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Abstract. We studied the low-energy spin excitations of zigzag graphene
nanoribbons of varying width. We found their energy dispersion at small wave
vectors to be dominated by antiferromagnetic correlations between the ribbon’s
edges, in accordance with previous calculations. We point out that spin wave
lifetimes are very long owing to the semi-conducting nature of electrically
neutral nanoribbons. However, the application of very modest gate voltages
causes a discontinuous transition to a regime of finite spin wave lifetimes. On
further increasing doping, the ferromagnetic alignments along the edge become
unstable against transverse spin fluctuations. This makes the experimental
detection of ferromagnetism in this class of systems very delicate and poses
a difficult challenge to the possible use of these nanoribbons as the basis for
spintronic devices.

Graphene is being hailed as highly promising for nanoelectronics and spintronics. Its
unique transport properties are expected to play a fundamental role in the development of
new technologies [1]-[3]. New physics is also emerging from the interplay between low
dimensionality, a bipartite lattice and electron—electron interactions. One of the most striking
properties of graphene nanoribbons is the possibility of spontaneous magnetization [4]-[6].
This, combined with the long spin-coherence times of electrons propagating across graphene,
indicates that this system is a strong candidate for future spintronics applications.

The ground state properties of magnetic graphene nanoribbons have been extensively
explored by a variety of methods. Recent works have investigated the properties of static
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excited states based on adiabatic approximations [7, 8]. This approach has been employed
for describing the lowest-lying excitations of magnetic metals with relative success. However,
it is well known that it misses important features of the excited states, such as its finite lifetime.
This arises due to the coupling between spin waves and Stoner excitations, a distinctive feature
of itinerant magnets. Moreover, these recent investigations of excited states seem to have
disregarded the antiferromagnetic coupling between the magnetizations on opposite edges of
graphene nanoribbons. As we shall see, this leads to an incorrect prediction concerning the
wave vector dependence of low-energy spin excitations. This was already demonstrated more
than a decade ago in the seminal work by Wakabayashi et al [9]. These authors used an itinerant
model to describe the 7 electrons in graphene nanoribbons of various widths. They showed
clearly the presence of a linear term in the spin wave dispersion relation for small wave vectors.
One interesting feature of magnetic graphene nanoribbons is that the spins along each
border are ferromagnetically coupled to each other, but there is an antiferromagnetic exchange
coupling between the two opposite borders. This coupling is mediated by the conduction
electrons and decreases as the ribbon width is increased. Thus, it may appear, at first sight,
that this antiferromagnetic coupling should be unimportant in wide ribbons. It has been shown,
however, that this coupling is extremely long range in graphene and other related materials
[10]-[14]. Thus, even in rather wide nanoribbons this coupling asserts itself, as we shall see.
We describe the electrons in graphene using a Hubbard model,

H:ZZIUCLCJ'U+UZ"1'T”W (1)
ij o i

where f;; are hopping integrals (i # j) and on-site energies (i = j), U is the effective intra-
atomic Coulomb interaction and ¢, creates one electron at the atomic state at site i with
spin o. Here, we only consider nearest-neighbor hoppings. We took U =2¢eV (= 0.77t), as
in [15]. This model provides a good qualitative description of m-electrons in graphene, as well
as the magnetic effects deriving from the screened Coulomb interaction. The magnetic ground
state is described self-consistently within a mean-field approximation. We impose local charge
neutrality on every atom in the ribbon and determine the magnetic moment of each atom in the
unit cell individually. Imposing local charge neutrality is equivalent, in this case, to the more
basic global charge neutrality condition, due to the particle—hole symmetry of the system. It is,
however, easier to implement computationally. We find that the magnetic moment of the edge
atoms is 0.24up and decays rapidly towards the center of the ribbon, in close agreement with
calculations based on density functional theory [7]. Note that we consider the effective Coulomb
interaction to be active in every atom in the system. The fact that the magnetization is essentially
localized at the edges emerges naturally from our self-consistent treatment.

The spin excitations are extracted from the properties of the transverse dynamic
susceptibility,

X3 (0 = =100 ([S7 (). 57 O)]). @

where §* = aia , and S~ = (8%)" are the spin-raising and -lowering operators. By treating the
Coulomb interaction term within a random phase approximation, we obtain a closed equation
of motion for x*~(€2) (the Fourier transform of x*~(¢)) in terms of the mean-field susceptibility
x O () [16],

X =[1+UxO (@] x O (@), 3)

New Journal of Physics 13 (2011) 033028 (http://www.njp.org/)


http://www.njp.org/

3 I0P Institute of Physics () DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

Figure 1. Schematic depiction of the zigzag nanoribbon’s geometry. The dotted
lines encircle two arbitrary unit cells, labeled m and m’. The indices [ and I’ refer
to atoms inside each unit cell (as in equation (5)).

where x*~ and x©*~ are matrices comprising all magnetic sites in the system and I is the

identity matrix with the same dimension as x*~ and x ©*~. The notation used in the above
equation is schematic. A more precise statement on the form of the calculated susceptibility is
given below.

