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Abstract 
In this paper, we simulated true and false recognition in the 
Deese/Roediger/McDermott (DRM; Deese, 1959; Roediger & 
McDermott, 1995) paradigm by incorporating word 
embeddings derived from distributed semantic models 
(word2vec) into an instance memory model (MINERVA2). 
Previously, Arndt and Hirshman (1998) demonstrated that 
MINERVA2 (Hintzman, 1984) could capture multiple classic 
false recognition findings with randomly generated word 
representations. However, as randomized representations 
deviate systematically from semantic representations learned 
from the natural language environment, there remains 
uncertainty about whether MINERVA2 can capture the false 
memory illusion when scaling up to real-life complexity in 
word representations. To address this uncertainty, we used 
word2vec embeddings that are derived from large corpora of 
natural language instead of randomized representations in 
MINERVA2. Our results showed that MINERVA2 can still 
capture the standard true and false recognition, and it can also 
accommodate the true and false recognition effects of various 
classic manipulations (e.g., associative strength, number of 
associates, divided attention, retention interval). 

Keywords: DRM illusions; false recognition; MINERVA2; 
distributed semantics; memory models 

Introduction 
False memory refers to remembering events that have never 
been experienced or events attributed to wrong sources. In 
settings like eyewitness memory and psychotherapy, false 
memory can lead to severe downstream consequences 
(Thompson-Cannino & Cotton, 2009; Wilkomirski, 1997). 
Thus, it is critical to understand the underlying mechanisms 
of false memory formation. In false memory research, one of 
the most widely used paradigms is the 
Deese/Roediger/McDermott (DRM; Deese, 1959; Roediger 
& McDermott, 1995) paradigm. In this paradigm, 
participants encode lists in which all the words are forward 
associates (e.g., bed, pillow, snore, nap, etc.) of an 
unpresented critical lure (e.g., sleep). As a result, the critical 
lures are usually falsely recognized at a high rate, and such 
memory illusions are robust across different populations and 
under various conditions (Gallo, 2006; Chang & Brainerd, 
2021). 

Theoretical Explanations for the DRM illusion 
Two of the most influential theories of the DRM illusion are 
the fuzzy-trace theory (FTT; Brainerd & Reyna, 1998) and 
activation/monitoring framework (AMF; Roediger et al., 
2001). FTT assumes that people separately store and retrieve 
two distinct episodic memory representations: verbatim and 
gist traces. Verbatim traces refer to surface details that are 
diagnostic of the prior occurrence of a specific item. Gist 
traces refer to the semantic and elaborative content of the 
items. Verbatim and gist traces are stored and retrieved in 
parallel. In terms of storage, gist traces are assumed to decay 
at a slower rate than verbatim traces. In terms of retrieval, 
retrieval of verbatim traces leads to a vivid recollection of an 
item’s prior presentation, which allows people to recall or 
recognize the item perfectly. Thus, verbatim retrieval 
supports true memory and suppresses false memory. 
Retrieval of gist traces, however, supports a non-specific 
feeling of familiarity that can lead to both true memory and 
false memory (Brainerd & Reyna, 2005). To illustrate, the 
critical lure chair and list words table, desk, couch, etc. will 
both feel familiar as they fit into the gist of “furniture”. Thus, 
gist retrieval will lead to both true memory for list words like 
couch and false memory for the critical lure chair. 

