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Abstract

COVID-19 outbreaks in congregate settings remain a serious threat to the health of dispro-

portionately affected populations such as people experiencing incarceration or homeless-

ness, the elderly, and essential workers. An individual-based model accounting for

individual infectiousness over time, staff work schedules, and testing and isolation sched-

ules was developed to simulate community transmission of SARS-CoV-2 to staff in a con-

gregate facility and subsequent transmission within the facility that could cause an outbreak.

Systematic testing strategies in which staff are tested on the first day of their workweek

were found to prevent up to 16% more infections than testing strategies unrelated to staff

schedules. Testing staff at the beginning of their workweek, implementing timely isolation

following testing, limiting test turnaround time, and increasing test frequency in high trans-

mission scenarios can supplement additional mitigation measures to aid outbreak preven-

tion in congregate settings.

Introduction

Throughout the COVID-19 pandemic, outbreaks in congregate settings such as skilled nursing

facilities [1], homeless shelters [2–5], and carceral (e.g., prisons and jails) facilities [6] have

been devastating. Staff have inadvertently introduced SARS-CoV-2, the virus that causes

COVID-19, into congregate settings [6–8], making routine testing of staff and subsequent iso-

lation of infectious staff an essential strategy to mitigate case importation to resident popula-

tions. Prior analyses suggest that routine SARS-CoV-2 screening testing can reduce

transmission in homeless shelters [9], in healthcare settings [10], and during airline travel [11].

In correctional and detention facilities, preventing spillover from the community to facility

staff and subsequently into resident populations remains one of many challenges to limit
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SARS-CoV-2 transmission [12]. Due to the high risk of SARS-CoV-2 transmission in congre-

gate settings [6] and the emergence of SARS-CoV2 variants with substantial ability to evade

prior immunity, questions remain around optimal testing policies for staff, regardless of vacci-

nation status, with reports of infections in vaccinated persons in large public gatherings [13],

as well as in congregate settings such as health care [14], and correctional [15] facilities.

At this time, the CDC Guidance on Prevention and Management of Coronavirus Disease

2019 (COVID-19) in Correctional and Detention Facilities [16] does not specify when staff

should be tested during the workweek to minimize the spread of SARS-CoV-2 via rapid identi-

fication and isolation of new staff cases. The timing of systematic testing in relation to work

schedules and variable infectiousness profiles could have profound importance for designing

optimal systematic testing strategies and for informing downstream activities to prevent trans-

mission, such as isolation of positive staff cases. Testing early in the work week may miss

recently acquired infections and lead to staff working around the time of their peak infectious-

ness. However, testing later in the work week risks missing infectious individuals who are

allowed to work prior to being isolated.

This study examines the relationship between work schedules, testing schedules, and

within-facility transmission. An analytic framework to estimate the effect of variable testing

frequencies and turnaround time between test administration and isolation on SARS-CoV-2

transmission is presented. In addition, an individual-based model which incorporates work

and testing schedules influenced by those observed in operations records collected by the Cali-

fornia Department of Corrections and Rehabilitation (CDCR) is used to simulate community

acquisition of SARS-CoV-2 by staff and subsequent transmission in a congregate setting. Sim-

ulations exploring the impact of aligning testing schedules with work schedules are conducted

across testing frequency, background community infection rate, and within-facility transmis-

sion rate.

Methods

Model framework and parameterization for SARS-CoV-2

Building on previous work investigating the effects of non-pharmaceutical interventions [17]

and testing [18] on the transmission of infectious diseases, individual contributions to SARS--

CoV-2 transmission through time were modeled from an infectiousness profile, βt, here

derived from the probability density function of the triangle distribution, with infectiousness

beginning after the latent period, ending after the duration of the infectious period, and peak-

ing at some point in between (a = tlatent, b = ttotal where ttotal = tinfectious + tlatent, c = tpeak, and

a<c<b; Fig 1A).

