
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Power Maximization in Wave-Energy Converters Using Sampled -Data Extremum Seeking 
/

Permalink
https://escholarship.org/uc/item/2s17m6t5

Author
Chen, Tianjia

Publication Date
2013
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2s17m6t5
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA, SAN DIEGO

Power Maximization in Wave-Energy Converters
Using Sampled-Data Extremum Seeking

A Thesis submitted in partial satisfaction of the

requirements for the degree

Master of Science

in

Mechanical Engineering

by

Tianjia Chen

Committee in charge:

Professor Sonia Martinez, Chair
Professor Jorge Cortes
Professor Robert Bitmead

2013



Copyright

Tianjia Chen, 2013

All rights reserved.



The Thesis of Tianjia Chen is approved, and it is accept-

able in quality and form for publication on microfilm

and electronically:

Chair

University of California, San Diego

2013

iii



TABLE OF CONTENTS

Signature Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

Abstract of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . 3

Chapter 2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Point-Absorber Model of the WEC . . . . . . . . . . . . 4

2.2 Problem Formulation on Power Maximization . . . . . 5

Chapter 3 Sampled-Data Extremum-Seeking: Theory . . . . . . . . . . 8

3.1 General Setting . . . . . . . . . . . . . . . . . . . . . . . 8

3.2 Main Theoretical Results . . . . . . . . . . . . . . . . . . 11

Chapter 4 Sampled-Data Extremum-Seeking: Application . . . . . . . . 19

4.1 Steady-State Behavior and Output Maps . . . . . . . . . 19

4.2 Optimization Algorithm . . . . . . . . . . . . . . . . . . 22

4.3 Stability Analysis . . . . . . . . . . . . . . . . . . . . . . 24

Chapter 5 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.1 Regular-Wave Condition . . . . . . . . . . . . . . . . . . 36

5.2 Irregular-Wave Condition . . . . . . . . . . . . . . . . . 37

iv



Chapter 6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

v



LIST OF FIGURES

Figure 2.1: Schematic model of a heaving point absorber . . . . . . . . . . 4

Figure 5.1: Simulation for regular-wave condition: case 1 . . . . . . . . . 38

Figure 5.2: Simulation for regular-wave condition: case 2 . . . . . . . . . 39

Figure 5.3: Simulation for irregular-wave condition . . . . . . . . . . . . . 40

vi



LIST OF TABLES

Table 5.1: The dataset used in the simulations for regular-wave condition 36

Table 5.2: The dataset used in the simulation for irregular-wave condition 38

vii



ACKNOWLEDGEMENTS

First, I would like to thank my advisor, Professor Sonia Martinez, for her

generous support and guidance throughout the years of my graduate study. It is

one of my most precious experiences as well as a great honor to have the oppor-

tunity to work with her. Through this period, not only do I benefit from her rich

knowledge, I am also inspired by her strong personalities. I can still remember

the persistent guidance she gave, even during her pregnancy. Besides, the ways

of creative and critical thinking I learnt from her will be a huge fortune in my

future.

I must also acknowledge my co-worker, Mr. Hamed Foroush, for his

help and collaboration, especially his guidance in paper writing. His warmth

and patience impressed me a lot and I was really encouraged in some difficult

time throughout the research.

Last but not least, I want to thank my mother, my father and my grand-

parents, for their great support and care, as well as tremendous understanding,

during the years of my graduate study in the United States, distant with them.

Chapter 2, in full, has been submitted for publication of the material as it

may appear in proceedings of the 2014 American Control Conference, Portland,

OR, June 2014, Tianjia Chen, Hamed Foroush and Sonia Martinez. The thesis

author was the primary investigator and author of this paper.

Chapter 3, in part, has been submitted for publication of the material as it

may appear in proceedings of the 2014 American Control Conference, Portland,

OR, June 2014, Tianjia Chen, Hamed Foroush and Sonia Martinez. The thesis

author was the primary investigator and author of this paper.

Chapter 4, in part, has been submitted for publication of the material as it

may appear in proceedings of the 2014 American Control Conference, Portland,

OR, June 2014, Tianjia Chen, Hamed Foroush and Sonia Martinez. The thesis

author was the primary investigator and author of this paper.

Chapter 5, in part, has been submitted for publication of the material as it

viii



may appear in proceedings of the 2014 American Control Conference, Portland,

OR, June 2014, Tianjia Chen, Hamed Foroush and Sonia Martinez. The thesis

author was the primary investigator and author of this paper.

ix



ABSTRACT OF THE THESIS

Power Maximization in Wave-Energy Converters
Using Sampled-Data Extremum Seeking

by

Tianjia Chen

Master of Science in Mechanical Engineering

University of California, San Diego, 2013

Professor Sonia Martinez, Chair

Ocean waves bear huge, largely untapped energy which has drawn peo-

ple’s attention in recent decades. With the technology of wave-energy convert-

ers(WECs), the extraction of wave energy involves the process of energy con-

version, which relates to the concern of efficiency as well as the constraints it

introduces. In this work, we consider the problem of power maximization in

wave-energy converters modeled as point-absorbers.

We focus on the method of sampled-data extremum-seeking, where we

x



give assumptions based on which the semiglobal practical asymptotic stability

of the interconnected system is characterized. It is worth noting that the novelty

lies in our assumptions on the discrete-time class of systems and constrained

control inputs.

Besides the exploration in the theoretical aspect, we also propose the Nu-

merical Extremum-Seeking (NES) algorithm for the plant of WEC. We prove

that it is capable of solving the power maximization problem while ensuring the

stability of the system. The analysis of NES algorithm is based on the aforemen-

tioned theory along with a Poincaré map technique and a gradient-projection

method. Finally, we show the functionality of the proposed algorithm in simu-

lation results. In addition to the regular-wave condition, we present the simula-

tion for a more practical scenario, i.e., the irregular-wave case.
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Chapter 1

Introduction

1.1 Motivation

Ocean power is a largely untapped, clean energy resource. Compared to

wind energy, the main advantage of wave energy is its high spatial density and

temporal persistence, which can make it more reliable. Wave-energy extraction

and converters have drawn a huge attention over the past decades [5, 6]. The ex-

traction of wave energy involves a chain of energy conversion processes, each of

which is characterized by its efficiency as well as the constraints it introduces. In

particular, novel mechanisms, sensors, and control techniques are necessary in

order to harness wave energy more effectively. Motivated by this problem, this

thesis studies the application of a sampled-data extremum-seeking technique

for point-absorber Wave-Energy Converters (WECs).

For WECs, energy conversion occurs more efficiently when the undamped

natural frequency of the device is close to the dominant frequency of the in-

cident wave [9], while the velocity of the point-absorber is in phase with the

excitation force of the incoming wave. A first relevant control strategy is the

so-called reactive control, which aims to tune the dynamic parameters of the con-

verter using controlled actuation [10]. However, reactive control may result

in a negative mechanical spring, which has some practical issues [6]. Alterna-

1
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tively, the latching control strategy [4], aims to latch and release the device inter-

mittently to achieve the approximate optimal phase control—regardless of the

higher natural frequency of the device than wave frequency. Latching control

usually relies on relatively heavy computations, and requires the prediction of

the incoming wave some time into the future [6]. Extremum seeking (ES) is an

adaptive control strategy for tracking a time-varying extremum, i.e., maximum

or minimum, of an unknown, or poorly known cost function [1]. Amongst var-

ious ES approaches, the method of using sinusoidal perturbation to probe the

system has been studied in [1]. Recently, a perturbation-based, discrete-time ES

approach has been proposed to deal with the optimization problem of wave en-

ergy absorption by point absorbers [7], however this scheme does not account

for possible constraints in their inputs. Alternatively, sampled-data ES relies on

the tools of nonlinear programming [15], where the extremum is being searched

numerically [17]. The first uniform treatment of such sampled-data ES scheme

is studied in [15], whilst a different approach from the perspective of intercon-

nected systems is presented in [11]. Both works provide a set of sufficient con-

ditions for the closed-loop stability of generic sampled-data ES schemes. While

the results of [15] apply to a general sampled-data ES scheme, [11] characterizes

stability employing Lyapunov arguments for interconnected systems. This re-

lates more directly to the structural features of the subsystems involved, which

allows the more explicit identification of how problem parameters affect their

performance. More recently, there is research [8] on the unified frameworks

for sampled-data ES control. Opposed to the Lyapunov-based stability analysis

in [15] and [11], trajectory-based proof is provided in [8]to carry out the stability

property.