Alternatively, according to AMF, encoded list words are 
assumed to be represented as interconnected nodes in an 
associative network (Collins & Loftus, 1975). Words that are 
more strongly associated with each other appear closer in the 
network. When a word is encoded, its node will be activated, 
and the activation will spread from the activated node to other 
nodes that are connected to it, with the strength of the 
spreading activation being proportional to the distance 
between the nodes. Consequently, when a DRM list was 
studied, the critical lure of the list receives repeated activation 
that is spread from the nearby nodes of encoded list words, 
and thus it is likely to be falsely remembered. For the sake of 
memory accuracy, people also implement a monitoring 
operation to discriminate between words that are actually 
encoded and words that are merely activated via spreading 
activation. 
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Computational Models of the DRM Illusion 
Despite the sophisticated theoretical explanations of the 
DRM effects, there have been limited attempts at formal 
computational modeling of the DRM illusion. One of the first 
attempts was provided by Arndt and Hirshman (1998), who 
stimulated DRM false recognition with the MINERVA2 
model (Hintzman, 1984). MINERVA2 is an instance model 
of memory (see Jamieson, et al., 2022 for a recent review), 
which posits that each encoded item is a unique trace and 
recognition is driven by the similarity between the test probe 
and the encoded items’ traces. Arndt and Hirshman chose 
MINERVA2 because the model had successfully accounted 
for schema abstraction (Hintzman, 1984) and categorical 
false recognition (Hintzman, 1988), which is similar to DRM 
false recognition. Moreover, MINERVA2 is flexible in terms 
of accommodating different factors that affect false 
recognition. For instance, Arndt and Hirshman showed that 
by simply manipulating stimuli characteristics and learning 
rates, the model can provide a satisfactory approximation to 
behavioral data under the manipulations of presentation rate, 
number of associates, and associative strength. 

Although Arndt and Hirshman demonstrated that 
MINERVA2 is a promising process model for explaining 
DRM false recognition, there is a critical limitation in their 
study. Namely, they used randomized representations instead 
of realistic semantic representations of words. Specifically, 
they represented a critical lure as a randomly generated vector 
containing either -1, 0, or 1 and represented the respective list 
words by inserting random perturbations into the vector of 
the critical lure. Thus, list words shared systematic 
similarities in vector composition with the critical lures. By 
doing so, it is assumed that the similarity between those 
randomly generated vectors provides a good approximation 
to the semantic relatedness among real words. 

However, Johns and Jones (2010) showed that this 
assumption is not true. They demonstrated that the 
probability distribution of semantic similarity between two 
random words is positively skewed with semantic 
representations but symmetrical with randomized 
representations. This means that two randomly selected 
words tend to be less similar in natural language than when 
represented by randomized vectors. Moreover, Johns and 
Jones rerun Arndt and Hirshman’s model simulations both 
with randomized representations and with semantic 
representations. For the latter, they derived word vectors 
from Steyvers, Shiffrin, and Nelson’s (2004) word 
association space (WAS) model. Using the randomized 
representations, they successfully replicated Arndt and 
Hirshman’s finding. However, with the WAS vectors, 
MINERVA2 provided a worse fit to the actual data. 
Therefore, the use of randomized presentation can threaten 
the validity of conclusions made about a process model. 
Namely, as randomized representations can fail to capture 
important features of natural language, even though a process 
model performs well with randomized representations, it may 
not do so with realistic representations.  

Semantic Representations of DRM Lists 
Recently, there have been attempts at integrating realistic 
vector representations of words that are derived from 
distributed semantic models (i.e., word embeddings) with 
computational process models in simulating DRM false 
recognition (e.g., Johns, Jones, & Mewhort, 2012, 2021; Reid 
& Jamieson, 2023). Here, distributed semantic models, refer 
to a cluster of models that represent word meanings as high-
dimensional vectors, which are extracted from large corpora 
of natural language (Günther, Rinaldi, & Marelli, 2019). For 
example, Johns et al. (2012) used word-by-document co-
occurrence vectors that are derived from large text corpora as 
word representations (similar to the latent semantic analysis 
[LSA]; Landauer & Dumais, 1997) and imported them into 
the Recognition through Semantic Synchronization (RSS) 
model.  

