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We present the results from combining machine learning with the profile likelihood fit procedure,
using data from the Large Underground Xenon (LUX) dark matter experiment. This approach
demonstrates reduction in computation time by a factor of 30 when compared with the previous
approach, without loss of performance on real data. We establish its flexibility to capture non-
linear correlations between variables (such as smearing in light and charge signals due to position
variation) by achieving equal performance using pulse areas with and without position-corrections
applied. Its efficiency and scalability furthermore enables searching for dark matter using additional
variables without significant computational burden. We demonstrate this by including a light signal
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pulse shape variable alongside more traditional inputs such as light and charge signal strengths. This
technique can be exploited by future dark matter experiments to make use of additional information,
reduce computational resources needed for signal searches and simulations, and make inclusion of
physical nuisance parameters in fits tractable.

I. INTRODUCTION

Xenon-based time projection chambers such as LUX [1]
excel at directly searching for dark matter in the form
of weakly interacting massive particles (WIMPs). How-
ever, as these experiments grow in size and sensitivity,
analysis procedures have become increasingly complex
and time-consuming. In estimating events above back-
grounds either for exclusion limits or for discovery con-
tours, the profile likelihood ratio (PLR) is the statistical
analysis method of choice for most direct detection col-
laborations [2, 3] having taken over from older “cut and
count” approaches that used strict rectilinear cuts.

While more accurate and more powerful than earlier
approaches, the PLR is far slower and scales poorly with
the number of observables. This leads to limitations on
which variables can be practically included in the anal-
ysis, either as observable dimensions or as nuisance pa-
rameters. The goal of this work is to combine machine
learning (ML) with the PLR to remove some of these lim-
itations on the PLR approach. The motivations of our
approach were as follows:

• Fewer Monte Carlo simulation statistics needed:
ML is more efficient at capturing information to
create models in the form of probability density
functions (PDFs) than using binned histograms in
a high-dimensional space.

• Variable independence is not a required assump-
tion: Typically, observable signal sizes and posi-
tions are fed into a 4-5 dimensional model, which
is broken up into independent 2D and 3D spaces to
make computations tractable.

• Faster computation time: ML collapses multiple
variables for signal/background discrimination into
only one 1D discriminant, taking much of the work
out of generating PDFs, setting up the likelihood
function, and designing PLR code to handle all of
them appropriately in multiple dimensions. This
is particularly valuable when increased model com-
plexity is required, such as in the LUX second sci-
ence run [4, 5] where the electric field, fiducial mass,
and signal gains were both spatially and temporally
changing.

• Full use of information: This approach is highly
scalable with the inclusion of extra observable vari-
ables. In addition, while not explicitly addressed in
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this initial paper, evaluation of systematic uncer-
tainties through the variation of nuisance parame-
ters in the fit is made more feasible due to the faster
calculation and lower statistics requirements.

The rest of the paper is organized as follows: in Sec. II,
the basic design and operation of the LUX detector is ex-
plained. Sec. III describes the common technique applied
here of training a neural network to reduce the number
of inputs to the PLR, along with details of the training
procedure such as how to ensure all relevant information
is preserved. Sec. IV applies this technique to four differ-
ent case studies: establishing its capability to reproduce
a simple prior result; quantifying its ability to speed up
the analysis; demonstrating its ability to use raw vari-
ables without loss of performance; and incorporating an
additional S1 prompt fraction variable to demonstrate its
scalability with additional inputs.

II. THE LUX EXPERIMENT

The technique employed by LUX is the dual-phase
time projection chamber (TPC) [6, 7]. An incoming par-
ticle interacts with liquid xenon to produce scintillation
light and ionization electrons [1]. The ratio of ionization
to scintillation depends on particle type, energy deposi-
tion, and electric fields. The difference in ratio between
nuclear recoils (NR) and electronic recoils (ER) is the pri-
mary means for discriminating signal from backgrounds
such as gamma-rays or electrons [8, 9]. WIMPs should
lead exclusively to NR events [10] but non-WIMP dark
matter may not [11].

An electric field drifts liberated electrons to the gas,
where higher fields extract and drift them to make
their own UV scintillation. The primary liquid scintil-
lation signal is called S1, the secondary in gas, S2. S1
is the combination of photons from initial atomic de-
excitations, and those from ionization electrons being re-
captured into excited states. Electrons which are not
captured escape to make the S2.