In this thesis, we propose a sampled-data numerical ES (NES) algorithm

to maximize the power output via tuning the control parameter of the WEC

according to the measured outputs. The advantage of our approach is that it

handles constrained control inputs, by incorporating a projection method into

the numerical algorithm. We then analyze the performance of such method

under the assumption of a regular wave regime. In our WEC application, we
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encounter a similar interconnected stability problem as in [11], however, this

time, with respect to a limit cycle. Thus, we extend their results to discrete-time

systems configuration where, in addition, the control input is constrained to be

in a compact set. Based on the extended results, the stability property of the

limit cycle is characterized regarding the interconnection of the WEC plant and

the proposed algorithm through a Poincaré map technique. Simulation results

are provided to demonstrate the practicality of our proposed approach under

both regular and irregular waves.

1.2 Thesis Structure

The thesis is organized as follows. In Chapter 2, we introduce the model

of WEC as a point-absorber and formulate the optimization problem that we

have studied in this thesis. Then, in Chapter 3, we present briefly the theory on

the stability of sampled-data ES, where the contents are kept at an abstract level

to be served in upcoming parts. In Chapter 4, a sampled-data NES algorithm

is proposed and the relevant stability property when interconnected with the

WEC model is studied, comprehensively. The simulation results are given in

Chapter 5, which is followed by the conclusions.



Chapter 2

Problem Formulation

2.1 Point-Absorber Model of the WEC

We model the Wave Energy Converter (WEC) as a point absorber in

heave motion (one degree of freedom) with a Power Take-Off (PTO) mecha-

nism, see Figure 2.1.

Buoy

Seabed

PTO

Kp Dp

Figure 2.1: Schematic model of a heaving point absorber

Using q to denote the displacement of the buoy away from its equilibrium

4
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position and ω for the incoming wave frequency, the WEC dynamic model can

be described by (refer to [14, 12, 6])

(Ms +Ma(ω))q̈ +Dh(ω)q̇ +Khq = fe + fp, (2.1)

where Ms and Ma(ω) denote respectively the structural mass of the buoy and

the added mass caused by the inertia of the water surrounding it. In addition,

Dh(ω) is the hydraulic damping and Kh is the buoyant stiffness. On the right-

hand side of (2.1), fe represents the wave excitation force and fp is the force

generated by the PTO mechanism. Under regular (sinusoidal) wave and linear

PTO assumptions, fe and fp can be specified as




fe = F (ω,H) cos(ωt),

fp = −Dpq̇ −Kpq.
(2.2)

Here, F (ω,H) is the magnitude of fe that depends on ω and the wave amplitude,

H . Also, Dp and Kp are the equivalent PTO damping and stiffness, which can

be potentially controlled to optimize the energy extraction.

2.2 Problem Formulation on Power Maximization

Based on the aforementioned model, the instantaneous power output can

be characterized as follows

P (t) = −fp(t)q̇(t) = (Dpq̇(t) +Kpq(t))q̇(t). (2.3)

However, regardless of the transient state, we are interested in the time-averaged

steady-state power output

P ss
avg ,

1

Tp

∫ Tp

0

Pss(τ) dτ, (2.4)

where Tp is the wave period, i.e., Tp = 2π/ω, and Pss(t) is the steady-state be-

havior of the power output P (t) introduced in (2.3). As illustrated in [6], the
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following optimal conditions maximize P ss
avg




ω =

√
Kh+Kp

Ms+Ma(ω)
,

Dp = Dh(ω).
(2.5)

However, a direct tuning of the control parameters Dp and Kp according to (2.5)

may not be feasible, since Ma(ω), Dh(ω), and F (ω,H) are related to the wave

conditions and the geometry of the buoy in a complicated manner, and the real

wave conditions vary in different time-scales [7]. Motivated by the above facts,

model-free extremum-seeking control techniques can be used to deal with this

problem, which we will develop more later.

For simplicity, we denote M , Ms +Ma(ω), K , Kh +Kp. Also, we only

take v = Dp to be the control variable and keep Kp = 0. However, our approach

can be extended to the case when v = (Dp, Kp)
T in a straightforward manner.

Based on (2.1) and (2.2), we get

Mq̈ + (Dh + v)q̇ +Kq = F cos(ωt),

or equivalently, in state-space form

ẋ =

[
0 1

−K
M
−Dh+v

M

]
x+

F

M
cos(ωt), (2.6)

where x = (x1, x2)
T = (q, q̇)T ∈ R

2. For the sake of power-output efficiency, as

discussed in [13], we constrain v to belong to a compact set, Q = [vmin, vmax],

where vmin and vmax are given beforehand and satisfy 0 ≤ vmin < vmax. Besides,

the other parameters are real and positive, in accordance with their physical

interpretations.

The objective is to optimize the time-averaged steady-state power output

as follows

max
v∈Q

P ss
avg(v),

s.t. (2.6).
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Due to the presence of the constraint set, Q, as well as the lack of explicit

knowledge on the parameters, F , K, M , and Dh, we focus on the approach of

sampled-data ES, which iteratively updates the control parameters, based on

the feeding of the sampled outputs, to minimize or maximize the steady-state

output map of the plant. This leads the problem of how to realize the intercon-

nection of the numerical scheme and dynamic system, so that the stability of

the coupled system is guaranteed while maximizing the desired performance

function. We address this issue in the rest of the contents.

Chapter 2, in full, has been submitted for publication of the material as it

may appear in proceedings of the 2014 American Control Conference, Portland,

OR, June 2014, Tianjia Chen, Hamed Foroush and Sonia Martinez. The thesis

author was the primary investigator and author of this paper.



Chapter 3

Sampled-Data Extremum-Seeking:

Theory

In this chapter, we present theoretical results on constrained sampled-

data ES for a general class of systems. The contents are kept abstract and have

been inspired from [11]. Nonetheless, they have been adapted for the class of

discrete-time systems with constrained control inputs that we consider here.

3.1 General Setting

We consider a class of discrete-time nonlinear systems described as

Σ :




xj+1 = f(xj , vj),

yj = h(xj , vj),
j ∈ N,

where x ∈ R
n is the state vector, v ∈ Q ⊂ R

d is the input vector in a compact

set Q, and y ∈ R is the output. Here, the mappings f and h are continuous. We

shall study the stability behavior of Σ when interconnected with a numerical

optimization algorithm of the form

O : vk+1 = vk + s(vk), ∀k ∈ N, (3.1)

8
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where s(vk) is the so-called search vector at the kth iteration. We notice the use

of different indices for Σ and O to indicate that the time-steps for both systems

need not be necessarily the same. To be precise, subscripts j’s characterize the

time-sequence {tj}, where tj = jTΣ; while superscripts k’s characterize the time-

sequence {tk}, where tk = kTO, with TO = nTΣ for some n ∈ N.

Intuitively, the system interconnection Σ−O is performed when feeding

the plant Σ a proper control input v, generated by controller O, which aims to

optimize some cost function. In the context of sampled-data ES, the stability of

the interconnection Σ − O is usually characterized by TO. In what follows, this

point is formalized in technical words.

We assume that there exists a continuous fixed-point map l : Q→ R
n such

that f(x, v) = x if and only if x = l(v). Using l we define the new state variable

z , x− l(v). Thereby, a state transformation on Σ is performed for a fixed input

vj ≡ v, ∀j ∈ N, leading to

Σ :




zj+1 = f(zj + l(v), v)− l(v),

yj = h(zj + l(v), v).
j ∈ N. (3.2)

Moreover, we define the Reference-to-Output (RO) map, J : Q → R, as J(v) =

h(l(v), v). Once Σ and O are interconnected, we can regard the effect of Σ on

O as a perturbation on O’s ideal evolution described in (3.1). The perturbed

numerical optimization algorithm evolves according to

Op :




vk+1 = vk + sp(v

k, zk), ∀k ∈ N,

vj = vk, ∀j ∈ N : tj ∈ [tk−1, tk),
(3.3)

where sp(v, z) is the perturbed search vector satisfying v + sp(v, z) ∈ Q. Let us

define also zk be the transient error for the kth iteration as

zk , xk − l(vk), (3.4)

where xk = x(tk).

In what follows, we shall state several different assumptions required for

later analysis.
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Assumption 3.1.1. (Lyapunov function for Σ): For every fixed v ∈ R
d, the dynamic

system Σ described in (3.2) is exponentially stable. That is, there exists a radially un-

bounded C1 function, VΣ : Rn → R≥0, such that

(a) VΣ(z) is positive definite,

(b) there exists a real number γ > 0 such that

VΣ(zj+1) = VΣ(f(zj + l(v), v)− l(v)) ≤ e−γTΣVΣ(zj),

∀zj ∈ R
n, ∀v ∈ Q, where TΣ denotes the time-step of Σ, as stated previously.