The viral dynamics of SARS-CoV-2 make control efforts challenging, as high infectiousness

in the absence of symptoms is common [19–21]. For SARS-CoV-2, peak infectiousness (tpeak)
tends to coincide with the onset of symptoms (for cases that are symptomatic), but occurs after

completion of the latent period (i.e. tpeak�tincubation and tincubation>tlatent) [21]. The expected

number of new cases generated by an individual at time t is thus rt ¼ Rβt , where R is the effec-

tive reproduction number, here defined as the expected number of cases generated in a facility

by a new case over the duration of their infectious period, assuming they spent their entire

infectious period in the facility. Table 1 lists the distributions of tincubation, tlatent, and tinfectious
used here.

Isolating infectious individuals prior to the end of their infectious period, ttotal, through

contact tracing, self-isolation following the onset of symptoms, or isolation following a positive

test result, reduces R according to: Riso ¼ Rð1 �
R ttotal
tiso

btdtÞ, where tiso is the time at which iso-

lation occurs. Reducing Riso can thus be represented as removing a larger slice from the overall
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infectiousness triangle by reducing tiso (Fig 1A). Fig 1B shows the relationship between Riso

and tiso is sigmoidal, implying the benefits of isolation level off later in the infectious period.

Next, to explore the influence of testing on tiso and Riso, test frequency, f, is defined as the

average number of tests per week. Assuming testing is done randomly through time and is

independent of symptoms or known contacts, the probability of going t days without being

tested can be estimated as (1−f/7)t, where, for example f = 1 if testing is conducted weekly. The

probability that isolation has occurred by day τ after onset of infectiousness can be estimated

as: P(tiso�τ) = 1−(1−f/7)τ if isolation occurs immediately after testing. Given substantial

Fig 1. Analytic framework exploring effects of variable infectiousness through time, testing frequencies, and delays on SARS-CoV-2

transmission. A) Example infectiousness profile for R ¼ 1, tlatent = 4, tincubation = 5, tinfectious = 9, with line indicating infectiousness (rt)
through time and shaded area demonstrating infectiousness slice removed if tiso = 7, leading to Riso ¼ 0:50. B) Riso as a function of tiso with

same parameters as in A and point indicating scenario depicted in A. C) Boxplots showing distributions of Riso as a function of testing

frequency, f, and delay in obtaining test results, d, incorporating uncertainty in tlatent, tincubation, and tinfectious by drawing n = 100 parameter

sets for each, with baseline R ¼ 1. Boxplots indicate median, interquartile range, and full range of values of Riso. D) Probability isolation

occurs as a function of testing frequency, f, delay in obtaining test results, d, and days from exposure to isolation τ, i.e. tiso�τ, demonstrating

that delays in obtaining test results substantially reduce the probability of prompt isolation, particularly among most frequent testing

scenarios.

https://doi.org/10.1371/journal.pgph.0001302.g001
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turnaround times between testing and isolation, particularly when using nucleic acid amplifi-

cation tests (NAATs), the delay, d, between testing and isolation can be incorporated as: P(tiso
= τ) = 0 for τ<d and P(tiso = τ) = 1−(1−f/7)τ−d for τ�d. Fig 1D shows that delays have a detri-

mental effect on prompt isolation, particularly by making isolation prior to the delay (tiso<d)

impossible.

Testing frequency and isolation delays can also be incorporated into estimation of Riso, with

the reduction in R due to isolation estimated from infectiousness on day t weighted by the

probability of being isolated on day t. Discretizing, this gives:

Riso ¼ R �
Xttot

t¼tlatentþd

rt 1 � 1 �
f
7

� �t� tlatent � d
 !