Xe detectors all search for WIMPs in a fashion in-
dependent of a specific model (e.g. Supersymmetry)
by looking for excess NR events above the background.
Neutrons can mimic WIMPs, but fewer background neu-
trons are produced than gamma-rays so background ER
is of the highest concern [12]. Underground deploy-
ment, and very aggressive material cleaning and screen-
ing campaigns, respectively reduce cosmic-ray and intrin-
sic backgrounds dramatically [13, 14]. Because of the re-
maining external radioactivity from cavern walls, internal
sources like U and Th within the photomultiplier tubes
(PMTs) [15, 16], and most importantly Rn contamination
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from the environment [17], discrimination of backgrounds
at the level of data analysis remains a key requirement.
It is largely achieved thanks to the S1 and S2 discrimi-
nation power: ER exhibits larger S2/S1 at fixed S1 than
NR [18]. This discrimination is complicated by decays at
the radial edge of the TPC (“wall backgrounds”) where
the S2 signal is degraded, leading to partial overlap with
the NR region.

The LUX detector housed 122 PMTs, with the xenon
volume approximately 50 cm across and 60 cm tall be-
tween top and bottom PMT arrays [1, 19]. The inner-
most 100-150 kg of 370 kg total were used as the fiducial
mass. The S1 analysis threshold was 2 photons detected
(phd, or spikes) corrected for the position dependence
of the S1 photon detection efficiency, and the S2 thresh-
old was 150-200 phd (6 to 8 extracted electrons), result-
ing in a 50% detection threshold at 3-4 keV(nr) [20]. It
was deployed at the Sanford Underground Research Fa-
cility (SURF) in Lead, South Dakota, former site of the
Homestake gold mine, at a depth of 4850 feet (4300 me-
ters of water equivalent). The Xe was housed in a low-
background Ti cryostat, which was itself housed within
a water tank that further reduced background. In the
TPC, the drift field was 180 V/cm and extraction field
6.0 kV/cm in the first science run, but 50-400 V/cm and
8.0 kV/cm respectively in the second [5]. To calibrate
the ER response and thus better understand the back-
grounds as well as position resolution and monitor de-
tector stability, 83mKr, CH3T, and 14CH4 were injected
during calibration acquisitions [21–24]. For NR calibra-
tions (for emulating the response of LUX toWIMPs) a D-
D (deuterium-deuterium fusion) external neutron source
was utilized [3].

These calibrations were used to define functions which
correct for the position dependence of S1 and S2 sig-
nals, to ensure an approximately uniform mean signal
size throughout the detector given a fixed energy. Such
corrections, and the overall scaling factors for S1 and S2
signals versus energy, are not known perfectly; as such,
it is common to incorporate these scaling factors as nui-
sance parameters in the PLR fit.

III. METHOD

The analyses in Sec. IV all follow essentially the same
approach. First, a neural network (NN) [25, 26] is trained
using simulated data to distinguish events from a given
dark matter signal model from backgrounds using a small
set of high-level variables, x, such as position, S1 area,
and S2 area. The quality of the training is evaluated us-
ing several performance metrics including mutual infor-
mation (MI), described further in Sec. III B, as evaluated
on an independent set of simulated testing data. In the
case of suboptimal training, adjustments to the training
procedure were made as detailed in Sec. III A. In partic-
ular, enforcing that the MI for the NN output matches
that of the input variables ensures that the NN trans-

formation is optimal (preserves all relevant information)
and provides an absolute calibration for when to stop the
training process.

The output of the NN, f(x)ε[0, 1], which gives a mono-
tonic indication of how signal-like an event is, is then
transformed so that the test data, composed of equal
parts background and signal events, follows a uniform
distribution g(f(x))ε[0, 1]. This is achieved by generat-
ing the cumulative distribution function (CDF) at any
value, f , as the fraction of test events, f ′, with f ′ < f ,
and then assigning g(f(x)) = CDF(f(x)), where linear
interpolation is used between the f ′ that appear in the
test set. The purpose of this uniform transformation is
to spread out the distribution, which the NN tends to
focus at 0 and 1, so that the binned PDFs used in the
PLR calculation better preserve information for events at
the extreme values; an equivalent approach would be to
use the original f space but non-uniform binning which
uses finer bins near the edges of the distribution. In-
cluding this transformation led to a small but noticeable
improvement in PLR results during initial testing.

Once the NN is trained and the uniform transforma-
tion function is determined, both are applied to the simu-
lated backgrounds, simulated signal, and the search data.
The PLR calculation then proceeds in the usual fashion,
using binned versions of the simulated signal and back-
ground distributions in this one-dimensional output vari-
able g(f(x)) as the PDFs in its likelihood function. It is
performed in RooStats [27] using code that is function-
ally identical to the non-NN approach, aside from the
reduced complexity of a single input. Because each sig-
nal model (e.g. each WIMP mass) is different, a separate
network is trained in each case, each with its own g(f(x));
further details on techniques to ensure a smooth transi-
tion between similar models and avoid unnecessary du-
plicate training are provided in Sec. III A. This approach
is equally applicable to dark matter signal discovery as
to limit-setting in the absence of signal, as the PLR pro-
cedure itself is unchanged.