Remark 3.1.2. Due to the continuity of the composition, J(v) = h(l(v), v), with re-

spect to v and the compactness property of Q, there exists a v∗ ∈ Q such that ∀v ∈ Q,

J(v) ≥ J(v∗). Moreover, the next assumption guarantees that numerical optimization

algorithm O converges to this v∗.

Assumption 3.1.3. (Lyapunov function forO): The numerical optimization algorithm

O converges to v∗, a minimizer of J(v). More precisely, there exists a C1 function

VO : Q→ R≥0 with the following properties:

(a) VO(v) be positive definite,

(b) ∇VO(v)
Ts(v) < 0, ∀v ∈ Q\{v∗}, and ∇VO(v

∗)T s(v∗) = 0,

(c) there exist a real number κs > 0 such that |s(v)|2 ≤ −κs∇VO(v)
T s(v), ∀v ∈ Q,

(d) ∇VO(v) be Lipschitz on Q, with Lipschitz constant, L∇VO
.

Assumption 3.1.4. (Additive perturbation to the search vector): There exists a con-

tinuous function, p : Rn → R
d, such that sp(v, z) = s(v) + p(z), ∀v ∈ Q, ∀z ∈ R

n.

Remark 3.1.5. (Expansion of the perturbation term): The term, p(v), stated in the

previous assumption, can be always represented as the addition of its vanishing and

nonvanishing components as in the following form:

p(z) = pv(z) + p0,

where pv(z) , p(z)− p(0) and p0 , p(0).
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Assumption 3.1.6. (Growth of the vanishing perturbation): There exists a real num-

ber, κΣ > 0, such that κΣVΣ(z) ≥ |pv(z)|2, ∀z ∈ R
n.

Assumption 3.1.7. (Lipschitz property of l): The fixed-point map l(v) is Lipschitz on

Q, with Lipschitz constant Ll.

We would like to note that the assumptions mentioned above are along

the lines of the ones stated in [11]. Moreover, in this adapted framework, As-

sumption 3.1 in [11] is relaxed, since it does not hold for the gradient-projection

algorithms which are commonly used in constrained optimization and also will

be involved in our particular WEC problem.

3.2 Main Theoretical Results

In this section, we present two results wherein we discuss under which

conditions, the Σ−O interconnection obeys a semiglobal practical stability prop-

erty.

Definition 3.2.1. The point (0T , (v∗)T )T is said to be semiglobally practically asymp-

totically stable for the closed-loop system Σ−O if:

1) There exist two compact subsets of Rn × Q, i.e., P and W , with P ⊂ W , both

containing (0T , (v∗)T )T , and both being positively invariant with respect to Σ−O.

Furthermore, each trajectory of Σ − O starting in W\P must enter P in finitely-

many iterations,

2) Σ − O is parameterized by a set of tunable variables that can be adjusted to render

W arbitrarily large, and P , arbitrarily small.

Lemma 3.2.2. (Leibniz integral rule [11]): Given a differentiable function, f : Rn →
R, and a, b ∈ R

n, we have

f(a+ b) = f(a) +

∫ 1

0

∇f(a+ τb)T b dτ. (3.5)
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Proof. Let g(τ) = a+ τb. By the chain rule of differentiation, we have

d

dτ
f(g(τ)) = ∇f(a+ τb)T b.

Then by Leibniz integral rule,

∫ 1

0

d

dτ
f(a+ τb)dτ = f(a+ b)− f(a),

whereby equation (3.5) follows readily.

Lemma 3.2.3. (Growth of the Lyapunov function for Σ): Let ∆V k
Σ = VΣ(z

k+1) −
VΣ(z

k), with zk as in (3.4), and recall TO = nTΣ for some n ∈ N. Under Assump-

tion 3.1.1 on the Lyapunov function of Σ and Assumption 3.1.7 on the Lipschitz prop-

erties of l, the following holds:

∆V k
Σ ≤− (1− e−γTO)VΣ(z

k) + e−γTO |sp(vk, zk)|2

+
1

4
e−γTO(LVΣ

Ll)
2, (3.6)

for all ((zk)T , (vk)T )T ∈ Ωz×Q, where Ωz ⊂ R
n is an arbitrarily large and compact set

that contains the origin, and LVΣ
is the Lipschitz constant for VΣ(z) on some compact

set S ⊃ Ωz.

Proof. By Assumption 3.1.1, we get

VΣ(z
k+1) = VΣ(x

k+1 − l(vk+1))

≤ e−γTOVΣ(x
k − l(vk+1))

= e−γTOVΣ(x
k − l(vk) + l(vk)− l(vk+1)),

we then recall zk = xk − l(vk), where then adding and subtracting e−γTOVΣ(z
k)

on the right-hand side, bestows

VΣ(z
k+1) ≤e−γTOVΣ(z

k + l(vk)− l(vk+1))− e−γTOVΣ(z
k)

+ e−γTOVΣ(z
k).

From the statement of this lemma, we know zk ∈ Ωz ⊂ R
n where Ωz is compact.

Also, we know vk ∈ Q, vk+1 ∈ Q where Q is also compact. Let us then define the
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following set:

S = {z ∈ R
n : z = ζ + l(vk)− l(vk+1),ζ ∈ Ωz,

vk ∈ Q, vk+1 ∈ Q},

where we note that S ⊃ Ωz and that S is compact—by recalling Assumption 3.1.7

on l(v) be Lipschitz on Q. Moreover based on Assumption 3.1.1(a), we recall

VΣ(z) is C1, which infers that it is locally Lipschitz on any compact set. Let

then LVΣ
be its Lipschitz constant on the compact set S, where then by recalling

Assumption 3.1.1(b) and using the Lipschitz property of VΣ(z) and l(v), for all

zk ∈ Ωz, we obtain

VΣ(z
k+1) ≤ e−γTOLVΣ

|l(vk)− l(vk+1)|+ e−γTOVΣ(z
k)

≤ e−γTOLVΣ
Ll|vk+1 − vk|+ e−γTOVΣ(z

k).

We then, by (3.3), notice that vk+1 − vk = sp(v
k, zk) where then by applying

Young’s inequality ab ≤ ǫ
2
a2 + 1

2ǫ
b2 with ǫ = 2 on the term, LVΣ

Ll|sp(vk, zk)|, we

derive

VΣ(z
k+1) ≤ e−γTOLVΣ

Ll|sp(vk, zk)|+ e−γTOVΣ(z
k)

≤ e−γTO |sp(vk, zk)|2 +
1

4
e−γTO(LVΣ

Ll)
2 + e−γTOVΣ(z

k).

Finally, subtracting VΣ(z
k) from both sides gives the required form as in (3.6),

and thus the proof is complete.

We state next two theorems providing sufficient conditions to guarantee

the desired stability properties for the closed-loop system Σ−O at (0T , v∗T )T .

Theorem 3.2.4. (Growth of the composite Lyapunvo function): Consider the composite

Lyapunov function V (z, v) = VΣ(z) + VO(v) and let Assumptions 3.1.1 and 3.1.3 on

the Lyapunov functions VΣ and VO, Assumptions 3.1.7 on the Lipschitz property of

l, and Assumptions 3.1.4 and 3.1.6 on the properties of the perturbation to the search

vector, hold. Then, there exists a neighborhood Ω0 ×Q of (0T , (v∗)T )T , where Ω0 ⊂ R
n

which can be made arbitrarily large, and positive real numbers, κ∗
s, κ∗

Σ and T ∗, such that
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if κs < κ∗
s, κΣ < κ∗

Σ, TO > T ∗ and ((z0)T , (v0)T )T ∈ Ω0 ×Q, then V (zk, vk) decreases

along the trajectories of the system Σ−O according to

∆V k ≤ −CΣVΣ(z
k) + CO∇V T

O (vk)s(vk) + C̄,

where ∆V k , V (zk+1, vk+1)−V (zk, vk). Also, CΣ, CO and C̄ are positive real numbers

and given by

CΣ = 1− e−γTO − κΣ(4e
−γTO + 2L∇VO

+
1

δ
),

CO = 1− κs(2e
−γTO + L∇VO

),

C̄ = (4e−γTO + 2L∇VO
+

1

δ
)|p0|2

+
1

4
e−γTO(LVΣ

Ll)
2 +

δ

2
sup
v∈Q

|∇VO(v)|2,

where δ is some positive constant.

