays fixed at ~φT . It then recalculates the spline coefficients by a least-squares fit to the

moved points with the restriction that the path aligns with ∇V at ~φ0 when thick-walled.

The deformation converges when the normal force is much smaller than forces parallel to

the path. At this point, the algorithm recalculates
∣∣∣d~φdρ
∣∣∣ and deforms the path again. After

repeating this procedure a few times, the deformation should converge after a single step

and the algorithm will return the final tunneling solution.

Choosing an appropriate stepsize is important. Errors in individual steps are

generally self-correcting, but only for small stepsizes. Consider a situation in which the

correct tunneling path is a straight line, but we introduce errors in the deformation to add
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Figure 3.5: Example of error correction in deformation. The normal force will push wiggles
down towards the straight line solution. But if the stepsize is too large, the wiggles will get
reversed and amplified instead.

wiggles (see figure 3.5). A small stepsize in deformation will tend to smooth out the errors,

but a large stepsize will instead reverse and amplify them. By checking for such reversals,

the algorithm can keep the stepsize at the appropriate level.

3.2 Exploring phase structures

In order to determine the characteristics of a phase transition, we must first find

where, and at what temperatures, the various phases exist. In theories with spontaneously

broken symmetries there is at least one zero-temperature phase and there is generally one

high-temperature symmetry-restoring phase. If these phases coexistence at some temper-

ature, then there is likely a first-order phase transition between them. However, even in

relatively simple models there can be intermediate phases (see, e.g., Ref. [92]) which can

lead to secondary phase transitions, or can change the quality of the primary transition.

Therefore, it is helpful to find the location of the minima as a function of temperature.

By writing the potential about any point ~φ′ as

V (~φ, T ) = ai + bi(φi − φ′i) +
1

2
Mij(φi − φ′i)(φj − φ′j) + · · · , (3.8)

where bi = ∂V
∂φi

and Mij = ∂2V
∂φi∂φj

, one can show that there is a (nearby) minimum at
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~φmin− ~φ′ = −M−1~b. Therefore, the change in the minimum with respect to temperature is

∂~φmin
∂T

= −M−1 ∂
~b

∂T
−
(
∂

∂T
M−1

)
~b = −M−1 ∂

~b

∂T
, (3.9)

since ~b = 0 at the minimum. Given a minimum at a single temperature, this allows one to

find all of the minima of a given phase as a function of T . A singular matrix M indicates a

rapid change in the minimum caused by either the disappearance of the phase or a second-

order phase transition. A negative eigenvalue in M indicates that the extremum is no longer

a minimum.

Practically, it is much easier to use this equation in conjunction with a minimiza-

tion routine than it is to integrate it by itself. The algorithm in transitionFinder.traceMinimum

uses the Nelder-Mead downhill simplex method [93] to find the local minimum at particular

temperatures, and then uses equation 3.9 to find how the minimum changes. The former

acts as an error check on the latter, which allows for an adaptive stepsize in the tempera-

ture. Once the phase disappears, the downhill simplex method can search for a new phase

and then trace that. In this manner, one can trace the phase structure of the entire theory

(assuming that each phase can be found by minimizing the potential at one of the ends of

the other phases using the downhill simplex method). If there are multiple distinct phases

at zero temperature, it is necessary to manually enter their (approximate) locations in order

to trace them independently.

3.3 Structure of a simple program

There are essentially three parts to a simple program using my code: the tunneling

algorithms and phase tracing algorithms described above, and the implementation of a
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specific model. Much of this last task happens in the generic potential class, which

must be subclassed to study any particular theory.

From the point of view of the finite temperature effective potential, the theory is

completely determined by the tree-level potential and field-dependent mass spectrum. The

generic potential class calculates the one-loop corrections from these masses using MS

renormalization [94, 95]

V1(~φ) = ± 1

64π2

∑

i

nim
4
i (
~φ)

[
log

m2
i (
~φ)

Q2
− ci

]
, (3.10)

where ni and mi are the numbers of degrees of freedom and the field-dependent masses of

each particle species. The quantity Q is the renormalization scale; c = 1/2 for gauge boson

transverse modes and 3/2 for all other particles; and the upper (lower) sign is for bosons

(fermions). The one-loop finite-temperature corrections are

V1(~φ, T ) =
T 4

2π2

∑

i

niJ∓

[
mi(~φ)

T

]
(3.11)

with

J∓(x) = ±
∫ ∞

0
dy y2 log

(
1∓ e−

√
y2+x2

)
. (3.12)

The functions J∓(x) are implemented in the module finiteT.py using direct integration

and cubic interpolation. Of course, one can add additional structure (such as counter-terms)

to a subclass.

To create a fully functioning model using the CosmoTransitions package, one need

only subclass generic potential and overwrite four functions: the initialization function

init() to specify the number of field dimensions, the tree-level potential function V0(),

and the mass-spectrum functions boson massSq() and fermion massSq().
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At high temperature, the perturbative expansion of the effective potential fails and

must be supplemented with daisy resummation, which amounts to adding thermal masses

to all bosonic propagators [96, 97]. These temperature-dependent masses can easily be

added directly to boson massSq(). Generally, one only needs to add the thermal masses

to zero-mode propagators, corresponding to the cubic terms in J(x), but it is easier in this

program to add them to all propagators and all terms in J(x).

Additionally, one should overwrite approxZeroTMin() to return the approximate

locations of the zero temperature minima, especially if more than one minimum exists. Call-

ing the function getPhases() will run routines from transitionFinder.py and calculate

the phase structure of the theory. The critical temperature(s) (the temperature of degen-

erate minima between two phases) can be found by calling the function calcTcTrans(),

while the function calcFullTrans() will find the amount of supercooling and the critical

bubble profile for each transition. The supercooling criterion defaults to SE/T = 140, which

corresponds to the nucleation temperature in the electroweak phase transition, but this can

easily be changed to study other phase transitions using the parameter nuclCriterion in

calcFullTrans().

3.4 Numerical results

3.4.1 Deformation

To test the path deformation and tunneling routines, I use a simple potential given

by

V (x, y) =
(
x2 + y2

) [
1.8(x− 1)2 + 0.2(y − 1)2 − δ

]
. (3.13)
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This has one local minimum at x = y = 0, and a global minimum near x = y = 1. For δ � 1,

the phases are nearly degenerate and any tunneling between them will be thin-walled.

I run the pathDeformation.fullTunneling class for both thin (δ = 0.02) and

thick-walled (δ = 0.4) potentials, with results shown in figure 3.6. Each line represents 15

individual deformation steps with adaptive stepsizes on the order of 0.005. In this case, and

in general, the thick-walled case converges more slowly due to the added complication of

moving φ0 = φ(ρ= 0) with each step. The thin-walled case converges in ∼ 60 steps, while

the thick-walled case takes ∼ 150 steps.

To check the deformation solution, I numerically integrate the equations of mo-

tion 3.3, using manual trial and error to find the correct initial conditions. These are shown

in figure 3.6 as the red dashed lines. The deformation algorithm gets extremely close to—

but not exactly to—the integrated solution. In the thin-walled case, the deformed path is

within 0.1% of the integrated solution (defined as the largest distance separating the two

paths divided by the total path length), while in the thick-walled case the error is 0.3%.

3.4.2 Calculating transition temperatures

To demonstrate the transition finding algorithms, I consider a theory with two

scalar fields and a tree-level potential

V0(s1, s2) =
1

8

m2
1

v2

(
s2

1 − v2
)2

+
1

8

m2
2

v2

(
s2

2 − v2
)2 − µ2s1s2. (3.14)

When µ2 = 0, the theory has four identical minima located at (s1, s2) = (±v,±v) and

(s1, s2) = (±v,∓v). The effect of µ2 > 0 is to lower the minima at (±v,±v) and raise those
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Figure 3.6: Top: the potential V (x, y) given by equation 3.13 for δ = 0.02 (left) and δ = 0.4
(right). Black lines show successive deformations of the tunneling path, while red dashed
lines show direct integration of equation 3.3 with manually chosen initial conditions. Note
that the x and y axes are not to scale, so ∇V does not appear perpendicular to the contour
lines. Bottom: the bubble profiles associated with each of the above deformations, where
φ(ρ) is measured along the path.

at (±v,∓v). The tree-level scalar mass-matrix is

m2
ij(s1, s2) =

1

2v2



m2

1(3s2
1 − v2) −µ2

−µ2 m2
2(3s2

2 − v2)


 , (3.15)

so that the masses at the tree-level minima are m1 and m2 when µ2 = 0. I also add an

extra bosonic degree of freedom with the field-dependent mass

mX(s1, s2) = y2
A

(
s2

1 + s2
2

)
+ y2

Bs1s2. (3.16)

The peculiar coupling yB is designed to lift the minima at (±v,±v) relative to (±v,∓v) at

finite temperature so that there may be a phase transition between the two.
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Table 3.1: Model parameters

m1 m2 µ v Q y2
A y2

B nX
120 GeV 50 GeV 25 GeV 246 GeV 246 GeV 0.10 0.15 30

I examine a model with the parameters given in table 3.1, where Q is the renor-

malization scale used in equation 3.10 and nX is the number of degrees of freedom assigned

to the extra boson with mass mX . For this particular choice of parameters there are four

local minima at tree-level, but loop corrections destroy the zero-temperature minima at

(±v,∓v). I chose the parameters primarily to showcase multiple transitions within a single

model, not for any physically motived purpose. The tunneling condition is SE/T = 140.

Figure 3.7 shows the phase structure of the model, and figure 3.8 shows the general

evolution of the potential as a function of temperature. At high temperatures, there is a

single phase with s1 = s2 = 0. When the temperature drops to 128.2 GeV, a new phase

appears at (s1, s2) = (43,−33) GeV. The system tunnels to this phase at T = 128.1 GeV via

a first-order phase transition (see figure 3.9), and the high-temperature phase disappears by

T = 127.6 GeV. At T = 112.2 GeV, there is a small discontinuity due to the non-analyticity

of J−(m/T ) when m = 0. At the default resolution the algorithm registers this as a second-

order phase transition, but for a small range of temperatures (112.14–112.22 GeV) there

are actually two distinct phases separated by ∆φ ≈ 2 GeV (that is, the algorithm sees that

each phase terminates near T = 112.2 GeV, but it does not probe the small temperature

window where they coexist. Instead, it assumes that they are continuously linked by a

second-order transition). Immediately below this the system can be thought of as being in

the phase associated with the tree-level vev at (s1, s2) = (+v,−v). As the system cools,
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the phase associated with (s1, s2) = (+v,+v) appears, and by T = 75.2 GeV the two

phases are degenerate. Below this the former phase is metastable, but it does not transition

until T = 54.4 GeV, which is just above the point at which it disappears. Thus, the final

tunneling is very thick-walled (see figure 3.9).

In order to reproduce these calculations, one needs to create an instance of the

class testModels.model1 with parameters given by table 3.1 and call the class functions

getPhases(), calcTcTrans() and calcFullTrans() with their default parameters. Much

of the plotting can be handled by the functions plot2d() and plotPhasesPhi().

To check that the code works with three scalar fields, I simply add an extra field

to the potential such that its minimum is always zero: V0(s1, s2, s3) = V0(s1, s2) + v2s2
3. I

then rotate s2 and s3 by 45◦. This gives an easily visualizable potential with non-trivial

minima. Running the above commands produces the same results as in the two-dimensional

model within the default error tolerances. I successfully tested a four dimensional model

in a similar way. In four dimensions, the transition finding routine with default resolution

labels the highest temperature transition as second-order instead of weakly first-order, but

this can be corrected by increasing the resolution. Higher dimensional models have not

been tested, but the code was written to support an arbitrary number of scalar fields.

3.5 Summary

I presented the publicly available CosmoTransitions package to analyze cosmolog-

ical phase transitions. This included algorithms to find the temperature-dependent phase

minima, their critical temperatures, and the actual nucleation temperatures and tunneling
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profiles of the transitions. I introduced a novel method of path deformation to find the

profiles, which I then demonstrated in simple test cases to accuracies of order ∼ 0.1%. The

deformation algorithm has been successfully tested in 2 and 3 dimensions with both thick-

and thin-walled profiles, but it should work in any number of higher dimensions as well.

CosmoTransitions is designed to be easily extensible, with minimal work needed on

the part of the model builder. A new model can be created by subclassing the generic potential

class and specifying only the number of dynamic scalar fields, the tree-level potential, and

the field-dependent particle spectrum. This will (hopefully) allow for the quick analysis of

phase transitions in many extensions to the standard model.
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Chapter 4

Gravity Waves from a

Cosmological Phase Transition:

Gauge Artifacts and Daisy

Resummations
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The search for gravitational waves is entering an exciting phase. The current

generation of experiments is already delivering interesting results, including recent limits

on the amplitude of stochastic gravitational wave backgrounds from the LIGO Collaboration

[98, 99]. Rapid advances in the development of space-borne detectors [100] that might be

operational in the relatively near future are also expected [101].

As pointed out long ago [54, 102, 103], cosmological phase transitions in the early

universe might produce an imprint in the form of a stochastic background of relic gravity

waves. These would arise as a result of the collision or turbulent motion of bubbles of “true

vacuum” expanding and eventually filling the metastable vacuum in a cosmological first

order phase transition [104]. The resulting signal might be large enough to be detectable

by the next generation gravity wave search experiments, providing a unique window on the

early cosmological history of the universe [105].

The spectrum of the gravity wave background arising from a first order cosmolog-

ical phase transition is controlled by two physical properties of the phase transition itself:

(a) the amount of false vacuum energy liberated during the phase transition – in other

words, the latent heat associated with the transition; and (b) the bubble nucleation time

scale, which gives a measure of how rapidly the phase transition occurs relative to the early

universe Hubble expansion rate [104, 106]. The resulting gravity wave normalization and

spectral peak can be estimated as a function of these two physical quantities. Detailed

analytical [104, 86] and numerical [107, 108] studies exist that relate the two parameters

to the predicted spectrum, in particular for the case of detonations, where the speed of the

bubble wall is larger than the speed of sound (see Ref. [108] for a discussion of the opposite
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case of deflagration).

One class of models where a strongly first order phase transition is a necessary

ingredient is electroweak baryogenesis [109]. In the presence of B-violating electroweak

sphalerons in the Standard Model(SM) and sources of CP-violation beyond those of the

CKM CP violating phase, the electroweak phase transition (EWPT) can produce a suffi-

ciently large baryon number density to explain the observed baryon asymmetry (for recent

studies see e.g. [57, 58, 59, 30, 60, 61, 63, 19, 65, 66, 110, 68, 69]. To prevent the washout of

the produced asymmetry, the phase transition must be strongly first order, thus necessarily

producing gravity waves. Interestingly, the typical frequencies at which gravity waves from

the EWPT are red-shifted today falls in the milli-Hertz to Hertz range, where the expected

sensitivity of the space-based interferometer LISA is maximal. The search for a gravity wave

relic from the EWPT is therefore especially intriguing and promising (see e.g. [111, 112]).

From a particle physics perspective, the determination of the details of an EWPT

depends on the calculation of the finite-temperature effective action Γeff as a function of

the background bosonic fields — denoted generically here as ϕ(x) — that are present in

the theory. In the case of the SM, lattice computations and the LEP lower bound on

the mass of the Higgs boson imply that electroweak symmetry breaking in a SM universe

occurs through a cross-over transition[73, 75]. To obtain a strongly first-order EWPT as

needed for both electroweak baryogenesis (EWB) and the associated relic gravity waves,

one must augment the SM scalar sector by the addition of new scalar fields, such as a

second Higgs SU(2)L doublet as in the Minimal Supersymmetric Standard Model (MSSM)

[57, 58, 59, 30, 60, 61, 63] or a real singlet in minimal extensions of the SM scalar sector
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(see e.g. [19]). Electroweak bubble nucleation occurs when a combination of the one of

these new fields and the neutral component of the SM Higgs doublet becomes non-zero.

The properties of relic gravity waves produced by bubble collisions then follows from the

behavior of Γeff [ϕ(x)].

The most theoretically robust computations of the effective action are performed

using non-pertrubative (lattice) methods. Given the cost of such computations, however,

this approach is not feasible for exploring EWPT dynamics in a variety of beyond the

Standard Model (BSM) scenarios. Consequently, one must resort to perturbation theory

which, in turn, requires introduction of gauge-fixing. As recognized long ago [113], pertur-

bative computations of the effective potential — and more generally Γeff [ϕ(x)] — generically

lead to a gauge-dependent function. Physical quantities like the latent heat or the bubble

nucleation rate should not, however, exhibit any gauge dependence.

In fact, general arguments imply that the critical temperature [114] and the bubble

nucleation rate [115] are gauge independent. These statements follow from the so-called

Nielsen identities and their generalization [116, 117] that describe the dependence of the

effective action on the gauge fixing condition imposed on the quantized fields. In particular,

the effective action Γeff [ϕ(x)] is gauge-invariant when ϕ(x) is an extremal configuration, that

is, one satisfying the equations of motion1. In principle, then, one should be able to obtain

physical, gauge-invariant quantities relevant to the EWPT from Γeff by working with an

appropriate set of extremal field configurations.

In practice, a non-trivial gauge-dependence can enter perturbative computations

1In the case of the effective potential, ϕ(x) = const ≡ ϕmin is just the spacetime independent background
field (e.g., Higgs vacuum expectation value) that gives a minimum or maximum of the potential.
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from an inconsistent truncation of the perturbative expansion[118]. In the context of

sphaleron-induced baryon number washout, following on earlier work by Refs. [119, 120,

121], it was shown in Ref. [118] how a consistent, systematic order-by-order approach can

yield a gauge-invariant perturbative result. However, most of the remaining literature on the

topic of the EWPT, including the context of gravity wave production and of baryogenesis

relevant here, appears to suffer from gauge-dependence (typically, perturbative calculations

of EWPT-relevant quantities have been performed in the Landau gauge)2. Apart from the

point of principle, the question then arises as to the quantitative impact that this gauge

artifact has upon predictions of observable quantities.

In the present study, we address this question as it pertains to computations of

gravitational wave spectra from a first order EWPT. To that end, we consider the simplest

model involving scalar fields charged under a gauge group: the Abelian Higgs model, also

known as the Coleman-Weinberg or scalar QED model. We then resort to a class of gauges

known as Rξ (or renormalizable) gauges, and we calculate the effective potential at finite

temperature including its explicit dependence on the parameter ξ.

Studying the Abelian Higgs model has two clear advantages. First, its parameter

space is small and easily analyzed. Second, and more importantly, one may calculate its

effective potential using a gauge-invariant Hamiltonian approach[122] whose results can

be compared with those obtained from the gauge-dependent approach. We then calculate

quantities relevant to the character, strength and duration of the EWPT both in the Rξ

gauges (including Landau gauge) and in the gauge-invariant approach, and systematically

2To our knowledge, there exist no non-perturbative computations of all of the quantities relevant for
predictions of GW spectra.
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compare the results.