A. Neural Network Architecture and Training

Neural networks [25, 26] in this work are implemented
in the Python package Keras [28] which is a high level
interface for Tensorflow [29]. They all use a simple se-
quential model, that is, a fully connected feed-forward
network. Furthermore, all networks use a topology con-
sisting of four layers which contain 4, 10, 3, and 1 nodes
respectively, with the exception of the work in Sec. IVD
which uses 5 nodes in the input layer due to the inclusion
of an additional variable (S1 prompt fraction).

The training is conducted by using a sequential trans-
fer learning technique in which we first train a network to
distinguish a single WIMP mass from backgrounds, and
then use the trained network parameters as the starting
point to train on the next WIMP mass. Each training
in this study begins with the smallest simulated WIMP
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FIG. 1. Training performance in Area Under Curve (AUC),
which measures accuracy averaged across cut values, vs.
training epoch. Every 10 epochs, a new WIMP mass is
trained. The sequential method, using the network from the
previous mass as the starting point for the next, converges
more quickly and is less likely to find a suboptimal solution,
as opposed to the non-sequential method (as in epochs 100-
110). A subset of masses used during training is shown, to
focus on relevant features.

mass of 3.5 GeV and proceed in sequence up to the
largest. Fig. 1 compares the training performance ver-
sus epoch (discrete training step) for sequential training
against the case where a new network is trained with
random initial weights at each mass.

The main benefit of this technique is in the stability
of training results across masses, due to the fact that the
optimal network parameters should be similar for sim-
ilar WIMP masses: poor local minima of the training
optimization (as in epochs 100-110 of the non-sequential
case) are unlikely to be found if the initial training is
good. If the initial training is poor, this can be diagnosed
quickly using the metrics explained below and retraining
can occur, rather than having to retrain multiple faulty
networks. An added benefit is the reduction of training
times for each mass, since it takes fewer iterations to find
optimum weights, as demonstrated by the relatively flat
performance vs. epoch for the sequential case of Fig. 1.

The trained NN performance is evaluated on an inde-
pendent set of testing data in various metrics: the frac-
tion of background events passing cuts at 50% signal effi-
ciency (“leakage”), the area under the signal efficiency vs.
background leakage curve (AUC) – a generalized version
of leakage across all cut values in the NN output space,
which varies from 0.5 (random guessing) to 1 (perfect dis-
crimination) – and mutual information (MI, Sec. III B).
If the networks at any mass showed signs of poor per-
formance in these metrics, they were re-trained using a
different set of initial weights (and in some cases a differ-
ent number of training epochs or different batch size).

FIG. 2. Mutual information (MI) between a set of discrimi-
nating variables – the input variables (S1, log10 S2, r, z) (black
curve) or the trained NN output (red) – and the classification
of an event as signal or background, as a function of WIMP
mass. The NN training achieves near-optimal results at all
masses, indicating no loss of information from the reduction
to a single dimension. The small discrepancy in MI at higher
masses is negligible (see text for details). Errors on the MI es-
timate come from the statistical variation from re-calculating
on multiple subsets, and are generally smaller than the line
width.

B. Mutual information

Apart from the standard metrics (AUC and leakage)
we also adopt a technique which makes use of mutual
information (MI) as a metric of performance for the NN
training; specifically, it can be used to determine when
the NN has equal power to discriminate signal from back-
ground as the full space of its inputs. The mutual infor-
mation quantifies the strength of correlation between two
sets of variables, X and Y , which has the following func-
tional form,

I[x, y] =

∫
dxdy p(x, y) log

p(x, y)

p(x)p(y)
, (1)

where p(x, y) is the probability distribution in X and Y
(defined on a specific dataset), and p(x), p(y) are the
marginal distributions, e.g. p(x) =

∫
dy p(x, y).

MI has been used in several different contexts from
early work in information theory [30] to novel machine
learning approaches [31]. The context in which MI is used
in this work was developed in [32, 33], where it was shown
that the MI provides an upper-limit on the performance
of any machine learning algorithm. Specifically, when-
ever the MI between the binary signal/background class
designation θ and the inputs x is equivalent to that be-
tween θ and the NN output f(x), i.e I[θ;x] = I[θ; f(x)],
the network is optimal: no information relevant to dis-
tinguishing signal from background events is lost in the
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transformation.

Fig. 2 shows an example comparing the upper-limit,
determined by computing the MI on the input variables
(S1, log10 S2, r, z), to the MI computed on the output of
the trained neural network for each mass, using the case
from Sec. IVA. Details on how the MI is estimated are
given in [33]. Lower WIMP masses show a larger MI
(signal and background are more readily distinguished)
largely due to better discrimination in (S1, S2) space at
lower energy [18, 34]. This plot and other similar ones
demonstrate that the NN has learned to summarize all
relevant input information in a single dimension. The
small discrepancy in MI at higher masses is negligible,
corresponding in the worst case to a difference in leakage
for this analysis of 5e-4 (from 5.3e-3) or, for a toy example
of separating two 1D Gaussians, 0.026 sigma (from 2.84
sigma separation of means).