Proof. Under the evolution of Σ−O, we have

∆V k = V (zk+1, vk+1)− V (zk, vk) = ∆V k
Σ +∆V k

O ,

where ∆V k
Σ is as defined in Lemma 3.2.3 and ∆V k

O = VO(v
k+sp(v

k, zk))−VO(v
k).

From Lemma 3.2.2, we have

VO(v
k + sp(v

k, zk)) = VO(v
k) +∇VO(v

k)T sp(v
k, zk)

+

∫ 1

0

(∇VO(v
k + τsp(v

k, zk))−∇VO(v
k))T sp(v

k, zk) dτ.

We apply the Lipschitz property of ∇VO with Lipschitz constant L∇VO
on the

integrand, which obtains

∆V k
O ≤ ∇VO(v

k)T sp(v
k, zk) +

1

2
L∇VO

|sp(vk, zk)|2.

This latter inequality, together with (3.6), leads to

∆V k ≤− (1− e−γTO)VΣ + e−γTO |sp|2 +
1

4
e−γTO(LVΣ

Ll)
2

+∇V T
O sp +

1

2
L∇VO|sp|2,
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where we drop all the arguments for notational simplicity. We then recall from

Assumption 3.1.4 that sp = s+ p, which implies

|sp|2 = |s|2 + 2sTp+ |p|2.

By the Cauchy-Schwarz inequality, it holds that sTp ≤ |s||p| and∇V T
O p ≤ |∇VO||p|.

Therefore, we obtain

∆V k ≤− (1− e−γTO)VΣ

+ (e−γTO +
1

2
L∇VO

)(|s|2 + 2|s||p|+ |p|2)

+
1

4
e−γTO(LVΣ

Ll)
2 +∇V T

O s+ |∇VO||p|.

By Young’s inequality, we have that

|s||p| ≤ 1

2
|s|2 + 1

2
|p|2,

|∇VO||p| ≤
δ

2
|∇VO|2 +

1

2δ
|p|2,

where δ > 0 is some parameter we can specify. Using the above inequalities for

a generic δ, we obtain

∆V k ≤− (1− e−γTO)VΣ + (2e−γTO + L∇VO
)|s|2

+ (2e−γTO + L∇VO
+

1

2δ
)|p|2

+
1

4
e−γTO(LVΣ

Ll)
2 +∇V T

O s+
δ

2
|∇VO|2.

Recall that p(z) = pv(z) + p0, which implies |p|2 ≤ 2|pv|2 + 2|p0|2, and Assump-

tions 3.1.3(c) and 3.1.6, which imply |s|2 ≤ −κs∇V T
O s and |pv|2 ≤ κΣVΣ, respec-

tively. Thus, we can further upper bound ∆V k as

∆V k ≤(−(1− e−γTO) + κΣ(4e
−γTO + 2L∇VO

+
1

δ
))VΣ

+ (1− κs(2e
−γTO + L∇VO

))∇V T
O s

+ (4e−γTO + 2L∇VO
+

1

δ
))|p0|2

+
1

4
e−γTO(LVΣ

Ll)
2 +

δ

2
|∇VO|2.
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Let us denote

CΣ = 1− e−γTO − κΣ(4e
−γTO + 2L∇VO

+
1

δ
),

CO = 1− κs(2e
−γTO + L∇VO

),

and

C =(4e−γTO + 2L∇VO
+

1

δ
)|p0|2

+
1

4
e−γTO(LVΣ

Ll)
2 +

δ

2
|∇VO|2.

We obtain the desired upper bound for ∆V k as

∆V k ≤ −CΣVΣ + CO∇V T
O s+ C̄,

where C̄ > 0 is given by

C̄ =(4e−γTO + 2L∇VO
+

1

δ
)|p0|2

+
1

4
e−γTO(LVΣ

Ll)
2 +

δ

2
sup
v∈Q

|∇VO(v)|2.

Observe that CO can always be rendered positive for a κs < κ∗
s where

κ∗
s =

1

2 + L∇VO

.

Regarding CΣ, we can fix a chosen T ∗ > 0 and then, ǫ∗ , 1 − e−γT ∗

satisfies

0 < ǫ∗ < 1. Moreover, note that it is possible to choose a κΣ > 0 small enough so

that

κΣ(4e
−γTO + 2L∇VO

+
1

δ
) < ǫ∗,

for any fixed parameter δ and any TO > 0. Indeed, such a choice of κΣ can be

characterized by κΣ < κ∗
Σ, where

κ∗
Σ =

ǫ∗

4 + 2L∇VO
+ 1

δ

≤ ǫ∗

4e−γTO + 2L∇VO
+ 1

δ

.

Thus, along with the condition TO > T ∗, CΣ can be ensured to be positive.

We note that the prerequisite for the above arguments is that ((zk)T , (vk)T )T ∈
Ωz×Q in Lemma 3.2.3 holds. Therefore, the set Ω0 in the theorem statement can

be chosen to be inside of Ωz which can be made arbitrarily large.
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We note that in the case of forward-Euler gradient estimation, where

p0 = µsp̄0 and µs is the step-size in the Euler method, C̄ can be tuned to be

arbitrarily small by taking large enough TO and small enough µs depending on

the specified δ. Based on the previous theorem and Definition 3.2.1, we are now

ready to characterize the semiglobal practical asymptotic stability property of

the Σ−O system in the following theorem.

Theorem 3.2.5. (Stability of the interconnected Σ − O): Assume that the conditions

of Theorem 3.2.4, on the growth of the composite Lyapunov function, are satisfied with

κs < κ∗
s, κΣ < κ∗

Σ and TO > T ∗. Furthermore, assume that the nonvanishing perturba-

tion p0 is parametrized by a tunable variable µs as p0 = µsp̄0. Then, the system Σ−O
is semiglobally practically asymptotically stable at (0T , (v∗)T )T .

Proof. The proof mimics the approach discussed in the proof of Theorem 3.2

in [11]. Consider w = (zT , vT )T ∈ R
n ×Q and let w∗ = (0T , v∗T )T . Define the set

Z = {w ∈ R
n ×Q : CΣVΣ(z)− CO∇VO(v)

T s(v) ≤ C̄}.

Note that on Z, the sequence {V (wk)}k≥0 generated by the evolution of Σ −
O is no longer guaranteed to decrease. By Assumptions 3.1.1 and 3.1.3, the

function F : w 7→ CΣVΣ(z)−CO∇VO(v)
T s(v) is continuous and positive definite.

Consequently, Z is compact for a sufficiently small C̄ > 0. Moreover, since the

parameter,

C̄ =(4e−γTO + 2L∇VO
+

1

δ
)|p0|2

+
1

4
e−γTO(LVΣ

Ll)
2 +

δ

2
sup
v∈Q

|∇VO(v)|2.

can be made arbitrarily small for small µs and large TO, the set Z itself can be

made arbitrarily small by the continuity of F .

We may now construct the required set P discussed in Definition 3.2.1.

By the compactness of Z and the continuity of V , there exists a number β =

max{V (w) : w ∈ Z}; then, Ωβ = {w ∈ R
n × Q : V (w) ≤ β} is the smallest

sublevel set of V strictly containing Z. We claim that the set

Ωβ+C̄ , {w ∈ R
n ×Q : V (w) ≤ β + C̄},
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is positively invariant with respect to Σ − O. Since Ωβ is the smallest sublevel

set of V containing Z, it is clear that Ωβ+C̄ is the smallest positively invariant set

containing Z.

Next, let ǫ be a positive, arbitrarily small, real number and consider the

larger sublevel set

P , {w ∈ R
n ×Q : V (w) ≤ β + C̄ + ǫ},

which is compact since both VΣ is positive definite and radially unbounded and

VO is positive definite and Q is compact. We note that by the construction of P

from Z, and the fact that Z can be made arbitrarily small via TO and µs, P can

likewise be made arbitrarily small.

Choose any W according to Theorem 3.2.4, large enough to strictly con-

tain P . Such a choice is always possible by the radial unboundedness of VΣ and

the compactness of Q. In the following, we show that all trajectories initiated

inside W\P enter P in finitely-many iterations. Since W is compact, there exists

a number

a = min{−∆V (w) : w ∈ W\P}.

Suppose that Σ−O is initialized at w0 ∈ W\P . Then V (wk+1) < V (wk)− a and

therefore V (wk) < V (w0)− ka, which implies that wk ∈ P for all k > K, where

K = ⌈V (w0)− β − C̄ − ǫ

a
⌉.