Fig 1C shows distributions of Riso that incorporate uncertainty in the SARS-CoV-2 latent,

incubation, and total infectious periods, across test frequencies ranging from daily (f = 7) to

biweekly (f = 0.5) and isolation delays from 0 to 2 days. Riso is similar when testing every day

(f = 7) with a two-day isolation delay (d = 2) vs testing twice per week (f = 2) with immediate

isolation (d = 0) (Fig 1C, median Risoðd ¼ 0; f ¼ 2Þ ¼ 0:42 and Risoðd ¼ 2; f ¼ 7Þ ¼ 0:33,

respectively), reiterating the importance of reducing delays between testing and isolation.

Individual-based model simulations

Model setup. An individual-based model (IBM) building on the framework described above

and incorporating staff working and testing schedules was developed to simulate SARS-CoV-2

transmission within a congregate facility. The main priority of the IBM was to investigate how

testing and staffing schedules should be configured to optimally prevent transmission in a con-

gregate facility.

Staff move through susceptible (S), exposed (E), infectious (I), and recovered (R) states

after acquiring infection from the community according to the community prevalence when

they are not working, or from fellow staff while working, according to the force of infection

described below. Parameters for newly exposed staff are drawn to determine tlatent, tincubation,

and tinfectious, from which an infectiousness profile, βit is generated. Tested staff produce a posi-

tive test result if βit>0 [24–26] and no testing other than systematic screening testing occurs.

Positive staff enter an isolated (O) state immediately if d = 0. If there is a delay between testing

and isolation (d>0), staff first enter a tested (T) state before O, during which time they may

continue to work while infectious. Recovered staff are assumed to remain in state R and not

return to state S due to the short time frame of the simulation. Staff in state O are restricted

from working for 10 days and are not required to undergo screening testing for 90 days follow-

ing a positive result.

The simulated number of infections caused by staff is estimated from each simulation from

the total time spent in the facility while infectious, weighted by infectiousness:

Table 1. Distributions and parameter values used in analytic framework and model simulations. The latent period

is defined as the time between exposure and onset of infectiousness, the incubation period as the time between expo-

sure and both symptoms and peak infectiousness (even in the absence of symptoms), and the infectious period as the

total time a case is infectious.

Parameter Distribution Source

Incubation Period (tincubation) Lognormal (1.63, 0.5) [22]

Latent Period (tlatent) tincubation−Uniform (0, 2) [21, 23]

Infectious Period (tinfectious) Uniform (7, 10) [21, 23]

https://doi.org/10.1371/journal.pgph.0001302.t001
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Itotsim ¼
Ptsim

t¼1

Pw
i¼1 RβitWðwitÞ, where tsim = 540 work shifts (3 shifts per day for 180 days),

w = 700 staff in the facility (derived from the average of all CDCR facilities), and WðwitÞ is an

indicator function derived from individual staff work schedules (described below) that defines

when each worker is in the facility. The related quantity λwork
it ¼

Pw

i¼1
RβitWðwit ÞPw

i¼1
Wðwit Þ

is the force of

infection for staff who are at work at time t.
Staffing and testing strategies. Information on workdays (e.g., Mon-Thurs), work shifts

(e.g., morning, evening, night), and SARS-CoV-2 testing schedules for custody staff were

derived from CDCR operations records and used to generate staff working schedules in model

simulations. Standard work schedules including typical workdays during the week and typical

shift worked were identified using K-means clustering. The most common work schedules

identified among CDCR staff were then used directly to generate work schedules in the IBM.

Two experimental testing strategies were considered in model simulations. Under a ran-

dom testing strategy, testing for each worker occurs at random during their work shifts

depending on the frequency (i.e. with f = 2, workers would be tested during two of their shifts,

chosen at random each workweek). Under a systematic testing strategy, each worker is always

tested on the same day(s) each week. For f = 1, systematic testing always occurs on the first day

of their workweek; for f = 2, systematic testing always occurs on the first and third days; and

for f = 4, testing occurs on each of the first four workdays in a workweek.