In distributed semantic modeling, it has been found that 
prediction-based models such as word2vec (Mikolov et al., 
2013) tend to outperform the more traditional count-based 
models such as LSA in predicting human performance across 
various tasks (e.g., semantic priming and semantic 
relatedness ratings; Baroni, Dinu, & Kruszewski, 2014; 
Mandera, Keuleers, & Brysbaert, 2017). The difference 
between these model types is that count-based models rely on 
counts of word-context occurrence (e.g., how frequently a 
word appears in a document) to determine the words’ 
semantic representation. In contrast, prediction-based models 
utilize error-driven learning where a target word is predicted 
from words that co-occur with that word in a context or vice 
versa. Given that prediction-based models such as word2vec 
seem to provide a better approximation to human data in 
various semantic tasks, it is reasonable to expect that such 
models may do so for the DRM paradigm as well. 

Gatti et al.’s (2022) recent finding supports such 
speculation. In this study, they derived word vectors for DRM 
lists from a word2vec semantic space (Mandera et al., 2017), 
and used frequency-weighted mean cosine similarity between 
the studied words’ vectors and the critical lure's vector to 
predict false recognition. Their results demonstrated that both 
local similarity (i.e., average similarity between a critical lure 
and the list words on the given DRM list) and global 
similarity (i.e., average similarity between a critical lure and 
the list words on all encoded DRM lists) significantly predicts 
false recognition. Moreover, they also found a positive 
correlation between local similarity and mean backward 
associative strength (MBAS; i.e., the average probability of 
eliciting the critical lure given a list word), suggesting that 
the word2vec semantic space successfully captures the 
semantic structure of DRM lists.  

The Current Study 
On the one hand, Arndt and Hirshman (1998) demonstrated 
the potential of MINERVA2 to explain false recognition in 
the DRM paradigm. However, the traditional MINERVA2 
model is devoid of realistic semantic representation of words. 
On the other hand, it has recently been demonstrated that 
distributed semantic models are a promising candidate for 
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capturing the semantic representations of the DRM paradigm. 
The current study is aimed at integrating embeddings from a 
distributed semantic model (word2vec) with MINERVA2 to 
simulate various classic findings in the DRM paradigm. We 
choose the word2vec model because it has been verified to 
provide a realistic semantic representation of the DRM 
paradigm (Gatti et al., 2022), and it is also one of the most 
widely used distributed semantic models in the field. We 
chose the MINERVA2 model because of its prior success in 
modeling the DRM illusion and its parsimony and flexibility 
(Arndt & Hirshman, 1998). Below, we first explain how we 
derive word embeddings from the word2vec model and then 
discuss the machinery of the MINERVA2 model. 

 
Representations: Wod2vec embeddings The word2vec 
model is one of the most influential distributed semantic 
models. This model uses a neural network architecture that 
includes an input layer, a hidden layer, and an output layer. 
In the current study, we used the continuous bag of words 
(CBOW) implementation, in which context words 
surrounding a target word (input layer) are used to predict the 
target word. The network is trained via backpropagation, in 
which the activation weights in the hidden layer are adjusted 
to minimize the error between the network’s output layer and 
the target words. The vector representation of the target 
words is thus extracted using the activation weights in the 
hidden layer (Günther et al., 2019; Kumar, 2021).  

We obtained the vector representations of words from a 
pre-trained word2vec model (Mikolov et al., 2013), which is 
available at https://code.google.com/archive/p/word2vec/. 
This model includes three million words and phrases, which 
was trained on a subset of Google News datasets that contains 
about 100 billion words. All the word vectors derived from 
the model have a dimensionality of 300. 

 
Process Model: MINERVA2 In the MINERVA2 model, 
each encoded word is regarded as a unique memory trace, 
which is represented as a vector of features. Traditionally, 
MINERVA2 uses randomly generated vectors that contain 
feature values of either -1, 0, or 1, with 1 and -1 indicating 
whether the word has the feature or not, and 0 indicating 
encoding failure of the feature (Arndt & Hirshman, 1998; 
Hintzman, 1984, 1988). However, the current study used 
word vectors that were retrieved from the word2vec model; 
hence, the features are represented with continuous rather 
than categorical values. 