Since w0 is arbitrary, it remains true that all trajectories initiated inside W\P
enter P in finitely-many iterations, and Definition 3.2.1 is satisfied, and thus the

proof is complete.

Chapter 3, in part, has been submitted for publication of the material as it

may appear in proceedings of the 2014 American Control Conference, Portland,

OR, June 2014, Tianjia Chen, Hamed Foroush and Sonia Martinez. The thesis

author was the primary investigator and author of this paper.



Chapter 4

Sampled-Data Extremum-Seeking:

Application

In this chapter, we first discuss the steady-state behavior of the buoy

dynamics, where we shall also introduce the output and reference-to-output

maps. We then present our NES algorithm, which is followed by applying the

sampled-data ES theory to analyze the stability of this algorithm.

4.1 Steady-State Behavior and Output Maps

We first recall that

Mq̈ + (Dh + v)q̇ +Kq = F cos(ωt), (4.1)

and let u(t) = F cos(ωt). Applying the Laplace transform on this equation we

get

s2MX(s) + s(Dh + v)X(s) +KX(s) = U(s),

wherein X(s) , Lt{q(t)}(s), U(s) , Lt{u(t)}(s). Accordingly, we can obtain the

following transfer function

G(s) ,
X(s)

U(s)
=

1

Ms2 + (Dh + v)s+K
.

19
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Recall that the steady-state response to sinusoidal input signal u(t) = F cos(ωt)

is

qss(t) = FXm cos(ωt+ φ), (4.2)

where Xm and φ represent the complex modulus and argument of G(iω), re-

spectively, with i =
√
−1. Thus, Xm can be computed as

Xm = |G(iω)| = 1√
(K −Mω2)2 + (Dh + v)2ω2

. (4.3)

It can also be verified that

q̇ss(t) = ωFXm(− sin(ωt+ φ)). (4.4)

Based on this, we are able to find the relation between P ss
avg, as defined in

Chapter 2, and the control variable v.

Lemma 4.1.1. (Steady-state averaged power): Consider system dynamics (4.1), then

P ss
avg, as defined by

P ss
avg ,

1

Tp

∫ Tp

0

Pss(τ) dτ, (4.5)

satisfies

P ss
avg(v) =

1

2

ω2F 2v

(K −Mω2)2 + (Dh + v)2ω2
. (4.6)

Proof. First, we recall from Chapter 2 that

P (t) = −fp(t)q̇(t) = (Dpq̇(t) +Kpq(t))q̇(t),

whereby we note that Pss(t), the steady-state behavior of power output P (t) can

be further derived by Pss(t) = (Dpq̇ss(t) +Kpqss(t))q̇ss(t). By replacing qss(t) and

q̇ss(t) with equations (4.2) and (4.4), we obtain

P ss
avg =

1

Tp

∫ Tp

0

vω2F 2X2
m sin2(ωτ + φ) dτ

+
1

Tp

∫ Tp

0

KpωF
2X2

m(−
1

2
sin(2ωτ + 2φ)) dτ

=
1

2
vω2F 2X2

m,

where we note v = Dp. Finally, recalling equation (4.3), we obtain (4.6); this then

completes the proof.
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Next, we consider the following output map:

y(t) = h(x, v) = −1
2
v(t)(ω2(x1(t))

2 + (x2(t))
2), (4.7)

provided that the states x = (x1, x2)
T = (q, q̇)T are available by employing ve-

locity and acceleration sensors, and that the wave frequency ω is detectable by

using wave gauges or optical-fiber sensors as in [18]. The steady-state behavior

of this output map is characterized in the next lemma.

Lemma 4.1.2. (Output map): Consider the output map y(t) given by (4.7), and let

J(v) = limt→∞ y(t)|v is fixed, then, the following holds

J(v) = −P ss
avg(v). (4.8)

Proof. We first substitute (4.7) in J(v), which can be computed recalling (4.2)

and (4.4), as follows

J(v) = −1
2
v(ω2(qss(t))

2 + (q̇ss(t))
2) = −1

2
vω2F 2X2

m.

The result follows immediately by recalling Xm from (4.3) and comparing with

P ss
avg(v) in (4.6).

Now it is clear that maximizing P ss
avg(v) is equivalent to minimizing J(v).

Therefore, by (4.7) and recalling

ẋ =

[
0 1

−K
M
−Dh+v

M

]
x+

F

M
cos(ωt), (4.9)

the system of interest is





ẋ =


 0 1

−K
M
−Dh+v

M


 x+ F

M
cos(ωt),

y = −1
2
v(ω2x2

1 + x2
2).

(4.10)
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4.2 Optimization Algorithm

In order to minimize J(v) stated in (4.8), here we consider a gradient-

descent algorithm, which iteratively updates the control variable v as follows

vk+1 = vk − αs∇J(vk), (4.11)

where k is the iteration index and αs > 0 is the fixed step-size. Note that

∇J(vk) cannot be measured directly, so we approximate it by the forward-Euler

method, that is

∇J(vk) ≈ J(vk + µs)− J(vk)

µs

, (4.12)

where µs is the step size in the Euler method. We also note that the precise

value of J in (4.12) is not available because of its steady-state nature described

in (4.8). Instead, we approximate it by measuring the output y(t) after waiting

a certain period of time, called waiting time, every time a new v is applied. More

specifically, consider the start of the kth iteration, tk,0. At this time, we apply

vk. After waiting a period of time, at tk, we take the measurement y(tk), right

before applying vk + µs. Then, after waiting for another period of time, at tk,1,

we take the measurement of y(tk,1) and update the control to be vk+1. This tk,1

then becomes the starting time instant for the next iteration, tk,1 = tk+1,0. For

simplicity, we set the two waiting times to be the same and equal to period T

in the algorithm. Indeed, this parameter, T , plays the role of TO introduced in

Chapter 3.

We denote the above estimation of ∇J(vk) by ∇̂J(vk) and recall y(t)

from (4.7), we get

∇̂J(vk) = h(x(tk,1), vk + µs)− h(x(tk), vk)

µs

. (4.13)

We recall from our problem formulation that the control variable v is constrained

to Q = [vmin, vmax]. Therefore, we reformulate (4.11) as

vk+1 = PQ{vk − αs∇J(vk)}, (4.14)
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where the projection PQ{v} is given by

PQ{v} =





vmin, if v < vmin,

vmax, if v > vmax,

v, otherwise.

(4.15)

We assume, without loss of generality, that PQ{vk + µs} = vk + µs holds, other-

wise the following analysis can be applied with Q̃ = [vmin + µs, v
max − µs] ⊆ Q.

We further assume that the dither satisfies µs <
vmax−vmin

2
, to guarantee Q̃ 6= ∅.

Algorithm 1 Numerical Extremum-Seeking (NES)

1: given T , µs, αs, vmin, vmax and v0

2: initialize τ ← 0, v ← v0

3: loop

4: τ ← τ +∆t

5: if τ > T and τ ≤ T +∆t then

6: yref ← y(t),

7: vref ← v,

8: v ← vref + µs

9: else if τ > 2T and τ ≤ 2T +∆t then

10: ∇J ← y(t)−yref

v−vref

11: vref ← vref − αs∇J
12: if vref ≥ vmin and vref ≤ vmax then

13: v ← vref

14: else if vref < vmin then

15: v ← vmin

16: else if vref > vmax then

17: v ← vmax

18: end if

19: τ ← 0

20: end if

21: end loop

A pseudo-code for the proposed algorithm is provided in Algorithm 1,

which we shall refer to as the NES algorithm. There, we use ∆t to denote the
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algorithm’s time step-size, which can be arbitrarily small and satisfies ∆t < T .

Also, τ ∈ R≥0 is the algorithm’s time-counter whose step-size is ∆t, and which

is reset after passing every 2T time-interval.

4.3 Stability Analysis

Recalling the steady-state response (4.2) and (4.4), there exists a limit cy-

cle for system (4.9) for a fixed v. That is,

x2
1

F 2Xm(v)2
+

x2
2

ω2F 2Xm(v)2
= 1, (4.16)

where Xm(v) is given by (4.3). The stability of this limit cycle can be studied

through a Poincaré map.