We note that the MI estimate from this technique can
be below the true value in a case with a large number of
variables relative to available sample size in which some
variables contribute no classification information. This
limitation is not relevant for the 4D space considered here
(Fig. 2), chosen for its robust and well-studied modeling
in simulation. MI can also be used to identify such vari-
ables from a large set of inputs by comparing the MI
across different subsets of inputs, as in [33]. This was ob-
served, for example, in the analysis in Sec. IVD with the
addition of an S1 prompt fraction variable. However, it is
generally the case that modern NNs are capable of easily
handling significantly more inputs than are used here,
without loss of discrimination power (from uninforma-
tive variables) or prohibitive increases in required train-
ing time, such that tuning the set of inputs or significant
adjustments to the training procedure are unnecessary.

IV. RESULTS

In Sec. IVA, we establish that the NN approach is
capable of achieving equal WIMP detection limits to
the traditional approach, using data from the first data-
taking run of LUX. Sec. IVB demonstrates a speed-up
from this technique of roughly 30× over the traditional
approach, considering the more complicated structure of
the second science run as applied to an effective field the-
ory search. With the speed and efficacy of the approach
established, we show in Sec. IVC the network’s flexibility
to incorporate strongly-correlated variables by achieving
equal limits for the first science run WIMP search us-
ing S1 and S2 areas before position-corrections are ap-
plied. To conclude, Sec. IVD incorporates an S1 prompt
fraction variable into the analysis, verifying the ease of
including new variables in this approach.

FIG. 3. Monte Carlo simulation validation plots of NN out-
put against ER calibration data (CH3T) and NR calibration
data (DD). Statistical error bars are shown; for most bins,
they are comparable to the line width. As expected, the ER
source appears similar to the training backgrounds (NN out-
put closer to 0), while the NR source appears similar to the
WIMP training signal (output near 1). The minor discrep-
ancies between simulations and data at the extremes are of a
similar size to that of the underlying inputs to the NN, and
indicate the simulations are conservative: data for both the
background-like CH3T and signal-like DD events are more
readily-identified as such, relative to the simulations.

A. Reproduction of 2013 WIMP Search

This analysis uses data from the 2013 data-taking run
of LUX [19], with the intent of reproducing the results
published in [20]. Analysis cuts, including data qual-
ity, fiducial volume (spatial cuts), and cuts on S1 and
S2 range match those defined in [20]. The simulated
background model is also the same as in [20], and in-
cludes gamma-rays from multiple locations, beta parti-
cles, 127Xe, 37Ar, and backgrounds originating from de-
cays at the radial edge of the TPC (“wall backgrounds”).
WIMP dark matter signal models covering a range of
masses are generated using the Noble Element Simula-
tion Technique (NEST) version 2.0.1 [35], tuned to match
LUX calibration data as described in [3, 24, 36].

The variables used as NN inputs were radial (r)
and axial (z) position, position-corrected S1 area (S1c),
and the logarithm of the position-corrected S2 area
(log10(S2c)), as in [20]. However, whereas that anal-
ysis defined PDFs for most components of the form
f(r, z) × f(S1c, log10(S2c)), assuming independence of
spatial and position-corrected pulse areas, the NN is able
to account for relevant correlations in all variables. After
sequential training of NNs at each WIMP mass as de-
scribed in Sec. IIIA and ensuring no loss of information
from the NN transformation (Fig. 2), the networks were
validated against calibration data. Fig. 3 shows the dis-
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FIG. 4. Visualized NN output for simulated background (top), 50 GeV WIMP signal (middle), and data (bottom) events in
2D input subspaces of log10(S2c) vs. S1c (left) and z vs. r2 (right), for the network trained against a 50 GeV WIMP in the
2013 reproduction analysis. Background and signal model visualizations use 1000 randomly-sampled events. Note that the
color scale for the NN output is truncated at 0.7, below the maximum at 1.0, for more apparent identification of events that
are somewhat signal-like. Bands indicate the median, 10%, and 90% intervals.

tributions of outputs of an example NN (trained against
a 50 GeV mass WIMP, chosen for its proximity to the
mass where the LUX sensitivity is maximized) for simu-
lations and data for the standard ER and NR calibration
sources used during the 2013 run. Both cases show good
agreement, with a small excess at the background-like
(signal-like) tails for the ER (NR) source in data, indi-
cating that simulations are slightly conservative - the ER

and NR calibration source distributions are more readily
separated in data than in simulation.