During encoding, the probability of successfully encoding 
a feature is controlled by a learning parameter L. That is, each 
feature has a probability L of being properly encoded and 
stored in memory, and a probability 1 – L of being replaced 
by random noise. In the current study, we used noise values 
that are randomly sampled from a uniform distribution 
between -.05 and .05 (this range was chosen arbitrarily as the 
level of noise had a limited impact on model performance). 

During retrieval, the vector of each test probe is compared 
to all the word vectors stored in memory, yielding a similarity 
value that indicates how similar the probe is to all the words 

stored in memory. This process is expressed in the following 
equation: 
𝑆! =	cos(𝑃, 𝑇!)          (1) 
Where 𝑆! indicates the cosine similarity (i.e., normalized 

dot product) between a test probe 𝑃 and the 𝑖th memory trace 
𝑇! 	. Here, each memory trace is a word on the study list. If the 
test probe and the memory trace are identical, their cosine 
similarity will be 1, and if they are completely irrelevant (i.e., 
orthogonal), their cosine similarity will be 0. 

Next, an activation value is generated by raising the 
similarity values to the exponent of 2. In order to preserve the 
signs of the similarity values, we reversed the sign after 
squaring if the similarity value is originally below zero. The 
traditional MINERVA2 model typically uses cubing to 
preserve the sign of similarity, we used squaring instead due 
to preliminary analyses showing that cubing led to an 
excessive overestimation of false alarms for critical lures. 
The calculation of activation values is shown below: 

𝐴! 	= 	 .
𝑆!", 𝑖𝑓	𝑆! > 0
−𝑆!", 𝑖𝑓	𝑆! < 0

                 (2) 

Here, 𝑆!  is the similarity value between a test probe 𝑃 and 
the memory trace 𝑇! , and 𝐴!  is the activation value after 
squaring the 𝑆! , with the signs being preserved. Via the 
squaring process, the model amplifies the influence of items 
that are highly similar to the test probe relative to those that 
are dissimilar to the probe. Last, the echo intensity value is 
calculated by summing all the activation values for the given 
probe. 
𝐼 = 	∑ 𝐴!#

!$%            (3) 
where 𝐼  is the echo intensity value, 𝐴!  is the activation 

value, and M is the total number of memory traces. Finally, a 
recognition decision was made by comparing the echo 
intensity to the decision criterion C. Thus, if 𝐼 is above C, 
then the probe will be recognized as “old,” and if 𝐼 is below 
C, the probe will be recognized as “new.” 

Simulations 
In this section, we first simulate standard true and false 
recognition data in the DRM paradigm. Then, we proceed to 
simulate the true and false recognition results under various 
classic manipulations, including manipulations of associative 
strength, number of associates, attention levels, and retention 
interval. In all simulations, we first retrieved the word vectors 
for the given DRM lists from word2vec and then input the 
vectors into the MINERVA2 model.  

Simulation 1: Levels of DRM True and False 
Recognition 
The first set of simulations was meant to test whether the 
MINERVA2 model can account for the standard true and 
false recognition patterns in the DRM paradigm. Specifically, 
we compared the levels of recognition predicted by the 
MINERVA2 model to behavioral data from three classic 
DRM studies (Gallo & Roediger, 2002; Roediger & 
McDermott, 1995; Stadler, Roediger, & McDermott, 1999).  
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Method For the simulation of Roediger and McDermott 
(1995; Experiment 2), we used all 24 DRM lists in their 
experiment. For the other two simulations, we used 34 of 36 
lists in Stadler et al. (1999) and 25 of 28 lists in Gallo and 
Roediger (2002; Experiment 1). Four lists were excluded 
because a few words on those lists were not available in the 
word2vec model we used.1  