Consider (4.1), and denote by µ(v) , (D + v)/(2M), ω2
0 , K/M , and

η , F/M . A more standard form of this equation can be obtained as

q̈ + 2µ(v)q̇ + ω2
0q = η cos(ωt). (4.17)

In this section, we consider the system to be underdamped, i.e., 0 < µ(v) < ω0

holds, which is generally the case for the point absorber [2]. For the other cases,

similar analysis can be done in a straightforward way.

Lemma 4.3.1. (Poincaré map for (4.17); see [16]): Consider the system in (4.17). We

denote ξ ,
√

ω2
0 − µ(v)2 and recall Tp = 2π/ω. Then, a Poincaré map P takes the form

as

P

(
q(0)

q̇(0)

)
=

(
p1(q(0), q̇(0))

p2(q(0), q̇(0))

)
, (4.18)

with

p1 = c1e
−µ(v)Tp cos(ξTp) + c2e

−µ(v)Tp sin(ξTp) + α,

p2 = e−µ(v)Tp cos(ξTp)(−c1µ(v) + c2ξ)

− e−µ(v)Tp sin(ξTp)(c1ξ + µ(v)c2) + ωβ,
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where
c1 = q(0)− α,

c2 = (q̇(0) + µ(v)q(0)− µ(v)α− ωβ)/ξ,
(4.19)

and

α =
ω2

0
−ω2

4µ(v)2ω2+(ω2

0
−ω2)2

η,

β = 2µ(v)ω
4µ(v)2ω2+(ω2

0
−ω2)2

η.
(4.20)

Proof. The method for constructing Poincaré maps is well known. We include

the proof for completeness of presentation. Clearly, 0 < µ(v) < ω0 should be

satisfied to make sure the solution of (4.17) does not blow up. Then, the solution

can be obtained as

q(t) =c1e
−µ(v)t cos(ξt) + c2e

−µ(v)t sin(ξt)

+ α cos(ωt) + β sin(ωt), (4.21)

where the parameters α and β are as shown in (4.20), and the constants c1 and

c2 are determined by initial condition (q(0), q̇(0))T as in (4.19).

We note that the dynamics (4.17) is Tp-periodic in t and that it has one

periodic solution α cos(ωt) + β sin(ωt) with period Tp. Therefore, we construct a

Poincaré map by considering the intersections of orbit (4.21) with the q-q̇ plane

at times tj = jTp, j ∈ N ∪ {0}. Due to the Tp-periodicity of (4.17), we can obtain

the Poincaré map P by evaluating the map from (q(0), q̇(0))T to (q(Tp), q̇(Tp))
T .

Thus, by substituting t = Tp into (4.21), we finally get (4.18), which then com-

pletes the proof.

The Poincaré map (4.18), together with the output map y = h(x, v) in (4.7)

define the discrete-time system Σ corresponding to the previous chapter. That

is,

Σ :




xj+1 = P(xj),

yj = h(xj , v).
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Also, the ideal optimizer corresponding to the NES algorithm, as de-

scribed in (4.14), can be represented in a generic form as follows

O :
vk+1 = vk + s(vk),

s(vk) = PQ{vk − αs∇J(vk)} − vk.
(4.22)

It can be easily verified that the fixed point for the map P in (4.18) is

x⋆ = (α, ωβ)T , where α and β depend on v as described in (4.20). Therefore, the

fixed-point map for Σ becomes

l(v) =

(
α(v)

ωβ(v)

)
. (4.23)

Then, the transient error can be defined as

z , x− l(v), (4.24)

which can be used to transform Σ into

Σ :




zj+1 = A(v)zj,

yj = h(zj + l(v), v),
(4.25)

where A(v) = [aij ] ∈ R
2×2 has entries

a11 = e−µ(v)Tp(cos(ξTp) +
µ(v)

ξ
sin(ξTp)),

a12 = e−µ(v)Tp
1

ξ
sin(ξTp),

a21 = e−µ(v)Tp(−ξ
2 + µ(v)2

ξ
sin(ξTp)),

a22 = e−µ(v)Tp(cos(ξTp)−
µ(v)

ξ
sin(ξTp)).

The C1 function l(v) in (4.23) on Q is Lipschitz with constant Ll, which

verifies Assumption 3.1.7 on the Lipschitz property of l.

The RO map is defined as J(v) = h(l(v), v), where the output map h(x, v)

is given in (4.7). By substituting (4.20), into (4.7), we obtain

J(v) = −1
2

ω2F 2v

(K −Mω2)2 + (Dh + v)2ω2
. (4.26)
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Note that since J(v) is a continuous function on compact set Q, the existence of

v∗ is guaranteed.

For Σ in (4.25), we consider

VΣ(z) = zTPz + (zTPz)2, (4.27)

where the matrix P = P T ≻ 0 is the unique solution to the discrete Lyapunov

equation

ATPA− P = −I, (4.28)

with I be the identity matrix. This VΣ(z) satisfies Assumption 3.1.1 on the Lya-

punov function VΣ, which is shown in the following lemmas.

Lemma 4.3.2. (Eigenvalues of P ): Suppose P is the solution to the discrete Lyapunov

equation (4.28), then the eigenvalues of P , denoted by λ(P ), satisfy λ(P ) > 1.

Proof. First, we notice that the eigenvalues of system matrix A of (4.25) can be

obtained as

λ1,2(A) = e−µTp(cos(ξTp)± i
√
1− cos2(ξTp)),

whereby, we infer that the matrix A is nonsingular, because none of its eigen-

values is zero. Also, we recall that the matrix P is symmetric positive definite,

which implies ATPA ≻ 0. Thus, we have P − I = ATPA ≻ 0, which implies

λ(P − I) > 0, which in turn implies λ(P ) > 1.

Lemma 4.3.3. (VΣ satisfies Assumption 3.1.1): The function VΣ(z) = zTPz+(zTPz)2

satisfies Assumption 3.1.1 on the desired properties for the Lyapunov function of (4.25).

Proof. Item (a) follows immediately from P = P T ≻ 0. To prove (b), we consider

two cases:

Case (i): If zj = 0, then VΣ(zj+1) = VΣ(zj) = 0, satisfying item (b) for any

γ > 0.
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Case (ii): If zj 6= 0, then since e−γTp ∈ (0, 1), for γ > 0, it is sufficient to

show VΣ(zj+1) < VΣ(zj) for every j ∈ N ∪ {0}. By (4.25) and (4.28), we derive

VΣ(zj+1) = zTj A
TPAT zj + (zTj A

TPATzj)
2

= zTj (P − I)zj + (zTj (P − I)zj)
2

= zTj Pzj + (zTj Pzj)
2

− zTj zj − 2(zTj Pzj)(z
T
j zj) + (zTj zj)

2

= VΣ(zj) +W (zj),

where we denote W (zj) , −zTj zj − 2(zTj Pzj)(z
T
j zj) + (zTj zj)

2. It can be seen that

W (zj) ≤ (1− 2λmin(P ))|zj|4 − |zj |2 < 0,

where we employ |zj |2 = zTj zj and that 1−2λmin(P ) < 0 according to Lemma 4.3.2.

Thus, we conclude VΣ(zj+1) < VΣ(zj) for all zj 6= 0.

We would also like to mention that this particular form of VΣ(z) is chosen

to verify Assumption 3.1.6 on the vanishing perturbation, which is addressed

later.

Lemma 4.3.4. (VO satisfies Assumption 3.1.3): The choice of VO(v) = J(v) − J(v∗),

where J(v) is the RO map stated in (4.26), satisfies Assumption 3.1.3 on the Lyapunov

function VO.

Proof. We shall check each item in Assumption 3.1.3 as follows.

(a) VO(v) is positive definite, since we have shown the existence of v∗, the min-

imizer of J(v).

(b) We recall the search vector s(v) in (4.22). By properties of the projection

PQ{v} in (4.15), we rephrase s(v) as

s(v) = θ(−αs∇J(vk)),

where θ ∈ [0, 1] is a parameter for pulling back the step size due to the

implemented projection method. Thus, we can show that ∇VO(v)
Ts(v) =
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−θαs|∇J(v)|2 < 0,∀v ∈ Q\{v∗}, and ∇VO(v
∗)T s(v∗) = 0, because it is either

∇J(v) = 0 or θ = 0 depending on whether v∗ is at the boundary of Q.

(c) From the argument above, we can derive

|s(v)|2 = θ2α2
s|∇J(v)|2

≤ θα2
s|∇J(v)|2 ≤ −κs∇VO(v)

T s(v),

as long as we choose κs ≥ αs.

(d) ∇VO(v) is Lipschitz, since ∇VO(v) = ∇J(v) and recalling (4.26), it can be

checked that∇J(v) is C1 on Q.