We find that the gauge choice may have a dramatic impact, amounting to several

orders of magnitude, on the inferred gravity wave spectrum, and even on the first- or second-

order character of the phase transition itself. We also observe that the Landau gauge results

closely matches, at least for the Abelian Higgs model, the results using the explicitly gauge-

invariant Hamiltonian formulation. This situation is perhaps not surprising, given the

arguments in Ref. [123] (see below). We caution however that this conclusion might not

be easily generalizable to non-Abelian gauge theories and that even in the Abelian Higgs

model, a gauge-invariant resummation of higher-order terms that would otherwise spoil

the convergence of the perturbative expansion remains to be developed3. To underscore the

importance of the latter problem, we study the impact of including the “daisy resummation”

in Rξ gauges. We find that in the Landau gauge, inclusion of the resummation typically

reduces the overall amplitude of the GW spectrum compared to the gauge-invariant but

un-resummed result. We then comment on strategies to tackle these issues in non-Abelian

models (such as the Standard Model or its supersymmetric extensions) – including those of

Ref. [118].

We begin in section 4.1 with the explicit calculation of the gauge-dependence of

the effective potential, at both zero and finite temperature, for the Abelian Higgs model. In

section 4.2, we explain the calculations required to predict gravitational wave spectra and

other physical observables related to the phase transition. Finally, we present our results

and conclusions in sections 4.3 and 4.4.

3A gauge-invariant prescription for estimating these terms was developed in Ref. [118].
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4.1 Gauge Dependence of the Effective Potential

We are concerned here with an Abelian Higgs model encompassing a complex

singlet Higgs field with Lagrangian

L = −1

4
FµνF

µν +
1

2
(Dµφ)∗Dµφ− V0(φ∗φ), (4.1)

where Fµν = ∂µAν − ∂νAµ and Dµ = ∂µ − ieAµ are the standard electromagnetic tensor

and covariant derivative, respectively. The potential V0 is

V0(φ∗φ) = −1

2
m2φ∗φ+

1

8
λ(φ∗φ)2. (4.2)

The tree-level vacuum expectation value is v2 = 2m2

λ , and the bare Higgs mass at the

vacuum expectation value (vev) is m2
h = 2m2.

In order to perform perturbative calculations, we must add gauge-fixing and ghost

terms to the Lagrangian. In the Rξ gauge, these are

Lgf + Lghost = − 1

2ξ
(∂µA

µ + ξevη)2 + ∂µc̄∂
µc− ξe2vσc̄c, (4.3)

where c is the Grassmann-valued ghost field, and where we have split φ into its real and

imaginary components: φ = σ + iη. We choose the vev such that 〈η〉 = 0, making σ the

physical Higgs boson and η the non-physical goldstone boson. Note that in Landau gauge

(ξ = 0, fixing ∂µA
µ = 0), the ghost field completely decouples from the theory.

To include finite-temperature corrections, we must go to (at least) one-loop order

in the effective potential. At zero-temperature, the calculation of the one-loop effective

potential proceeds by taking the trace of the inverse propagators for each particle. This

yields terms like 1
2

∫
d4k

(2π)4 log(k2 +m2
i (σ)), although determining the proper expression for
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the ξ-dependence of the gauge boson is somewhat complicated by the need to sum over

Lorentz indices ( see, e.g., Ref. [124]). Using MS renormalization, the full one-loop zero-

temperature potential is

V1(σ, T =0) =
∑

particles

ni
64π2

m4
i (σ)

[
log

(
m2
i (σ)

µ2

)
− c
]
, (4.4)

where ni are the degrees of freedom for each particle and c = 1
2 for the gauge boson’s

transverse modes and c = 3
2 for its other modes and all other particles4. Table 4.1 lists all

particle masses and their degrees of freedom. Several of the masses are gauge-dependent,

and, precisely because of this fact, the effective potential is also gauge-dependent. Note

that at both the origin and the tree-level vev (σ2 = v2 = 2m2/λ) the gauge-dependence

disappears[118], as expected from the Nielsen identities [116, 117]. However, the value of σ

that minimizes the one-loop effective potential is not gauge invariant.

For the particular case of the Abelian Higgs model, Fischler and Brout [123] defined

an effective potential from the vacuum-to-vacuum S-matrix element without resorting to

the introduction of sources, a procedure that contrasts with the conventional definition

in terms of the Legendre transform of the source-dependent generating functional, Z[j].

In this context, the “free-energy” is minimized by a spacetime-independent background

field only in the Landau gauge, whereas in other gauges the minimizing fields must carry

a spacetime dependence. Consequently, only in the Landau gauge does the minimum of

the effective potential in the absence of sources characterize the presence or absence of

symmetry-breaking. For the formulation with sources, a spacetime-independent background

field will yield the minimum of energy in any gauge of the form given in Eq. (4.3), implying

4In the literature, authors generally use c = 5
6

for all three physical modes of the gauge boson. This
only makes a difference if one includes thermal masses in the zero-temperature potential, which is a small
correction that few authors include.
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particles d.o.f. (masses)2 (thermal masses)2

transverse gauge polarization 2 e2σ2

longitudinal gauge polarization 1 e2σ2 1
3e

2T 2

time-like gauge polarization 1 ξe2σ2

higgs boson 1 −m2 + 3
2λσ

2 (1
3λ+ 1

4e
2)T 2

goldstone boson 1 −m2 + (1
2λ+ ξe2)σ2 (1

3λ+ 1
4e

2)T 2

ghosts -2 ξe2σ2

Table 4.1: Particle content of the Abelian Higgs model, including Fadeev-Popov ghosts.
One ghost effectively cancels the contribution from the unphysical time-like polarization,
while the other cancels either the longitudinal polarization (at σ = 0) or the goldstone
boson (at σ = v).

equal values of the minima of the effective potential for any choice of ξ [116, 117]. While

the formulation of Ref. [123] is manifestly gauge invariant by construction, its relationship

with the development in terms of sources has not to our knowledge been clarified. That

being said, the arguments of Ref. [123] are suggestive that results obtained with the Landau

gauge effective potential may be most physically reasonable. Indeed, we find close numerical

agreement between Landau gauge quantities and those obtained using an explicitly gauge-

invariant Hamiltonian formalism (see below). We emphasize, however, that this agreement

does not carry over to the non-Abelian case.

The finite temperature contribution can be derived similarly to the zero-temperature

contribution, except that the integral over momenta is replaced with a sum over Matsubara

modes:
∫
dk0 → 1

β

∑
β and k0 → 2nπ

β . This yields

V1(σ, T > 0) =
T 4

2π2

∑

particles

J

[
m2
i (σ)

T 2

]
, (4.5)

where

J(x2) ≡
∫ ∞

0
dy y2 log

(
1− e−

√
y2+x2

)
. (4.6)
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In the high-temperature (low-x) limit,

J(x2) ≈ −π
4

45
+
π2

12
x2 − π

6
x3 − x4

32
log

x2

ab
−O(x6) (4.7)

where log ab = 3
2 −2γE +2 log(4π) and γE is the Euler constant [33]. All higher-order terms

are simple polynomials in x2. Again, the gauge dependence disappears at σ2 = v2 and at

σ = 0, but it is non-trivial everywhere else. We also observe that the general arguments in

Ref. [123] do not depend on whether one works with a Minkowski or Euclidean formulation

of the functional integral appearing in the generating functional, so that even at finite-T use

of the Landau gauge is equivalent to a gauge-invariant formulation for the Abelian Higgs

model.

4.1.1 Thermal Mass Corrections

It is well-known that near the critical temperature for a phase transition, validity of

the perturbative expansion of the effective potential breaks down. Quadratically divergent

contributions from non-zero Matsubara modes must be re-summed through inclusion of ther-

mal masses in the one-loop propagators[96, 97]: m2(σ) → m2
eff (σ) = m2(σ) + m2

therm(T ).

Table 4.1 lists all thermal mass corrections (see ref. [125] for further discussion and ex-

plicit calculations of the masses). Generally, one performs this “daisy resummation” by

only including the thermal masses in the zero-mode propagators, which results in a mass

correction to only the cubic term in the effective potential. It is slightly more convenient

from a computational standpoint to include the corrections in all propagators, although we

do check that this only makes a small difference in the resulting potential.
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4.1.2 Alternative Gauge Invariant Formulation

For comparison, we also examine the gauge-invariant effective potential put for-

ward by Boyanovsky et al. [122]. These authors derive the potential by working in the

Hamiltonian formalism using only gauge-invariant physical states. In this case, there exist

only four independent degrees of freedom (two transverse gauge, one longitudinal gauge,

and Higgs), with no need for ghost cancellations. The unrenormalized one-loop effective

potential is

V1(χ) =
1

2

∫
d3k

(2π3)
[2ωT + ωh + ωp] , (4.8)

where ω2
T = k2 +m2

T and ω2
h = k2 +m2

h arise from the transverse gauge and Higgs degrees of

freedom, respectively, and the plasma frequency ω2
p = (k2 +m2

g)(k
2 +m2

T )/k2 contains the

contribution of both the gauge boson’s longitudinal polarization and the Goldstone boson.

The order parameter χ is a spacetime-independent, gauge-independent shift of the field,

and the gauge, Higgs, and Goldstone masses mT , mh, and mg are given in table 4.1 with

ξ = 0 and σ → χ. The tree-level potential is unchanged.

The first two contributions to V1(χ) exactly match the transverse gauge polariza-

tion and Higgs boson contributions to the potential in Rξ gauge. At the tree-level extrema,

the plasma frequency also matches the contributions from all other modes. However, away

from the tree-level extrema, the plasma frequency does not match and looks similar only

to Landau gauge (ξ = 0), as one would expect from the general arguments in Ref. [123].

Therefore, we anticipate the Landau gauge will provide a close approximation to the gauge-

independent Hamiltonian result, a conclusion similar to what was found in Boyanovsky et

al. [122].
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Using MS regularization (see the appendix), we find that the plasma frequency

contribution to the one-loop potential is

V1p(χ, T =0) =
1

64π2

[
(m2

T −m2
g)

2

(
log

m2
T −m2

g

µ2
− 3

2

)
+ 4m2

Tm
2
g

]
(4.9)

V1p(χ, T >0) =
T 4

2π2
J2

(
m2
T

T 2
,
m2
g

T 2

)
, (4.10)

where J2 is calculated by Boyanovsky et al. to be

J2(a2, b2) ≡
∫ ∞

0
dy y2 log

[
1− e− 1

x

√
(y2+a2)(y2+b2)

]
. (4.11)

In the high temperature expansion, Boyanovsky et al. find that their gauge invariant po-

tential is the same as the potential in Landau gauge up to the cubic terms, but the equality

breaks down beyond this.

In what follows, we compare results for the GW spectra using the Lagrangian and

gauge-invariant Hamiltonian methods. We observe that the daisy resummation of higher-

order contributions was not considered in Ref. [122], and it is not immediately clear how

one would do so. Consequently, when comparing results in the two approaches, we will not

include the Daisy resummation in the Lagrangian formulation.

4.2 Calculation of GW Parameters

We calculate several parameters of interest to gravitational wave production from

early universe phase transitions using the Abelian Higgs model with full and explicit gauge

dependence in the class of Rξ gauges. These include the transition temperature T∗, the

minima of the low and high-temperature phases at the transition, the relative change in

energy density α, and the approximate duration of the phase transition β−1.
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4.2.1 Calculating the Transition Temperature

In first-order cosmological phase transitions, the low-temperature phase develops

by nucleating bubbles within the high-temperature phase (see Refs. [35, 37, 126] for original

work on cosmological transitions). A critical bubble—one whose surface tension exactly

balances its outward pressure—is given by the O(3) symmetric action

S3 = 4π

∫ ∞

0
r2dr

[
1

2

(
dσ

dr

)2

+ V (σ(r), T )

]
, (4.12)

subject to the constraints that the field is smooth at r = 0 and in the high-temperature

minimum at r =∞. Smaller bubbles collapse, while larger bubbles grow and eventually fill

the universe with the new phase. Equation 4.12 yields the radial equation of motion

d2σ

dr2
+

2

r

dσ

dr
=

∂

∂σ
V (σ, T ), (4.13)

which we solve using the ‘undershoot/overshoot’ method (see e.g. Ref. [86]).

To find the exact transition temperature T∗, we must determine when the low-

temperature phase nucleates at least one bubble per Hubble volume. The nucleation rate

goes roughly as Γ ∝ T 4e−S3/T , where the constant of proportionality can be found largely on

dimensional grounds. For electroweak scales, this gives a transition temperature determined

by S3/T∗ ∼ 140 (see e.g. Ref. [26]). Note that the exponent changes very rapidly, so

determining the exact form of the coefficient is quantitatively unimportant.

Finding the minima of the low- and high-temperature phases can be a non-trivial

task, especially since the high-temperature minimum is not necessarily at σ = 0 and interme-

diate minima can develop for ξ > 0 (see section 4.3 below). Our strategy, however, is fairly

straightforward. We first observe that the transition occurs in the range TC > T∗ > Tmin,
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where Tmin is the lowest temperature at which the original, high-temperature phase exists

and TC is the temperature at which the minima of the potential in the two phases are

degenerate. We then trace the low-temperature minimum upwards from T = 0 and the

high-temperature minimum downwards from T = T0 by numerically integrating

dσmin
dT

= −
(
∂2V

∂σ∂T

)
/

(
∂2V

∂σ2

)
. (4.14)

At each point, we calculate the transition rate by finding S3. Following the evolution of the

minima and Sc we then determine the temperature at which S3/T = 140.

4.2.2 Calculating the Latent Heat and Transition Duration

With the transition temperature in hand, the relative change in energy densities α

and transition duration β−1 follow without much effort. When evaluated at its minimum,

the effective potential is the same as the free energy density of the system5. Therefore, the

energy density difference between the two phases is

∆ρ = [V (σhot, T∗) + shotT∗]− [V (σcold, T∗) + scoldT∗], (4.15)

where the entropy density is s = −∂V/∂T . Note that at T∗ = Tc, ∆ρ is identical to the

latent heat. The quantity of interest in the production of gravitational waves is α = ∆ρ/ρrad,

where ρrad = g∗π2

30 T 4 and g∗ is the number of relativistic degrees of freedom at the phase

transition, which we take to be 100.

Writing the bubble nucleation rate as Γ = Γ0e
βt, β−1 gives the approximate phase

5Here, we neglect kinetic energy contributions associated with non-vanishing gradients of the background
field in the bubble walls.
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transition duration. For a radiation dominated universe,

β

H∗
= T∗

d(S3/T )

dT

∣∣∣∣
T∗

(4.16)

where H∗ is the Hubble expansion rate during the transition (see e.g. Ref. [86]).

4.2.3 Calculating GW Spectra

We employ here the analytical approximation provided in ref. [107] to the numerical

simulations carried out in that same work. We refer the Reader to ref. [108] for further

insights on the results of ref. [107] The gravity wave spectrum (more precisely, the gravity

wave energy density per frequency octave) from collisions at production is parameterized

by

ΩGW∗(f∗) = Ω̃GW∗
(a+ b)f̃ b∗f

a
∗

bf̃
(a+b)
∗ + af

(a+b)
∗

, (4.17)

where the two exponents, obtained from fits to the numerical results, are set to a = 2.8 and

b = 1.0. The spectrum is redshifted according to

f̃ = 16.5× 10−3 mHz

(
f̃∗
β

)(
β

H∗

)(
T∗

100 GeV

)( g∗
100

)1/6
, (4.18)

h2Ω̃GW = 1.67× 10−5 Ω̃GW∗

(
100

g∗

)1/3

(4.19)

= 1.67× 10−5∆̃ κ2

(
H

β

)2( α

α+ 1

)2(100

g∗

)1/3

, (4.20)

with the functions (f̃∗/β) and ∆̃ depending on the bubble wall velocity vb (and hence implic-

itly on the relative energy density difference α) according to the following parameterization

(again as given in ref. [107]):

∆̃(vb) =
0.11 v3

b

0.42 + v2
b

(4.21)
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(f̃∗/β)(vb) =
0.62

1.8− 0.1vb + v2
b

. (4.22)

Finally, we employ the following parameterization for the bubble wall velocity [127]

vb =

√
1/3 +

√
α2 + 2α/3

1 + α
, (4.23)

valid in the limit of interest here of strongly first order phase transitions. Note that the

overall amplitude scales as h2Ω̃GW ∝ g
−7/3
∗ for α � 1, so it can be changed by several

orders of magnitude by choosing a model with a different g∗.

There should also be a contribution to the GW spectra from the turbulence imme-

diately following the bubble collisions (instead of from the collisions themselves), and this

contribution may be quite large [128, 129]. However, this still requires a strongly first-order

phase transition and will therefore contain gauge artifacts similar to those in the simpler

calculation. For our toy model, the simpler calculation suffices for a demonstration of the

gauge-dependence problem.

4.3 Numerical Results

In the most basic model without any additional fields, four parameters determine

the effective potential: the tree-level Higgs mass mh, the tree-level vev v, the gauge coupling

e2, and the renormalization scale µ. We vary only the first two of these, keeping v = 246

GeV and µ = 1 TeV fixed. We include phase transition calculations using the gauge-

invariant Hamiltonian formalism of Boyanovsky et al. [122] without resummation, shown

in the figures as solid arrows.

In order to generate a fairly strong first-order phase transition, the gauge boson
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mass must be relatively large. However, if the mass is too large then the one-loop zero-

temperature potential overwhelms the tree-level potential and perturbation theory is unreli-

able. At the tree-level vev, V0(σ=v) = −1
8λv

4 and V1(σ=v, T =0) = 3
64π2 (e2v2)2[log( e

2v2

µ2 )−

5
6 ] plus a small contribution from the Higgs boson. These two are roughly equal when

e4 ≈ 4λ or e2 ≈ 2mh
v . To be slightly more conservative, we demand that e2 ≤ mh

v .

Figures 4.2–4.4 display our results for the gauge dependence of the different phase

transition properties. All four properties—the transition temperature, the values of σ cor-

responding to the minima of the phases, the relative change in energy density, and the

transition duration—heavily depend upon the choice of gauge. We also show the impact of

including the daisy resummation, as discussed above.

Three broad features emerge from these figures. The results obtained with the

Hamiltonian formulation most closely match the results of Landau gauge (ξ = 0). However,

the match is not exact. Most significantly, the Hamiltonian approach yields a small but

measurable increase in the critical and transition temperatures.

Second, at ξ = 0, there can exist significant shifts in the GW-wave relevant param-

eters due to the inclusion of the daisy resummation. Generally, one finds that the values of α

are decreased while β/H∗ are increased due to the inclusion of the resummation, implying a

reduced amplitude and higher peak frequency in the GW spectrum. This significant depar-

ture from the fully gauge-invariant results (albeit within the Landau gauge) suggests that

developing a gauge-invariant daisy resummation procedure will be essential for obtaining

physically realistic predictions.