The spectral density

Ai(R2) = =3 % (L), 4)

where J denotes the imaginary part, may be interpreted as the density of states of magnons
in the system. The dynamic susceptibility just described is the response of the system to an
externally applied field of frequency €2 transverse to the ground state magnetization direction;
spin waves appear as peaks in the spectral density.

The graphene nanoribbons we study have translation symmetry along the ribbon length
(denoted here by x), but not along the ribbon width (y). It is convenient to define a mixed
Bloch—Wannier basis to describe the electronic states,

1 )
c/(k) = NG ij "¢ (%, V1), (5)

where c(x,,, y,) is the annihilation operator for a Wannier state at a site / in unit cell m, a = +/3ay
is the distance between unit cells along the ribbon length and a ~ 1.42 A is the carbon—carbon
distance. In this representation, the transverse dynamical susceptibility x,;” (£2; k) is a matrix,
where [ and [’ label sites within a unit cell; each element of such a matrix is a function of the
wave vector k along the length of the ribbon, as well as of the energy €2. The unit cell is depicted
in figure 1.

We start by discussing the spectral density A;(k; €2) for a nanoribbon of fixed width. In
figure 2, we plot the spectral density as a function of €2 for fixed values of the wave vector k,
for a ribbon with 8 atoms in the cross section. The main contribution to the excitations should
come from the edges, where most of the magnetic moment of the system is concentrated. Thus,
we only need to plot the spectral density projected on the ‘up’ edge, which we label as i =1
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Figure 2. (a) Spectral density associated with spin waves, projected on the ‘up’
edge, for a neutral ribbon eight atoms wide, for selected wave vectors (indicated
in the figure); (b) the linewidth as a function of wave vector; (c) the spin wave
dispersion relation deduced from the peaks of the spectral density (squares). The
dashed curve is a plot of the quadratic dispersion relation found in adiabatic
calculations [7].

(the spectral density at the ‘down’ edge has similar behavior). Spin wave energies increase with
wave vector, as usual, but the k dependence is not quadratic, as would be expected from a simple
ferromagnet.

A plot of the dispersion relation deduced from the peak positions (figure 2(c)) shows that
the dispersion is linear quite far out in the Brillouin zone (20% of the zone boundary) and in
fact is quasi-linear at large wave vectors as well. This may be understood if we map the spin
degrees of freedom of this system onto a simple effective spin model, as illustrated in [9].

Calculations of spin excitation energies based on an adiabatic approach have been reported
recently [7]. They found a quadratic energy—wave vector dispersion relation with a spin wave
exchange stiffness of 320 meV A 2. We plot this dispersion relation in figure 2(c) for comparison.
Although the energies found using the adiabatic approach are of the same order as those
obtained via dynamical calculations, the discrepancy between the dependences on wave vector
is remarkable.

In figure 2(a), we see that the spin wave peaks are extremely narrow for small wave vectors,
indicating a very large spin wave lifetime. This is compatible with the existence of a threshold
for Stoner excitations that equals the gap between spin subbands in these ribbons. Only spin
waves with energies equal to or larger than this gap are damped. This means that the low-
energy spin dynamics (represented by long-wavelength spin waves) may be well described
by effective localized spin Hamiltonians, but as the wavelength of the excitation becomes
smaller the itinerant nature of the system reveals itself. Thus, a simple ferromagnetic Heisenberg
Hamiltonian is clearly not the appropriate model to describe the spin degrees of freedom of this
fascinating system.
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Figure 3. (a) Spectral densities for ¢ = 0.266 A~' and different doping levels
0, 1, 2, 3 and 4 x1073 electron atom™!, labels in the graph) for a ribbon
eight atoms wide. Larger doping means smaller energy and smaller peak height.
(b) Linewidth as a function of doping (solid circles, scale on the left) and density
of Stoner modes A at the spin wave energies (solid triangles, scale on the right).
(c) Spectral density at low energies for the same wave vector and doping levels
as panel (a). Note that the spectral density is absolutely flat in this region for zero
doping.

One very attractive feature of graphene is the possibility of controlling its carrier density
by electrostatic gating. In the present case this feature opens up a very exciting possibility: by
controlling the electron density we may be able to tune the relaxation time of spin excitations in
graphene. As shown above, long-wavelength spin waves are essentially undamped in electrically
neutral graphene ribbons. In figure 3, we show that very modest changes in the electron density
can induce rather large damping, reducing considerably the relaxation time for spin excitations
and shifting their energies. The origin of this damping is simple to grasp: the density of Stoner
modes is very small at small energies in undoped graphene ribbons due to the fact that the
density of states p near the Fermi level Ef is zero (the antiferromagnetic, undoped nanoribbon
is semiconducting). As the density of states is increased by the gate voltage, p is increased for
energies close to Ef, giving rise to significant enhancement of the density of Stoner modes. As
is well known [16]-[19], spin wave damping in itinerant systems occurs through the decaying
of magnons into Stoner modes, a mechanism very similar to the Landau damping of plasmons
in metals. In figure 3(b), we show how the density of Stoner modes at the spin wave energies
(given by the spectral function A° associated with the non-interacting susceptibility x ©*7) is
enhanced by increasing electron density.