An illustration of the information used by this sample
50 GeV WIMP NN is shown in Fig. 4. These scatter
plots indicate that the network has identified the NR
band in the S2 vs. S1 space as signal, while ignoring as
background wall events at the radial edges with low S2
values.
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The distribution of the search data in this 50 GeV
WIMP NN output space is shown in Fig. 5, along with
the signal and background PDFs used in the fit. As ex-
pected from prior analyses using this data, it is consistent
with a background-only hypothesis.

The full PLR analysis procedure is then performed for
each WIMP mass. As in the benchmark analysis [20], the
profile likelihood includes a Gaussian constraint for each
background normalization nuisance parameter. However,
in this analysis, all backgrounds are combined into a sin-
gle component, with its constraint so broad (σ = µ = 450
events, equivalent to the total events in the search data)
as to be inconsequential. This approach is maximally
conservative, as it does not incorporate the information
from standalone background studies to constrain the fit.
Despite this, trials using multiple background compo-
nents (each with their own PDF shape in the NN output
space) and the stronger constraints enumerated in [20]
showed no noticeable improvement in limit results (well
within the 1σ confidence interval), indicating that the
NN efficiently captures all relevant information without
needing such standalone studies.

A summary of the limits produced by this procedure,
relative to the [20] result, is given in Fig. 6. This in-
cludes both the expected median sensitivity from simu-
lations as well as the observed limit from the search data.
These results indicate that the NN approach achieves vir-
tually identical expected sensitivity (well within the 1σ
confidence interval), with a small boost at masses below
5 GeV due to changes in NEST modeling at low energy.
Notably, the observed limit outperforms the expectation
from simulation, as it did in the original result (where
it was power constrained to the median expectation to
be conservative), likely due to favorable statistical fluc-
tuations and possibly also conservative modeling. This
is a second confirmation, in addition to the validation on
calibration data from Fig. 3, that the simulation-based
NN training is reliably translated to real data.

B. Computational Speed-up

In addition to simplifying the PLR while maintaining
sensitivity, this approach greatly reduces the computa-
tional burden – by a factor of >30x in this section’s
study, designed solely to quantify this speedup in a re-
alistic limit-setting context. Because NNs are able to
capture information in spaces with high dimensionality
much more efficiently than histograms, the number of
simulated events required for smooth PDFs is greatly re-
duced [25, 40, 41]. Additionally, the PLR limit-setting
process itself is greatly sped up when run in a 1D space.
This speed up remains substantial even after accounting
for the time needed for NN training, as we demonstrate
with the following comparison.

We take as our baseline the LUX analysis on effective
field theory (EFT) couplings from its second science run
[39]. This analysis exemplifies the potential complexity
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FIG. 5. NN output space PDFs used in the fits for the 2013
WIMP search reproduction analysis, as well as binned data,
for an example network trained against a 50 GeV WIMP. The
output has been stretched using the uniform transformation
described in Sec. III to distinguish events at the extremes of
the output range in this binned space. The data is consistent
with a background-only hypothesis.

of the standard PLR approach: the PDFs for most com-
ponents are of the form f(r, z) × f(S1c, log10(S2c)), i.e.
the product of 3D and 2D PDFs, though the wall back-
grounds are fully 5-dimensional. In addition, due to elec-
tric field variation over time and position, each PDF is
broken up into four drift time bins and four date bins,
for a total of sixteen PDFs per component. The fit itself
includes eight background components, each with its own
normalization nuisance parameter. Due to this complex-
ity, even constructing the RooFit models necessary to
hold these PDFs and generating the corresponding like-
lihood function can be somewhat time-intensive, taking
nearly 3 hr per mass (see Tab. I).

In contrast, the NN approach can directly incorporate
position- and time-dependence in its structure, preserv-
ing the simplicity of the 1D output structure. To allow
for as direct a comparison as possible, the NN equivalent
includes the same independent background components
(and hence nuisance parameters allowed to vary in the
fit).

Tab. I compares the compute time needed for the stan-
dard PLR approach as implemented in [39] with the NN-
based approach presented here. Accounting for all com-
putational steps including the time required to train the
NNs, Tab. I demonstrates a reduction in computing time
of 35× with the NN approach, and a reduction of 47×
in the wall-clock time. This improvement factor is ex-
pected to increase with the number of inputs and the
strength of their correlations, due to the NN’s ability to
account for complex relationships even in high dimen-
sions without significant increase in computational de-
mand; in contrast, the standard approach scales expo-
nentially with further variables and requires additional,
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TABLE I. Comparison of total CPU hours required to generate a limit for a single signal model (e.g. single signal mass) for
the standard PLR analysis described in [39] vs. the NN approach, summed across all parallel processes. Workspace creation
corresponds to building RooFit models containing the relevant PDFs and likelihood function; MC generation is the step of
generating toy datasets from these PDFs; and hypothesis testing is the process of fitting the data and toys to the models and
generating profile likelihood test statistic values. As some steps are not efficiently run in parallel, the speedup in real (wall-
clock) time including all stages is further improved to 47×. When run over a set of 24 masses for each of 15 EFT operators, the
original CPU cost is approximately 18k CPU hours, making the addition of further complexity such as nuisance parameters or
additional analysis variables impractical.