Third, the dependence on ξ can both exacerbate these differences and lead to new
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Figure 4.1: An example of multiple phase transitions in the same model. Here, mh = 35
GeV, e2 = 2mh

3v , and ξ = 3. Since the existence of the secondary phase transition is gauge-
dependent, it is clearly non-physical.

phase structures that are clearly unphysical artifacts of the gauge choice. For example,

for mh = 120 GeV (fig. 4.4), the phase transition becomes second-order at high ξ, so the

change in energy density goes to zero and β goes to infinity. A change in gauge can also

lead to secondary minima and secondary transitions (see fig. 4.1). In figs. 4.2–4.4, we

always perform calculations for the transition with the largest change in vev, even when

this transition happens after initial symmetry breaking. This leads to the discontinuities

in figs. 4.3 and 4.4. Given the unphysical nature of these artifacts, we do not discuss them

further but simply point out the danger in this context of attempting to draw physical

inferences from a gauge-dependent calculation.

Finally, we present our calculations for various gravitational wave spectra in fig-

ures 4.5–4.10. We make comparisons of the Hamiltonian approach and Rξ gauges without

daisy resummation in figures 4.5–4.7, and include the effects of resummation in figures 4.8–

4.10. Again, Landau gauge and the Hamiltonian approach produce very similar results.

However, a change in the gauge parameter produces very large changes in both the cal-
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culated amplitude and peak frequency of the wave. Without daisy resummation it does

not appear possible, or at least feasible, to determine which way this change will manifest

without doing the full numerical calculation. With resummation, an increase in the gauge

parameter tends to make the phase transition less strongly first-order, thereby decreasing

amplitude and increasing the peak frequency of the resulting spectrum.

4.4 Summary

We have thus far presented numerical calculations of strongly first-order phase

transitions and spectra of the resultant gravitational waves in the Abelian Higgs model

both for various values of the gauge parameter ξ and in two gauge-invariant formalisms.

The gauge-invariant Hamiltonian formalism closely matches Landau gauge. We find that

small changes in ξ can produce large changes in calculated physical quantities, implying

that attention to gauge invariance in GW computations is essential for reaching physically

meaningful predictions. Moreover, we find that in the Lagrangian formalism, the result

may be significantly affected by inclusion of the daisy resummation, a conclusion similar to

what has been observed in the context of sphaleron rate computations[118].

From these observations, we conclude that the use of a non-gauge-invariant frame-

work and the neglect of daisy resummations in computations of GW spectra for non-Abelian

phase transitions are likely to lead to physically unreliable predictions. At present, it ap-

pears that the generalization of gauge-invariant perturbative methods applicable in the

Abelian Higgs model to non-Abelian spontaneously broken theories is not straightforward.

The Hamiltonian formalism does not easily carry over to the non-Abelian case and, given
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how drastically observables change with a change in gauge parameter, one should not trust

gauge-dependent calculations for anything other than rough estimates.

We see several possible directions. First, one can compute thermodynamic quanti-

ties of interest (such as α and T∗) as well as the bounce action with Monte Carlo methods,

thereby circumventing the gauge problem at the outset while including all higher-order ef-

fects (including those entering daisy resummed perturbation theory) by construction. The

results would undoubtedly be the most reliable theoretically, but this approach is unlikely

to be practically feasible for surveying a wide variety of models or exploring wide regions

of parameter space for models like the MSSM. As an alternative, following Ref. [118], one

can use Rξ gauge and the Nielsen identities to ensure gauge-independence at each order in

~. The latter approach is relatively straightforward conceptually, but computationally in-

volved, as one must go to at least second order in the loop expansion. It appears particularly

challenging in the case of the tunneling rate computation. From a more formal side, it may

be possible to construct a gauge-invariant Hamiltonian formalism for spontaneously-broken

non-Abelian gauge theories. Although we are not aware of any work in this particular direc-

tion, we note that such a formulation has been achieved in the absence of spontaneous sym-

metry breaking for the specific case of quantum chromodynamics (see, e.g., Refs. [130, 131]

and references therein).

4.5 Appendix: Calculating 1-loop zero-T potential

To calculate the one-loop potential, we must examine integrals like
∫

d3k
(2π)3ω. For

ω2 = k2 +m2, this gives the standard one-loop potential associated with a particle of mass
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m. However, in the gauge invariant approach of Boyanovsky et al. the plasma frequency

has the form ω2
p = (k2 +α)(k2 + β)/k2. They perform the integral using a cutoff regulator,

but we would like to use dimensional regularization in order to better compare with the Rξ

gauge.

The potential associated with the plasma mode is given by

Vp =
µ3−d

2

∫
ddk

(2π)d

(
k2

(k2 + α)(k2 + β)

)n
(4.24)

with d = 3 and n = −1
2 , and µ is a mass dimension that balances the integration measure.

For n− d
2 > 0, the integral converges. Performing the integral over the d-dimensional sphere

yields

Vp =
1

(4π)d/2
1

Γ(d/2)

∫
dk kd−1

(
k2

(k2 + α)(k2 + β)

)n

=
1

(4π)d/2
1

Γ(d/2)

1

2

∫
dk ρd/2−1

(
ρ

(ρ+ α)(ρ+ β)

)n
. (4.25)

We can introduce a Feynman parameter to rewrite the fraction as

(
ρ

(ρ+ α)(ρ+ β)

)n
=

∫ 1

0
dxdy δ(x+ y − 1)

(xy)n−1

(ρ+ αx+ βy)2n
. (4.26)

Using this, and the definition of the beta function

∫ 1

0
dx xa−1(1− x)b−1 = B(a, b) =

Γ(a)Γ(b)

Γ(a+ b)
, (4.27)

one can show that

Vp =
1

(4π)d/2
Γ(n+ d/2)Γ(n− d/2)

2Γ(d/2)Γ(n)2

∫ 1

0
dx [x(1− x)]n−1[αx+ β(1− x)]d/2−n. (4.28)

Then, using the generalized binomial theorem,

Vp =
1

(4π)d/2
Γ(n− d/2)

2Γ(d/2)Γ(n)2

∞∑

l=0

Γ(d/2− n+ 1)Γ(d/2− l)Γ(n+ l)

Γ(d/2− n+ 1− l)Γ(l + 1)
αd/2−n−lβl, (4.29)
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where we demand that |β| ≤ |α|. Expanding this out in ε = 3−d
2 , one finds

Vp =
1

64π2

[
(α− β)2

(
−1

ε
+ γE − log(4π)

)

+(α− β)2

(
log

α− β
µ2

− 3

2

)
+ 4αβ

]
+O(ε), (4.30)

where γE is the Euler-Mascheroni constant. In MS regularization, we simply subtract out

the term containing 1/ε, as well as the γE and log(4π) terms. Note that for β = 0, this

reproduces the standard one-loop potential in equation 4.4.
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Figure 4.2: Calculated gauge dependence of phase transition parameters for a low-mass
Higgs boson. In all panels, black (grey) lines denote models with (without) resummation.
The arrows denote values corresponding to the solid lines, but calculated in the gauge-
invariant Hamiltonian formalism. All quantities along the y-axes are in units of GeV,
except for β/H which is unitless. In the first panel, solid, dashed and dotted lines denote
the transition temperature T∗, the critical temperature Tc, and the minimum temperature
at which the hot phase exists. In the second panel, solid and dashed lines denote the minima
of the cold and hot phases. The third panel shows the relative difference in energy densities
at both the critical temperature (dashed line) and the actual transition temperature (solid
line). The final panel gives β/H∗, where β is the approximate inverse phase transition
duration and H∗ is the Hubble constant at the transition temperature.

76



0 1 2 3 4 5
135

140

145

150

155

160

T ∗
,T

c,
T m

in

mh = 35 GeV, e2 = 2mh
3v

0 1 2 3 4 5
0

20
40
60
80

100
120
140

σ
co

ld
,σ

ho
t

0 1 2 3 4 5
0
1
2
3
4
5
6

α
∗,

α
c

×10−4

0 1 2 3 4 5
ξ

104

105

106

107

108

β
/

H
∗

0 5 10 15 20
70
80
90

100
110
120
130
140
150

T ∗
,T

c,
T m

in

mh = 35 GeV, e2 = mh
v

0 5 10 15 20
0

50

100

150

200

250
σ

co
ld

,σ
ho

t

0 5 10 15 20
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

α
∗,

α
c

×10−3

0 5 10 15 20
ξ

103

104

105

106

β
/

H
∗

Figure 4.3: Calculated gauge dependence of phase transition parameters for a medium-mass
Higgs boson. See fig. 4.2 for a thorough explanation of the different lines.
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Figure 4.4: Calculated gauge dependence of phase transition parameters for a high-mass
Higgs boson. See fig. 4.2 for a thorough explanation of the different lines.
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Figure 4.5: Expected gravitational wave spectrum for a Higgs mass of 10 GeV, calculated
in Landau gauge (ξ = 0), two high-ξ gauges (ξ = 1, 5), and the gauge-invariant Hamiltonian
formalism.
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Figure 4.6: Expected gravitational wave spectrum for a Higgs mass of 35 GeV, calculated
in Landau gauge (ξ = 0), one or two high-ξ gauges (ξ = 1, 5), and the gauge-invariant
Hamiltonian formalism.
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Figure 4.7: Expected gravitational wave spectrum for a Higgs mass of 120 GeV, calculated
in Landau gauge (ξ = 0), a high-ξ gauge (ξ = 1), and the gauge-invariant Hamiltonian
formalism.
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Figure 4.8: Comparison of gravitational wave spectra calculated without daisy resummation
in Landau gauge, and with resummation (dashed lines) in Landau gauge and two other Rξ
gauges.
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Figure 4.9: Comparison of gravitational wave spectra calculated without daisy resummation
in Landau gauge, and with resummation (dashed lines) in Landau gauge and one or two
other Rξ gauges.
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Figure 4.10: Comparison of gravitational wave spectra calculated without daisy resumma-
tion in Landau gauge, and with resummation (dashed lines) in Landau gauge and one other
Rξ gauge.
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Chapter 5

Phase Transitions and Gauge

Artifacts in an Abelian Higgs Plus

Singlet Model
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Cosmological phase transitions related to the spontaneous breaking of symmetries

in fundamental physics are believed to be potentially connected with the deepest questions

concerning the early evolution of the universe [54]. They may pertain to such diverse topics

as the origin of seed intergalactic magnetic fields (see e.g. [132]), the excess of baryons

over anti-baryons (e.g. [133]) and a possible isotropic background of gravitational waves

(see e.g. [134]). These topics are highly timely, especially in view of the recent claimed

detection of small but non-vanishing intergalactic magnetic fields [135, 136], progress in

electric dipole moment searches [137, 68], dark matter [138] and direct collider searches

[139] for signatures of electroweak baryogenesis [29], and, finally, with a new generation

of experiments looking for gravity waves [100], that will soon boost the already significant

results of current detectors [98].

The possibility of an electroweak phase transition (EWPT) associated with elec-

troweak symmetry breaking (EWSB) is especially relevant. In the Standard Model (SM),

EWSB entails the Higgs field acquiring a non-vanishing vacuum expectation value (vev)

that breaks the SU(2)×U(1)Y gauge group down to U(1)e.m. and generates masses of the

weak gauge bosons and the SM fermions. The nature of EWSB is governed by the interplay

of SM gauge interactions and the Higgs quartic self-coupling, which also determines the

value of the Higgs boson mass, mH . The results of lattice simulations indicate that for

mH . 70 − 80 GeV, EWSB occurs via a first order EWPT, while for a heavier Higgs, the

transition is a cross-over [73]. Given the present lower bounds on MH obtained from LEP,

Tevatron, and LHC searches [140, 76, 141, 142], one would conclude that an EWPT would

not have occurred in a SM universe. On the other hand, extensions of the SM scalar sector
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can readily lead to a first order EWPT as well as associated phenomenology for collider

searches. In the context of electroweak baryogenesis the EWPT must be strongly first or-

der in order to prevent excessive washout of the baryon asymmetry by sphaleron processes.

Paradigmatic extensions to the Standard Model Higgs sector yielding a strongly first or-

der EWPT include the minimal supersymmetric extension to the Standard Model (MSSM)

with a light stop [143, 30], and theories (supersymmetric or not) that include one or more

extra gauge-singlet fields [144, 145, 19, 59] (other scenarios are also possible, see e.g. [146]).

These models typically predict distinctive collider signatures in regions of parameter space

associated with a strong first order EWPT. Consequently, rapid progress in searches for

the SM Higgs at the Large Hadron Collider [141, 142] will soon impact our understanding

of a possible EWPT, elucidating whether or not the transition was strongly enough first-

order for successful electroweak baryogenesis [139], whether it could have impacted thermal

relic densities [70, 71], and whether it could have left any detectable imprint in the diffuse

background of gravitational radiation [86, 92].

Once the field content of a theory is specified, the character of resulting phase tran-

sitions relies on the computation of an effective potential, Veff , while its dynamics follows

from the associated effective action, Seff . Although the most robust techniques for com-

puting these quantities employ non-perturbative methods, such as discretizing the theory

on a lattice [147, 73, 75], in practice the resulting computational cost makes a perturbative

calculation by far more feasible and, historically, preferentially pursued for phenomenol-

ogy. However, perturbative calculations of the effective potential generically lead to gauge-

dependent results, as pointed out long ago by Dolan and Jackiw [113] (see also Ref. [148]
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for early work on gauge-dependence and symmetries at high temperature). Although it is

straightforward to maintain gauge-invariance when carrying out calculations in the sym-

metric phase (where the vev is gauge-independent), such as computing the temperature of

a second-order phase transition [149, 150, 151], it is doing so for the broken phase requires

additional care. The generic dependence of the effective action on the gauge choice is de-

scribed by the so-called Nielsen identities [116] and their generalizations [117]. In practice,

the gauge invariance of the effective action is guaranteed when the background field ϕ(x)

is an extremal configuration, i.e. one that satisfies the equations of motion (in the case of

the effective potential, ϕ(x) = ϕmin is the value of the field corresponding to a minimum

of the potential)1. Typically, gauge dependence stems from an inconsistent truncation of

the perturbative expansion [118]. This leads, in turn, to effects in the critical temperature

[114], in the bubble nucleation rate [115], and in the sphaleron transition rate [118] for a first

order phase transition, ultimately resulting in unphysical gauge dependence in observable

quantities such as the spectrum of gravity waves produced by bubble collision or turbulence

[92].

The problem of gauge dependence as it relates to the description of cosmologi-

cal phase transitions has recently attracted renewed attention. Following earlier studies

[119, 120, 121], Ref. [118] addressed the possibility of producing a consistent, order-by-order

gauge-invariant result in the perturbative expansion of the Veff and Seff . In the SM, this

approach yields a gauge-invariant critical temperature TC at one-loop order in a straightfor-

ward manner, and it can be refined to reproduce leading terms in the “daisy resummation”

1More generally, all background fields must be in extremal configurations. For example, the electroweak
sphaleron involves non-vanishing scalar and gauge fields at the saddle point of the effective action.
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in a gauge invariant manner. Doing so reproduces trends with model parameters that are

observed in lattice studies, including the dependence of TC on the top squark soft mass

parameters in the MSSM. Application to computation of a gauge invariant sphaleron rate

is also feasible. On the other hand, a gauge-invariant computation of the bubble nucleation

rate in the SM requires going beyond one-loop order.

As an alternative to the SM, the Abelian Higgs model provides a theoretically

attractive “laboratory” in which to assess various approaches to obtaining gauge-invariant

quantities associated with symmetry-breaking. Apart from calculational ease, this model

allows for the computation of a gauge-invariant effective potential using a Hamiltonian

approach [122], making a comparison with results obtained with other methods possible. In

Ref. [92], we explicitly addressed the case of an Abelian Higgs model, and calculated for a

full set of Rξ gauge choices the impact of gauge-dependence on physical observables. Doing

so allowed us to directly compare the results of the computation for a generic Rξ gauge

choice with the gauge-independent calculation [123, 122].

While computationally tractable, the Abelian Higgs model arguably carries limited

phenomenological interest. Among the more relevant SM extensions mentioned above – such

as MSSM with a light stop or a gauge-singlet extension to the Higgs sector – it is possible

to make the electroweak phase transition strongly first order via interactions that are gauge

independent (though the full Veff remains gauge-dependent). The simplest cases involve

introduction of tree-levels term in the potential of the type SH†H or S2H†H in the case

of the real singlet extension. The tree-level cubic operator can produce a large potential

barrier between the broken and unbroken phase at the electroweak phase transition, while
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the quartic interaction may allow for a lowering of TC in a manner compatible with collider

constraints on mH . As these operators are manifestly gauge-invariant, one may inquire as

to whether perturbative computations of the EWPT properties in the associated models

are quantitatively less susceptible to gauge-dependent artifacts than in either the SM or

in the Abelian Higgs model. Indeed, Refs. [152, 139] have recently suggested that such a

situation may occur.

In what follows, we study the issues described above in some detail. For the

sake of comparing with a known, simple gauge-independent result, we shall again use the

Abelian Higgs model, supplemented with a gauge-singlet real scalar field (which does not

impact the gauge-dependence structure of the theory) and retaining only the tree-level

cubic operator, SH†H. Arguably, this model is the simplest prototypical electroweak-like

theory that can exhibit a strongly first order phase transition driven by tree-level cubic

terms. In view of the recent LHC results pointing to a relatively heavy Higgs mass, singlet

extensions to the electroweak scalar sector have additionally become phenomenologically

more appealing, making an assessment of the gauge artifacts in the effective potential even

more timely. We show that such gauge artifacts may arise even in the presence of a large

tree-level singlet-Higgs cubic coupling. However, we also find that the gauge-dependence is

less pronounced when the tree-level and loop-induced cubic interactions conspire to generate

a sizeable barrier between the broken and unbroken phases at low temperatures.

The remainder of this paper is organized as follows: the next section describes in

detail the theory we study, including explicit calculations of the gauge dependent terms in

the effective potential. The following Section 5.2 gives an outline of the possible patterns
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of spontaneous symmetry breaking, and describes the effects of gauge choices on various

quantities of interest (including the critical temperature, the latent heat, and a measure of

the strength of the phase transition). Finally, Section 5.3 summarizes and concludes.

5.1 The Abelian Higgs Model plus a Singlet Scalar

We examine the gauge dependence of a simple Abelian Higgs model containing a

single complex scalar Φ charged under a local U(1) gauge group, and a real scalar singlet

field s. For our purposes here, we consider only a cubic coupling between the two fields, as

the latter can generate a tree-level barrier between the broken and unbroken phases and,

thus, can increase the strength of the phase transition. The effect of the quartic operator

discussed above is more subtle, so for simplicity we focus on the cubic interaction. At

tree-level, the potential is

V0(Φ, s) = 1
4λ1(Φ†Φ)2 + 1

2µ
2
1Φ†Φ + 1

4λ2s
4 + 1

2µ
2
2s

2 + 1
2EsΦ

†Φ. (5.1)

It is useful to separate Φ into real and imaginary parts (Φ = h+ ih′) and then rotate into

a basis such that only the real part gets a vev.