It is also clear from figure 3 that the extra damping is accompanied by a shift in the spin
wave energy. Once again, this is related to the enhancement of the density of Stoner modes, via
the Kramers—Kronig relation. The non-interacting susceptibility y ©*~ enters the denominator
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Figure 4. The zero-frequency mean-field spectral density AJ(k) for different
doping levels and two values of the effective Coulomb interaction, U = 2eV
(a) and U = 1.5eV (b). The curves have been displaced vertically for the sake
of clarity. Doping levels are 0, 2, 3, 4, 5 and 10 milli-electrons atom~! and are
indicated by the labels in the graph.

of the dynamic susceptibility x*~, as indicated in equation (3). Its imaginary part is responsible
for the finite lifetime of spin waves in itinerant magnets; its real part produces a shift in the
spin wave frequencies, in much the same way as dissipative forces shift the natural frequency of
mechanical oscillators. Thus, the enhancement of damping also implies a larger frequency shift.

There is another facet to the onset of strong spin wave damping in graphene nanoribbons.
Spin excitations with infinite (or extremely long) lifetimes are associated with strongly localized
spins, whereas strongly damped spin waves are found in systems where magnetism is itinerant in
nature. It is very rare that one system can be tuned to be either a localized or an itinerant magnet
with the change of a single parameter, easily accessible experimentally. It is an extremely
exciting prospect that this kind of control is available in graphene nanoribbons.

The lifetime of spin waves in zigzag graphene nanoribbons can be dramatically reduced,
as we just saw, by very modest doping (as small as 1073 electron atom™"). By further increasing
doping we note that the ferromagnetic alignment along the borders becomes unstable. A sign of
this instability is the appearance of a very soft spin wave mode as doping increases, as can be
seen in figure 3(c).

The instability of the ferromagnetic alignment can be confirmed by the behavior of the
mean-field transverse susceptibility at zero frequency, as a function of wave vector, AJ(k) =
x @+ (k, @ = 0) [20]. In a stable ferromagnetic system, Ag(k) has a single maximum at k = 0,
as illustrated by the zero doping curve in figure 4(a). As doping increases, a peak develops
close to k = 0, until at large enough doping (in this case 0.01 electron atom™'), a pronounced
maximum appears at a finite value of k. The existence of peaks in AJ(k) at finite values of k
means that the true ground state of this system is not ferromagnetic along the edges, but most
probably a spin density wave characterized by those finite wave vectors.

One virtue of our simple model is that we can tune parameters and explore various behavior.
On changing the strength U of the Coulomb interaction we noted that the doping level at which
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the instability appears changes. This is illustrated in figure 4 for two different values of U; for
both values of U the ferromagnetic alignment becomes unstable at ~ 5 x 1072 electron atom™!.
It would be interesting to build a U x §n phase diagram, but our intention here is to point out
the dependence and the general trend.

The stability analysis we performed is complementary to that presented in [15, 21, 22],
where energy differences between collinear and non-collinear configurations in the direction
transverse to the ribbon were analyzed. The stability of ferromagnetic ordering along the
interface between graphene and graphane has been studied in [23]. They find that ferromagnetic
order can be switched on or off by tuning voltages. To the best of our knowledge, ours is the
first analysis that take into account the possibility of non-collinear ordering along the ribbon’s
edges.

We have investigated wider nanoribbons (up to 32 atoms wide, although this is only
limited by computer time). The most important effects of increasing the ribbon width are:
(i) enhancement of a quadratic contribution to the spin-wave dispersion relation (due to the
partial suppression of antiferromagnetic coupling between edges) and (ii) reduction of the
doping range (for fixed U) within which ferromagnetism along the borders is stable.

In conclusion, we have shown that the lifetimes of spin excitations in zigzag graphene
nanoribbons can be tuned by the application of modest gate voltages. This allows, at least in
principle, electrical control of the magnetic relaxation rate. We have also demonstrated that
there is a sharp transition between the character of the spin excitations in neutral and doped
nanoribbons: while in neutral ribbons the long-wavelength excitations have essentially infinite
lifetimes (a feature shared with magnetic insulators), any amount of doping, however small,
leads to finite lifetimes (as in magnetic metals). Finally, we showed that further increasing
doping makes the ferromagnetic alignment unstable against transverse spin fluctuations, a fact
that should be carefully investigated if these systems are to be used in technological applications.
We are confident that our results open very exciting possibilities both in spintronics technology
and for a fundamental understanding of magnetism at the nanoscale.
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