Next, we focus on the NES algorithm. Motivated in the previous dis-

cussion, we regard this algorithm as a perturbed optimizer, Op. Compared

with (4.14), the imprecision ofOp appears in the approximation of∇J(vk) via (4.13),

that is

∇̂J(vk, zk) = 1

µs

(h(zk,1 + l(vk,1), vk,1)− h(zk + l(vk), vk)), (4.29)

where we denote vk,1 = vk + µs and zk,1 = x(tk,1) − l(vk,1), and we also recall

zk = x(tk)− l(vk) from Chapter 3 and tk,1 = tk + T . We also note that by (4.25),

with v = vk,1, zk,1 is related with zk in the following way

zk,1 = A(vk,1)(xk − l(vk,1))

= A(vk,1)(xk − l(vk) + l(vk)− l(vk,1))

= A(vk,1)(zk +∆l), (4.30)

where we let ∆l = l(vk)− l(vk,1). Therefore, we can describe Op as

Op :
vk+1 = vk + sp(v

k, zk),

sp(v
k, zk) = PQ{vk − αs∇̂J(vk, zk)} − vk.

Before characterizing the properties of Op, we first need to explore a simpler

case—when the projection method is not present. By referring to equations (4.11)
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and (4.13), we use the following notation to represent the basic gradient-descent

optimizer without projection, that is

Ob :
vk+1 = vk + sb(v

k),

sb(v
k) = −αs∇J(vk),

(4.31)

Ob,p :
vk+1 = vk + sb,p(v

k, zk),

sb,p(v
k, zk) = −αs∇̂J(vk, zk).

(4.32)

Lemma 4.3.5. (sb,p(v
k, zk) satisfies Assumption 3.1.4, and existence of κΣ in Assump-

tion 3.1.6): The term, sb,p(v
k, zk) can be expressed by

sb,p(v
k, zk) = sb(v

k) + pb(z
k), (4.33)

satisfying Assumption 3.1.4 on the additive perturbation. Also, there exists a Γ > 0

such that κΣ given by

κΣ ≥
Γ

λmin(P )
,

satisfies Assumption 3.1.6 on the vanishing perturbation, where λmin(P ) is the mini-

mum eigenvalue of P , as stated in VΣ(z) in (4.27).

Proof. We plug (4.29) into sb,p(v
k, zk) in (4.32), which yields

sb,p = −
αs

µs

(h(zk,1 + l(vk,1), vk,1)− h(zk + l(vk), vk)), (4.34)

where we omit the arguments of sb,p(v
k, zk). Furthermore, if we let

f1(x) = h(x, v)|v is fixed at vk ,

f2(x) = h(x, v)|v is fixed at vk,1 ,

and apply Lemma 3.2.2, we get

h(zk + l(vk), vk) = h(l(vk), vk) + I1,

h(zk,1 + l(vk,1), vk,1) = h(l(vk,1), vk,1) + I2,
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where

I1 =

∫ 1

0

(
∂h

∂x
(vk, τ1z

k + l(vk))

)T

zk dτ1,

I2 =

∫ 1

0

(
∂h

∂x
(vk,1, τ2z

k,1 + l(vk,1))

)T

zk,1 dτ2.

Thus, by recalling J(v) = h(l(v), v), equation (4.34) yields

sb,p = −
αs

µs

(J(vk,1)− J(vk) + I2 − I1).

In addition, applying Lemma 3.2.2 similarly on J(vk,1) = J(vk + µs), we get

J(vk,1) = J(vk) +

∫ 1

0

∇J(vk + τ3µs)µs dτ3,

which yields

sb,p = −αs

(
∇J(vk) + I3 +

I2
µs

− I1
µs

)
, (4.35)

wherein

I3 = −∇J(vk) +
∫ 1

0

∇J(vk + τ3µs) dτ3.

Then, we recall from (4.7) that h(x, v) has a quadratic form with respect

to x. Thus, it can be represented by

h(x, v) = xTH(v)x,

with

H(v) =

[
−1

2
vω2 0

0 −1
2
v

]
,

which also implies
∂h

∂x
(x, v) = 2H(v)x.

Therefore, I1 and I2 can be computed in the following way, where we note that

H(v) is a symmetric matrix:

I1 =

∫ 1

0

(2H(vk)(l(vk) + τ1z
k))T zk dτ1

= 2l(vk)TH(vk)zk + (zk)TH(vk)zk; (4.36)
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similarly,

I2 = 2l(vk,1)TH(vk,1)zk,1 + (zk,1)TH(vk,1)zk,1.

We then recall equation (4.30), thereby, I2 can be derived as

I2 =2l(vk,1)TH(vk,1)A(vk,1)(zk +∆l)

+ (zk +∆l)TA(vk,1)TH(vk,1)A(vk,1)(zk +∆l).

Further, for notational simplicity, let us denote R(vk,1) , 2l(vk,1)TH(vk,1)A(vk,1)

and S(vk,1) , A(vk,1)TH(vk,1)A(vk,1), whereby we note that R(vk,1) ∈ R
1×2,

S(vk,1) ∈ R
2×2; then, I2 can be further derived as

I2 = R(vk,1)(zk +∆l) + (zk +∆l)TS(vk,1)(zk +∆l)

= R(vk,1)zk +R(vk,1)∆l + (zk)TS(vk,1)zk

+ (zk)TS(vk,1)∆l + (∆l)TS(vk,1)zk + (∆l)TS(vk,1)∆l.

We hereby note that S(vk,1) is a symmetric matrix and that (zk)TS(vk,1)∆l is

scalar-valued, which implies

(zk)TS(vk,1)∆l = ((zk)TS(vk,1)∆l)T = (∆l)TS(vk,1)zk.

Therefore, I2 can be further expressed as

I2 =(R(vk,1) + 2(∆l)TS(vk,1))zk + (zk)TS(vk,1)zk

+R(vk,1)∆l + (∆l)TS(vk,1)∆l.

We then plug this latter equation, together with (4.36), back in equation (4.35)

and also recall sb(v
k) from (4.31); thereby, we get

sb,p = sb(v
k) + pb(z

k), (4.37)

where the perturbation pb(z
k) is continuous and takes the following form

pb(z
k) = C1z

k + (zk)TC2z
k + C3, (4.38)
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wherein C1 ∈ R
1×2, C2 ∈ R

2×2, and C3 ∈ R, whose explicit forms are described

as follows

C1 =
αs

µs

(2l(vk)TH(vk)−R(vk,1)− 2(∆l)TS(vk,1)),

C2 =
αs

µs

(H(vk)− S(vk,1)),

C3 =
αs

µs

(−R(vk,1)∆l − (∆l)TS(vk,1)∆l)− αsI3.

We then note that by (4.37) and (4.38), Assumption 3.1.4 is satisfied.

Next, we will show that pb,v(z
k), the vanishing component of pb(z

k),satisfies

the inequality in Assumption 3.1.6 with proper choice of κΣ. Directly by (4.38),

we can see

pb,v(z
k) = C1z

k + (zk)TC2z
k,

which, by applying |a+ b|2 ≤ 2(|a|2 + |b|2) inequality, we can derive to be

|pb,v(zk)|2 ≤ 2(|C1z
k|2 + |zkTC2z

k|2)
≤ 2(‖C1‖2|zk|2 + ‖C2‖2|zk|4). (4.39)

Let us also denote Γ , max{2‖C1‖2, 2‖C2‖2}, then by (4.39), we obtain

|pb,v(zk)|2 ≤ Γ(|zk|2 + |zk|4). (4.40)

Besides, recalling VΣ(z
k) = (zk)TPzk + ((zk)TPzk)2 and that λmin(P ) > 1, by

Lemma 4.3.2, we get

VΣ(z
k) ≥ λmin(P )|zk|2 + λ2

min(P )|zk|4

≥ λmin(P )(|zk|2 + |zk|4). (4.41)

By comparing (4.40) and (4.41), we note that choosing κΣ ≥ Γ
λmin(P )

verifies

κΣVΣ ≥ |pb,v|2, i.e., it verifies Assumption 3.1.6. The proof is then complete.

The following result accounts for the properties of the search vector sp(v
k, zk)

for Op, when the projection method is used.
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Proposition 4.3.6. (sp(v
k, zk) satisfies Assumption 3.1.4, and existence of κΣ in As-

sumption 3.1.6): The term, sp(v
k, zk) can be expressed by

sp(v
k, zk) = s(vk) + p(zk),

satisfying Assumption 3.1.4 on the additive perturbation. Also, there exists a real num-

ber κΣ > 0 satisfying Assumption 3.1.6 on the vanishing perturbation.