Rather than specifying the 5 coefficients explicitly, we find it more convenient to

specify the vevs, the tree-level mass eigenstates, and the mixing of the mass eigenstates,
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and use this to set the tree-level potential. The tree-level mass-squared matrix is

M2
ij =




3λ1h
2 + µ2

1 + Es Eh

Eh 3λ2s
2 + µ2

2


 (5.2)

=




cos θ − sin θ

sin θ cos θ






m2

1 0

0 m2
2







cos θ sin θ

− sin θ cos θ


 , (5.3)

where the rotation angle θ gives the mass eigenstate mixing:

tan(2θ) =
2M2

12

M2
11 −M2

22

. (5.4)

The quantities m1, m2, and θ are most relevant to collider phenomenology, as they deter-

mine production cross sections and decay branching ratios. In particular, a non-zero mixing

angle θ can weaken the collider constraints on the lightest mass eigenstate since its effec-

tive coupling to gauge bosons is reduced by cos θ. This effect opens up the possibility of a

(stronger) first order phase transition by allowing for a smaller Higgs quartic self-coupling,

although we do not study this effect in detail here. The corresponding minimization condi-

tions are given by

∂V0

∂h
= (λ1h

2 + µ2
1 + Es)h = 0, (5.5)

∂V0

∂s
= λ2s

3 + µ2
2s+ 1

2Eh
2 = 0. (5.6)

From these we solve for λ1, λ2, µ
2
1, µ

2
2 and E in terms of vacuum expectation values of h and

s, masses m1 and m2, and the angle θ, assuming that both h and s are non-zero. Note that

for E < 0 (so that the 〈s〉 > 0) and m1 < m2, we require 0 ≤ θ < 90◦. Also, λ2 is negative

for sufficiently large E, so not all values of θ lead to stable potentials.

For h = 0, extrema occur at s = 0 and — for µ2
2 < 0 — at s = ±|µ2|/

√
λ2. An

additional three extrema can occur for h > 0, whose locations are trivially determined by
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a) θ = 2◦

s = 0

h
=

0

b) θ = 4◦ c) θ = 20◦

d) θ = 45◦ e) θ = 60◦ f) θ = 86◦

Figure 5.1: Contours of the tree-level potential for m1/m2 = 0.4 and six different values of
θ. Red (blue) contour lines denote higher (lower) values of the potential. The Higgs and
singlet fields vary along the horizontal and vertical axes, respectively. The origin, which is
in the center of each plot, is a maximum in (a), (b), and (f), a saddle point in (c) and (e),
and a minimum in (d).

solving the cubic equation in s obtained from from combining Eqs. (5.5) and (5.6):

λ2s
3 + (µ2

2 −
E2

2λ1
)s− E

2λ1
= 0. (5.7)

Since Eq. (5.7) has no term proportional to s2, at most two of the extrema can be in any

one quadrant. Also, since there are no linear or cubic terms in h, all maxima must lie along

the s-axis. Using this knowledge, one can enumerate all of the different combinations of

minima, maxima, and saddle points to obtain all of the different possible potential types.

From Eqs. (5.5,5.6) we observe that the location and character of the extrema

depend on four independent parameters. For example, by scaling out a factor of λ1 we may
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take these parameters to be µ2
1/λ1, µ2

2/λ1, λ2/λ1, and E/λ1. We may trade two of these

parameters for one each of the non-zero vacuum expectation values of s and h, respectively.

The remaining two parameters then determine θ and the ratio of masses m1/m2. The depth

of the potential at one of the minima is then fixed by the fifth remaining parameter in the

potential, which we can trade off for one of the masses. Therefore, we can keep two vevs and

one of the masses fixed and just vary θ and the ratio m1/m2 to explore all potentials that

are not related by an overall rescaling. Fig. 5.1 shows six different representative potentials

with constant m1/m2.

Panel (a) shows the potential with a small positive value of θ, corresponding to a

small negative E. There is a minimum in each quadrant of the h-s plane separated by four

saddle points with a maximum at the origin. Increasing the angle θ (panels (b) and (c))

merges some of these features onto the s-axis. First, the two minima at s < 0 merge, then

the two saddle points near s = 0 merge onto the origin such that the origin is no longer a

maximum. Increasing θ further (panel (d)), pushes the minimum along the s-axis up to the

origin. At this point there is a tree-level barrier between the broken and symmetric phases.

In panel (e), this barrier disappears and there are only the two electroweak minima and

a saddle point at the origin. Finally, panel (f ) has a small value of |E|, but large enough

to destroy the two metastable minima in panel (a). A further rotation to θ = 90◦ would

reproduce a potential of a type similar to what shown in panel (a). This basically exhausts

all of the possibilities with symmetry-breaking minima: the only other potential type occurs

at larger ratios of m2/m1. It is similar to type (d) except that the h = 0 minimum splits

into two minima and a saddle point along the s-axis.
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5.1.1 Quantum corrections

The one-loop corrections to the effective potential are given by

V1 =
∑

i

ni
64π2

m4
i

(
log

m2
i

q2
− c
)
, (5.8)

where ni is the d.o.f. for each particle, mi is the particle mass, q is the renormalization scale

(which we set to 1 TeV), and c = 1/2 for transverse gauge boson polarizations and 3/2 for

all other particles. The Higgs and scalar masses are given by the eigenvalues of the tree-

level mass matrix (Eq. 5.2). The three gauge boson polarizations each contribute a mass

m2
gauge = g2h2. We focus on Rξ gauge2, in which there are gauge-dependent masses for the

Goldstone boson and the ghost: m2
gold = λ1h

2 + µ2
1 +Es+ ξg2h2 and m2

ghost = ξg2h2, with

nghost = −2. There is an additional degree of freedom from the gauge boson’s unphysical

time-like polarization which exactly cancels one ghost degree of freedom. In all of our

models the first derivatives (∂V1/∂h and ∂V1/∂s) are negative at the tree-level minimum.

This pushes the vevs further away from the origin than they were at tree-level.

At finite temperature, the one-loop corrections are

V1,T 6=0 =
T 4

2π2

∑

i

niJ

[
m2
i (φ)

T 2

]
, (5.9)

where

J(x2) ≡
∫ ∞

0
dy y2 log

(
1− e−

√
y2+x2

)
. (5.10)

In the high-temperature (low-x) limit,

J(x2) ≈ −π
4

45
+
π2

12
x2 − π

6
x3 − x4

32
log

x2

ab
−O(x6) (5.11)

2 In a previous study [92], we compared Rξ gauge to the gauge-independent potential in Ref. [122] which
uses a Hamiltonian formalism. The latter is more computationally intensive, and it tends to closely resemble
Landau gauge (ξ = 0) in the Abelian Higgs model.
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where log ab = 3
2 − 2γE + 2 log(4π) and γE is the Euler constant [33]. J(x2) is not analytic

at x2 = 0, and it is complex for x2 < 0. In our calculations, we approximate J(x2) with a

cubic spline, taking only the real component for x2 < 0.

At high temperature, the validity of the perturbative expansion of the effective

potential breaks down. Quadratically divergent contributions from non-zero Matsubara

modes must be re-summed through inclusion of thermal masses in the one-loop propagators

[96, 97]: m2(φ)→ m2
eff (φ) = m2(φ) +m2

therm(T ). This amounts to adding thermal masses

to the scalars and gauge boson longitudinal polarizations:

M2
ij →M2

ij + T 2



λ1/3 + g2/4 0

0 λ2/4


 (5.12)

m2
gold → m2

gold + T 2(λ1/3 + g2/4) (5.13)

m2
long−gauge → m2

gauge + T 2g2/3. (5.14)

Note that the coefficients of the T 2 terms are ξ-independent.

When the phase transition is second-order or very weakly first-order, or when the

temperature is very high, even the re-summed potential may not be reliable. Loops that

are either infrared divergent or dominated by the infrared regime contribute linearly in

temperature and can ruin the perturbative expansion (see, e.g., Ref [125]). Each additional

such loop contributes roughly λ̃T/M , where λ̃ is the relevant coupling and M is the rele-

vant mass scale. Substituting the gauge boson mass for M and g2 for λ̃, we see that the

perturbative expansion should hold as long as h/T & g. We warn the Reader that for

certain parameters in what follows this criterion breaks down. As a result, the one-loop

expansion might have limited validity in those cases. This is particularly true for cases 1
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and 2 with g = 0.5 and case 3 with θ & 70◦. However, it is important to note that one

could lower the phase transition temperature by e.g. extending the gauge group and adding

extra gauge bosons. Extra degrees of freedom enhance the finite-temperature contributions

relative to the tree-level potential, so symmetry breaking happens at lower temperatures.

This in turn would make the one-loop perturbative expansion more reliable, without quali-

tatively changing the nature of the explicit gauge dependence. Since the appearance of the

one-loop gauge dependence is not tied directly to the perturbative validity, and since our

primary interest is in providing proof of existence for the gauge-dependence issues, we leave

the perturbative breakdown problem to future studies.

5.2 Patterns of spontaneous symmetry breaking

We now study the gauge dependence in a few representative models with different

qualitative features. In particular, we examine the gauge dependence of the nucleation

temperature T∗ and various measures of the phase transition strength. Nucleation occurs

when the three-dimensional action S3 of a nucleated bubble satisfies S3/T∗ ≈ 140 (see

Refs. [35, 36, 37] for original work on cosmological phase transitions), and we use this

criterion to define T∗. The phase transition strength has often been characterized by ∆φ,

the jump between the vevs of the two phases. However, as noted above, this quantity is

ξ-dependent. Alternate, physically meaningful measures include (a) α, the difference in

energy densities at the two vevs , and (b) a measure of the phase transition duration β−1,

defined as β/H∗ = T∗(d/dT )(S3/T ) where H∗ is the Hubble parameter at the time of the

transition. When the phases are degenerate and there is no supercooling, α is equivalent
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to the transition’s latent heat. The quantity β−1 effectively measures the strength of the

transition, with β =∞ for a second-order transition.

We use the CosmoTransitions package [153] to determine the phase structures and

calculate the nucleation rates.

Table 5.1: Model parameters for three illustrative cases.

〈htree〉 〈stree〉 m1 m2 θ E

Case 1 240 GeV 48 GeV 120 GeV 35 GeV −1◦ −0.96 GeV
Case 2 240 GeV 48 GeV 120 GeV 180 GeV 45◦ −37.5 GeV

Case 3 174 GeV 174 GeV 30 GeV 75 GeV 60◦ −11.8 GeV

5.2.1 Gauge fields driving transitions

First, we examine two cases in which the transition would be second-order without

the inclusion of massive gauge fields. Table 5.1 contains the corresponding model parame-

ters. The two cases are quite similar: they have the same vevs, and they both have a saddle

point at h = s = 0 with no other extrema along the s-axis (see Fig. 5.1(e)). However, case

1 has a very small cubic term while in the second case E is of the same order as the mass

scale of the theory. The gauge dependence exhibited in case 1 is therefore unsurprising:

since it has relatively weak coupling between the Higgs and the scalar singlet, we expect

it to show the same sort of gauge dependence as an uncoupled Abelian Higgs model [92].

This is indeed the case, as seen in Fig. 5.2 (green lines).

For low values of the gauge coupling g, the gauge dependence is quite pronounced.

The initial symmetry breaking (solid lines for the two cases) is weakly first-order (e.g.,

α/T 4
∗ � 1) from ξ = 0 to ξ ≈ 1.5. At higher ξ, a second-order transition initially breaks
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Figure 5.2: Gauge dependence in cases 1 (thin green lines) and 2 (black lines) as a function
of the gauge parameter ξ. The left panels have a small gauge coupling g = 0.5, while the
right have g = 1.0. Dashed lines represent second-order symmetry breaking transitions,
which may be followed by a first-order transition at lower temperature. The marks along
the right side of each panel show the corresponding quantity calculated using the gauge-
invariant method of Ref. [118]. The thicker marks include a gauge-invariant treatment of
the thermal masses; the thin marks ignore them.

the symmetry (dashed lines in Fig. 5.2). The first-order transition then proceeds from a

high-temperature broken phase to the low-temperature broken phase at larger values of h

and s. Above ξ ≈ 3, the barrier between the two broken phases disappears and there is no

first-order phase transition at all.

For higher values of g, the gauge dependence is not as pronounced. The phase

transition is much more strongly first-order, with α/T 4
∗ roughly a factor of 10 higher than

it is for low g. The initial symmetry-breaking still turns second-order at high ξ, but the
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subsequent first-order transition persists up to ξ = 5 with about a factor of 2 drop in α.

In all cases, the appearance of a strong first-order phase transition is associated

with a large ratio of field-dependent heavy degrees of freedom (in this case, gauge bosons)

to the Higgs mass. A small Higgs mass decreases the depth of potential (that is, V0(0) −

V0(v) decreases), while heavy additional field-dependent masses yield larger contributions

to the thermal effective potential (increasing V1(v, T )−V1(0, T )). Both effects decrease the

critical temperature and increase ∆φ. The presence of the additional field-dependent masses

decreases the critical temperature because, for a given value of T , V1(v, T )−V1(0, T ) is larger

for larger gauge couplings and the two minima are degenerate at lower temperatures. It

increases the value of ∆φ because dJ/dx → 0+ as x → ∞, so when x = m/T = gh/T is

large, ∂V1/∂h is small and the vev does not decrease much from its tree-level value. An

increase in ∆φ tends to increase both α (a larger separation between phases implies a larger

difference in mass spectrums, entropy, and therefore latent heat) and β−1 (since S3 scales

as (∆φ)3). One can achieve a strongly first-order phase transition even for a heavy Higgs,

as long as it is somewhat light compared to the other field-dependent masses.

Interestingly, case 2 (thick black lines) shows almost exactly the same gauge de-

pendence as case 1, even though it has a non-trivial cubic term. The important point is that,

although large, the cubic term is not large enough to cause a first-order phase transition

without additional bosons that have large couplings to the Higgs field.

We compare the gauge-dependent calculations to explicitly gauge-independent cal-

culations (denoted by marks along the right side of each panel in Fig. 5.2). At one-loop

order and without the added thermal masses, the gauge-independent calculation is simply
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the value of the potential evaluated at the tree-level minimum Φ0, where ghost and gold-

stone degrees of freedom exactly cancel. Thermal masses spoil the cancellation, but one

can still obtain a gauge-invariant result by evaluating the cubic terms in the ring-improved

effective potential at the tree-level high-temperature minimum, where the tree-level high-

temperature potential is the same as V0(Φ) but with thermal masses added to µ2
1 and µ2

2.

This is the lowest-order approximation used by Ref. [118]. Since the potential is evaluated

at two different minima, a gauge-invariant ring-improved ∆φ is not well-defined and is not

plotted in Fig. 5.2.

Ignoring thermal masses, one can see that the gauge-invariant critical temperature

must be lower than the gauge-dependent critical temperature for any value of ξ: the gauge-

dependent critical temperature is defined as the temperature at which V (Φmin, T ) = V (Φ=

0, T ), but since Φmin is the minimum of the potential, V (Φ0, T ) > V (Φmin, T ) = V (Φ =

0, T ) and the gauge-invariant critical temperature must be lower. Conversely, the latent

heat tends to be larger in the gauge-invariant method. The energy density decreases with

increasing particle masses, so, as long as the masses are larger at Φ0 than at Φmin (which

is the case for weakly first-order transitions), the difference in energy densities between

the symmetric and broken phases will be larger when evaluated at Φ0 than at Φmin. The

addition of thermal masses tends to enhance both of these effects.

The gauge-invariant method produces quite different results from the gauge-dependent

calculation when the latter predicts a very weakly first-order transition. This is to be ex-

pected: the two methods perform calculations at very different field values when the gauge-

dependent ∆φ is small. When g = 1 and the transition is more strongly first-order, the two
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methods agree much more closely. However, including thermal masses worsens the agree-

ment. When mgauge/T & 1, higher-order terms in the effective potential dominate and using

only the cubic term for ring-improvement is unreliable. The ring-improved gauge-invariant

calculation should not be trusted in this case.

Fig. 5.3 explicitly shows the (non-)importance of the cubic term (via θ) in these

scenarios. Regardless of whether the cubic term is large or small, the basic pattern of

gauge-dependence is about the same. The phase transition grows more weakly first-order

(α decreases) for increasing ξ for all values of θ. At ξ ≥ 3, there is only a second-order

transition. Note that the transition is most strongly first-order when tan θ = 〈htree〉/〈stree〉,

but still second-order for ξ ≥ 3.

5.2.2 Tree-level terms driving transitions

Here we examine a scenario in which the cubic term is critical in determining

the strength of the phase transition. Superficially, case 3 appears similar to case 2. Both

have relatively large cubic terms, and both have the topology shown in Fig. 5.1e. However,

a small change in model parameters can turn the saddle point in case 3 into a tree-level

minimum (Fig. 5.1(d)), thus creating a potential barrier at zero temperature for which the

tunneling rate may never be large enough to penetrate. Even without a tree-level barrier,

the cubic term is sufficiently prominent to create a barrier at relatively low temperature:

there is no barrier at T = 0, but there is a barrier by T ≈ 100 GeV for θ = 60◦. Slightly

smaller values of θ decrease this temperature drastically. The crucial distinction between

cases 2 and 3 is that, even though both have large cubic terms, only in case 3 is the lowest

eigevalue of the mass-squared matrix both negative and sufficiently small in magnitude (i.e.,
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Figure 5.3: Gauge dependence in case 2 with g = 0.5, but with θ (or equivalently E) varied
and ξ held fixed. The transition is second-order for ξ ≥ 3 for all values of θ.

a small negative value of µ2
1) that the origin can become a minimum at low temperature

with the cubic term providing the separation between the symmetric and broken phases.

Since the phase transition is strongly first-order even for g = 0 (that is, without

any gauge bosons at all), the gauge dependence is not nearly as severe as in cases 1 and

2. It is still present though. For example, at θ = 60◦, T∗ increases by 1.6% from ξ = 0 to

ξ = 5, and α increases by only 0.1%.

By increasing θ from 55◦ up to 90◦, one moves successively through topologies

(d), (e), (f ), and (a) in Fig. 5.1. At around θ = 70◦ and |E| = 9 GeV, the cubic term is

small enough so that a first-order phase transition requires g > 0. At this point, the gauge

dependence becomes much more obvious, as is seen in Fig. 5.4. At high enough θ and low
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enough E, the symmetry-breaking transition is second-order for all plotted values of ξ.

5.3 Summary

The main conclusion of the present study is that the inclusion of a singlet scalar

degree of freedom does not generally alleviate the gauge-dependence problem in the elec-

troweak phase transition, even when it has large couplings to the Higgs. Moreover, a

significant, tree-level cubic singlet-Higgs interaction does not in itself guarantee a strongly

first-order phase transition. On the other hand, when the phase transition is strongly first

order, the gauge-dependence appears to be less pronounced than in the generic case. Such

a situation occurs either when the gauge coupling is relatively large or when the tree-

level singlet-Higgs cubic term acts in concert with small negative mass-squared values at

h = s = 0 to create a potential barrier at low temperature. Otherwise, when the phase

transition is only weakly first-order, or borderline strongly first-order, the gauge-dependence

can be drastic regardless of the presence of a cubic term. This dependence may change not

only the strength of the phase transition, but also its overall character. In such circum-

stances, one cannot make a gauge-independent determination of whether the transition is

first or second-order, nor can one even determine whether or not the transition comes from

a symmetry-preserving vacuum. The explicitly gauge-independent calculation of the critical

temperature TC using the lowest-order result in Ref. [118] can give a rough estimate of the

transition temperature T∗, but only when the amount of super-cooling is small3, which is

hard to achieve with a tree-level barrier. A similar gauge-independent calculation of α is

3In this case, the onset of nucleation occurs for T very close to TC
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only reasonable when the transition is already known to be strongly first-order.