The total number of tests conducted in each simulation is recorded as:

T tot
sim ¼

Ptsim
t¼1

Pw
i¼1

T ðwitÞ, where TðwitÞ is an indicator function defining shifts at which staff

are tested based on their testing schedule. Combined with the expected number of cases in the

simulation, the incremental test effectiveness ratio (ITER) is estimated as: ITER ¼ T tot
sim

I tot
sim� I tot

ref
,

where I tot
ref is the number of infections in a reference scenario with no testing. The ITER can be

interpreted as the number of tests needed to prevent one infection in the simulation scenario

being evaluated.

Sensitivity analyses. Simulations were conducted across community prevalences of 0.1%,

0.5%, and 1%, corresponding to values found in [27]; R 2 f0:5; 1:0; 1:5g; d2{0, 1}; and f2{0.5,

1, 2, 4}. Sensitivity analyses investigating the influence of self-isolation of symptomatic infec-

tions and imperfect test sensitivity are explained in the supplement.

Code and data availability. Anonymized staff records used to generate Fig 2 and inform

staff schedules used in simulations can be requested by submitting a Data Request Form for

consideration by the California Correctional Health Care Services (CCHCS) Data Advisory

Committee (DAC). All simulations, analyses, and visualizations were compiled in R software

version 4.0.4 [28] with aid from the tidyverse [29], triangle [30], and patchwork [31] packages.

Code is available at https://github.com/cmhoove14/Congregate-Staff-Testing.

Human subjects

This study is exempt from IRB review because it involved no identifiable data and no patient

enrollment.

Results

Staff working and testing schedules

There were 4,248,692 staff workdays consisting of the date and shift (morning, evening, or

night) in CDCR operations records collected from March 1, 2020 to February 28, 2021. Of

these, 2,849,801(67.1%) occurred as part of workweeks with at least 4 consecutive workdays.
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The first day of the workweek varied across staff, though four typical workweek schedules

starting on Monday, Tuesday, Thursday, or Saturday and continuing for the next three days

were identified using K-means clustering (Fig 2). Staff adding a variable fifth day to their work-

week was common, though this fifth day was less predictable (Fig A in S1 File). Staff typically

worked eight hours during either the morning, evening, or night shift, though alternating

between morning and evening shifts, and taking on an additional shift was also common.

These same work schedules were used to generate staff schedules in model simulations.

Tests were most often administered on Tuesdays (if the staff had Tuesday in their typical

workweek) regardless of whether it was the first day of the staff’s workweek (Fig 2). Testing on

Wednesday and Thursday was also common across work schedules. 46.3% of test results were

returned on the same day as specimen collection, 44.7% on the day after specimen collection,

and 8.9% two or more days after specimen collection. Of 467,370 total SARS-CoV-2 staff

tests, 89,617 (19.2%) were administered on the first day of a workweek consisting of 4 or more

consecutive workdays, corresponding to a systematic testing strategy with f = 1 described

above.

Simulation results

Systematic testing strategies prevented more infections in simulated facilities than random

testing strategies. Fig 3 shows a comparison of the number of infections generated (I tot
sim) when

implementing each testing strategy across testing frequencies, levels of community prevalence,

and within-facility R with either no delay or a one-day isolation delay. In the highest transmis-

sion scenario (CP ¼ 1⊘;R ¼ 1:5), no testing led to a median I tot
sim = 111.65 (IQR 108.13–

114.73) expected infections. Testing randomly once per week with no isolation delay resulted

in a median I tot
sim = 47.48 (IQR 44.52–50.3; Fig 3 right panel, rightmost yellow circle), whereas

testing systematically on the first day of the work week with no isolation delay resulted in I tot
sim

= 31.31 (IQR 29.48–33.21; Fig 3 right panel, rightmost yellow square). However, systematic

testing accompanied by a one day isolation delay leads to I tot
sim = 53.71 (IQR 50.98–55.87; Fig 3

right panel, rightmost yellow cross).