We simulated a total of 1000 trials for each experiment. In 
each simulated trial, 10 DRM lists were randomly selected 
from the respective list pool as study materials, and thus 150 
words (15 words/list) were entered into the study list. The test 
probes include 10 critical lures, 30 targets (the words at the 
1th, 8th, and 10th position on the 10 DRM lists), and 20 
unrelated lures (the critical lure and the list words at the 1th, 
8th, and 10th position of five lists randomly selected from the 
unused DRM lists). The mean hit rates for the targets and the 
mean false alarm rates for the critical lures and unrelated 
lures were recorded across the 1000 stimulated trials. We 
used a learning rate of .6 for all simulations, and slightly 
different decision criteria for the three studies: 2.35 for 
Roediger and McDermott (1995), 2.3 for Stadler et al. (1999), 
and 2.15 for Gallo and Roediger 2002). 
 
Results Fig. 1 displays the data simulated by the 
MINERVA2 model compared to the actual data. As can be 
seen there, the model prediction closely approximates the 
qualitative trends in the actual data: Both true recognition for 
targets and false recognition for critical lures are well above 
the recognition for unrelated lures. There was only one 
systematic variation that the model tended to overestimate the 
false alarm rates for critical lures and underestimate the hit 
rates for targets. This may be due to the word2vec 
representations encoding a stronger semantic relationship 
among words on the DRM lists than human participants. 
 

 
Figure 1: The simulated and actual recognition results. 
Crit = critical lure. Tar = target. Un = unrelated lure. 

Simulation 2: Effects of Associative Strength 
In early research on DRM false recognition, Deese (1959) 
found that the associative strength between list words and 
critical lures is highly correlated with the cross-list variability 

 
1  For the simulation of Stadler et al. (1999), two lists whose 

critical lures are army and city were excluded. For the simulation of 
Gallo and Roediger (2002), three lists whose critical lures are 
citizen, city, and swift were excluded. 

in false recall. Later, Roediger et al. (2001) replicated the 
finding and extended it to false recognition, establishing 
associative strength as a strong predictor of false memory. 
Behavioral studies have experimentally manipulated the 
associative strength across lists and confirmed that strong 
lists (i.e., lists with higher associative strength) produced 
more false recognition than weak lists (i.e., lists with lower 
associative strength; e.g., Arndt & Hirshman, 1998; Brainerd, 
Reyna, & Forrest, 2002; Gallo & Roediger, 2002). Such a 
finding is consistent with AMF since critical lures should 
receive higher activation if list words are stronger associates 
(closer to the critical lure in the associative network). The 
finding is also consistent with FTT, as stronger associations 
between critical lure and list words are usually accompanied 
by strong semantic relatedness too, which in turn form a 
stronger global gist (Brainerd, Chang, & Bialer, 2020). Here, 
we tested whether the MINERVA2 model can capture the 
differences in false recognition between strong and weak 
DRM lists.  

 
Method We used 22 of the 24 lists from Gallo and Roediger 
(2002; Experiment 2), including 11 strongly associated lists 
and 11 weakly associated lists.2 In each simulated trial, we 
randomly sampled five strong lists and five weak lists. We 
used a constant learning rate (L = .6) and decision criterion 
(C = 2.3) across strong and weak lists. Thus, the locus of the 
effects of associative strength lies in the different words 
encoded in memory, rather than different processing across 
list types. The average hits for targets and false alarms for 
critical lures were recorded across 1000 simulated trials.  
 
Results The results are displayed in Fig. 2, which 
demonstrates that the MINERVA2 model again simulates a 
similar qualitative pattern compared to the actual data from 
Gallo and Roediger (2002; Experiment 2). Specifically, false 
alarms for critical lures dropped sharply from strong lists to 
weak lists, whereas hits for targets only dropped slightly from 
strong to weak lists. 
 

 
 

Figure 2: The simulated and actual recognition of Gallo 
and Roediger (2002). Crit = critical lure. Tar = target. 