As emphasized in our earlier work [92], the appearance of gauge-dependence in

physical quantities such as T∗, α, and β should engender caution when attempting to draw

phenomenological conclusions from computations performed in a specific gauge. In the ideal

situation, a gauge-invariant computation using non-perturbative methods would be used to

explore various Standard Model extensions that may lead to a first order electroweak phase

transition, though a comprehensive exploration is at present prohibitively expensive. In the

meantime, various gauge-invariant perturbative techniques, such as the loop expansion [118]

or Hamiltonian formulation [122], may at least point to regions of parameter space in a given

model where transitions of different character occur. If, as we find for the Abelian Higgs

plus singlet model (and as, perhaps, maybe speculatively be a more general pattern) the

gauge-dependence of conventional perturbative computations is mitigated by a strongly

first order transition triggered by gauge-independent terms, one might expect to find rough

agreement with the results of manifestly gauge-invariant analyses. The present study shows,

however, that such a conclusion should be carefully qualified on a case-by-case basis.
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Chapter 6

Electroweak Baryogenesis And The

Fermi Gamma-Ray Line
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In the search for signatures from the annihilation (or the decay) of dark matter

particles, a gamma-ray line in the multi-GeV energy range has long been considered a

Holy Grail. Given that, in the weakly interacting massive particle (WIMP) paradigm,

Galactic dark matter is virtually at rest, the pair annihilation of two particles into a final

state consisting of two photons would produce a monochromatic line with an energy exactly

corresponding to the particle dark matter mass (or to half its mass in the case of decay). The

advent of the Fermi gamma-ray Large Area Telescope (LAT) heralded promise of potentially

delivering this smoking gun signal, which would then serve as a beacon for further searches

to close in on a well-defined particle dark matter mass.

Despite a null result presented by the LAT collaboration in Ref. [154], independent

scholars analyzed the Fermi data employing optimized signal-to-noise regions, unveiling a

tantalizing excess localized around 130 GeV1 and originating from regions including the

Galactic center [156, 157]. Subsequent independent analyses confirmed the original claim,

typically attributing an even larger level of confidence to the discovery of a monochromatic

line in the Fermi-LAT data from the center of the Galaxy [158].

Understandably, the discovery of the line spurred a great deal of interest in the

community: a feature in the Earth limb photon events at the same energy was found,

albeit with a much lower statistical significance [158]; despite significant efforts in pinpoint-

ing possible instrumental or environmental effects that could explain the excess (see e.g.

Ref. [159]), at present the line feature appears statistically significant enough to deserve

serious consideration.

1Recent re-analyses with reprocessed data using “Pass 7 Clean” events put the line at 135 GeV [155],
but nothing qualitative changes in the present discussion, where we will assume the line is at 130 GeV.
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Figure 6.1: The dominant diagram leading to the two-photon pair-annihilation of neutrali-
nos in the NMSSM scenario under consideration in this study.

From a model-building and phenomenological standpoint, the 130 GeV line poses

interesting challenges: with default choices for the dark matter density profile in the Galaxy,

the required pair-annihilation cross section for dark matter (at rest, i.e. at “zero tempera-

ture”) into two photons is about 〈σv〉γγ ∼ 10−27cm3/s, much larger than would be expected

by suppressing by a factor α2 the pair annihilation cross section expected for WIMP ther-

mal production in the early universe. Even more problematic is the absence of a continuum

gamma-ray signal accompanying the line in the region where the line is detected. This

poses the question of how to suppress final states that would generously produce e.g. neu-

tral pions from hadronization showers of strongly interacting particles, or inverse Compton

or bremsstrahlung photons from charged leptons.

Simple paradigms for WIMP dark matter fail at explaining the needed features of

the 130 GeV line. For example, neutralinos within the minimal supersymmetric extension

of the Standard Model (MSSM) feature large suppressions in the pair annihilation into two

photons with respect to any other final state, and the required large rate for neutralino

pair-annihilation into two photons cannot be accommodated with the right thermal relic

abundance [160].
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A simple extension to the field content of the MSSM, however, allows for an inter-

esting caveat to both shortcomings mentioned above, as first realized in Ref. [161]: within

the next-to-MSSM (or NMSSM, hereafter), an s-channel resonant contribution exists to

the annihilation cross section arising from the diagram shown in Fig. 6.1, where two ap-

proximately 130 GeV bino-like neutralinos annihilate into a singlet-like pseudoscalar A1,

which then decays into photons via a chargino loop. For mA1 ∼ 260 GeV, the process is

resonant and the resulting cross-section can easily satisfy 〈σv〉γγ ∼ 10−27cm3/s as required

to produce the observed line [156].

The NMSSM possesses the interesting additional possibility of naturally realizing

a mechanism known as electroweak baryogenesis to produce the observed baryon asymmetry

of the universe (BAU) at the electroweak phase transition (EWPT) (for a recent review,

see Ref. [162]). The NMSSM framework, in fact, accommodates tree-level cubic couplings

entering the relevant scalar effective potential driving the EWPT needed to produce a

sufficiently strongly first-order phase transition (this is in turn needed to prevent wash-out

of the generated baryon asymmetry in regions of broken electroweak phase), as realized a

long time ago [163, 164] and reinforced in recent analyses [165] (see Refs. [144, 145] for

similar arguments in related models). Additionally, the NMSSM, like the MSSM, possesses

enough room to host the level of CP violation needed for baryogenesis while being consistent

with constraints from the non-observation of electric dipole moments (EDMs).

In the present study, we argue that the NMSSM can simultaneously accommodate:

1. a thermal dark matter candidate that can produce the 130 GeV line while being

consistent with constraints from other gamma-ray observations and direct detection
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searches;

2. a Higgs sector consistent with the recent LHC findings [166, 167];

3. a strongly first-order phase transition as needed by electroweak baryogenesis (for which

we calculate in detail the effective finite temperature potential);

4. the generation of the observed baryon asymmetry of the universe at the EWPT, while

being consistent with constraints from EDMs.

Requiring all four conditions above forces us to very special corners of the theory’s

parameter space: the goal of our study is not to explore exhaustively the NMSSM parameter

space but, rather, to outline the general implications for the theory parameter space of the

four requirements above, and to draw predictions from the regions of parameter space that

do satisfy these requirements. As a result, we do not concern ourselves with issues of fine-

tuning but, rather, we produce a detailed set of predictions that put this framework for the

origin of baryonic and dark matter on very testable grounds. At the same time, we provide

benchmarks for corners of the NMSSM theory parameter space where all conditions listed

above may be fulfilled.

This paper is organized as follows: in Sec. 6.1 we outline the NMSSM parameter

space, detail the neutralino and Higgs sectors, and discuss the phenomenological constraints

we implement; Sec. 6.2 discusses the nature of the electroweak phase transition and the

constraints that a strongly first-order transition places upon the parameter space; in Sec. 6.3

we discuss the computation of the baryon asymmetry; we conclude in Sec. 6.4
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6.1 A 130 GeV Line in the NMSSM

To begin, we review the NMSSM setup, and show how it is possible to hone in on

parameters consistent with the 130 GeV gamma-ray signal and with a broad set of additional

phenomenological constraints. We follow closely the strategy outlined in Refs. [161, 168]

and consider the simplest incarnation of the NMSSM with a scale-invariant, Z3-symmetric

superpotential:

W = WMSSM|µ=0 + λŜĤuĤd +
κ

3
Ŝ3, (6.1)

where hatted quantities denote the corresponding superfields, and where S is a gauge singlet.

The soft supersymmetry-breaking Lagrangian is given by

− Lsoft = −LsoftMSSM +m2
S |S|2 +

(
λAλSHuHd +

1

3
κAκS

3

)
+ h.c. (6.2)

After electroweak symmetry breaking (EWSB), the Higgs and singlet fields obtain vacuum

expectation values (vevs) of 〈Hu〉 ≡ vu, 〈Hd〉 ≡ vd, and 〈S〉 ≡ vs. As in the MSSM, we

denote the ratio of the SU(2) Higgs vevs as tanβ ≡ vu/vd. The singlet vev generates an

effective µ-term in the superpotential given by µ ≡ λvs. We assume that λ, vs ∈ R so that

µ is real and there is no CP-violation at tree level in the Higgs sector. While CP-violating

effects can enter at one-loop from gaugino interactions if we allow M1,2 to carry a complex

phase, we neglect these contributions when considering radiative corrections to the Higgs

sector, since these effects are typically sub-dominant. The six parameters λ, κ, Aλ, Aκ, µ

and tanβ then determine the tree-level Higgs spectrum after minimizing the scalar potential

and solving for the SUSY-breaking Higgs masses.

At this level, deviations from the spectrum of the MSSM originate from the singlet

superfield in the superpotential, and are crucial in order to obtain a neutralino consistent
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with the 130 GeV gamma-ray signal (without an associated continuum gamma-ray back-

ground), with a 125 GeV Higgs, and with successful electroweak baryogenesis. Specifically,

the present set-up contains one each of additional neutral CP-even and CP-odd states which

enter into the respective Higgs mixing matrices. Complete expressions for the various rel-

evant mass matrices in the NMSSM which match our conventions can be found in, e.g.,

Ref. [169].

The pseudoscalar mass matrix will be of particular importance; its elements are

given, to one-loop order, by [169]

M2
P,11 = λvs (Aλ + κvs)

(
tanβ(Q)

ZHd
+

cotβ(Q)

ZHu

)

M2
P,22 = 4λκvu(Q)vd(Q) + λAλ

vu(Q)vd(Q)

vs
− 3κAκvs

M2
P,12 = λ

(
vu(Q)2

ZHd
+
vd(Q)2

ZHu

)1/2

(Aλ − 2κvs) ,

(6.3)

where Q is the relevant SUSY energy scale; vu,d(Q) and tanβ(Q) are the Higgs vevs and

tanβ at the scale Q; and ZHu,d(Q) are wave-function renormalization factors. The matrix

MP can be diagonalized to obtain the pseudoscalar mass eigenstates A1 and A2. As we

discuss below, in the present setup A1 must be singlet-like; the state A2 will therefore

correspond to an MSSM-like pseudoscalar Higgs boson.

In addition to the new degrees of freedom in the Higgs sector, there is an additional

Weyl fermion (the “singlino”, S̃), corresponding to the fermionic component of the singlet

superfield Ŝ. This fermionic degree of freedom enters into the neutralino mixing matrix,
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whose components are given at tree level by [169]

Mχ0 =




M1 0 g1vu√
2
−g1vd√

2
0

. M2
g2vu√

2

g2vd√
2

0

. . 0 −µ −λvd

. . . 0 −λvu

. . . . 2κvs




. (6.4)

Here, we shall consider the case in which the baryon asymmetry is sourced by CP-violation

in the higgsino-gaugino sector [162]. The masses in Eq. (6.4) are therefore generically

complex-valued. We will further restrict ourselves to the case of a single complex physical

phase, in the wino mass M2, with all other parameters real2. This results in CP-conservation

at tree-level in the Higgs sector. Since in our construction the LSP is bino-like throughout

all of the parameter space we consider, a CP -violating phase in M1 would produce large

effects on the calculation of the various dark matter properties; we therefore impose M1 ∈ R.

Eq. (6.4) is diagonalized by the unitary complex matrix N :

M′χ0 = N ∗Mχ0N † (6.5)

and the neutralino masses are given by

diag
(
m2
χ0

1
, m2

χ0
2
, m2

χ0
3
, m2

χ0
4
, m2

χ0
5

)
=M′†

χ0M′χ0 . (6.6)

The five neutralinos are admixtures of B̃, W̃ , H̃u,d, and S̃, the lightest of which will be the

lightest supersymmetric particle (LSP) in our setup. The chargino mass matrix is simply

that of the MSSM, again with a possible complex phase in the wino mass entry, yielding

the mass eigenstates χ±1,2.

2Note that the physical phase we consider here effectively corresponds we to the phase φ ≡ arg(µM2b
∗),

see e.g. Ref. [170]

110



Motivated by the lack of a SUSY particle discovery at the LHC, we will typically

assume that all sfermions are heavy3, with msf & 1.5 TeV. This effectively decouples them

from any process of interest here. As a result, to determine the properties of neutralino

dark matter, the electroweak phase transition, and the CP-violating sources for electroweak

baryogenesis in the present set-up, one must specify the following nine NMSSM parameters:

λ, κ, Aλ, Aκ, µ, tanβ, M1, |M2| φ ≡ arg(M2). (6.7)

As we argue below, many of these parameters are tightly constrained by the phenomenolog-

ical and observational constraints we impose, in particular by requiring a 130 GeV gamma

ray line from resonant neutralino annihilation consistent with other particle and dark matter

searches.

Throughout this study, we will assume that the large required pair-annihilation

cross-section into two photons, 〈σv〉γγ ≥ 10−27 cm3/s, arises from the on-resonance s-

channel annihilation of neutralinos into A1, which in turn couples to two photons through

a chargino loop (see Fig. 6.1). The dominant contribution to the thermally averaged cross-

section for this process at zero temperature is given by [160]

〈σv〉γγ =
α2m2

χ0
1

16π3

∣∣∣∣∣∣
∑

i=1,2

Mχ±i
mχ0

1

4m2
χ0

1

(
4m2

χ0
1
−m2

A1

) gA1χ0
1
gA1χ

±
i
F

(
mχ0

1

mA1

,
Mχ±i
mA1

)∣∣∣∣∣∣

2

(6.8)

where the function F (a, b) is defined by

F (a, b) ≡
∫ 1

0

dx

x
log

(∣∣∣∣
4ax2 − 4ax+ b

b

∣∣∣∣
)

(6.9)

3Note that the authors of Ref. [161] considered rather light sleptons to account for the possible discrepancy
of the muon g − 2 with the value predicted by the SM. However, in the present case, such light sleptons
can result in large one-loop contributions to the electric dipole moments inconsistent with the constraints
discussed in Sec. 6.3.3, barring cancellations.
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Figure 6.2: The zero-temperature thermally-averaged cross-section times velocity for neu-
tralino annihilation into two photons as a function of the singlet-like pseudoscalar mass
mA1 for the EWPT benchmark point discussed in Sec. 6.2: λ = 0.75, κ = 0.45, tanβ = 1.7,
Aλ = 545 GeV, Aκ = −88 GeV, µ = 275.8 GeV, M1 = 143.5 GeV, and M2 = 635.5 GeV.
The red dashed line indicates the lower bound on 〈σv〉γγ required to produce the 130 GeV

Fermi line. Note that decreasing M1 (thereby increasing µ) will narrow down the resonance.

and the couplings gA1χ0
1
, gA1χ

±
i

depend on the neutralino, chargino, and CP-odd Higgs

diagonalizing matrices. To compute these couplings, we use the Feynman rules found in

Ref. [169], appropriately modified to match our conventions for the neutralino and chargino

matrices, which contain complex mass entries. This cross-section is plotted as a function

of mA1 for a particular choice of parameters, in Fig. 6.2, which clearly shows the narrow

resonant structure.

6.1.1 Suitable Higgs and Neutralino Sectors

Given our set-up, we can elucidate the parameter space regions capable of pro-

ducing the gamma-ray line while satisfying all other dark matter and particle physics con-

straints. As we show below, requiring a 130 GeV line from resonant neutralino annihilation

restricts the NMSSM parameter space to a narrow region in which we can study electroweak
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baryogenesis and the electroweak phase transition, in addition to producing unambiguous

predictions for several experimentally observable quantities, such as electric dipole moments

and dark matter detection rates.

In general, the properties associated with the neutralino LSP depend sensitively

on the details of the various parameters involved; this can be appreciated by considering

the different benchmark points discussed in Refs. [161, 168]. For example, the annihilation

cross-section into photons, Eq. (6.8), is strongly affected by the mass splitting
∣∣∣mA1 − 2mχ0

1

∣∣∣,

as shown in Fig. 6.2. Correspondingly, other resonant processes, such as the s-channel neu-

tralino pair annihilation into bb̄ through A1, also depend on the mass difference. The

details of the various resonant channels significantly affect both the zero-temperature and

the finite-temperature annihilation cross sections (the latter being relevant for the calcu-

lation of the thermal relic density of dark matter). The amplitudes associated with these

processes can however be tuned so that the neutralinos produce a 130 GeV gamma-ray line

while satisfying all other indirect detection and relic density constraints, as we show here.

Since we will be concerned with properties of the electroweak phase transition

and baryogenesis which do not depend sensitively on the details of the resonance, it is

sufficient, for our purposes, to consider the simple parameter choice A1 = 2mχ0
1

= 260

GeV and proceed to consider the implications for electroweak baryogenesis (a slightly off-

resonance value would not at all affect the electroweak phase transition or the resulting

baryon asymmetry). From this starting point, we shall dial in the various parameters point-

by-point to satisfy all of the phenomenological and observational constraints we describe

below.
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First and foremost, besides requiring the desired neutralino annihilation structure,

demanding a 130 GeV LSP neutralino and the associated 260 GeV singlet-like A1, we require

a 125 GeV SM-like Higgs, in accordance with recent experimental findings from the LHC

collaborations [166, 167]. Given our parameter space, the requirements on the bino-like

LSP and on A1 lead us to vary M1 and Aλ in the range

135GeV ≤ M1 ≤ 145GeV

150GeV ≤ Aλ ≤ 600GeV.

(6.10)

For each point in the M1, Aλ parameter space, we use the following strategy to choose

values for the seven remaining parameters:

1. To obtain a Higgs mass of 125 GeV in the NMSSM without excessive tuning in the

stop sector requires relatively large λ and small tanβ, as seen from the tree-level

inequality:

m2
h1
≤
(

cos2 2β +
2λ2 sin2 2β

g2
1 + g2

2

)
m2
Z . (6.11)

We take tanβ in the range 1.7 ≤ tanβ ≤ 1.8. In principle λ can be either positive

or negative. We focus on positive λ and consider 0.6 ≤ λ ≤ 0.8 (see, e.g. Ref. [168]

for a discussion of the case of λ < 0). For |λ| much smaller than this value, one must

rely heavily on stop loops to raise the Higgs mass. Also, λ determines the coupling of

neutralinos to A1, as well as the coupling of A1 to photons, and so for much smaller

|λ| the neutralino annihilation cross-section into photons is suppressed. For values

λ & 0.7, λ becomes non-perturbative below the GUT scale; this can be remedied by

including higher-dimension operators resulting from integrating out new physics which

enters below the GUT scale4 (see e.g. Refs. [171, 172] for explicit implementations of

4We will in fact assume that this is the case for our benchmark EWPT point which features λ = 0.75.
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this strategy in similar contexts).