Analysis Workspace creation (hr) MC generation (hr) Hypothesis testing (hr) NN training (hr) Total (hr)
Original EFT search 2.7 39.0 8.8 – 50.5
NN case 2.4e-3 1.0e-2 0.81 0.64 1.46
NN speedup 1100× 3900× 11× – 35×

computationally-inefficient PLR structure to deal with
correlations if independent PDFs are used (such as break-
ing up f(S1c, log10(S2c)) by drift time bin to preserve
independence from f(r, z)). As the NN training com-
prises a significant fraction of the total compute time,
this speedup may increase with more efficient training
methods, such as the use of GPUs.

A full traditional PLR analysis including 15 EFT op-
erators, each with 24 different masses, already stretches
the limits of the computational resources that were avail-
able to LUX (approximately 18k CPU hours). The wall-
clock time required for this style of analysis is an equally-
important limitation, as a delay in results on the order of
weeks is a significant setback, particularly given that it-
eration is typically required during analysis development
before unblinding. This gain in processing speed makes it
feasible to introduce further sophistication to the analy-
sis through inclusion of PDF shape-varying nuisance pa-
rameters (such as linear scaling factors for S1 and S2
signals versus energy) in the fit, taking full advantage of
strongly-correlated variables (Sec. IVC), and even use of
additional variables as inputs (Sec. IVD).

Other approaches to speed up the PLR procedure, no-
tably Flamedisx [42], exist but lack the flexibility and
modularity of this approach. Flamedisx uses an internal
model of the detector and LXe microphysics to evalu-
ate the likelihood of specific datapoints, requiring rele-
vant detector effects for all variables of interest be imple-
mented as analytic functions directly in the code. Events
with multiple LXe interactions, such as some rare back-
grounds, are also not modeled by Flamedisx. While this
approach is more efficient than populating histograms
in high-dimension, particularly when incorporating PDF
shape-varying nuisance parameters, such modeling re-
quirements limit its domain of application. In contrast,
the NN approach is independent of the stages before and
after it - any model (or combination of models) can be
generated prior to the training, and a simple 1D PLR
can be run after the training, allowing for checks at each
stage.

C. Use of Raw Variables

This approach allows full use of the measured signal
information, without assuming independence of position
and pulse area variables, as in the traditional approach.
Though position-correcting pulse areas improves sensitiv-
ity in the traditional case (through narrower ER and NR
bands), even with perfectly-measured correction func-
tions, the assumption of position-independence of pulse
areas is not strictly accurate: corrections can adjust the
mean of the distributions but not their widths, which
vary due to position-dependent light collection efficiency.
The NN can account for correlations, making the step of
applying position corrections to the pulse areas unneces-
sary. We demonstrate this by achieving equal sensitivity
on LUX data whether using position-corrected pulse ar-
eas (S1c, S2c) or raw ones (S1, S2). This analysis uses
the same background and signal models as in Sec. IVA,
with the exception that the inverse position-correction
functions are applied to the existing simulations to get
S1 and S2, and a more sophisticated version of the wall
background model is used, described in detail in [39].
Notably, events near the walls are the most difficult to
obtain reliable position corrections for, due to quickly-
falling light collection efficiency with radius in that region
[3, 43]; this, coupled with the fact that these simulated
events are generated in a data-driven way, makes use of
the original uncorrected variables particularly well-suited
to analysis of wall events.

The training procedure described in Sec. III A was
carried out for two cases, using identical NN architec-
tures: one using inputs {r, z, S1c, S2c} and another us-
ing {r, z, S1, S2}. Perhaps due to the additional com-
plexity of the wall model events and/or the relative lack
of wall events (limited, in this data-driven model, by the
abundance of detected events in sidebands of the analysis
region), some versions of the training in either variable
space originally failed to identify the wall backgrounds re-
liably. This was easily spotted via the performance met-
rics described in Sec. III as well as visualizations such as
those in Fig. 4. Adjusting the training procedure, for each
mass, to include a period of training with wall events as
the sole background in between initial and final training
with all backgrounds, solved this issue.
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FIG. 6. Top: Spin-independent WIMP-nucleon cross section
90% CL upper limits for this work and the original analysis
using the standard PLR approach on the same data from [20].
Limits from the much larger XENON-1T [37] and PandaX-4T
[38] experiments are shown for context. This indicates equal
performance when using the NN approach, both in simula-
tions and in real data. Note that the original observed limit
surpassed the median expectation, as in the NN case here,
but was conservatively power constrained to the expectation.
Bottom: ratio of limits using the NN approach presented here
vs. the original limits. Values less than 1 indicate an improved
limit using the NN analysis. Improvements below 5 GeV are
primarily due to updates to the NEST yields model used to
generate the signal events. Mass-to-mass fluctuations in ex-
pected limits of order 10% are typical from prior non-ML
analyses of LUX data [39].