Fig 2. Staff work and testing schedules. Four typical weekly work schedules (y-axis) were identified among CDCR

custody staff. These include a Monday to Thursday workweek (21% of staff), a Tuesday to Saturday workweek (33% of

staff), a Thursday to Sunday workweek (22% of staff), and a Saturday to Tuesday workweek (24% of staff). The red

shading shows the mean proportion of staff workdays that consist of a particular day of the week (x-axis; i.e. darker

shades of red indicate that staff with the specified schedule more commonly worked on that day). The size of the black

circles represents the mean proportion of the total number of tests administered to each group that were given on the

specified day.

https://doi.org/10.1371/journal.pgph.0001302.g002
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The horizontal gray line in Fig 3 demonstrates a potential threshold number of infections to

avoid exceeding at I tot
sim ¼ 18:00, corresponding to an average of one infection within the sim-

ulated facility every ten days. Implementing a systematic rather than random–testing strategy

can be sufficient to prevent I tot
sim from exceeding such a threshold without changing the fre-

quency in many transmission scenarios (e.g. compare circles to squares of the same color in

Fig 3) though in the highest transmission scenarios, greater than twice-weekly testing may be

needed. Table 2 additionally shows the testing frequency in tests per week under a systematic

testing strategy necessary to ensure that the upper quartile of expected infections is maintained

below this threshold.

Across all transmission scenarios, biweekly systematic testing with no isolation delay

averted an average of 40% of transmissions that would have occurred with no testing, while

random testing averted an average of 33% of transmissions. For weekly frequency, systematic

Fig 3. Number of expected infections generated in a facility from model simulations comparing random and systematic testing strategies

across transmission scenarios, test frequencies, and delays isolating infectious individuals who have tested positive. Systematic testing

strategies (■, ➕) prevent more infections than random strategies (●,▲) across all transmission scenarios (indicated by community prevalence

across the x axis and by reproduction number across the panels) and test frequencies (indicated by different colored symbols with blue

corresponding to the highest test frequency of 4 tests per week and red the lowest test frequency of biweekly testing). More infections are

expected in transmission scenarios with higher within-facility R and higher community prevalence. Preventing delays between testing and

isolation of positives (squares compared to crosses and triangles compared to circles) and increasing test frequency (red = lowest frequency,

blue = highest frequency) also reduces the number of infections. The horizontal gray line serves as a reference to assess the testing frequency

needed to maintain I tot
sim � 18 (corresponding to one infection every ten days) across different transmission scenarios. Error bars represent the

interquartile range of I tot
sim derived from 100 simulations per scenario run for 180 days among 700 staff.

https://doi.org/10.1371/journal.pgph.0001302.g003
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testing averted an average of 71% of transmissions versus 57% of transmissions when testing

randomly; and for twice weekly testing, systematic testing averted an average of 90% of trans-

missions versus 80% of transmissions when testing randomly.

The ITER, interpreted as the number of tests needed per infection averted due to testing, is

also useful to aid decision making, particularly in resource-constrained settings. Fig 4 shows

estimates of the ITER across transmission scenarios, test strategies, and test frequencies. In the

highest transmission scenario (R ¼ 1:5; 1% community prevalence), testing systematically on

Table 2. Test frequency to prevent excessive infections. Test frequency (tests per week) under a systematic testing

strategy needed to maintain the upper quartile of expected infections in the simulated facility below a threshold of 1

every ten days across transmission scenarios conveyed by the within-facility basic reproduction number (R), commu-

nity prevalence (CP), and delays between testing and isolation of infectious workers.

R ¼ 0:5 R ¼ 1 R ¼ 1:5
Delay = 0

CP = 0.1% 0 0 0

CP = 0.5% 0.5 1 2

CP = 1% 1 2 2

Delay = 1

CP = 0.1% 0 0 0.5

CP = 0.5% 0.5 2 4

CP = 1% 1 4 4+

https://doi.org/10.1371/journal.pgph.0001302.t002

Fig 4. Incremental test effectiveness ratio (ITER) from simulations across transmission scenarios and testing frequencies and strategies.