2 Two lists whose critical lures are city and citizen were excluded 
because some list words are unavailable in word2vec. 
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Simulation 3: Effects of Number of Associates 
A classic finding in the DRM literature is that false 
recognition increases with the number of associates studied 
(Arndt & Hirshman, 1998; Gallo & Roediger, 2003; 
Hutchison & Balota, 2005; Robinson & Roediger, 1997). 
Namely, lists that contain more forward associates to the 
critical lure tend to elicit higher false recognition for the 
critical lure. In addition, lists with more associates also 
elicited higher true recognition for targets, although such an 
effect was weaker than that for critical lures, and it was also 
less robust (Gallo, 2006). This is consistent with AMF such 
that the critical lure, which is strongly associated with all list 
words, will receive increased spreading activations as the 
number of list words increase. However, list words 
themselves may not be as strongly associated with each other 
as with the critical lures, and thus they may receive less 
increase in activation when other associates are added to the 
list. FTT predicts the same pattern with different reasons.  It 
assumes that increased number of associates forms a more 
coherent global gist but simultaneously introduce more 
interference with verbatim traces. Thus, false recognition is 
elevated by the enhanced gist traces, whereas true recognition 
is under the contrasting influence of enhanced gist traces and 
impaired verbatim traces. In the current simulation, we test 
whether MINERVA2 can account for how true and false 
recognition varies as a function of the number of associates. 
 
Method We again simulated 1000 trials. In each simulated 
trial, we randomly selected five DRM lists from a combined 
list pool of Stadler et al. (1999) and Gallo and Roediger 
(2002). For each of the five lists, we added the first 3, 6, 9, 
12, or 15 associates of the list to the study list. Again, we used 
constant learning rate (L = .5) and decision criterion (C = .85) 
across all five types of lists (3-, 6-, 9-, 12-, 15-word), so the 
recognition effects are completely dependent on different 
lists rather than different processing.  
 
Results The false alarms for critical lures and hits for targets 
are plotted as a function of the number of associates in Fig. 
3. There, the data simulated by MINERVA2 closely tracks 
the pattern of the actual data in Robinson and Roediger 
(1997; Experiment 2). Specifically, false recognition for 
critical lures increases constantly as the number of associates 
increases. True recognition for targets also increases with the 
number of associates, but to a less extent than false 
recognition, as the slope for true recognition is much flatter 
than that for false recognition. The model predicts a slightly 
steeper slope for both critical lures and targets than the actual 
data, which is again possibly due to word2vec model being 
too adept at grasping the semantic relationship among the list 
words. Thus, as the number of associates increases, word2vec 
captures a stronger semantic relation than humans. 

 
 

Figure 3: The simulated and actual recognition of 
Robinson and Roediger (1997).  

Simulation 4: Effects of Divided Attention 
In the full versus divided attention manipulation, participants 
in the full attention condition simply encode word lists 
without distractions whereas participants in the divided 
attention condition encode the word lists when 
simultaneously performing a secondary task. According to 
FTT, divided attention is mainly a verbatim manipulation, 
such that it impairs the encoding of verbatim traces more than 
that of gist traces (Brainerd et al., 2019). Consistent with 
FTT, Jacoby (1996) demonstrated that recollection was 
sharply reduced by divided attention, whereas familiarity 
remained relatively stable. As verbatim traces support true 
memory rather than false memory while gist traces support 
false memory more than true memory, it follows that divided 
attention should impair true recognition more than false 
recognition. Indeed, multiple studies showed that although 
true and false recognition both decline with divided attention, 
true recognition declines to a larger extent than false 
recognition (Dewhurst et al., 2007; Knott & Dewhurst, 2007; 
Seamon, Luo, & Gallo, 1998; Seamon et al., 2003). 
 