2. The pseudoscalar A1 must be predominantly singlet-like to be compatible with indirect

detection results. The amount of mixing between A1 and the MSSM-like CP-odd Higgs

A2 is governed by MP,12 in Eq. (6.3) and is minimized for

κ ≈ λAλ
2µ

. (6.12)

Given the relatively large values of λ we consider, we take κ ≥ 0.3. For a given

choice of κ, the A1−A2 mixing will vary point-by-point in the parameter space under

consideration. Therefore in some regions of parameter space the lightest pseudoscalar

can obtain a large branching ratio into fermions and be incompatible with indirect

detection constraints for a given mass difference
∣∣∣mA1 − 2mχ0

1

∣∣∣. As mentioned above

(and discussed in more detail in Sec. 6.1.2), one can typically dial in the details of the

resonance to satisfy these constraints for a given point, however the BAU does not

depend sensitively on this tuning.

3. To obtain a lightest neutralino mass of 130 GeV, we must fix µ and M2 or, equivalently,

µ and ∆ appropriately, where we define the quantity ∆ via

M2 ≡ (|µ|+ ∆)eiφ. (6.13)

When considering CP-violation in Sec. 6.3, we will typically set the CP-violating

phase φ to its maximal value, sinφ = 1, in our calculations to show the maximum

extent of the EWB parameter space, although viable regions will typically have phases

of O(10−1). In calculating the baryon asymmetry, ∆ will govern the strength of

the resonant CP-violating source. In considering the higgsino-gaugino CP-violating
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sources we will typically take ∆ = 0 as an optimistic EWB scenario. Given a particular

choice of ∆ and φ, we fix µ by diagonalizing Eq. (6.4) and solving for µ such that

mχ0
1

= 130 GeV (note that we can rewrite vs = µ/λ). This procedure fixes all the

relevant parameters in the neutralino and chargino sectors.

4. Finally, to obtain a large photon annihilation cross-section, we need the annihilation

channel χ0
1χ

0
1 → A1 to be near resonance at T = 0, which implies mA1 ≈ 260 GeV. As

discussed above and shown in Fig. 6.2, there is a narrow (. 1 GeV) window for which

〈σv〉γγ is large enough to be compatible with the line. Since the properties of the

electroweak phase transition and baryogenesis are not sensitive to the precise value of

mA1 , we choose to sit exactly on top of the resonance, i.e. enforce mA1 = 260 GeV,

by diagonalizing Eq. (6.3) and solving for the appropriate value of Aκ. Therefore, at

each point in the parameter space, 〈σγγv〉 > 10−27cm3/s. Once again, the precise mass

splitting between A1 and the LSP can typically be tuned point-by-point to produce

the line while providing the correct relic density and satisfying the other indirect

detection constraints as described below.

The strategy outlined above is useful to automatically select the regions in the NMSSM

producing the tentatively observed 130 GeV gamma-ray line, and provides an efficient way to

study the properties of electroweak baryogenesis in these regions by exploring the remainder

of the parameter space. Note that we are not concerned with tuning or naturalness in this

scenario, since we have narrowed in on this region by demanding consistency with the

(tentative!) observation of a gamma-ray line which we postulate to be associated with dark

matter pair annihilation.
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We shall now use our suitably selected Higgs and neutralino sectors to close in onto

electroweak baryogenesis in regions of the NMSSM producing a 130 GeV line. However,

we first comment further on the impact of various other dark matter and particle physics

constraints on the parameter space under consideration.

6.1.2 Phenomenological Constraints

The NMSSM parameter space of interest features relatively light neutralino, chargino,

and Higgs sectors and is thus quite constrained on multiple fronts. Here we highlight the

most important constraints on the parameter space and consider their impact on our current

set-up. We use NMSSMTools 3.2.1[169, 173] and MicrOmegas 2.4.5[174, 175] to calculate

the various cross-sections and quantities of interest. We summarize in Fig. 6.3 the impact

of the constraints we consider here (and that we discuss in detail below) on the relevant

parameter space, for the particular choice λ = 0.6, κ = 0.32, and tanβ = 1.8 as an illus-

trative example. In these calculations, we take M2 to be real; since the LSP has only a

very small wino component across the parameter space, and since the other neutralinos and

charginos are significantly heavier than the lightest neutralino, the DM constraints will be

largely unaffected by allowing M2 to be complex. The Higgs couplings are also insensitive

to φ.

Indirect Dark Matter Detection and Thermal Relic Density

Indirect detection places important constraints on the parameter space in ques-

tion. In considering mA1 ≈ 2mχ0
1
, there will also be a resonant tree-level neutralino anni-

hilation channel into quark-antiquark, and especially bb̄, final states, eventually leading to
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Figure 6.3: An example of the NMSSM parameter space for successful electroweak baryo-
genesis and a 130 GeV gamma-ray line. Here we take λ = 0.6, κ = 0.32, tanβ = 1.8
and ∆ = 0 (so that the CP-violating sources are on resonance), while the rest of the pa-
rameters are chosen as described in Sec. 6.1.1 to be consistent with the Fermi line. The
gray shaded region is excluded by the XENON100 225 live day results, calculated with
the default settings in MicrOmegas. Red shaded regions are excluded by measurements of
the Higgs mass (although these regions can be shifted around by changing e.g. the squark
masses). The orange shaded region is excluded by the non-observation of an electric dipole
moment of the electron. The blue contours correspond to points consistent with the ob-
served baryon-to-entropy ratio of the universe for different values of the CP-violating phase
φ.

gamma rays via hadronization producing neutral ions. The lack of an excess of gamma-rays

associated with this emission puts constraints on the branching ratio for neutralino pair-

annihilation into, e.g., bb̄ [176]. As mentioned above, however, one can generally dial in

the mass splitting
∣∣∣mA1 − 2mχ0

1

∣∣∣ to obtain both 〈σγγv〉 & 10−27 cm3/s and 〈σbb̄v〉 . 10−24

cm3/s as required by Fermi observations [176] of the diffuse gamma ray background (see

e.g. the benchmark point in Table 6.1). Additionally, neutralino annihilation into W+W−
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will receive a contribution at tree-level from the pseudoscalar channel; however, this con-

tribution also typically falls well beneath the 10−24 cm3/s bound from Fermi by adjusting

mA1 . Consequently, this tuning allows one to satisfy all continuum gamma-ray constraints

[177] while reproducing the observed intensity of the 130 GeV line, something that cannot

be done in the MSSM. The parameter space we consider for electroweak baryogenesis can

thus be dialed in to agree with indirect detection results without drastically affecting the

details of the electroweak phase transition or the generation of the baryon asymmetry.

Similar reasoning applies to the DM thermal relic abundance. For χ0
1 to be a

suitable thermally-produced dark matter candidate, it must be compatible with the bounds

on the relic density from WMAP7 [178]: ΩDMh
2 = 0.112± .011. While at zero-temperature

the neutralino sits very close to the pseudoscalar resonance, at the freeze-out temperature

Tf.o. ∼ mχ0
1
/20 ≈ 6.5 GeV, the resonance is shifted higher by about 10 GeV for the case

of mA1 = 260 GeV. This can be seen by evaluating the thermally-averaged center-of-mass

(C.O.M.) energy, 〈s〉, at T = Tf.o., given by

〈s〉 ' 4m2
χ0

1
+ 6mχ0

1
Tf.o. ' 270 GeV. (6.14)

However, in evaluating 〈σv〉 at Tf.o., one integrates over center-of-mass energies, and hence

effectively picks up contributions from the resonances, which decrease as one moves 〈s〉

further away from 4m2
χ0

1
. Therefore, as is the case for the zero-temperature cross-sections,

by dialing in the detailed neutralino and pseudoscalar masses, as well as the A1 − A2

mixing, one can typically achieve a total annihilation thermally averaged cross-section of

〈σv〉 ∼ 3× 10−26 cm3/s required to obtain the correct relic density.

Previous studies [161, 168] have relied on a sizable higgsino component in the LSP
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to drive the relic density down. However, this requires small values of µ which are difficult to

reconcile with the most recent direct detection constraints, except in the case of cancellations

which can occur for negative µ as exploited in Ref. [168] (we have found it difficult to achieve

a strongly first-order EWPT consistent with the 130 GeV line for the µ < 0 case, but it may

still be possible). Another possibility is to open a co-annihilation channel by e.g. allowing

a light stau 5 with mass near 130 GeV to drive the relic density down. Light staus are

not yet significantly constrained by LHC searches and, interestingly, they could provide an

explanation of the enhanced Higgs diphoton rate as observed by ATLAS, albeit for large

tanβ (see e.g. Ref. [179]). We do not pursue these avenues further, but emphasize that we

find that the relic density (and the zero-temperature neutralino annihilation cross-sections)

can be made to agree with observations in this scenario by tuning or other mechanisms that

do not significantly affect the properties of the EWPT nor the calculation of the baryon

asymmetry. Consequently, we do not focus on the detailed bounds from indirect detection

or the thermal relic abundance point-by-point in our present study of EWB in this scenario,

but we do emphasize that these constraints can all be met in principle, as illustrated by a

worked-out example in the EWPT benchmark point we show explicitly in Table 6.1.

Direct Detection

Unlike the case of indirect detection and relic density constraints, the bounds from

DM direct detection (i.e. the scattering of the lightest neutralino off of nucleons) do not

depend sensitively on the details of the resonance, but rather on the composition of the

lightest neutralino. This in turn depends on M1: larger values of M1 require smaller values

5Of course with CP-violation in the gaugino sector one must verify that such a light slepton satisfies
constraints from EDMs.
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of µ to obtain mχ0
1

= 130 GeV and consequently enhance the spin-independent neutralino-

proton cross section.

We require that the LSP satisfy the current upper bound from XENON100 for

a 130 GeV WIMP for the spin-independent cross-section6, σSI . 3 × 10−9 pb [180]. We

show the impact of this constraint on our parameter space in Fig. 6.3: points excluded by

XENON100 are shown in the gray shaded region. These bounds are computed assuming

default values for the various underlying parameters, such as the quark content of the

nucleon, local distribution of dark matter, etc. We employ the MicrOmegas 2.4.5[174, 175]

package for the calculation of the relevant scattering cross section, and employ the default

parameters thereof. As expected, points with smaller µ values, and hence a larger higgsino

component in χ0
1, are ruled out.

We note here that the exclusions are somewhat stronger than those reported in

Ref. [161] due to the release of the 2012 XENON results (and consequently the window for

mA1 is somewhat more constrained than that in Ref. [161]). Since these limits depend on

parameters affected by significant uncertainty, they should also be taken with a grain of

salt. For example, by considering the strange quark content of the nucleons near the end of

the error bars from Ref. [181] (σπN = 39 MeV, σ0 = 43 MeV), one can push the XENON

limits out to allow M1 up to ∼ 145 GeV consistent with the 2012 XENON100 results (see

e.g. the EWPT benchmark point in Table 6.1).

6We also consider the bound on the spin-dependent cross-section, but the corresponding constraints are
much weaker than those on σSI in our scenario
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Higgs Constraints

The lightest CP-even Higgs in our scenario is SM-like. We require that 124 GeV

< mh1 < 127 GeV, in agreement with results from ATLAS [167] and CMS [166]. The region

of parameter space incompatible with these results is shown in Fig. 6.3 by points within

the red shaded regions. We have also checked against constraints from h1 → bb̄, ττ , etc.

as implemented in NMSSMTools 3.2.1[169, 173]. The couplings of h1 to the various SM

fermions and gauge bosons all fall within ∼ 3% of the corresponding SM predictions, hence

well within experimental limits.

The lightest CP-odd Higgs must also be compatible with collider searches. In

particular, we verified that the couplings of A1 to bb̄, ττ are small compared to that of the

SM-like Higgs for compatibility with LHC results. In the parameter space under consider-

ation, we find that the couplings of A1 are at most of order 1% of the SM Higgs couplings.

Other Considerations

There are several other constraints which are in fact satisfied over nearly all of

the parameter space we consider. Constraints from LEP on light charginos are everywhere

satisfied, since charginos are always heavier than the 130 GeV LSP. Also, constraints from B-

physics, as implemented in NMSSMTools 3.2.1, do not constrain the parameter space since

we consider small values of tanβ. Finally, we have also verified the absence of unphysical

global minima of the effective potential for all points we consider, as well as the absence of

Landau poles below the GUT scale, with the exception of the EWPT benchmark point, for

which we take λ = 0.75. As discussed above, this issue can be remedied with the modest
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assumption of new physics entering below the GUT scale.

In summary, Fig. 6.3 shows that there exist regions of NMSSM parameter space

consistent with a 130 GeV gamma-ray line, a 125 GeV SM-like Higgs, and which can

satisfy all relevant dark matter and experimental particle physics constraints. We can now

proceed to investigate the phenomenology and properties of electroweak baryogenesis in

these regions.

6.2 The Electroweak Phase Transition

Successful electroweak baryogenesis requires a strongly first-order electroweak phase

transition. In the absence of a strongly first-order transition, SU(2) sphaleron processes,

which provide the necessary baryon number violation, are unsuppressed in the broken elec-

troweak phase and tend to wash out any existing generated baryon asymmetry. The strength

of the phase transition can be parametrized by the order parameter ϕ(Tc)/Tc, where Tc is

the critical temperature, defined as the temperature for which the symmetric and broken

phases are degenerate7. To prevent sphaleron washout requires ϕ(Tc)/Tc & 1, which we

take as the definition of a “strongly first-order” transition8. As we will show in this section,

this requirement can be readily satisfied in the region of the NMSSM compatible with the

130 GeV gamma-ray line and without relying on a light stop squark, as is instead typically

required in the MSSM [183, 30].

The strength of the electroweak phase transition is governed by the finite-temperature

7Note that this quantity is not gauge invariant, see e.g. the discussion in Ref. [118, 182].
8 More precisely, one should actually consider the system at the nucleation temperature, Tn. However,

the amount of supercooling in this model is small, and for simplicity we assume that Tn ≈ Tc as in previous
work.
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effective potential, which comprises several parts: the tree-level scalar potential, zero-

temperature quantum corrections, finite-temperature quantum corrections, and thermal

mass terms. The tree-level potential comes directly from the superpotential (Eq. (6.1)) and

the soft supersymmetry-breaking terms (Eq. (6.2)):

V0(hu, hd, s) =
1

32
(g2

1 + g2
2)
(
h2
u − h2

d

)2
+

1

4
κ2s4− 1

2
λκs2huhd +

1

4
λ2
(
h2
dh

2
u + s2

(
h2
d + h2

u

))

+

√
2

6
κAκs

3 −
√

2

2
λAλshuhd +

1

2
m2
dh

2
d +

1

2
m2
uh

2
u +

1

2
m2
ss

2. (6.15)

The fields hu, hd, and s are defined by

Hu =
1√
2




0

hu


 ; Hd =

1√
2



hd

0


 ; S =

1√
2
s. (6.16)

We assume that the scalar fields are real at all temperatures, and we do not consider charged

vacua (although we do ensure that the potential is stable in the charged and imaginary

directions).

Using MS renormalization, the one-loop zero-temperature quantum corrections

are

V1(T =0) =
∑

i

±ni
64π2

m4
i

[
log

(
m2
i

Λ2

)
− c
]
, (6.17)

where m2
i are the (possibly negative) field-dependent mass-squared values, ni are their

associated number of degrees of freedom, Λ is the renormalization scale, and c = 1
2 for the

transverse polarizations of gauge bosons while c = 3
2 for their longitudinal polarizations and

for all other particles. The plus and minus signs are for bosons and fermions, respectively.

The sum over the relevant particles i include all standard model particles (although we

ignore fermions lighter than the bottom quark), the physical Higgs and other scalar particles,
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their associated Goldstone bosons, the neutralinos and the charginos. We work in Landau

gauge where the ghost bosons decouple and need not be included in the spectrum. The

one-loop potential contains explicit gauge-dependence which cancels with the implicit gauge-

dependence of the vevs at every order in ~ (for recent discussions of gauge dependence in

effective potentials, see e.g. Refs. [118, 92, 182, 184]). As is common practice, we do not

consider the effects of the implicit gauge-dependence, and therefore our results will contain

gauge artifacts. However, our primary purpose in examining the effective potential is to

estimate whether or not a first-order phase transition is possible, and for this purpose a

rough calculation with gauge-dependence is acceptable.

We calculate the neutralino masses from Eq. (6.4) above. The scalar mass matrix

is given by taking the second derivative of the tree-level potential, but including CP-odd

and charged directions. This yields a block-diagonal 10× 10 matrix, with blocks consisting

of CP-even states (3 degrees of freedom), CP-odd states (3 degrees of freedom), and two

blocks of charged Higgses (4 degrees of freedom) (see Appendix 6.5 for details).

The finite-temperature contributions are

V1(T >0) = V1(T =0) +
T 2

2π2

∑

i

niJ±

(
m2
i

T 2

)
, (6.18)

where

J±(x2) ≡ ±
∫ ∞

0
dy y2 log

(
1∓ e−

√
y2+x2

)
(6.19)

and again the upper (lower) signs correspond to bosons (fermions). At high temperature,

the validity of the perturbative expansion of the effective potential breaks down. Quadrati-

cally divergent contributions from non-zero Matsubara modes must be re-summed through
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inclusion of thermal masses in the one-loop propagators [96, 97]. This amounts to adding

thermal masses to the longitudinal gauge boson degrees of freedom and to all of the scalars

(see Appendix 6.5).

The full one-loop effective potential is

V (hu, hd, s, T ) = V0(hu, hd, s) + V1(T =0) +
T 2

2π2

∑

i

niJ±

(
m2
i

T 2

)
(6.20)

where the masses m2
i are field-dependent and include thermal mass corrections.

The important qualitative feature of the finite-temperature contribution is that

it lowers the effective potential anywhere m2
i /T

2 is small. To get a strongly first-order

phase transition, we need to sharply lower the potential near the symmetric phase without

significantly lowering it in the broken phase so that the two phases may be degenerate

with a sizable barrier. Therefore, a strongly first-order transition demands either numerous

heavy field-dependent particles (such that they are massless in the symmetric phase and

heavy in the broken phase), or a tree-level contribution to the barrier separating the two

phases. In the standard model, the electroweak phase transition is not strongly first-order.

There are no heavy bosons (relative to the Higgs, which sets the relevant scale), and at high

temperature the contribution of heavy fermions (top quarks) does not increase the barrier

since J−(x2) does not contain any cubic terms.

The particle spectrum in the NMSSM may seem somewhat promising, since there

are additional heavy masses in the Higgs sector and field-dependent neutralino masses, but

these are not enough to guarantee a strong transition. Since many more particles couple

to the Higgs than to the singlet, finite-temperature effects drive 〈hu〉 and 〈hd〉 to zero at

temperatures well below the point at which they drive 〈s〉 to zero. Therefore, s can be large

126



on either side of electroweak symmetry breaking, and some of the new particle masses that

depend on s can be heavy even in the symmetric phase.

However, the NMSSM can succeed in producing a strongly first-order transition

through its tree-level contributions. If the transition occurs both in the Higgs and singlet

directions simultaneously, and if the singlet vev is non-zero in the electroweak symmetric

phase just above the transition, then terms like s2h2 and sh2 both contribute effective cubic

terms to the potential which can increase the barrier between the the symmetric and broken

phases.

We calculate the phase transition using the software package CosmoTransitions

[153]. We input the above definition of the effective potential, find the necessary soft-

breaking masses that produce desired values for tanβ and µ via a minimization procedure,

and choose a renormalization scale Λ such that the one-loop minimum does not drastically

differ from its tree-level value. This last point requires a certain amount of finesse since the

top-quark contribution to the zero-temperature one-loop potential tends to be fairly large.