The ITER remains relatively low in higher transmission scenarios even at high (f = 4) testing frequencies, potentially favoring such high-

frequency testing strategies when within-facility transmission (R) and/or community prevalence are high. The y-axis is log-transformed and the

horizontal line at ITER = 1000 is provided to aid visual comparison across scenarios. Error bars represent the interquartile range of expected

infections derived from 100 simulations per scenario.

https://doi.org/10.1371/journal.pgph.0001302.g004
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the first day of every other work week with no delay (f = 0.5, d = 0, Fig 4, see squares) leads to

ITER = 180.89 (IQR 168.01–196.5), while increasing test frequency to weekly (f = 1) results in

ITER = 181.72 (IQR 178.78–186.08), to twice weekly (f = 2): ITER = 293.02 (IQR 288.91–

295.6), and to every shift (f = 4): ITER = 545.36 (IQR 541.58–550.61). These values approxi-

mately correspond to test positivity rates of 0.55%, 0.55%, 0.34%, and 0.18%. Fig 4 also pro-

vides an example reference line at ITER = 1000, corresponding to an approximate 0.1% test

positivity, to demonstrate how testing frequency may be determined from the transmission

scenario and target ITER, which may be influenced by the number of tests available.

Imperfect test sensitivity and self-isolation of infectious individuals were not found to

meaningfully impact the main findings comparing testing strategies. Fig B in S1 File shows

that test frequency and isolation delays are more influential on expected infections than test

sensitivity, while Fig C in S1 File shows that self-isolation reduces the overall number of

expected infections in simulations, but the superiority of systematic testing strategies persists

even with perfect self-isolation of symptomatic infections.

Discussion

This study builds on previous modeling and simulation analyses to demonstrate that system-

atic testing strategies with limited delays between test administration and isolation of infec-

tious individuals can limit SARS-CoV-2 transmission. In particular, systematically testing

workers early in their workweek prevents more infections than random testing strategies or

those with a delay between testing and isolation. A major benefit of such strategies is that they

do not require higher testing frequency, only a change in timing of when testing occurs. As

such, there is substantial value in implementing systematic rapid testing at the beginning of

the workweek in facilities at high risk for SARS-CoV-2.

The occurrence of pre- and asymptomatic SARS-CoV-2 transmission calls for systematic

testing to be a key component of prevention strategies. Increasing the frequency of testing may

be necessary in settings with high community prevalence or the opportunity for rapid spread

within a facility (e.g. highly transmissible variants, low vaccination rates, inadequate mitigation

practices). Lower thresholds than one expected infection event per ten days may also be neces-

sary to prevent outbreaks in carceral facilities and other congregate settings. A prior analysis of

publicly available CDCR case data estimated 46% of 118 SARS-CoV-2 introductions into resi-

dent populations from April 2020 to March 2021 across 35 facilities resulted in outbreaks of

greater than 10 resident cases [32], though this estimate includes data from early in the pan-

demic when there were more fully susceptible individuals, fewer protocols to reduce transmis-

sion, limited testing resources, and lower vaccination coverage.

This study also utilized the ITER as a per-test measure of effectiveness for systematic testing

across a range of frequencies and transmission scenarios. In resource-constrained environ-

ments in which tests are difficult to acquire (e.g., limited supply/funds), the ITER and its rela-

tionship to test positivity may be used to guide decisions on test frequency. The ITER may also

be useful in situations where data on the cost per COVID-19 case and cost per test are avail-

able. In this case, the product of the ITER and the cost per test conducted provides the cost per

case avoided due to the testing program. For facility management, any testing program that

results in a lower cost per case avoided than cost per COVID-19 case would likely be deemed

cost effective.