Method In the MINERVA2 simulations for both the full and 
divided attention conditions, we randomly sampled five 
DRM lists from the combined list pool of Stadler et al. (1999) 
and Gallo and Roediger (2002) in each trial and run 1000 
simulated trials. Because divided attention should result in 
poorer encoding than full attention, we used a lower learning 
rate in the divided attention condition (L = .5) than in the full 
attention condition (L = .7). The decision criteria were 1.3 
and 1.5 for divided and full attention conditions, respectively. 
 
Results The simulation results are displayed in Fig. 4, which 
is compared to the results in Knott and Dewhurst (2007; 
Experiment 1). As we can see, the simulated patterns are 
again highly comparable to the actual behavioral data. 
Specifically, both true recognition and false recognition were 
reduced by divided attention. However, true recognition was 
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reduced more than false recognition, which is consistent with 
FTT’ prediction.  

 
Figure 4: The simulated and actual recognition of Knott 
and Dewhurst (2007). Crit = critical lure. Tar = target. 

Simulation 5: Effects of Retention Intervals 
According to FTT, gist traces are more resilient to forgetting 
and interference than verbatim traces. Thus, people tend to 
rely more on gist traces than verbatim traces after longer 
retention intervals (Brainerd & Reyna, 2005). Because gist 
traces support false memory more than true memory, false 
memory should be more persistent than true memory over 
longer retention intervals. Indeed, Toglia, Neuschatz, & 
Goodwin (1999) and Seamon et al. (2002) both demonstrated 
that there was a shaper decline in true memory than false 
memory after a few weeks. Moreover, Thapar and 
McDermott (2001) showed that false recognition could even 
surpass true recognition after a 1-week delay. 
 
Method In this simulation, we again simulated 1000 trials. In 
each trial, 6 DRM lists were randomly selected from the list 
pool of Roediger and McDermott (1995). To simulate the 
effect of retention interval on false recognition, we used 
different learning rates for shorter versus longer intervals. 
Because there should be more forgetting and interference 
with longer retention intervals, we used a lower learning rate 
(L = .2) for the delayed recognition test than for the 
immediate recognition test (L = .6). We also expect that 
participants should adopt a more liberal criterion in delayed 
tests since participants should rely more on familiarity rather 
than recollection compared to immediate tests. Accordingly, 
we used a lower decision criterion in delayed tests than in 
immediate tests (Cs = .6 vs. 1.2).  
 
Results The simulation results are shown in Fig. 5, where we 
can see that both true recognition for targets and false 
recognition for critical lures decline between immediate and 
delayed tests, but there was a shaper declining slope for true 
recognition than for false recognition, as FTT predicts, 
suggesting that false recognition is more enduring than true 
recognition. 

 
 

Figure 5: The simulated recognition of immediate versus 
delayed test.  

Discussion 
In the present paper, instead of using randomly generated 
vectors for words in the MINERVA2 model, we used word 
vectors derived from word2vec, which is a distributed 
semantic model that extracts word meaning from the word 
co-occurrence patterns and statistical redundancies in the 
natural language environment. Our results extend Arndt and 
Hirshman’s (1998) work in showing that the MINERVA2 
model provides a satisfactory account for true and false 
recognition in the DRM paradigm when combined with 
realistic semantic representations. Thus, the MINERVA2 
model demonstrated robustness and flexibility in terms of 
accommodating real-life complexity in word representations.  

Additionally, we emphasize that the integration of 
representational models and process models is a promising 
avenue and an obvious goal for the computational modeling 
of memory. This approach is not only more ecologically valid 
but also more computationally parsimonious. Regarding the 
latter, process models like MINERVA2 usually require 
separate assumptions or parameters to imitate the structure of 
human semantic memory with randomized representations. 
However, those assumptions or parameters will be 
unnecessary with the use of representational models (e.g., 
distributed semantic models), as the semantic information of 
the to-be-remembered items is readily capsulated in the 
representations themselves. In brief, we encourage future 
research to incorporate more realistic semantic 
representations instead of randomized representations into 
the process models. 
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