The CosmoTransitions package traces the broken electroweak phase up in temperature

until it disappears, and then traces the symmetric phase down and checks for an overlap.

If there is one, it calculates the temperature of degeneracy (the critical temperature) and

the separation between the phases. If there is no overlap, then the transition is necessarily

second-order.

The region of the NMSSM consistent with the 130 GeV Fermi line can in fact

accommodate a strongly first-order phase transition. The barrier has large tree-level contri-

butions and in particular does not require an additional light scalar. As a proof of principle,
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λ 0.75 mA1 [GeV] 261.26
κ 0.45 mχ0

1
[GeV] 130.72

tanβ 1.7 〈σv〉bb̄ [cm3/s] 3.07× 10−26

Aλ [GeV] 545.0 〈σv〉γγ [cm3/s] 1.54× 10−27

Aκ [GeV] -88. 0 σSI
P [pb] 2.8× 10−9

µ [GeV] 275.8 σSD
P [pb] 1.4× 10−6

M1 [GeV] 143.5 EWPT Properties:

M2 [GeV] 635.5 Tc [GeV] 72.3
mh1 [GeV] 126.4 ϕ(Tc)/Tc 1.14

Table 6.1: Benchmark Point in the NMSSM with a strongly first-order EWPT and a 130
GeV line. We use a renormalization scale of Λ = 100 GeV in the effective potential.

we outline a benchmark point consistent with a 125 GeV Higgs, 130 GeV Fermi line, and

a strongly first-order electroweak phase transition in Table 6.1. This point has an EWPT

at Tc = 72.3 GeV with order parameter ϕ(Tc)/Tc = 1.14 and is consistent with all other

relevant phenomenological constraints 9. The spin-dependent and –independent neutralino-

proton scattering cross-section for the point in Table 6.1 is computed taking σπN = 39

MeV, σ0 = 43 MeV for the strange quark content of the proton and is thus rather opti-

mistic. Also, note that we do not show the relic density for the specified point. Since we

are near a resonance, as discussed in Sec. 6.1.2, the relic density calculation should be per-

formed to loop level – something which is not implemented in MicrOmegas 10. However, the

asymptotic values of Ωh2 computed by MicrOmegas away from the resonance and the trend

of the relic density approaching the pole give us confidence that the correct value of the relic

density is achieved in the vicinity of the resonance. Simple analytic estimates also corrob-

9As mentioned previously, we can invoke some higher-dimension operators to render λ perturbative below
the GUT scale.

10We have also found a suspected numerical issue with the MicrOmegas 2.4.5 calculation of the relic
density near the resonance. There is a very sharp increase in the annihilation cross section right above
mA1 = 2mχ0

1
which we believe is unphysical. Since the zero-temperature total-annihilation cross section

is of order 〈σv〉 ∼ 10−26 cm3/s, by the arguments in Sec. 6.1.2 the thermally averaged cross-section at
freeze-out should be smaller than this since the resonance is effectively shifted. Instead, we find a drop of
four orders of magnitude in the relic density which is quite suspect.
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orate this conclusion. The total zero-temperature annihilation cross-section (at tree-level)

for our benchmark point is 〈σv〉 ∼ 3 × 10−26 cm3/s, dominated by the resonant A1 → bb̄

channel. The resonant peak is smoothed out and suppressed at Tf.o. (see Eq. (6.14)), and

so one may be concerned that the relic density for this point will be too large. However,

we have computed the corresponding finite-temperature thermally-averaged cross-section,

and found that adjusting the splitting |mA1 − 2mχ0 | can indeed provide O(10−26) cm3/s

contributions to 〈σv〉T=Tf.o.
while still conforming to indirect detection constraints. This

adjustment should therefore be sufficient to dial in Ωh2 = 0.11. If, despite this tuning, the

relic density remains too large, one can also introduce e.g. a moderately light stau with

MR3 ∼ 200 GeV to reduce Ωh2 to its canonical value through co-annihilation. Since tanβ is

small, the presence of such a light slepton will not affect the properties of the EWPT. Thus,

we are confident that a proper one-loop calculation of the relic density for the benchmark

point in Table 6.1 will yield a relic density compatible with observation, albeit with some

possible minor changes to the parameters or the introduction of a co-annihilation channel

which will not substantially affect the EWPT.

Fig. 6.4 shows the field evolution as a function of temperature for the benchmark

point in Table 6.1. This makes the location of the phase transitions obvious: first-order

phase transitions can happen anywhere there is a discontinuous jump in the vacuum ex-

pectation values. A second-order transition, if there were one, would be distinguished by a

continuous line of vacuum expectation values with discontinuous first derivatives.

Fig. 6.5 shows the field configuration at the critical temperature of electroweak

symmetry breaking. All three fields — s, hu and hd — change values when tunneling
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Figure 6.4: The phase structure for the benchmark point with first-order phase transitions.
The dotted line gives the temperature-dependent singlet field values, and the solid line gives
the temperature-dependent Higgs doublet field values.

from the high-temperature to the low-temperature minimum. We calculate the tunneling

direction (denoted by a thick black line) using the CosmoTransitions package, where by

“tunneling direction” we mean the path through field space that one would travel when

crossing a bubble wall. The path is curved in the s− hu and s− hd planes, but is approxi-

mately straight in the hu − hd plane (∆β � 1).

While we did not perform a systematic study of the NMSSM parameter space

compatible with a strongly first-order transition (see e.g. Refs. [164, 163] for previous work

in this direction), there are some common traits between the viable points we have found.

Restricting ourselves to the case of positive λ, κ, µ, and Aλ, we find that a strongly first-

order phase transition typically requires λ & 0.6, κ . 0.6, Aλ & 500 GeV, and µ . 350 GeV.

This seems to be consistent with our intuition: increasing the strength of the cubic terms

in the effective potential and decreasing the singlet vev tends to strengthen the transition.

Note that, for all the points we considered, the transition tends to happen in two steps: the

system transitions away from 〈s〉 = 0 at a high temperature, around 300–400 GeV; while
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Figure 6.5: A contour plot of the effective potential just below the critical temperature.
The electroweak broken minimum is represented by the dot on the upper-right, while the
symmetric minimum is on the lower left. The actual tunneling happens along the curved
solid black line.

electroweak symmetry breaking happens much later, at a temperature around or below 100

GeV.

6.3 Computing the Baryon Asymmetry

The discussion in the previous section makes it clear that a strongly first-order

EWPT can occur in the NMSSM region of parameter space compatible with the Fermi

130 GeV line. We now turn our attention to the CP-violating sources also required for

electroweak baryogenesis, and to the detailed requirement of producing the correct amount

of baryon asymmetry in the early universe, parametrized by the baryon-to-entropy ratio11,

YB ∼ 10−10. As we show in this section, CP-violating higgsino-gaugino sources can be

very efficient in the NMSSM regions of interest and potentially source the observed baryon

asymmetry of the universe.

11For concreteness and consistency with previous studies, we take YB = 9.1× 10−11
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In electroweak baryogenesis, the baryon asymmetry is produced by SU(2) sphalerons

acting on a net left-handed chiral density, nL. To determine nL, we must solve a set of quan-

tum transport equations for each of the relevant particle densities contributing to the LH

charge density. For each of these charge densities, ni, the Schwinger-Dyson equations yield

the continuity equations [66]

∂ni
∂x0

+∇ · ji(x) = Si(x). (6.21)

The RHS of the above equation contains both CP-conserving and CP-violating contribu-

tions. For the case of Dirac fermions, the sources are given by

Si(x) =

∫
d3z

∫ x0

−∞
dz0 Tr

[
Σ>(x, z)G<(z, x)−G>(x, z)Σ<(z, x)

+G<(x, z)Σ>(z, x)− Σ<(x, z)G>(z, x)
]

(6.22)

where G<,>, Σ<,> are Green’s functions and self-energies, respectively, in the closed time

path formalism (see e.g. Ref. [66] for details). We focus here on the case of gaugino-higgsino

sources, and compute the quantities S
H̃0,± in the Higgs vev-insertion approximation, which

we describe in more detail below (see e.g. Ref. [185] for a recent discussion on scalar sources

in the MSSM).

6.3.1 The VEV-Insertion Approximation

The CP-violating interactions we consider involve the scattering of higgsinos and

gauginos with the spacetime-dependent Higgs vevs in the bubble wall. In what follows we

parallel the derivations for the corresponding quantities in the MSSM found in Ref. [66]. We

will assume that the necessary CP-violating phase φ is that of the wino soft SUSY-breaking

mass M2 (in fact, the relevant phase is the relative phase between M1,2 and µ, however
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as discussed previously we take µ, M1 to be real to avoid large spontaneous CP-violating

effects in the computation of the various dark matter properties). The part of the NMSSM

Lagrangian giving rise to the relevant CP-violating interactions is then given, in terms of

four-component spinors, by:

Lint ⊃ −
g2√

2
Ψ̄
H̃0

[
vd(x)PL + eiφvu(x)PR

]
Ψ
W̃ 0−g2Ψ̄

H̃+

[
vd(x)PL + eiφvu(x)PR

]
Ψ
W̃+ +h.c.

(6.23)

where PL,R are the usual projection operators.

The spinors Ψ
H̃0,± satisfy Dirac equations with a spacetime-varying mass µ(x).

As discussed in Sec. 6.2, the profile µ(x) depends on the detailed properties of the phase

transition at each point in parameter space. In the region of interest, however, the singlet

vev does not change very significantly during the EWPT. Consequently, even though the

variation of the singlet vev was crucial for achieving a strongly first-order phase transition,

we ignore its space-dependence here12 and approximate µ(x) by its value after the EWPT,

µ(x) ' µ. Then the mode expansions for the operators in the Lagrangian Eq. (6.23) are

the same as in the MSSM case and so the resulting source from Eq. (6.22) matches that of

the MSSM in the vev-insertion approximation:

S
H̃±(x) =

∫
d4z

∑

j=A,B

{
[gj(x, z) + gj(z, x)] Re Tr

[
G>
W̃±

(x, z)G<
H̃±

(z, x)−G<
W̃±

(x, z)G>
H̃±

(z, x)
]
j

+i [gj(x, z)− gj(z, x)] Im Tr
[
G>
W̃±

(x, z)G<
H̃±

(z, x)−G<
W̃±

(x, z)G>
H̃±

(z, x)
]
j

}

(6.24)

where the sum over A, B is over contributions arising from momentum and mass terms in

12The spacetime-dependence of µ can introduce novel sources of CP-violation in the NMSSM; see e.g.
Ref. [145]
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the spectral function, respectively, and where

gA(x, y) ≡ g2
2

2
[vd(x)vd(y) + vu(x)vu(y)] (6.25)

gB(x, y) ≡ g2
2

2

[
vd(x)e−iφvu(y) + eiφvu(x)vd(y)

]
. (6.26)

The rest of the derivation proceeds as in the MSSM case, i.e. by performing a

derivative expansion in gA,B(x, z) around z = x. The CP-conserving sources arise from the

terms in Eq. (6.24) symmetric under the interchange of x ↔ z and so appear at zeroth

order in this expansion, while the CP-violating sources arise at first-order. In particular,

performing the integration for the CP-violating contribution yields

S
/CP

H̃±
=
g2

2

π2
v(x)2β̇(x)M2µ sinφ

∫ ∞

0

dkk2

ω
H̃
ω
W̃

Im

{
nF (E

W̃
)− nF (E∗

H̃
)

(E
W̃
− E∗

H̃
)2

−
nF (E

W̃
) + nF (E

H̃
)

(E
W̃

+ E
H̃

)2

}

(6.27)

where ω2
H̃,W̃

≡ |k|2 +M2
H̃,W̃

(the masses here include thermal contributions, δ
H̃,W̃

), E
H̃,W̃

≡

ω
H̃,W̃

− iΓ
H̃,W̃

(here the Γ
H̃,W̃

are the thermal widths of the higgsinos and winos in the

plasma), and nF is the Fermi distribution function. The corresponding expressions for the

CP-conserving (and neutral higgsino CP-violating) sources can be found in Ref. [66] with

the appropriate replacements.

The CP-violating source in Eq. (6.27) exhibits several important properties. The

first term of the integrand in Eq. (6.27) is resonant for M2 ∼ µ as can be appreciated by

rewriting the denominator as

E
W̃
− E∗

H̃
=
√
|k|2 + µ2 + δ2

H̃
−
√
|k|2 + (µ+ ∆)2 + δ2

W̃
− i(Γ

W̃
+ Γ

H̃
). (6.28)

Thus for a given choice of µ the parameter ∆ determines the strength of the resonance,

and hence the resulting baryon asymmetry. At finite temperature, µ(T ) will generally be
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different from µ(T = 0), since the singlet vev varies with temperature. This can be thought

of as providing a finite temperature correction to ∆; we neglect this effect in calculating the

baryon asymmetry across the parameter space, as this difference depends sensitively on the

finite-temperature effective potential at each point. Note also that the Fermi distribution

functions in the numerator result in a suppression of the baryon asymmetry for masses

much larger than the electroweak phase transition temperature. As an optimistic estimate,

we take Tc = 140 GeV in calculating the BAU across the parameter space; the SU(2)

sphaleron rate (and hence the overall baryon asymmetry) decreases for lower temperatures.

For example, taking Tc = 100 GeV will decrease the overall baryon asymmetry by a factor

of about 0.7 across the parameter space (i.e. the CP-violating phase sinφ at each point

would increase by a factor of about 1.4). For our particular benchmark point in Table 6.1,

we found a transition around Tc = 72 GeV, but the phase transition temperature generally

depends quite sensitively on the parameter space point in question and so we do not believe

it is necessary for all points to have such low transition temperatures. We encourage the

Reader to bear this in mind while interpreting our results.

Other important quantities determining the strength of the CP-violating source

are the bubble wall width (Lw), velocity (vw), and the variation of Higgs vevs across the

wall (∆β). This can be seen by approximating the bubble wall profile by a step-function,

whence β̇ ≈ ∆βvw/Lw. For the wall width and velocity we choose the canonical MSSM

values Lw = 10/T and vw = .05. Previous studies of the bubble wall in singlet extensions

of the MSSM suggest typically thinner walls [145], and so we expect that this choice for Lw

is a conservative one. Additionally, these parameters will vary depending on the particular
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point in the parameter space under consideration. Uncertainties in vw and Lw are generally

expected to induce O(1) uncertainties in the calculation of the baryon asymmetry [138],

which we encourage the Reader to bear in mind. Regarding the quantity ∆β, since there is

only a small degree of mixing between A1 and A2 in our current set-up, we expect ∆β to

scale approximately as in the MSSM, i.e. roughly ∆β ∝ 1/m2
A2

(in our calculation of ∆β

we use the full two-loop results of Ref. [186]). Since mA2 will vary across the parameter

space, ∆β will have an important effect on the parameter space available for EWB. For the

values of mA2 we consider, ∆β falls in the range ∆β ∼ 10−3− 10−4. A more detailed study

of the bubble wall profile in the NMSSM is required to go beyond the approximations and

assumptions here, which we leave for future work.

The other relevant particle number-changing processes (including the triscalar,

Yukawa, and CP-conserving relaxation interactions) are also computed in the vev-insertion

approximation; expressions for these rates can be found in Refs. [66, 67, 187, 188]. In

addition to these MSSM processes, there are new interactions in the NMSSM arising from

the singlet and singlino degrees of freedom. In particular, there is a resonant relaxation term

(and possible CP-violating source [165]) arising from higgsino-singlino interactions with the

Higgs vevs. The relevant part of the Lagrangian is

LS̃int = λ
[
vu(x)H̃0

d S̃ + vd(x)H̃0
uS̃
]

+ h.c. (6.29)

where H̃0
u,d and S̃ correspond to the two-component higgsino and singlino fields. We can

rewrite Eq. (6.29) in terms of four-component spinors as

LS̃int = λΨ̄
H̃0 [vu(x)PL − vd(x)PR] Ψ

S̃
+ h.c.. (6.30)

and follow the methods of Ref. [66] to compute the source. Since we assume that there is
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no CP-violation in the singlino sector, Eq. (6.30) results in a resonant chiral relaxation rate

for the higgsino chemical potential Γ
H̃0S̃
≡ Γ+

H̃0S̃
+ Γ−

H̃0S̃
where

Γ±
H̃0S̃

=
1

T

λ2

2π2
v(x)2

∫ ∞

0

dkk2

ω
H̃
ω
S̃

Im

{[
E
S̃
E∗
H̃
− k2 −M

S̃
|µ| sin 2β

] hF (E
S̃

)∓ hF (E∗
H̃

)

E
S̃
− E∗

H̃

+
[
E
S̃
E
H̃

+ k2 +M
S̃
|µ| sin 2β

] hF (E
S̃

)∓ hF (E
H̃

)

E
S̃

+ E
H̃

}

(6.31)

and where the various quantities are defined analogously to those in Eq. (6.27). The singlino

mass given by

M2
S̃

= 4κ2µ2/λ2 + δ2
S̃

(6.32)

(here δ
S̃

is the singlino thermal mass), and the quantity hF is defined as

hF (x) =
ex/T

(
ex/T + 1

)2 . (6.33)

Since we consider moderate values of λ, we take Γ
S̃
' 0.001T for the singlino width. The

denominator of the first term in Eq. (6.31) has the same resonant structure as in Eq. (6.28)

and is the most significant contribution to the transport equations from the singlino, tending

to reduce the resulting charge density. Given our choices for λ and κ in Fig. 6.3, the

relaxation rate Γ
H̃0S̃

is near resonance in this region since M
S̃
∼ µ. We account for this

higgsino-singlino resonant relaxation in our computation of the baryon asymmetry, but do

not consider the other non-resonant singlet/singlino interactions, as they are subdominant.

6.3.2 Solving the Transport Equations

With the sources contributing to the RHS of Eq. (6.21) for the various charged

current densities in place, we compute the baryon asymmetry point-by-point across the 130

GeV line parameter space described in Sec. 6.1.1 for λ = 0.6, κ = 0.32, and tanβ = 1.8 as
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an example. We do so by solving the system of transport equations to determine the LH

charge density nL, assuming a strongly first-order EWPT and that the SU(2) sphaleron

rate Γws is slow compared to the other particle number-changing rates. Then, given nL(z),

the baryon number density results from the integral of nL over the unbroken phase,

nB =
−3Γws
vw

∫ 0

−∞
dz nL(z)e

15Γws
4vw

z, (6.34)

where z is the comoving distance away from the bubble wall (neglecting the curvature of

the wall and taking z < 0 to be the symmetric phase).