Even though systematic testing strategies reduce within-facility transmission, they are not

capable of preventing all transmission events. Systematic testing represents one tool of many

that could be implemented to prevent SARS-CoV-2 infections in congregate facilities. Facility-

wide vaccination, universal masking, quarantine of individuals after exposure, avoiding
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crowds, physical distancing, and proper ventilation all play an important role in mitigating

SARS-CoV-2 transmission in congregate settings [33]. However, sometimes low vaccine

acceptance rates among residents and staff in correctional settings coupled with more trans-

missible SARS-CoV-2 variants puts this population at continued risk of outbreaks. Implement-

ing routine, systematic testing of staff for early identification of COVID-19 cases (including

infections in vaccinated persons) is another layer of intervention that can help prevent out-

breaks in congregate facilities.

Limitations

Staff are not the only source of infection, as cases may also be imported via new resident intake,

visitation, between-facility movement, and work programs where residents leave the facility

during the day. In addition, the exclusion of notable COVID-19 prevention strategies (e.g. uni-

versal masking, physical distancing, proper ventilation, vaccination) and of additional testing

due to symptoms or known contacts is a limitation. However, the sensitivity analysis imple-

menting self-isolation suggests qualitative trends between testing strategies would persist, and

only the magnitude of simulated infections would be reduced. Furthermore, these additional

interventions would presumably act by reducing R and are therefore implicitly included in

simulations with variable reproduction numbers.

The model also does not distinguish between staff-staff and staff-resident transmission

within a simulated facility, but rather records the total number of infections expected assuming

R remains constant. Estimation of staff-staff and staff-resident contact rates or reproduction

numbers would enable more precise accounting and simulation of importation events and

subsequent transmission within a facility. Given the goal of this analysis to investigate the util-

ity of different testing strategies to prevent outbreaks, explicit simulation of transmission

within the facility was deemed beyond the scope of the present analysis.

The community force of infection among staff is constant through time and across individ-

uals. In reality, community prevalence can increase rapidly, necessitating a corresponding

increase in test frequency. Heterogeneity among staff due to vaccination coverage, compliance

with physical distancing and masking policies, household structure and/or health status, and

other behavioral factors may also affect the rate of community spillover to staff and subse-

quently to facilities. Incorporating such variability in individual staff would likely increase the

variance of results, but is not expected to appreciably affect key findings of the analysis.

Finally, the probability density function of the triangle distribution is used to represent

SARS-CoV-2 viral dynamics and therefore infectiousness through time. Though this function

captures the general viral dynamics profile seen previously [18, 21], other distributions or

functions may also be applicable, though other analyses using more complex infectiousness

profiles have yielded similar results [34].

Future directions and conclusions

This modeling and simulation framework is applicable beyond COVID-19 in congregate set-

tings. Other applicable settings may include the introduction of hospital acquired infections

from newly admitted patients or from hospital staff [35], introduction of other respiratory

pathogens such as influenza or pertussis into congregate settings [36], or tuberculosis trans-

mission between communities and populations experiencing incarceration [37]. Accurate

parameterization of key natural history traits of the pathogen in question such as the latent,

incubation, and infectious periods is essential to estimate the impact of nonpharmaceutical

interventions such as systematic screening testing [17]. Pathogens other than SARS-CoV-2
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that cause symptoms prior to infectiousness (tincubation<tlatent), for instance, may be more

effectively controlled at lower cost via symptom screening and subsequent isolation [17].

In conclusion, these results suggest that aligning testing schedules with regular working

schedules for staff in congregate settings, in addition to timely implementation of prevention

strategies (e.g., isolation) can improve the efficacy of systematic screening testing. Two metrics,

the number of expected infections within a facility and the ITER are presented to inform deci-

sions on the frequency of systematic testing needed in different transmission scenarios to limit

transmission under key thresholds. Based on these findings, congregate settings such as car-

ceral facilities, nursing homes, schools, and more may be able to better prevent outbreaks

through systematic testing of staff that is aligned with work schedules and is continued until

community transmission or within-facility transmission potential are sufficiently reduced.
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