Proof. First, we describe sp(v
k, zk) as

sp(v
k, zk) = PQ{vk + sb,p(v

k, zk)} − vk.

Then, recalling s(vk) = PQ{vk + sb(v
k)} − vk, we get

sp(v
k, zk) = s(vk) + p(zk),

with

p(zk) = PQ{vk + sb,p(v
k, zk)} − PQ{vk + sb(v

k)},

where we note that p(z) is continuous on z.

We then recall from Remark 3.1.5 about the vanishing component pv(z
k)

that

pv(z
k) = p(zk)− p(0)

= PQ{vk + sb,p(v
k, zk)} − PQ{vk + sb,p(v

k, 0)}.

Then, by non-expansive property of projection method [3], we have

|pv(zk)| ≤ |sb,p(vk, zk)− sb,p(v
k, 0)|,

which then by (4.33), gives

|pv(zk)| ≤ |pb(zk)− pb(0)| = |pb,v(zk)|.

This implies the κΣ characterized in Lemma 4.3.5 is also valid for the case when

projection is present, since

κΣVΣ(z
k) ≥ |pb,v(zk)|2 ≥ |pv(zk)|2.

This completes the proof.
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Theorem 4.3.7. (Stability of the WEC and NES interconnection): Let A(v) denote

the map from v to its associated limit cycle (4.16). Consider the system (4.10)−(4.22),

the maximizer v∗ ∈ Q, together with the associated limit cycle A(v∗), is semiglob-

ally practically asymptotically stable in the sense that the system (4.25)−(4.22) is

semiglobally practically asymptotically stable at (0T , (v∗)T )T , where (4.25) is obtained

from (4.10) by the Poincaré map (4.18) and the state transformation (4.24).

Proof. Previously in this section, for the interconnection of (4.25) and (4.22), we

have verified Assumptions 3.1.1 and 3.1.3 on the Lyapunov functions VΣ and

VO, Assumptions 3.1.7 on the Lipschitz property of l, and Assumptions 3.1.4

and 3.1.6 on the properties of the perturbation to the search vector; thus, as the

consequence of Theorem 3.2.4 and 3.2.5, the point (0T , (v∗)T )T is semiglobally

practically asymptotically stable. Furthermore, we recall that the plant (4.25)

is obtained from (4.10) by the Poincaré map (4.18) and the state transforma-

tion (4.24). Therefore, we complete the proof.

Chapter 4, in part, has been submitted for publication of the material as it

may appear in proceedings of the 2014 American Control Conference, Portland,

OR, June 2014, Tianjia Chen, Hamed Foroush and Sonia Martinez. The thesis

author was the primary investigator and author of this paper.



Chapter 5

Simulations

In this chapter, we illustrate the performance of the NES algorithm in

solving the power maximization problem of the point-absorber WEC as formu-

lated in Chapter 2 and as discussed in Chapter 4. In addition, we also imple-

ment the sampled-data extremum-seeking scheme on irregular-wave condition,

where the simulation results have demonstrated the functionality and practical-

ity of the proposed approach.

5.1 Regular-Wave Condition

Table 5.1: The dataset used in the simulations for regular-wave condition

Quantity Symbol Unit Value
Mass (Ms +Ma) M 1× 103kg 500

Hydraulic damping Dh 1× 103kg/s 30
Stiffness (Kh +Kp) K 1× 103N/m 750

Wave frequency ω rad/s 1.2
Wave excitation force F 1× 103N 200

We use a set of parameters similar to those in [13], which are aggregated

in Table 5.1. Two representative results are included in Figures 5.1 and 5.2. Re-

ferring to NES algorithm stated in Algorithm Table 1, in both these cases, v0 is

chosen to be v0 = 20, the step-size αs = 5, the step-size in the Euler method

36
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µs = 0.1, and the waiting time T = 60 sec. The difference between these cases

lies in the considered constraint set. Recall the optimization problem formu-

lated in Chapter 2

max
v∈Q

P ss
avg(v),

s.t. (2.6),

where the optimizer v∗ can be computed by leveraging the following equation

from Lemma 4.1.1:

P ss
avg(v) =

1

2

ω2F 2v

(K −Mω2)2 + (Dh + v)2ω2
.

For the first case, the maximizer v∗ is given as v∗ =
√

D2
hω

2 + (K −Mω2)2/ω =

39.05 with the constraint set Q1 = [0, 45], while for the second case, v∗ = vmax =

30 due to the constraint set Q2 = [0, 30].

In each figure, plots (a) and (c) show, respectively, how the control vari-

able v = Dp converges to a neighborhood of v∗ and that the averaged power-

output Pavg is thereby maximized. The units for Dp and Pavg are 1 × 103kg/s

and Kilowatt, respectively. The red dashed line indicates the value of vmax. In

order to show the convergence of the state trajectory to the limit cycleA(v∗), we

provide plots (b) and (d). Plot (b) is the plot of the limit cycle A(v∗), which is

an ellipse for both cases. Plot (d) depicts how the distance from the state to the

limit cycle A(v∗) converges to zero, where the distance, d, is characterized as

d , d(x,A(v∗)) = infa∈A(v∗)|x− a|.

The simulation results show that the NES algorithm is capable of solving

the power maximization problem while ensuring the system stability. This is in

perfect accordance with the discussion in Chapter 4.

5.2 Irregular-Wave Condition

The irregular waves can be obtained by linear superposition of regular

waves, with some randomness on the phase of each components. We model the
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Figure 5.1: Simulation for regular-wave condition: case 1

irregular waves in a similar manner with [7].

Noticeably, for irregular-wave condition, the output map we consider

for the regular-wave case may not be eligible, since it relies on the measurement

or estimation of the wave frequency. Instead, we can choose a more practical

output map, which is simply the measured average power output of the plant

over some certain past period of time.

Table 5.2: The dataset used in the simulation for irregular-wave condition

Quantity Symbol Unit Value
Mass (Ms +Ma) M 1× 103kg 600

Hydraulic damping Dh 1× 103kg/s 30
Stiffness (Kh +Kp) K 1× 103N/m 640

Wave frequency ω rad/s 1
Wave excitation force F 1× 103N 200
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Figure 5.2: Simulation for regular-wave condition: case 2

The dataset for the WEC plant we have used is shown in Table 5.2. Also,

the simulation result can be seen in Figure 5.3. We still keep v0 = 20 as a start-

ing point. In addition, to cope with the irregularity of the wave, we reset the

parameters of the NES algorithm: the step-size αs = 20, the step-size in the Eu-

ler method µs = 5, and the waiting time T = 2000 sec. In order to emphasize

the functionality of the extremum-seeking approach, we have removed the con-

straint set for this case. Same as the regular-wave case, the units for Dp and Pavg

are 1× 103kg/s and Kilowatt, respectively. We can observe from Figure 5.3 that

the NES, with appropriate choice of the parameters, is capable for working in

the irregular-wave condition.

Chapter 5, in part, has been submitted for publication of the material as it

may appear in proceedings of the 2014 American Control Conference, Portland,
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OR, June 2014, Tianjia Chen, Hamed Foroush and Sonia Martinez. The thesis

author was the primary investigator and author of this paper.



Chapter 6

Conclusions

In this thesis, we have studied the application of a sampled-data ES ap-

proach to maximize the power extraction in WECs modeled as point-absorbers

where the control parameter is the PTO damping, the value of which should be

constrained in a compact set.

We have first reviewed the relevant sampled-data ES theory, where we

have adapted its framework to account for discrete-time class of systems and

constrained control inputs. The motivation of doing such adaptation is that

the analysis of the stability regarding the WEC model involves the stability of

a limit cycle, which can be interpreted as the stability of the related Poincaré

map. Then, we have proposed our NES algorithm which solves the optimiza-

tion problem of power extraction and ensures the stability of the system. Ac-

cordingly, we have also proved the functionality of the NES algorithm by apply-

ing the adapted sampled-data ES theory, where we have employed the Poincaré

map technique to convert the original system to a discrete-time one. The simula-

tion results have shown the capability of the proposed sampled-data extremum-

seeking scheme to maximize the power output, under both the regular- and

irregular-wave condition.

In future work, we would like to focus on the applicability of this method-

ology to alternative output maps and WEC mechanisms. Upon the successful

41
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simulation on the irregular-wave case, we would also like to explore the analyt-

ical work for that scenario.
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