To determine nL, we work under the set of assumptions detailed in Refs. [66, 138],

and in particular assuming “super-equilibrium” (i.e. the equality of the chemical potentials)

for the Higgs and higgsino densities [67], allowing us to define a common charge density

for both. Given the condition of Higgs-higgsino super-equilibrium and assuming that the

sfermions are heavy, one can show that the relevant charge densities we must keep track

of are those corresponding to the Higgs/higgsinos (H), the right-handed tops (T ), and the

left-handed third-generation quarks (Q). The transport equations then read

∂µQ
µ =− Γyt

(
Q

kQ
− T

kT
+
H

kH

)
− Γmt

(
Q

kQ
− T

kT

)
− 2Γss

(
2
Q

kQ
− T

kT
+ 9

Q+ T

kB

)

(6.35)

∂µT
µ = Γyt

(
Q

kQ
− T

kT
+
H

kH

)
+ Γmt

(
Q

kQ
− T

kT

)
+ Γss

(
2
Q

kQ
− T

kT
+ 9

Q+ T

kB

)

(6.36)

∂µH
µ =− Γyt

(
Q

kQ
− T

kT
+
H

kH

)
− Γh

H

kH
+ S

/CP

H̃
. (6.37)

Here, Γmt,h are chiral relaxation rates (including the contribution from the higgsino-singlino-

vev interaction), active only in the bubble wall13 and broken EW phase, Γyt are Yukawa

13For simplicity, in solving the transport equations we assume a step-function profile for the Higgs vevs
in the bubble wall.
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interaction rates [188], Γss is the SU(3) sphaleron rate (responsible for generating densities

of first- and second-generation quarks), and the kis are statistical factors relating the charge

densities ni to the corresponding chemical potential µi. We solve Eqs. (6.35)-(6.37) utilizing

the diffusion approximation discussed in Ref. [66]. The LH charge density entering into

Eq. (6.34) is then given to good approximation by the relation

nL(z) = 5Q(z) + 4T (z). (6.38)

While we are primarily concerned with heavy sfermions to avoid large EDM con-

tributions, in solving the transport equations numerically we take the RH stop to be moder-

ately light (∼ 200 GeV, and hence also in super-equilibrium) to show the maximum extent

of the compatible parameter space before encountering a sizable “Shaposhnikov suppres-

sion” [189] that arises from the SU(3) sphalerons when both T and Q correspond entirely to

densities of SM fermions (see Refs. [29, 138, 190] for previous work also implementing this

strategy). As long as it is not too light, the RH stop mass is not crucial to the phenomenol-

ogy (in fact, Ref. [161] assumed a RH stop around 300 GeV), whereas this suppression

depends quite sensitively on the mass of the stops. In calculating the EDM limits below,

however, we assume both stops are heavy, again to show the maximal extent of the pa-

rameter space under consideration. Of course a light stop would introduce sizable one-loop

contributions to the various EDMs and so one cannot take the stop to be too light without

also significantly reducing the CP-violating phase in M2, or without relying on cancellations.

This means that our results for the baryon asymmetry and EDMs will be idealized, while

a more realistic stop spectrum will likely tighten the EDM constraints, either by increasing

the one-loop stop contribution to the EDMs or by increasing the CP-violating phase to
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account for the suppressed baryon asymmetry.

We show contours corresponding to the observed value of the baryon-to-entropy

ratio across the 130 GeV line parameter space on the resonance (∆ = 0) for different

values of the CP-violating phase φ in Fig. 6.3, calculated as described above. We have

checked that even in solving the transport equations with both stops heavy (∼ 1.5 TeV),

and hence substantial Shaposhnikov suppression, there remain regions compatible with the

observed baryon asymmetry of the universe, a 130 GeV gamma-ray line, and all other

relevant constraints.

In interpreting our results, the reader should bear in mind that there are several

uncertainties present in our calculation of the baryon asymmetry. As mentioned, the micro-

physical properties of the EW bubble wall and details of the electroweak phase transition

(Lw, vw, ∆β, Tc, etc) can significantly affect the calculation of nL and YB (see e.g. Ref. [138]

and references therein for a more detailed discussion of these effects). Also, there are several

other frameworks for calculating the baryon asymmetry [191, 27, 192, 58, 193, 194], with

results that can differ by up to an order of magnitude from one another (for a review of

these different approaches, see Ref. [162]). Additionally, there are other possible sources of

CP-violation in the NMSSM that could contribute to the BAU in this scenario. For exam-

ple, allowing a relative phase between λ and κ would allow resonant CP-violating singlino

sources arising from Eq. (6.30) which in fact would be close to resonant (see Ref.[165] for a

discussion of singlino-driven EWB in the NMSSM).

Despite these issues and caveats, Fig. 6.3 suggests that resonant CP-violating

higgsino-gaugino sources can be very efficient in the region of the NMSSM consistent with
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a 130 GeV gamma-ray line. Even if we had over-estimated the baryon asymmetry by an

order of magnitude, there could still be regions consistent with both the Fermi line, the

observed BAU, constraints from electric dipole moments (which we discuss below), and

DM direct detection, provided more optimistic choices for the strange quark content of

the proton or the local distribution of dark matter. For example, taking the values of σ0,

σπN we considered for the EWPT benchmark point pushes out the allowed values of M1

in Fig. 6.3 out to about 145 GeV, which would allow a factor of ten over-estimation of the

BAU consistent with EDM constraints.

6.3.3 EDM Constraints

The NMSSM contains several possible sources of CP-violation beyond those in the

MSSM: CP-violation in tree-level parameters λ, κ, and µ; CP-violation in soft-breaking

terms Aλ and Aκ; and additional effects coming from the mixing between the two CP-odd

eigenstates A1 and A2. However, in our setup we assume no CP-violation in the tree-level

Higgs sector and very little mixing between A1 and A2 (A1 must be mostly singlet-like, as

explained above). Therefore, the electric dipole moment calculations reduce to those in the

MSSM.

We use the package CPSuperH [195] to calculate the electric dipole moments of

the electron, the neutron, and the mercury atom, which have current experimental limits

of |de| < 1.05 × 10−27e cm [196] (via the YbF molecule), |dn| < 2.9 × 10−26e cm [197],

and |dHg| < 3 × 10−29e cm [198]. The neutron and the Mercury atom generally provide

extremely strong limits on CP-violating physics, but they are most sensitive to chromo-

EDMs and CP-violation involving colored particles. We have no chromo-EDMs in this
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model, so the electron EDM provides, here, the strongest constraint. All one-loop EDMs

are suppressed by the heavy sfermion masses. The dominant two-loop contribution comes

from the Barr–Zee diagram containing a chargino loop.

For each point in the parameter space of Fig. 6.3, we calculate the EDMs using the

value of φ that produces the proper baryon abundance. Except for φ, most of the parameters

necessary for calculating the EDMs vary little over the plotted region, so the EDMs are

most sensitive to φ and the corresponding iso-level curves follow similar trajectories. The

small region in the upper-left with sinφ & 0.37 has |de| > 1.05 × 10−27e cm, and is thus

ruled out by experiment. The smallest EDM in this region, corresponding to sinφ ≈ 1
6 , is

|de| = 5.1 × 10−28. This is well within the anticipated sensitivity of next-generation EDM

experiments (for a review, see, e.g., Ref. [199]), which have the potential to either rule out

or lend credence to this baryogenesis scenario.

6.4 Summary

The present study reaffirms that the NMSSM framework (and indeed other singlet-

extensions of the Higgs sector [200]) can provide a viable explanation of the 130 GeV

Fermi gamma-ray line in terms of resonant neutralino annihilation through a pseudoscalar

into photons. Agreement with observation and with the relevant constraints is realized in

the NMSSM for a bino-like LSP (dictating that M1 ∼ 130 GeV), with relatively large λ,

moderate µ, and with A1 predominantly singlet-like to avoid indirect detection constraints

on continuum photons. While there are many independent constraints on this scenario,

currently there remains a substantial amount of parameter space consistent with the gamma-
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ray line and in agreement with the various dark matter and particle physics constraints.

Here we have shown that the parameter space consistent with the Fermi line in the

NMSSM is also promising for electroweak baryogenesis. In particular, the relatively large

values of λ typically considered tend to bolster the cubic term in the finite-temperature

effective potential in the direction of electroweak symmetry breaking, leading to a strongly

first-order electroweak phase transition in parts of the parameter space. Additionally, the

moderate values of µ ensure that the singlet vev is not too far from the EW scale, again

tending towards a strongly first-order transition. We illustrated this in Sec. 6.2 by providing

a benchmark point consistent with the 130 GeV line and a strongly first-order EWPT, and

in agreement with all other relevant phenomenological constraints. While we only studied

in detail one particular point as a proof of principle, we expect a more systematic study of

the NMSSM parameter space to uncover many other regions consistent with the line and a

strongly first-order EWPT.

Not only does the parameter space consistent with the line support the possibility

of a strongly first-order transition, it can also provide an efficient source for CP-violation

that gives rise to the observed baryon-to-entropy ratio of the universe. Resonant higgsino-

gaugino sources can be very efficient here due to the moderate values of M1,2 and µ required

to produce the line. In particular, allowing for a CP-violating phase in M2 does not strongly

affect the line or the dark matter phenomenology, but it can produce the observed BAU with

sinφ small enough to be consistent with electric dipole measurements, as shown in Sec. 6.3

and Fig. 6.3. While we focused on the higgsino-wino sources in the present study for the

sake of illustration, similar resonant CP-violating sources arising from other interactions
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can be active in the same regions of parameter space by similar reasoning. For example,

if one allows for M1 to carry a complex phase, resonant bino-higgsino sources can be very

efficient as well. This may be of particular interest in the case of negative µ whereby |µ|

can be taken as low as 140 – 150 GeV (and thus potentially very close to this resonance)

while in agreement with direct detection constraints [168]. A careful study of the effect of

a CP-violating phase in M1 on the line and dark matter properties would be necessary to

assess whether such a scenario is possible, but we expect it is since EDM measurements

dictate that the CP-violating phase is necessarily small. Also, singlino-higgsino sources can

in principle be efficient in this region as well, provided a relative phase between λ and κ

[165], again due to the moderate values of the singlino mass (see Eq. (6.32)) and µ in this

scenario. These other sources would be especially important for points such as our EWPT

benchmark which features a rather heavy wino but lighter bino and singlino14.

An interesting feature of our scenario is that the relevant parameter space will

be conclusively tested in the near future by modest improvements in various experimen-

tal efforts. The moderate values of µ we consider result in rather large spin-independent

neutralino-nucleon cross-sections which continue to be probed by direct detection experi-

ments. The relatively large values of λ, as required for a large 〈σv〉γγ , combined with the

large Aλ and moderate values of κ necessary for a strongly first-order EWPT, tend towards

a significant coupling of A1 to e.g. bb̄ and so will be tested by modest improvements in

indirect detection experiments. Additionally, the CP-violating phase(s), required to source

the left-handed charge density for the SU(2) sphalerons, will be well within reach of various

14Note that non-resonant wino-higgsino sources, such as those considered in Refs. [191, 27, 190] can also
potentially provide the necessary CP-violation for our particular EWPT benchmark point.
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future EDM experiments (see e.g. Ref. [185] for a related discussion). The whole scenario

will also continue to be tested by ongoing measurements of Higgs couplings and searches

for other particles at the LHC.

Of course the viability of the 130 GeV line scenario in the NMSSM or any other

SM extension hinges on the persistence of the line in the Fermi data and on a dark matter

interpretation of these results. If the line is indeed due to resonant dark matter annihilation,

this work shows that the NMSSM framework can potentially explain the origin of both the

baryonic and dark matter in our universe.

6.5 Appendix: Scalar Mass Terms

We present here the scalar mass terms used in the calculation of the finite-temperature

effective potential. These are simply the second-derivatives of the full 10-parameter poten-

tial, but simplified such that only 3 of the parameters (hu, hd and s) are non-zero. Each

subscript denotes a partial derivative with respect to that field. Primed subscripts are

derivatives with respect to the imaginary field components, and ũ and d̃ denote deriva-

tives in the up- and down-type charged directions. The tree-level masses are just the mass

eigenvalues of the following matricies.
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M2
uu =1

2λ(h2
d + s2) + 1

8(g2
1 + g2

2)(3h2
u − h2

d) +m2
u (6.39)

M2
dd =1

2λ(h2
u + s2) + 1

8(g2
1 + g2

2)(3h2
d − h2

u) +m2
d (6.40)

M2
ss =1

2λ(h2
u + h2

d) + 3κ2s2 − λκhuhd +m2
s +
√

2κAκs (6.41)

M2
ud =λ2huhd − 1

2λκs
2 − 1

4(g2
1 + g2

2)huhd − 1√
2
λAλs (6.42)

M2
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2
λAλhd (6.43)

M2
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2
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u + h2

d) + κ2s2 + λκhuhd +m2
s −
√

2κAκs (6.47)

M2
u′d′ =1

2λκs
2 + 1√

2
λAλs (6.48)

M2
u′s′ =− λκhds+ 1√

2
λAλhd (6.49)

M2
d′s′ =− λκhus+ 1√

2
λAλhu (6.50)

M2
ũũ =1

2λ
2s2 + 1

8(g2
1 + g2

2)(h2
u − h2

d) + 1
4g

2
2h

2
d +m2

u (6.51)

M2
d̃d̃

=1
2λ

2s2 + 1
8(g2

1 + g2
2)(h2

d − h2
u) + 1

4g
2
2h

2
u +m2

d (6.52)

M2
ũd̃

=− 1
2λ

2huhd + 1
2λκs

2 + 1
4g

2
2huhd + 1√

2
λAλs (6.53)

There is a second matrix for the charged Higgs, but the two are identical except

for a change of sign in the off-diagonal term which does not affect its eigenvalues.
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In the high-temperature approximation, the thermal mass terms come from the

quadratic piece of the one-loop finite-temperature contributions to the effective potential.

The scalar thermal masses include contributions from all particles with field dependent

masses, and they get added to each of the diagonal terms in the mass matrix. They are:

Πu = T 2
[

1
8

(
g2

1 + 3g2
2

)
+ 1

4λ
2 + 1

4y
2
t

]
(6.54)

Πd = T 2
[

1
8

(
g2

1 + 3g2
2

)
+ 1

4λ
2 + 1

4y
2
b

]
(6.55)

Πs = 1
2T

2
(
λ2 + κ2

)
. (6.56)

The longitudinal polarizations of the gauge bosons also receive thermal mass cor-

rections. At finite temperature, the gauge boson mass mixing is

M2
gauge−long =

h2
u + h2

d

4


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2
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2
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2 g1g2

g1g2 g2
1


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+ T 2




5
2g

2
2

5
2g

2
2

5
2g

2
2

13
6 g

2
1




. (6.57)

Again, we have ignored the contributions from the sfermions, because they are much too

heavy to factor into the high-temperature corrections. For more information on thermal

masses in the supersymmetric theories, see ref. [201].
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Chapter 7

Conclusion

In this dissertation I have explored finite-temperature phase transitions in the

early universe, with a focus on the theory and phenomenology of the electroweak phase

transition. The key findings are as follows:

• Chapter 2 described the thermodynamics of strongly first-order phase transitions and

the possible effect that one would have on the abundance of thermal relics. A very

strongly first-order transition, driven by, e.g., a large number of extra heavy degrees

of freedom coupled to the Higgs, would have caused a large amount of reheating at

the end of the phase transition and/or a long period of phase coexistence at constant

temperature. The Universe’s scale factor would have increased without an associated

drop in temperature, so thermal relics would have effectively been diluted. In the

most optimistic scenario, the dilution is of order 100 (that is, the Universe’s volume

increases by a factor of 100 without decreasing in temperature). In more reasonable

scenarios, the dilution could be a factor of a few. An analysis of MSSM neutralino
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dark matter models showed that a large class of models which would have otherwise

overproduced the Universe’s dark matter content can be salvaged by the dilution from

a strongly first-order phase transition.

• Chapter 3 presented a numerical package (CosmoTransitions) which computes various

aspects of phase transitions given a tree-level potential and mass spectrum. It calcu-

lates the minima of a one-loop effective potential as a function of temperature, deter-

mines the critical temperature of any phase transitions (the temperature at which two

phases have equal free energy), finds the bubble wall profiles which describe nucleated

pockets of stable vacuum at different temperatures, and from this finds the nucleation

rates and the amount of supercooling in the high-temperature phases. Importantly,

CosmoTransitions presents a novel way for calculating the bubble wall solution in

multiple field dimensions using a method of path deformation. Note that this aspect

of the package can be used at both zero and finite temperature.

• Chapter 4 demonstrated the significant gauge problem in finite-temperature effective

potentials. Finite-temperature effective potentials contain both explicit and implicit

gauge dependence. The explicit gauge dependence is removed by working to fixed

loop-order in the effective potential, but the residual gauge dependence of the vacuum

expectation value remains. We calculated expected gravitational wave spectrums

created during the electroweak phase transition from a simple toy Abelian-Higgs model

in different gauges, and showed that the gauge choice can have dramatic effect upon

the calculation of physical observables. The gauge choice itself is, of course, not

physical, so this should be thought of as an extra source of theoretical uncertainty.
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• Chapter 5 directly extended the work in chapter 4 to include effects from an extra

scalar singlet. A cubic term in the singlet-Higgs interaction can lead to a more strongly

first-order phase transition at tree level, and thus mitigate the gauge-dependence

problem. However, we found that the gauge dependence remains significant except in

very special circumstances.

• Chapter 6 showed how the NMSSM can simultaneously explain the baryon asymmetry

of the universe via electroweak baryogenesis, provide a dark matter particle which

matches the 130 GeV gamma-ray line seen by the Fermi space telescope in the galactic

center, and produce a Standard Model-like Higgs in the observed mass range. The

singlet contribution to the effective potential allows for the strongly first-order phase

transition, while production of a 130 GeV gamma-ray line is possible by virtue of both

a relatively light pseudoscalar Higgs sector with a small degree of mixing (which yields

efficient s-channel resonant neutralino annihilation consistent with indirect detection

constraints) and the moderate values of µ required to obtain a bino-like LSP consistent

with the line.

In addition to the work presented in this document, I worked on several other

projects during my graduate studies. I published one paper with Lorenzo Ubaldi and Ste-

fano Profumo on scalar singlet dark matter and the possibility of vacuum decay [91]; and

I published two further papers on supersymmetric baryogenesis with Stefano Profumo and

Jonathan Kozaczuk [185, 190] (the first of which also included Michael Ramsey-Musolf as

a coauthor). More recently, I have started working on inflationary cosmology. With An-

thony Aguirre, Matt Johnson and Hiranya Peiris, I am simulating collisions between bubble
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universes in an eternal inflation paradigm. I use a modified version of the CosmoTransi-

tions package (now including gravitational effects) to calculate the initial conditions for the

bubbles, and a custom code to evolve the bubbles forward in time. The grand goal of the

project is to accurately predict how a collision will appear on the cosmic microwave back-

ground radiation. I will be continuing this work next year as post-doctoral fellow. With

Tom Banks and TJ Torres, I have been trying to calculate two- and three-point scalar and

tensor correlation functions in a de Sitter Universe using only the de Sitter symmetries.

The goal here is to compare predictions of Holographic Space Time with generic slow-roll

inflation models. Finally, I plan to continue studying the electroweak phase transition in

the NMSSM with Stefano, Jonathan, and Laurel Stephenson-Haskins (a new addition to

our group). We would like to do a more systematic analysis of the phase transition in a

broad range of parameter space and gain a better understanding of how the bubble wall

profiles evolve after the initial nucleation events.
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