After training was complete, no significant differences
in performance on test simulation data were observed
between the corrected and uncorrected versions of the
networks. The full PLR procedure was then performed,
this time allowing the wall and non-wall backgrounds to
vary independently in the fits, with weak Gaussian con-
straints on their normalizations (25% and 50% for non-
wall and wall backgrounds, respectively). A comparison

FIG. 7. Ratio of limits using raw vs. position-corrected S1
and S2 pulse areas. Values less than 1 indicate an improved
limit using the raw variables. Mass-to-mass fluctuations in ex-
pected limits of order 10% are typical from prior non-ML anal-
yses of LUX data [39]; fluctuations in observed limits within
the 1σ band are expected.

of the limits achieved on the real data, as well as the
model-based expected sensitivity, following the full PLR
procedure is shown in Fig. 7. Consistent with the training
results, the expected and observed limits are comparable
for the two cases.

While this approach does not directly eliminate the
need for measurement of position-correction factors for
pulse areas (these are needed for simulation-based models
to produce raw detected pulse areas from true numbers of
simulated photons and electrons), it avoids introducing
potential errors in the estimate of these correction fac-
tors twice: once when simulating raw signals, and again
when applying corrections to both simulations and data
to get position-corrected variables. This second inverse
correction does not undo the original mapping due to sta-
tistical fluctuations arising from the imperfect detection
of generated signals. It is also a more natural way to
analyze data-driven backgrounds, such as those from the
walls, which need no such correction functions to deter-
mine raw signal size. Future work may be able to train
directly on calibration data, learning such corrections im-
plicitly without the need for extensive analyzer effort.

D. Scalability with Increasing Number of Inputs

This approach is also easily scaled to include addi-
tional variables without significant computational burden
or complexity. We demonstrate this through the use of an
S1 prompt fraction variable, defined as in [44], and rep-
resenting the fraction of the S1 pulse area within a fixed
window at the start of the pulse. This variable carries
information about the ER or NR nature of an event due
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FIG. 8. Ratio of limits using the S1 pulse shape discrimina-
tion variable vs. without it. Values less than 1 indicate an
improved limit when including the PSD variable. Mass-to-
mass fluctuations in expected limits of order 10% are typical
from prior non-ML analyses of LUX data [39]; fluctuations in
observed limits within the 1σ band are expected.

to the differing ratios of singlet and triplet Xe excimers
for the two recoil types, which in turn carry different
photon emission times. Including this in the traditional
PLR approach would be particularly challenging, as the
S1 prompt fraction is correlated with both total S1 area
and position (due to different photon propagation times
to reach the PMTs), adding to the already-complex PDF
structure, which otherwise assumes independence of po-
sition and pulse area variables. Such an analysis would
be impractical to implement due to the computational re-
sources required both to simulate a sufficient quantity of
events to fill out binned PDFs in this expanded variable
space and to carry out the PLR procedure.

Study of this S1 prompt fraction variable and its use-
fulness at ER/NR discrimination has been carried out in
[18, 44]; however, validation of NEST-based simulations
of the prompt fraction variable including all correlations
with pulse areas, position, and electric field strength, as
necessary for this analysis, has not been performed until
now. The details of this validation, using CH3T and DD
calibration data, are presented in Appendix A.

For a more direct comparison with the analyses in
Sec. IVA and IVC, the same background simulations
were bootstrapped through NEST, using the energy of
the events to re-generate pulse areas and the new prompt
fraction variable. Wall model events, being taken di-
rectly from sideband data, only require calculation of
the prompt fraction using the observed waveform (includ-
ing those corrections described in [44]), as in the WIMP
search data. The WIMP signal model events were gen-
erated directly in NEST using an identical model as for
the previous analyses, but now including the validated
prompt fraction variable.

Neural network training followed the same procedures
as in previous sections, with the exception that the
prompt fraction network had an additional input in its
architecture (the size of the hidden layers was not ad-
justed). Inclusion of this variable had minimal impact
on the training time of the networks. No significant dif-
ferences in performance on test simulation data were ob-
served between the two versions of the networks. This is
consistent with MI calculations using the signal model
and the non-wall backgrounds (wall events had insuf-
ficient statistics to get a reliable MI calculation from),
which indicate that while pulse shape has some relevant
information on its own, it is mostly redundant when com-
bined with other variables such as S1 and S2 pulse area.
This also matches expectations from [18], which suggest
the ER leakage is not substantially improved by includ-
ing pulse shape as part of a two-factor analysis (along-
side S2/S1 ratio) in LUX Run3 data, with its uniform
180 V/cm electric field.

The full PLR procedure was then performed, using the
same Gaussian constraints as in Sec. IVC; as the NN
output is in a single dimension regardless of the num-
ber of inputs, the complexity and computation time of
the PLR was not affected by adding the prompt fraction
variable. As expected from the training stage, the limits
achieved when including prompt fraction did not show an
improvement over those without it (Fig. 8), due to a lack
of additional discriminating information in this context.
Nevertheless, the flexible and scalable structure of this
analysis framework made achieving this result straight-
forward. In a context where prompt fraction is expected
to carry more information, such as in a scenario with
lower electric field [18, 45–47], this approach could re-
cover performance lost by the decreased ability to sep-
arate ER and NR sources using S1 and S2 area alone.
Future work with next-generation experiments can eas-
ily extend the results here to include other variables of
interest, such as topological discriminants relevant for
multiple scatters as in [48] or track-like signal models.

V. CONCLUSION

We have demonstrated a general-purpose approach to
speed up and greatly improve the flexibility of dark mat-
ter direct detection limit-setting using machine learning.
Its reliability is established both through checks against
calibration data and its ability to reproduce the results
of a prior dark matter search using traditional methods.
It achieves a speed-up of more than 30x the traditional
method in a realistic test case, with stronger gains ex-
pected as more observables are considered. High sam-
ple size requirements from time-intensive simulations can
likewise be reduced.

This approach is flexible, with the capability to fully
capture information from highly-correlated variables,
such as position and raw S1 and S2 pulse areas, with-
out loss of performance. A future iteration of this may
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allow for the possibility of implicitly accounting for posi-
tion corrections by training directly on calibration data,
bypassing the need for analyzers to spend time manually
define analytic correction functions as currently required
for accurate simulations. Furthermore, it is highly scal-
able in terms of computational demands, allowing the
addition of further variables such as S1 prompt fraction
without requiring any assumptions of variable indepen-
dence. Future dark matter experiments can use this tech-
nique’s efficiency to reduce their need for computation in
both simulations and limit-setting, and its flexibility to
enable analysis in a richer space, beyond that of pulse
areas and positions.
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Appendix A: Pulse Shape Discrimination Validation

This appendix presents the validation of simulations
of the S1 prompt fraction variable from Sec. IVD using
calibration data. Similar validations were performed in
[44], which we extend here by tuning the model to match
the dependence on electric field and drift time seen in
data, as well as to cover smaller S1 pulse areas which
account for the bulk of WIMP events. Such tuning is
necessary, as correlations can in principle matter for the
NN approach. This was done primarily through adjusting
the Xe excimer singlet-to-triplet ratio and its dependence
on energy and electric field [45].

Adjustments to better account for detector-dependent
effects were also included. Chief among these was the
addition of a random offset in the prompt integration
window, to account for the finite (10 ns) waveform sam-
pling rate and other sources of timing uncertainty. When
counting a few individual photons (. 10), the chance of
getting the full S1 area within the prompt fraction win-
dow becomes substantial. To account for this, an empir-
ical adjustment was applied, randomly assigning a frac-
tion of events to a prompt fraction of 1 according to an
falling exponential in S1 area, as fit to low-energy cali-
bration data.

At smaller still S1 areas, the model diverges from data
in a non-trivial way. For S1 areas below 5 phd, we conser-
vatively assign both simulations and data a prompt frac-
tion drawn from a single Gaussian with a mean halfway
between that of the ER and NR calibration sources at
5 phd and a standard deviation comparable to that of
both, truncated to the allowable range of 0-1. This en-
sures the NN cannot learn any distinguishing features
from the prompt fraction at these low areas (where it is
of little use regardless due to the difficulty of defining
a pulse shape from so few photons [18]). The choice of
Gaussian parameters was verified to have no noticeable
effect on NN training.

Validation plots of the pulse shape variable are shown
for NR calibration with the DD neutron source (Fig. 9),
low-energy ER calibration with CH3T (Fig. 10), and
high-energy ER calibration with 14CH4 (Fig. 11). The
NN output for the model trained in Sec. IVD, as ap-
plied to the calibration sources, showed good agreement
between simulations and data, similar to in Fig. 3, estab-
lishing that the full input space correlations learned by
the NN are well-captured by the simulations.
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FIG. 9. Comparison of MC simulations of S1 pulse shape discriminator (PSD) with that calculated from DD neutron calibration
data. Lines indicate the mean PSD, with the standard deviation at each point indicated via error bars. Drift time and field
only varied significantly in the 2014-2016 data-taking run, so calibration data from that run is used in the bottom two plots.
The lobes in the bottom two plots correspond to the three different heights at which the DD generator was employed.
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